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Abstract

HYBRID AND SMART GRID WIRELESS NETWORKS:

CAPACITY AND OPTIMIZATION

Xin Wang, Ph.D.

The University of Texas at Arlington, 2014

Supervising Professor: Qilian Liang

Hybrid wireless network is a combination of ad hoc network and cellular net-

work. A key question arising in such hybrid wireless networks is what is the per-node

data transmission limit of the hybrid wireless network over general fading channels

and how the throughput capacity varies with different network setup. To our best

knowledge, our research is the first piece of work in literature to take up this chal-

lenge. To achieve the maximum per-node throughput, an opportunistic communi-

cation strategy together with successive interference cancelation (SIC) technique is

proposed in this dissertation. The scaling laws for the throughput capacity over both

slow fading channels and fast fading channel are derived, and the closed-form analyt-

ical expressions for the outage throughput capacity and ergodic throughput capacity

are provided. Our research applies an information theoretic approach to determine

the threshold of the data transmission rate in hybrid wireless network.

Wireless sensor and actuator networks (WSANs) are applied into microgrid to

stabilize the power supply in smart grid. In this dissertation, several sensor selection

schemes are heuristically proposed to improve the voltage measurement performance
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and prolong the sensor network lifetime. First, aiming to accurately monitor the real-

time voltage level, we propose an opportunistic sensor selection scheme under equal

power allocation and investigate the asymptotic behaviors of the voltage measurement

performance. We further address the sensor selection scheme under optimal power

allocation. Besides, we present the studies on improving the power efficiency with

the aid of voltage sensor selection.

As a paradigm of the incoming smart grid, vehicle-to-grid (V2G) has been pro-

posed as a solution to increase the adoption rate of plug-in hybrid electric vehicles

(PHEVs). In this dissertation, we investigate the energy management strategies for

PHEVs via bidirectional V2G. We first follow a cost-conscious approach from the

PHEV owner point of view. We prove that a state-independent four-threshold feed-

back policy is optimal for PHEV battery charging/discharging based on stochastic

inventory theory. Further, from the distribution system operator point view, we aim

to shave the peak load and flatten the overall load profile. To this end, we propose an

optimal PHEV charging scheme and derive a reminiscent of “water-filling” solution.

Finally, based on the present researches on the capacity and optimization of

hybrid and smart grid wireless networks, we propose two future research directions.

First, we propose the future works about the throughput capacity of hybrid wireless

networks with hexagon cell structure and Poisson Point Process (PPP) distributed

base station. Second, we discuss the future research topic on the throughput capacity

of cooperative-diversity networks over fading channels.
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Chapter 1

Introduction

1.1 Introduction to the Hybrid Wireless Networks

Radio waves do have a limited range, no matter which technologies are adopted.

In terms of network topology, two basic types of wireless network are available:

infrastructure-based cellular network and infrastructureless ad hoc network. Cel-

lular networks are probably the most common way of overcoming the limited range

problem. The user equipments (UEs) communicate directly with the base stations.

The base stations themselves are again connected to a network which can also be

connected to other networks like the internet. Wireless networks without support

from the fixed infrastructure are known as ad hoc networks. Since ad hoc networks

are linking devices like computers or mobile phones directly without a base station or

access point, the data is forwarded from the source to the destination via a multi-hop

fashion. To overcome the limited range problem, devices can not only do their own

communication but also serve as a relay-station and forward other messages.

Hybrid wireless networks combine these above two technologies, as shown in

Figure 1.1. Within hybrid wireless network, a cellular network can be extended into

regions where no base station is reachable; meanwhile, the base stations can provide

access to other networks like the internet. Therefore, the hybrid wireless network

takes advantage of both the long distance communication property of the cellular

network and the peer-to-peer communication property of the ad hoc network.

In wireless networks, the nodes exchange information over a common wireless

channel. Under different traffic scenarios and different constraints, e.g., bandwidth
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Figure 1.1. Hybrid wireless networks.

and power, the amount of data exchanged among these nodes may vary. A key

question that arises in such hybrid wireless networks is what is the per-node data

transmission limit of the hybrid wireless network over general fading channels and

how the throughput capacity varies with different network setup. In the literature,

the seminal paper by Gupta and Kumar [2] initiated the study of the scaling laws in

large ad-hoc wireless networks. Their by-now-new model has illustrated that, if the

nodes are placed optimally, the per-node capacity decreases at Θ(1/
√
n) as n tends to

infinity. On the other hand, if the nodes are randomly located, the per-node capacity

decreases at Θ(1/
√
n log n). Nevertheless, with a more general information theory

setting, it was later proved in [3] that a rate higher than Θ(1/
√
n) is potentially

achievable. Subsequently, in [4], the authors have applied the percolation theory and

provided a lower bound of 1/
√
n for the per-node capacity of a network with ran-

domly placed nodes, hence closing the gap in the capacity of wireless networks. Note

that [5] has proved the per-node throughput of mobile ad-hoc networks is bounded

2



by a constant even as the number of nodes n increases. The capacity of a hybrid

wireless network has also been widely studied in the literature, for example [6]-[15]

and references therein. In [6], the benefit of the infrastructure is shown to be depen-

dent on the number of base station relative to the number of wireless nodes and, for

a two-dimensional hybrid network with b stations, the maximum per-node capacity

scales as Θ(b/n) if the number of base stations increases faster than
√
n. Similarly,

in [7], it has been proved that, if b = ω(
√
n), the maximum per-node capacity of

Ω(min(b/n, 1/ log b)) is achievable by delivering data through the wired infrastruc-

ture. Otherwise, the percolation highway [4] must be used in order to achieve the

maximum capacity. Kozat and Tassiulas [8] further study the throughput capacity of

hybrid wireless networks where both the ad-hoc nodes and the base stations are ran-

domly distributed. They prove that the per-node throughput capacity is Θ(1/ log n)

if the number of base stations linearly scales with the number of nodes, which means

the network cannot scale. Similar results are also presented in [9]. The authors of

[10] focus on the throughput capacity of hybrid wireless networks where the nodes are

randomly distributed and the base stations are arbitrarily placed. Their researches

demonstrate that the per-node throughput capacity depends on the number of base

stations, but the network still cannot scale.

It is worth mentioning that a very important issue in practical wireless networks,

and unmodeled in [6]-[15], is the presence of multi-path fading. In a wireless network,

due to the physical environment, the electromagnetic waves travel to the receivers

along a multitude of paths, encountering delays and suffering gains which vary with

time [16] [103]. However, to our best knowledge, there have not been any studies on

the data transmission limit of hybrid wireless networks over fading channels. In this

study, to analyze the effect of fading on the hybrid wireless network, one commonly

used fading models, i.e., Nakagami-m fading, is specifically examined. Nakagami-m
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distribution spans via the m parameter the widest range of amount of fading (AF)

among all the multipath distributions. For instance, it includes one-sided Gaussian

distribution (m = 1/2) and the Rayleigh distribution (m = 1) as special cases. In

the limit, as m approaches infinity, the Nakagami-m fading channel converges to

the non-fading additive white Gaussian noise (AWGN) channel. The Nakagami-m

distribution can also closely approximate the Nakagami-n (Rician) distribution with

the parameter mapping [18]. It is thus straightforward to extend our work to the

general fading scenarios.

Further, unlike the previous studies, in this work we apply an optimal 1 multi-

ple access technique to increase the network throughput. Specifically, when a node is

scheduled for transmission, a set of nodes from the same cell are selected to transmit

simultaneously with the scheduled source, as long as such transmissions do not impair

the achievable transmission rate of the scheduled source. These nodes are referred

to as opportunistic sources. All these sources share the entire bandwidth. However,

rather than treating the interference from other nodes as noise, the receiver deploys

a successive interference cancelation (SIC) technique, as detailed in [19] [20]. That

is, after one node is decoded, its signal is stripped away from the aggregate received

signal before the next node is decoded. Similar to [21] [22] [23], our key idea behind

this decoding scheme is that we believe the previous physical model used by many

literatures, for example [2] [6], is somewhat strict. In particular, these models treat

the signals received from the nodes other than the transmitter as interferences. Based

on this assumption, long range point-to-point communication between nodes is not

preferable. The reasonable strategy is then to resort to the multi-hop scheme to con-

fine the communications to nearest neighbors and rely on a spatial reuse to maximize

1The “optimality” is mainly defined from the sum-rate perspective. The fairness and efficiency

of such strategy go beyond the scope of this dissertation.
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the number of simultaneous transmission. However, we take a weak restriction al-

lowing the nodes to transmit data directly to their destinations. We schedule a set

of opportunistic nodes to transmit simultaneously and, with the aid of SIC decoding

technique, the interference from these nodes becomes valuable information [24]-[26].

1.2 Introduction to Sensor Selection Schemes in Smart Grid

The past few years have witnessed a revolutionary change from ordinary elec-

trical grid to smart grid [31]. Currently, supplying isolated locations with electricity

comes with an increased cost to the distributed network operators (DNOs) since the

majority of the energy that is destined for customers is wasted in the form of heat

before any useful energy reaches the consumer [32]. In smart grid, distributed energy

resources (DERs), such as wind turbines and solar panels, provide a cheaper and

more efficient solution that can deliver the energy from points closer to the consumer

than DNO’s centralized power grid [33]. To introduce DER technology, the distri-

bution networks are divided into microgrids, which are managed by the autonomous

intelligent control center (ICC), instead of DNO control center (See Figure 1.2).

Maintaining adequate operating voltage at all the customer delivery points is

very critical to the microgrid system. Voltage regulation in traditional distribution

system is mainly provided by onload tap changer (OLTC), line regulators and switched

shunt capacitors at the substations and feeders, on the assumption that the current

always flows from the transmission to high voltage/middle voltage (HV/MV) substa-

tions and then to the MV feeders. However, the introduction of DERs makes this

assumption no longer valid [34]. DERs alters the flows which, in turn, alters feeder

voltage profiles and affects the voltage regulation in distributed systems [35].

In literature, there have been some studies on coordinating the DERs and reg-

ulating the voltage level in smart grid [36]-[41]. For instance, to coordinate multiple
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Figure 1.2. Distributed energy resources (DERs) introduced to microgrid.

DERs in voltage control, [36] considered the sparseness of the voltage deviation and

proposed a sample-contention mechanism using WiMAX to prioritize the voltage

state reports. Note that in [37], the communication topology is designed for dis-

tributed voltage control, where the communication delay is ignored. Also, to stabilize

the voltage of DERs in microgrid, the application of cyber physics systems (CPSs)

is introduced and the decentralized scheduling in the MAC layer is investigated in

[38]-[40]. Unlike these previous studies, to accurately monitor the real-time voltage

level and coordinate DERs with the traditional voltage regulators, we focus on the

communication system design from the physical layer perspective. In terms of the

communication system design, the wired communication based on power line com-

munication (PLC) is apparently a suitable candidate (the nature of the power grid);

however, in microgrid, wireless communication is more preferred by many application

scenarios [42], such as: 1) when many parameters in DERs need to be monitored,

6



PLC can result in a costly and complicated system architecture; 2) PLC cannot easily

bypass transformers in a power distribution network; 3) wired communications can-

not provide peer-to-peer communications among electric devices in a flexible manner.

Wireless sensor and actuator networks (WSANs), characterized by monitoring, auto-

matic control and two way communications, could effectively monitor the real-time

voltage statement, detect load fluctuation and track power flow [43] [44]. Each volt-

age sensor deployed in the microgrid processes its individual voltage measurement

and transmits the result to the ICC, which could immediately respond to the voltage

fluctuation by turning on/off the related DERs and voltage regulators to stabilize the

power supply and thus avoid significant voltage perturbations.2

Note that one important property of the voltage sensors is their stringent power

constraint. Such voltage sensors have only small-size batteries whose replacement can

be costly if not impossible. If a sensor remains active continuously, its energy will

be depleted quickly leading to its death [45]. Therefore, to prolong the network

lifetime, the voltage sensors need to alternate between being active and sleeping.

The sensor selection problem has already arisen in various applications, including

sensor placement for structures [46], sequential estimation [47], target tracking [48],

single mission sensor selection scheme [49] [50] and multiple mission sensor selection

schemes [51]. The study of [52] investigated the full sensing coverage of the field by

identifying the appropriate sensors and turning off the redundant sensors. A survey

of sensor selection schemes in wireless sensor network is summarized in [45]. However,

to our best knowledge, there have not been any specific studies employing the sensor

2A general recommendation for voltage regulation is a minimum time delay of 15 sec. This

time-delay setting covers the vast majority of temporary voltage swings due to equipment starting,

cold-load pickup, etc. It also has another important benefit when attempting to coordinate two or

more voltage regulators in series along the line.
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selection schemes in microgrid to regulate the voltage level and stabilize the power

supply. To achieve proper voltage regulation, in this dissertation, several heuristic

sensor selection schemes are proposed in the context of voltage regulation and the

following three fundamental issues serve as the criteria for sensor selection.

• Voltage Estimation Accuracy : Voltage estimation accuracy determines if the

control center can perform reasonable operations to regulate the voltage, based

on the real-time voltage level information collected from the monitoring sensors;

• Power Efficiency : To prolong the lifetime the WSANs, the power consumption

should be minimized;

• Transmission Rate: The wireless communication link should transmit the volt-

age measurements to the control center with negligible error in a real-time

manner.

1.3 Introduction to Energy Management for Plug-in Hybrid Electric Vehicles

With recent concerns about global warming and petroleum-based energy short-

ages, the number of hybrid electric vehicles (PHEVs) and fully electrical vehicles

(EVs) is expected to rapidly increase in the coming years [65]. The energy consumed

by EVs comes entirely from the electricity grid while for PHEVs the energy can come

both from the electricity grid and other sources. Both PHEVs and EVs 3 can assist

in shifting the personal transportation sector away from fossil fuels, and become an

integral part of the overall smart grid concept.

On the one hand, the mass adoption of PHEVs in the future is not without its

challenges: the PHEV charging is a relatively large load in the electricity grid, and

unmanaged PHEV charging can increase the electricity load, inevitably amplifying

the peak load [66]. It has been estimated that the total charging load of the PHEVs

3PHEVs and EVs will both be referred to as PHEVs in the remainder of this dissertation.
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Figure 1.3. A schematic illustration of bidirectional V2G energy flow.

in U.S. can reach 18% of the U.S. summer peak at the PHEV penetration level of

30% [67]. Further, the PHEVs may increase the load uncertainties, overload the

distribution circuits elements, e.g., transformers [68], and lead to voltage regulation

violations [69]. On the other hand, the PHEVs can provide energy back to the power

grid by discharging the battery, which is known as vehicle-to-grid (V2G) [70]. Various

V2G concepts have been studied in [70]-[73], where the significant profits can be made

by offering V2G services. Basically, the power flow in V2G can be both unidirectional

and bidirectional. Although it is anticipated that the unidirectional V2G will be

implemented first, the unidirectional V2G is limited to participation in regulation

and reserves markets and it has been shown to have lower capacities in those markets

[73]. Therefore, the focus of this section lies on optimizing the bidirectional V2G

energy flow: from the grid to the PHEV battery and from the PHEV battery to the

grid, as schematically shown in the Figure 1.3.
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As is known, an intelligent energy management scheme can optimally sched-

ule the PHEV charging and discharging patterns such that the load profile of the

electrical grid can be effectively shaped. The essential principle in intelligent energy

scheduling is to reshape the load profile by charging the PHEV from the grid when the

demand is low and discharging the PHEV when the demand is high. In literature,

there have been some existing studies on the PHEV energy management [74]-[87].

For instance, [74] introduced the PHEV charging model based on real-time price

information; while, [75] proposed an optimal store-carry-and-deliver energy manage-

ment strategy for PHEV and further integrated the time-of-use (TOU) pricing policy.

Sortomme et al. proposed an unidirectional regulation at the aggregator, in which

several smart charging algorithms are employed to set the point about which the rate

of charge varies [66]. The comparison between centralized charging strategy and local

charging strategy is discussed in [76]. The authors of [77] proposed a decentralized

algorithm for optimally scheduling PHEV charging, which is distributed and thus

requires low computation capacity. Some mathematical optimization approaches are

also considered in the literature. The study of [79] employs the linear programming

model to respond to the real-time pricing policy. A mathematical optimization ap-

proach based on quadratic programming is presented in [80], of which the aim is to

minimize the energy losses and maximize the grid load factor. Distributed algorithms

based on dual decomposition theory are proposed in [81] [82]. Note that [83] intro-

duced the tool of game theory to solve the decentralized charging control problems in

terms of large-population of PHEVs. It proved that, under certain mild conditions,

the large-population charging game converges to a unique Nash equilibrium which is

either globally optimal or nearly globally optimal. The control schemes for charging

PHEV based on queuing theory are considered in [85] [86]. A comparison of the intel-

ligent charging algorithms for PHEVs to reduce the peak load and demand variability
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is summarized in [87]. However, the implementation of these above-mentioned intel-

ligent energy management techniques remains relatively complicated and expensive.

Furthermore, to the best of the authors’ knowledge, it is still a significant open ques-

tion considering the bidirectional energy flow, real-time electricity price and realistic

PHEV battery models.

Motivated by this, in this study, we propose an optimal energy management

strategy for PHEV charging and discharging. Our contributions are as follows.

• We formulate a realistic PHEV battery model which integrates the battery

charging and discharging capacity, the battery charging and discharging effi-

ciency, the battery aging/wear cost and the battery self-discharging effect.

• From the PHEV owner point of view, we propose a cost-conscious approach

based on dynamic programming. In order to minimize the daily energy cost, we

formulate the PHEV energy management problem through dynamic program-

ming. Further, in order to reduce the computational complexity, we prove that

a state-independent four-threshold (s, S, s’, S’ ) feedback policy is optimal for

PHEV energy management.

• From the distribution system operator point of view, we present an optimal

PHEV charging scheme to shave the peak load and flatten the overall load

profile. A reminiscent of “water-filling” solution is derived for the PHEV energy

management in this scenario.

The remainder of this dissertation is organized as follows. In Chapter 2, we

investigate the theoretical per-node transmission limit of hybrid wireless networks

over fading channels. The voltage regulation issue in microgrid is studies in Chapter 3,

in which we apply the wireless sensor and actuator networks (WSANs) to accurately

monitor the real-time voltage level and coordinate the distributed energy resources

(DERs) with the traditional voltage regulators. In Chapter 4, we explore the energy
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management strategies for plug-in hybrid electric vehicles (PHEVs) via bidirectional

vehicle-to-grid (V2G). Finally, we propose some future research topics in Chapter 5.
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Chapter 2

On the Throughput Capacity and Performance Analysis of Hybrid Wireless

Networks over Fading Channels

In this chapter, we investigate the theoretical per-node transmission limit of

hybrid wireless networks over fading channels. The remainder of this chapter is

organized as follows. In Section 2.1, we formulate the hybrid wireless network model.

The principle of opportunistic communication and frequency reuse are introduced in

Section 2.2. The outage throughput capacity and ergodic throughput capacity are

explored in Section 2.3 and Section 2.4, respectively. The QoS performance analysis of

the AEP is further provided in Section 2.5. In Section 2.6, we present some concluding

remarks.

2.1 Hybrid Wireless Network Modeling

2.1.1 Hybrid Wireless Network Model

We make the following assumptions for the hybrid wireless network model [4]

[7] [11] [111].

1. We construct a network consisting of n nodes, which are uniformly placed over

a square area of [0,
√
n]× [0,

√
n].

2. Placing b base stations regularly as in Figure 2.1, the network is thus partitioned

into b square cells with side length c =
√
n/b. Each cell contains only one base

station and these base stations are linked together by a wired network to form
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Figure 2.1. The square network of size
√
n ×
√
n is partitioned into b cells of size√

n
b
×
√

n
b
.

an infrastructure.1 Further, we assume b = o( n
logn

) to make sure that the base

station number b tends to infinity as n→∞, but at a much slower rate.

3. The baseband model for the communications between node i and node j (or

between node i and base station) at time slot t is described as:

Y j
t = αijX

i
t + Zj

t . (2.1)

• X i
t is the complex baseband signal node i transmits, Y j

t is the complex base-

band signal node j receives, and Zj
t is a Gaussian independent and identically

distributed (i.i.d.) random variable with zero mean and variance σ2
z .

• αij characterizes both the large-scale attenuation and small-scale fading of

the channel.

• Node i transmits with power P and the signal is received at node j with

power P · l(|Xi −Xj|) · |hij|2. Here, l(|Xi −Xj|) = min(1, e
−γρij

ραij
) represents the

large-scale radio attenuation function, in which α and γ (normally α > 2 and

γ > 0) are the path-loss exponent and absorption constant of the attenuation,

1In this work, we assume the base stations are connected by high bandwidth long range links

and thus there is no capacity constraint within the infrastructure [7]. These base stations neither

generate nor consume data. They serve purely as relays for traffic of nodes.
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respectively. Besides, ρij is the distance between node i and j, and hij denotes

the small-scale fading property of the channel.

2.1.2 Transmission Modes

There are two types of transmission mode employed in the hybrid wireless

network: the intra-cell mode and the infrastructure mode. When the source node

chooses a destination located within the same cell, the intra-cell transmission mode is

in effect. The data is transmitted directly from the source to the destination through

a single hop, without the aid of infrastructure. On the other hand, if the two nodes

are located in different cells, the infrastructure transmission mode is implemented

instead, as specified later in Section 2.3.

We partition the total channel bandwidth of W Hz into two orthogonal sub-

channels with W1 Hz and W2 Hz. The W1 Hz sub-channel is assigned for data

transmission from the source to destination (intra-cell mode or the uplink phase of

infrastructure mode), while the W2 Hz bandwidth is allocated for transmitting the

data from the base station to the destination (the downlink phase of infrastructure

mode).

2.2 Preliminaries

2.2.1 The Number of Nodes Per Cell

The following lemma proves that there are Θ(n
b
) nodes within each cell.

Lemma 2.2.1 For b = o( n
logn

) and n → ∞, the number of nodes, nc, in each

cell of side length c =
√
n/b is bounded by Θ(n

b
).

Proof. Let event A denote a Bernoulli event that a particular node i, 1 ≤ i ≤ n,

falls into a particular cell of area c2. Because the nodes are placed uniformly on the
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network, it is clear that the probability of event A is PA = n/b
n

= 1
b
. Therefore, the

number of nodes, nc, has a binomial distribution with parameters (PA, n). Using the

Chernoff bound, we have

Pr

(
nc > k1

n

b

)
≤ E{exp(nc)}

exp(k1n
b

)

where k1 is a constant. Since E{exp(nc)} =
(
1+(e−1)PA

)n ≤ exp
[
(e−1)n

b

] (
because

1 + x ≤ exp(x)
)
, we obtain

Pr

(
nc > k1

n

b

)
≤ exp

{
− n

b
[k1 − (e− 1)]

}
. (2.2)

As long as k1 > e− 1, we know from the union bound that Pr(some cells have

more than k1n
b

nodes) converges to zero as n tends to infinity.

Similarly, we have

Pr

(
nc < k2

n

b

)
≤ E{exp(−nc)}

exp(−k2n
b

)

where k2 is also a constant. Since E{exp(−nc)} =
(
1 + (e−1 − 1)PA

)n ≤ exp
[
(e−1 −

1)n
b

]
, we obtain

Pr

(
nc < k2

n

b

)
≤ exp

{
− n

b
[(1− e−1)− k2]

}
. (2.3)

As long as k2 < 1−e−1, we know from the union bound that Pr(some cells have

less than k2n
b

nodes) converges to zero as n tends to infinity. Hence, it is concluded

that each cell contains Θ(n
b
) nodes and we complete the proof.

2.2.2 Opportunistic Communication

In a particular cell, assume that these nc nodes are time-sharing and transmit

in a round robin fashion. When being slotted, the scheduled source node i is assigned
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µW1 = W1/nc Hz bandwidth for transmission. From the information theory point of

view, the maximum achievable rate of reliable communication is

log

(
1 +

P · l(|Xi −Xj|) · |hij|2

µW1N0

)
bit/s/Hz. (2.4)

To describe if a transmission is received successfully by its intended recipient,

in most literatures, two possible models, the so called protocol model and physical

model, are adopted. Therefore, it is meaningful to explore the following question:

what is the ultimate limit of information rate of the whole network if any transmission

strategy is allowed? If we ignore the protocol model and physical model, the upper

bound of the information rate is given by Theorem 1 and the detailed proof is given

by Appendix A.

Theorem 1. Consider a wireless network M consisting of m nodes. Dynam-

ically, at time instants k = 1, 2, · · · , n, node i from the source set S transmits the

signal X i
k to node j within the destination set D. If the information rates {Rij} are

achievable, then for any subset S of M, we have

RSD ≤
∑
j∈D

[1
2

log(1 +
E|
∑

i∈S αijX
i
k|2

σ2
z

)
]

+ εn, (2.5)

where RSD =
∑

i∈S,j∈D R
ij, and εn → 0 as n→∞.

As is known, there is a conceptual difference between the AWGN channel and

fading channel in terms of the throughput capacity. In the former, one can send

data at a positive rate while keeping the error probability as small as desired. This,

nevertheless, cannot be done for the fading channel as long as the probability that

the channel is in deep fade is non-zero [62] [18]. Specifically, if the signal duration is

short compared to the channel coherent time, we have a slow fading fading channel;

otherwise, if the signal duration is much longer than the channel coherent time, the

signal will be subject to different fading effects and thus we have a fast fading channel.
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Therefore, we introduce the following alternative criteria for throughput performance

based on the different fading scenarios: ε-outage capacity Cε (slow fading), which

is the largest rate of transmission such that the outage probability Pout is less than

ε, and ergodic capacity C̄ (fast fading), which is defined as the ensemble average of

channel capacity over all possible channel realizations.

Suppose the transmitter encodes the data at the rate of R bit/sec/Hz, then the

system is said to be in outage if log
(
1 +

P ·l(|Xi−Xj |)·|hij |2
µW1N0

)
< R. The related outage

probability is

Pout = Pr

{
log(1 +

P · l(|Xi −Xj|) · |hij|2

µW1N0

) < R

}
. (2.6)

Solving Pout = ε yields the following outage capacity

Cε = log

(
1 + F−1(ε)

P · l(|Xi −Xj|)
µW1N0

)
bit/s/Hz, (2.7)

where F (·) is the cumulative distribution function of |hij|2.

Can we do better?

Assume, for any scheduled source, that there are κ nodes within the same

cell, whose Euclidean distance away from destination node j is greater than ρij.

2 To overcome the fading impairments, we allow these κ nodes to be opportunistic

sources and transmit data simultaneously to the destination node j. The channel thus

becomes a multiple-access fading channel and the optimal multiple access strategy

is for all these sources to spread their signal across the entire bandwidth. However,

rather than decoding every node treating the intra-cell interference from other nodes

as noise, a successive interference cancelation (SIC) technique is employed at the

receiver. That is, after one node is decoded, its signal is deducted from the aggregate

2In this work, we only focus on the case where the Euclidean distance information is known by

all the users. One possible justification is that the base station can collect the distance information

(base station coordination) and broadcast it to all the users via control channels.
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received signal before the next node’s information is decoded, which significantly

reduces the intra-cell interference. It is worth mentioning the motivation that we

choose these farther nodes as opportunistic nodes is to make sure the transmissions

from the opportunistic sources do not impair the achievable transmission rate of the

scheduled source [2]. According to the interference model given in [2], the transmission

is successful if the positions of other transmitters Xκ simultaneously transmitting over

the same channel satisfy |Xκ − Xj| ≥ (1 + ∆)|Xi − Xj|, where ∆ > 0 models the

guard zone.

Let ρid (i = 0, 1, ..., κ) denote the distance of these sources away from the desti-

nation node j, where ρod is the distance of scheduled node away from the destination

and ρid(i 6= 0) represents the distance of the opportunistic source away from the des-

tination. Without loss of generality, we have ρ0d ≤ ρ1d ≤ · · · ≤ ρκd. The SIC strategy

maximizes the sum rate and achieves a set of sum rate satisfying

R0 ≤ log

(
1 +

P · l(|X0 −Xj|) · |h0j|2

ηW1N0

)
... (2.8)

κ∑
i=0

Ri ≤ log

(
1 +

∑κ
i=0 P · l(|Xi −Xj|) · |hij|2

ηW1N0

)
where Ri denotes the ith node’s achievable rate. Since each opportunistic source can

spread its signal over the entire bandwidth assigned to these κ+ 1 nodes, µ in (3.24)

is replaced with η in the achieved rate (2.8), as further specified later.

Lemma 2.2.2 For a given source and destination pair in any cell, there are

κ = Θ(n
b
) nodes within the same cell that have greater distances from the destination

than the source node.

Proof. For a scheduled source node i and a destination node j with the distance d

away from each other, we construct a disk (radius d) centered at node j, as shown in
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Figure 2.2. For a given source with distance d from its intended receiver, the oppor-
tunistic sources should be located outside (white area) the disk of radius d centered
at the receiver.

Figure 2.2. Apparently, any random node located within the disk is closer to node j

than node i. Hence, the opportunistic sources of node i must be located outside of

the disk. Our goal is to estimate how many nodes are located in the remaining cell

area outside of the disk.

Based on the locations of node i and j, a portion of the disk may fall outside the

cell boundary. We will not take this portion (including the boundary) into account,

since in this study the opportunistic sources are only chosen from the same cell region.

Let AR denote the area of the disk with radius d, then we can always represent AR

with υc2, υ ∈ (0, 1).3 Besides, υ is only determined by the random locations of node

i and j and thus is irrelevant of n.

Further, assume that node q, (1 ≤ q ≤ nc − 2) is any node in the cell other

than the node i and j, and let random variable Zq denote whether node q is located

outside of AR. Clearly, the random variable Zq is expressed as

Zq =


1 , node q is outside of AR

0 , otherwise

(2.9)

3We need to point out that υ = 0 and υ = 1 stand for the special case of d = 0 (self transmission)

and d = c/
√

2 (boundary transmission), respectively. To avoid possible ambiguity, in this study we

assume υ ∈ (0, 1).
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Since the probability that a random node q is located outside of AR is 1−υ, we

have E[Zq] = 1− υ. Note that κ =
∑nc−2

q=1 Zq is the total number of nodes in the cell,

excluding the transmitter i and receiver j, that are located outside of AR. According

to Strong Law of Large Numbers, with probability equal to 1,

κ

nc − 2
=

1

nc − 2

nc−2∑
q=1

Zq → 1− υ (2.10)

As n → ∞ (and thus nc), κ is approximately (1 − υ)nc. Since υ ∈ (0, 1) is

irrelevant of n and nc = Θ(n
b
), κ = (1 − υ)nc = k1nc where 0 < k1 < 1. Therefore,

the proof is complete.

Lemma 2.2.2 proves that for a given source and destination pair, there exist at

most κ = Θ(n
b
) nodes within the same cell that can serve as opportunistic sources.

To practically apply the proposed opportunistic transmission strategy, we split

τ , the transmission time allocated to the scheduled source τ , into two parts. The first

part θτ is used for the scheduled source to inform every opportunistic node about

its destination and set up the transmission cooperation. The second part (1 − θ)τ

is for the scheduled source and opportunistic sources to transmit the data to the

common destination. In this study, we assume that θ (0 < θ < 1) remains constant,

irrespective of the transmission rate.

2.2.3 Frequency Reuse

Since the traffics of the uplink phase and the downlink phase are assigned with

orthogonal sub-channels, there is no interference between these two types of traf-

fics. However, the interference still exists between the same type of traffic within

different cells, which is referred to as the inter-cell interference. Fortunately, such

interference could be minimized by employing the frequency reuse concept as illus-

trated in [30]. Specifically, we first group the cells together to form a certain number
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of clusters. Then, we assign different frequency bands to the cells within the same

cluster; whereas, among different clusters, these frequency bands are reused as shown

in Figure 2.3. Hence, the transmissions in the cells (in different clusters) with the

same frequency can be carried out simultaneously without causing excessive inter-cell

interference, as long as the distance between these cells is large enough.

Lemma 2.2.3 For any integer a > 0, there exists a reuse policy with M2 ( reuse

factor) frequency bands where M = 2(a + 1), such that all cells in the network can

transmit simultaneously with bounded interferences.

Proof. As illustrated in Figure 2.3, we assign a reuse set of M2 frequency bands,

{f1, f2, · · · , fM2} to M2 cell of each cluster. Note that for a given cell o, there is

always one cell in every cluster that occupy the same frequency. We can consider

the maximum interference by observing that the first-tier (i = 1) interferers are

transmitters in eight closest cells located at the distance of at least [2(a + 1) − 1]c

away from the receivers in cell o.

Extending the sum of interferences of the entire plane and taking into account

that there are possibly κ + 1 ≈ κ transmitters in each cell, the upper bound of this

sum is

I(c, d) ≤
∞∑
i=1

8iκP [2ci(a+ 1)− c]−αe−γ(2ci(a+1)−c)

(a)

≤ 8κP [2c(a+
1

2
)]−α

∞∑
i=1

i−α+1e−2γci(a+ 1
2

)

where (a) is due to 2ci(a+ 1)− c ≥ 2ci(a+ 1/2). 4

4In this proof, we mainly consider the large-scale attenuation, since the large-scale attenuation

will dominate in the long distance transmission.
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a=1

o

M = 4

Figure 2.3. Frequency reuse scheme for a=1. The shaded squares share the same
frequency.

Next, in terms of the minimum interference, we observe that the first-tier inter-

ferers are at the distance of at most [2(a+ 1) + 1]
√

2c cells away. So we can express

the lower bound of the interference as

I(c, d) ≥
∞∑
i=1

8iκP [2
√

2ci(a+ 1) +
√

2c]−αe−γ(2
√

2ci(a+1)+
√

2c)

(b)

≥ 8κP [2
√

2c(a+
3

2
)]−α

∞∑
i=1

i−α+1e−2
√

2γci(a+ 3
2

)

where (b) follows from 2
√

2ci(a+ 1) +
√

2c ≤ 2
√

2ci(a+ 3
2
). Evidently, if α > 2 and

γ > 0, the summation terms in the upper bound and lower bound converge and the

values of the bounds are defined by κe−α. Since κ = Θ(n
b
) and c =

√
n/b, as n→∞,

the interference decreases at the rate of Θ((n
b
)1−α

2 ).

Similarly, for the interference for the downlink I ′(c, d) (a special case when

κ = 0) deceases at the rate Θ((n
b
)−

α
2 ). The proof is complete. 5

Lemma 2.2.3 proves that inter-cell interference I is limited with the introduction

of frequency reuse strategy. Therefore, we treat the inter-cell interference I as additive

colored Gaussian noise throughout this chapter, unless otherwise stated.

5A similar proof method is adopted in [4].
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2.3 Outage Throughput Capacity of Hybrid Wireless Networks

In this section, we focus on the theoretical per-node transmission limit of hy-

brid wireless networks over slow fading channels. Before we embark on this, it is

noted that in many previous studies the throughput capacity is specified from the

transmitter perspective as the average rate at which each node could transmit data

to its destination. However, in this chapter, we schedule the opportunistic sources

to transmit simultaneously with the scheduled source. Therefore, to illustrate the

advantage of multiple access technique and explore the slow fading property of the

channel, we define the feasible ε-outage throughput capacity as follows.

Definition 1. For a hybrid wireless network of n nodes and b base stations,

a ε-outage throughput capacity of Tε(n, b) bit/s for each node is feasible if under the

intra-cell mode or infrastructure mode, there is a spatial and temporal scheme for

scheduling transmissions such that every node can receive Tε(n, b) bit/s with the outage

probability less than ε.

2.3.1 Outage Throughput Capacity under Intra-cell Mode

First, we discuss the outage throughput capacity under intra-cell transmission

mode. Taking into account the benefits of opportunistic sources and SIC decoding

strategy, we find the bandwidth allocated to the scheduled source under intra-cell

mode is ηW1 = κ+1
nc

W1

M2 = Θ(W1) Hz, where M2 is the frequency reuse factor. Ac-

tually, ηW1 denotes the entire bandwidth assigned to these κ + 1 scheduled and

opportunistic sources.6 Clearly, the above bandwidth allocation is continuous. This

6To understand this, in this work, our approach is first to assign orthogonal bandwidth between

the κ+1 sources and the remaining nc−κ−1 nodes, aiming to eliminate the intra-cell interferences.

Since at the receiver, we employ the SIC strategy to reduce the interferences within these κ + 1

sources, these κ+ 1 sources will share the ηW1 Hz bandwidth.
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is a reasonable assumption if the subcarrier bandwidth spacing is narrow compared

to the total bandwidth. An example system is LTE which can operate with 15K Hz

spacing and 2048 subcarriers. The sum of the transmission rates for the scheduled

and opportunistic sources is given in Lemma 2.3.1.

Lemma 2.3.1 For source node i and destination node j under intra-cell trans-

mission mode, as n→∞, the transmission rate over Nakagami-m fading is

Rintra = O

(
log[(ε

1
m )

b
n
n

b
]

)
bit/s/Hz. (2.11)

Proof. Assume that the scheduled source and opportunistic sources encode the data

at the rate of R bit/s/Hz. With the introduction of opportunistic sources and SIC

decoding strategy, the outage performance is

P̃out = Pr

{
log(1 +

∑κ
i=0 P · l(|Xi −Xj|) · |hij|2

ηW1N0 + I
) < R

}
(a)
' Pr

{
log(1 +

∑κ
i=0 P ·min(1, ρ−α0d e

−γρ0d) · |hij|2

ηW1N0 + I
) < R

}
= Pr

{
||h||2 < (2R − 1)(ηW1N0 + I)

P ·min(1, ρ−α0d e
−γρ0d)

}
, (2.12)

where ||h||2 =
∑κ

i=0 |hij|2. At step (a) we use ρ0d to approximately represent the

distance of opportunistic nodes away from the destination for analysis simplicity; the

outage throughput capacity we derive later is thus the upper bound.

As is known, the pdf of a Nakagami-m random variable |hij| (magnitude) is

f(h) =
2

Γ(m)

(m
Ω

)m
h2m−1e−mh

2/Ω, h ≥ 0 (2.13)

where Γ(·) is the Gamma function, m = E2[h2]
V ar[h2]

is the shape parameter7. Ω = E[h2]

stands for the controlling spread and Ω = 1 for Nakagami-m fading.

7In this study, we assume m is an integer for analysis clarity.
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Note that a Gamma-distributed random variable with shape k and scale θ is

distributed as

Γ(k, θ) =
1

θk
1

Γ(k)
xk−1e−

x
θ , x ≥ 0.

Therefore, we conclude that |hij|2 is Gamma-distributed |hij|2 ∼ Γ(m, 1
m

), since

the pdf of |hij|2 is

f(x) =
mm

Γ(m)
xm−1e−mx, x ≥ 0. (2.14)

In addition, it has been proved in Lemma 2.3.1.1 (Appendix B) that ||h||2 =∑κ
i=0 |hij|2 is also Gamma-distributed Γ

(
(κ+ 1)m, 1

m

)
as follows

f(x) =
m(κ+1)m

Γ[(κ+ 1)m]
x(κ+1)m−1e−mx. (2.15)

Applying the pdf of ||h||2 into the outage performance (2.12) with T denoting

the right-hand side, we have

Pr{||h||2 < T} =
m(κ+1)m

Γ[(κ+ 1)m]

∫ T

0

x(κ+1)m−1e−mxdx

(a)
=

m(κ+1)m

Γ[(κ+ 1)m]
·m−(κ+1)m · γ

(
(κ+ 1)m,mT

)
(b)
= 1− e−mT

(κ+1)m−1∑
i=0

(mT )i

i!

where (a) follows the definition of incomplete gamma function; (b) follows that for

integer n, γ(n, x) = (n− 1)!
[
1− e−x

∑n−1
i=0

xi

i!

]
and Γ(n) = (n− 1)!.

Then the resulting outage capacity over Nakagami-m fading is obtained by

solving8

1− e−
m(2R−1)
sinr

(κ+1)m−1∑
i=0

[m(2R−1)
sinr

]i

i!
= ε, (2.16)

with sinr =
P ·min(1,ρ−α0d e

−γρ0d )

ηW1N0+I
.

8In (2.16), the sinr is introduced for brevity of notation, rather than the abbreviation for signal-

to-interference-plus-noise ratio (SINR).
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Clearly, no closed-form solution exists for arbitrary κ and m. Further, approxi-

mating e−x by 1 for small x, we have the following outage performance at the regime

of high SINR

P̃out =
m(κ+1)m

[(κ+ 1)m]!

[(2R − 1)

sinr

](κ+1)m
(2.17)

since according to (2.12), when T is small (high SINR)

Pr{||h||2 < T} =

∫ T

0

m(κ+1)m

Γ[(κ+ 1)m]
x(κ+1)m−1dx

=
m(κ+1)m

[(κ+ 1)m]!
T (κ+1)m.

Solving P̃out = ε, we obtain the following outage capacity

Cε = log

{
1 +

1

m
· ε

1
(κ+1)m [(κ+ 1)m]!

1
(κ+1)m · sinr

}
. (2.18)

Finally, we explore the scaling laws for outage throughput capacity under intra-

cell transmission mode. Employing Stirling’s approximation,

n! =
√

2πn
(n
e

)n
eαn

with 1
12n+1

< αn <
1

12n
, we have 1

m
[(κ+ 1)m]!

1
(κ+1)m = Θ(n

b
). Together with κ = Θ(n

b
)

(Lemma 2.2.2) and I = Θ
(
(n
b
)1−α

2

)
(Lemma 2.2.3), the transmission rate is upper

bounded by Θ
(

log[(ε
1
m )

b
n
n
b
]
)
. Therefore, the transmission rate for the scheduled and

opportunistic sources Rintra over Nakagami-m fading is O
(

log[(ε
1
m )

b
n
n
b
]
)
bit/s/Hz. We

complete the proof.

Taking into account the temporal occupation 1 − θ and bandwidth alloca-

tion ηW1, we conclude the per-node outage throughput capacity under intra-cell

transmission mode Tintra(n, b), which is determined by the product between the al-

located bandwidth and the sum of the transmission rate, i.e., (1− θ) · ηW1 ·Rintra, is

O
(

log[(ε
1
m )

b
n
n
b
]W1

)
bit/s.
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2.3.2 Outage Throughput Capacity Under Infrastructure Mode

Another scenario is that the sources transmit the data to the destination located

in a different cell via the infrastructure transmission mode. Specifically, during the

uplink phase, the source and the opportunistic sources first transmit all traffic to the

base station within the cell. Then, in the transport phase, the base station decodes

the received data from each source and send them through the wired network to the

base station located in the destination cell. Subsequently, the data is retransmitted

to the destination during the downlink phase.

Lemma 2.3.2 For source node i and destination node j under infrastructure

transmission mode, as n→∞, the transmission rate over Nakagami-m fading is

Rinfra = Θ

(
log(ε

1
m
n

b
)

)
bit/s/Hz. (2.19)

Proof. The proof is mainly based on the fact that the uplink throughput and downlink

throughput are equal. Apparently, the uplink traffics are very similar to the intra-

cell transmission mode, with the destination node replaced with the base station.

During the downlink phase, neither the base station cooperation (one base station

within each cell) nor the interference cancellation strategy is allowed, which results

in a suboptimal throughput performance. 9 The outage throughput performance for

the downlink phase is

P̃ ′out = Pr

{
log(1 +

P · l(|Xb −Xj|) · |hbj|2

λW2N0 + I ′
) < R

}
= Pr

{
|hbj|2 <

(2R − 1)(λW2N0 + I ′)

P ·min(1, ρ−α0d e
−γρ0d)

}
, (2.20)

9This assumption is motivated in many practical scenarios. During the uplink phase, the base

station is capable of adapting the data rate and harnessing multiuser diversity; whereas during the

downlink, additional limitations such as decoding complexity and delay constraints, etc., preclude

the application of the multiuser technique (superposition coding) for each node as the receiver.
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where hbj characterizes the channel from the base station to the receive node j, λ is

the fraction of bandwidth W2 assigned to the receive node j, and I’ represents the

inter-cell interference.

Similarly, applying the pdf of |hbj|2 (5.4) into (2.20), we derive the outage

performance at high SINR as,

P̃ ′out =
mm

m!

[(2R − 1)

sinr′
]m
, (2.21)

with sinr′ =
P ·min(1,ρ−α0d e

−γρ0d )

λW2N0+I′
.

Solving P̃ ′out = ε, we obtain the downlink outage capacity

C ′ε = log

{
1 +

1

m
(m!)

1
m · ε

1
m · sinr′

}
. (2.22)

During the downlink phase, each base station allocates the bandwidth W2/M
2

equally to serve every node within the cell. Therefore, the bandwidth assigned to

each node is limited to λW2 = W2

M2nc
= Θ( b

n
W2), compared to the uplink bandwidth

ηW1 = κ+1
nc

W1

M2 = Θ(W1). Besides, from Lemma 2.2.3, the downlink interference is

I ′ = Θ
(
(n
b
)−

α
2

)
. Hence, the downlink transmission rate over Nakagami-m fading is

straightforward: Θ
(

log(ε
1
m
n
b
)
)
.

Let us compare the derived downlink transmission rate with the uplink trans-

mission rate (2.11). Clearly, as the nodes increase (κ � 1), the uplink transmission

rate is much larger than downlink transmission rate. This is due to the fact that

the negative influence of the outage probability ε is mitigated by the exponent 1
κ+1

during the uplink phase. Therefore, the transmission rate under the infrastructure

transmission mode Rinfra, which is limited by the downlink phase, is Θ
(

log(ε
1
m
n
b
)
)
.

The proof is complete.
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Further, taking into consideration the bandwidth limitation of downlink phase(
Θ( b

n
W2)

)
, the per-node outage throughput capacity under the infrastructure trans-

mission mode, is thus Tinfra(n, b) = Θ

(
b
n

log(ε
1
m
n
b
)W2

)
bit/s.

Now we summarize the scaling laws for outage throughput capacity with the

following theorem.

Theorem 2. For a hybrid wireless network of n nodes and b base stations over

Nakagami-m fading channels, if b = o( n
logn

), the per-node outage throughput capacity

under the intra-cell transmission mode is

Tintra(n, b) = O

(
log[(ε

1
m )

b
n
n

b
]W1

)
bit/s. (2.23)

The related per-node outage throughput capacity under the infrastructure trans-

mission mode is

Tinfra(n, b) = Θ

(
b

n
log(ε

1
m
n

b
)W2

)
bit/s. (2.24)

Finally, we provide the Monte Carlo simulations to demonstrate the validity

of the derived theoretical bounds. Figure 2.4 depicts the outage capacity (Rintra and

Rinfra) with κ opportunistic nodes (m = 1, ε = 0.01). It is shown that every simulated

curve is in agreement with the corresponding theoretical curve. One can attribute

the gap to the fact that during the derivation of the closed-form solution (2.17), we

replaced e−x with 1. Clearly, with opportunistic nodes, the uplink outage capacity

exceed the downlink scenario. However, the advantage of opportunistic nodes is not

obvious as κ increases. The reasonable explanation is that, in our formulated scenario,

we adopt “equal” power allocation among the scheduled and opportunistic sources

for simplicity.
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Figure 2.4. Outage capacity over Nakagami-m fading channel (ε = 0.01).

To intuitively illustrate the scaling laws of the derived outage throughput capac-

ity (Tintra and Tinfra), in Figure 2.5 we compare the uplink outage throughput capacity

with the downlink scenario under the infrastructure mode (SINR=10 dB). Aiming

to practically apply the opportunistic transmission strategy, we thereby assume the

temporal occupation θ = 1/2. Clearly, as the total number of nodes nc increases,

more nodes within the same cell could be chosen as the opportunistic sources (κ ↑),

and thus the uplink throughput capacity (2.23) exceeds the downlink scenario (2.24).

It is worth mentioning the fading impairment ε of both the uplink and downlink phase

is weakened by Nakagami-m shape parameter m. Therefore, large m closes the gap

between the the uplink throughput and downlink throughput as shown in Figure 2.5.

31



5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

Number of Cooperation Nodes

T
(u

p
li

n
k
)/

T
(d

o
w

n
li

n
k
)

 

 

m=1

m=2

m=3

m=4
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2.4 Ergodic Throughput Capacity of Hybrid Wireless Networks

In this section, we turn our attention to the per-node throughput capacity of

hybrid wireless networks over fast fading channels. Similarly, we define the feasible

ergodic throughput capacity of the hybrid wireless network as follows.

Definition 2. For a hybrid wireless network of n nodes and b base stations,

an ergodic throughput capacity of T̄ (n, b) bit/s for each node is feasible if under the

intra-cell mode or infrastructure mode, there is a spatial and temporal scheme for

scheduling transmissions such that every node can averagely receive T̄ (n, b) bit/s over

all possible channel realizations.
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2.4.1 Ergodic Throughput Capacity under Intra-cell Mode

First, let us discuss the ergodic throughput capacity under intra-cell transmis-

sion mode. In the fast fading scenario, the ergodic capacity R̄ is defined as the

ensemble average of channel capacity over all possible channel realizations [62]

R̄ = E
[

log(1 +
P · l(|Xi −Xj|) · |hij|2

W1N0

)
]
bit/s/Hz. (2.25)

where hij characterizes the fast fading property of the channel.

Then with the introduction of opportunistic sources and SIC decoding strategy,

the sum of the transmission rates for the scheduled and opportunistic sources is
κ∑
i=0

R̄i = E

{
log
(
1 +

∑κ
i=0 P · l(|Xi −Xj|) · |hij|2

ηW1N0 + I

)}
(a)
' E

{
log(1 +

∑κ
i=0 P ·min(1, ρ−α0d e

−γρ0d) · |hij|2

ηW1N0 + I
)

}
= E

{
log
(
1 + ||h||2 · sinr

)}
, (2.26)

where ||h||2 =
∑κ

i=0 |hij|2 and sinr =
P ·min(1,ρ−α0d e

−γρ0d )

ηW1N0+I
.

The above derivations are based on the following assumptions: 1) Lemma 2.2.3

tells us that inter-cell interference is limited with the introduction of frequency reuse

strategy. Therefore, we can treat the inter-cell interference I as additive colored

Gaussian noise; 2) at step (a) we use ρ0d to approximately represent the distance of

opportunistic nodes away from the destination for analysis simplicity.

With the pdf of ||h||2 (2.15), the analytical expression for the sum transmission

rate over fast fading channel is presented by (2.27). In (2.27), (a) follows the variable

replacement mx = t; (b) is derived from∫ ∞
0

ln(1 + ax) · xβ · e−xdx =

β∑
µ=0

β!

(β − µ)!

[
(−1)β−µ−1

aβ−µ
· e

1
a · Ei(−1

a
) +

β−µ∑
k=1

(k − 1)! · (−1

a
)β−µ−k

]
,

with the exponential integral function

Ei(x) = −
∫ ∞
−x

e−t

t
dt =

∫ x

−∞

et

t
dt, x < 0.
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Further, we explore the implication of (2.27) in both low SINR and high SINR

scenarios. At low SINR, we employ the approximation ln(1 + x) ≈ x and obtain

R̄ ≈
∫ ∞

0

sinr

ln 2
x · m(κ+1)m

Γ[(κ+ 1)m]
· x(κ+1)m−1e−mxdx

(a)
=

sinr ·m(κ+1)m

Γ[(κ+ 1)m] · ln 2

[
(κ+ 1)m

]
! ·m−

[
(κ+1)m+1

]
(b)
= (κ+ 1) · sinr · loge2 (2.28)

where (a) follows
∫∞

0
xne−µxdx = n! · µ−n−1 and (b) follows Γ(n) = (n− 1)!.

Similarly, employing log(1 + x) ≈ log(x) at the regime of high SINR, we reach

R̄ ≈
∫ ∞

0

log
(
sinr · x

) m(κ+1)m

Γ[(κ+ 1)m]
x(κ+1)m−1e−mxdx

= log(sinr) · m(κ+1)m

Γ[(κ+ 1)m]

∫ ∞
0

x(κ+1)m−1e−mxdx+

m(κ+1)m

Γ[(κ+ 1)m] · ln 2

∫ ∞
0

lnx · x(κ+1)m−1e−mxdx

= log(sinr) +
1

Γ[(κ+ 1)m] · ln 2

[ ∫ ∞
0

lnx · x(κ+1)m−1e−xdx−

lnm

∫ ∞
0

x(κ+1)m−1e−xdx

]
(a)
= log

(
sinr

m

)
+ loge2 ·

[(
1 +

1

2
+ · · ·+ 1

(κ+ 1)m− 1

)
− C

]
(2.29)

R̄ =

∫ ∞
0

log(1 + x · sinr
)
· m(κ+1)m

Γ[(κ+ 1)m]
· x(κ+1)m−1e−mxdx

(a)
=

1

Γ[(κ+ 1)m] · ln 2

∫ ∞
0

ln(1 + x · sinr
m

)
· x(κ+1)m−1e−xdx

(b)
=

1

Γ[(κ+ 1)m] · ln 2

(κ+1)m−1∑
µ=0

[(κ+ 1)m− 1]!

[(κ+ 1)m− µ− 1]!

[
(−1)(κ+1)m−µ−2

( sinr
m

)(κ+1)m−µ−1
· e

m
sinr · Ei(− m

sinr
) +

(κ+1)m−µ−1∑
i=1

(i− 1)! · (− m

sinr
)(κ+1)m−µ−i−1

]
.(2.27)
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where (a) follows when µ > 0,∫ ∞
0

xne−µx lnxdx =
n!

µn+1

[
1 +

1

2
+ · · ·+ 1

n
− C− lnµ

]
,

with the Euler-Mascheroni constant

C = lim
n→∞

( n∑
k=1

1

k
− lnn

)
≈ 0.57721. (2.30)

Finally, we examine the scaling laws for ergodic throughput capacity under

intra-cell transmission mode. Because of κ = Θ(n
b
) (Lemma ??) and I = Θ

(
(n
b
)1−α

2

)
(Lemma 2.2.3), we have that, at low SINR the transmission rate is upper bounded

by Θ(n
b
); similarly, from (2.29) we conclude that, at the regime of high SINR the

transmission rate is upper bounded by Θ(log(n
b
)). Here we utilize the alternative

definition of Euler-Mascheroni constant,

C = lim
κ→∞

( (κ+1)m−1∑
i=1

1

i
− ln

[
(κ+ 1)m− 1

])
. (2.31)

Taking into account the temporal occupation 1 − θ and bandwidth allocation

ηW1, the per-node ergodic throughput capacity T̄ (n, b) is determined by the product

between the allocated bandwidth and the transmission rate, i.e., (1 − θ) · ηW1 · R̄.

Theorem 3 summarizes the scaling laws for the ergodic throughput capacity under

intra-cell transmission mode T̄intra(n, b) at low SINR and high SINR scenarios, respec-

tively.

Theorem 3. For a hybrid wireless network of n nodes and b base stations over

Nakagami-m fading channels, if b = o( n
logn

), the per-node ergodic throughput capacity

under the intra-cell transmission mode at low SINR is

T̄ low

intra(n, b) = O

(
n

b
W1

)
bit/s. (2.32)

The related per-node ergodic throughput capacity at high SINR is

T̄ high

intra(n, b) = O

(
log(

n

b
)W1

)
bit/s. (2.33)
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2.4.2 Ergodic Throughput Capacity under Infrastructure Mode

To investigate the ergodic throughput capacity under infrastructure mode, we

mainly focus on the downlink phase. During the downlink phase, the interference

cancellation strategy is not feasible, which results in the following ergodic throughput

behavior:

R̄′ = E

{
log

(
1 +

P · l(|Xb −Xj|) · |hbj|2

λW2N0 + I ′

)}
= E

{
log
(
1 + |hbj|2 · sinr′

)}
=

∫ ∞
0

log(1 + x · sinr′
)
· m

m

Γ(m)
xm−1e−mxdx

=
1

Γ(m) · ln 2

m−1∑
µ=0

(m− 1)!

(m− µ− 1)!
·
[

(−1)m−µ−2

( sinr
′

m
)m−µ−1

e
m

sinr′Ei(− m

sinr′
) +

m−µ−1∑
k=1

(k − 1)!(− m

sinr′
)m−µ−1−k

]
, (2.34)

where sinr′ =
P ·min(1,ρ−α0d e

−γρ0d )

λW2N0+I′
and the pdf of |hbj|2 is given by (5.4).

Further, we explore the implication of (2.34) in both low SINR and high SINR

scenarios. At low SINR, the transmission rate (2.34) is transformed into

R̄′ ≈
∫ ∞

0

sinr′

ln 2
x · m

m

Γ(m)
xm−1e−mxdx

= sinr′ · loge2; (2.35)

36



while, at the regime of high SINR, we obtain

R̄′ ≈
∫ ∞

0

log
(
sinr′ · x

) mm

Γ(m)
xm−1e−mxdx

= log(sinr′) · m
m

Γ(m)

∫ ∞
0

xm−1e−mxdx+
mm

Γ(m) · ln 2

∫ ∞
0

lnx · xm−1e−mxdx

= log(sinr′) +
1

Γ(m) · ln 2

[ ∫ ∞
0

lnx · xm−1e−xdx−
∫ ∞

0

lnm · xm−1e−xdx

]
= log(

sinr′

m
) +

1

Γ(m) · ln 2

∫ ∞
0

xm−1e−x lnxdx

= log(
sinr′

m
) + loge2

[(
1 + · · ·+ 1

m− 1

)
− C

]
. (2.36)

Clearly, at low SINR, the downlink transmission rate is Θ
(
n
b

)
; while at high

SINR, the downlink transmission rate is Θ(log( 1
m
· n
b
)). Taking into consideration the

bandwidth limitation of downlink phase
(
Θ( b

n
W2)

)
, the ergodic throughput capacity

under the infrastructure transmission mode T̄infra(n, b), which is bottlenecked by the

downlink phase, is summarized as follows.

Theorem 4. For a hybrid wireless network of n nodes and b base stations over

Nakagami-m fading channels, if b = o( n
logn

), the per-node ergodic throughput capacity

under the infrastructure transmission mode at low SINR is

T̄ low

infra(n, b) = Θ
(
W2

)
bit/s. (2.37)

The related per-node ergodic throughput capacity at high SINR is

T̄ high

infra(n, b) = Θ

(
b

n
log(

1

m
· n
b

)W2

)
bit/s. (2.38)

Finally, the Monte Carlo simulation is provided to verify the effectiveness of

the derived theoretical bounds. Here we take the opportunistic nodes κ = 49 as an

example. Figure 2.6 clearly illustrates the excellent agreement between the simulation

result and the analytical results of the ergodic capacity at low SINR (2.28) and high

SINR regions (2.29), respectively.
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Figure 2.6. Ergodic capacity over Nakagami-m fading channel (κ = 49).

To further illustrate the asymptotic behaviors of the derived ergodic through-

put capacity, in Figure 2.7 we compare the uplink ergodic throughput capacity with

the downlink scenario under infrastructure mode. When the SINR is low (5 dB), the

Nakagami-m shape parameter will not take effect, which is reduced to the AWGN

scenario. However, the advantage of introducing opportunistic sources is very obvi-

ous. Similarly, at high SINR (15 dB), the uplink throughput overwhelmingly exceeds

the downlink scenario as the opportunistic nodes κ increase. In particular, with m

increasing, the harmonic series
∑k

n=1
1
n
∼ lnk +C. Therefore, large m closes the gap

between the the uplink ergodic throughput capacity and downlink ergodic throughput

capacity as shown in Figure 2.7.

2.5 QoS Performance Analysis for Hybrid Wireless Networks

The hybrid wireless networks are expected to provide the QoS guarantees [27]

[28]. In this study, we define the QoS requirements in terms of the per-node average
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Figure 2.7. Ratio between uplink ergodic throughput capacity and downlink ergodic
throughput capacity under infrastructure mode.

error probability (AEP). With AWGN channels, the instantaneous error probability

(IEP) depends on the receiver SINR (or equivalently γs); while over fading channels,

γs is a random variable with distribution f(γs), and thus the instantaneous error

probability P (γs) is also random. Hence, in the fading scenario we introduce the

AEP (P̄s) as the performance criterion, which is the average probability of symbol

error over the distribution of γs:

P̄s =

∫ ∞
0

P (γs)f(γs)dγs. (2.39)

2.5.1 AEP Performance under Intra-cell Transmission Mode

First, let us discuss the per-node AEP performance under intra-cell transmis-

sion mode. We take BPSK modulation as an example. As is known, the error

probability for BPSK is Q
(√

2γb
)

(for BPSK, γb = γs). Since ||h||2 is Gamma-
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distributed under intra-cell transmission mode (2.15), γb is also Gamma-distributed10

γb =
P ·min(1,ρ−α0d e

−γρ0d )

W1N0+I
· ||h||2. Therefore, we obtain

f(γb) =
m(κ+1)m

Γ[(κ+ 1)m] · γ̄b(κ+1)m
γ

(κ+1)m−1
b e−mγb/γ̄b , (2.40)

where γ̄b is the average per-symbol SINR .

We develop the analytical expression for AEP under intra-cell transmission

mode as

P̄b =

∫ ∞
0

Q
(√

2γb
) m(κ+1)m

Γ[(κ+ 1)m] · γ̄b(κ+1)m
· γ(κ+1)m−1

b e
−mγb

γ̄b dγb

(a)
=

∫ ∞
0

1√
2π
e−

t2

2

[ ∫ t2

2

0

m(κ+1)m

Γ[(κ+ 1)m] · γ̄b(κ+1)m
· x(κ+1)m−1e

−mx
γ̄b dx

]
dt

(b)
=

∫ ∞
0

1√
2π
e−

t2

2 · m(κ+1)m

Γ[(κ+ 1)m] · γ̄b(κ+1)m
·
(
m

γ̄b

)−(κ+1)m

· γ
(

(κ+ 1)m,
m

2γ̄b
t2
)
dt

(c)
=

∫ ∞
0

1√
2π
e−

t2

2

[
1− e−

m
2γ̄b

t2
( (κ+1)m−1∑

i=0

( m
2γ̄b
t2)i

i!

)]
dt

(d)
=

1

2
−

(κ+1)m−1∑
i=0

( m
2γ̄b

)i
√

2π · i!
· (2i− 1)!!

2(1 + m
γ̄b

)i
·
√

π
1
2
(1 + m

γ̄b
)

(e)
=

1

2

[
1−

(κ+1)m−1∑
i=0

(
2i

i

)
β

(
1− β

2

)i(
1 + β

2

)i]
(2.41)

where at (a) we use the definition of Q-function and change the order of integration;

(b) follows the definition of incomplete gamma function; (c) follows that for integer n,

γ(n, x) = (n− 1)!
[
1− e−x

∑n−1
i=0

xi

i!

]
and Γ(n) = (n− 1)!; (d) follows

∫∞
0
x2ne−px

2
dx =

(2n−1)!!
2(2p)n

√
π
p

and (e) is simplified by (2n− 1)!! = 2n!
2nn!

and β =
√

γ̄b
m+γ̄b

.

10Similar approximation is introduced in (2.12) and (2.26) for analysis simplicity.
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Employing the chernoff bound Q(x) ≤ 1
2
e−

x2

2 , we derive a relaxed upper bound

for the above AEP performance

P̄b ≤
∫ ∞

0

1

2
e−γb

m(κ+1)m

Γ[(κ+ 1)m] · γ̄b(κ+1)m
dγb

=
1

2

(
1 +

γ̄b
m

)−(κ+1)m

. (2.42)

2.5.2 AEP Performance under Infrastructure Transmission Mode

Further, we investigate the AEP performance under infrastructure transmission

mode. Apparently, the uplink traffics are similar to the traffics in the intra-cell

transmission mode and thus the average error probability for uplink traffics under

infrastructure transmission mode P̄Up
b = P̄b.

The AEP performance for the downlink phase is

P̄Down
b =

1

2

[
1−

m−1∑
i=0

(
2i

i

)
β

(
1− β

2

)i(
1 + β

2

)i]
. (2.43)

Due to the space limitation, we omit the details of derivation, which is similar to the

derivation of the AEP performance for the uplink phase.

With the uplink and downlink average error probability, we obtain the overall

AEP performance for infrastructure transmission mode as follows:

P̄ ′b = 1− (1− P̄Up
b )(1− P̄Down

b )

= P̄Up
b + P̄Down

b − P̄Up
b · P̄

Down
b . (2.44)

Besides, to further illustrate the bottleneck of the infrastructure mode, we

present the upper bound of AEP during the downlink phase as

P̄Down
b ≤

∫ ∞
0

1

2
e−γb · mm

Γ(m) · γ̄bm
γm−1
b e−mγb/γ̄b dγb

=
1

2

(
1 +

γ̄b
m

)−m
. (2.45)
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Clearly, comparing the upper bound of the uplink AEP (2.42) with the downlink

scenario (2.45), as κ increases the uplink average probability of error overwhelming

exceeds the downlink performance, which further verified the benefit of introducing

opportunistic sources, and thus the downlink phase becomes the bottleneck of the

infrastructure mode.

2.6 Conclusions

In this chapter, we study the theoretical data transmission limits for hybrid

wireless networks over fading channels. To overcome fading impairments, we intro-

duce an optimal multiple access technique allowing opportunistic sources to transmit

concurrently with the scheduled source. We first define the outage throughput ca-

pacity as the performance criteria for slow fading scenario. We prove that under

intra-cell mode, the per-node outage throughput capacity over Nakagami-m fading is

O
(

log[(ε
1
m )

b
n
n
b
]W1

)
; while under infrastructure mode, the related outage throughput

capacity is Θ
(
b
n

log(ε
1
m
n
b
)W2

)
.

Further we specified the ergodic throughput capacity as the performance mea-

surement for fast fading situation. We show that under intra-cell transmission mode,

the ergodic throughput capacity is O
(
n
b
W1

)
at low SINR and O

(
log(n

b
)W1

)
at high

SINR; while, under infrastructure transmission mode, the ergodic throughput capac-

ity is derived as Θ
(
W2

)
at low SINR and Θ

(
b
n

log( 1
m
·n
b
)W2

)
at high SINR, respectively.

Finally presented is the QoS performance analysis in terms of the per-node

AEP for hybrid wireless network. It is concluded that, with opportunistic sources,

the intra-cell mode effectively combats fading as wireless nodes increases; however, the

infrastructure mode is bottlenecked by the downlink transmission since base station

is the only transmitter in the cell during the downlink phase.
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Chapter 3

Analysis and Improvement of the Voltage Regulation in Microgrid Based on Sensor

Selection

In this chapter, we study the voltage regulation issue in microgrid, and appy

WSANs to accurately monitor the real-time voltage level and coordinate the dis-

tributed energy resources (DERs) with the traditional voltage regulators. The re-

mainder of this chapter is organized as follows. The system model and problem

formulation are given in Section 3.1. In Section 3.2, aiming to improve the voltage

measurement performance, we propose two sensor selection schemes: sensor selec-

tion under equal power allocation and optimal power allocation, respectively. We

first propose an opportunistic sensor selection scheme under equal power allocation.

Then we address sensor selection scheme under optimal power allocation and derive

a reminiscent of “water-filling” solution. Section 3.3 illustrates the improvement of

power efficiency using sensor selection. The discussion of improving the transmission

rate based on sensor selection is provided in Section 3.4. We present some concluding

remarks in Section 3.5. The Proof omitted from the body of the chapter is presented

in Appendix.

3.1 System Model and Problem Formulation

3.1.1 System Model

Integration of DERs into microgrid makes the power supply more reliable,

whereas it also poses a challenge to voltage regulation (See Figure 3.1). Without

reasonable coordinations, the voltage is not stable after introducing the DERs.
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Figure 3.1. Impact of the DERs on voltage regulation.

To avoid significant voltage perturbations, control center need to keep the sec-

ondary bus voltage V constant within the range [34]

VLB ≤ V ≤ VUB (3.1)

where

VLB = Vset − 0.5VDB

VUB = Vset + 0.5VDB.

Vset is the set point voltage and VDB is the dead band (the band where no actions

occurs to prevent oscillations and repeated activation-deactivation cycle “hunting”).

To maintain the voltage level and coordinate the DERs with the traditional

voltage regulators in microgrid, a group of voltage sensors {S1, S2, · · · , Sm} is deployed

to monitor the real-time voltage state and detect the load fluctuation. The system

model is shown in Figure 4.1. Each voltage sensor Si is able to periodically measure
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the voltage level θ.1 The measurement at each voltage sensor should be a noise-

corrupted version of voltage source θ:

ui = θ + νi, (3.2)

where νi is the noise introduced at each sensor. We assume that the source θ is

a random variable with mean mθ and variance σ2
θ . Since the voltage sensor are

geographically distributed, we further assume that νi are independent and identically

distributed (i.i.d.) random variables with zero mean and variance σ2
i .

After collecting the information about the voltage, each sensor transmits the

observation directly to the control center without any coding. This strategy is referred

to as analog amplify and forward [53]. The analog amplify-and-forward strategy

is motivated by the well-known results shown in [53] [54] that if sensor statistics

are Gaussian, a simple uncoded (analog) amplify-and-forward technique dramatically

outperforms the separate source-channel coding approach. Specifically, the analog

amplify-and-forward technique was proved to be asymptotically optimal in [53], and

exactly optimal in [54] for sensors communicating to a control center over a multi-

access channel. Distributed estimation based on the analog amplify-and-forward has

been extensively studied [55]-[59].

Therefore, at the voltage sensor i, the transmitter can be simply modeled by a

power amplifying factor ai and thus the average transmit power is given as

Pi = aiPui = ai(σ
2
θ + σ2

i ), (3.3)

where Pui denotes the power of observation ui.

1The practical scenario we consider in this chapter is two or more DERs may need to monitor

the voltage at one point in order to take control actions (increasing or deceasing their voltage) since

their control actions are coupled in the voltage dynamics.
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3.1.2 Multiple Access Scheme

In this study, instead of assuming a coherent multiple access scheme, we adopt

the orthogonal access scheme as the multiple access scheme between the voltage sen-

sors and the ICC. The main motivation for employing orthogonal multiple-access

schemes, such as FDMA, is the removal of the requirement on the carrier-level syn-

chronization among sensors. In this case, each voltage sensor transmits its measure-

ment to the ICC via orthogonal channels, and the ICC receives

yi =
√
giai(θ + νi) + wi

= hiθ + ni i = 1, 2, . . . ,m, (3.4)

where gi is the power gain of the fading channel and wi with variance ξ2
i denotes the

noise introduced at ICC. For simplification, we use hi to represent
√
giai in (3.4).
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We assume that both the transmitter and receiver have the fading channel state

information. 2 Clearly, the received signal vector is

y = hθ + n (3.5)

where h = [
√
a1g1, . . . ,

√
amgm]T and n stands for AWGN with diagonal covariance

matrix R given by diag[R] = [σ2
1a1g1 + ξ2

1 , . . . , σ
2
mamgm + ξ2

m]T .

Finally, ICC fuses these local measurements to produce a global estimate of

the voltage θ̂ to recover θ. In this work, we adopt the maximum likelihood (ML)

estimator [60]

θ̂ = [hTR−1h]−1hTR−1y

=

( m∑
i=1

aigi
σ2
i aigi + ξ2

i

)−1 m∑
i=1

√
aigiyi

σ2
i aigi + ξ2

i

. (3.6)

The related Mean Square Error (MSE) of this estimator is

Dorth = [hTR−1h]−1 =

( m∑
i=1

aigi
σ2
i aigi + ξ2

i

)−1

. (3.7)

According to the voltage estimation, ICC could turn on/off the related DERs

and voltage regulators to stabilize the power supply and avoid significant voltage

perturbations in microgrid. 3

2This is a reasonable assumption in smart grid, in which the channel gain does not change

dramatically, since the sensors and control center are relatively fixed and the channel gain in this

case will change gradually and slowly.
3Due to the space limitation, we mainly discuss the orthogonal access scheme in this chapter.

However, an extension is straightforward considering the coherent multiple access scheme, which

requires perfect carrier-level synchronization among voltage sensors.
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3.1.3 Lower Bound of MSE

If all voltage sensor measurements are directly available to the control center,

we could get the following estimator

θ0 =
( m∑
i=1

1

σ2
i

)−1( m∑
i=1

x

σ2
i

)
, (3.8)

which achieves the distortion

D0 =
( m∑
i=1

1

σ2
i

)−1
. (3.9)

This theoretical result could serve as the performance benchmark for later anal-

ysis.

3.1.4 Problem Formulation

Based on the above analysis, the power consumption of each voltage sensor is

provided by (3.3) and the related voltage estimation distortion is given in (3.7). Now

we have three objectives:

1. Minimize the estimation distortion to improve the voltage estimation accuracy;

2. Minimize the power consumption to prolong the voltage sensor lifetime;

3. Maximize the transmission rate to guarantee the real-time communication be-

tween the voltage sensors and the control center.

In the following sections, several sensor selection schemes are proposed to accomplish

these goals.
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3.2 Improving the Voltage Estimation Accuracy Using Sensor Selection

3.2.1 Sensor Selection Scheme under Equal Power Allocation

In this section, we aim to minimize the voltage estimation distortion using

sensor selection. Our strategy is first to select K (≤ m) “opportunistic” sensors with

the favorable channel conditions (without power consideration):

min

( m∑
i=1

zi
gi

σ2
i gi + ξ2

i

)−1

s.t. 1Tz = K (3.10)

zi ∈ {0, 1}.

where zi is the variable to optimize. The vector 1 is a vector with all entries one

and the element zi of vector z can be chosen from 0 or 1, which determines whether

the ith voltage sensor is selected or not. However, the above problem, which is an

integer optimization problem, is nonconvex and hard to solve. Therefore, we relax

the nonconvex constraint zi ∈ {0, 1} with the convex constraint 0 ≤ zi ≤ 1, and

formulate the following relaxed sensor selection problem:

max
m∑
i=1

zi
gi

σ2
i gi + ξ2

i

+ γ
(

log(zi) + log(1− zi)
)

s.t. 1Tz = K, (3.11)

where γ is a positive parameter controlling the quality of approximation.

Next, solving the above convex optimization problem (3.11), we could obtain

the target sensors. Here, our principle is to choose the K voltage sensors with largest

zi weightness, which means only “strong” sensors with the best channel conditions

participate in the voltage estimation process.

Finally, the power need to be allocated in a reasonable way due to the total

power constraint Ptot. In this subsection, we apply the equal power allocation strategy;
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sensor selection under optimal power allocation will be discussed later. Clearly, the

equal power allocation strategy is

ai(σ
2
θ + σ2

i ) =
Ptot
K

1 ≤ i ≤ K. (3.12)

Further, applying the equal power allocation strategy (3.12) into (3.7), we could derive

the analytical voltage estimation distortion under equal power allocation:

Dorth =

( m∑
i=1

ti
Ptotgi

σ2
i Ptotgi +Kξ2

i (σ
2
θ + σ2

i )

)−1

, (3.13)

where ti
(
ti ∈ {0, 1}

)
represents the final sensor selection decision. The proposed

opportunistic sensor selection scheme under equal power allocation is summarized by

Algorithm 1.

Algorithm 1 Opportunistic Sensor Selection Scheme

1: Formulate the relaxed sensor selection problem without power constraint (3.11);

2: Solve the optimization problem and obtain the target voltage sensors ti;

3: Activate the K selected voltage sensors. Only active sensors participate in the

voltage estimation process;

4: K active sensors adjust their transmit power according to (3.12) and send the

voltage measurements to ICC;

5: ICC adopts ML estimator to recover the voltage level θ.

Let us discuss the following asymptotic behaviors.

Remark 3.1.1. Ptot →∞

Under equal power allocation, as the total power Ptot approaches infinity, we

conclude Dorth → D0. This conclusion suggests that even if the power approaches

infinity, the distortion only achieves the performance benchmark D0, instead of ap-

proaching zero. One possible reason is that the observation noise νi could not be

50



eliminated even if the power approaches infinity. Once the collected signal is ampli-

fied at each transmitter, the observation noise νi is amplified inevitably as well.

Remark 3.2.1. K →∞

As the selected voltage sensor number K approaches infinity, we obtain the

following asymptotic behavior:4

Dorth ∼
[ 1

K

K∑
i=1

Ptotgi
ξ2
i (σ

2
θ + σ2

i )

]−1

=
E
[ ξ2

i (σ2
θ+σ2

i )

gi

]
Ptot

. (3.14)

Therefore, as K increases, the voltage estimation error could not decrease to zero

either. One can attribute this limitation to the fact that, under orthogonal access

scheme, K different channel noises can not be eliminated even if K approaches infinity.

3.2.2 Sensor Selection Scheme under Optimal Power Allocation

In this part, we investigate the sensor selection scheme under optimal power

allocation. According to the Problem Formulation in Section 3.1, the sensor selection

scheme under optimal power allocation is formulated as

max
m∑
i=1

aigi
σ2
i aigi + ξ2

i

s.t.
m∑
i=1

ai(σ
2
θ + σ2

i ) ≤ Ptot (3.15)

ai ≥ 0.

Unlike the preassigned sensor number K in equal power allocation scenario,

under optimal power allocation, the number of active voltage sensors could not be

4A similar result could be found in [56].
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fixed in advance. Obviously, this problem is convex and ai is the power allocation

variable to optimize. The Lagrangian G is given as

G = −
m∑
i=1

aigi
σ2
i aigi + ξ2

i

+ λ
[ m∑
i=1

ai(σ
2
θ + σ2

i )− Ptot
]
−

m∑
i=1

µiai. (3.16)

Traditionally, numerical optimization methods, such as subgradient and interior

point algorithms could be employed to solve the above optimization problem. How-

ever, these traditional methods require iterative calculations and can only numerically

achieve the optimal solution (i.e., no closed-form solution is achieved). Therefore,

to derive the closed- form solutions, we develop the following Karush-Kuhn-Tucker

(KKT) conditions [61]:

∂G

∂ai
= − giξ

2
i

(σ2
i aigi + ξ2

i )
2

+ λ(σ2
θ + σ2

i )− µi = 0

λ (
m∑
i=1

ai(σ
2
θ + σ2

i )− Ptot) = 0

µiai = 0

λ ≥ 0

µi ≥ 0

ai ≥ 0.

Solving the KKT conditions, we obtain the reminiscent “water-filling” solutions

in wireless communications,

ai =
ξ2
i

σ2
i gi

(√
gi

λξ2
i (σ

2
θ + σ2

i )
− 1

)+

, (3.17)

where x+ equals to 0 when x is less than zero, and otherwise equals to x. The

solution is derived in Appendix C. For voltage sensor i with ηi = gi
ξ2
i (σ2

θ+σ2
i )

, if ηi > λ,

the corresponding sensor will be active; otherwise the corresponding sensor will be

switched off for power efficiency.
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To practically implement the proposed sensor selection scheme, we need to

split the transmission time τ into two sections. The first section consumes a fraction

θ ∈ [0, 1] of τ and is used to select the target voltage sensors and inform every selected

sensor. The second section of (1− θ)τ is for the selected voltage sensors to transmit

the measurements to the control center.

3.2.3 Voltage Estimation Performance with Different Sensor Selection Schemes

The voltage estimation performance of our proposed sensor selection schemes is

evaluated. In the following simulations, 100 voltage monitoring sensors are deployed

in microgrid and the power of the voltage source is set as σ2
θ = 1mW . To simulate

the practical communication environment in microgrid, we assume the channel fol-

lows Rayleigh fading, a typical fading scenario. Figure 3.3 demonstrates the voltage

estimation performance with different sensor selection schemes.
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Figure 3.3. Voltage estimation performance with different sensor selection schemes.
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First, let us examine the voltage estimation performance of our proposed oppor-

tunistic sensor selection scheme under equal power allocation. Note that the proposed

sensor selection scheme is not valid unless at least 10 voltage sensors are selected from

the whole 100 available sensors. This conclusion implies if too few sensors are selected

per time, the information collected at the selected sensors is not enough for the con-

trol center to make an accurate voltage estimation. Besides, if too many sensors

(K ≥ 40 in this case) are selected, the voltage estimation performance also degrades.

One intuitive explanation is that if too many sensors are selected, under equal power

allocation, voltage sensors with good channel conditions could not be assigned with

enough power, which definitely impairs the estimation performance. Therefore, se-

lecting proper number of sensors could improve the voltage estimation performance.

This conclusion is further illustrated in Figure 3.4. Meanwhile, Figure 3.4 shows that

more power budget always brings better voltage estimation performance.
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Figure 3.4. Voltage estimation performance with different power constraint.
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Further, we compare the voltage estimation performance of our proposed sen-

sor selection schemes under equal power allocation and optimal power allocation. As

illustrated in Figure 3.3, sensor selection under optimal power allocation always out-

performs the sensor selection scheme under equal power allocation. The improvement

from the optimal power allocation scheme comes with the price of more complex com-

putation. Quite interestingly, if proper number of voltage sensors (“optimal point”)

are selected, the equal power allocation scheme could even achieve the estimation

performance of optimal power allocation scheme. This conclusion verifies the merit

and validity of our proposed opportunistic sensor selection algorithm in Part A. How-

ever, due to the power constraint and limited available sensors, the voltage estimation

performance could not approach the theoretical bound D0.

3.3 Improving the power efficiency using sensor selection

In this section, we turn our attention to the second objective, namely, mini-

mizing the power consumption using sensor selection. We first consider the power

consumption of the proposed sensor selection under equal power allocation. Trans-

forming the analytical distortion result (3.13), we derive

m∑
i=1

Ktiξ
2
i (σ

2
θ + σ2

i )/σ
2
i

σ2
i Ptotgi +Kξ2

i (σ
2
θ + σ2

i )
=

m∑
i=1

ti
σ2
i

− 1

D
, (3.18)

where K represents the selected voltage sensor number and ti is the sensor selection

decision as explained in Part A of Section III. Solving the equation (3.18), the power

consumption Ptot could be obtained for the given voltage estimation distortion D.

Further, substituting K = m and ti = 1 in (3.18), we achieve the power con-

sumption for the scenario of equal power allocation without sensor selection, which

is actually a special case of the equal power allocation using sensor selection.

55



Finally, to optimally allocate the power, we formulate the following optimiza-

tion problem to minimize the total power consumption subject to a given estimation

distortion D.

min
m∑
i=1

a′i(σ
2
θ + σ2

i )

s.t.

( m∑
i=1

a′igi
σ2
i a
′
igi + ξ2

i

)−1

≤ D

a′i ≥ 0.

The first constraint is equivalent to

m∑
i=1

ξ2
i /σ

2
i

σ2
i a
′
igi + ξ2

i

≤
( m∑

i=1

1

σ2
i

− 1

D

)
. (3.19)

For simplicity, let C denote the right-side part of (3.19)
∑m

i=1
1
σ2
i
− 1

D
. This problem

is obviously convex and a′i is the variable to optimize. The Lagrangian G’ is given by

G′ =
m∑
i=1

a′i(σ
2
θ + σ2

i ) + λ′
[ m∑
i=1

ξ2
i /σ

2
i

σ2
i a
′
igi + ξ2

i

− C
]
−

m∑
i=1

µ′ia
′
i. (3.20)

Implementing the KKT conditions, the optimal power allocation scheme for

power efficiency is derived as

a′i =
ξ2
i

σ2
i gi

(√
λ′gi

ξ2
i (σ

2
θ + σ2

i )
− 1

)+

, (3.21)

where λ′ is

√
λ′ =

∑K′′

i=1

√
ξ2
i (σ2

θ+σ2
i )

giσ4
i∑K′′

i=1
1
σ2
i
− 1

D

. (3.22)

The number of active sensor number K ′′ can be solved if we substitute λ′ back

to (3.21). Now the optimal strategy is to activate the corresponding voltage sensor

if the sensor index 1 ≤ i ≤ K ′′, and switch off the sensor for all i > K ′′. Due to the

space limitation, we omit the details about the solution of (3.21) which is similar to

the derivation of (3.17).
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Figure 3.5. Power efficiency with different sensor selection schemes.

We provide the simulation to illustrate the power efficiency with different sensor

selection schemes. We use the same simulation setup as Section III. Clearly from Fig-

ure 3.5, we conclude that the sensor selection scheme under optimal power allocation

always comes with the minimum power consumption. When the voltage estimation

distortion is required as 0.01, the optimal power allocation scheme saves nearly 25

mW compared to no-sensor-selection scheme; while the estimation distortion is set as

0.02, the optimal power allocation scheme saves more than 50% of power consumption

(15 mW). Besides, we observe that if proper voltage sensors are selected, the sensor

selection scheme under equal power allocation could approach the performance of op-

timal power allocation. This conclusion further verifies the advantage of our proposed

opportunistic sensor selection scheme.

57



3.4 Improving the Throughput Transmission Rate Based on Sensor Selection

As is known, the channel capacity dictates the maximum data rates that can be

transmitted over wireless channels with asymptotically small error probability. The

wireless communication link should convey the voltage level information from the

voltage sensors to the ICC with negligible error in a real-time manner. Therefore, in

this section, we study the sensor selection schemes from the perspective of throughput

transmission rate. We mainly investigate the joint power and spectrum allocation

strategies to maximize the throughput transmission rate based on voltage sensor

selection.

Therefore, our aim is to select the optimal 5 voltage sensors to maximize the

transmission rate between the voltage sensors and the control center. From the infor-

mation theory point of view, the maximum achievable rate of reliable communication

is defined as [62]

C = B · log
(
1 + |h|2 · SNR

)
bits/s, (3.23)

where h characterizes the fading channel, SNR represents the signal-to-noise ratio

and B denotes the assigned bandwidth.

Specifically, from the perspective of throughput transmission rate, the objective

function to optimize is

xi · log

(
1 +

pi · gi
xi ·N0

)
bit/s, (3.24)

where gi is the channel gain, pi denotes the power allocation variable and xi represents

the spectrum occupation variable.

5The “optimality” is mainly defined from the sum-rate perspective. The fairness and efficiency

of such strategy go beyond the scope of this section.

58



3.4.1 Joint Power and Spectrum Allocation Strategy without Individual Power Con-

straint

First, we investigate the joint power and spectrum allocation without individual

power constraint. We assume that there are totally m voltage sensors available.

Therefore, with the spectrum constraint
∑m

i=1 xi ≤ 1 and the total power constraint∑m
i=1 pi ≤ Ptot, the optimization problem can be formulated as follows.6

max
m∑
i=1

xi · ln
(

1 +
pi · gi
xi ·N0

)
s.t. xi ≥ 0

pi ≥ 0 (3.25)
m∑
i=1

xi − 1 = 0

m∑
i=1

pi − Ptot = 0

Further, the related Lagrangian function is given as

G′′′ = −
m∑
i=1

xi ln

(
1 +

pi · gi
xi ·N0

)
−

m∑
i=1

βixi −
m∑
i=1

λipi

+µ

( m∑
i=1

xi − 1

)
+ υ

( m∑
i=1

pi − Ptot
)
. (3.26)

From the Lagrangian function G′′′, we can derive the following Karush-Kuhn-

Tucker (KKT) conditions:

− ln

(
1 +

pi · gi
xi ·N0

)
− xi ·

− pi·gi
x2
i ·N0

1 + pi·gi
xi·N0

− β∗i + µ∗ = 0 (3.27)

−xi ·
− gi
xi·N0

1 + pi·gi
xi·N0

− λ∗i + υ∗ = 0 (3.28)

β∗i · xi = 0 (3.29)

λ∗i · pi = 0 (3.30)

Lemma 3.4.1. If A is the selected voltage sensor set, then we obtain |A| = 1.

6In the sequel, we replace log with ln for simplicity.
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Proof. We first simplify the KKT conditions with introducing SNRi = pi·gi
xi·N0

, and

thus obtain

ln(1 + SNRi)−
SNRi

1 + SNRi

= µ∗. (3.31)

1 + SNRi =
gi

N0 · v∗
. (3.32)

From the first SNR property (3.31), it is straightforward to prove that f(x) =

ln(1 + x) + x
1+x

is a monotonously increasing function. Therefore, the SNR of the

signal received from all the voltage sensors should keep constant, since µ∗ is a constant.

Together with the second SNR property (3.32), we conclude that SNRi is unique due

to the fact that the channel gi is randomly distributed. This conclusion means that

only one voltage sensor should be selected per time to maximize the transmission

rate. Therefore, |A| = 1 and we complete the proof.

With SNRi = pi·gi
xi·N0

, it is obvious that large pi yields large SNRi. Therefore,

in terms of the power allocation strategy, the selected voltage sensors should consume

the whole power constraint Ptot to maximize the transmission rate.

Further, we investigate the spectrum allocation strategy. With the introduction

of Γ = Ptot·gi
N0

, the transmission rate to maximize is thus

f(x) = x · ln
(

1 +
Γ

x

)
, (3.33)

where x is the spectrum allocation variable. Obviously, we can obtain

f ′(x) = ln(1 + SNR)− SNR

1 + SNR
(3.34)

with SNR = Γ
x
. From f ′(x) > 0 with regard to SNR > 0, f(x) is also an increasing

function. Therefore, the selected voltage sensor should occupy the whole spectrum.
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3.4.2 Joint Power and Spectrum Allocation Strategy with Individual Power Con-

straint

In this part, we discuss the joint power and spectrum allocation with individ-

ual power constraint. The formulated problem is similar to (3.25), only with the

introduction of individual power constraint pi ≤ P0.

max
m∑
i=1

xi · ln
(

1 +
pi · gi
xi ·N0

)
s.t. xi ≥ 0

pi ≥ 0

pi ≤ P0 (3.35)
m∑
i=1

xi − 1 = 0

m∑
i=1

pi − Ptot = 0

From the Karush-Kuhn-Tucker (KKT) conditions, we obtain the following prop-

erties:

ln(1 + SNRi)−
SNRi

1 + SNRi

= µ∗ (3.36)

1 + SNRi =
gi

N0 · (αi + v∗)
(3.37)

αi · (pi − P0) = 0 (3.38)

Lemma 3.4.2 With the individual and total power constraint, less than one

voltage sensor is not assigned with full power.

Proof. First, from the property (3.36), we conclude that the signal received from all

the selected voltage sensors should keep constant SNR.

If the selected voltage sensor is not assigned with full power, pi < P0, we obtain

αi = 0 from the KKT condition (3.38). Further, with the aid of property (3.37),
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we conclude that SNRi is unique, which means at most one voltage sensor is not

assigned with full power. The proof is complete.

With Lemma 3.4.2, in the following, Theorem 1 provides the joint power and

spectrum allocation strategy for voltage sensors with individual power constraint.

Theorem 5. The power allocation scheme for the selected voltage sensors

follows a descending order according to the channel gain gi; while for the selected

voltage sensors with full power allocation, the spectrum allocation is proportional to

the channel gain gi.

Proof. First of all, the signal received from all the selected voltage sensors should

keep constant SNR, i.e.,

gi
N0(αi + v∗)

=
gj

N0(αj + v∗)
. (3.39)

Clearly, if gi > gj, we have αi > αj. Meanwhile, from Lemma 3.4.2, we have

proved that at most one voltage sensor is not assigned with full power (α = 0).

Therefore, the voltage sensor with better channel condition, i.e., large gi, should be

assigned with full power.

In terms of the spectrum allocation strategy, we know that SNRi = P0·gi
N0·xi for

the voltage sensor with full power allocation. With the fact that all selected voltage

sensors keep constant SNR and
∑m

i=1 xi = 1, we thus obtain

xi =
gi∑m
i=1 gi

. (3.40)

Therefore, the spectrum allocation is proportional to the channel gain gi and we

complete the proof.

Finally, we evaluate the throughput performance of our proposed joint power

and spectrum allocation strategy based on sensor selection. In this simulation, we
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Figure 3.6. Transmission rate (bit/s) with different power and spectrum allocation
strategies.

assume that there are 10 voltage sensors available. The total power constraint Ptot

is 50 mW and the individual power constraint P0 is set as 10 mW. To simulate

the practical wireless communication environment, we also assume that the wireless

channel follows Rayleigh fading. Clearly from Figure 3.6, we conclude that the joint

power and spectrum allocation strategy without individual power constraint always

provides the best transmission rate performance, since the individual power constraint

(10 mW in this case) add one more constraint to the formulated optimization problem.

To sum up, the proposed joint power and spectrum allocation strategy based on sensor

selection outperforms the scenario without voltage sensor selection, which further

demonstrates the validity and merits of sensor selection in improving the throughput

transmission rate between the voltage sensors and the control center.
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3.5 Conclusion

In this chapter, we have studied the voltage regulation issue in microgrid, and

applied the WSANs to accurately monitor the real-time voltage level and coordinate

DERs with the traditional voltage regulators. To achieve proper voltage regulation,

several sensor selection schemes are proposed to improve the voltage measurement

accuracy and power efficiency. An opportunistic sensor selection scheme under equal

power allocation is first proposed to improve the voltage estimation performance.

The asymptotic behaviors with the power constraint and the voltage sensor number

approaching infinity are investigated. We have further addressed sensor selection

scheme under optimal power allocation and derived a reminiscent of “water-filling”

solution for this scenario. Besides, we illustrate the improvements on power efficiency

employing the proposed sensor selection strategies. Finally, aiming to maximize the

transmission rate between the voltage sensors and the control center, we heuristically

proposed the joint power and spectrum allocation strategy based on voltage sensor

selection. Numerical simulation results have demonstrated that our proposed sensor

selection algorithms can efficiently regulate the voltage level and stabilize the power

supply.
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Chapter 4

Energy Management Strategy for Plug-in Hybrid Electric Vehicles Via Bidirectional

Vehicle-to-Grid

In this chapter, we investigate the energy management strategies for plug-in hy-

brid electric vehicles (PHEVs) via bidirectional vehicle-to-grid (V2G). The remainder

of this chapter is organized as follows. The system model is given in Section 4.1. We

present an optimal energy management strategy to optimize the daily energy cost

in Section 4.2. In Section 4.3, an optimal PHEV charging scheme is proposed to

minimize the peak load and flatten the overall load profile. We provide some con-

cluding remarks in Section 4.4. The proofs omitted from the body of the chapter are

presented in Appendix.

4.1 System Model

4.1.1 Household Load Model

We characterize the local residential load with two components: a household

base load (e.g. home electric appliances) and the load resulting from charging the

PHEVs, as shown in Figure 4.1. In this work, we assume that those household

appliances have no flexibility in usage time or power consumption, and thus the base

load profile can not be changed.

We denote the household energy demand at the period k by ξk based on the

smart meter readings. Assume that pk is the total power drawn from the grid, out

of which rk is used to charge the battery and dk denotes the total power discharged

from the battery. As illustrated in Figure 4.1, other than supporting the household
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Figure 4.1. System model.

demand, the extra energy discharged from the PHEV battery can be sold back to the

market via bidirectional V2G. Therefore, in the basic model, the following constraint

must be satisfied:

pk = ξk + rk − dk. (4.1)

Within each time slot, the battery can be either charged or discharged or do

neither, but not both. This means that, for the kth period, we have rk · dk = 0. To

eliminate the number of variables, we denote uk the charging/discharging decisions

(charging/discharging amount). The basic model (4.1) is then transformed into

pk = ξk + uk, (4.2)

where uk > 0 and uk < 0 means the battery is charged or discharged, respectively;

while uk = 0 represents the battery’s idle state.

4.1.2 PHEV Battery Model

Lead-acid, lithium-ion and nickel-metal (NiMH) have been the top three con-

tending technologies for PHEV batteries due to a combination of performance capac-

ity, safety, life and cost [88]. In this chapter, we incorporate the following idiosyn-

crasies of battery operation into the PHEV model.
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First, the battery lifetime is shorten with each charging/discharging cycle since

the capacity of the battery slowly decreases with high depth-of-discharge (DoD) -

percentage of maximum energy removed during a discharge cycle. Therefore, in order

to prolong the battery life, the energy level of the battery should not drop below

certain state-of-charge (SoC). The relationship between the useful battery lifetime is

expressed via battery lifetime charts [89]. To maximize the life of the battery pack,

in our study, we limit the state of charging up to xmax and never deplete the battery

below xmin, respectively.

Further, to model the effect of repeated charging and discharging on battery’s

lifetime, we assume that, within each charging or discharging operation, a fixed cost

(in dollars) of Crc and Cdc is incurred [90]. Specifically, suppose that a new PHEV

battery costs C dollars1 and it can sustain N charge/discharge cycles, then the loss

of the battery value can be set as Crc = Cdc = C
N

.

Besides, with each battery charging and discharging operation, the batteries

have conversion loss whereby a portion of the stored energy is lost.2 In this work, we

use the round-trip efficiency η of 85% as our base case. The charging and discharging

efficiency are assumed equally the square root of 0.85, which results in the 85% round-

trip efficiency [91].

Finally, the energy storage itself is “leaky” due to the self-discharging, so that

the stored energy decreases over time, even in the absence of any discharging. Here,

we will assume the battery is not leaky, so that the stored energy level decreases only

when they are discharged. This is a reasonable assumption when the time scale over

which the loss take place is much larger than that of interest to us.

1A typical 16-kWh lithium-ion battery costs about $500/kWh (or $250/kWh if manufactured in

high volume).
2About 10-15% energy is lost for lithium-ion battery charging/ discharging.

67



Figure 4.2. O&R electricity TOU pricing [92].

4.1.3 Time-Of-Use (TOU) Electricity Pricing

In this study, we investigate the daily energy cost minimization of vehicle users

under the time-of-use (TOU) electricity pricing. TOU electricity pricing rate, whereby

the electricity price is set for a specific time period on an advance or forward basis, will

typically not change more often than twice a year. Therefore, TOU pricing allows

consumers to vary their energy usage in response to such prices and manage their

energy costs by shifting usage to a lower cost period or reducing their consumption

overall. TOU pricing rate from Orange & Rockland is shown in Figure 4.2.

4.1.4 Bidirectional Vehicle-to-Grid (V2G)

As we have discussed, the basic concept of V2G is that PHEVs provide the

energy back to grid. Each PHEV is supposed to have the following three required

elements for V2G [73]: (a) a power connection to the grid for electric energy flow;

(b) control or logical connection necessary for grid operators, and (c) precision me-

tering on-board the vehicle. Based on the communication functionality of V2G, the

information such as household demands, PHEV battery energy level and TOU elec-
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tricity pricing could be exchanged between the smart meter and PHEV controller

via wired/wireless links. Specifically, once a “regulation up” signal is received, the

vehicle provide the energy to the grid (discharging mode); while a “regulation down”

signal would cause a decrease in the power output or even draw power from the grid

(charging mode).

4.2 Energy Management via Minimizing the Daily Energy Cost

4.2.1 Problem Formulation

In this section, from the PHEV owner point of view, we follow a cost-conscious

approach. To this end, we investigate the optimal PHEV energy management strategy

to minimize the daily energy cost, and propose to employ the dynamic programming

(DP) technique to realize the optimal coordination of PHEV charging and discharging.

DP is a numerical technique that can be applied to any problem that requires the

decisions to be made in stages with the objective of finding a minimal cost pathway

[93]. The DP technique decomposes the original optimization problem into a sequence

of subproblems which are solved backward over each stage.

First, we assume that there exist N + 1 periods within the time span we

are interested in, i.e., n ∈ 0, 1, · · · , N . The decision variables are given by U :=

(u0, u1, · · · , uN), where uk is the charging/discharging decision at the kth period. De-

noting xk the energy level at the beginning of the kth period and yk the energy level

at the end of the kth period, the battery energy balance is

yk = xk + uk, k = 0, · · · , N. (4.3)

Further, we specify the energy cost at the kth period as

Ck(uk) = (K +
rk
η
· uk)Πuk>0 + (K + rkη · uk)Πuk<0 + rk · ξk, (4.4)
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where rk denotes the electricity real-time price, ξk is the household energy demand

(base household load), and K = C
N

represents the loss of the battery value for each

charging or discharging, as we have discussed. Note that the indication function

Πuk>0 equals to 1 when uk > 0 and, equals to 0 otherwise.

As we assume that the household appliances have no flexibility in usage time or

power consumption, the base household load profile ξk cannot be changed. Therefore,

the energy cost to optimize is actually

ck(uk, xk) = (K +
rk
η
· uk)Πuk>0 + (K + rkη · uk)Πuk<0. (4.5)

We add the variable xk in (4.5), since the charging/discharging decision uk

depends on the current battery level xk, i.e.,

xmin ≤ xk + uk ≤ xmax, (4.6)

−umax ≤ uk ≤ umax. (4.7)

In (4.7), the maximum charging amount umax = CR · T , where CR is the PHEV

battery charging rate and T is the per time slot duration. Clearly, −umax is the

maximum discharging value.

Therefore, the objective function to minimize is the sum of all the costs incurred

during the interval < 0, N > as follows

J0(x;U) =
N−1∑
k=0

ck(uk, xk) + cN(uN , xN). (4.8)

We define the value function for the above optimization problem as

v0(x) = inf
U∈Φ

J0(x;U), (4.9)

where Φ denotes the class of all admissible charging/discharging decisions.3

3Once the existence is established, the “inf ” in (4.9) can be replaced with “min”.
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Note that, at the end of period N, the PHEV battery should be fully charged

to serve the daily driving demand at the daytime. Therefore, the end-of-day cost

function is given by

cN(uN , xN) = (K +
rN
η
· uN)ΠuN>0

= K · Πxmax>xN +
rN
η

(xmax − xN). (4.10)

Similarly, Πxmax>xN equals to 1 when xmax > xN and, equals to 0 otherwise.

Employing the principle of optimality, we develop the following dynamic pro-

gramming equations:
vk(xk) = inf

uk

{
ck(uk, xk) + vk+1(xk + uk)

}
, k ∈ [0, N − 1]

vN(xN) = cN(uN , xN)

(4.11)

We provide the following lemma to prove that the dynamic programming equa-

tions (4.11) provide the optimal PHEV battery charging/discharging decision.

Lemma 4.2.1. The PHEV batterycharging/discharging decisions Û := (û0, û1, · · · , ûN)

of the dynamic programming equations provide the optimal solution for the original

optimization problem J0(x;U).

Proof. See Appendix D.

4.2.2 Optimality of (s,S,s’,S’)-type Feedback Policy

Lemma 4.2.1 has proved the existence of optimal battery charging/discharging

policy. However, the computational complexity for the optimal policy is prohibitive
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even for a small N [93]. Therefore, we further investigate the dynamic programming

equations as follows:

vk(xk) = inf
uk

{
ck(uk, xk) + vk+1(xk + uk)

}
(a)
= inf

uk

{
(K +

rk
η
· uk)Πuk>0 + (K + rkη · uk)Πuk<0 + vk+1(yk)

}
(b)
=

{
[−rk

η
· xkΠyk>xk + hk(xk)] + [−rkη · xkΠyk<xk + h′k(xk)]

}
, (4.12)

where (a) is derived from the battery energy balance (4.3) and the objective function

(4.5); (b) follows

hk(xk) = inf
yk≥xk

{
K · Πyk>xk +

rk
η
· yk + vk+1(yk)

}
= inf

yk≥xk

{
K · Πyk>xk + pk(yk)

}
. (4.13)

h′k(xk) = inf
yk≤xk

{
K · Πyk<xk + rkη · yk + vk+1(yk)

}
= inf

yk≤xk

{
K · Πyk<xk + qk(yk)

}
. (4.14)

To simplify the above equations, we introduce

pk(yk) =
rk
η
· yk + vk+1(yk), (4.15)

qk(yk) = rkη · yk + vk+1(yk), (4.16)

and further define

p∗ = inf
xmin≤yk≤xmax

[pk(yk)], (4.17)

q∗ = inf
xmin≤yk≤xmax

[qk(yk)]. (4.18)

Then we define the thresholds sk, Sk, s
′
k, S

′
k as

Sk = min {x ∈ [xmin, xmax]|pk(x) = p∗}, (4.19)

sk = min {x ∈ [xmin, xmax]|pk(x) ≤ K + p(Sk)}, (4.20)

S ′k = max {x ∈ [xmin, xmax]|qk(x) = q∗}, (4.21)

s′k = max {x ∈ [xmin, xmax]|qk(x) ≤ K + q(S ′k)}. (4.22)
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Given the introduction of the thresholds sk, Sk, s
′
k, S

′
k, a state-independent four-

threshold (sk, Sk, s
′
k, S

′
k) feedback policy can be expressed as

uk =



umax, if x < sk, x < Sk − umax

Sk − x, if Sk − umax ≤ x < sk

0, if sk ≤ x ≤ s′k

S ′k − x, if s′k < x < S ′k + umax

−umax. if x > s′k, x ≥ S ′k + umax

(4.23)

The optimality of the (sk, Sk, s
′
k, S

′
k) feedback police is proved by the following

theorem.

Theorem 6. Given the thresholds s, S, s’, S’, the proposed state-independent

four-threshold ( s, S, s’, S’) feedback policy (4.23) is optimal for PHEV battery charg-

ing/discharging.

Proof. See Appendix E.

S S’s s’ maxx
min
x

Charge Discharge

1 2 3

Figure 4.3. (s, S, s’, S’ ) charging/discharging policy.

The principle of the proposed (s, S, s’, S’ ) policy is that if the battery energy

level is below s, the battery should be charged to the energy level S ; if the battery

level is above s’, the battery should be discharged to the energy level S’ ; otherwise,

the battery is kept in the idle state. Just as shown in Figure 4.3, region 1 and region
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3 are the charging and discharging region, respectively; while region 2 denotes the

idle state.

To practically implement the (s, S, s’, S’ ) policy, a “N → 0” backward iteration

algorithm is proposed in Algorithm 1.

Algorithm 2 “N → 0” Backward Iteration Algorithm

1: Initialize vN(xN) according to (4.10);

2: for k=N-1 to 0 do

3: Formulate the value function vk(xk) from (4.12);

4: Calculate p∗ and q∗;

5: Calculate Sk, sk, S
′
k and s′k according to (4.19)-(4.22);

6: Update vk−1(xk−1) according to (4.12);

7: end for

4.2.3 Case Study

In this part, we aim to evaluate the validity of our proposed (s, S, s’, S’ )

feedback policy. We base the PHEV battery model on a typical lithium-ion battery

(Table 4.1). Two types of battery capacity, i.e., Volt (16 kW) and Nissan Leaf (24 kW)

are considered. In terms of the battery charging/discharging strategy, two charging

levels, i.e., 120V/16A (single phase) and 240V/32A (split phase), are defined by SAE

J1772 [94], which is the North American standard for electrical connectors for electric

vehicles. To maximize the life of the battery pack, in this work, we limit the state

of charging up to 90% of the battery capacity (xmax) and never deplete the battery

below 30% (xmin), respectively.
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Parameters Characteristics

Battery Type Lithium-ion
Round Trip Efficiency (RTE) 85%

Battery Capacity-1 16 kW
Battery Capacity-2 24 kW

Battery Charging Type-1 (Single phase) 120V / 16A
Battery Charging Type-2 (Split phase) 240V / 32A

Table 4.1. Battery parameters

Base load profile (Figure 4.4) is the average residential load in the service area of

Southern California Edison from 07/30/2012 (Monday) to 08/03/2012 (Friday) [95].

Since we mainly focus on the application of PHEV on local household load shaping

at home, the time duration of interest is between 5 P.M. and 8 A.M. Besides, we

adopt the TOU electricity price from Orange & Rockland (Figure 4.2). To be fair,

we assume that there are 45% energy is left in the Type-1 PHEV battery and 60%

energy left in the Type-2 PHEV battery, after round trip between home and work

place4.

Figure 4.5 illustrates the battery charging/discharging profile based on our pro-

posed (s, S, s’, S’ ) feedback policy. Clearly, we observe that the principle of our

proposed charging strategy is for PHEV batteries to store grid electricity generated

at off-peak hours (low electricity price) for household use during peak hours (high

electricity price).

The performance of our proposed (s, S, s’, S’ ) feedback policy on daily energy

cost is shown in Figure 4.6. The positive value represents making profits while the

negative value is the daily energy cost for charging the PHEV. We compare our

4According to the surveys, the average American drives less than 29 miles a day. Therefore, 45%

of Type-1 battery capacity and 30% of Type-2 battery capacity could equally meet the daily driving

demand at the daytime.
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Figure 4.4. Base load profile is the average residential load in the service area of
Southern California Edison from 07/30/2012 to 08/03/2012 [95]..

proposed energy management policy with two other charging strategies: a business-

as-usual (BAU) scenario assuming full charging starting upon plugging in the PHEV

and a “smart” charging scheme which represents charging the battery only at off-

peak periods. Apparently, our proposed algorithm is optimal in daily energy cost

performance. It is observed that, on the one hand, fast charging/discharging (split

phase) will always outperform the slow charging/discharging scenario (single phase).

This is due to the fact that with fast discharging rate, the PHEV could gain more

profits by means of selling more energy during the peak load hours via V2G. On

the other hand, battery capacity also plays a significant role in daily energy cost

performance. It is intuitive that large battery capacity could store more power to

serve the household demand (or selling the energy back to the market) at peak load

hours.

Figure 4.7 demonstrates the impact of different PHEV charging schemes on base

load profile. We take Type-1 PHEV battery and slow charging level as an example.
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Figure 4.5. PHEV battery charging/discharging profile.

Clearly, due to the PHEV charging, BAU and “smart” charging strategies will either

amplify the base load or keep the overall load high during the peak load hours (17:00-

21:00); while our proposed algorithm could significantly reduce the overall load during

the peak load hours via V2G. It is worth mentioning that, even though our proposed

(s, S, s’, S’ ) policy reduces the overall load at peak hours (17:00-21:00), the new peak

load at off-peak hours (after 21:00) will still extend considerable pressures on smart

grid. Hence, another key question is how to efficiently manage the PHEV charging

strategy aiming to minimize the peak load and flatten the overall load profile.

4.3 Energy Management via Flattening the Overall Load

In this section, we turn our attention to another goal on PHEV energy man-

agement: shaving the peak load and flattening the overall load profile.
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Figure 4.6. PHEV charging cost comparison.

From the distribution system operator point of view, our approach is to shape

the PHEV charging profile with the purpose of flattening the overall load, i.e., base

load ξk plus PHEV load uk. The optimization problem is formulated as

min
u0,··· ,uN

N∑
k=0

V
(
ξk + uk

)
s.t. 0 ≤ uk ≤ umax, k = 0, · · · , N (4.24)

N∑
k=0

uk = P

where uk is the charging variable to optimize, the map V (·) : R → R is strictly

convex and P is the total charging task as

P =
xmax − x0

η
. (4.25)

In this study, we choose l2 norm of the overall load profile V (x) = x2. Later we

will prove that the optimality of a charging profile u := (u0, · · · , uN) is independent
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Figure 4.7. Impact of PHEV charging on base load profile.

of the choice of the map V (·) as long as V (·) is strictly convex. The optimization

problem is thus transformed into

min
u0,··· ,uN

N∑
k=0

(
ξk + uk

)2

s.t. 0 ≤ uk ≤ umax, k = 0, · · · , N (4.26)
N∑
k=0

uk = P.

The related Lagrangian function G is given as

G =
N∑
k=0

(
ξk + uk

)2 −
N∑
k=0

λkuk +
N∑
k=0

µk
(
uk − umax

)
+ ν
( N∑
k=0

uk − P
)
. (4.27)

Traditionally, numerical optimization methods, such as subgradient and inte-

rior point algorithms can be employed to solve the above optimization problem. How-

ever, these traditional methods require iterative calculations and can only numerically

achieve the optimal solution (i.e., no closed-form solution is achieved). Therefore, in
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this chapter, to derive the closed-form solutions, we develop the following Karush-

Kuhn-Tucker (KKT) conditions [61]:

∂G

∂uk
= 2
(
ξk + uk

)
− λk + µk + ν = 0

N∑
k=0

uk − P = 0

uk − umax ≤ 0

uk ≥ 0

λk ≥ 0

µk ≥ 0

λk · uk = 0

µk ·
(
uk − umax

)
= 0

Solving the KKT conditions, we obtain a reminiscent “water-filling” solution in

wireless communications,

u∗k = min

{(
− ν

2
− ξk

)+
, umax

}
, (4.28)

where x+ equals to 0 when x is less than zero, and otherwise equals to x. Due to the

space limitation, we omit the derivation of the “water-filling” solution, which can be

derived from transforming λk · uk = 0 and µk ·
(
uk − umax

)
= 0.

Actually, “water-filling” is our intuitive solution to optimally flatten the overall

load file, which is now theoretically verified. Besides, from
∑N

k=0 uk = P , the unknown

variable ν can be obtained from

N∑
k=0

min

{(
− ν

2
− ξk

)+
, umax

}
= P. (4.29)

The left-hand side (LHS) is a piecewise-linear increasing function of −ν
2
, with break-

points at ξk. So the equation has a unique solution which is readily determined.
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So far, we have derived a reminiscent of the “water-filling” solution as the

optimal PHEV charging strategy. Next, we will prove that the optimality of “water-

filling” strategy does not depend on the choice of V (·).

Theorem 7. If the map V (·) is strictly convex, the optimal charging profile

with respect to (4.24) is not relevant to the choice of V (·).

Proof. Let u′ := (u′0, u
′
1, · · · , u′N) denote the set of optimal charging decision with

regard to V̂ (x) = x2. Further, we denote uopt := (uopt0 , uopt1 , · · · , uoptN ) the arbitrary

charging profile with a different choice of V (·), as we assume that the optimal charging

profile is not unique.

According to the first order optimality condition,

f ′(x)
T ·
(
y − x

)
≥ 0 for all y ∈ X. (4.30)

Since both u′ and uopt are optimal, we obtain

< V ′
(
ξk + u′k

)
,
(
uoptk − u

′
k

)
> ≥ 0 (4.31)

< V ′
(
ξk + uoptk

)
,
(
u′k − u

opt
k

)
> ≥ 0 (4.32)

where < x, y >=
∑N

k=0 xkyk.

Summing up (4.31) and (4.32), it is derived that

< V ′
(
ξk + uoptk

)
− V ′

(
ξk + u′k

)
,
(
u′k − u

opt
k

)
> ≥ 0.

However, according to the strict convexity of V (·), it follows that V ′(·) is strictly

increasing as

< V ′
(
ξk + uoptk

)
− V ′

(
ξk + u′k

)
,
(
u′k − u

opt
k

)
> ≤ 0.

To obtain the equality, we have u′k = uoptk , and thus u′ = uopt. It is concluded

that optimal charging profile is not relevant to the choice of V (·) and thus “water-
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filling” solution is always optimal in PHEV battery charging. The proof is complete.5

Hours 17:00 18:00 19:00 20:00 21:00 22:00
Load (kWh) 1.4703 1.4396 1.3732 1.3732 1.3732 1.3732

Hours 23:00 24:00 1:00 2:00 3:00 4:00
Load (kWh) 1.3732 1.3732 1.3732 1.3732 1.3732 1.3732

Hours 5:00 6:00 7:00 8:00
Load (kWh) 1.3732 1.3732 1.3732 1.3732

Table 4.2. Overall load profile with “water-filling” charging strategy

Finally, we provide the following simulation to evaluate the performance of our

proposed charging algorithm. We use the same simulation setup as Section III and

similarly, we take Type-1 PHEV battery and slow charging level as an example for

analysis. The overall load profile with “water-filling” charging strategy is illustrated

in Table 4.2.

Clearly as shown in Table 4.2, the height of the water surface −ν
2

in our case

study is 1.3732, which means if the base load ξk is higher than 1.3732 kWh, the PHEV

will choose not to charge; otherwise, the PHEV battery will be charged to the surface

level.

From Figure 4.8, it can be appreciated that, compared with other charging

schemes, “water-filling” charging strategy could remove the peak load and flatten the

overall load profile. Furthermore, we conclude that the principle of “water-filling”

charging strategy is not only the charging time but also the charging rate determine

the load profile shaping. To sum up, “water-filling” charging strategy, which dis-

5A similar proof method is adopted in [77].
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Figure 4.8. Optimal “water-filling” charging strategy.

tributes the whole charging task over the entire time-span, is optimal in flattening

the overall load profile.

4.4 Conclusions

In this chapter, we explored the optimal energy management strategies for

PHEVs via bidirectional V2G. We first follow a cost-conscious approach. Aiming

to minimize the daily energy cost, we formulated the energy management problem

through dynamic programming. To avoid the computational complexity in solving

dynamic programming, we proved that a state-independent four-threshold (s, S, s’,

S’ ) charging/discharging policy is optimal based on stochastic inventory theory. A

“N → 0” backward iteration algorithm was then proposed to practically implement

the (s, S, s’, S’ ) feedback policy. Further, we focus on shaving the peak load and

flattening the overall load profile. We proposed an optimal PHEV charging scheme

and derived a reminiscent “water-filling” solution. The performance of our proposed
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algorithms are demonstrated by numerous illustrative simulations based upon the real

data.
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Chapter 5

Conclusions

This chapter concludes the whole dissertation. It begins with a summary of

the dissertation results and contributions, follows with a discussion of future research

directions in hybrid wireless networks and cooperative-diversity networks.

5.1 Summary

This dissertation has focused on the capacity and optimization of hybrid and

smart grid wireless networks. The contributions of this dissertation are:

• On the Throughput Capacity and Performance Analysis of Hybrid Wireless Net-

works over Fading Channels : the theoretical per-node data transmission limits

for hybrid wireless networks over fading channels is studied. To overcome fading

impairments, we introduce an optimal multiple access technique allowing op-

portunistic sources to transmit concurrently with the scheduled source. We first

define the outage throughput capacity as the performance criteria for slow fading

scenario. We prove that under intra-cell mode, the per-node outage throughput

capacity over Nakagami-m fading is O
(

log[(ε
1
m )

b
n
n
b
]W1

)
; while under infras-

tructure mode, the related outage throughput capacity is Θ
(
b
n

log(ε
1
m
n
b
)W2

)
,

which are published in [111] [119]. Further we specified the ergodic throughput

capacity as the performance measurement for fast fading situation. We show

that under intra-cell transmission mode, the ergodic throughput capacity is

O
(
n
b
W1

)
at low SINR and O

(
log(n

b
)W1

)
at high SINR; while, under infrastruc-

ture transmission mode, the ergodic throughput capacity is derived as Θ
(
W2

)
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at low SINR and Θ
(
b
n

log( 1
m
· n
b
)W2

)
at high SINR, respectively [117]. Finally

presented is the QoS performance analysis in terms of the per-node AEP for hy-

brid wireless network [116]. It is concluded that, with opportunistic sources, the

intra-cell mode effectively combats fading as wireless nodes increases; however,

the infrastructure mode is bottlenecked by the downlink transmission since base

station is the only transmitter in the cell during the downlink phase. Our study

on the throughput capacity of hybrid wireless networks over fading channels is

summarized in [110].

• Analysis and Improvement of the Voltage Regulation in Microgrid Based on Sen-

sor Selection: the voltage regulation issue in microgrid is investigated, and the

WSANs is applied to accurately monitor the real-time voltage level and coordi-

nate DERs with the traditional voltage regulators. To achieve proper voltage

regulation, several sensor selection schemes are proposed to improve the voltage

measurement accuracy and power efficiency. An opportunistic sensor selection

scheme under equal power allocation is first proposed to improve the voltage

estimation performance. The asymptotic behaviors with the power constraint

and the voltage sensor number approaching infinity are investigated. We have

further addressed sensor selection scheme under optimal power allocation and

derived a “water-filling” solution for this scenario. Besides, we illustrate the im-

provements on power efficiency employing the proposed sensor selection strate-

gies, as elaborated in [120] [123]. Finally, aiming to maximize the transmission

rate between the voltage sensors and the control center, we heuristically pro-

posed the joint power and spectrum allocation strategy based on voltage sensor

selection [115]. Numerical simulation results have demonstrated that our pro-
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posed sensor selection algorithms can efficiently regulate the voltage level and

stabilize the power supply [121].

• Energy Management Strategy for Plug-in Hybrid Electric Vehicles Via Bidirec-

tional Vehicle-to-Grid : the optimal energy management strategies for PHEVs

via bidirectional V2G is explored. We first follow a cost-conscious approach.

Aiming to minimize the daily energy cost, we formulated the energy manage-

ment problem through dynamic programming. To avoid the computational

complexity in solving dynamic programming, we proved that a state-independent

four-threshold (s, S, s’, S’ ) charging/discharging policy is optimal based on

stochastic inventory theory. A “N → 0” backward iteration algorithm was then

proposed to practically implement the (s, S, s’, S’ ) feedback policy [118]. Fur-

ther, we focus on shaving the peak load and flattening the overall load profile.

We proposed an optimal PHEV charging scheme and derived a reminiscent of

“water-filling” solution [122]. The performance of our proposed algorithms are

demonstrated by numerous illustrative simulations based upon the real data.

5.2 Future Directions

5.2.1 Throughput Capacity of Hybrid Wireless Networks with Hexagon Cell Struc-

ture and Poisson Point Process (PPP) Distributed Base Station

In our previous research, we assume the square cell structure and uniformly

distributed base stations, as shown in Figure 2.1.

Square cell structure can facilitate the theoretical analysis, especially simplify-

ing the application of the frequency reuse strategy. However, from a more practical

point of view, the hexagon cell structure should be adopted, as shown in Figure 5.1.
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Figure 5.1. Hexagon cell structure.

With hexagon cell structure, we need to re-analyze the inter-cell interferences with

the updated frequency reuse factor.

Further, we will introduce an additional source of randomness: the positions of

the base stations. Instead of assuming they are placed deterministically on a regular

grid, we model their location as a homogeneous Poisson Point Process (PPP) of

density λ, as illustrated in Figure 5.2. Such an approach for BS modeling has been

considered in [108] [109] but the key metrics of coverage (SINR distribution) and

transmission rate have not been determined. With PPP distributed base stations, we

assume each node is associated with the closest base station; namely the users in the

Voronoi cell of a base station are associated with it, resulting in coverage areas that

comprise a Voronoi tessellation on the plane.

Therefore, one task of our future work is to analyze the throughput performance

of hybrid wireless network with hexagon cell structure and PPP distributed base

stations.

88



Figure 5.2. Poisson distributed base stations, with each nodes associated with the
nearest base stations. The cell boundaries are shown and form a Voronoi tessellation.

5.2.2 Throughput Capacity of Cooperative-diversity Networks over Fading Channels

Diversity techniques are known as effective means to combat the wireless chan-

nel fading. Recently, cooperative-diversity networks have attracted wide attention,

since the cooperation among the terminals has the potential to provide an increased

throughput capacity in comparison with the systems without terminal cooperation.

More specifically, the source (S) transmits the signal to the destination (D) not only

through the direct link but also through indirect links using cooperative relays (R),

as illustrated in Figure 5.3. Therefore, the quality of the end-to-end transmission

is guaranteed even if the direct link from the source to destination is in deep fade.

Relays can also provide transmit power saving due to the path-loss effect and spatial

diversity.

In the open literature, several works investigating cooperative-diversity com-

munications are available [97]-[103]. In [97], J. Laneman et al. developed various

cooperative diversity protocols for a pair of terminals based on relays amplifying

their received signals or fully decoding and repeating information, which are referred
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Figure 5.3. A illustration of the cooperative-diversity network with n relays.

to as amplify-and-forward (AF) and decode-and-forward (DF), respectively. These

diversity algorithms were further employed to combat multiple-path fading in larger

networks [98]. In [99], an exact closed-form expression is derived for the ergodic

capacity of dual-hop AF cooperative networks. Further, the capacity bounds and

the ergodic capacity for wireless single-relay channels employing DF or compress-

and-forward (CF) relaying protocols are obtained for the Rayleigh fading scenario,

assuming the transmitter channel side information (CSI) is available [100]. In [102],

the authors analyzed both outage capacity and ergodic capacity of the cooperative di-

versity systems under independent non-identically distributed (i.n.d.) Rayleigh fading

channels, and derived an approximated closed-form analytical expressions for the out-

age capacity. Further, the authors of [103] show that a cooperative-diversity system

employing DF relaying protocol offers higher ergodic capacities than the systems with

AF relaying strategy. However, to the best of the authors’ knowledge, it is still a sig-

nificant open question on the throughput capacity performance of cooperative-diversity

networks over general fading channels.

As shown in Figure 5.4, we consider a multiple-relay assisted cooperative diver-

sity system, where the source S communicates with the destination D with the help of

N potential relay nodes, denoted by r1, r2, · · · , rN . We assume that the relays operate

in half-duplex mode. Note that the medium access control (MAC) employs a time
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Figure 5.4. Cooperative-diversity network model: half duplex cooperation.

division multiple access (TDMA) scheme to allocate orthogonal time slots of length

1
N+1

of the total transmission time to the source and each relay for their transmission.

In addition, we assume that the channel state information (CSI) is only available at

the receiver and not known by all the transmitters. We take decode-and-forward

(DF) relaying protocol into consideration and the whole transmission is accomplished

in two phases. In phase I, the source broadcasts its signal to the set of N-relay nodes

(S → R) and the destination node (S → D). In phase II, only the relay that can fully

decode the signal received from the source will re-encode and forward the signal to the

destination (R → D). Here, we define the decoding set (Θ) as the set of relays with

the ability of fully decoding the source signal correctly. The relay is said to belong

to the decoding set provided that the channel between the source and relay node is

sufficiently good to allow for successful relay decoding. Finally, at the destination,

the received signal from the source and the all participating relays are combined with

the maximal ratio combing (MRC) technique.

We denote the complex channel gain between the source and the destination,

between the source and ith relay, and between the ith relay and the destination as hsd,
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hsi and hid, respectively. We assume that all the links are subject to Nakagami-m

fading, and all the channel gains are mutually independent. We also assume, without

loss of generality, that AWGN terms of all the links have zero mean and equal variance

N0. From the information theory point of view, the mutual information between the

source and the ith cooperative relay nodes, i = 1, · · · ,N, is given by [19]

Ii =
1

N + 1
log2(1 + SNR|hsi|2) (5.1)

where SNR denotes the transmitted signal-to-noise ratio (SNR) and N is the total

number of the potential relays.

As is known, the probability density function (pdf) of a Nakagami-m random

variable |hsi| (magnitude) is

f(h) =
2

Γ(mi)

(
mi

Ω

)mi
h2mi−1exp

(
−mih

2

Ω

)
, h ≥ 0 (5.2)

where mi = E2[h2]
V ar[h2]

is the shape parameter of the ith link, Ω = E[h2] stands for the

controlling spread and Γ(·) is the Gamma function defined by

Γ(mi) =

∫ ∞
0

tmi−1e−tdt. (5.3)

Therefore, we conclude that |hsi|2 is Gamma (Erlang)1-distributed |hsi|2 ∼

Γ(mi,
1
mi

), since the pdf of |hsi|2 is

f(x) =
mi

mi

Γ(mi)
xmi−1e−mix, x ≥ 0. (5.4)

Capacity analysis is of significant importance in the design of wireless systems

since it determines the maximum achievable transmission rates. As the performance

1In this study, we assume that m is an integer for analysis clarity. The Erlang distribution is a

special case of the Gamma distribution of integer value of m.
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criterion for the long-term average achievable rate over all states of the time-varying

fading channels, the end-to-end ergodic capacity can be expressed as 2

Ci =
1

N + 1
E
[

log2(1 + SNR|hsi|2)
]

(5.5)

where E(·) is the expected value.

As we have discussed, in terms of the decode-and-forward relaying protocol, the

availability of a relay node to assist the communication between the source and the

destination, depends on the channel quality between the source and the relay. That

is, only if the mutual information of a source-relay link is greater than the target

rate, R, the relay node belongs to the cooperative set Θ, i ∈ Θ. We denote n as the

number of relay terminals within the cooperative set Θ, i.e., n is the cardinality of

the cooperative set Θ.

The conditional mutual information of the DF relay communication system is

given by

I|Θ =
1

N + 1

[
log2

(
1 + SNR

(
|hsd|2 +

∑
i∈Θ

|hid|2
))]

. (5.6)

Employing the law of total probability, the ergodic capacity of the DF relay

communication system, Cergo, can be written as

Cergo =
∑

Θ

E
(
I|Θ
)
Pr
(
Θ
)

(5.7)

where Pr
(
Θ
)

is the probability that n relays of the whole N relays can decode the

packet from the source successfully, which is expressed as

Pr
(
Θ
)

=
∏
i∈Θ

(
Pr
(
Ii ≥ R

))∏
i/∈Θ

(
Pr
(
Ii < R

))
(5.8)

2Unless otherwise indicated, logarithms in this chapter are taken to base 2.
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Taking into account the Nakagami-m fading channel property, we obtain the

successfully decoding probability as follows

Pr
(
Ii ≥ R

)
= Pr

(
|hsi|2 >

2(N+1)R − 1

SNR

)
=

∫ ∞
T

mi
mi

Γ(mi)
xmi−1e−mixdx

(a)
=

Γ(mi,miT )

Γ(mi)

(b)
= mi

mie−miT
mi−1∑
k=0

T k

k! ·mi
mi−k

(5.9)

where mi is the fading shape parameter, T = 2(N+1)R−1
SNR

, (a) follows the definition of

incomplete gamma function, and (b) follows that for integer n, Γ(n, x) = (n − 1)! ·

e−x
∑n−1

i=0
xi

i!
and Γ(n) = (n− 1)!.

Similarly, we derive the following non-decoding probability:

Pr
(
Ii < R

)
= Pr

(
|hsi|2 <

2(N+1)R − 1

SNR

)
(a)
=

γ(mi,miT )

Γ(mi)

(b)
= 1−mi

mie−miT
mi−1∑
k=0

T k

k! ·mi
mi−k

(5.10)

where (a) follows the definition of incomplete gamma function, and (b) follows γ(n, x) =

(n− 1)!
[
1− e−x

∑n−1
i=0

xi

i!

]
.

Now, substituting (5.9) and (5.10) into (5.8), we can obtain the probability of

cooperative relay set Pr
(
Θ
)
.

In order to calculate the conditional ergodic capacity in (5.7), E
(
I|Θ
)
, we denote

Y = |hsd|2 +
∑
i∈Θ

|hid|2

= χ0 + χ1 + · · ·+ χn (5.11)
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with χ0 = |hsd|2 and χi = |hid|2, i = 1, · · · , n. To proceed further, we need to consider

both independent identically distributed (i.i.d.) fading channels and independent

non-identically distributed (i.n.d.) fading channels.

Therefore, the authors propose to investigate the throughput capacity perfor-

mance of cooperative-diversity networks over fading channels. Our goal is to derive

an exact closed-form analytical expression of the throughput capacity over both i.i.d.

and i.n.d. fading channels. Besides, we aim to derive the tight bounds for the capacity

at the regime of low signal-to-noise (SNR) and high SNR, respectively.
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Appendix A

The Proof of Theorem 1
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In wireless network M there exist m nodes. Dynamically, at time instants

k = 1, 2, · · · , n, each node i from source set S transmits a signal X i
k to the node j in

destination set D at rate Rij. We assume all the messages W ij being sent from node

i to node j are independent and uniformly distributed over their respective ranges

{1, 2, · · · , 2nRij}.

First, we give the standard definitions of a feasible information rates {Rij}.

Definition 3. A (Rij, i, j ∈M;n) code with error probability P
(n)(ij)
e consists

of the following: 1

• Encoders: The input symbol X i
k at node i depends on W i := {W ij, j ∈

M, j 6= i}, as well as the past values of the received symbol Yi
k−1 at node i, where

Yi
k := (Y i

1 , · · · , Y i
k ). Thus, we allow a coding function fi,k such that for all i ∈ S, k ≥

1, X i
k = fi,k(Y

i
k−1,W

i).

• Decoders: The decoder j maps the received symbols in each block Yj
k :=

{Y j
1 , · · · , Y

j
k } and his own transmitted information W j := {W ji, i ∈ M, i 6= j}, to

form estimates of the messages, W ij(Yj
k,W

j), i = 1, 2, · · · ,m.

• Average probability of error:

P (n)(ij)
e = Pr

{
(Ŵ ij, i, j ∈M) 6= (W ij, i, j ∈M)

}
. (A.1)

Definition 4. A set of rates {Rij} is said to be achievable with total power

constraint Ptotal, if there exists encoders and decoders satisfying 1
n

∑n
k=1

∑m
i=1(X i

k)
2 ≤

Ptotal, such that P
(n)(ij)
e → 0 as n→ 0 for all i, j ∈M.

After giving the standard definitions of {Rij}, we introduce the following nota-

tions:

1The similar definitions are adopted in [16].
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V j
k = U j

k + Zj
k

=
∑
i∈S

αijX
i
k + Zj

k, j ∈ D (A.2)

Y j
k = V j

k +
∑

i∈D ,i 6=j

βijX
i
k

= V j
k +

∑
i∈D ,i 6=j

βijfi,k(Y
i
k−1,W

i), j ∈ D (A.3)

W SD =
{
W ij, i ∈ S , j ∈ D

}
, (A.4)

WD =
{
W ij, i ∈ D , j 6= i

}
. (A.5)

Here, αij, βij characterize both the large-scale attenuation and the small-scale

fading of the related channel, and Zj
k with variance σ2

z represent the Gaussian noise in-

troduced at destination j. Denote V D
k := {V j

k , j ∈ D}, V
D
n := {V D

k , k = 1, 2, · · · , n},

and similarly for X, Y, Z. Since Y D
n is a deterministic function of (V D

n ,W
D) (A.3),

W SD → {V D
n ,W

D} → {YD
n ,W

D} forms a Markov chain [3].

Now from Fano’s Lemma and the property of a Markov chain, we have

H(W SD|VD
n ,W

D) ≤ H(W SD|YD
n ,W

D) = nεn,

where εn → 0 as n→∞.
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From the perspective of information theory, we have

nRSD = n
∑

i∈S,j∈D

Rij

=
∑

i∈S,j∈D

H(W ij)

= H(W SD)

= H(W SD|WD)

= I(W SD, Y D
1 , · · · , Y D

n |WD)

+H(W SD|Y D
1 , · · · , Y D

n ,W
D)

≤ I(W SD, Y D
1 , · · · , Y D

n |WD) + nεn

=
n∑
k=1

I(W SD, Y D
k |Y D

1 , · · · , Y D
k−1,W

D) + nεn

=
n∑
k=1

[
H(Y D

k |Y D
1 , · · · , Y D

k−1,W
D)

−H(Y D
k |Y D

1 , · · · , Y D
k−1,W

D,W SD)
]

+ nεn

=
n∑
k=1

[
H(Y D

k |Y D
1 , · · · , Y D

k−1,W
D, XD

k )

−H(Y D
k |Y D

1 , · · · , Y D
k−1,W

D,W SD, XS
k , X

D
k )
]

+nεn

=
n∑
k=1

[
H(Y D

k |XD
k )−H(Y D

k |XS
k , X

D
k )
]

+ nεn

= n · 1

n

n∑
k=1

[
H(Y D

Q |XD
Q , Q = k)

−H(Y D
Q |XS

Q, X
D
Q , Q = k)

]
+ nεn

= n
[
H(Y D

Q |XD
Q )−H(Y D

Q |XS
Q, X

D
Q )
]

+ nεn (A.6)
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With further transformation, we obtain

RSD = H(Y D
k |XD

k )−H(Y D
k |XS

k , X
D
k ) + εn

=
∑
j∈D

[
H(V j

k )−H(Zj)
]

+ εn

=
∑
j∈D

[1
2

log πe(E|U j
k |

2 + σ2
z)−

1

2
log πeσ2

z

]
+ εn

=
∑
j∈D

[1
2

log(1 +
E|U j

k |2

σ2
z

)
]

+ εn

=
∑
j∈D

[1
2

log(1 +
E|
∑

i∈S αijX
i
k|2

σ2
z

)
]

+ εn (A.7)

From the information theory point of view, Theorem 1 defined the upper bound

of information rate if any casual transmission strategy is allowed. The proof is com-

plete.
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Appendix B

Lemma 2.3.1.1
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Lemma 2.3.1.1. If χi for i = 1, 2, ..., n are independent identically Gamma-

distributed Γ(ki, λ), then

n∑
i=1

χi ∼ Γ

( n∑
i=1

ki, λ

)
. (B.1)

Proof. The moment generating function (MGF) Mx(t) associated with the fading

PDF f(x) is

Mx(t) = E[etx] =

∫ ∞
0

etxf(x)dx; (B.2)

then for Y =
∑n

i=1Xi, the MGF is

My(t) = E[ety]

= E[et(x1+x2+...xn)]

= E[etx1 ]E[etx2 ] · · ·E[etxn ]

=
n∏
i=1

Mxi(t)

In terms of the Gamma distribution Γ(ki, θ), Mx(t) = 1
(1−θt)ki ; the MGF of the

sum of Xi is thus

My(t) =
1

(1− θt)
∑n
i=1 ki

, (B.3)

which is the MGF of a Gamma random variable with k′ =
∑n

i=1 ki, θ
′ = θ. Therefore,∑N

i=1 Xi ∼ Γ
(∑N

i=1 ki, θ
)
.
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Appendix C

Optimal Sensor Selection Scheme under Optimal Power Allocation
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In this appendix, we derive the optimal sensor selection scheme under optimal

power allocation.

Note that, if λ = 0, the first KKT condition implies that µi < 0 for all sensor i.

This conclusion contradicts with the fifth KKT condition. Therefore, we must have

λ > 0, which means
∑m

i=1 ai(σ
2
θ + σ2

i )− Ptot = 0.

Transforming the first KKT condition, we obtain

ai =
ξi
σ2
i gi

(√
gi

λ(σ2
θ + σ2

i )− µi
− ξi

)
. (C.1)

For those active voltage sensors, ai should satisfy ai > 0. Further, the third

KKT condition tells us that if ai > 0, then µi = 0 holds. Hence, the proof of (3.17)

is complete.

To determine λ, let us assume that the sensors are ordered such that η1 ≥

η2 . . . ≥ ηm. Clearly, this ranking favors the voltage sensors with better channel

conditions and higher observation quality.

Combining the first and second KKT conditions, we could get

√
λ =

∑K′

i=1

√
ξ2
i (σ2

θ+σ2
i )

giσ4
i

Ptot +
∑K′

i=1

ξ2
i (σ2

θ+σ2
i )

giσ2
i

. (C.2)

The active voltage sensor number K ′ (which has been shown to be unique [64]) can

be solved if we substitute λ back to (3.17).
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Appendix D

Derivation of Lemma 4.2.1
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Let U := (u0, u1, · · · , uN) be any admissible decision. From dynamic program-

ming equations (4.11), since U is admissible but not necessarily optimal, we obtain

vk(xk) ≤ ck(uk, xk) + vk+1(xk + uk)

(a)

≤ ck(uk, xk) + vk+1(xk+1),

where (a) follows xk+1 = xk + uk. Summing from 0 to N-1, we get

v0(x) ≤ J0(x;U). (D.1)

Now consider the optimal battery charging/discharging decision Û := (û0, û1, · · · , ûN).

From the definition of ûk(x) that attains the infimum in (4.11), we have

vk(x̂k) = ck(ûk, xk) + vk+1(xk + ûk)

= ck(ûk, xk) + vk+1(x̂k+1).

Similarly, adding up for k from 0 to N-1, we reach

v0(x) = J0(x; Û). (D.2)

Together with (D.1) and (D.2), we conclude that the PHEV battery charg-

ing/discharging decision Û := (û0, û1, · · · , ûN) of the dynamic programming is also

optimal for J0(x;U). The proof is thus complete.
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Appendix E

Derivation of Theorem 6
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First of all, let us introduce the definition of K -convex:

Definition 5. A function g : R → R is said to be K-convex, K ≥ 0, if it

satisfies the property

K + g(y + a) ≥ g(y) + a
g(y)− g(y − b)

b
,

for all a ≥ 0, b > 0. (E.1)

Actually, to demonstrate the optimality of (s, S, s’, S’ ) feedback policy we only

need to prove

hk(x) =

 K + pk(S), if x < s

pk(x). if s ≤ x ≤ xmax

(E.2)

h′k(x) =

 K + qk(S
′), if x > s′

qk(x). if xmin ≤ x ≤ s′
(E.3)

The proof of hk(x) (E.2) is similar to that of Theorem C.2.3 in [96]. Therefore,

due to the space limitation, in this work we only provide the derivation of h′k(x).

Before proceedings, we need to prove the K -convexity of h′k(x). This could be

done by induction. First, vN(x) is convex by definition (4.10) and thus K -convex for

any K ≥ 0 [93]. Suppose for a given k ≤ (N − 1), vk+1(x) is K -convex. According to

[93], restriction of any K -convex function on any convex set is K -convex. Therefore,

h′k(x) is K -convex. Clearly, vk(x) is also K -convex, which completes the induction

argument. Hereafter, we remove the subscript k for the general case analysis.

Now, our main focus is to prove

q(x) ≤ q(y) +K, ∀ x, y with xmin ≤ x ≤ y ≤ s′. (E.4)

Clearly, the inequality (E.4) holds for x = y, x = S ′, and x = s′, since q(s′) ≤

q(S ′) +K ≤ q(y) +K. Therefore, we primarily examine the following two cases: (1)

xmin ≤ y < x ≤ S ′ and (2) xmin ≤ y < x, S ′ ≤ x < s′.
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• Case 1 (xmin ≤ y < x ≤ S ′). According to the K -convexity of q(x), we have

K + q(y) ≥ q(x) +
y − x
x− z

[q(x)− q(z)]. (E.5)

Let z = S ′, we could derive q(x) < K + q(y) with q(x) ≥ q(S ′).

• Case 2 (xmin ≤ y < x, S ′ ≤ x < s′). With the definition of s′, if s′ < xmax we

obtain q(s′) = K + q(S ′).

Further, with the convexity of q(x), it is concluded that

K + q(S ′) ≥ q(x) +
S ′ − x
x− s′

[q(x)− q(s′)]

≥ q(x) +
S ′ − x
x− s′

[q(x)− q(S ′)−K]. (E.6)

Transforming (E.6) leads to(
1 +

S ′ − x
x− s′

)
[K + q(S ′)] ≥

(
1 +

S ′ − x
x− s′

)
q(x). (E.7)

Dividing both side of (E.7) by

(
1 + S′−x

x−s′

)
, we reach

q(x) ≤ K + q(S ′) ≤ K + q(y). (E.8)

We finished the proof of (E.3). Together with function h(x) (E.2), we could

readily prove the optimality of the (s, S, s’, S’ ) feedback policy. We complete the

proof.
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