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Abstract 

 

INTERNAL STRUCTURE AND DYNAMIC DECISIONS  

FOR COALITIONS ON GRAPHS 

Muhammad Aurangzeb 

The University of Texas at Arlington, 2013 

Supervising Professor: Frank L. Lewis  

The notions of collaboration, advantage, cost and impact are investigated in this 

dissertation, following are the details.  

Contribution to Cooperation between Agents for Routing in an Unknown Graph Using 

Reinforcement Learning 

First of all this work investigates the cooperation between agents to achieve a common 

goal. The problem of steering a swarm of autonomous agents out of an unknown maze to some 

goal located at an unknown location is discussed in this context. The routing algorithm given 

here provides a mechanism for storing data based on the experiences of previous agents visiting 

a node that results in routing decisions that improve with time. 

Contribution to Coalitional Advantage in Agents and Structure in Coalitions on Graphs 

Next a certain graphical coalitional game is introduced, where the internal topology of the 

coalition depends on a prescribed communication graph structure among the agents. Three 

measures of the contributions of agents to a coalition are introduced: marginal contribution, 

competitive contribution, and altruistic contribution. Results are established regarding the 

dependence of these three types of contributions on the graph topology, and changes in these 

contributions due to changes in graph topology. Based on these different contributions, three 
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online sequential decision games are defined on top of the graphical coalitional game. The stable 

graphs under each of these sequential decision games are studied.  

Contribution to Coalitional Cost and Advantage in Agents and Structure in Coalitions on Graphs 

Here a Positional Cost is also introduced. Based on the advantage and cost, a notion of 

Net Payoff or Allocation is defined; this notion is used to further define three measures of net 

advantages. Taking maximization of these measures of net advantages as the objective functions 

of agents, three online sequential decision games are defined. A threshold of cost is reached 

above which no agent is interested to stay in a coalition irrespective of their motives. 

Contribution to Coalitional Advantage in Agents and Structure in Coalitions on Digraphs 

Novel digraph structures, are defined. The marginal contribution made by an agent in a 

digraph is introduced. Results are established regarding the dependence of marginal 

contributions on the graph topology, and changes in these contributions due to changes in graph 

topology. Based on marginal contributions, and by varying the rules of the game, three online 

sequential decision games are defined on top of the graphical coalitional game. The stable graphs 

under each of these sequential decision games are studied, and give the structures of the 

coalitions that form in each sequential game. 

Contribution to Coalitional Impact of Agents on Other Agents 

Finally the notion of impact of one agent in the coalition upon the other agents is 

investigated, and a complete impact propagation framework is proposed. The analogy of impact 

propagation is use to present a comprehensive, and integrated framework to compute the impact 

made by a scientific work, a scientist, an institution, and a scientific journal. 
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Chapter 1  

Introduction 

This chapter provides an outline of introductory and background material for this thesis. 

More detailed introductions are given at the beginning of each chapter.  

1.1 Cooperation between Agents for Routing in an Unknown Graph Using Reinforcement 

Learning 

In the literature there is a great deal of material about swarming of agents and their 

consensus [1], [2], [3], [4], [5], [6], [7], [8]. This material is about agents communicating with 

each other in a local manner in a Euclidian space to reach a global consensus or a goal. Swarm 

intelligence (SI) is another class of decentralized algorithms based on the cooperative behavior 

of the agents to achieve a common goal [13], [14]. In this work an SI algorithm based on 

reinforcement learning is proposed. Reinforcement learning is a type of real-time machine 

learning which refers to modifying one’s actions or control policies based on learning from one’s 

experience. It is inspired by learning mechanisms that occur in nature, where living beings 

modify their control actions based on feedback received from their surroundings [49], [52], [53]. 

In a distributed environment the scope for reinforcement learning is wide, the agents not only 

learn from their own experiences, but also from the experiences of their peers. 

1.2 Cooperative Game Theory and Positional Advantage in coalitions and Structure in Coalitions 

on Graphs  

Game theory was introduced as a formal discipline of mathematics by J. von Neumann in 

1928 through his classic work [113] and its extension [114]; it is primarily divided into two 

areas: noncooperative game theory [84], and cooperative game theory [116], [130]. In 

noncooperative game theory, the fundamental unit of study is the individual agent, and it deals 



2 

with its performance and strategies in interaction with other individual agents. By contrast, in 

cooperative game theory, the fundamental unit is the set of agents or coalition. Cooperative game 

theory deals with the value of the coalition, payoff allocations to individual players, and the 

stability of coalitions [116], [130]. Methods are sought to allocate the net value of the coalition to 

individual agents in such a way that agents are encouraged to join the coalition. A fair allocation 

[110] that often accomplishes this is the Shapley value [127]. In his classical work [110], 

Myerson used graph theoretic ideas to analyze cooperation in coalitional graph games. He 

proposed to restrict the interactions in coalitions based on the underlying communication graph 

structure. He showed that the unique fair allocation of the net value of the coalition to the agents 

is given by the Shapley value [127].  

1.3 Positional Cost and Advantage in coalitions and structure in coalitions on graphs 

Considerations of cost are instrumental in the formation of coalitions. Various definitions 

of cost are used in coalitions, including probability of false alarm, vulnerabilities from other 

agents, download delay, mean waiting times, and path delay [81], [82], [104], [119], [120]. In 

their paper [104], Jackson and Wolinsky analyzed the stability of networks when the individual 

agents choose to form and maintain the links between them. An agent gains value on connecting 

to an agent which is well-connected to other agents in the graph, and accrues a cost based on 

maintaining direct communication links with its neighbors. It is shown that different relations 

between the link cost and the propagation of value along a path result in stability of different 

structures, such as complete graph, star graph [87], etc. In [82] a constrained coalitional game, 

based on Jackson and Wolinsky model [104], for networks of autonomous agents is defined. In 

[81] a trust based game is proposed. In this game payoffs and costs are dependent upon the gain 

and loss in mutual trust value. In [119] a cooperative game with non-transferable utility is 
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proposed; in this game advantages and costs are based on probability measure. In [120] a 

coalitional game is introduced; in this game the value function is based on the effective 

throughput of the agents and cost is based on the delay. 

1.4 Graphical Coalitional Game and Marginal Contribution on digraphs 

When there is a possibility of unidirectional flow of information in coalitions, then such 

coalitions can only be represented as digraphs. In the situation of asymmetric flow of 

information, agents join hands to make digraph structures to pursue a common goal. In case of 

digraphs, due to asymmetric flow of information, the study of contribution made by an agent is 

more involved than for the undirected graphs. The idea of a graphical coalition games (GCG) is 

introduced in [77]. Novel digraph structures required for the development of GCG on digraphs 

are defined and are used to state the Axioms of Value for GCG on digraphs, to assign values to 

digraphs. These novel structures include semi-strongly connected digraphs, and multi-chains. 

Notion of total or marginal contribution made by an agent [74] is defied for agents within a 

coalition modeled as a digraph, and the dependence of the marginal contribution made by the 

agents, on their position in coalition is studied. The GCG on digraphs and novel digraph 

structures, can be used to provide further insight to the cooperative control theory [1], [2], [3], 

[7], [8], [79], [135]. Algorithms are also devised to get these digraph structures.  

1.5 Sequential Decision Games 

Closely related to the coalitional graph games are online or sequential-in-time decision 

games. These are games where agents make moves through time sequentially to maximize their 

prescribed objective functions [130]. These games are defined by specifying the method of 

selection of the agent to make moves at each time, the allowed moves of the agents, and the 

objective function the agents seek to maximize. Agents might make moves according to some 
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fixed round-robin procedure, or randomly according to some probability distribution function. 

These online sequential decision games best model real-life situations where the players are free 

to change their alliances as considered suitable by them to obtain their objectives. 

This dissertation provides tools to study the internal structure of coalitions on graphs on 

the basis of different motives of the agents. A graphical coalitional game (GCG), with novel 

properties, based on a Value Function that is required to satisfy four formal axioms, is defined. 

Owing to these axioms imposed on the Value Function, it is possible to perform a rigorous study 

of the internal structure of coalitions on graph topologies. The allocation or payoff to individual 

agents is taken as their Shapley value with the Value Function satisfying the four Axioms, and is 

interpreted as the worth of an agent in a coalition, and is called the Positional Advantage (PA). 

PA formalizes the notion of well-connectedness in communication graphs.  PA makes it possible 

to prove certain properties of the GCG, including convexity, fairness, full cooperativeness, and 

cohesiveness. Three types of contributions of agents within a coalition- the marginal, 

competitive, and altruistic contributions [74] are rigorously defined.  The PA, which includes the 

formal Axioms of Value, allows the rigorous development of certain properties of these three 

contributions, including their dependence on graph topology and changes in topology.  

In this dissertation, a graphical coalitional game (GCG) with cost is further defined. Cost 

of a coalition depends upon the connectivity of the agents and the number of agents involved in 

the coalition. The cost is initially allocated to the edges by using the Shapley value. The Shapley 

value with the Value Function satisfying the four Axioms of cost is interpreted as the cost of a 

communication link within a coalition. The cost is than allocated to individual agents by using 

the symmetric connection model of Jackson and Wolinsky [104]. The cost of an agent in a 

coalition is called the Positional Cost (PC). Based on cost and advantage, a Graphical Advantage 
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and Cost Game (GACG) is defined. The advantage and cost are used to define Net Payoff or 

Allocation (NPA); it is further used to define three net advantages: Net Marginal Advantage 

(NMA), Net Competitive Advantage (NCA), and Net Altruistic Advantage (NAA). These net 

advantages are based on the components of cost and components of advantage and according to 

the concepts in [74]. A number of results about the dependence of these net advantages on 

coalition structure are presented.  

Three online sequential decision games are also defined based on the marginal, 

competitive, and altruistic contributions, wherein agents make or break edges to maximize these 

respective contributions.  It is shown these three sequential decision games have different stable 

coalition structures. Three online sequential decision games are also defined on top of the 

graphical coalitional advantage and cost game; these three online sequential decision games are: 

max-NMA, max-NCA, and max-NAA. The preferred graphs under each sequential decision 

game, under certain relations between the advantages and costs are studied. It is shown that the 

stable graphs in max-NMA are any connected graph, including a tree. The preferred graph in 

max-NCA is a connected graph or completely disconnected graph under certain other condition.  

The completely disconnected graph is stable in max-NAA under certain conditions. These 

preferences in the three sequential games yield thresholds of cost beyond which agents stay in 

completely disconnected or trivial coalition irrespective of sequential game. 

The sequential decision games are also introduced on top of GCG on digraphs. The 

marginal contribution made by an agent within a coalition is taken as the objective function of 

these sequential decision games. The games are defined by varying the rules of the game, and 

agents maximize their objective functions while taking turns sequential in time under the allowed 
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rules. It is established that stable structures under these games are, multi-chains, semi-strongly 

connected digraphs and chain of command. 

1.6 Impact of an Agent on another Agent in a Coalition 

Impact made by one agent in a coalition to another agent in the same coalition plays a 

fundamental role in coalitions when agents join hands to pursue a common goal. The agents not 

only impact the agents which directly communicate with them, rather they have seminal impact 

on the other agents. A comprehensive impact propagation framework is defined with reference to 

the scientific work produced and all the persons involved in the scientific activity. 

1.7 Organization of this Dissertation 

The rest of the thesis is organized as follows. Chapter 2 studies the cooperation in the 

coalitions by providing a rigorous theoretical framework for an intelligent distributed search of a 

maze by a swarm of agents. Two Theorems are proven, showing that minimal local information 

based on principles of RL at the maze nodes is sufficient to explore the maze. Based on these 

results a routing scheme is presented. Simulation results show the superiority of the proposed 

scheme over some of the existing schemes; these results also show that the swarm of agents 

achieves the goal as a swarm and not as separate agents. 

 In Chapter 3, a graphical coalition game is defined, with its formal axioms on the Value 

Function. The Positional Advantage (PA) of an agent within a graph topology is defined in terms 

of its connectedness properties. It is shown that the GCG is convex, fair, cohesive, and fully 

cooperative. Changes in PA are related to changes in graph topology. Motivated by [74], three 

types of contributions of agents in a coalition, the marginal, competitive, and altruistic 

contributions are defined. Formal results about these three contributions based on topological 

graph properties are derived. Further, three online sequential decision games are defined on top 
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of the GCG. The stable graph structures under each of these three games are studied. Simulation 

results for several online sequential decision games are presented and shown to support the stable 

graph structures. 

In Chapter 4, the framework of GCG with Positional Cost (PC) within a coalition is 

defined; some fundamental results about this framework are also presented. Based on the cost 

and advantage, a Graphical Advantage and Cost Game (GACG) is defined. Components of cost 

in a coalition are also defined and dependence of the components of cost on graph topology is 

elaborated.  The notions of NMA, NCA, and NAA are also defined. Online Sequential Coalition 

Decision Games; stability of graph structures under these games and cost thresholds are also 

discussed here. 

Chapter 5 introduces the structure of a Graphical Coalition Game on digraphs which 

assigns a value to each digraph based on its connectivity. Fundamental properties of the game are 

established in the form of technical lemmas. Novel graph theoretic structures including multi-

chain, and semi-strongly connected digraphs, are defined; these structures are pivotal in defining 

the Graphical Coalition Game on digraphs, and algorithms are devised to compute these 

structures. Marginal contribution made by an agent within a coalition, modeled as a digraph, is 

defined; results are established about the dependence of marginal contribution made by an agent 

upon its position in the digraph. On top of marginal contribution, three sequential decision games 

are defined and stable coalitional structures under these games are established. Stable structures 

for these games are multi-chains, semi-connected digraphs and chains of command; these 

structures are useful in cooperative control theory. 

Impact propagation framework is introduced in Chapter 6. Here a seamless, 

comprehensive, and integrated framework to compute the impact made by a scientific work, a 
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scientist, an institution, a scientific journal, and a funding agency, is presented. The framework 

provides solutions to a number of problems about the existing indexing systems, under 

discussion, in the scientific community. These problems include but are not limited to the 

allocation of impact to scientists, excessive self-citation, gifted authorship, dependence of indices 

on disciplines, and excessive citations. The framework is evolved around a computation 

algorithm which is network-based, and distributed in nature. The framework thus includes the 

seminal effect of a work in the computation of impacts made by various entities and is readily 

implementable. Certain guidelines are provided for the implementation of the proposed 

framework. Work examples and simulation results show the working and usefulness of the 

proposed system in comparison to other existing systems. The proposed system has complete 

provision of peer input to cover delicate issues in impact calculations, yet the system can be 

employed fully automated during the earlier implementation stages. Chapter 7 discusses the 

future work to complete this dissertation. Some technical results are established in the 

Appendices at the end of this thesis. 
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Chapter 2  

Cooperation between Agents for Routing in an Unknown Graph 

This chapter investigates the cooperation between agents to achieve a common goal. The 

problem of steering a swarm of autonomous agents out of an unknown maze to some goal 

located at an unknown location is discussed in this context. Two theorems show the importance 

of certain minimal information in improving decision-making for routing. Based on these results, 

an  –greedy reinforcement learning method using only local information exchanges is used to 

balance exploitation and exploration of the unknown maze. The routing algorithm given here 

provides a mechanism for storing data based on the experiences of previous agents visiting a 

node that results in routing decisions that improve with time. Simulation examples show that 

simple rules of learning from past experience significantly improve performance over random 

search and search based on Ant Colony Optimization, a metaheuristic algorithm. 

2.1 Introduction 

In the literature there is a great deal of material about swarming of agents and consensus 

[1], [2], [3], [4], [5], [6], [7], [8]. This material is about agents communicating with each other in 

a local manner in a Euclidian space to reach a global consensus or a goal. Some work also deals 

with obstacles and potential fields [9], [10], [11], [12]. 

Swarm intelligence (SI) is another class of decentralized algorithms based on the 

cooperative behavior of the agents to achieve a common goal. These algorithms are based on 

simple rules inspired from the biological systems in nature. There are great deals of swarm SI 

algorithms proposed in literature [13], [14]. These include Ant Colony Optimization (ACO) [15], 

Artificial Bee Colony (ABC) [16], Artificial Immune System (AIS) [17], Charged System Search 

(CSS) [18], Cuckoo Search (CS) [19], [20], Firefly algorithm (FA) [21], [22], Gravitational 
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Search Algorithm (GSA) [23], Intelligent Water Drops algorithm (IWD) [24], Particle swarm 

optimization (PSO) [25], Multi-Swarm Optimization (MSO) [26], River Formation Dynamics 

(RFD) [27], Self-propelled particles (SPP) [28], and Stochastic Diffusion Search (SDS) [29], 

[30]. These algorithms can be applied to flocking behavior in discrete surroundings. Discrete 

surroundings are of various kinds including grids, space filling curves [32], [33] space filling 

surfaces [34] and mazes [35]. All the above algorithms can be used to solve the maze; in [31], 

ACO is deployed to solve the maze. But these algorithms generally have some centralized 

element. Unlike most of the metaheuristic based algorithms this paper presents an SI algorithm 

with rigorous mathematical base and addresses the problem of steering a swarm of agents 

through an unknown maze to a goal at some unknown location, using only local information 

exchange. 

Mazes are classified in several ways: according to their dimension, topology of their 

manifold, shape and orientation of their cells, nature of the route from the starting point to the 

goal and so on. Details of these classifications can be found at [36].  

The fundamental maze exploration algorithm is the random search. Though random 

search does not guarantee finding the goal, in many cases this is the only available exploration 

method. The rest of the available maze exploration algorithms are generally deterministic in 

nature. The most basic may be the wall follower method [37], [38]. In this method, the searcher 

keeps one of his hands on one wall and keeps following. It is guaranteed that either he will reach 

the goal if it is located somewhere at the outer boundary of a 2D maze from an initial point also 

located at the outer boundary; otherwise it will return to the initial point. This method works well 

with 2D perfect mazes [36], [37], [38]. The perfect maze is the one which is a tree when 

represented as a graph [39]. But it does not work for imperfect mazes or to find a goal within the 
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maze [36], [37]. An improvement to the wall follower algorithm is the Pledge Algorithm [37], 

[38], [40]. This algorithm works with an agent equipped with a perfect compass and assures the 

escape of an agent from within the maze to a goal at the outer boundary of the maze. The Pledge 

Algorithm does not work in the reverse direction, that is to say, it is not guaranteed to find a goal 

within a maze starting from the initial point [37], [38]. Trémaux's algorithm is a sure algorithm 

for solving a maze that works where passages are well-defined and there is a provision to draw 

lines on the floor [37]. Trémaux's algorithm is based on bidirectional double tracing, a form of 

depth first search of the graphs. There are some other algorithms to explore the maze given 

complete knowledge of the maze [37], [38].  

The problem of robot learning to escape a maze is not new to the machine learning 

research community; it was originally posed many decades back by H. Abelson and A. A. 

diSessa in [40]. There is a great deal of research in robots learning to escape from a maze [41], 

[42], [43]. In [44] an architecture for autonomous mobile agents is proposed that explores and 

map a two-dimensional environment, and gives safe paths to unexplored regions. In [45] 

algorithms of meeting of two heterogeneous robots in an unknown environment while exploring 

the environment are proposed. The robots take starts from unknown starting points and cannot 

communicate with each other over long distances. In [46] an ultrasonic sensor localization 

system for autonomous mobile robot navigation in an indoor semi-structured environment is 

presented. 

Several approaches are adopted to make the cyber machines learn to find their way out of 

mazes. Various approaches of automated maze search are practically implemented and several 

testing environments are proposed [41], [47]. A knowledge-guided route search is proposed 

based on obstacle adaptive spatial cells, routing knowledge and routing algorithms is proposed in 
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[42]. Neural network based approach is used in [43] for a robot to solve a maze while avoiding 

concave obstacles. Maze exploration is also used as a standard test benchmark to test artificial 

intelligence techniques [48]. Principles of machine learning have also being used to get a single 

robot out of mazes [49]. 

There is also some study showing that antibodies in an immune system use a mechanism 

of learning from their surroundings to efficiently fight against antigens. Behavioral study of 

antibodies has led scientists to use methods of machine learning for the development of artificial 

immune systems [49], [50], [51]. These future immune systems are tested on moving robots in 

mazes [49]. 

In this paper a randomized approach is presented to steer a swarm of agents out of any 

type of unknown maze. The approach uses distributed computations and principles of 

Reinforcement Learning (RL) [49], [52], [53] to achieve the goal, and improves on random 

search and metaheuristic based search. Reinforcement learning is a type of real-time machine 

learning which refers to modifying one’s actions or control policies based on learning from one’s 

experience. It is inspired by learning mechanisms that occur in nature, where living beings 

modify their control actions based on feedback received from their surroundings [49], [52], [53]. 

In a distributed environment the scope for reinforcement learning is wide. In this paper, 

the agents not only learn from their own experiences, but also from the experiences of their 

peers. The routing algorithm given here provides a mechanism for storing data based on the 

experiences of previous agents visiting a node that results in routing decisions that improve with 

time. Reinforcement learning is used to reward the agents in response to a good move and give 

them a setback for a wrong move. In this paper the structure of the maze is unknown to the 

agents and the goal is positioned at some anonymous location. A location is defined as an 
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intersection point where a routing decision is needed. The maze is represented as a static graph 

[39] with locations in the maze taken as nodes and adjacency of two locations represented as an 

edge between the corresponding nodes in the graph. The swarm of agents is sent into the maze at 

a prescribed location and all of these agents are free to move from one node to the other in the 

graph along its edges, seeking for the goal. As these agents move they develop a database and 

make an expanding memory node network [54] by placing memory nodes at the explored nodes. 

The memory node network facilitates the updating of the database used by each agent. This 

database helps an agent to intelligently choose an edge from one node to another node by using 

principles of reinforcement learning [49], [52], [53].  

The algorithm of this paper is compared to ACO in Section 2.3. Simulation results show 

that the algorithm in this paper outperforms ACO. 

The contribution of this paper is to provide a rigorous theoretical framework for an 

intelligent distributed search of a maze by a swarm of agents. In Section 2.2, two Theorems are 

proven, showing that minimal local information based on principles of RL at the maze nodes is 

sufficient to explore the maze. Based on these results a routing scheme is presented in Section 

2.3. It is proposed that each agent is equipped with Fuzzy Logic System (FLS) [55], [56], [57], 

[58], [59], [60], [61] to obtain the advantages of Reinforcement Learning (RL). Simulation 

results are presented in Section 2.4 show the superiority of the proposed scheme over random 

search and the search based on ACO and a combination of both of them. These results also show 

that the swarm of agents achieves the goal as a swarm and not as separate agents. Conclusions 

are presented in the Section 2.5. 
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2.2 Formulation, Routing Results on finite Graphs, and Data Structures  

This section formally defines the problem of routing in an unknown maze by explaining 

the system architecture and information structure. A graph theoretic formulation is used [39]. 

Two theorems concerning routing in finite mazes provide the basis for the data structures 

maintained by the agents. 

A swarm of agents is sent into an unknown finite maze from a single location, and the 

agents are required to reach a goal located at some unknown location in the maze by using only 

information available locally to each agent. To do so, on visiting a node, an agent is required to 

make a routing decision about which edge to follow on leaving that node. It is desired to use 

minimal information and data exchanges yet to significantly improve upon the results of using 

random exploration by each agent.  

2.2.1 Representing a Maze as a Graph  

To formalize the routing problem and objectives graph theory [39] is used.  Represent the 

unknown maze as an undirected and unknown graph ( , )G V E  with vertices V the set of locations 

within the maze and | |G  represents the number of locations in G. A location or node is defined 

to be an intersection in the maze where a route direction decision is needed. There is an edge 

{ , } Ei j   if and only if the locations i V  and j V  are adjacent in the maze. The degree 
i

d  of 

node i is the number of edges incident on node i. A swarm of N agents is sent into the graph G at 

some starting node 1 V , and the agents are required to reach a goal located at some unknown 

node g V . Each agent must make routing decisions using only information available locally. It 

is assumed that at least one path exists from the starting node 1 V  to the goal g V . A path 

from the starting node 1 V  to the goal g V  is defined as a finite sequence of distinct vertices 
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1 2{1 , ,..., }nv v v g   with an edge existing in G between each pair of consecutive vertices in the 

sequence. The goal is reachable from node i if there exists a path from node i to the goal. 

Memory Nodes and Explored Subgraph  

Any agent arriving at an unvisited node for the first time places a memory node with a 

memory at that node, which is then termed visited. This produces a growing network of visited 

nodes *V  that forms a graph * * *( , )G V E . Since *G  grows by the agents starting from the same 

initial point 1 V  and by traversing paths on G, *G G  is a connected subgraph of G. Each 

node in *G  refers to the corresponding node in G.  The graph *G  is referred as the explored 

subgraph of G. 

2.2.2 Routing Results for Finite Mazes 

In this section two theorems are presented which show that certain specific local 

information stored at each node *i V  is sufficient for routing in an unknown maze and yields 

performance far better than random exploration of maze by the agents. This information at node i 

include the number of agents ( )
ij

N t  that have gone along an edge { , }i j  prior to time t, and the 

number of agents ( )
ij

t  of the agents ( )
ij

N t  who have returned to the node i prior to time t.  In 

fact, as the number of agents N sent into the maze becomes large, this minimal information 

provides routing information that allows the agents to reach the unknown goal with probability 

tending to 1.  This makes possible the distributed intelligent pursuit of the unknown goal by each 

agent using information related to ( )
ij

N t and ( )
ij

t , stored at the nodes and agents. 
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The first theorem shows that as ( )
ij

N t  becomes large, while the number of agents ( )
ij

t  

returning to node i is equal to zero, then the probability that the goal is reachable from node i 

through a path containing edge { , }i j  tends to 1.  The result relies on the finite size of the maze. 

Theorem 1: Let ( )
ij

N t  be the number of agents who have passed node i along an edge 

{ , }i j  prior to time t. Assume that ( )
ij

t , the number of agents who have returned to node i, is 

equal to 0. Then as ( )
ij

N t  and t increase, the probability that there exists a path containing { , }i j  

from node i to the goal tends to 1.  

Proof: The maze is represented as a connected graph G.  Consider a node i from where a 

number of agents ( )
ij

N t  have gone along an edge { , }i j  prior to time t. Let us assume that there is 

no path leading to the goal from node i containing edge { , }i j . Split each edge of the graph into a 

pair of directed edges and consider the graph as a Markov chain. The chain does not have self-

loops at any node other than the goal which is an absorbing node. Let the probability of going 

along any edge be uniformly distributed. Then there is a nonzero probability p that an agent will 

come back to the node i in finite time t. Thus there is some nonzero average rate of return λ of 

the agents ( )
ij

N t  back to node i. As the number of agents ( )
ij

N t  increases the probability that k 

agents will come back in time t, given that there is no path leading to goal from node i containing 

edge { , }i j  is given by Poisson distribution [64]. 

 
( ) .

( ) ; 0,1,2,...
!

k tt e
p k k

k

 

   (2.1) 

From (2.1), for 0k  , (0) tp e  , which implies that ( 0 | ) t
SP k e    , here  

S=There exist a path from node i containing { , }i j  leading to the goal.  This leads to  
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( 0)
( | 0)

( )
t

S
S

P k
P k e

P


  
  

or 

 
( )

( | 0) 1 .
( 0)

tS
S

P
P k e

P k


  


 (2.2) 

In (2.2), as time t increases, ( 0)P k   reaches 1 and ( )SP   is fixed. Thus ( | 0)SP k   reaches 1.■ 

The second result concerns the case ( ) 0
ij

t   and shows that at a node i the steady state 

probability of finding the goal while following an edge { , }i j  is maximized if the ratio 
( )

( )
ij

ij

t

N t


 is 

minimum. 

Theorem 2: Let ( )
ij

N t  be the number of agents who have passed an intermediate node i 

along edge { , }i j  prior to time t, and ( )ij t  the number of agents out of ( )ijN t  who have returned 

to node i. Then as ( )
ij

N t  increases, the steady state probability that there exists a path containing 

{ , }i j  from node i to the goal is maximum for the edge { , }i j  for which the ratio 
( )

( )
ij

ij

t

N t


 is 

minimum. 

Proof: For an agent present at an intermediate node i at some time t, whole of the maze is 

viewed as d systems reachable from it. Here d is the degree of the node i. This visualization of 

the maze is shown in Figure 2.1. 

Supposing that these systems are randomly selected by the agent at node i. In Figure 2.1 

these systems are represented as states of a Markov chain numbered from 1 to d. Also the state g 

shows the goal node g. Let jp  be the transition probability of return of an agent from the system  
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Figure 2.1: Visualization of maze as d systems 

j to the node i.  Also let 
jSp  be the transition probability of going from the system j to the goal 

node g which is an absorbing node. The transition probability that an agent within the system j 

remains within the same system is 
jTp . Also jp  is the probability to select a particular system 

from the node i so that the probability ( )Sp P s  of reaching the goal is maximized. Using the 

conditioning it is written as 

 
1

( | )
d

s ij
j

p P s j P


   (2.3) 

Here 

 ( | ) ,sj ij jP s j p P p   (2.4) 

Substituting these values from (2.4) above into (2.3), yields  

 
1

j

d

s s j
j

p p p


  (2.5) 



19 

For each of the state 1,2,...,j d , the following equation holds 

 1
jsj T jp p p    (2.6) 

Substituting the value of sjp  from (2.6) above into (2.5) above, yields  

 
1

(1 )
j

d

s T j j
j

p p p p


    (2.7) 

or 

 
1 1

1
j

d d

S T j j j
j j

p p p p p
 

      (2.8) 

The steady state transition probability 
jTp  of keeping an agent within the same system 

for all the systems 1,2,...,j d  is 0. The problem of maximizing the probability sp  of an agent 

to reach the goal from the node i is transformed into the problem of minimizing the summation 

1

d

j j
j

p p


  on the right hand side of the (2.8), under the condition 

 
1

1
d

j
j

p


   (2.9) 

Thus the summation 
1

d

j j
j

p p


  is a convex sum under condition (2.9) and it has the minimum 

given in (2.10) below. 

 
0

1

min
d

j j j
j

p p p


   (2.10) 

Here
0

min( )j jp p  when
000 1j jp j j p      . This means that sp  is maximized if the 

edge with minimum probability of an agent coming back to node i is taken at time t. Under the 

given condition of equal complexity of the systems and assuming ( ) :{ , }
ij

N t j i j E   is large 
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enough, as the time passes, the ratio 
( )

( )
ij

ij

t

N t


 reaches to the steady state probability of return of an 

agent back to node i. It is thus established that the greater the value of 
( )

( )
ij

ij

t

N t


 the smaller are the 

chances of finding the goal while going along the edge { , }i j . ■ 

2.2.3 Data Structures of Agents and Nodes 

Theorem 1 and Theorem 2 in the previous section showed the importance in routing of 

( )
ij

N t , the number of agents who have passed an intermediate node i along edge { , }i j  prior to 

time t, and ( )ij t , the number of agents out of ( )ijN t  who have returned to node i. This section 

capitalizes on these results to define minimal data structures to be maintained by both the 

memory nodes and the exploring agents.  

The data structures presented here contain parameters used to make routing decisions by 

the agents for maze exploration. Upon its arrival at a memory node, an agent exchanges data 

with the memory node, and based on the results established in the previous section makes a 

decision about which edge to follow on leaving the node. Theorems 1 and 2 provide the basis for 

using minimal information storage and data exchanges to significantly improve upon the results 

of using random exploration by each agent.  

Principles of reinforcement learning (RL) are used in the next section to update the data 

structures using local information. 

Data Maintained by Visited Nodes 

Each memory node *i V  at the visited locations maintains a time-varying matrix ( )
i

P t  

of size 2
i

d  , where 
i

d  is the degree of the node i.  This matrix is given by  

 ( ) [ ( ) ( )]ii i
P t N t t  (2.11) 
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Here, ( )
i

N t  and ( )
i

t  are vectors of length 
i

d , each having one entry corresponding to each edge 

incident on node i. 

The vector ( )
i

N t  has the j-th entry equal to the number of agents ( )
ij

N t  who have 

travelled along the edge { , }i j  prior to the time t. The j-th entry in the vector ( )
i

t  is the negative 

of the number of agents who have visited node i prior to time t and returned to it. That is to say, 

( ) ( )
ij ij

t t   . If none of the agents who have gone along edge { , }i j  have returned to node i, 

then the j-th entry in vector ( )
i

t  is equal to zero.  

According to the Theorems 1 and 2, routing decisions that select edge { , }i j  on leaving 

node i are beneficial if the j-th entry in the vector ( )
i

t  is equal to zero and detrimental as the j-th 

entry in the vector ( )
i

t  becomes larger negative. Thus the vector ( )
i

t  can be considered as a 

reinforcement learning gain vector. Element j of ( )
i

t  is called the RL gain of the edge { , }i j  at 

time t. This gain can be considered as a setback or a cost incurred by an agent on following edge 

{ , }i j . 

Data Maintained by Agents 

Nodes *i V  in the explored graph *G  are identified by EUI-64 IDs [65]. Every agent 

m N  keeps track of the edges it has visited in the form of a finite list 
m

L  of the ordered pairs of 

EUI-64 IDs of nodes in *V  it has visited. The l-th entry of 
m

L  is represented as ( )
m

L l  and it is 

equal to ( ( , ), ( , 1))i m l i m l  , the edge of *V  traversed by the agent m at time l.  Note that the first 

coordinate of (1)
m

L , is 1 m N   since all the agents start from the same node 1. 
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2.2.4 Node and Agent Data Updates  

In this section the computational details for updating the system data parameters are 

discussed. The node parameters are given in (2.11) and the agent parameters are the list 
m

L  of 

edges it has visited. These data parameters are updated based on only the local information 

passed between an agent and the node at which it currently resides. Based on the data updates, an 

agent makes a routing decision by selecting an edge along which to proceed on leaving the node. 

The system parameter update mechanism works through update algorithms operating at 

the agents and at the nodes based on the communication between them. Suppose that at some 

time t there are n agents 
1 2
, ,...,

n
m m m  at some node *( ) : ( )i t G i t g  . All these agents receive the 

EUI-64 ID of the node ( )i t , which is also referred as ( )i t . All these agents also receive the 

parameter matrix ( )
i

P t  from the node ( )i t .  

The following data update algorithm is performed by an agent 
k

m  who is present at the 

node ( )i t  at time t. The algorithm has three steps: data update, routing decision, and 

communicate to node. 

Algorithm 1- Agent Update and Routing Decision 

1) Data Update: Define,  

* *( ) : ( ) 0 :{ ( ), }
k km m j

j Vr t r t i t j E    

Search 
mn

L  for ( )i t  

( 1)[ ( )] 1 : t :

( )( ) ( )

km

m

mk

k

L lr t l and

L l first coordinate i t

   


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The update specified here says that at the most there is only one nonzero component of 

( )
km

r t , which is -1. This nonzero component corresponds to the edge the agent went along when it 

visited the node i  at the previous time. The agent updates its RL vector as specified in (2.12) 

below. 

 ( )( ) ( )
kmi i

r tt t    (2.12) 

2) Decision and Further Update:  Select edge { , }i j  to follow on leaving node i based on 

reinforcement gains ( )
ij

t  and number of agents ( )
ij

N t . This decision algorithm is given in the 

Section 2.3. Moreover, if the agent reaches an already visited node, one same as the first 

coordinate of an entry in 
mn

L  then it updates the second coordinate of the corresponding entry in 

mn
L  to the one the agent is going to visit the next time, else it will create a new entry in the list 

mn
L . 

3) Communicate: Form ( )
kme t  a vector of length 

( )i t
d  consisting of zero entries, with only 

one entry equal to 1 at the position corresponding to the edge { , }i j selected.   

Communicate ( )
kme t  and ( )

km
r t  to ( )i t . ■ 

In Section 2.3 an algorithm is given for the decision in Step 2.  This routing algorithm is 

based on Theorems 1 and 2 and balances exploitation of the data stored in the matrix ( )iP t  as 

specified in (2.11) above, with exploration to ensure that the entire maze is eventually explored 

and every node visited. 

In Algorithm 1, Step 1, an agent gives a setback of -1 to the edge incident at ( )i t  which it 

followed if it visited the node at the previous time. This setback is communicated to the node ( )i t  
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in the form of vector ( )
km

r t . Also, the agent communicates the edge taken by it at time t in the 

form of vector ( )
kme t .  

Upon receiving the above information from the agents visiting a node ( )i t V  at time t, 

the node ( )i t  adds all the setbacks to ( )
i

t , to get the new RL setback vector ( 1)
i

t  . The vector 

( )
i

N t  is also updated according to the decisions of the agents to take specific edges to compute 

( 1)
i

N t  . These actions are summarized in the following algorithm. 

Algorithm 2: Node Update Algorithm 

Update RL gain and number of agents visiting node i. 

 
1

( 1) ( ) ( )
k

n

i i m
k

t t r t 


    (2.13) 

 
1

( 1) ( ) ( )
k

n

i i m
k

N t N t e t


    (2.14)■ 

Equations (2.13) and (2.14) above, elaborates the updates of the data structure ( )iP t  of 

node i on the basis of the RL feedbacks given by the visiting agents to the incident edges and the 

edges taken by agents at time t. 

2.3 Routing in a Maze Using reinforcement Learning  

This section describes the routing decision algorithm used by each agent in deciding 

which edge to follow when leaving a node i at time t.  This corresponds to the decision Step 2 of 

Algorithm 1, the agent update and routing decision algorithm. This algorithm uses exploitation 

of the data about the explored graph in Theorems 1 and 2, to reach the goal. It also uses 

exploration to obtain data about the unexplored portion of the maze. The importance of 

balancing exploitation and exploration is well known in reinforcement learning [52]. The routing 



25 

algorithm given here provides a mechanism for storing data based on the experiences of previous 

agents visiting a node that results in routing decisions that improve with time. 

2.3.1 Exploitation of Information for Intelligent Routing 

According to Theorem 1 and 2, the data contained in vectors ( ) [ ( ) ( )]ii i
P t N t t , (2.11) 

above, contains information that can be used to make intelligent routing decisions based on 

minimal information.  Specifically, as the j-th entry ( )
ij

N t  of ( )iN t  becomes large while the 

absolute value of the j-th entry ( ) ( )
ij ij

t t    of ( )
i

t  is small, the probability is high that the 

goal node is reachable by following edge { , }i j  when leaving node i. 

Routing in an unknown maze requires a balance between using or exploiting available 

information to select the route most likely to reach the goal and exploring the unknown portion 

of the maze. This balance has been formalized as the ‘exploitation vs. exploration’ dilemma [52]. 

The data in ( ) [ ( ) ( )]ii i
P t N t t  as specified in (2.11) above, can be used to make intelligent 

routing decisions at each node, which corresponds to exploiting the available information.  On 

the other hand, even if two entries of ( )
i

t  are zero, the agent should not necessarily take the 

edge with largest corresponding entry in ( )iN t . This is because there should always be a finite 

probability that the agent will not proceed along the best routing path in order to maintain a finite 

probability of finding other better paths to the goal.   

Taking the edge with the highest number of nodes not returning to node i is a greedy 

form of routing decision. Allowing a finite probability, say  , of following a different edge is 

termed an  -greedy action.  It has been shown that  -greedy actions preserve the balance 

between exploitation and exploration [52]. The RL based system gives the edge with maximum 
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probability of getting the goal in the explored graph. It is proposed that an agent follows the edge 

suggested by the RL system with some probability (1 ) 1  , according to the analogy of the  –

greedy approach [52]. In a graph with multiple paths to the goal it may happen that a suboptimal 

path is found prior to the complete exploration of the graph. A balance between exploration and 

exploitation [52] is thus suggested to fully explore the unknown graph and to obtain the shortest 

path. 

The data contained in vectors ( ), ( )i i
N t t  are of different types or modalities, with the 

former containing numbers of agents who have taken edge { , }i j  prior to time t, and the latter 

containing a RL setback gain associated with edge { , }i j . Combining data of different modalities 

and allowing for a small probability of taking a non-greedy decision can be handled by soft 

decision schemes such as fuzzy logic.  Therefore, in this paper fuzzy logic is used for the agents’ 

routing decisions on leaving each node in Step 2 of Algorithm 1. 

2.3.2 Fuzzy Logic Routing 

A Fuzzy Logic System (FLS) consists of a Fuzzifier, an Inference Engine and a 

Defuzzifier. The Fuzzifier takes the two columns of ( ) [ ( ) ( )]ii i
P t N t t  communicated to an 

agent by the node ( )i t  as crisp antecedents and converts them into fuzzy antecedents. The 

Inference Engine generates the fuzzy output under certain rules laid down according to the 

results provided by Theorems 1 and 2. The defuzzifier converts the fuzzy output to the crisp 

output. The output membership functions are selected to balance the exploitation of the data in 

Theorems 1 and 2 and a desire to maintain exploration using  -greedy methods.  This crisp 

output is used to select the edge that the agent follows so that its probability of getting to the goal 

are increased.  
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Upon reaching at some node ( )i t  an agent gets a matrix ( ) [ ( ) ( )]ii i
P t N t t  of 

parameters. Motivated by Theorems 1 and 2, the information in the two columns ( )iN t  and 

( )
i

t  is taken as antecedents or inputs to the fuzzy system for a particular edge { , }i j . 

1) The number of agents ( )ijN t  who have gone along the edge { , }i j  from node i prior to time t. 

This antecedent, for a particular node and edge { , }i j  is expressed by 
1

X .  

2) The reinforcement learning gain ( )ij t at time t, of an edge{ , }i j incident at the node i. This 

antecedent, for a particular node i and edge { , }i j  is denoted as 
2

X . 

The fuzzy sets under consideration are discrete in nature. The following structure for the 

fuzzy subsets is proposed. 

1) For antecedent 
1

X  the following linguistic terms are defined.  

a) A Few (AF) 

b) Moderate (M) 

c) Too Many (TM) 

d) All of them (AT)  

The corresponding fuzzy subset functions are defined as 

 
1 1 1 1 11

( ) [ ( ), ( ), ( ), ( )]T

AF M TM AT
X X X X X      (2.15) 

Equation (2.16) below is obtained for all the membership functions in (2.15) above, from 

the same family 

 
1 1 1 1 1 2 11

( ) [ ( ), ( ), ( ), ( )]T

iX f X f X m f X m f X N      (2.16) 

Where f  is given by 
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2

2

( )

2( )
X

f X e 


  (2.17) 

In (2.16) above, 
1

2
3

i

i

N
Dm  , where i ijj

N N  is the total number of agents who have 

visited the node i before time t and iD  is the degree of the node i. Similarly, 
2

13
3

im N
m

 . These 

values of 1m  and 2m  keep the fuzzy subsets evenly distributed from 0 to iN . Also   is the 

standard deviation of agents gone along the various edges at the node i.  

2) For antecedent 
2

X  the following linguistic terms are defined.  

a) Zero (Z) 

b) A Little Negative (LN) 

c) Moderately Negative (MN) 

d) Negative (N) 

The corresponding fuzzy subset functions are as defined below.    

 
2 2 2 2 22

( ) [ ( ), ( ), ( ), ( )]
T

Z LN MN N
X X X X X      (2.18) 

The following equation (2.19) is obtained for all the membership functions in (2.18) 

above, from the same family 

 
2 2 2 222

* * * *1 2
3 3[ ( ), ( ), ( ), ( )]( ) T

ij ij ijf X f X N f X N f X NX     (2.19) 

Here *
f  is given by 

 

2

2
1

( )

2*( )
X

f X e 


  (2.20) 

In (2.19) above, 1  is taken as 6
ijN

. The values taken above keep the fuzzy subsets for the 

second antecedent evenly distributed. 
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2.3.3 Rule Consequents and  -Greedy Exploration 

Singleton membership functions are used for the outputs. The centroids of these 

membership functions are related to the probability to find a path to the goal by selecting the 

edge under consideration optimally as detailed by Theorems 1 and 2.  The rule consequents must 

allow for a small probability of following non-optimal paths so that the unknown portion of the 

maze is explored.  This corresponds to  -greedy exploration of the maze. 

Table 2.1: Rules’ Centroids L
GC  with X1 in the Vertical Direction and  X2 in the            

Horizontal Direction 

 AF M TM AT 

N 0.3 0.2 0.1 0.05 

MN 0.5 0.4 0.25 0.1 

LN 0.7 0.6 0.5 0.3 

Z 0.9 0.93 0.96 1 

 

The centroids are given in Table 2.1, which was constructed using the following 

heuristics: 

a. If at a node i all the agents have gone along an edge { , }i j  and none have returned back then 

the probability to find the goal while going along the edge { , }i j  is the best.  

b. If at a node i a few agents have gone along an edge { , }i j  and none have returned back then 

the probability to find the goal while going along the edge { , }i j  is better. 

c. If at a node i a few agents have gone along an edge { , }i j  and all have returned back then the 

probability to find the goal while going along the edge { , }i j  is good. 



30 

 

Figure 2.2: Visual illustration of the points in the Table I , probability (p) of finding the goal by 

following an edge is along the vertical axis. 

d. If at a node i all the agents have gone along an edge { , }i j  and all have returned back then the 

probability to find the goal while going along the edge { , }i j  is none. 

These four heuristics are used to select the four corner entries of Figure 2.2. The table 

lists the centroids of the rules used in the process of defuzzification. The rest of the entries in the 

table are interpolated from the corner entries so that there is no local extrema when viewed along 

the rows, columns and the diagonals of the table. The surface shown in Figure 2.2 is generated 

by the linear interpolation of the points in Table 2.1. 

2.3.4 Inference Rules and Defuzzification 

The above options for the antecedents require a set of 16 rules. The antecedent parts of 

the rules are the combination of the possibilities of the antecedents and the inference part is the 
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centroids of the consequents as listed in the Table 2.1. If the l-th rule is denoted as lR , then this 

rule is written as 

lR : if 
1

X  is 
1

lF  and 
2

X  is 
2

lF  then y is lG
c  

Here lG
c are the centroids of various rules.  

Center of Set (CoS) defuzzification [55], [56], [58] is used to determine the probability to 

find the goal upon selecting an edge. This uses product inferencing and centroid defuzzification.  

The general relation for CoS defuzzification is as given below. 

 

'
1

1
cos

'
1

1

( )
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In (2.21) above, M is the number of rules and p is the number of antecedents. Also T 

represents the t-norm over all the antecedents. Here product t-norm and product Mamdani 

inferencing [55] are used.  

2.3.5 Routing Decision 

An agent arriving at node i performs Algorithm 1 and uses the FLS to make its routing 

decision in Step 2 of the algorithm.  This uses the results of Theorems 1 and 2 to select the edge 

with highest probability of reaching the goal.  This amounts to exploitation of the data stored at 

the nodes and the agents.  However, a small probability   exists that any other edge could be 

selected.  This guarantees  -greedy exploration of the maze so that the shortest path from the 

initial entry point node 1 to the goal node g is eventually found, since the maze is finite. 
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2.3.6 Comparison with ACO 

Ant Colony Optimization is a graph search algorithm initially proposed by M. Dorigo 

[13]. This is a randomized swarm steering algorithm to get a path within a graph. The algorithm 

is inspired from the mechanism of optimization used by ants in their colonies to get the minimum 

path to their food [66], [67]. In an ant colony ants move around randomly in search of food. 

Whenever an ant finds some food it immediately returns to its colony while leaving a trail of 

pheromone along its way back. As early other ants find the trail of pheromone they stop their 

random search and start following the trail. All these ants following the trail continue to lay the 

pheromone along the path they follow. Pheromone is a chemical which evaporates as the time 

passes; thus if there are more than one paths available then the deposition of pheromone is more 

on the shorter path. Ants tend to follow the path with more pheromone deposition; this 

instinctive behavior of ants leads them to follow the optimal path to the food. 

The ant colony algorithm proposed by Dorigo, explores an unknown graph by multiple 

agents in a distributed manner by using a centralized database [68]. The algorithm implements 

two local decision policies: Trail and attractiveness [13]. Based on these local decision policies 

the algorithm assign a probability p for an agent k to get the desired vertex or goal while 

following an edge incident at the present vertex x. Moreover, there are mechanisms of trail 

evaporation and daemon action in the ACO. Trail evaporation is analogous to the evaporation of 

pheromone from an ant trail and it reduces the probability p with the passage of time, while the 

daemon action biases the search process from a non-local perspective. 

In literature certain improvements are also made in ACO. In [69], it is suggested that the 

earliest strategy is used with an appropriate number of elitist ants This is reported to allow ant 

system to work better. But if too many elitist ants are used, the search concentrates early around 
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suboptimal solutions leading to a premature stagnation of the search. Search stagnation is defined 

in [69] as the situation where all ants follow the same path and construct the same solution over 

and over again, such that better solutions cannot be found anymore [68]. In [68] a max min 

strategy is proposed to exploit the best solutions found during iteration; after each iteration only 

one ant is allowed to add pheromone. This ant may be the one which found the best solution in 

the current iteration or the one which found the best solution from the beginning of the trial. To 

avoid sluggishness of the search the range of possible pheromone trails on each solution 

component is limited between maximum and minimum levels. Moreover, the pheromone trails is 

initialized to the maximum level to achieve a higher exploration of solutions at the beginning of 

the algorithm. Since this approach also make use of the best move made in iteration, it is also 

based on a global database. 

The SI algorithm presented in this paper is completely based on the decisions made by 

the agents on the local information. The algorithm avoids the search stagnation by making use of 

 -greedy RL approach and by using the analogy of giving setbacks. A mathematical foundation 

for the presented algorithm is also developed. 

2.4 Simulation 

This section presents the simulation setup and results for agents exploring the maze using 

the methods proposed in this paper. The RL-based search algorithm of Sections 2.2 and 2.3 is 

simulated. The results are compared to those for agents searching the maze with random search, 

with ACO and with hybrid ACO and random search systems. It is seen that the search directed 

by the results of Theorems 1 and 2 significantly speeds up the search. 

To estimate the effectiveness of a search a performance measure is defined.   
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Definition (Performance Measure): The size of a 2D maze is defined as M LW , where 

L is the length of the maze and W its width.  The Performance Measure (PM) of a search is 

defined as the ratio of the mean time T taken by the first agent to reach the goal to the maze size 

M. That is to say T
MPM  . 

It is desired for this performance measure to be small. 

 

Figure 2.3: A Maze of size 10 10 

 

 

2.4.1 Simulation Setup 

For the purpose of this simulation a grid type maze like the one shown in Figure 2.3 is 

considered. The equivalent graph of the maze is represented by a unique adjacency matrix A of 

size 4M   [70]. The rows of this matrix are indexed by the nodes of the grid while listing them 

from top to bottom and then from left to right. The matrix consists of four columns with Boolean 

entries in each column represent the available directions of movement at the corresponding 
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nodes. They are kept in order up, right, down and left. The node corresponding to the first row of 

A is taken as the initial node while the node corresponding to its last row is taken as the 

destination node or the goal. However it must be noted here that the location of goal is unknown 

to the agents. 

2.4.2 Simulation Results 

For the purpose of simulation several maze structures were generated using the Matlab 

Maze Toolbox [70]. An example maze structure is shown in Figure 2.3. The path to the goal is of 

the order ( )O L W . 

Outcomes of four typical simulations are shown in Figure 2.4. These results are for maze 

of size 5 5 with 10 agents exploring it. All the agents start at the location (1,1)  and their 

unknown goal is present at the location (5, 5) . These two locations are numbered as maze cell 

numbers 1 and 25 respectively along the bottom left axis of Figure 2.4.  

Figure 2.4 (a) shows the case when the agents explore the maze through random search 

and without any intelligent decision-making. It is observed that the first agent reaches the goal 

after 45 time slots. This is noted by observing when the first point appears in the upper left plane 

of the 3D graph. At the end of the simulation spanning 100 time slots, only 3 agents have 

reached the goal using random search. 

In [31], ACO is implemented to explore a penalty maze. In this paper ACO is 

implemented for the maze as mentioned above. Figure 2.4 (b) shows the case when the agents 

explore the maze through a local version of ACO without its global part of Daemon Action so 

that the comparison between two approaches can be made fair. It is observed that mostly the 

agents do not reach the goal. This happens since ACO takes in account the number of agents  
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Figure 2.4: Simulation results of Maze Exploration, (a) Random Search (b) ACO (c) ACO and 

Random search (d) RL Based System 

went through a path and does not take into account for the number of agents who visit the same 

node again. In this way the agents get into stagnation of the search by visiting the same set of 

nodes again and again. The ACO can also be implemented along with random search. In this 

hybrid system there are two types of agents, one following ACO and others following the 

random search. The agents following random search also deposit pheromones as the other agents 

do. Figure 2.4 (c) shows a typical case of maze search by the hybrid system. In case of the hybrid 

system there is some improvement as compared to simple random search and ACO, since now 

agents have pheromone deposition due to random agents this helps the agents to come out of the 
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stagnation of the search and avoid visiting the same nodes again and again. This is noted by 

observing when the first point appears in the upper left plane of the 3D graph.  At the end of the 

simulation spanning 100 time slots, only 4 agents have reached the goal using hybrid search. 

Figure 2.4 (d) shows a typical case when the agents are equipped with the RL system 

based on Theorems 1 and 2 as developed in Sections 2.2 and 2.3. It is observed that one agent 

reaches the goal within 10 time slots, the minimum time for this size of maze, while the next two 

reach the goal within 16 time slots. At the end of the simulation, all agents have reached the goal. 

Note that, as time passes, more and more information in Theorems 1 and 2 is stored in the maze 

in the form of memory nodes dropped by the agents, thus routing successively improves.  

In the second part of the simulation, results were obtained for five different cases with 

different maze sizes M.  Each of these simulations was run M times, and the mean time required 

for the first agent to reach the goal, T is calculated in each case. The performance measures PM 

for these maze sizes and with various numbers of agents are calculated. The results are 

summarized in Figure 2.5. There, it is observed that the performance measure PM for the RL-

equipped agents Figure 2.5 (d) is almost twice as small as that for agents using the random 

search Figure 2.5 (a) and hybrid search Figure 2.5 (c). It is observed from these figures that the 

best performance measure using random search and hybrid search is approximately 1, while the 

performance measure using the RL-based routing system is approximately 0.5. The purpose of 

the simulation is to show the benefits of the Algorithm given in Sections 2.2 and 2.3. 
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Figure 2.5: Performance Measure (PM)  of, (a) Random Search (b) ACO (c) ACO and Random 

search (d) RL Based System 

2.5 Conclusion 

This paper establishes a strategy for steering a swarm of autonomous agents out of an 

unknown maze to some goal located at an unknown location. The strategy is based on principles 

of reinforcement learning. It is shown that simple rules of learning from past experience make 

the maze exploration significantly faster than standard random search. Two theorems in Section 

2.2 show the importance of information about the number of agents who have previously gone 

along an edge, and how many have returned to the same node, in improving decision-making for 

routing. Based on these results, a  –greedy reinforcement learning routing algorithm that uses 
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only local information exchanges is developed in Section 2.3 to balance exploitation and 

exploration of the unknown maze.   

Simulation results show that maze exploration using minimal information and based on 

RL is far superior to exploration using random search, search based on ACO and search based on 

hybrid ACO and random search.  
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Chapter 3  

Positional Advantage in Coalitions and Structure in Coalitions on Graphs 

This chapter introduces a certain graphical coalitional game where the internal topology 

of the coalition depends on a prescribed communication graph structure among the agents. The 

game Value Function is required to satisfy four axioms. These axioms make it possible to define 

a formal graphical game based on Shapley value and to assign a Positional Advantage to each 

agent in a coalition based on its connectivity properties within the graph. Under the Axioms of 

Value the graphical coalitional game satisfies basic properties of convexity, fairness, 

cohesiveness, and full cooperativeness. Three measures of the contributions of agents to a 

coalition are introduced: marginal contribution, competitive contribution, and altruistic 

contribution. Results are established regarding the dependence of these three types of 

contributions on the graph topology, and changes in these contributions due to changes in graph 

topology. Based on these different contributions, three online sequential decision games are 

defined on top of the graphical coalitional game. The stable graphs under each of these 

sequential decision games are studied, and give the structures of the coalitions that form in each 

sequential game. It is shown that the stable graphs under the objective of maximizing the 

marginal contribution are any connected graph. The stable graphs under the objective of 

maximizing the competitive contribution are the complete graph.  The stable graphs under the 

objective of maximizing the altruistic contribution are any tree. 

3.1 Introduction 

The objective of this chapter is to provide a rigorous study of the internal structure of 

coalitions on communication graph topologies by defining a graphical coalitional game wherein 
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the payoff to agents is taken as the Shapley value where the Value Function is required to satisfy 

four formal axioms. 

Though game theory was introduced as a formal discipline of mathematics by J. von 

Neumann in 1928 through his classic work [113] and its extension [114], the diversity in the 

applications of game theory [132], shows that it has a rich and old history [95]. The oldest 

known written account of game theory is the work of the Chinese scholar Sun Tzu, The Art of 

War [136], which is nearly 2300 years old. It is an established fact that the principles of game 

theory among individuals and biological species have played a fundamental role in the evolution 

of life and ecological systems since the beginning of life on earth [103], [106], [133], [141]. 

Principles of game theory are thus extensively used to understand the behavior of living beings 

in ecological systems [73], [90], [92]. In general, game theory is a mathematical discipline that 

deals with issues and strategies involving competitions and cooperation between several entities 

[116]. In the scope of mathematical game theory these entities are called players or agents [84], 

[116], [119], [120], [121], [122], [123], [130].  

Game theory is used in many walks of life involving situations of competition and 

cooperation. These areas include but are not limited to economics, finance, business [71], [93], 

[99], [100], [111], [112], law [80], [85], [118], political science [75], [124], strategic science 

[88], [107], [131], social science [83], [89], [126], and engineering [76], [81], [82], [91], [108], 

[109], [117], [125], [137], [138], [139], [140], [142]. Owing to such diverse applications of game 

theory, the subject is bound to break into various areas of study [132]. Though the boundaries 

between these areas of study are not very crisp [116], [132], game theory is primarily divided 

into two areas: noncooperative game theory [84], and cooperative game theory [116], [130]. In 

noncooperative game theory the fundamental unit of study is the individual agent, and the theory 
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deals with its performance and strategies in interaction with other individual agents.  By contrast, 

in cooperative game theory the fundamental unit is the set of agents or coalition. Cooperative 

game theory deals with the value of the coalition, payoff allocations to individual players, and 

the stability of coalitions [116], [130].  

Cooperative games can be divided into three classes: Canonical Coalitional Games, 

Coalition Formation Games, and Coalitional Graph Games [84], [123]. Canonical coalitional 

games mainly deal with the stabilization of the grand coalition of all the agents. Methods are 

sought to allocate the net value of the coalition to individual agents in such a way that agents are 

encouraged to join the coalition. A fair allocation [110] that often accomplishes this is the 

Shapley value [127]. Coalition formation games mainly deal with coalitions based on gains and 

costs. Given prescribed gains and costs, the structures of the resulting coalitions are studied. 

Finally, the coalitional graph games deal with the formation and stability of coalitions given an 

underlying communication graph structure [82], [123]. In the work of Baras [81], [82] and of 

Başar [119], [120], [121], [122], [123]  coalitional graph games are studied with applications to 

communication networks. Various definitions of value are used in [119], [120], [121], [122], 

[123], including probability of detection, gain of resources of other agents, effective throughput, 

and packet success rate. Various definitions of cost are used including probability of false alarm, 

vulnerabilities from other agents, download delay, mean waiting times, and path delay.  Given 

the total value, algorithms are developed to form effective coalitions for communications. 

Closely related to the coalitional graph games are online or sequential-in-time decision 

games.  These are games where agents make moves through time sequentially to maximize their 

prescribed objective functions [130]. These games are defined by specifying the method of 

selection of the agent to make moves at each time, the allowed moves of the agents, and the 
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objective function the agents seek to maximize. Agents might make moves according to some 

fixed round-robin procedure, or randomly according to some probability distribution function. 

These online sequential decision games best model real-life situations where the players are free 

to change their alliances as considered suitable by them to obtain their objectives.   

In his classical work [110], Myerson used graph theoretic ideas to analyze cooperation in 

coalitional graph games.  He proposed to restrict the interactions in coalitions based on the 

underlying communication graph structure. He showed that the unique fair (in his sense) 

allocation of the net value of the coalition to the agents is given by the Shapley value [127]. In 

their paper [104], Jackson and Wolinsky analyzed the stability of networks when the individual 

agents can choose to form and maintain the links between them. A node gains value on 

connecting to a node which is well-connected to other nodes in the graph, and accrues a cost 

based on maintaining direct communication edge links with its neighbors.  It is shown that 

different relations between the link cost and the propagation of value along a path result in 

stability of different structures, such as complete graph, star graph, etc. 

The objective of this chapter is to provide tools to study the internal structure of 

coalitions on graphs on the basis of different motives of the agents. This chapter defines a 

graphical coalitional game (GCG) with novel properties. The first point of impact of the chapter 

is based on a Value Function that is required to satisfy four formal axioms. Owing to these 

axioms imposed on the Value Function, it is possible to perform a rigorous study of the internal 

structure of coalitions on graph topologies.  The allocation or payoff to individual agents is taken 

as their Shapley value. The Shapley value with the Value Function satisfying the four Axioms is 

interpreted as the worth of an agent in a coalition, and is called the Positional Advantage (PA).  

PA strengthens the definition of Shapley value and formalizes the notion of well-connectedness 
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in communication graphs.  PA makes it possible to prove certain properties of the GCG, 

including convexity, fairness, full cooperativeness, and cohesiveness.  

The second point of impact of the chapter is to study three types of contributions of 

agents within a coalition- the marginal, competitive, and altruistic contributions [74].  The PA, 

which includes the formal Axioms of Value, allows the rigorous development of certain 

properties of these three contributions, including their dependence on graph topology and 

changes in topology. The third point of impact is the definition of three online sequential 

decision games based on the marginal, competitive, and altruistic contributions, wherein agents 

make or break edges to maximize these respective contributions.  It is shown these three 

sequential decision games have different stable coalition structures.  It is proven that the stable 

structures are respectively the connected graph, the complete graph, and the tree. These stable 

structures are inherent properties of the objective functions of the three games, not parameter 

dependent as in [104]. A preliminary conference paper [78] contains partial results. 

The chapter is organized as follows. A graphical coalition game is defined, with its 

formal axioms on the Value Function, in Section 3.2.  The Positional Advantage (PA) of an 

agent within a graph topology is defined in terms of its connectedness properties. In Section 3.3 

it is shown that the GCG is convex, fair, cohesive, and fully cooperative.  Changes in PA are 

related to changes in graph topology. Section 3.4 defines, motivated by [74], three types of 

contributions of agents in a coalition, the marginal, competitive, and altruistic contributions.  The 

PA, where the Value Function is required to satisfy the four axioms, allows the derivation of 

formal results about these three contributions based on topological graph properties. In Section 

3.5, three online sequential decision games are defined on top of the GCG. The stable graph 

structures under each of these three games are studied. Simulation results for several online 
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sequential decision games are presented in Section 3.6 and shown to support the stable graph 

structures. 

3.2 Positional Advantage in Graphical Coalitional Games 

This section starts with a few essential notions of graph theory [87], [94].  Then, a 

graphical coalitional game (GCG) is defined where coalitions of agents joined by a graph 

topology are considered.  The Value Function in the GCG is required to satisfy four axioms.  A 

Positional Advantage (PA) is defined which captures the worth of an agent in a coalition where 

the Axioms of value hold. PA formalizes the notion of well-connectedness in communication 

graphs and makes it possible to provide a rigorous study of properties and structures of coalitions 

in the GCG in subsequent sections. 

3.2.1 Graph Definitions 

Consider a graph ( , )G V E  with V a finite nonempty set of agents and 2[ ]E V  a set of 

edges. Here 2[ ]V is the unordered set containing all the subsets of V with two elements. Two 

agents are interpreted to have an edge between them if and only if they directly communicate 

with each other. The elements of V are also called vertices or nodes. The number of elements in 

V is called the order or size of the graph and is denoted as | |G , also denoted as N. A simple 

graph does not contain self-loops and multiple edges. Moreover, all its edges are undirected, 

connecting two vertices, and do not have any weight associated with them. In this chapter simple 

graphs are considered. 

Two vertices with an edge between them are called neighbors of each other. If all the 

vertices of G are neighbors of each other then G is called a complete graph. A complete graph 

with N vertices is denoted as NK . A sequence of distinct vertices 0 1, ,..., Mi i i i j   starting from 



46 

a vertex i to another vertex j such that each pair of consecutive vertices are neighbors in G is 

called a path from i to j within G. Any two vertices having a path between them are called 

connected in G. A maximal set of connected vertices along with all the edges between them in G 

is called a component of G. A vertex that is not connected with any other vertex is called an 

isolated vertex. An isolated vertex is thus a graph component. A graph is called connected if 

every vertex of the graph is connected to every other vertex. A graph is called minimally 

connected if the number of its edges is the smallest necessary to connect all its vertices. A graph 

which is not connected is called a disconnected graph. A connected graph is said to have one 

component while a disconnected graph is the union of more than one component. The size of a 

component S of G is denoted as | |S . Since undirected graphs are considered in this paper, two 

components are mutually disjoint.   

If there are at least two vertices i and j in G with at least two distinct paths existing from i 

to j then G is called a cyclic graph. A graph without a cycle is called an acyclic graph or a forest. 

A connected forest is called a tree. A tree is thus a minimally connected graph. A connected 

graph which is not a tree is thus non-minimally connected.  

If ( , )G V E  and ( , )S V E  are two graphs such that V V  and E E  , then S is 

called a subgraph of G. A subgraph is a graph in its own capacity. Moreover if E contains all the 

edges { , }e i j E   with ,i j V  , then S is called an induced subgraph of G, in this paper 

denoted as S G . An induced subgraph of G obtained by excluding a vertex i from V is denoted 

as \{ }G i ; similarly, \{{ } { }}G i j  is the induced subgraph of G obtained by excluding both the 

vertices i and j from V, the notation can be extended for more than two agents. If the number of 

components in \{ }G i  is more than the number of components in G, then i is called a cut vertex 
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of G. Similarly if the deletion of edge increases the number of components of a graph then it is 

called a cut edge. If an edge e is deleted from a graph G then the new graph obtained is denoted 

as G e , and if an edge e is added in G then the new graph is denoted as G e . 

3.2.2 Graphical Coalitional Game 

In this section a graphical coalitional game ( , )G v   is proposed. The game is based 

upon the communication structure of the agents within a coalition. Here the undirected graph G 

represents the communication topology of the coalition with agents as nodes, and edges between 

them if and only if the agents directly communicate with each other within the coalition. The 

allocation or payoff to individual agents is taken as their Shapley value.  The Shapley value with 

the Value Function satisfying the four Axioms is interpreted as the worth of an agent in a 

coalition, and is called the Positional Advantage (PA). PA strengthens the definition of Shapley 

value and formalizes the notion of well-connectedness in communication graphs.  PA makes it 

possible to prove certain properties of the GCG, including convexity, fairness, full 

cooperativeness, and cohesiveness. 

Consider a graph G, with agents as nodes, where there exist edges between the nodes if 

and only if the corresponding agents directly communicate with each other. Define a Value 

Function v as the value of an agent for being in a coalition of size N. The Value Function v is 

formally defined as 

 0: 2 ( ) 0Gv with v v    (3.1) 

where 2G  is the collection of all the induced subgraphs of G and   is the empty set. The Value 

Function satisfies the following Axioms of Value. In these axioms 2GS  is an induced 

subgraph of G. 
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Axioms of Value: 

1. If S is a connected component with | |S m  then ( ) 0mv S v    

2. If S is having k connected components : 1,2,...iS i k  with | |i iS m  then 

( ) : 0
i im mi

v S v v   

3. If 0N m n    then . .m nn v m v   

4. If 1 0N m n     then 1 1m m n nv v v v     

Axiom 2 is according to the allocation rules in the graphical coalitional game defined by 

Myerson in Section 3 of [110], where the coalitions are restricted by the underlying 

communication graph. Axioms 3 and 4 are additional requirements on the Value Function that 

allow a rigorous study of the internal structure of coalitions in graph games. 

Axiom 3 is essentially a super linearity requirement / /m nv m v n for m n . This means 

that an agent does no worse by belonging to a large coalition. According to Axiom 3, one has 

2 12v v . A condition on 1v  and 2v  stronger than Axiom 3 is  

 2 12v v  (3.2) 

This is a strict super-linearity requirement. This condition is used to establish some 

refinements and strengthening of results in Sections 3.3, 3.4 and 3.5. 

The next definition provides a fundamental notion used in this paper. 

Definition 1: Graphical Coalitional Game. Given a graph G, the graphical coalitional 

game (GCG) is defined as the game ( , )G v   where the Value Function v satisfies Axiom 1-4.■ 
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Under the Axioms of Value, no agent is motivated to leave a coalition and join a smaller 

one. If condition (3.2) holds, agents are always motivated to join larger coalitions. The following 

remark provides further insight. 

Remark 1:  

1. If a coalition G has m components of sizes 1 2, ,..., mn n n , then by using Axiom 2 the net 

value of the coalition G is given by 
1 2

( ) ...
mn n nv G v v v    . 

2. It can be seen by using Axiom 4 and (3.1) that for any 0 n N   1nv nv . 

3. It can be seen by using Axiom 4 and the above remark that for  0 n m N    

( )m n nnv m n v nv   . 

4. From the above remark it is clear that Axiom 3 is implied by the Axiom 4. Similarly it 

can be seen that Axiom 1 is implied by the Axiom 2. Nevertheless, Axioms 1 and 3 are 

retained as axioms because of the ease of their use in establishing the game properties. 

5. Consider a possible game with 1 1v  , 2 3v   and 3 4.51v  . Clearly these values satisfy 

Axiom 3 since (1)(3)>(2)(1), (1)(4.5)>(3)(1) and (2)(4.51)>(3)(3). Yet they do not satisfy 

the Axiom 4 since 4.51-3 < 3-1. Thus Axiom 4 is not implied by Axiom 3. 

6. Consider a possible game with 1 1v  , 2 2.1v   and 3 3.9v  . It can be easily seen that 

this list satisfies Axiom 4 and hence Axiom 3.  ■ 

In the Axioms of Value it is assumed that all the agents are identical and similarly that all 

the edges are identical. Thus, the game can be used to study the advantage of one node over the 

other based on its position in the graph structure. It is established in Section 3.3 that the game is 

fair [110], both fully cooperative and cohesive [74], convex [128], and super-additive [115]. 

These properties are formally defined in Section 3.3. 
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The allocation of the net value of a coalition to its individual agents is a fundamental 

problem in coalitional games. Allocation is the share given to each agent of the net value of the 

coalition efforts. It is established in [110] that for a value function defined in games on graphs, 

the Shapley value function [127] is the only possible function that provides a fair allocation in 

Myerson’s sense [110]. 

Definition 2: Shapley value of an Agent in the Graphical Coalitional Game. Given the 

graphical coalitional game ( , )G v  , define the Shapley value of agent i as the  

  , | | 1
| |\{ }

( ( { }) ( ))1
( )

| |G v G
SS G i

v S i v Si
G

 


    (3.3) 

In this equation \{ }S G i  means S is an induced subgraph of the graph \{ }G i . Moreover, 

{ }S i  denotes an induced subgraph of G, containing all the agents in S and the agent i. ■ 

Therefore, the allocation of value to an agent i in the GCG ( , )G v   is made here using 

the Shapley value function. The Shapley value with the Value Function satisfying the four 

Axioms is interpreted as the worth of an agent in a coalition, and is called the Positional 

Advantage; PA determines the importance of an agent within the coalition based on its location. 

Therefore, the next definition is made and provides a fundamental notion used in this paper. 

Definition 3: Positional Advantage of an Agent in the Graphical Coalitional Game.  

Given the GCG ( , )G v  , define the Positional Advantage (PA) of agent i as the Shapley value 

(3.3), where the Value Function v satisfies the Axioms for the Value Function.  ■ 

PA, where the Value Function satisfies the Axioms of Value, is a stronger concept than 

Shapley value and allows the rigorous study of GCG in this paper. 

The subscripts G and v are dropped from the notation if these are clear from the context. 

Since this allocation is dependent only upon the position of the agent i within the coalition 
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represented by the graph G, it is called the Positional Advantage of the node i. The PA is also 

dependent on the Value Function v in Definition 1. The Value Function can be represented as a 

real number list of size | |G . Therefore, the next definition is motivated. 

Definition 4: Valid Game List. A list of non-negative real numbers 1 2 | |, ,..., Gv v v  is called a 

valid game list of size | |G  if it satisfies the value Axioms 1- 4. ■ 

The following examples explain the procedure to compute the PA of agents within a 

coalition and show the rationale for Axioms 1-4 of the game as laid down. They reveal the 

importance of PA in comparing the relative importance of agents in contributing to the 

communication structure of a coalition as represented by the graph G. 

 

Figure 3.1. Two simple graphs (a) Example 1- Three agents in a chain (b). Example 2- Three 

agents in a complete graph 

Example 1: Consider a chain of three agents {1,2,3}G   as shown in Figure 3.1 (a). The 

PA of the agents is calculated by using Definition 3. For agent 1 

 ({1,2,3}) ({2,3}) ( ({1,2}) ({2})) ( ({1,3}) ({3})) ({1}) ( )1
3 1 2 1(1) ( )v v v v v v v v          (3.4) 

Using Axioms 1-4 of the game this is simplified to 1 1
3 2 13 2(1) ( )v v v    . It can be easily 

seen that (3) (1)  . The PA of the agent 2 is given by 
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 ({1,2,3}) ({1,3}) ( ({1,2}) ({1})) ( ({2,3}) ({3})) ({2}) ( )1
3 1 2 1(2) ( )v v v v v v v v          (3.5) 

Using the Axioms of Value this is simplified to 1
3 2 13(2) ( 2 )v v v    . 

In order to have further insight to the game, numerical values satisfying the Axioms of 

Value are assigned to 1v , 2v , and 3v  to form a valid game list 1 1v  , 2 5v  , and 3 10v  . 

Substitution of these values in (3.4) and (3.5) give (1) 2.83  .and (2) 4.33  . These numerical 

values show that (2) (1), (3)   ; this also holds true in general and can be seen by using the 

Axioms of Value. This is according to the heuristics for the given communication structure, since 

2 is in the middle of 1 and 3 and so logically contributes more to the communication structure of 

the coalition. ■ 

Example 2: Considering a complete graph of three agents {1,2,3}G   as shown in Figure 

3.1 (b), the PA of agent 1 is calculated by using the definition given in Definition 3. 

({1,2,3}) ({2,3}) ( ({1,2}) ({2})) ( ({1,3}) ({3})) ({1}) ( )1
3 1 2 1(1) ( )v v v v v v v v          

By Axioms of Value this is simplified as 1
33(1) v  .  

It can be easily seen that both (2)  and (3)  have the same PA; this again is according 

to intuition, since all the three nodes are symmetrically distributed in the graph and evenly 

contribute to the communications within the coalition. Considering the same Valid Game List 

used in the last example, in case of complete graph (1) (2) (3) 3.33     . ■ 
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Figure 3.2. Communication graph for Example 3. 

The next example further reveals the significance of PA in the game ( , )G v  .  

Example 3: Consider the communication structure graph shown Figure 3.2, which is the 

same graph, stated in Fig 5 of [74]. The PAs of agents are calculated using Definition 3 and then 

simplified by using Axioms 1 and 2. For the cut vertex 2 one has 

 7 71
1 2 3 4 55 3 3(2) ( )v v v v v        (3.6) 

and for vertex 1 

 7 71 1 1
1 2 3 4 55 12 12 4 4(1) ( )v v v v v       (3.7) 

By the symmetry of the graph and the relationship of the PA in Definition 3 it follows 

that the PAs of agents 3,4,5 are equal (1) .  

Extending the numerical valid game list used in Examples 1 and 2, to have 1 1v  , 2 5v  , 

3 10v  , 4 20v  , and 5 40v  , so that .these numerical values also satisfy the Axioms of Value. 

Using these values in (3.6) and (3.7) give (1) 7.2  , and (2) 11.2  ; this gives  (2) (1)  . 
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Values of (1)  and (2)  in (3.6) and (3.7) can also be compared in general by using axioms to 

give (2) (1)  ; this is according to the heuristics for the communication structure, since 2 is in 

the middle of the graph and is a cut vertex. Its importance in the coalition is therefore greater 

than the other vertices. The same graph is considered in Example 4. ■ 

In these three examples, small graphs were taken to demonstrate the utility of the game 

( , )G v   with respect to the communication structures. In these examples, the nodes that are 

placed more advantageously and so contribute more to the communications within a coalition 

have a greater PA as calculated through the payoff function, Definition 3, of the game. 

Moreover, the nodes which, according to the communication heuristics should have same 

relative importance actually do have the same PA as calculated through the payoff function of 

the game.  

3.3 Fairness, Cooperation, and Cohesiveness in Graphical Coalitional Games 

Positional Advantage, which is a strengthened version of Shapley value where the Value 

Function is required to satisfy the four Axioms of Value, makes it possible to rigorously establish 

certain properties of the graphical coalitional game.  This is exploited in this section where some 

vital properties of GCG are introduced. These include convexity, super-additivity, fairness, full 

cooperativeness, and cohesiveness. These ideas require the Axioms of Value and provide the 

basis for defining online sequential decision games in Section 3.5. 

3.3.1 Convexity and Super-Additivity  

Convexity is an important property in canonical coalitional games. If the graphical 

coalition game is convex, all agents are motivated to form the so-called grand coalition. The 
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intuitive idea of convexity was formally introduced by Shapley [128] in cooperative game 

theory.  

Definition 5: Convex Cooperative Game. A cooperative game ( , )G v   with 

transferable utility is convex if the Value Function v is super-modular, that is to say 

( ) ( ) ( ) ( ), ,v S T v S T v S v T S T G       .  ■ 

It is established by Driessen in [98] that condition of convexity is equivalent to 

 ( { }) ( ) ( { }) ( ), \{ }v T i v T v S i v S S T G i i G           (3.8) 

This definition of convex game is directly induced in the graphical coalition game in 

Definition 1 by considering G a graph on N agents and taking the notation of subset as 

representing an induced subgraph. The next lemma establishes that the GCG given in Definition 

1 is convex. 

Lemma 1: The GCG ( , )G v   in Definition 1 is convex. 

Proof: In the graphical coalition game ( , )G v  , the coalition of agents is the undirected 

graph G and v is the Value Function given by Definition 1. Consider any agent i in the coalition 

G. Moreover, consider S and T such that \{ }S T G i  . Lemma A.4 directly implies that 

( { }) ( ) ( { }) ( )v T i v T v S i v S     . Thus the game under consideration is convex.  ■ 

For a coalitional game ( , )G v   an allocation is coalitional rational if for each S such as 

,S G S   , the sum of the allocations made to all the elements of S is at least equal to the 

allocation made to S. The core of a coalitional game ( , )G v   is the collection of all such 

allocations which are coalition rational and completely allocate ( )v G  [116].  For a convex 

coalitional game with transferable utility, the core [100], [102] of the game is nonempty [86], 

[129] and the allocation of each agent provided by the Shapley value is the centroid of the core. 
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The centroid of the core is the mean of all the allocations taken over the core. The Positional 

Advantage of an agent i given by Definition 3 is thus within the core and hence is coalitional 

rational.  

Definition 6: Super-additive Cooperative Game. A coalitional game ( , )G v  , where G 

is a graph on the set of agents and v is the Value Function, is called super-additive if the value of 

the union of the disjoint coalitions is not less than the sum of the values of smaller coalitions. 

That is, for two disjoint induced subgraphs S and T of G ( ) ( ) ( )v S T v S v T   .  ■ 

Note that convexity implies super-additivity. Therefore, the GCG ( , )G v   is super-

additive. Under this condition no agent is motivated to leave a coalition and join a smaller one. 

3.3.2 Fairness of Allocation and Changes in PA with Graph Topology Changes 

In this section we first discuss fairness of the graphical games ( , )G v  . Then, changes 

in Positional Advantage on various changes in communication graph topology are detailed. This 

section provides essential ingredients for the introduction of online sequential coalition decision 

games in Section 3.5. The next definition is inspired by the definition of fairness in Myerson 

[110]. 

Definition 7: Fairness in Graphical Coalition Game. A graphical coalition game 

( , )G v   is fair if for all agents i and j not neighbors of each other in G, addition of the edge 

{ , }i j  changes the PA of both the agents i and j by the same nonnegative value. ■ 

The following two results establish the fairness of the graphical coalitional game in 

Definition 1 for the PA in Definition 3. In the proofs of the following results in this section, G  

represents a graph obtained from a graph G by the addition of an edge { , }i j  between two agents 

i and j, not neighbors of each other in G. Some basic graph concepts are defined in Section 3.2.1, 
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and those being used in the following results are reiterated here. Recall that two agents with an 

edge between them in the graph G are neighbors of each other while two agents reachable from 

each other through a sequence of edges are called connected. An induced subgraph of G having 

all the agents connected is called a component of G. Two agents existing in different components 

are called disconnected. 

Lemma 2: If an agent i is not a neighbor of another agent j in a graph G, then upon 

making the new edge { , }i j  the PA of agent i increases or stays the same. 

Proof: Appendix B.  ■ 

Theorem 1: The GCG in Definition 1 is fair. 

Proof: Let G is a graph with the nodes i and j not neighbors of each other. By the 

definition of PA, Definition 3, and the underlying game Definition 1, this equation can be 

reached  

    | | 1 | | 1
| | 1 | | 1\{{ } { }} \{{ } { }}

( { } { }) ( { } { })1 1
( ) ( )

| | | |G G G G
S SS G i j S G i j

v S i j v S i ji i
G G

   
      

        (3.9) 

In this equation \{{ } { }}S G i j   and \{{ } { }}S G i j    mean S and S   are induced 

subgraph of \{{ } { }}G i j .and \{{ } { }}G i j   respectively. Moreover, { } { }S i j   and 

{ } { }S i j   are induced subgraphs of G and G  respectively, containing i and j. By the 

symmetry of (3.9), ( ) ( )G Gj j    is the same as ( ) ( )G Gi i   ;this along with Lemma 2 

establishes that the GCG in Definition 1 is fair. ■ 

Remark 2: The definition of Fairness and Theorem 1 imply that if an edge is broken then 

the PAs of both of its end agents decrease by the same nonnegative value.  ■ 
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The next sequence of lemmas shows how gains in PA on making an edge depend on the 

topological properties of the graph and provides essential ingredients for the introduction of 

online sequential coalition decision games in Section 3.5. The next result strengthens Lemma 2. 

Lemma 3: If an agent i is not a neighbor of agent j in a graph G and a game list having 

2 12v v , then upon making the edge { , }i j  the PA of agent i increases.  

Proof: Appendix B.  ■ 

Lemma 4:  Let two agents i and j be connected but not neighbors in a graph G. Then upon 

making the edge { , }i j  the PA of at least one agent within the same component decreases or 

remains constant. 

Proof: Appendix B.  ■ 

The next lemma strengthens the above lemma; the proof is omitted. 

Lemma 5: Let two agents i and j be connected but not neighbors in a graph G and a game 

list having 2 12v v . Then upon making the edge { , }i j  the PA of at least one agent within the 

same component decreases. ■ 

The following two lemmas extend the above two lemmas for agents in different graph 

components. 

Lemma 6: Let two agents i and j be in different components of a disconnected graph G. 

Then upon making the edge { , }i j  the PA of all the nodes either remains constant or increases. 

Proof: Appendix B. ■ 

The next lemma strengthens the above lemma; the proof is omitted. 
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Lemma 7: Let two agents i and j be in different components of a disconnected graph G 

and a game list having 2 12v v . Then upon making the edge { , }i j  the PAs of all agents 

connected with the agents i or j increases.  ■ 

Remark 3: 

1. If two agents i and j are in different components of a disconnected graph G and k is 

neither connected with i nor with j, then upon making the edge { , }i j  the PA of k remains 

unchanged; this fact follows from the Lemma A.1. 

2. If an edge { , }i j  is a cut edge of a graph then, upon deletion of this edge, the PAs of all 

the agents connected with agents i and j either decrease or remain constant. Further, the 

PAs of the agents which are not connected with i or j do not change by the deletion of the 

edge. 

3. If an edge { , }i j  is a cut edge of a graph and a game list having 2 12v v , then, upon 

deletion of this edge, the PAs of all the agents connected with agents i and j decrease. 

Further, the PAs of the agents which are not connected with i or j do not change by the 

deletion of the edge. ■ 

3.3.3 Fully Cooperative and Cohesive Games 

The ideas in this section are important for elucidation of the cooperation among agents in 

the graphical coalitional game ( , )G v   of Definition 1. These ideas are significant in the 

definition of contributions if agents in Section 3.4. The properties of being fully cooperative and 

cohesive are defined in [74] and formally explored here based on the definition of Positional 

Advantage. These properties elaborate the cooperation among the agents in the pursuit of a 

common cause. Informally, in a fully cooperative game, as more agents join the coalition the 
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payoff of the already existing agents increases. On the other hand, in a cohesive game, allocation 

of a bigger body of agents within a coalition is bigger. These properties are formally defined next 

in the perspective of the GCG ( , )G v  . Let A, B, C, D be induced subgraphs of G such that 

A B C D G    . 

Definition 8: Allocation of a Set of Agents in an Induced Subgraph. The allocation or 

payoff of the agents in coalition A when only the coalition B is considered is denoted as ( )A B

and it is defined as 

 ( ) ( )A Bi A
B i 


  (3.10) ■ 

It is to be noted that the value of ( )A B  is dependent upon both the connectivity of the 

induced subgraph A within itself and its connectivity with the induced subgraph B. Moreover, 

relations hold.  

  { } ( ) ( )i GG i   (3.11) 

 ( ) ( )G G v G   (3.12) 

Equation (3.11) follows from (3.10) by substituting B by G and taking { }A i , also 

(3.12) follows from (3.10) by substituting both A and B by G and by using Definition 3 which is 

based on Shapley value [127]. The next definitions are inspired by Arney [74]. However, the 

Axioms of Value allow a more rigorous treatment. 

Definition 9: Fully Cooperative Game. A coalitional game ( , )G v   is fully cooperative 

if ( ) ( )A AC D   for any A, C and D such as A C D G     ■ 

Definition 10: Cohesive Game. A coalitional game ( , )G v   is cohesive if 

( ) ( )A BC C   for any A, B and C such as A B C G   . ■ 
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Theorem 2: The GCG is fully cooperative.   

Proof: For the GCG ( , )G v   let A, C, D be induced subgraphs of G such that 

A C D G   . Then by using Definition 8 one has  

 ( ) ( ) ( ) ( )A A D Ci A i A
D C i i   

 
     (3.13) 

This can also be written as  

 ( ) ( ) ( ( ) ( ))A A D Ci A
D C i i   


    (3.14) 

Suppose that D is another subgraph of G obtained from D by removing all edges in G 

between C and \D C . Then by using Lemma A.1, PAs of  all the agents in A are the same 

whether they are evaluated for C or D , since by the construction of D  there is no edge 

between agents in C and \D C  That is to say ( ) ( )C Di i i A     , and (3.14) can be rewritten 

as 

 ( ) ( ) ( ( ) ( ))A A D Di A
D C i i    

    (3.15) 

Using the definition of the PA, it modifies into 

  | | 1

\{ } | |

\{ }

( ( { }) ( )) ( ( { }) ( ))1
( ) ( ) ( )

| |
A A Di A

S D i S

S D i

v S i v S v S i v S
D C

D
 




 

     
     (3.16) 

In this equation the terms are arranged such that S and S   are having the same vertex 

sets. Using Lemma A.4 all the terms ( ( { }) ( ))v S i v S   ( ( { }) ( ))v S i v S    within the inner 

summation of equation (3.16) are non-negative. This establishes that ( ) ( ) 0A AD C    thus the 

game is fully cooperative. ■ 

Theorem 3: The GCG is cohesive. 
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Proof: For the GCG ( , )G v   let A, B, C be induced subgraphs of G such that 

A B C G   . Then by using Definition 8 one can write 

( ) ( ) ( ) ( )B A C Ci B i A
C C i i   

 
     

This equation can also be written as 

\
( ) ( ) ( ) ( ) ( )B A C C Ci A i B A i A
C C i i i    

  
       

or  

\
( ) ( ) ( )B A Ci B A
C C i  


   

The right hand side of this equation is clearly nonnegative; this completes the proof. ■ 

3.4 Contribution of Agents within a Coalition 

This section studies three types of contributions of agents within a coalition- the 

marginal, competitive, and altruistic contributions as introduced in [74]. The Positional 

Advantage, which includes the formal Axioms of Value, allows the rigorous development of 

various properties of these three contributions, including their dependence on graph topology and 

changes in topology. The notions presented in this section provide the basis for defining online 

sequential decision games in Section 3.5. 

3.4.1 Definitions of Contributions of Agents in a Coalition 

When agents participate with other agents to make a coalition, they contribute towards 

the overall coalition cause. The total contribution of a set A G  of agents in a coalition G is 

called the marginal contribution of A in G and written as ( )Gm A  [74]. The marginal contribution 

of a set of agents can be divided in two parts: one part is the contribution of the agents in the 

subset A for the sake of themselves, and the second part is the contribution of agents in A for the 

sake of the other agents in \G A . These two parts are termed the competitive contribution and 
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the altruistic contribution respectively. These contributions are represented as ( )Gc A  and ( )Ga A  

respectively [74]. These contributions are formally defined next. 

Definition 11: Marginal Contribution of a Set of Agents. The marginal contribution 

( )Gm A  is defined as 

 \( ) ( ) ( \ )G G G Am A G G A    (3.17) 

where ( )G G  and \ ( \ )G A G A  are the allocations or payoffs specified in Definition 8. ■ 

Definition 12: Competitive Contribution of a Set of Agents. The competitive contribution 

( )Gc A  is defined as  

 \( ) ( ) ( )G G G Ac A G G    (3.18)■ 

Definition 13: Altruistic Contribution of a Set of Agents. The altruistic contribution 

( )Ga A is defined as  

 \ \( ) ( ) ( \ )G G A G Aa A G G A    (3.19)■ 

From (3.17), (3.18) and (3.19) it follows that these definitions are according to their 

rationales established at the beginning of this section: ( )Gm A  is the total contribution of the 

agents in A, ( )Gc A  is the contribution of agents in A for their own sake and ( )Ga A  is the 

contribution of A for the sake of the rest of the coalition \G A . Moreover, according to these 

definitions 

 ( ) ( ) ( )G G Gm A c A a A   (3.20) 

Remark 4: It is shown in Section 3.3.3, that the graphical coalition game ( , )G v   in 

Definition 1 is cohesive. Therefore, from (3.18) the competitive contribution of a set of agents A 
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is non-negative. Moreover, the game is fully cooperative, so that from (3.19) the altruistic 

contribution of a set A of agents is non-negative.  ■ 

For a singleton set A consisting of one agent i, the marginal contribution, competitive 

contribution and altruistic contribution are represented as ( )Gm i , ( )Gc i , and ( )Ga i  respectively. 

From (3.17), (3.18), and (3.19), these contributions can be written as 

 \( ) ( ) ( \ )G G G im i G G i    (3.21) 

 \( ) ( ) ( )G G G ic i G G    (3.22) 

 \ \( ) ( ) ( \ )G G i G ia i G G i    (3.23) 

Using (3.10) in these three equations gives 

 \\
( ) ( ) ( )G G G ij G j G i

m i j j 
 

    (3.24) 

 
\

( ) ( ) ( )G G Gj G j G i
c i j j 

 
    (3.25) 

 \\ \
( ) ( ) ( )G G G ij G i j G i

a i j j 
 

    (3.26) 

If G is connected, using Axioms 1 and 2 of the graphical coalition game, (3.10) and 

(3.12), equation (3.24) can be written as 

 | |
1 1

( ) : | | 1
j

p p

G G k j
j j

m i v v k G
 

      (3.27) 

Here, p is the number of disconnected components of G obtained by the deletion of the 

agent i and : 1, 2,..,jk j p  are the sizes of these components. 

Lemma 8: The competitive contribution of an agent in a graphical coalitional game is the 

same as its Positional Advantage. That is  

 ( ) ( )G Gc i i  (3.28) 
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Proof: Appendix B. ■ 

Remark 5: From (3.25), the competitive contribution of an induced subgraph A of G is 

given by 

 ( ) ( )G Gj A
c A j


  (3.29)■ 

The next example elaborates these concepts. 

Example 4: Continuing with Example 3, consider the graph shown in Figure 3.2. Here, 

the marginal contributions of the individual agents are calculated and compared. From (3.17), the 

marginal contribution of the agent 2 is given by \{2}(2) ( ) ( \{2})G G Gm G G   , which by using 

Axiom 2 becomes 

 5 2(2) 2Gm v v   (3.30) 

By the symmetry of the graph and (3.17), the marginal contributions of the rest of the 

agents are equal and given by 

 5 4(1)Gm v v   (3.31) 

Using the valid game list introduced in Example 3, the marginal contribution made by the 

agents 1 and 2 is (2) 40 20 20Gm    .and (2) 40 10 30Gm    . 

Comparison of (3.30) and (3.31) by using Lemma A.2, gives (2) (1)G Gm m . This result 

is according to the heuristics of the communication structure, since agent 2 is a cut vertex and 

makes more contribution to the communication in the coalition. ■ 

3.4.2 Dependence of Contribution of Agents on Graph Topology  

Some lemmas about the three types of contributions of the agents are presented next. 

They demonstrate the dependence of the marginal, competitive, and altruistic contributions on 

the topology of the graph. These results are established on the basis of the Axioms of Value. As 
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defined in the Section 3.2.1, a cut vertex is one whose removal increases the number of 

disconnected components. The first results concern the marginal contribution. 

Lemma 9: Given the GCG ( , )G v   in Definition 1, in any connected graph G all the 

agents which are not cut vertices of G have the same marginal contribution. Moreover, their 

marginal contribution is the minimum possible marginal contribution within the connected 

graph. This minimum marginal contribution only depends upon | |G  of the connected graph G.  

Proof: Appendix B. ■ 

Remark 6: In a connected graph G, if there is no cut vertex then the marginal 

contributions of all the agents are identical and independent of the graph structure.  ■ 

Lemma 10: In a connected graph G of size N, the maximum possible marginal 

contribution an agent may have is of the center point of a star.  

Proof: Appendix B. ■ 

The next results concern the altruistic contribution. 

Lemma 11: In a GCG, if an agent is isolated then its altruistic contribution is 0.  

Proof: Appendix B. ■ 

The next result shows that under condition (3.2), this result is also sufficient.  

Lemma 12: In a GCG with a game list having 2 12v v , if the altruistic contribution of an 

agent is 0 then it is isolated. 

Proof: Appendix B.  ■ 

3.4.3 Change in Agent Contributions due to Changes in Graph Topology 

Changes in marginal, competitive, and altruistic contributions are important in the online 

sequential decision games detailed in Section 3.5. The competitive contribution of an agent is its 
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Positional Advantage, as shown in Lemma 8. Changes in PA of an agent, when edges are made 

or broken are detailed in Section 3.3.2. The next result describes changes in marginal and 

altruistic contributions when an edge is formed. 

Theorem 4: In a graphical coalition game, if a new edge is formed between two 

connected agents i and j in a graph G, then the marginal contribution of its end vertices remains 

constant. Moreover the altruistic contributions of its end vertices change by equal non-positive 

values which are the negatives of the changes in the competitive contributions of its end vertices.  

Proof: Let G  be the graph obtained from G by adding the edge { , }i j . With the help of 

(3.24) The marginal contribution of the agent i in the graph G is 

 \\
( ) ( ) ( )G G G ij G j G i

m i j j     
    (3.32) 

Since the new edge is formed within the same component of G, thus the first term in the 

right hand side of the above equation is same as the first term in the right hand side of (3.24). 

Moreover the value of the second term is independent of any edge incident at agent i. Thus from 

(3.24) and (3.32) it is implied that ( ) ( )G Gm i m i  . Rest of the result follows from (3.20), Lemma 

8 and  Lemma 2. ■ 

Remark 7: 

1. In a non-minimally connected graph there always exists an edge whose deletion does not 

change the marginal contribution of the end vertices. 

2. From the above remark it implies that for a non-minimally connected graph there always 

exist an edge whose deletion changes the altruistic contribution of the end vertices by the 

same non-negative value. Moreover, for a game with the game list having 2 12v v , the 

altruistic contribution increases upon deletion of such edge.  
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3. In a graphical coalition game, if a new edge is formed between two connected agents i 

and j in a graph G, with the game list having 2 12v v , then the altruistic contributions of 

its end vertices change by equal negative values which are the negatives of the changes in 

the competitive contributions of its end vertices. ■ 

3.5 Online Sequential Coalition Decision Games 

This section defines three online sequential decision games based on the marginal, 

competitive, and altruistic contributions introduced in Section 3.4.  These online decision games 

are defined on top of the graphical coalitional game ( , )G v   of Definition 1.  A background on 

sequential decision games can be found in Chapter 5 of [130]. 

In a sequential decision game, agents take turns sequentially in time to make valid or 

allowed moves (e.g. make or break an edge) to maximize their yield in terms of a prescribed 

objective function. Here, three online decision games are defined in terms of the three objective 

functions taken as the marginal, competitive, and altruistic contributions. It is shown these three 

sequential decision games have different stable coalition structures. It is proven that the stable 

structures are respectively the connected graph, the complete graph, and the tree. The machinery 

for establishing the results in this section rests on the formal Axioms of Value. 

The properties of sequential decision games depend on the allowed moves and the 

prescribed objective function. An important concept in sequential coalition decision games is 

stability of graph topologies [104], [110]. Stability is important in studying the steady-state graph 

topologies of sequential decision games.  Stable topologies show the structure of the coalitions 

that form under various allowed moves and decision objective functions. These stable structures 
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are inherent properties of the objective functions of the three games, not parameter dependent as 

in [104]. 

3.5.1 Sequential Decision Games 

In the online decision games defined here, agents are free to make coalitions by making 

or breaking edges with other agents. In contrast to [104], there is no edge cost involved. Based 

on marginal, competitive and altruistic contributions, three online sequential decision games can 

be defined. These online decision games are defined on top of the graphical coalitional game 

( , )G v   of Definition 1. The agents make allowed moves sequentially through time; the moves 

are made to maximize the prescribed objective function. 

Allowed Moves. In the sequential decision games, at each move, an agent is selected at 

random; this agent is free to unilaterally break any edge incident at it or to bilaterally make an 

edge, provided the other agent incident on the edge agrees to make it, as detailed below. In a 

single step, an agent is allowed either to make or break several edges.  

Objective Functions. An objective function ( )Gf i , for each agent i in a coalition 

represented by graph G is a real, nonnegative function. Edges are made or broken by a selected 

agent in order to maximize ( )Gf i . 

Based on the Allowed Moves and the Objective Function the sequential decision game is 

defined as follows. 

Definition 14: Sequential Decision Game. 

In a sequential decision game a selected agent makes or breaks edges according to the 

rules: 

a) An agent i forms an edge { , }e i j  if ( ) ( ) ( ) ( )G e G G e Gf i f i and f j f j     
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b) An agent i breaks an edge { , }e i j  if ( ) ( )G e Gf i f i     

Based on the marginal, competitive and altruistic contributions in Section 3.4 the motives 

of agents for forming and breaking the edges are different. Taking these contributions as 

objective functions, three sequential decision games can be defined. 

i. Game of Maximal Marginal Contribution (MMC) 

In this online game the objective function ( ) ( )G Gf i m i .  

ii. Game of Maximal Competitive Contribution (MCC) 

In this online game the objective function ( ) ( )G Gf i c i .  

iii. Game of Maximal Altruistic Contribution (MAC) 

In this online game the objective function ( ) ( )G Gf i a i . ■ 

In these three sequential decision games an agent i is said to have a motive to make an 

edge if the condition (a) in Definition 14 is satisfied and it is said to have a motive to break an 

edge if the condition (b) in Definition 14 is satisfied.  

3.5.2 Stability of Graph Topologies Under Sequential Decision Games 

For a set of N agents there are ( 1)/22N N  possible simple graphs. When agents are allowed 

to make valid moves, as they proceed, they may reach a graph where no agent has a motive to 

make any further moves. Such graphs are called stable graphs. The structure of stable graphs is 

thus dependent on the allowed moves and the objective function of the sequential decision game.  

Definition 15: Stable Graph. In any online sequential decision game, a graph is called 

stable when no agent has a motive either to make an edge or to break an edge.  ■ 

In [110], Myerson used the Shapley value as the objective function and allowed only the 

breakage of an edge as a valid move. Since breakage of an edge does not increase the 
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competitive advantage, Lemma 2, Lemma 8, under such allowance, for the game in Definition 1 

every graph is stable. In [104] the rules of making and breaking edges are nearly the same as 

those in the sequential decision games of Definition 14. However, in [104] there are costs 

associated with making edges. There, the balance between the value of being connected and the 

cost of maintaining edges has a pivotal role in determining the stable graph structures. 

The next development specifies the stable graphs for the online Game of Maximal 

Marginal Contribution (MMC) , Game of Maximal Competitive Contribution (MCC), and Game 

of Maximal Altruistic Contribution (MAC).  

Remark 8: It was established in Section 3.3.2 that the underlying game ( , )G v   in 

Definition 1 is fair.  Therefore, according to Remark 2 and Lemma 8, in the online Game of 

MCC no agent has a motive to break an edge. Similarly by Remark 7, in the online Game of 

MMC no agent has a motive to break an edge. Only in the online Game of MAC, may an agent 

have a motive to break an edge.  ■ 

Theorem 5: In an online Game of Maximal Marginal Contribution any connected graph 

G is stable. Moreover, with a game list having the strengthened condition 2 12v v , any stable 

graph is connected. 

Proof: In an online Game of Maximal Marginal Contribution, if the graph G is connected 

an agent i which is not a cut vertex, never becomes a cut vertex no matter how many edges it 

makes. Thus according to Lemma 9 it will continue to have the same minimal marginal 

contribution, thus it has no motive to make an edge. For an agent i which is a cut vertex, its 

marginal contribution is given by (3.21). In the right hand side of (3.21), the first term is constant 
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for a connected graph also no matter how many new edges agent i makes the second term will 

also remain unchanged. Thus agent i has no motive to make any edge. 

The second term in the right hand side of  (3.21) is independent of any edge incident at 

the agent i, while it follows from Lemma A.3, under the given condition 2 12v v , the first term 

is maximum only when the graph G is connected. Thus in an online Game of Maximal Marginal 

Contribution a disconnected graph cannot be stable.  ■ 

Remark 9: Let an online Game of Maximal Marginal Contribution be started from a 

completely disconnected graph, and let every agent be allowed to make as many edges as it 

desires. Then the agent who gets the first move to make edges will make edges with all the other 

agents. This move will make a star, which is also a tree, with the first agent at the center. Then 

there is no motive for any other player to make or break an edge.  ■ 

Theorem 6: In an online Game of Maximal Competitive Contribution any complete graph 

is stable. Moreover, with a game list having 2 12v v , any stable graph is complete. 

Proof: In an online Game of Maximal Competitive Contribution a complete graph is 

stable since there is no more edge to make and there is no motive to break an edge according to 

Theorem 1 and condition (b) of Game of Maximal Competitive Contribution.  

It is established in Lemma 8 that the competitive contribution of an agent is the same as 

the Positional Advantage of an agent. It has already seen in Lemma 3 that whenever an edge is 

added in a graph, the PAs of both of its end vertices increase under the given condition. Thus 

there is always a motive to make an edge whenever it is possible. ■ 

Theorem 7: In an online Game of Maximal Altruistic Contribution any tree is a stable 

graph. Moreover, with a game list having 2 12v v , if a graph G is stable then it is a tree. 
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Proof: The altruistic contribution of an agent i is given by (3.26) 

 \\ \
( ) ( ) ( )G G G ij G i j G i

a i j j 
 

    (3.33) 

or 

 \\
( ) ( ) ( ) ( )G G G G ij G j G i

a i j i j  
 

     (3.34) 

By the Axioms of Value in Definition 1 and using the known facts about the PA in 

Definition 3, inherited from the Shapley value [127], all the connected graphs having the same 

number of agents have the same value of | |( )G Gj G
j v


 . Since tree is a connected graph, 

formation of a new edge by any agent i does not change the value of the first term at the right 

hand side of (3.34). Moreover, from Theorem 1 it is clear that for each new edge agent i makes, 

its PA increases or remains constant. Moreover the last term at the right hand side of (3.34) is 

independent of agent i. Thus the agent i have no motive to make an edge. 

Since a tree is minimally connected graph, all of its edges are cut edges and all the agents 

are reachable from any other vertex in the tree. Thus, by Lemma A.2, breakage of any edge by 

the agent i, incident at it will not increase the first term in the right hand side of (3.33). Moreover 

the second term at the right hand side of (3.33) is independent of any edge incident at the agent i. 

The altruistic contribution ( )Ga i  of the agent i thus reduces or remains constant upon the 

breakage of any edge incident at it. Thus agents have no motive to break any of the edge 

incidents at them. 

The set of simple graphs can be partitioned into three classes: disconnected graphs, 

minimally connected graphs and non-minimally connected graphs. It is to be established that 

under given condition 2 12v v , G is neither disconnected nor it is non-minimally connected. 
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If G is disconnected then there always exist at least two agents i and j which are not 

reachable from each other. From Definition 3, (3.33), and Theorem 1, under the given condition, 

making of the edge fulfills the condition (a) of  Game of Maximal Altruistic Contribution. A 

disconnected graph is thus unstable. If G is non-minimally connected then there must exist an 

edge { , }e i j such that G remains connected even after its removal. Removal of edge { , }e i j

by the agent i thus does not change the first term in the right hand side of (3.34), moreover the 

last term in the right hand side of (3.34) is independent of any edge incident at i, and according 

to Theorem 1 and under given condition, ( )G i  decreases upon removal of edge e. A non-

minimal connected graph is also unstable. ■ 

Remark 10: It follows from the results established in this section that if 2 12v v , then in 

any of the three online sequential decision games defined in this section a stable graph is always 

connected.  ■ 

3.5.3 Applications of GCG 

The graphical coalitional game and the sequential decision games proposed in this paper 

can be used in a variety of ways in problems involving situations of simultaneous competition 

and collaboration among anonymous agents. The GCG with Positional Advantage can be used to 

determine the social standing of various kinds of agents purely on the basis of the 

communication structure. GCG also distinguishes between the events of making a 

communication link for self-interest and for the coalition’s sake [71], [75], [124], [126]. The 

development in Section 3.4 can be used to determine the strategic importance of graph points. 

The development in this paper can also be used to understand the notions of competition and 

cooperation in groups of biological species [90], [92], [103], [106], [133], [141]. The sequential 
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decision games in the Section 3.5 can be used to understand the internal structure of a coalition 

based on the notions of competition and altruism. Situations in economics, communication, and 

swarm control are very complex; here a lot of agents interact in situations of simultaneous 

competition and cooperation. The theory developed in this paper can be used to understand 

complex situations of joint competition and cooperation [74], [81], [82], [111], [117], [123], 

[125], [131], [140]. 

3.6 Simulation Examples of Online Sequential Decision Games 

Simulation results for the three sequential decision games in Section 3.5 are presented 

here. In these simulations the games are started from an initial graph and the agents are free to 

make allowed moves as in Definition 14. One agent is randomly selected to makes moves at each 

time, and it can make or break as many edges as it desires to improve its contribution objective 

function. The method established in [96], [97] for fast computation of Shapley value is used in 

the simulation.  

The simulations were run until one of the stable graphs is reached. The simulation results 

are shown and explained in Figures 3-5. These simulation results support the theory developed in 

Section 3.5. These results show that any connected graph is stable in Game of Maximal Marginal 

Contribution (MMC), only a complete graph is stable in Game of Maximal Competitive 

Contribution (MCC), and any tree is stable in Game of Maximal Altruistic Contribution (MAC).  
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Figure 3.3. Evolution of graph in MMC when agents are allowed to make or break as many 

edges as desired. (a) Initial, completely disconnected graph. (b) Stable Connected Graph (a tree) 

results after one move. 

 

Figure 3.4. Evolution of graph in MCC when agents are allowed to make or break as many edges 

as desired.  (a) Initial, completely disconnected graph. (b)-(e) Transition states on sequential 

moves of randomly selected agents. (f) Stable, Complete Graph. 
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Figure 3.5. Evolution of graph in MAC when agents are allowed to make or break as many edges 

as desired. (a) Initial, random graph. (b)-(d) Transition states on sequential moves of randomly 

selected agents. (e) Stable graph, a Tree. 

3.7 Conclusions 

A Graphical Coalition Game is presented in this paper. Shapley value strengthened by the 

Axioms of Value is used to define the notion of Positional Advantage of agents in a coalition 

from a graph theoretic view point based on their connectivity. Vital properties including 

convexity, fairness, cohesiveness, and full cooperativeness are verified for the graphical 

coalitional game. The marginal contribution of an agent and its components competitive and 

altruistic contributions are defined in the framework of GCGs. A number of results are 

established regarding the dependence of these contributions on the graph topology, and changes 

in these contributions due to changes in graph topology. Further, on top of the GCG, and based 

on these three contributions, three online sequential decision games are defined. The concept of 

stability is defined in these sequential decision games, and the stable graph topologies under the 
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three games are detailed. Certain elementary properties of the game are established in the 

Appendix for this framework.  
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Chapter 4  

Positional Cost and Advantage in Coalitions on Graphs 

This chapter introduces a graphical coalitional game where the internal topology of the 

coalition depends on a prescribed communication graph structure among the agents. The Value 

Function is required to satisfy four axioms. Here a Positional Cost is also introduced; the cost is 

assigned to each agent based on Shapley value and connectivity of the agent within the 

communication graph. A graphical coalitional game with Positional Advantage is also outlined. 

Based on the advantage and cost, a notion of Net Payoff or Allocation is defined; this notion is 

used to further define three measures of net advantages. Taking maximization of these measures 

of net advantages as the objective functions of agents, three online sequential decision games are 

defined on top of the coalitional graph game. Stable graphs under each sequential decision game 

are studied by varying the cost, and certain results about the coalition structure are established. A 

threshold of cost is reached above which no agent is interested to stay in a coalition irrespective 

of their motives. 

4.1 Introduction 

Game theory was introduced as a formal discipline of mathematics by J. von Neumann in 

1928 through his classic work [113] and its extension [114].  Yet the diversity in the applications 

of game theory [132] is enough to know that it has a rich, old history [95]. The oldest, known, 

written account of game theory is the work of the Chinese scholar Sun Tzu, The Art of War 

[136], which is nearly 2300 years old. It is an established fact that since the beginning of life on 

earth the principles of game theory among individuals and biological species have played a 

fundamental role in the evolution of life and ecological systems [71], [103], [106], [133], [141]. 

Thus principles of game theory are extensively used to understand the behavior of living beings 
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in ecological systems [73], [90], [92]. In general, game theory is a mathematical discipline that 

deals with issues and strategies involving competitions and cooperation between several entities 

[116]. In the scope of mathematical game theory these entities are called players or agents [84], 

[116], [119], [120], [121], [122], [123], [130].  

Game theory is used in many walks of life involving situations of competition and 

cooperation. These areas include but are not limited to economics, finance, business [93], [99], 

[111], [112], law [80], [118], political science [75], [124], strategic science [88], [107], [131], 

social science [83], [89], [100], [126], and engineering [76], [81], [82], [91], [108], [109], [117], 

[125], [137], [138], [139], [140], [142]. Owing to such diverse applications of game theory, the 

subject is bound to break into various areas of study [132]. Though the boundaries between these 

areas of study are not very crisp [116], [132], game theory is primarily divided into two areas: 

noncooperative game theory [84], and cooperative game theory [116], [130]. In noncooperative 

game theory the fundamental unit of study is the individual agent, and the theory deals with its 

performance and strategies in interaction with other individual agents. By contrast, in 

cooperative game theory the fundamental unit is the group or coalition.  Cooperative game 

theory deals with the value of the coalition, payoff allocations to individual players, and the 

stability of coalitions [116], [130].  

Cooperative games can be divided into three classes: Canonical coalitional games, 

coalition formation games, and coalitional graph games [84], [123]. Canonical coalitional games 

mainly deal with the stabilization of the grand coalition of all the agents. Methods are sought to 

allocate the net value of the coalition to individual agents in such a way that agents are 

encouraged to join the coalition.  A fair allocation that often accomplishes this is the Shapley 

value [127]. Coalition formation games mainly deal with coalitions based on gains and costs. 
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Given prescribed gains and costs, the structures of the resulting coalitions are studied.  Finally, 

the coalitional graph games deal with the formation and stability of coalitions given an 

underlying communication graph structure [82], [123]. In the work of Baras [81], [82] and of 

Başar [119], [120], [121], [122], [123]  coalitional graph games are studied with applications to 

communication networks.  Various definitions of value are used in [119], [120], [121], [122], 

[123], including probability of detection, gain of resources of other agents, effective throughput, 

and packet success rate. In his classical work [110], Myerson used graph theoretic ideas to 

analyze cooperation in graphical coalitional games.  He proposed to restrict the coalitions based 

on the underlying communication graph structure.  He showed that the unique fair allocation of 

the net value of the coalition to the agents is given by the Shapley value [127].  

Closely related to the coalitional graph games are online or sequential-in-time decision 

games.  These are games where agents make moves through time sequentially to maximize their 

prescribed objective functions [130]. These games are defined by specifying the method of 

selection of the agent to make moves at each time, the allowed moves of the agents, and the 

objective function the agents seek to maximize. Agents might make moves according to some 

fixed round-robin procedure, or randomly according to some probability mass function.  These 

online sequential decision games best model real-life situations where the players are free to 

change their alliances as considered suitable by them to obtain their objectives.  

Considerations of cost are instrumental in the formation of coalitions. Various definitions 

of cost are used in coalitions, including probability of false alarm, vulnerabilities from other 

agents, download delay, mean waiting times, and path delay [81], [82], [104], [119], [120]. In 

their paper [104], Jackson and Wolinsky analyzed the stability of networks when the individual 

agents choose to form and maintain the links between them. An agent gains value on connecting 
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to an agent which is well-connected to other agents in the graph, and accrues a cost based on 

maintaining direct communication links with its neighbors.  It is shown that different relations 

between the link cost and the propagation of value along a path result in stability of different 

structures, such as complete graph, star graph [87], etc. In [82] a constrained coalitional game, 

based on Jackson and Wolinsky model [104], for networks of autonomous agents is defined. In 

[81] a trust based game is proposed. In this game payoffs and costs are dependent upon the gain 

and loss in mutual trust value.  In [119] a cooperative game with non-transferable utility is 

proposed; in this game advantages and costs are based on probability measure. In [120] a 

coalitional game is introduced; in this game the value function is based on the effective 

throughput of the agents and cost is based on the delay. 

The objective of this paper is to provide tools to study the internal structure of coalitions 

on graphs on the basis of different motives of the agents. This paper defines a graphical 

coalitional game (GCG) with transferable utility having novel properties. In this game, the total 

cost of a coalition depends upon the connectivity of the agents and the number of agents 

involved in the coalition. The first point of impact of the paper is based on a Value Function of 

cost that is required to satisfy four formal axioms. Owing to these axioms imposed on the Value 

Function, it is possible to perform a rigorous study of the internal structure of coalitions on graph 

topologies.  The cost is initially allocated to the edges by using the Shapley value. The Shapley 

value with the Value Function satisfying the four Axioms is interpreted as the cost of a 

communication link within a coalition. The cost is than allocated to individual agents by using 

the symmetric connection model of Jackson and Wolinsky [104]. The cost of an agent in a 

coalition is called the Positional Cost (PC). Allocation rules based on Shapley values 

strengthened by the Axioms of Value assign the cost to the agents or vertices [104], [105]. In this 
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paper allocation rules of advantage are the same as those introduced in [77]. The second point of 

impact of this paper is the use of advantage and cost to define Net Payoff or Allocation (NPA); it 

is further used to define three net advantages: Net Marginal Advantage (NMA), Net Competitive 

Advantage (NCA), and Net Altruistic Advantage (NAA). These net advantages are based on the 

components of cost defined in this paper and components of advantage defined in  [77] and 

according to the concepts in [74]. A number of results about the dependence of these net 

advantages on coalition structure are presented. The third point of impact is the definition of 

three online sequential decision games on top of the graphical coalitional advantage and cost 

game; these three online sequential decision games are: max-NMA, max-NCA, and max-NAA. 

The preferred graphs under each sequential decision game, under certain relations between the 

advantages and costs are studied. It is shown that the stable graphs in max-NMA are any 

connected graph, including a tree. The preferred graph in max-NCA is a connected graph or 

completely disconnected graph under certain other condition.  The completely disconnected 

graph is stable in max-NAA under certain conditions. These preferences in the three sequential 

games yield thresholds of cost beyond which agents stay in completely disconnected or trivial 

coalition irrespective of sequential game. 

The paper is organized as follows. The concepts of Graph Theory used in this paper are 

elaborated in Section 4.2. A Graphical Coalition Game (GCG) is outlined in Section 4.3. The 

framework of GCG with Positional Cost (PC) within a coalition is defined in Section 4.4; some 

fundamental results about this framework are also presented in this section. Components of 

advantage and cost in a coalition are defined in Section 4.5; dependence of the components of 

cost on graph topology is also elaborated in this section. Section 4.6 deals with three Graphical 

Advantage and Cost Game (GACG). The notions of NMA, NCA, and NAA are also defined in 
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this section. Section 4.7 presents Online Sequential Coalition Decision Games; stability of graph 

structures under these games and cost thresholds are also discussed here. Some technical lemmas 

required for the development of this framework are presented in the Appendix C at the end. 

4.2 Graph Theory Background 

Consider a graph ( , )G V E  with V a finite nonempty set of agents and 2[ ]E V  a set of 

edges. Here 2[ ]V is the unordered set containing all the subsets of V with two elements. Two 

agents are interpreted to have an edge between them if and only if they directly communicate 

with each other. The elements of V are also called vertices. The number of elements in V is called 

the order or size of the graph and is denoted as | |G  or N. In this paper simple graphs are 

considered. A simple graph does not contain self-loops and multiple edges; moreover, all its 

edges are undirected, connecting two vertices, and do not have any weight associated with them.  

Two vertices with an edge between them are called neighbors of each other. If all the 

vertices of G are neighbors of each other than G is called a complete graph. A complete graph 

with N vertices is denoted as NK  A sequence of distinct vertices 0 1, ,..., Mi i i i j   starting from 

a vertex i to another vertex j such that each pair of consecutive vertices are neighbors in G is 

called a path from i to j within G. Any two vertices having a path between them are called 

connected in G. A maximal set of connected vertices along with all the edges between them in G 

is called a component of G. A vertex that is not connected with any other vertex is called an 

isolated vertex. An isolated vertex is thus a graph component. If all the vertices of a graph are 

isolated then the graph is called completely disconnected. A graph is called connected if every 

vertex of the graph is connected to every other vertex. A graph is called minimally connected if 

the number of its edges is the smallest necessary to connect all its vertices.  A graph which is not 
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connected is called a disconnected graph. A connected graph is said to have one component 

while a disconnected graph is the union of more than one component. The size of a component S 

of G is denoted as | |S . Since undirected graphs are considered in this paper, two components are 

mutually disjoint.   

If there are at least two vertices i and j in G with at least two distinct paths existing from i 

to j then G is called a cyclic graph. A graph without a cycle is called an acyclic graph or a forest. 

A connected forest is called a tree. A tree is thus a minimally connected graph. A connected 

graph which is not a tree is thus non-minimally connected.  

If ( , )G V E  and ( , )S V E   are two graphs such that V V  and E E  , then S is 

called a subgraph of G. A subgraph is a graph in its own capacity. Moreover if Econtains all the 

edges { , }e i j E   with ,i j V  , then S is called an induced subgraph of G. An induced 

subgraph of G obtained by excluding a vertex i from V is denoted as \{ }G i . If the number of 

components in \{ }G i  is more than the number of components in G, then i is called a cut vertex 

of G. If an edge e is deleted from a graph G then the new graph obtained is denoted as \G e . 

Similarly if the deletion of edge increases the number of components of a graph then it is called a 

cut edge of G.  If an edge e is added in G then the new graph is denoted as G e . Detailed study 

on Graph Theory can be had in [87], [94]. 

4.3 Graphical Coalitional Game with Positional Advantage (PA) 

In [77] a graphical coalitional game ( , )G v   with transferable utility in the form of 

advantage is proposed. The game is based on the communication structure of the agents within a 

coalition. Here the undirected graph G represents the communication topology of the coalition 

with agents as vertices, and edges between them if and only if the agents directly communicate 
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with each other within the coalition. In this section the Graphical Coalition Game and the related 

concepts are briefly outlined. 

Consider a graph G, with agents as nodes, where there exist edges between the nodes if 

and only if the corresponding agents directly communicate with each other. The Value Function 

v is formally defined as 

 0: 2 ( ) 0Gv with v v    (4.1) 

where 2G  is the collection of all the subgraphs of G and   is the empty set. The Value 

Function satisfies the following axioms. In these axioms 2GS  is a subgraph of G.  

Axiom I: Axioms of Value in GCG with PA 

1. If S is a connected component with | |S m  then ( ) 0mv S v    

2. If S is having k connected components : 1,2,...iS i k  with | |i iS m  then 

( ) : 0
i im mi

v S v v   

3. If 0N m n    then . .m nn v m v   

4. If 1 0N m n     then 1 1m m n nv v v v     ■ 

It is to be mentioned here that the Axiom I.2 is according to allocation rules in the 

coalitional graph game defined by Myerson in Section 3 of [110], where the coalitions are 

restricted by the underlying communication graph.  

According to Axiom I.3, one has 2 12v v . A condition stronger than Axiom I.3 is  

 2 12v v  (4.2) 

This condition is used to strengthen many results in [77]; it is also used in this paper to 

establish more results. 
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Definition 1: Graphical Coalitional Game with Positional Advantage.  Given a graph G, 

the graphical coalitional game is defined as the game ( , )G v   where the value function v 

satisfies Axiom I. ■ 

Remark 1:  

1. If a coalition G has m components of sizes 1 2, ,..., mn n n , then by using Axiom I.2 the 

value of the coalition G is given by 
1 2

( ) ...
mn n nv G v v v    . 

2. It can be seen by using Axiom I.4 and (3.1) that for any 0 n N   1nv nv . 

3. It can be seen by using Axiom I.4 and the above remark that for  0 n m N    

( )m n nnv m n v nv   . 

4. From the above remark it is clear that Axiom I.3 is implied by the Axiom I.4. Similarly it 

can be seen that Axiom I.1 is implied by the Axiom I.2. Nevertheless, Axioms I.1 and I.3 

are retained as axioms because of the ease of their use in establishing the game 

properties. 

5. Consider a possible game with 1 1v  , 2 3v   and 3 4.51v  . Clearly these values satisfy 

Axiom I.3 since (1)(3)>(2)(1), (1)(4.5)>(3)(1) and (2)(4.51)>(3)(3). Yet they do not 

satisfy the Axiom I.4 since 4.51-3 < 3-1. Thus Axiom I.4 is not implied by Axiom I.3. 

6. Consider a possible game with 1 1v  , 2 2.1v   and 3 3.9v  . It can be easily seen that 

this list satisfies Axiom I.4 and hence Axiom I.3.  ■ 

In the axioms of the game ( , )G v  , it is assumed that all the agents are identical and 

similarly that all the edges are identical. Thus, the game can be used to study the advantage of 

one vertex over the other based on its position in the graph structure. It is established in Section 3 
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of [77] that the game is fair, both fully cooperative and cohesive [74], convex [128], and super-

additive [116]. 

The allocation of the total value of a coalition to its individual agents is a fundamental 

problem in coalitional games.  Allocation is the share given to each agent of the total value of the 

coalition efforts. It is established in [110] that for a value function defined in games on graphs, 

the Shapley value function [127] is the only possible function that provides a fair allocation. 

Therefore, the allocation of PA to an agent i in the graphical coalitional game ( , )G v   is made 

here using the Shapley value function. Therefore, the next definition is made. It provides a 

fundamental notion used in this paper. 

Definition 2: Positional Advantage (PA) of an Agent in the Graphical Coalitional Game.  

Given the Graphical Coalitional Game with PA, ( , )G v  , define the PA of agent i as the 

Shapley value 

  , | | 1
| |\{ }

( ( { }) ( ))1
( )

| |G v G
SS G i

v S i v Si
G

 


    (4.3) 

In this equation the Value Function v satisfies the Axioms for the Value for PA. 

Moreover, \{ }S G i  means S is an induced subgraph of the graph \{ }G i . Moreover, { }S i  

denotes an induced subgraph of G, containing all the agents in S and the agent i. ■ 

The subscripts G and v can be dropped from the notation if these are clear from the 

context. Since this allocation is dependent only upon the position of the agent i within the 

coalition represented by the graph G, it is called the PA of the vertex i. The PA is also dependent 

on the value function v in Definition 1. The value function can be represented as a real number 

list of size| |G . Therefore, the next definition is motivated. 
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Definition 3: Valid Game List. A list of non-negative real numbers 1 2 | |, ,..., Gv v v  is called a 

valid game list of size | |G  if it satisfies the value Axiom I. ■ 

4.4 Graphical Coalitional Game with Positional Cost 

In this section a Graphical Coalitional Game with Positional Cost is defined. The game is 

based on axioms, similar to those of the Graphical Coalitional Game with Positional Advantage, 

mentioned in the last section. Valid Game List for this game is also defined in this section. Some 

elementary concepts about the game list and the game are also established in the form of 

lemmas, remarks and examples. These concepts provide the background for Sections 4.5, 4.6, 

and 4.7. Some technical lemmas needed in the proofs are given in the Appendix.  

4.4.1 Graphical Coalitional Game with Positional Cost 

If there is a possibility of some nonzero cost associated with joining the coalition G a 

Graphical Coalitional Game with Positional Cost ( , )G u   coexists with the GCG with PA. 

Here G is the same graph representing the coalition in the last section. 

The cost function u is formally defined as 

 0: 2 ( ) 0Gu with u u    (4.4) 

where 2G  is the collection of all the subgraphs of G and   is the empty set. The Value Function 

satisfies the following axioms. In these axioms 2GS  is a subgraph of G.  

Axiom II: Axioms of Cost in GCG with PC 

1. If S is a connected component with | |S m  then 1( ) 0, 0mu S u u     

2. If S is having k connected components : 1,2,...iS i k  with | |i iS m  then 

( ) : 0
i im mi

u S u u   
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3. If 0N m n    then . .m nn u mu   

4. If 1 0N m n     then 1 1m m n nu u u u     ■ 

The Axiom II is similar to the Axioms I of the GCG in Section 4.3. The only difference is 

the equality 1 0u   in Axiom II.1 for the PC case. Since the GCG with PC in this section is 

introduced to analyze the costs involved in making a coalition and allocation of cost to the agents 

involved in the coalition; the cost is incurred only when two or more agents come in contact with 

each other to make a coalition. This provides the rational to set 1u  to 0 in Axiom II.1.  

Axiom II.3 is essentially a super linearity requirement / /m nu m u n  for m n . 

According to Axiom II.3, one has 2 12 0u u  . A condition on 2u  stronger than Axiom 3 is  

 2 0u   (4.5)  

It is to be noted that in the Axiom II, 1 0u  , so that condition (4.5) is equivalent to 2 12 0u u   

which is the same as condition (4.2) for the Graphical Coalition Game in Definition 1. This 

condition strengthens several results in the following development. It is established in Lemma 

C.4 in the Appendix that under the condition (4.5) in general, for 0N m n    then 

. .m nn u m u  which is a stronger condition than Axiom II.3. 

The next definition of GCG with PC provides a fundamental notion used in this paper. 

Definition 4: Graphical Coalitional Game with Positional Cost.  Given a graph G, the 

graphical cost game is defined as the game ( , )G u   where the cost function u satisfies Axiom 

II. ■ 

Similar to the allocation of advantage of a coalition to the agents, the allocation of the 

cost of a coalition to its individual agents is a fundamental problem in coalitional games. Since 
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coalition cost is associated to the communication of the agents within the coalition, thus cost is 

assigned to the edges which represent the communication among the agents. The cost associated 

to any edge depends upon the location of the edge within the communication graph G. Let 

( , )S V E be a randomly selected subgraph of ( , )G V E  having the same vertex set as that of 

G but having a randomly selected edge set E  out of E, not containing an edge e. Then the 

additional cost incurred by the edge e to the subgraph S e is given by ( ) ( )u S e u S  . The 

expected value, taken over all such values of S, of the cost incurred by the edge e is given by the 

Shapley value of that edge within G [96], [105] and in this paper it is taken as the cost of the 

edge e. The following definition is thus made.  

Definition 5: Positional Cost of an Edge in GCG with PC.  Given the GCG with PC 

( , )G u  , define the Positional Cost of edge e as the Shapley value 

  , || || 1
|| ||\

( ( ) ( ))1
( )

|| ||G u G
SS G e

u S e u Se
G

 


    (4.6) 

In this equation the cost function u satisfies the Axioms for the cost. Moreover, \S G e  means 

S is a subgraph of the graph \G e .with the same vertex set as that of G. Moreover, S e  denotes 

a subgraph of G, containing all the edges in S and the edge e. ■ 

Remark 2: In equation (4.6) the value of the expression ( ( ) ( ))u S e u S   is 0 when the 

subgraphs S and S e  have the same number of components.  ■ 

In their Symmetric Connections Model [104] Jackson and Wolinsky has associated a cost 

to each edge and equally divided it between the end vertices of that edge which best suits the 

communication models where the cost of each edge is equally born up by its end vertices. 

Therefore, the next definition is made. It splits the cost of an edge equally between its end 

vertices or agents. 
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Definition 6: Positional Cost of an Agent in the Graphical Coalitional Game with 

Positional Cost.  Given the GCG with PC ( , )G u  , define the Positional Cost of an agent i as  

 1
, ,2 :

( ) ( )G u G ue i e
i e 


   (4.7)■ 

The PC of an agent as defined above is different than the symmetric connection model of 

Jackson and Wolinsky in [104], in the sense that here in this paper the total cost of the coalition 

is first efficiently allocated to edges by using Shapley value [127] and then cost of an edge is 

equally divided into its end vertices according to symmetric connection model, whereas in [104] 

an arbitrary cost is allocated to each edge, which is generally taken as a constant for each edge. 

Allocation of a constant cost to all the communication links limits its use in communication 

structures where cost is dependent upon the location of the link in the communication structure. 

Definition 7: Valid Game List for GCG with PC. A list of non-negative real numbers 

1 2 | |, ,..., Gu u u  is called a valid game list of size | |G  for the GCG with PC if it satisfies the cost 

Axiom II. ■ 

4.4.2 Valid Game List of Graphical Coalitional Game with Positional Cost  

In this subsection validates certain game lists for the graphical coalitional game with 

Positional Cost. Instrumental in this discussion is the cost under the condition  

 1( ), 1,2,3..., , 0i i i iu k v iv i N k      (4.8) 

This condition captures a relationship between the cost function iu and the value function iv . 

In the following lemmas it is established that if 1 2( , ,.... )Nv v v v  is a Valid Game List for 

the GCG with Positional Advantage in Definition 1 then under the condition (4.8) 

1 2( , ,..., )Nu u u u  is a Valid Game List for some values of ik , for the GCG with PC in Definition 



93 

4. These game lists are motivating for their relationship with the Valid Game List for the 

corresponding GCG with PA. These Valid Game Lists are used as benchmark for the PC in the 

results in Sections 4.6 and 4.7. 

Lemma 1: (Validity of Game List) If 1 2( , ,.... )Nv v v v  is a Valid Game List  for a GCG 

with PA then iu  in (4.8) with 1 1,2,...,ik i N   , that is, 

1 2 1( , ,.... : , 1,2,3..., )N i iu u u u u v iv i N      is a Valid Game List for a GCG with PC. 

Proof: The proof follows by establishing that u satisfies Axioms II.1 and II.4.From the 

given value of u, 

 1 1 11 0u v v    (4.9) 

This is according to Axiom II.1. For any arbitrary integers n and m, such that 1 0N m n     

 1 1 1 1( ( 1) ) ( ( ) )m m m mu u v m v v m v        (4.10) 

or 

 1 1 1m m m mu u v v v      (4.11) 

Similarly,  

 1 1 1n n n nu u v v v      (4.12) 

Since v is a Valid Game List, thus by Axiom I.4 for the given values of m and n, satisfying 

1 0N m n    , 1 1m m n nv v v v    . Using (4.11) and (4.12) it follows that for 

1 0N m n    , 1 1m m n nu u u u    . This proves the desired result. ■ 

Remark 3: If 1 2( , ,.... )Nv v v v  is a Valid Game List for a GCG with PA then iu  in (4.8) 

with 1,2,...,ik k i N   , that is, 1 2 1( , ,.... : ( ) 1,2,3... : 0)N i iu u u u u k v iv i N k       is a Valid 

Game List for a GCG with PC. In the above list the constant k plays a basic role in varying the 
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values of the list. It is established in the results in Sections 4.6 and 4.7 that by tuning the value of 

k various graph topologies are achieved. ■ 

The following lemma provides a greatest lower bound on the last entry Nu  of a Valid 

Game List for a GCG with PC u, given the preceding entries in the list. 

Lemma 2: (Validity of Game List) If 1 2( , ,.... )Nv v v v  is a Valid Game List with 2 12v v  

for a GCG with PA then iu  in (4.8) with 1,2,..., 1,i Nk k i N k k     , that is, 

1 2 1 1( , ,.... : ( ) 1,2,3,..., ( 1) : 0, ( ))N i i N Nu u u u u k v iv i N k u k v Nv          is a Valid Game 

List for a GCG with PC if and only if  

 1 2 1

1

(2 )

( )
N N

N

k v v Nv
k

v Nv
   


 (4.13) 

Proof: The proof follows by establishing that u satisfies Axioms II.1 and II.4.From the 

given value of u,  

 1 1 11 0u v v    (4.14) 

This is according to Axiom II.1. For any integers n and m, such that 2 0N m n    , then by 

Remark 3  

 1 1m m n nu u u u     (4.15) 

For m N   

 1 1 1 1( ) ( ( 1) )N N N Nu u k v Nv k v N v        (4.16) 

Using the given condition on k , it can be written as  

 1 1 1 1 1(2 ) ( ( 1) )N N N N Nu u k v v Nv k v N v          (4.17) 

On simplification and using the value for iu the above equation becomes 
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 1 1 2N N N Nu u u u      (4.18) 

Combining (4.15) and (4.18), it is established that for values of m and n, satisfying 

1 0N m n    , 1 1m m n nv v v v    . This proves that u is a valid game list. 

Conversely suppose that the given value of u is a valid game list. Thus u satisfies Axiom 

II.4. In particular for 1m N   and 2n N   it can be written as 

 1 1 2N N N Nu u u u      (4.19) 

Substituting the values of iu  for , 1, 2i N N N    and simplifying under the given condition 

that 2 12v v  the desired result 1 2 1

1

(2 )

( )
N N

N

k v v Nv
k

v Nv
   


 is obtained. ■ 

Remark 4:  

1. The condition 2 12v v  in the above lemma implies that 1Nv Nv   Lemma 5 of [77], thus 

the denominator in (4.13) is positive. 

2. In subsequent results it is desired to have 1k    when 1k  , then by using order axioms 

of real numbers [72] this is possible only if 1

1 2 1

( )

(2 )
N

N N

v Nv
k

v v Nv 




 
. ■ 

 A generalization of the above two lemmas is established in Appendix Lemma C.5. This 

lemma is reported to support further research in the area of Graphical Coalition Games. 

Moreover the result established in Lemma C.4 also assures that 

1( ), 2,3..., , 0i iu k v iv i N k     given in (4.8) under condition (4.5) are positive. 

The following two examples illustrate the calculation of PA of agents in a GCG with PA 

( , )G v   and Position Cost of agents in a GCG with PC ( , )G u   in a chain and in a complete 

graph of sizes 3. 
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Figure 4.1. Two simple graphs . (a) Example 1- Three agents in a chain (b). Example 2- Three 

agents in a complete graph 

Example 1: Consider a chain of three agents {1, 2, 3}G   as shown in Figure 4.1 (a). The 

PA of the agents is calculated by using (4.3). For agent 1 

({1,2,3}) ({2,3}) ( ({1,2}) ({2})) ( ({1,3}) ({3})) ({1}) ( )1
, 3 1 2 1(1) ( )v v v v v v v v

G v
         

Using Axiom I of the game this is simplified to 1 1

3 2 13 2, (1) ( )G v v v v    .  By the symmetry of the 

graph G and of (4.3),  it can be seen that , ,(3) (1)G v G v  . The PA of the agent 2 is given by 

({1,2,3}) ({1,3}) ( ({1,2}) ({1})) ( ({2,3}) ({3})) ({2}) ( )1
, 3 1 2 1(2) ( )v v v v v v v v

G v
         

Using the axioms of the game this is simplified as 1

3 2 13, (2) ( 2 )G v v v v    . 

Now for the PC, using (4.6) ({1,2}) ({ }) ({1,2} {2,3}) ({2,3})1
, 2 1 1({1, 2}) ( )u u u u

G u
     . Using Axiom 

II of the game this is simplified to 1 1

3 1 32 2, ({1, 2}) ( )3G u u uu    . Similarly, 1

32, ({2, 3})G u u  , thus 

by (4.7) 1
, 3 ,4(1) (3)G u G uu    and 1

, 32(2)G u u   

It can be readily seen that , , ,(2) (1), (3)G u G u G u   This is according to the heuristics for 

the given communication structure, since 2 is in the middle of 1 and 3 and so logically 

contributes more to the communication structure of the coalition and hence bears more cost. ■ 
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Example 2: Considering a complete graph of three agents {1, 2, 3}G   as shown in Figure 

4.1 (b), the PA of agent 1 is calculated by using the definition given in (4.3) 

 ({1,2,3}) ({2,3}) ( ({1,2}) ({2})) ( ({1,3}) ({3})) ({1}) ( )1
, 3 1 2 1(1) ( )v v v v v v v v

G v
         

Using the axioms of the game this equation is simplified as 1

33
(1) v  .  

Now for the PC, using (4.6) 

({1,2}) ({ }) ( ({1,2} {2,3}) ({2,3})) ( ({1,2} {1,3}) ({1,3})) ( ({1,2} {2,3} {1,3}) ({2,3} {1,3}))1
, 3 1 2 1({1, 2}) ( )u u u u u u u u

G u
              

Using Axiom II of the game this is simplified to 1

33, , ,({1, 2}) ({3, 2}) ({1, 3})G u G u G uu    .  

Thus by (4.7) 1
, 3 , ,3(1) (3) (2)G u G u G uu       

It can be easily seen that all the vertices have the same PC. This again is according to 

intuition, since all the three vertices are symmetrically distributed in the graph and evenly 

contribute to the communications within the coalition. ■ 

4.4.3 Dependence of Positional Cost on Graph Topology 

In this subsection some lemmas about the dependence of Positional Cost on the graph 

topology are presented. These lemmas establish the usual properties of PC; like dependence of 

cost on number of connected agents and increase in cost due to increase in component sizes. 

Moreover, these lemmas are important to establish the distribution of cost among agents and are 

also needed to prove the upcoming results in Sections 4.6 and 4.7.  

The following lemma provides a fundamental result in the game presented in this paper; 

it shows that unlike the direct dependence of coalitional cost on edges in [104], the cost 

associated with a coalition is independent of addition of a new edge e as long the addition does 

not reduce the number of graph components.  
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Lemma 3: (Addition of a New Edge in a Connected Graph) In a GCG with PC, addition 

of a new edge in an already connected graph does not change the overall cost of the coalition. 

Proof: Consider a GCG with PC ( , )G u  in Definition 4. Since the graph is connected, 

according to Axiom II.2 | |( ) Gu G u . Using the same axiom this value of ( )u G  does not change 

upon making of a new edge.  ■ 

Remark 5: For a subgraph S of a graph G and an edge e in G, if the number of 

components in S and S e  are the same then ( ) ( ) 0u S e u S   . ■ 

The following two lemmas illustrate the change in PC on a coalition when a cut edge is 

added to a disconnected graph representing it. In the following two lemmas G  presents a graph 

obtained from G by adding a new edge in it. 

Lemma 4: (Addition of New Cut Edge in a Disconnected Graph) In a Graphical GCG 

with PC, if the addition of an edge reduces the number of components of the graph then the 

overall PC of the coalition increases or remains constant. 

Proof: Consider a GCG with PC ( , )G u   in Definition 4. Since the graph is 

disconnected, according to Axiom II.2 the PC of the Coalition G is   

 
1 1

( ) : | |, 1
i

k k

m i
i i

u G u m G k
 

     (4.20) 

Making of a new edge gives a new graph G , its PC is given by 

 
1

1 1

( ) : | |, 1
i

k k

m i
i i

u G u m G k



 

      (4.21) 

Without loss of generality it can be assumed that  

 1 1 , 1,2,..., 2k k k i im m m m m i k         (4.22) 

Under the above condition, By Lemma 4 of [77] 
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1 1

, 1, 2,..., 2
k k k i im m m m mu u u u u i k
         (4.23) 

Comparison of (4.20) and (4.21), under the above condition gives  

 ( ) ( )u G u G   (4.24) 

This completes the desired proof.  ■ 

The next lemma strengthens the above lemma under condition (4.5). 

Lemma 5: (Addition of New Cut Edge in a Disconnected Graph) In a GCG with PC, if 

the addition of an edge reduces the number of components of a graph G and there is a cost game 

with 
2

0u  , then the overall PC of the coalition increases. 

Proof: The proof goes on the same lines as the above proof; however, under hypothesis 

2
0u  , by Remark 4 in [77], (4.23) turns into a strict inequality 

 
1 1

, 1, 2,..., 2
k k k i im m m m mu u u u u i k
         (4.25) 

Comparison of (4.20) and (4.21), under the above condition gives  

 ( ) ( )u G u G   (4.26) 

This completes the desired proof.  ■ 

The following lemma supports an observation that the maximum cost an agent may bear 

may be half of the total cost of the coalition.  

Lemma 6: (Maximum PC of an Agent) In a GCG with PC, the maximum possible PC of 

an agent in a connected graph G is 1
| |2 Gu . 

Proof: The PC of a coalition is primarily allocated to the edges (4.6), and then equally 

distributed between their end vertices (4.7). Since this paper deals with simple graphs with no 

self-loops allowed; Positional Coast of an agent i can be maximum when every edge is incident 

at it. It is hypothesized that G is connected, thus by Axiom II.1  
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 | |( ) Gu G u  (4.27) 

By the distribution of cost to agents (4.7), 1
, | |2( )G u Gi u  , where i is a point with every 

edge incident at it.  ■ 

Remark 6: The maximum possible PC a vertex may have in any graph G is that of the star 

point in a Star Graph [94]. ■ 

Making a New Edge in a Graph. In the following results G  represents a graph obtained 

from a graph G by adding a new edge e  in it. 

Lemma 7: (Increase in PC of a Cut Edge) In a GCG with PC, if a graph G  is obtained 

from a graph G by adding a new edge e  in it then PC of an edge e G  increases by a non-

negative value if e is a cut-edge in G . 

Proof: Change in the PC of an edge e in a graph G for a GCG with PC ( , )G u   is given 

by Lemma C.9  

  , , || ||
|| || 1\

( ( ) ( )) ( ( ) ( ))1
( ) ( )

|| || 1G u G u G
SS G e

u S e e u S e u S e u Se e
G

 


        
   (4.28) 

Since e  is a cut edge ( ( ) ( )) ( ( ) ( ))u S e e u S e u S e u S        , and the above equation yields 

that , ,( ) ( )G u G ue e   . This shows that the PC of a cut edge in G  increases by a nonnegative 

value. ■ 

Remark 7: For the GCG with PC ( , )G u   if u satisfies 2 0u  , mentioned in (4.5) then 

( ( ) ( )) ( ( ) ( ))u S e e u S e u S e u S         and the PC of a cut edge in G  increases upon making 

a new edge in G.  ■ 
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4.5 Components of Advantage and Cost in Coalitions 

Whenever agents join hands to make a coalition there is some advantage associated with 

the coalition and there is some cost involved in making the coalition. Both the advantage and the 

cost are transferred to the member agents of the coalition. Both the marginal or total advantage 

and cost contributed by an agent to a coalition can be divided into selfish and selfless 

components. This section discusses the components of advantage in Graphical Coalitional Game 

with Positional Advantage, in Definition 1 and contribution in cost of an agent within the setting 

of GCG with Positional Cost, in Definition 4. The definitions and results about the components 

of marginal advantage are presented in [77]. Definitions of marginal cost and its components 

along with results about the dependence of these components on graph topology are presented in 

this section. The notions presented in this section provide the basis for defining net advantages in 

Section 4.6 and online sequential decision games in Section 4.7. 

4.5.1 Components of Advantage of Agents in Coalitions 

When agents participate with other agents to make a coalition, they contribute towards 

the overall coalition cause. The total contribution of a group A of agents in a GCG ( , )G v  is 

called the marginal contribution of A in G and written as , ( )G vm A  [74].  The marginal 

contribution of a group of agents is divided in two components: one component is the 

contribution of the agents in the subset A for the sake of themselves, and the second component 

is the contribution of agents in A for the sake of the other agents in \G A . These two components 

are termed the competitive contribution and the altruistic contribution respectively. These 

contributions are represented as , ( )G vc A  and , ( )G va A  respectively [74]. These contributions are 

formally defined in [77] and are summarized here.  
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The Marginal Contribution and its components are defined on the basis of the definition 

of allocations or payoffs in Definition 8 below. In the following definition A B G  , A is an 

induced subgraph of B which is an induced subgraph of the coalition G. 

Definition 8: Allocation of a Set of Agents in an Induced Subgraph. The allocation or 

payoff of the agents in coalition A when only the coalition B is considered is denoted as ( )A B

and it is defined as 

 ,( , ) ( )A B vi A
B v i 


  (4.29)■ 

Based on this definition, the following components of advantage in a coalition are 

defined. 

Definition 9: Marginal Contribution of a Set of Agents. The marginal contribution 

. ( )G vm A is defined as 

 , \( ) ( , ) ( \ , )G v G G Am A G v G A v    (4.30)■ 

Definition 10: Competitive Contribution of a Set of Agents. The competitive contribution 

, ( )G vc A  is defined as  

 , \( ) ( , ) ( , )G v G G Ac A G v G v    (4.31)■ 

Definition 11: Altruistic Contribution of a Set of Agents. The altruistic contribution 

, ( )G va A is defined as  

 , \ \( ) ( , ) ( \ , )G v G A G Aa A G v G A v    (4.32)■ 

From (4.30), (4.31) and (4.32) it follows that these definitions are according to their 

rationales established at the beginning of this section: , ( )G vm A  is the total contribution of the 

agents in A, , ( )G vc A  is the contribution of agents in A for their own sake and , ( )G va A  is the 
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contribution of A for the sake of the rest of the coalition \G A . Moreover, according to these 

definitions 

 , , ,( ) ( ) ( )G v G v G vm A c A a A   (4.33) 

For a singleton set A consisting of one agent i, the marginal contribution, competitive 

contribution and altruistic contribution are represented as , ( )G vm i , , ( )G vc i , and , ( )G va i  

respectively. From (4.31), (4.32), and (4.33), these contributions can be written as 

 , \( ) ( , ) ( \ , )G v G G im i G v G i v    (4.34) 

 , \( ) ( , ) ( , )G v G G ic i G v G v    (4.35) 

 , \ \( ) ( , ) ( \ , )G v G i G ia i G v G i v    (4.36) 

Using (4.29) in these three equations gives 

 , , \ ,\
( ) ( ) ( )G v G v G i vj G j G i

m i j j 
 

    (4.37) 

 , , ,\
( ) ( ) ( )G v G v G vj G j G i

c i j j 
 

    (4.38) 

 , , \ ,\ \
( ) ( ) ( )G v G v G i vj G i j G i

a i j j 
 

    (4.39) 

If G is connected, using Axioms I.1 and I.2 of the graphical coalition game and (4.29), 

equation (4.37) can be written as 

 , | |
1 1

( ) : | | 1
j

p p

G v G k j
j j

m i v v k G
 

      (4.40) 

Here, p is the number of disconnected components of G obtained by the deletion of the 

agent i and : 1, 2,..,jk j p  are the sizes of these components.   
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4.5.2 Components of Cost of Agents in Coalitions 

When agents participate with other agents to make a coalition, and there is some cost 

involved in making the coalition then they contribute towards the overall coalition cost. The total 

cost of a group A of agents in a coalition G is called the Marginal Cost of A in G, the names of 

the total cost and its components are adopted from [74] and [77]. The Marginal Cost of A in a 

Coalition G is written as , ( )G u A . The Marginal Cost of a group of agents A is divided in two 

parts: one part is the cost incurred by the agents in the subset A and born by them, and the second 

part is the cost incurred by the agents in A but born by the agents in \G A . These two parts are 

termed the Competitive Cost and the Divisive Cost respectively. These components are 

represented as , ( )G u A  and , ( )G u A  respectively. Moreover, the Competitive Cost is divided 

further into two components: Fair Cost, and Surplus Cost.   

The Marginal Cost and its components are defined on the basis of the following 

definition of Cost Allocation in Definition 8; in this definition A B G  , A is an induced 

subgraph of B which is an induced subgraph of the coalition G. 

Definition 12: Cost Allocation of a Set of Agents in an Induced Subgraph. The cost 

allocation of the agents in coalition A when only the coalition B is considered is denoted as 

( )A B and it is defined as 

 ,( , ) ( )A B ui A
B u i 


  (4.41) ■ 

Based on this definition, the following components of cost in a coalition are defined. 

Definition 13: Marginal Cost of Set of Agents. The marginal cost , ( )G um A of a set A of 

agents is defined as 

 , \( ) ( , ) ( \ , )G u G G AA G u G A u     (4.42) 
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where ( , )G G u  and \ ( \ , )G A G A u  are the Cost Allocations  specified in Definition 8. ■ 

As mentioned earlier, the Marginal Cost can be split into two components: Competitive, 

and Divisive. These components are defined below. 

Definition 14: Competitive Cost of a Set of Agents. The competitive cost , ( )G u A  of a set 

A of agents is defined as  

 , \( ) ( , ) ( , )G u G G AA G u G u     (4.43)■ 

Definition 15: Divisive Cost of a Set of Agents. The divisive cost ( )G A of a set A of 

agents is defined as  

 , \ \( ) ( , ) ( \ , )G u G A G AA G u G A u     (4.44)■ 

It follows from (4.42), (4.43), and (4.44) that 

 , , ,( ) ( ) ( )G u G u G uA A A      (4.45) 

For a singleton set A consisting of an agent i these costs are given by 

 , \( ) ( , ) ( \ , )G u G G ii G u G i u     (4.46) 

 , \( ) ( , ) ( , )G u G G ii G u G u     (4.47) 

 , \ \( ) ( , ) ( \ , )G u G i G ii G u G i u     (4.48) 

In this paper singleton sets are referred by the elements instead of set notation. If G is 

connected, using Axioms II.1 and II.2 of the GCG with Positional Cost and (4.41), the Marginal 

Cost (4.46) can be written as 

 , | |
1 1

( ) : | | 1
j

p p

G u G k j
j j

i u u k G
 

      (4.49) 
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Here, p is the number of disconnected components of G obtained by the deletion of the 

agent i and : 1, 2,..,jk j p  are the sizes of these components. 

Remark 8: It follows from the Axiom II and (4.42), (4.43), and (4.44) that Marginal, 

Competitive and Divisive costs are all nonnegative. ■ 

Lemma 8: (Equality of Cost Allocation and PC) The Cost Allocation of an agent in a 

Graphical Coalitional Game with PC is the same as its PC. That is 

 , ,( ) ( , ) ( )G u G G ui i u i     (4.50) 

Proof: For { }A i and B G , (4.41) can be written as ( , ) ( , )G Gi u i u  . This 

establishes one of the desired equalities. Now for the second equality, substitution of { }A i  in 

(4.43) gives  

 , \( ) ( , ) ( , )G u G G ii G u G u     (4.51) 

or, by using (4.41) 

 , , ,\
( ) ( ) ( )G u G u G uj G i G i
i j j  

 
    (4.52) 

This gives , ,( ) ( )G u G ui i  , the second desired equality.  ■ 

The following example illustrates the computation of PC and its components in a given 

graph. 

Example 3: PC of agents in a GCG with PC ( , )G u   in a chain of three agents 

{1, 2, 3}G   as shown in Figure 4.1 (a).  

Now for the PC, using (4.6) ({1,2}) ({ }) ({1,2} {2,3}) ({2,3})1
, 2 1 1({1, 2}) ( )u u u u

G u
     . Using Axiom 

II of the game this is simplified to 1 1

3 1 32 2, ({1, 2}) ( )3G u u uu    . Similarly, 1

32, ({2, 3})G u u  , thus 

by (4.7) and (4.50) 1
, , 3 , ,4(1) (1) (3) (3)G u G u G u G uu        and 1

, , 32(2) (2)G u G u u   .  
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Using (4.46) for the computation of the Marginal Cost of agent 1

, \1(1) ( , ) ( \1, )G u G GG u G u    . By using (4.41) and symmetry of the graph structure 

, 3 2 ,(1) (3)G u G uu u     

Similarly , 3(2)G u u  . And using (4.48) for the computation of the Divisive Cost of    

agent 1is , \1 \1(1) ( , ) ( \1, )G u G GG u G u    . By using (4.41) and symmetry of the graph structure 

1
, 3 2 ,4(1) (1)G u G uu u    . Similarly 1

, 32(2)G u u   ■ 

4.5.3 Fair Advantage and Fair Cost 

It is established by Myerson [110] that in graphical coalition games Shapley value [127] 

is the only fair allocation in the sense that every edge equally contributes to each of its end 

vertices. Since Shapley value (4.3) is used in (4.29), the allocation of PA (4.29) is fair. 

In the computation of the allocation of cost to agents in (4.41) is not made directly by the 

Shapley value (4.6), but is made by (4.7), which is based on the Symmetric Connections Model 

of Jackson Wolinsky [104]. Therefore, the allocation of cost to the agents made in (4.41) is 

generally not fair in Myerson’s sense [110]. Thus the Cost Allocation of a Set of Agents (4.41) 

can be further divided into two parts: Fair Cost of a Set of Agents, and Surplus Cost of a Set of 

Agents. The first one is based on the Shapley value and the second one is the remaining part of 

the Cost Allocation. 

Definition 16: Fair Cost of a Set of Agents. The fair cost , ( )G uf A  of a set A of agents is 

defined as  

 , ,( ) ( )G u G ui A
f A i


  (4.53)■ 
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It is to be noted here that in this equation the individual cost function is based on the 

GCG with PC ( , )G u   in Definition 4 and not on Graphical Coalition Game ( , )G v   in 

Definition 1, thus , ( )G u i  is not same as , ( )G v i . 

Definition 17: Surplus Cost of a Set of Agents. The surplus cost , ( )G us A  of a set A of 

agents is defined as  

 , , ,( ) ( ( ) ( ))G u G u G ui A
s A i i 


   (4.54)■ 

It can be noted here that  

 , , ,( ) ( ) ( )G u G u G uA f A s A    (4.55) 

These notions of Fair and Surplus costs are mentioned here in this paper to support 

further research in Graphical Coalitions Games with PC. 

Remark 9: It implies from the above two definitions that if the Surplus Cost of an agent is 

positive then that agent is paying more than the fair share of the coalitional cost in Myerson’s 

sense [110]. Similarly negative value of Surplus cast of an agent mean that the agent is paying 

less than the fair share of coalitional cost in the same sense. For a graph with all the agents 

having 0 surplus cost implies all the agents are paying their fair share of cost, this generally 

happens in regular graphs. ■ 

4.5.4 Dependence of Cost Components of Agents on Graph Topology  

Some lemmas about the contributions in cost of the agents are presented next. They 

demonstrate the dependence of the Marginal, Competitive, and Divisive costs on the topology of 

the graph. As defined in the Section 4.2, a cut vertex is one whose removal increases the number 

of disconnected components.  The first results concern the marginal contribution. 
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Lemma 9: (Marginal Cost of Vertices) Given the graphical cost game ( , )G u   in 

Definition 4, in any connected graph G all the agents which are not cut vertices of G have the 

same marginal cost. Moreover their marginal cost is the minimum possible marginal cost within 

the connected graph. This minimum marginal cost is independent of the connected graph G and 

only depends upon | |G . 

Proof: The Marginal Cost , ( )G u i  for an agent i within a connected graph G is given by 

using (4.49). For a connected graph G the first term in the right hand side of this equation is 

constant, thus , ( )G u i  is minimum when the second term 
1

j

p

k
j

u

  in the right hand side of this 

equation is maximum, which under the given condition in (4.49) and according to Remark 3 in 

[77] is | | 1Gv  , when the agent i is not a cut vertex. This minimum marginal contribution is given 

by 

 , | | | | 1( )G u G Gi u u    (4.56) 

This minimum value is independent of the structure of G and only depends upon | |G . ■ 

Remark 10: In a connected graph G, if there is no cut vertexes then the Marginal Costs of 

all the agents are identical and independent of the graph structure. ■ 

Lemma 10: (Maximum Marginal Cost of  an Agent) In a connected graph G of size N, the 

maximum possible Marginal Cost an agent may have is of the center point of a star. 

Proof: For an agent i within a connected graph G the Marginal Cost , ( )G u i  is given by 

(4.49). For a connected graph G the first term in the right hand side of this equation is constant, 

thus ( )G i  is maximum when 
1

j

p

k
j

u

  is minimum, which according to Remark 3 of  [77], under 
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the given condition in (4.49) is 1(| | 1) 0G u  , which is possible only when removal of agent i 

from G leaves rest of the agents isolated.  ■ 

Remark 11: The Marginal Cost of the star point in a Star of size N is the total cost Nu . 

Moreover from (4.7) and Lemma 8 it follows that the maximum Competitive Cost of an agent is 

also possible only when agent is the star point and it is equal to 1
2 Nu . ■ 

The next two lemmas provide the conditions for an agent to have zero Marginal Cost.  

Lemma 11: (Marginal Cost of an Isolated Agent) In a GCG with PC, if an agent is 

isolated then its Marginal Cost is 0. 

Proof: For an agent i within a graph G the Marginal Cost ( )G i  is given by using (4.46) 

, \( ) ( , ) ( \ , )G u G G ii G u G i u     

Since the agent i is isolated, thus \ 1 \ 1( , ) ( , ) ( \ , )G G i G iG u G u u G i u u      , using the Axiom II, 

the above equation gives , ( ) 0G u i  .  ■ 

The next result shows that under condition (4.5), the above result is also sufficient.  

Lemma 12: (Agents with 0 Marginal Cost) In a GCG with PC with a game list having 

2 0u  , if the Marginal Cost of an agent is 0 then it is isolated. 

Proof: The Marginal Cost of an agent i in a GCG with PC is given by (4.46)  

, \( ) ( , ) ( \ , )G u G G ii G u G i u     

Under the given condition , ( ) 0G u i  , the above equation becomes \( , ) ( \ , )G G iG u G i u  . If 

G is the connected component in G containing the agent i then by using the Axiom II, the above 

equation can be written as  

\( , ) ( \ , )G G iG u G i u     
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or 

| |
1 1

: | | 1
i

p p

G k i
i i

u u k G
 

     

Under the given condition 2 0u  , by using Axioms II and Lemma 4 of [77], the above equation 

holds only if | | 1G  . This implies that the agent i is isolated. ■ 

Remark 12: It is already mentioned in Remark 8 all of Marginal, Competitive and 

Divisive costs are nonnegative. The zero value of Marginal Cost thus implies that both the 

Competitive and Divisive costs are zero. ■ 

4.6 Graphical Coalitional Games of Simultaneous Positional Advantage and Positional Cost 

In this section a Graphical Advantage and Cost Game (GACG) is defined. The game is 

based on the analogy that when agents join to make a coalition, both advantages and costs are 

involved. In such real-life situations, agents distribute the advantage among each other and share 

the cost. On the basis of GACG, three net advantages are defined. Results giving the bounds on 

these net advantages are also presented in this section. 

4.6.1 Components of Net Advantages in Games of Simultaneous Positional Advantage and 

Positional Cost 

In this subsection, under the game of Graphical Advantage and Cost, three kinds of net 

advantages are defined. These net advantages are Net Marginal Advantage (NMA), Net 

Competitive Advantage (NCA) and Net Altruistic Advantage (NAA). These net advantages are 

further used to study the situations where the objectives of the agents within the coalition are to 

optimize their respective advantages. 
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Definition 18: Graphical Advantage and Cost Game.  Given a graph G, the graphical 

advantage and cost game is defined as the game ( , , )G v u   where the advantage function v 

satisfies Axiom I and cost function u satisfies Axiom II. ■ 

The Net Marginal Contribution and its components are defined on the basis of the 

definition of Net Allocation or Net Payoffs in Definition 19 below. In the following definition 

A B G  , A is an induced subgraph of B which is an induced subgraph of the coalition G. 

Definition 19: Net Payoff or Allocation (NPA) of a Set of Agents in an Induced 

Subgraph. The allocation or payoff of the agents in coalition A when only the coalition B is 

considered is denoted as ( , , )A B v u and it is defined as 

 , ,( , , ) ( , ) ( , ) ( ) ( )A A A B v B ui A i A
B v u B v B u i i    

 
      (4.57) 

In this equation ( , )A B v  and ( , )A B u  are from (4.29) and (3.10) respectively. ■ 

Remark 13: From this definition the Net Payoff or Allocation (NPA) to a single agent i 

under GACG ( , , )G v u   is 

 , ,( , , ) ( ) ( )i G v G uG v u i i     (4.58) 

In this equation , ( )B v i  and , ( )B u i  are from (4.3) and (4.7) respectively. ■ 

Definition 20: Net Marginal Advantage (NMA) of an Agent in the GACG.  Given the 

GACG ( , , )G v u  , define the Net Marginal Advantage of agent or vertex i as the difference of 

its Marginal Contribution , ( )G vm i  [77] and Marginal Cost , ( )G u i and given by 

 , , , ,( ) ( ) ( )G v u G v G ui m i i    (4.59) 

where , ( )G vm i  is given by (4.34) and , ( )G u i  is given by (4.46). ■ 
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Definition 21: Net Competitive Advantage (NCA) of an Agent in the GACG.  Given the 

GACG ( , , )G v u  , define the Net Competitive Advantage of agent or vertex i as  

 , , , ,( ) ( ) ( )G v u G v G ui c i i    (4.60)■ 

Remark 14: Using Lemma 8 and Lemma 17 of [77], the above equation can also be 

written as  

 , , , ,( ) ( ) ( )G v u G v G ui i i     (4.61) 

which is the same as (4.58). ■ 

Definition 22: Net Altruistic Advantage (NAA) of an Agent in the GACG.  Given the 

GACG ( , , )G v u  , define the Net Altruistic Advantage (NAA) of agent or vertex i as the 

difference of its Altruistic Contribution , ( )G va i  [77] and Divisive Cost , ( )G u i and given by 

 , , , ,( ) ( ) ( )G v u G v G ui a i i    (4.62) 

where , ( )G va i  is given by (4.36) and , ( )G u i  is given by (4.48). ■ 

In Section 4.4.2 were given conditions on : 1,2,...,iu i N  for cost u to be a valid game 

list given that v is a valid game list. These results depend on condition (4.8) and some variants. 

The next results and those in Section 4.7 are obtained under the following conditions on Game 

Lists 1 2( , ,.... )Nv v v v  and 1 2( , ,.... )Nu u u u . 

Relative Cost and Advantage Conditions on Game Lists for Coalitions: 

 1( ) : 1,2,..., 1,i iu k v iv i N k      (4.63) 

 1( ),N Nu k v Nv k     (4.64) 

The following two lemmas give results about NMA and NAA bounds under certain 

condition on cost.  



114 

Lemma 13: (NMA in Connected Components) In a GACG ( , , )G v u   if conditions 

(4.63) and (4.64) hold for 0 1k k      then in the graph G the NMA of each agent i  in a 

connected component of size n is greater than or equal to 1v . 

Proof: In a GACG ( , , )G v u  , the NMA is given by (4.59) , , , ,( ) ( ) ( )G v u G v G ui m i i   , 

where , ( )G vm i  is given by (4.34) and , ( )G u i  is given by (4.46). For a graph G with the agent i in 

a connected component of size n, (4.59) can be written as 

 , ,
1 1 1

( ) ( ) ( ) : 1
i i

p p p

G v u n k n k i
i i i

i v v u u k n
  

         (4.65) 

Using the given value of the Cost List u, the above equation can be written as 

 , , 1 1
1 1 1

( ) ( ) ( ( ) ( )) : 1
i i

p p p

G v u n k n k i i
i i i

i v v k v nv k v k v k n
  

           (4.66) 

Rearrangement of the above equation yields 

 , , 1
1 1

( ) (1 )( ) : 1
i

p p

G v u n k i
i i

i k v v kv k n
 

        (4.67) 

Using Lemma 3 and 4 of [77] 1
1 1

: 1
i

p p

n k i
i i

v v v k n
 

     , since 0 1k k      the above 

equation yields , , 1( )G v u i v  . ■ 

The following lemma strengthens the above lemma under condition 2 12v v . 

Lemma 14: (NMA in Connected Components) In a GACG ( , , )G v u   if conditions 

(4.63) and (4.64) hold for 0 1k k      and 2 12v v  then in the graph G the NMA of each agent 

i  in a connected component of size n( 1 ) is greater than 1v . 
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Proof: The proof follows that same ways as the proof of the above lemma to get the same 

equation (4.67) for the NMA of an agent i 

, , 1
1 1

( ) (1 )( ) : 1
i

p p

G v u n k i
i i

i k v v kv k n
 

        

Using Remark 4 of [77] 1
1 1

: 1, 1
i

p p

n k i
i i

v v v k n n
 

      , since 0 1k k     the above 

equation yields , , 1( )G v u i v  . ■ 

The following lemma gives a condition when all the agents have NMA less than 1v  the 

value they have as standalone agent and without any coalition. 

Lemma 15: (NMA in Connected Components) In a GACG ( , , )G v u   if conditions 

(4.63) and (4.64) hold for 1k k    and 2 12v v  then in the graph G the NMA of each agent i  

in a connected component of size n ( 1 )is less than 1v . 

Proof: The proof follows that same ways as the proof of the Lemma 13 to get the same 

equation (4.67) for the NMA of an agent i 

, , 1
1 1

( ) (1 )( ) : 1
i

p p

G v u n k i
i i

i k v v kv k n
 

        

Using Remark 4 of [77] 1
1 1

: 1, 1
i

p p

n k i
i i

v v v k n n
 

      , since 1k k   the above 

equation yields , , 1( )G v u i v  . ■ 

Remark 15: For 1k k  , (4.67) gives , , 1( )G v u i v    ■ 

Lemma 16: (Bounds on NAA) In a GACG ( , , )G v u   if conditions (4.63) and (4.64) 

hold for 1k k    then the Net Altruistic Advantage (NAA) of all the agents is either zero or 

there is at least one agent with negative value NAA. 
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Proof: The Net Altruistic Advantage (NAA) of an agent i is given by (4.62)  

 , , , ,( ) ( ) ( )G v u G v G ui a i i    (4.68) 

where , ( )G va i  is given by (4.39) and , ( )G u i  is given by (4.48); using these equations, the above 

equation can be written as. 

 , , \ \ \ \( ) ( ( , ) ( , )) ( ( \ , ) ( \ , ))G v u G i G i G i G ii G v G u G i v G i u         (4.69) 

Using the Game Lists, the above equation can be written as 

 , , , ,
1 1 1 1

( ) ( ) ( ) ( ( ) ( )) : | |, | | 1
i i i i

q p q p

G v u k k j j G v G u i i
i i i i

i v u v u i i k G j G  
   

             (4.70) 

For the given value of the Game List 

 , , 1 , ,( ) ( ( ) ( ))G v u G v G ui v i i      (4.71) 

If all the agents are having same value of , ,( ( ) ( ))G v G ui i  , then by using the efficiency of the 

Shapley value [127] that , , 1( ( ) ( ))G v G ui i v   , otherwise at least one of the agent has 

, , 1( ( ) ( ))G v G ui i v   . This establishes the desired result. ■ 

The following lemma strengthens the above lemma under condition (4.2) and conditions 

(4.63) and (4.64) for 1k k  . 

Lemma 17: (Bounds on NAA) In a GACG ( , , )G v u   if conditions (4.63) and (4.64) 

hold for 1k k   and 2 12v v  then in a coalition having at least one edge, the Net Altruistic 

Advantage (NAA) of at least one agent with negative value NAA. 

Proof: Using (4.70) the Net Altruistic Advantage of an agent in a graph component of 

size n is   

 , , , ,
1 1

( ) ( ) ( ) ( ( ) ( )) : 1
i i

p p

G v u n n j j G v G u i
i i

i v u v u i i j n  
 

          (4.72) 
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Using (4.63) and (4.64) for the value of valid game list for cost, the above equation can be 

written as 

 , , 1 1 , ,
1 1

( ) (1 ) (1 ) ( 1) ( ( ) ( )) : 1
i

p p

G v u n j G v G u i
i i

i k v knv k v k n v i i j n  
 

             (4.73) 

By using the efficiency of the Shapley value [127], a connected component of size n there must 

exist an agent i with , ,( ( ) ( )) n n
G v G u

v u
i i

n
  

  . For this agent i the above equation become 

 1
, , 1 1

1 1

(1 )
( ) (1 ) (1 ) ( 1) : 1

i

p p
n

G v u n j i
i i

k v knv
i k v knv k v k n v j n

n


 

 
            (4.74) 

Simplification of the above inequality gives 

 , ,
1 1

( ) (1 )( ) : 1
i

p p
n

G v u n j i
i i

v
i k v v j n

n


 

        (4.75) 

By Lemma C.3, under the given conditions , , ( ) 0G v u i  . ■ 

4.6.2 Dependence of Net Payoff or Allocation on the Cost of Coalition 

In the next results all agents are motivated to stay in a coalition if each agent receives a 

Net Payoff or Allocation (4.58) greater than 1v , its payoff in a coalition consisting of itself. In the 

next results such NCA is called sufficient.   

Theorem 1: (Insufficient Net Payoff to a Single Agent) In a Graphical Advantage and 

Cost Game ( , , )G v u   if conditions (4.63) and (4.64) hold for 1k k   and 2 12 , 1v v N   

then in a connected graph G there is at least one agent with NCA less than 1v . 

Proof: The Net Competitive Advantage of an agent i, in a graph G is given by (4.60), and 

sum of all the NCAs taken over all the agents is given by  
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 , , , , , ,
1 1 1 1

( ) ( ( ) ( )) ( ) ( )
N N N N

G v u G v G u G v G u
i i i i

i i i i i    
   

        (4.76) 

The Positional Advantage , ( )G v i and the Positional Cost , ( )G u i  are given by (4.3) and 

(4.7) respectively, since both of them are based on the Shapley value thus these are efficient 

[127]. If the graph G is connected then using Axioms I.1 and II.1, (4.76) can be written as 

 , ,
1

( )
N

G v u N N
i

i v u


   (4.77) 

This implies that there exists at least one agent j such that  

 , , ( ) N N
G v u

v u
j

N
 

  (4.78) 

Using the given condition for iu , for i N the above inequality becomes  

1
, ,

( )
( ) N N

G v u

v k v Nv
j

N
  

  

or 

 , , 1( ) (1 ) N
G v u

v
j k kv

N
     (4.79) 

The given condition 2 12v v  implies that 1Nv Nv , Lemma 5 [77]. Moreover, it is given that 

1k  , thus (4.79) becomes 

, , 1 1( ) (1 )G v u j k v kv     

or 

 , , 1( )G v u j v   (4.80) 

This proves the desired result. ■  
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Remark 16: This theorem means that under the hypotheses, there always exists at least 

one agent with NCA less than the NCA of the standalone agent. Thereby, this agent has a motive 

to break away from the coalition.  ■ 

The following lemmas provide the foundation for upcoming results. They provide a 

condition when there is no agent in the coalition with NCA less than 1v . 

Lemma 18: (Insufficient Net Payoff to the Center Agent in a Star Graph) In a GACG 

( , , )G v u   if conditions (4.63) and (4.64) hold for 

1 1
12

1

1

1 2( )

N
N

N iN
i

N

v v v
k k

v Nv





 
  




, and 

2 12 , 1v v N  , and the connected graph G is a star then the star point is the only agent with 

NCA less than 1v . 

Proof: Let the vertex 1 be at the star point. Using (4.3), (4.7) and (4.60) NCA of the star 

point can be written as 

 1
, , 1

1

( )1 1
(1)

2 2

N
N

G v u i
i

k v NvN
v v

N





    (4.81) 

Since by Lemma C.2 1

1

1

2

N
N

i
i

v v
v

N 


 , the above equation can be written as 

 1 1
, , 1

( )1
(1)

2 2 2
N N

G v u

v v k v NvN
v  

    (4.82) 

or 

 1
, , 1(1) (1 )

2
N

G v u

v Nv
k v 

    (4.83) 

Since 1k   and 2 12v v , thus the above equation can be written as 

 , , 1(1)G v u v   (4.84) 
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It is thus established that NCA of the star point is lesser than 1v .Consider any other agent ( 1)j  , 

then owing to the symmetry in the star and using (4.3), (4.7) and (4.60) NCA of the point j can 

be written as 

 1
, , 1

1

( )1 1 1
( ) ( ( ) )

1 2 2

N
N

G v u N i
i

k v NvN
j v v v

N N





   

   (4.85) 

It follows form the given conditions that 

  , , 1( )G v u j v   (4.86) 

This proves the desired result. ■ 

Remark 17:  

1. It follows from the above proof that the partial condition 1 k k    establishes that the 

star point has NCA less than 1v . 

2. To assure a valid range for k for in the above lemma, it is required that 

1 1
12

1

1

2( ) 1

N
N

N iN
i

N

v v v

v Nv





 





; it follows from Lemma C.2 this inequality holds. 

3. Lemma 18 shows that under the given conditions only the star point has a motive to break 

the coalition. This result motivates that if the last member nu , of a Valid Game List for 

Graphical Coalitional Game with PC, is lowered such that NCA of the star point is 

greater than 1v  then no agent has a motive to disassociate from the coalition. This idea is 

capitalized upon in the next lemma. ■ 

Remark 18: In Lemma 2 and Remark 4 it is established that for  

 1 2 1 1 2 1( , ,.... : ( ), 1,2,3..., 1, 1, ( ), 1, 2 )N i i N Nu u u u u k v iv i N k u k v Nv k v v              
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to be a Valid Game List for GCG with PC the following two inequalities hold  

1

1 2 1

1
2

N

N n

v Nv
k

v v Nv 


 

 
 and 1 2 1

1

(2 )
1N n

N

k v v Nv
k

v Nv
    


. ■ 

The following Lemma gives a sufficient condition assuring that there is no agent in a star 

with NCA less than 1v . 

Lemma 19: (Sufficient Net Payoff for every Agent in a Star) In a GACG ( , , )G v u   if 

conditions (4.63) and (4.64) hold for 

11
12

1

1

2( )
1

N
N

iN
i

N

v v
k k

v Nv






   




and u is a valid game list with 

2 12v v  then there is no agent in a star with NCA less than 1v . 

Proof: It is established in Lemma 18 that for  

1 1
12

1
1

1

( ) : 1, 2,..., , 1,1 2( )

N
N

N iN
i

i i
N

v v v
u k v iv i N N k

v Nv





 
     




, 2 12v v  only the star point is the 

one with NCA less than 1v . It is given that 1k    thus it further reduces the cost of all the agents 

and guarantees that all agents other than the star point would have NCA less than 1v . Let 1 is the 

star point, thus from (4.3), (4.7) and (4.60) it can be written as 

 1
, , 1

1

( )1 1
(1)

2 2

N
N

G v u i
i

k v NvN
v v

N




 
    (4.87) 

Under the given condition on k  the above equation can be written as 

 , , 1 1
1 1

1 1 1 1
(1) ( )

2 2

N N

G v u i i
i i

N N
v v v v

N N


 

 
      (4.88) 

This equation yields , , 1(1)G v u v   and the desired result is established. ■ 
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Remark 19: Combining the result in the above lemma with Remark 18, it is established 

that for 1 2 1 1 2 1( , ,.... : ( ), 1,2,3..., 1, 1, ( ), 1, 2 )N i i N Nu u u u u k v iv i N k u k v Nv k v v             

to be a Valid Game List for GCG with PC and for all the agents to have NCA greater than 1v  a 

sufficiency is provided by the following two inequalities 1

1 2 1

1
2

N

N n

v Nv
k

v v Nv 


 

 
 and 

11
12

1 2 1 1

1 1

2( )
(2 )

N
N

iN
N n i

N N

v v
k v v Nv

k
v Nv v Nv



  


   
 


. Moreover from Lemma C.2 it follows that 

11
12

1

1

2( )
1

N
N

iN
i

N

v v

v Nv











, which assures that condition that 1k     of the above lemma is not 

violated in the above inequality. ■ 

4.7 Online Sequential Decision Coalition Games and Stable Graphs 

Based on the Graphical Advantage and Cost Game and Net Marginal Advantage, Net 

Competitive Advantage, and Net Altruistic Advantage in (4.59), (4.60) and (4.62) of an agent, 

three online coalition sequential decision games are defined in this section. Online or real-time 

refers to games that develop through time. In a sequential decision game, agents take turns 

sequentially in time to make valid or allowed moves (e.g. make or break an edge) to maximize 

their advantage in terms of a prescribed objective function. The agents can take turns either in a 

fixed order or randomly according to some probability distribution. A background on sequential 

decision games can be found in Chapter 5 of [130]. 

The properties of sequential decision games depend on the allowed moves and the 

prescribed objective function. An important concept in sequential coalition decision games is 

stability of graph topologies [104], [110].  Stability is important in studying the steady-state 
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graph topologies of sequential decision games.  Stable topologies show the structure of the 

coalitions that form under various allowed moves and decision objective functions. 

In this section, first we define the sequential decision games. Next, the stable coalition 

graph topologies under these games are presented. 

4.7.1 Sequential Decision Games 

In the online game defined here, agents are free to make coalitions by making or breaking 

edges with other agents. This online decision game is defined on top of the GACG and Net 

Marginal Advantage, Net Competitive Advantage, and Net Altruistic Advantage in (4.59), (4.60) 

and (4.62) of an agent. The agents make allowed moves sequentially through time; the moves are 

made to maximize a prescribed objective function. 

Allowed Moves.  In this online game, at each move, an agent is selected at random; this 

agent is free to unilaterally break any edge incident at it or to bilaterally make an edge provided 

the other agent incident on the edge agrees to make it, as detailed below. In a single step, an 

agent is allowed either to make or break several edges.  

Objective Functions. An objective function ( )Gf i , for each agent i in a coalition 

represented by graph G is a real, nonnegative function. Edges are made or broken by a selected 

agent in order to maximize ( )Gf i . 

Based on the Allowed Moves and the Objective Function the sequential decision game is 

defined as follows.  

Definition 23: Sequential Decision Games. In a sequential decision game a selected agent 

makes or breaks edges according to the rules: 

a) An agent i forms an edge { , }e i j  if ( ) ( ) ( ) ( )G e G G e Gf i f i and f j f j     
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b) An agent i breaks an edge { , }e i j  if \ ( ) ( )G e Gf i f i    

Based on the net marginal, competitive and altruistic contributions in Section 4.6 the 

motives of agents for forming and breaking the edges are different. Taking these contributions as 

objective functions, three sequential decision games can be defined. 

i. Game of Maximal Net Marginal Advantage (max-NMA) 

In this online game the objective function , ,( ) ( )G G v uf i i .  

ii. Game of Maximal Net Competitive Advantage (max-NCA) 

In this online game the objective function , ,( ) ( )G G v uf i i .  

iii. Game of Maximal Net Altruistic Advantage (max-NAA) 

In this online game the objective function , ,( ) ( )G G v uf i i . ■ 

In these three sequential decision games an agent i is said to have a motive to make an 

edge if the condition (a) in Definition 23 is satisfied and it is said to have a motive to break an 

edge if the condition (b) in Definition 23 is satisfied. 

4.7.2 Stability of Graph Topologies Under Sequential Decision Games 

For a group of N agents there are ( 1)/22N N  possible simple graphs. When agents are 

allowed to make valid moves, as they proceed, they may reach a graph where no agent has a 

motive to make any further moves. Such graphs are called stable graphs. The Structure of stable 

graphs is thus dependent on the allowed moves and the objective function of the sequential 

decision game.  

In [110] Myerson allowed only the breakage of an edge as a valid move. Under such 

allowance, for the game in Definition 1 every graph is stable. In [104] the rules of making and 



125 

breaking edges are nearly the same as those in the sequential decision games of Definition 23. 

However, in [104] there is a fixed cost associated with making edges.  

The next development specifies the stable graphs for the Sequential Decision Games of 

Maximal Net Marginal Advantage (max-NMA), Maximal Net Competitive Advantage (max-

NCA), and Maximal Net Altruistic Advantage (max-NAA). The balance between the value of 

being connected and the cost of maintaining edges has a pivotal role in determining the stable 

graph structures. The balance is captured in the relative cost and advantage conditions (4.63) and 

(4.64). 

Definition 24: Stable Graph. In any online sequential decision game, a graph is called 

stable when no agent has a motive either to make an edge or to break an edge.  ■ 

The following theorem is based on Theorem 1, and gives a condition on the cost so that 

no agent is willing to make a coalition in the game of max-NMA. 

Theorem 2: (Stability of a Connected Graph in max-NMA) In a max-NMA under 

conditions (4.63) and (4.64) for 0 1k k     and under condition 2 12v v , a graph G is stable if 

and only if it is connected.  

Proof: The proof of this theorem is divided into three parts: In the first part it is 

established that if G is connected then no agent has a motive to make an edge, the second part 

proves that in a connected graph G no agent has a motive to break an edge and in the third and 

final part the proof is concluded by proving that if the graph G is disconnected then there is 

always a motive to make an edge. First two parts prove the sufficiency of the theorem while the 

last part proves the necessity of the theorem.   
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In the first part it is established that if G is connected then no agent has a motive to make 

an edge. The Net Marginal Advantage of an agent i is given by (4.67), for a connected graph G, 

| |n N G   and it can be written as 

 , , 1
1 1

( ) (1 )( ) : 1
i

p p

G v u N k i
i i

i k v v kv k N
 

        (4.89) 

It follows from this equation that making of an edge by the agent i incident at it does not 

change any of the term it. Thus, under Definition 23 of max-NMA, in a connected graph G no 

agent has motive to make an edge. 

In the second part of this proof it is established that no agent has a motive to break an 

edge. The NMA of an agent i is given by (4.67)  

 , , 1
1 1

( ) (1 )( ) : 1
i

p p

G v u n k i
i i

i k v v kv k n
 

        (4.90) 

By Lemma C.12, breakage of an edge by the agent i incident at it results into a possible decrease 

in the value of term 
1

i

p

n k
i

v v


  in the above equation; under condition 0 1k   results in 

possible decrease in the value of NMA of the agent i. Thus, under Definition 23 of max-NMA, in 

a graph G no agent has motive to break an edge. 

In the third part of the proof it is established that in a disconnected graph G, an agent i 

has a motive to make an edge. It implies from Lemma C.12, that making of an edge by the agent 

i incident at it with another agent j, which is disconnected form it in G, results into a sure 

increase in the value of term 
1

i

p

n k
i

v v


  in the above equation; under conditions 0 1k   and 

2 12v v , it results in sure increase in the value of NMA of the agent i. Thus, under Definition 23 

of max-NMA, in a graph G agent i has motive to make an edge. Moreover, it implies from the 
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first part of the proof that this motive of the agent i to make an edge remains there till it gets 

connected with all the agents. This establishes the desired result. ■ 

Remark 20: It follows from the above theorem that under the game max-NMA and under 

the given conditions of the theorem, all the connected graphs are Nash Points of the space of all 

the graphs on N points. Moreover, a tree being connected, is also stable in the game max-NMA 

under the given conditions. ■ 

Theorem 3: (Stability of a Completely Disconnected Graph in max-NMA) In a max-

NMA under conditions (4.63) and (4.64) for 1k k   and under condition 2 12v v , a graph G is 

stable if and only if it is completely disconnected.  

Proof:  Let the graph is completely disconnected. In a completely disconnected graph 

each agent has NMA 1v . According to Lemma 15 under the given conditions all the agents in 

connected components of size n ( 1 ) have NMA less than 1v . Thus no agent has a motive to 

make an edge. It implies that a completely disconnected graph is stable.  

Conversely suppose that the graph G is not completely disconnected. It implies that there 

is at least one component of size greater than 1. By Lemma 15 under the given conditions all the 

agents in connected components of size n ( 1 ) have NMA less than 1v . Thus all these agents 

have motive to break all their edges, since making of any number of edges by these agents still 

maintains the same situation. Thus a graph G which is not completely disconnected is not stable.■ 

The above two theorems establish that (4.63) and (4.64) for 1k k  act as a thresholds 

of costs for max-NMA given by 

 1( ) : 1,2,...,i iu v iv i N    (4.91) 
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Every agent is willing to stay in a coalition below the threshold and all break up as early cost 

goes above the threshold.  

The following two theorems are based on Theorem 1, and give conditions on the cost so 

that either no agent is willing to make a coalition in the game of max-NMA or all agents are 

willing to make coalition. Furthermore, the following theorem gives an upper bound on cost for 

the existence of a non-trivial coalition in max-NCA sequential decision game. 

Theorem 4: (Stability of a Completely Disconnected Graph in max-NCA) In a Sequential 

Decision Game of Maximal Net Competitive Advantage (max-NCA) under conditions (4.63) and 

(4.64) for 1k k    and under condition 2 12v v , a graph G is stable if and only if it is 

completely disconnected. 

Proof: It is established in Theorem 1 that for a connected graph of size N there exists at 

least one agent with NCA lesser than 1v . That is to say in a connected graph of size N there 

always exists an agent j such that  

 , , 1( )G v u j v   (4.92) 

This implies that in a connected graph G there always exists at least one agent j with motive to 

break the entire edges incident at it. The desired sufficiency is a domino effect of the above result 

for the connected components of sizes between 2 and 1N  .  

Conversely suppose that the graph G is completely disconnected. Then by Remark 17 no 

agent has a motive to make any edge. This establishes the necessity and the desired result. ■ 

The above theorem for max-NCA is analogous to Theorem 3 for max-NMA, since it 

establishes the fact that above the threshold of cost given by  (4.91) no agent is willing to remain 

in a coalition.  
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Remark 21: In a max-NCA if 1( ) : 1,2,...,i iu v iv i N    and 2 12v v  then only the 

completely disconnected graph is stable. ■ 

The following theorem is based on Lemma 19 and gives a condition on the cost so that no 

agent is willing to leave a connected coalition. It is to be noted that the following theorem does 

not establish the stability of a connected coalition. 

Theorem 5: (Stability of a Connected Graph in max-NCA) In a max-NCA if conditions 

(4.63) and (4.64) hold for 

11
12

1

1

2( )
1

N
N

iN
i

N

v v
k k

v Nv






   




, 2 12v v ,with u is a Valid Game List  

then every agent benefits by remaining in a connected coalition of size N. That is a stable graph 

must be connected. 

Proof: Without the loss of generality suppose that the game starts with a connected initial 

graph oG . If all agents j are having , , 1( )G v u j v   then by Theorem 1 it is not possible to make a 

coalition of smaller component size with all the agents having , , 1( )G v u j v  . Suppose that there 

exists an agent j in oG  with 1( )j v   and it is unable to find a configuration with , , 1( )G v u j v   

then again by Theorem 1 all the agents will disassociate under the domino effect to make the 

completely disconnected graph. By Lemma 18 the agent who gets the next move makes a star, 

which is a connected graph. ■ 

The above theorem gives thresholds of cost in the game max-NCA below which each 

agent wants to remain in a connected coalition. Though these thresholds are different than those 

established by Theorem 2 for max-NMA yet the above theorem for max-NCA is analogous to it 

in the sense that both the theorems give thresholds for the costs co that agents remain connected. 
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Remark 22: Under conditions hypothesized in the above theorem, if an agent is made to 

leave the coalition then rest of the agents get out of the coalition and the coalition fragments into 

isolated agents; such coalition is called a fragile coalition. ■ 

This gives rise to the following definition.  

Definition 25: Fragility of a Graph. In any online sequential decision game, a graph 

representing a coalition is called fragile when no agent has a motive to get itself disconnected 

from the graph but if one agent gets disconnected then rest of the coalition disintegrates into a 

completely disconnected graph. ■ 

Needless to mention that under the conditions mentioned in Theorem 5 a connected graph 

is fragile. The fragility of coalitions is to be discussed in next research. 

The following theorem gives a stable graph in a Sequential Decision Game of Maximal 

Net Altruistic Advantage (max-NAA).   

Theorem 6: (Stability of a Completely Disconnected Graph in max-NAA) In a max-NAA 

for conditions (4.63) and (4.64) hold for 1k k   then a graph is stable if and only if it is 

completely disconnected. 

Proof: In a completely isolated graph the only move an agent i may have is to make some 

edges. No matter how many edges an agent makes, according to Lemma 16, under the given 

conditions, either all the agents have zero value of NAA or there is at least one agent with 

negative value of NAA. This decimates any motive to make an edge according to Definition 23 

of the Sequential Decision Game max-NAA. Moreover, the result follows for 1k k   since the 

more the values of k and k the lesser the value of NAA. Thus the completely disconnected graph 

is stable.  
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Conversely suppose that there exists a stable graph G which is not completely 

disconnected. Thus there exists at least one connected component S of size greater than 1 in G. 

According to Lemma 17, under the hypothesized conditions there must exists one agent with 

negative value of NAA; such agent has at least one motive to break all of its edges and get itself 

disconnected from the rest of the graph. This implies that G is not stable. ■ 

The above theorem establishes that beyond the same threshold given by (4.91) the agents 

prefer to stay disconnected. With this theorem it is proven that above the thresholds of cost given 

by (4.91) the agents prefer to stay in a completely disconnected or trivial coalition irrespective of 

their motive or objective function. Thus the threshold given by (4.91) is instrumental in 

examining the feasibility of making a coalition when both the advantages and costs are involved. 

4.8 Conclusions 

A graphical coalitional game with Positional Cost is defined in this paper. In this game, 

the total cost of a coalition depends upon the connectivity of the agents and the number of agents 

involved in the coalition.  Allocation rules based on Shapley values assign the cost primarily to 

the edges and then equally divided to the agents or vertices [104], [105]. The game defines the 

notion of PC of agents in a coalition from a graph theoretic view point. Certain elementary 

properties of the game are established for this framework. In this paper allocation rules of 

advantage are the same as those introduced in [77]. The advantage and cost are used to define 

Net Payoff or Allocation; it is further used to define three net advantages: Net Marginal 

Advantage, Net Competitive Advantage, and Net Altruistic Advantage. These net advantages are 

based on the components of cost defined in this paper and components of advantage defined [77] 

and according to the concepts in [74]. A number of results about the dependence of these net 

advantages on coalition structure are presented. This provides the constructions needed to define, 
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on top of the graphical coalitional advantage and cost game, three online sequential decision 

games: max-NMA, max-NCA, and max-NAA. The preferred graphs under each sequential 

decision game, under certain relations between the advantages and costs are studied. It is shown 

that the stable graphs in max-NMA are any connected graph, including a tree. The preferred 

graph in max-NCA is a connected graph or completely disconnected graph under certain other 

condition.  The completely disconnected graph is stable in max-NAA under certain conditions. 

These preferences in the three sequential games yield thresholds of cost beyond which agents 

stay in completely disconnected or trivial coalition irrespective of sequential game. It is 

anticipated that under the conditions in Theorem 5 if the graph representing the coalition is a tree 

then it is stable; the result will be reported in the next research.   

The complete setup established in this paper is suitable to understand the significance of a 

graph vertex when only the graph topology is known. The setup provides a guideline for the 

formation of coalitions, and serves to examine the competitiveness and altruism aspects of the 

coalition. It is also established that above certain cost there is no motive left for any agent to 

remain connected in a coalition.  
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Chapter 5  

Internal Structure of Coalitions in Digraphs 

This chapter introduces the structure of a Graphical Coalition Game on digraphs which 

assigns a value to each digraph based on its connectivity. Fundamental properties of the game are 

established in the form of technical lemmas. Novel graph theoretic structures including multi-

chain, and semi-strongly connected digraphs, are defined; these structures are pivotal in defining 

the Graphical Coalition Game on digraphs, and algorithms are devised to compute these 

structures. Marginal contribution made by an agent within a coalition, modeled as a digraph, is 

defined; results are established about the dependence of marginal contribution made by an agent 

upon its position in the digraph. On top of marginal contribution, three sequential decision games 

are defined and stable coalitional structures under these games are established. Stable structures 

for these games are multi-chains, semi-connected digraphs and chains of command; these 

structures are useful in cooperative control theory. 

5.1 Introduction 

This Chapter extends the idea of a graphical coalition games (GCG) introduced in [77], 

on digraphs. The game is used to provide a rigorous study of the internal structure of coalitions 

where the flow of information is asymmetric and modeled as a digraph. Novel digraph structures 

required for the development in this paper are defined and are used to state the Axioms of Value 

for GCG on digraphs, to assign values to digraphs. Notion of total or marginal contribution made 

by an agent [74] is defied for agents within a coalition modeled as a digraph, and the dependence 

of the marginal contribution made by the agents, on their position in coalition is studied.  

Game theory is a mathematical discipline [71], [114], [132], [136], that deals with issues 

and strategies involving competitions and cooperation between several entities  [73], [90], [92], 
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[103], [106], [133], [116], [141]. In the scope of mathematical game theory these entities are 

called players or agents [84], [116], [119], [120], [121], [122], [123], [130]. With no exceptions, 

in engineering systems, game theory is extensively used in situations involving competition and 

cooperation [76], [81], [82], [91], [108], [109], [117], [125], [137], [138], [139], [140], [142]. 

Game theory is primarily divided into two areas [116], [132]: noncooperative game theory [84], 

and cooperative game theory [116], [130]. In noncooperative game theory the fundamental unit 

of study is the individual agent, and the theory deals with its performance and strategies in 

interaction with other individual agents. By contrast, in cooperative game theory, the 

fundamental unit is the set of agents or coalition. Cooperative game theory deals with the value 

of the coalition, payoff allocations to individual players, and the stability of coalitions [116], 

[130].  

Cooperative games can be divided into three classes: Canonical Coalitional Games, 

Coalition Formation Games, and Coalitional Graph Games [84], [123]. Canonical coalitional 

games mainly deal with the stabilization of the grand coalition of all the agents. Methods are 

sought to allocate the net value of the coalition to individual agents in such a way that agents are 

encouraged to join the coalition. A fair allocation [110] that often accomplishes this is the 

Shapley value [127]. Coalition formation games mainly deal with coalitions based on gains and 

costs. Given prescribed gains and costs, the structures of the resulting coalitions are studied. 

Finally, the coalitional graph games deal with the formation and stability of coalitions given an 

underlying communication graph structure [82], [123]. In the work of Baras [81], [82] and of 

Başar [119], [120], [121], [122], [123] coalitional graph games are studied with applications to 

communication networks. Various definitions of value are used in [119], [120], [121], [122], 

[123], including probability of detection, gain of resources of other agents, effective throughput, 
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and packet success rate. Various definitions of cost are used including probability of false alarm, 

vulnerabilities from other agents, download delay, mean waiting times, and path delay. Given the 

total value, algorithms are developed to form effective coalitions for communications. 

Closely related to the coalitional graph games are online or sequential-in-time decision 

games.  These are games where agents make moves through time sequentially to maximize their 

prescribed objective functions [130]. These games are defined by specifying the method of 

selection of the agent to make moves at each time, the allowed moves of the agents, and the 

objective function the agents seek to maximize. Agents might make moves according to some 

fixed round-robin procedure, or randomly according to some probability distribution function. 

These online sequential decision games best model real-life situations where the players are free 

to change their alliances as considered suitable by them to obtain their objectives. 

In his classical work [110], Myerson used graph theoretic ideas to analyze cooperation in 

coalitional graph games. He proposed to restrict the interactions in coalitions based on the 

underlying communication graph structure. He showed that the unique fair (in his sense) 

allocation of the net value of the coalition to the agents is given by the Shapley value [127]. In 

their paper [104], Jackson and Wolinsky analyzed the stability of networks when the individual 

agents can choose to form and maintain the links between them. An agent gains value on 

connecting to an agent which is well-connected to other agents in the graph, and accrues a cost 

based on maintaining direct communication edge links with its neighbors.  It is shown that 

different relations between the link cost and the propagation of value along a path result in 

stability of different structures, such as complete graph, star graph, etc. 

The objective of this paper is to provide tools to study the internal structure of coalitions 

on digraphs on the basis of different motives of the agents. This paper extends the idea of 
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graphical coalitional game (GCG) introduced in [77], on digraphs. The first contribution of this 

paper is to introduce novel digraph structures. These digraph structures are not only pivotal for 

the development in this paper, but they can also provide further insight to the cooperative control 

theory [1], [2], [3], [7], [8], [79], [135]. Algorithms are also devised to get these digraph 

structures.  

The second contribution of the paper is definition of GCG on digraphs. The game is 

based on a Value Function that is required to satisfy five formal axioms. Owing to these axioms 

imposed on the Value Function, it is possible to perform a rigorous study of the internal structure 

of coalitions on digraphs. A detailed machinery of the game is developed in the form of technical 

lemmas in the Appendix at the end. It is established that the game is convex, thereby guarantees 

a fair allocation to the agents. 

The third contribution of the paper is to study the marginal contribution [74] of agents 

within a coalition represented as a digraph; the dependence of marginal contribution on graph 

topology is also studied. The fourth contribution is the definition of three online sequential 

decision games based on the marginal contribution. These games are defined by varying the rules 

for agents to make or break arcs to maximize their marginal contributions. It is shown that the 

three sequential decision games have different stable coalition structures; these are multi-chain, 

semi-strongly connected digraphs, and chain of command; these structures are formally defined 

in Section 5.2. These stable structures are inherent properties of the objective function and rules 

of the three games, not parameter dependent as in [104]. 

The GCG on digraphs, and the sequential decision games proposed in this paper can be 

used in a variety of ways in problems involving situations of simultaneous competition and 

collaboration among anonymous agents. The GCG on digraphs can be used to determine the 
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social standing of various kinds of agents purely on the basis of the communication structure, 

where there are asymmetric relations between agents [71], [75], [124], [132]. The notion of 

marginal contribution made by the agent developed in Section 5.4 can be used to determine the 

comprehensive contribution of an agent to digraph structure [74]. The sequential decision games 

in the Section 5.5 can be used to understand the internal structure of a coalition based on the 

notions of marginal contribution. The novel digraph structures and theory of sequential decision 

games developed in this paper can be used in cooperative control theory [1], [2], [3], [7], [8], 

[79], [135]. Situations in economics, communication, and swarm control are very complex; here 

a lot of agents interact in situations of simultaneous competition and cooperation. The theory 

developed in this paper can be used to understand complex situations of joint competition and 

cooperation [74], [81], [82], [111], [117], [123], [125], [131], [140]. 

The paper is organized as follows. Novel digraph structures are defined Section 5.2, 

algorithms to get these structures in polynomial time are also elaborated in this section. A 

graphical coalition game on digraphs is defined by formal Axioms of Value Function, in Section 

5.3, it is also established that the game is convex. Motivated by [74], Section 5.4 defines the 

marginal contribution made by an agent towards a coalition; results about the dependence of the 

marginal contribution made by an agent upon its position within a digraph are also established in 

this section. In Section 5.5, three online sequential decision games are defined on top of the GCG 

on digraphs. The stable digraph structures under each of these three games are studied. These 

structures also provide insight to the cooperation of agents within a coalition, where flow of 

information is asymmetric, and modeled as a digraph. Simulation results for several online 

sequential decision games are presented in Section 5.6 and shown to support the stable graph 

structures. 
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5.2 Digraphs Definitions and Algorithms 

In this paper a graphical coalitional game GCG on digraphs is defined. The game 

provides an extension to the graphical coalitional game defined in [77]. The GCG defined in [77] 

is applicable to the coalitions which can be modeled as simple graphs; this extension defined a 

GCG for the coalitions which are modeled as digraphs. This section provides essential 

background knowledge about digraphs. Moreover, some novel digraph structures are introduced; 

these structures are essential to define GCG on digraphs. Algorithms are also devised to get these 

structures in digraphs. 

5.2.1 Digraph Definitions  

A digraph is an ordered pair ( , )D V E , such that V is a finite set and E V V  where

V V is the set of all the ordered pairs of the elements of V. The cardinality ofV V is 

represented as | |V V and equal to 2| |V where | |V is the cardinality of V called the order of the 

graph and, in our discussion, represented by N or | |D . In this paper, digraph do not contain self-

loops and multiple arcs, moreover, the arcs do not have any weight associated to them, thus 

{( , ) : , , }E a b a b V a b    and its maximum cardinality is 2N N . In this paper V is called the 

set of vertices, or agents and E is called the set of arcs. Consequently the elements of V are called 

vertices of the digraph and usually denoted by v and the elements of E are called arcs of the 

digraph and usually denoted by e. If 1 2( , )e v v with 1 2,v v V is an arc, then e is said to connect 1v

to 2v . It is also said that 1v dominates 2v or in other words 1v is at the tail of e and 2v  is at the head 

of e. The number of arcs with heads at a vertex v is the in-degree of v and denoted as ( )d v . 

Similarly, the number of arcs with tails at the vertex v is the out-degree of v and denoted as 
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( )d v . The sum of in-degree and out-degree of a vertex v is called degree of v and denoted as

( )d v . 

Digraphs and simple graphs [77], [94], [87], sharing the same set of vertices are linked in 

several ways. A simple graph G can be taken as a bidirectional graph by replacing each of its 

undirected edge by a pair of opposite arcs connecting the same pair of vertices. This bidirectional 

graph D thus obtained is called associated bidirectional graph of G. Another way to get a digraph 

D from a simple graph G is to replace each of its undirected edge with one of the two possible 

arcs connecting the same two ends. In this case D is called an orientation of G. It can be seen that 

there are | |2 E possible orientations of a labeled graph ( , )G V E . If all the arcs of a digraph D are 

replaced by edges, the resulting simple graph G is called underlying undirected graph.  

A sequence of distinct vertices 0 1, ,..., ; 1Mu v v v v M    starting from a vertex u to 

another vertex v such that there exist an arc from vertex iv to the vertex 1iv  for all 

0,1,2,..., 1i M   is called a directed path from u to v within a digraph D, it is written as

0 1{ , ,..., }MP u v v v v   and the existence of the directed path is denoted as uPv ; if there exists 

an arc e from the last vertex of P to the first vertex then 0{ }P v is called a directed cycle or a 

circuit. A vertex u is said to be connected to a vertex v if there is a directed path from u to v. The 

minimum hop count over the paths from u to v is called distance from u to v. A digraph is said to 

have a root r V if r is connected to every vertex v. A digraph is called strongly connected if 

every vertex of the digraph is connected to every other vertex that is to say in case of strongly 

connected digraph every vertex is a root vertex. It is possible for a digraph which is not strongly 

connected to have a connected underlying undirected graph; such digraph is called weakly 
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connected. There is still another notion of connectivity known as quasi strong connectivity; a 

digraph is said to quasi strongly connected if for each pair of vertices ,u v V there always exists 

a vertex w such that both u and v are reachable from w through directed paths. Thus a digraph 

having at least three root vertices is at least quasi strongly connected. A digraph whose 

underlying undirected graph is disconnected is called a disconnected digraph. A digraph having 

tree as underlying undirected graph, and having exactly one root vertex is called a chain of 

command. Another notion of connectivity in digraphs is introduced in the next subsection. 

If ( , )D V E  and ( , )S V E  are two graphs such that V V  and E E  then S is called 

a subgraph of D; a subgraph of a digraph is a digraph in its own capacity. Moreover if E

contains all the arcs ( , )e u v E   with ,u v V  then S is called an induced subgraph of D, in this 

paper it is denoted as S D . An induced subgraph of D obtained by excluding a vertex u from 

V is denoted as \{ }D u or simply \D u . A maximal induced subgraph of a digraph D with all its 

vertices connected to each other is called a strong component in D. Algorithms to find strong 

components of a digraph include Kosaraju’s Algorithm, Tarjan’s Algorithm [134], and Gabow’s 

Algorithm [101]. A strongly connected digraph is said to have one strong component. It can be 

proved that a strict digraph is acyclic if and only if it has no non-trivial strongly connected 

component. If a component is not strongly connected then it is called a weakly connected 

component. Another notion of components in digraphs is detailed in the next subsection. 

Structural contraction of the digraph ( , )D V E  is obtained by taking its strong 

components as a single vertex to get a new digraph ( , )D V E , such that each vertex v V  is a 

strong component of D and there is an arc from iv V  to jv V  if and only if there is an arc 
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from any vertex in the strong component iv V  to a vertex in the other strong component 

jv V , in D. Further details of these graph theoretic concepts are available in [94], [87]. 

5.2.2 Pivot Vertex and Key Concepts for Graphical Coalition Games on Digraphs 

This subsection introduces novel concepts in digraphs required for defining the Axioms 

of Value for the Graphical Coalition Game on digraphs, introduced in this paper. These concepts 

play a pivotal role in Section 5.3 in formulating axioms to assign value to the digraph structures. 

These digraph concepts also provide further insight to the cooperative control [1], [2], [3], [7], 

[8], [79], [135].  

Definition 1: Pivot Vertex. Given a digraph ( , )D V E  a vertex v V is called a pivot 

vertex in D if there does not exist a vertex u V  such that v is reachable from u but u is not 

reachable from v.  ■ 

Remark 1: A root vertex is by definition a pivot vertex, converse is not true. Thus, if a 

graph is strongly connected then all of its vertices are pivot vertices. Moreover, an isolated 

vertex is trivially a pivot vertex.  ■ 

The following algorithm provides a procedure to get all the pivot vertices in a digraph. 

Algorithm 1: Search for all pivot vertices. 

1. Input = Digraph ( , )D V E  

2. Output =  Set of pivot vertices = S =  

3. Get ( , )D V E , the structural contraction of ( , )D V E  

4. S Set of pivot vertices in ( , )D V E =  

5. S All the vertices v V with zero in-degree 
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6. { : , }S v v V v v S     

Proof of Correctness: Proof follows from the definition of structural contraction and pivot 

vertex. ■ 

It follows from the definition of pivot vertex and strong component of a digraph D, that if 

one vertex of a strong component of D is a pivot vertex then all the vertices of this strong 

component are also pivot vertices of D. It motivates the following definition.  

Definition 2: Set of Independent Pivot Vertices. Pivot vertices existing in different strong 

components of the digraph ( , )D V E  are called independent pivot vertices. A maximal 

collection of pivot vertices by taking one pivot vertex from each of the strong component having 

pivot vertices is called a set of independent pivot vertices. In this paper the set of independent 

pivot vertices is denoted as DP . ■ 

All the sets of independent pivot vertices have the same cardinality. If a set of 

independent pivot vertices DP  of a digraph ( , )D V E  is singleton then pivot vertices are also 

root vertices, in this paper such digraphs are named as semi-strongly connected digraphs. 

Definition 3: Semi-Strongly Connected Digraph. If the sets of independent pivot vertices 

DP  of a digraph ( , )D V E  are singleton then the digraph is called semi-strongly connected 

digraph.  ■ 

Remark 2: All the concepts of connectivity in digraphs are mutually related. As the name 

implies, strong connectivity implies all the concepts of connectivity discussed in this paper, 

while converse in not true in general; whereas, weak connectivity does not imply any other 

connectivity discussed in this paper and all the other concepts of connectivity discussed, imply 

weak connectivity. Quasi strong connectivity implies semi-strong connectivity while converse is 
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not true in general; for example, a chain of command is semi-strongly connected digraph with its 

root vertex as the unique pivot vertex, and it is not quasi strongly connected. ■ 

Remark 3: In a coalition represented by a semi-strongly connected digraph, when agents 

want to reach a consensus by local averaging, all the agents reach a unique consensus value.■ 

It follows from the definition of a pivot vertex that generally there are certain vertices 

which are reachable from a pivot vertex while some vertices are not reachable from the pivot 

vertex. This motivates the following definition. 

Definition 4: Semi-Strongly Connected Component. For a digraph ( , )D V E  and DP  as 

a set of independent pivot vertices, let Dv P  be a pivot vertex of the digraph. Then the 

subgraph of ( , )D V E  induced by the vertices reachable from v and v is called a semi-strongly 

connected component of D induced by v and represented by vD . All the vertices included in the 

component vD  are part of the component. The collection of all the semi-strongly connected 

components of D is represented by PD .  ■ 

Remark 4: Semi-strongly connected components are vital for the development of the 

graphical coalition game on digraphs in this paper. Moreover, this notion gives further insight to 

the consensus of agents within a coalition where the flow of information is modeled as digraphs; 

a pinning agent affects the consensus value [1], [2], [3], [7], [8], [79], [135] of only those agents 

who are within its semi-strongly connected component.  ■ 

Definition 5: Multi-Chain. For a weakly connected digraph ( , )D V E , if each semi-

strongly connected component is a chain of command then the digraph is called multi-chain.■ 

Remark 5: Multi-chains are important structures in cooperative control where there is 

more than 1 pinning agents [1], [2], [3], [7], [8], [79], [135]. In such situations, coalitions 
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modeled as multi-chains, have minimal Fidler Eigen Values and maximal rate of convergence to 

the consensus [1], [2], [3], [7], [8], [79], [135]. Multi-chains have no circuits but the underlying 

undirected graph may be cyclic. Moreover, the set of independent pivot vertices DP  of a Multi-

chain is unique. ■ 

The following algorithm finds all the semi-strongly connected components of a digraph 

( , )D V E ; the working of this algorithm is similar to that of Algorithm 1. 

Algorithm 2: Search for all Semi-Strongly Connected Components. 

1. Input = Digraph ( , )D V E . 

2. Output =  Set of semi-strongly connected components. 

3. Get ( , )D V E , the structural contraction of ( , )D V E .  

4. S Set of pivot vertices in ( , )D V E = . 

5. S All the vertices v V with zero in-degree. 

6. For each element v S   

a. Find the set vertices vD  of ( , )D V E  reachable from v . 

b. Corresponding semi-strongly connected component is the induced sub-graph of  

( , )D V E  with vertices vv v D  . 

Proof of Correctness: Proof follows from the definitions of structural contraction, pivot 

vertex, and semi-strongly connected component. ■ 

Remark 6: This algorithm also implies that any finite digraph can be represented as union 

of semi-strongly connected components. ■ 
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It follows from the definitions of pivot vertex and semi-strongly connected component 

that the number of semi-strongly connected components in a digraph ( , )D V E  is equal to the 

cardinality of its set of independent pivot vertices DP . These semi-strongly connected 

components are always different from each other but might be mutually intersecting. Using the 

principles of counting it can be shown that the order of a digraph ( , )D V E  is  

 
1 2

| |
1

1 ... 1

| | ( 1) | |
D

i j

k
D

i j

P k
vk

k i i i j
v P

D D

    


     (5.1) 

The concept of cut vertex is defined next on the basis of semi-strongly connected 

components in a digraph. 

Definition 6: Cut Vertex. In a digraph ( , )D V E  a vertex v is called cut vertex if the 

number of semi-strongly connected components in \{ }D i  are more than the number of semi-

strongly connected components in D.  ■ 

Example 1: Semi-strongly Connected Components in a Digraph. Some digraphs 

( , )D V E  with their semi-strongly connected components PD  as induced sub-graphs are:  

a) {1,2,3}, , {{1},{2},{3}}PV E D    

b) {1,2,3}, {(2,1), (2,3)}, {{1,2,3}}PV E D    

c) {1,2,3}, {(2,1), (2,3), (1,3)}, {{1,2,3}}PV E D    

d) {1,2,3}, {(1,2), (3,2)}, {{1,2},{1,3}}PV E D     

e) {1,2,3,4,5}V  , {(1,5), (5,2), (3,5), (5, 4)}E  , {{1,5,2,4},{3,5,2,4}}PD    ■ 
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Remark 7: If a weekly connected component of a digraph ( , )D V E  has at least two 

independent pivot vertices then it has at least two non-distinct semi-strongly connected 

components.  ■ 

5.3 Graphical Coalitional Game on Digraphs 

A graphical coalitional game GCG on digraphs is introduced in this section; this game is 

an extension of GCG introduced in [77]. The GCG introduced in [77] is defined for the 

coalitions which can be represented as simple graphs and was used to study the internal 

structures of such coalitions. In this extension a GCG on digraphs is introduced. This extension 

is used in Sections 5.4 and 5.5 to study the internal structures of the coalitions with asymmetric 

communication structure and can be modeled as digraphs. The game is based on certain axioms. 

These axioms are developed on the assumption that all the agents under consideration are 

identical and supportive to each other. Construction of these axioms makes it possible to assign a 

value to any of the digraph structure, and to establish the notion of marginal contribution of 

agents within a coalition, purely, on the basis of their position within the digraph. The GCG on 

digraphs is represented as ( , )D v  , here the digraph D represents the communication topology 

of the coalition with agents as vertices, and arcs between them in the direction of communication 

between agents within the coalition. The value function v is formally defined as  

 0: 2 ( ) 0Dv with v v    (5.2) 

where 2D  is the collection of all the induced subgraphs of D. The game has the following 

axioms. In these axioms 2DS  is an induced subgraph of D and SP  is a set of independent 

pivot vertices of S. 

Axioms of Value in the GCG on Digraphs: 
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1. If S is a single semi-strongly connected component with | |S m  then ( ) 0mv S v    

2. If | |SP k  and S is having k nonintersecting semi-strongly connected components 

: 1, 2,... ,iv S
iS i k v P   with | |iv

iS m  then ( ) : 0
i im mi

v S v v  . 

3. If | |SP k  that is S is having k semi-strongly connected components 

: 1, 2,... | |,iv S S
iS i k P v P     then 

1 2

| |
1

1 ... 1

( ) ( 1) ( )
S

i j

l
S

i j

P l
vl

l i i i j
v P

v S v S

    


     

4. If 0N m n    then . .m nn v m v  

5. If  1 0N m     then 1 1( 1)m m mv v v m v      

Definition 7: GCG on Digraphs.  Given a digraph D, the GCG on it is defined as the 

game ( , )D v  , where the value function v satisfies the Axioms of Value.  ■ 

Some technical lemmas establishing the bases of GCG on digraphs are presented in the 

Appendix A1. 

Remark 8:  

1. Axioms 1 to 3 are related to the structure of the digraph D while Axioms 4 and 5 are 

related to the value function v.  

2. It is established in technical Lemma D 1 that Axiom 5 implies Axiom 4. Similarly, 

Axioms 1 and 2 are implied from Axiom 3. The Axioms 1, 2 and 4 are retained as axiom 

because of the ease of their use in establishing the game properties. 

3. It is established in technical Lemma D 2 that Axiom 5 implies that for 1 0N m n    , 

1 1m m n nv v v v    , which is Axiom 4 of GCG on simple graphs in [77]. The Axiom 5 is 
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thus strengthened version of Axiom 4 in [77]. This strengthening is required due to 

additional connectivity structures in digraphs which do not exist in simple graphs. 

4. If the digraph D consists of k disconnected components : 1,2,...iD i k  then by using 

Axiom 3 ( ) ( )ii
v D v D . 

5. It is established in the technical Lemma D 3 that for a GCG on digraph, ( , )D v  , if S is 

a subgraph of D then 1 | || | ( ) SS v v S v  . One incidence of the least value is completely 

disconnected digraph, and an incidence of the maximum value is a semi-strongly 

connected digraph. 

6. Axioms of Value for the GCG on digraphs imply Axioms of Value in [77] for 

bidirectional digraphs.  ■ 

In the Axioms of Value, it is assumed that all the agents are identical and similarly all the 

arcs are identical. Thus the game can be used to study the advantage of one vertex over the other 

based on its position in the digraph structure. It is established later in this paper that the game is 

convex [128], thereby it is possible to have a fair allocation for each agent.  

Example 2: Values of Some Digraphs. Some digraphs and their values are given for 

further insight to the value function.  

a) {1,2,3}, , {{1},{2},{3}}PV E D   . The value of this digraph is 1( ) 3v D v . 

b) {1,2,3}, {(2,1), (2,3)}, {{1,2,3}}PV E D   . The value of this digraph is 3( )v D v .  

c) {1,2,3}, {(2,1), (2,3), (1,3)}, {{1,2,3}}PV E D   . The value of this digraph is 

3( )v D v .  
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d) {1,2,3}, {(1,2), (3,2)}, {{1,2},{1,3}}PV E D   . The value of this digraph is 

2 1( ) 2v D v v  .  

e) {1,2,3,4,5}, {(1,5), (5,2), (3,5),(5,4)}, {{1,5,2,4},{3,5,2,4}}PV E D   . The value of 

this digraph is 4 3( ) 2v D v v  .■ 

The value of the digraphs D can be represented as a real numbers list of size | |D . 

Therefore the next definition is motivated. 

Definition 8: Valid Game List. A list of non-negative real numbers 1 2 | |, ,..., Dv v v  is called a 

valid game list of size | |D  if it satisfies the Axiom 5 of the game. ■ 

Convexity is an important property in canonical coalitional games. If the graphical 

coalition game is convex, all agents are motivated to form the so-called grand coalition. In 

cooperative game theory, the intuitive idea of convexity was formally introduced by Shapley 

[128]. 

Definition 9: Convex Cooperative Game. A cooperative game ( , )D v   with 

transferable utility is convex if the Value Function v is super-modular, that is to say 

( ) ( ) ( ) ( ), ,v A B v A B v A v B A B D       . ■ 

This definition of convex game is directly induced in the GCG on digraphs in Definition 

1 by considering D a digraph on N agents and taking the notation of subset as representing an 

induced subgraph. The next lemma establishes that the GCG given in Definition 1 is convex. 

Lemma 1: The GCG on digraphs in Definition 1 is convex. 

Proof: In the graphical coalition game on digraphs ( , )D v  , in Definition 1, the 

coalition of agents is the digraph D and v is the Value Function. Let A and B are two induced 
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subgraphs of D and let A B  is the subgraph of D induced by the vertices in A and B. By 

technical Lemma D 16 in the Appendix A1, ( ) ( ) ( ) ( ), ,v A B v A B v A v B A B D       .  ■ 

A stronger version of Axiom 5 is the strict inequality  

 1 1( 1) : 1 1m m mv v v m v N m         (5.3) 

This stronger version is used to establish some refinements in the proofs of some results 

in the Sections 5.4 and 5.5.  

5.4 Marginal Contribution in Graphical Coalitional Game on Digraphs  

Agents join hands to form a coalition to pursue a common goal. The value of a coalition 

formed by cooperative agents is generally more than simple algebraic sum of the values of the 

individual agents. The contribution made by the agent towards the coalition is thus both 

competitive and altruistic [74]. Contributions made by agents in a coalition introduced in [74], 

are further elaborated in [77] for graphical the graphical coalitional games on simple graphs. In 

this section marginal contribution made by agents in a GCG on digraphs is defied and results are 

established elaborating the dependence of marginal contribution upon the position of the agents 

on digraphs and their dependence on graph topology and changes in topology. The notions 

presented in this section provide the basis for defining online sequential decision games in 

Section 5.5. 

Definition 10: Marginal Contribution of an Agent. In a GCG on digraphs ( , )D v  , the 

marginal contribution made by an agent j is denoted as ( )Dm j  and defined as 

 ( ) ( ) ( \ )Dm j v D v D j   (5.4) 

where ( )v D and ( \ )v D j  are the values of the digraphs D  and \D j  respectively as elaborated 

in Definition 1. ■ 
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Some lemmas about the marginal contributions made by the agents are presented next. 

They demonstrate the dependence of the marginal contributions on the topology of the graph. 

These results are established on the basis of the Axioms of Value, provide insight to the marginal 

contribution made by agents, and form the basis for the sequential decision games defined in the 

next section. The first results concern the marginal contribution of vertices which are not cut 

vertices. As elaborated in Definition 6, a cut vertex is the one whose removal increases the 

number of semi-strongly connected components.  

Lemma 2: Given the GCG on digraph ( , )D v   in Definition 1, in any semi-strongly 

connected graph D all the agents which are not cut vertices of D have the same marginal 

contribution. Moreover, their marginal contribution is the minimum possible marginal 

contribution within the connected graph. This minimum marginal contribution only depends 

upon the size | |D  of the semi-strongly connected graph D.  

Proof: The marginal contribution made by an agent j for the GCG on digraph ( , )D v   

is given by (5.4) 

 ( ) ( ) ( \ )Dm j v D v D j   (5.5) 

Since the digraph D is semi-strongly connected, by Axiom 1, | |( ) Dv D v . Moreover, for 

vertex j, which is not a cut vertex, Definition 6, | | 1( \ ) Dv D j v  . The marginal contribution, thus 

becomes 

 | | | | 1( )D D Dm j v v    (5.6) 

Since the digraph is semi-strongly connected, | |( ) Dv D v  is constant and by technical Lemma D 

3, | | 1( \ ) Dv D j v   is the maximum possible value of ( \ )v D j . This completes the proof.  ■ 
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Remark 9: In a semi-strongly connected digraph D, if there is no cut vertex then the 

marginal contributions of all the agents are identical and independent of the digraph structure. ■ 

The next lemma establishes the maximum possible value of the marginal contribution 

made by an agent in a digraph of fixed size. This along with the last lemma marks the bounds of 

the marginal contribution made by an agent. 

Lemma 3: Given the GCG on digraph ( , )D v   in Definition 1. The maximum possible 

marginal contribution an agent may have is of the center point of a star which is also dominating 

to the rest of all the vertices of D.  

Proof: Star is a digraph D with | | 1D   arcs, having | | 1D   vertices with degree 1 and 

one vertex with degree | | 1D  ; this vertex is called star point. If all the arcs are having their tails 

at it then it is the only dominating point in this digraph. The marginal contribution made by a star 

point j is given by (5.4) 

 ( ) ( ) ( \ )Dm j v D v D j   (5.7) 

Since the star D with the star point j dominating, is semi-strongly connected, by Axiom 1, 

| |( ) Dv D v . Moreover, for the star point j, 1( \ ) (| | 1)v D j D v  . The marginal contribution, thus 

becomes 

 | | 1( ) (| | 1)D Dm j v D v    (5.8) 

By technical Lemma D 3, the maximum possible value of a digraph of size | |D  is | |( ) Dv D v  

and the minimum possible value of a digraph of size | | 1D   is 1( \ ) (| | 1)v D j D v  . This 

completes the proof.  ■ 

It is established in [77] that the contribution made by an agent is the contribution made by 

it within its connected component. The connectivity in digraphs is a more involved concept and 
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it is discussed in Section 5.2. The following lemma establishes that the marginal contribution 

made by an agent is only due to the marginal contribution made by it within the semi-strongly 

connected components it is a part. 

Lemma 4: Given the GCG on digraph ( , )D v   in Definition 1. The marginal 

contribution made by an agent j is the marginal contribution due to semi-strongly connected 

components of D which the agent is a part.  

Proof: Without the loss of generality, assume that the digraph D has k l , semi-strongly 

connected components : 1,2,..., , 1,...,ivS i k k k l   , such that agent j is a part of 

: 1,...,ivS i k k l    then  

 
1

( ) ( )i

k l
v

i

v D v S




   (5.9) 

or 
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( ) ( )i i

k k l
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i i k

v D v S S
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    (5.10) 

Considering the digraph \D j , since j is a part of : 1,...,ivS i k k l    in D, it implies that the 

semi-strongly connected components in \D j , are : 1,2,..., , 1,...,i iv vS i k S k k l    , then 

 
1 1

( \ ) ( )i i

k k l
v v

i i k

v D j v S S


  

    (5.11) 

By using (5.10) and (5.11) in (5.4)  

 
1 1 1 1

( ) ( ) ( )i i i i

k k l k k l
v v v v

D
i i k i i k

m j v S S v S S
 

     

        (5.12) 

Rearrangement of this gives  
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Since 
1 1 1 1

( ) ( )i i i i

k k l k k l
v v v v

i i k i i k

v S S v S S
 

     

      , this becomes 

 
1 1

( ) ( ) ( )i i

k l k l
v v

D
i k i k

m j v S v S
 

   

    (5.14) 

This establishes the desired result.  ■ 

The following lemma elaborates the effect of making an arc incident on an agent j on its 

marginal contribution. This result is used to establish results about the stable digraph structures 

in the sequential decision games discussed in Section 5.5.  

Lemma 5: Given the GCG on digraph ( , )D v   in Definition 1, and an arc incident at an 

agent j is constructed to make a new digraph D e . Then 

i. If both the end of the newly constructed arc are within the same semi-strongly connected 

component then ( ) ( )D e Dm j m j  . 

ii. If both the end of the newly constructed arc are in different semi-strongly connected 

component then ( ) ( )D e Dm j m j  . ( ) ( ) ( \ )D em j v D e v D e j      

Proof: The marginal contribution made by the agent j within the digraph D is given by 

(5.4)  

 ( ) ( ) ( \ )Dm j v D v D j   (5.15) 

Similarly, the marginal contribution made by the agent j within the digraph D e .  

 ( ) ( ) ( \ )D em j v D e v D e j      (5.16) 
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Since the newly constructed arc is incident at the agent j, ( \ ) ( \ )v D j v D e j  , (5.15) and 

(5.16) imply 

 ( ) ( ) ( ) ( )D e Dm j m j v D e v D      (5.17) 

By the technical Lemma D 12, making of an arc such that both the ends of the newly constructed 

arc are within the same semi-strongly connected components, then ( ) ( )v D e v D  ; thus (5.17) 

establishes the first part of the result. 

Similarly, by the technical Lemma D 10, making of an arc such that both the ends of the 

newly constructed arc are in the different semi-strongly connected components, then 

( ) ( )v D e v D  ; thus (5.17) establishes the desired result.  ■ 

Remark 10: It follows from this lemma that if a digraph is semi-strongly connected then 

making of an arc by an agent j does not change the marginal contribution made by the agent. ■ 

The following result strengthens the above result under the strong version (3.2) of Axiom 

5. This lemma assures a definite increase or decrease in the marginal contribution made by an 

agent upon making an arc, thereby encourages the agents to form certain coalitions in the 

sequential decision games in the next section. 

Lemma 6: Given the GCG on digraph ( , )D v   in Definition 1, with stronger version 

(3.2) of Axiom 5, and an arc incident at an agent j is constructed to make a new graph D e . 

Then 

i. If both the ends of the newly constructed arc are within the intersection of two or more 

semi-strongly connected components then ( ) ( )D e Dm j m j  . 

ii. If both the end of the newly constructed arc are in different semi-strongly connected 

component then ( ) ( )D e Dm j m j  . 
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Proof: The marginal contribution made by the agent j within the digraph D is given by 

(5.4)  

 ( ) ( ) ( \ )Dm j v D v D j   (5.18) 

Similarly, the marginal contribution made by the agent j within the digraph D e   

 ( ) ( ) ( \ )D em j v D e v D e j      (5.19) 

Since the newly constructed arc is incident at the agent j, ( \ ) ( \ )v D j v D e j  , (5.18) and 

(5.19) imply 

 ( ) ( ) ( ) ( )D e Dm j m j v D e v D      (5.20) 

By the technical Lemma D 13 , making of an arc such that both the ends of the newly 

constructed arc are within two or more semi-strongly connected components of D, then 

( ) ( )v D e v D  ; thus (5.20) establishes the first part of the result. 

Similarly, by the technical Lemma D 11, making of an arc, such that both the ends of the 

newly constructed arc are in the different semi-strongly connected components, then 

( ) ( )v D e v D  ; thus (5.20) establishes the result.  ■ 

The following lemma establishes the effect of the deletion of an arc within a digraph; it 

supplements the result obtained in Lemma 6. 

Lemma 7: Given the GCG on digraph ( , )D v   in Definition 1, with stronger version 

(3.2) of Axiom 5, if D e  is a digraph produced by deleting an arc e incident at an agent j, such 

that it does not change the vertices in any of the semi-strongly connected components in D, then 

( ) ( )D e Dm j m j  . Moreover if the deletion of an arc e changes the vertices in a semi-strongly 

connected component then ( ) ( )D e Dm j m j  . 
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Proof: The marginal contribution made by the agent j within the digraph D is given by 

(5.4)  

 ( ) ( ) ( \ )Dm j v D v D j   (5.21) 

Similarly, the marginal contribution made by the agent j within the digraph D e  

 ( ) ( ) (( ) \ )D em j v D e v D e j      (5.22) 

Since the newly constructed arc is incident at the agent j, ( \ ) (( ) \ )v D j v D e j  , (5.21) 

and (5.22) imply 

 ( ) ( ) ( ) ( )D e Dm j m j v D e v D      (5.23) 

By the technical Lemma D 14 , breaking of an arc e such that it does not change the 

vertices in any of the semi-strongly connected components in D, then ( ) ( )v D e v D  ; thus 

(5.23) establishes the first part of the result. 

Again by the technical Lemma D 14, breaking of an arc e such that deletion of the arc 

changes the vertices in a semi-strongly connected component then ( ) ( )v D e v D  ; thus (5.23) 

establishes the result.  ■ 

Remark 11: It follows from this lemma that if a digraph D is semi-strongly connected and 

deletion of an arc e, incident at an agent j, keeps it semi-strongly connected then 

( ) ( )D e Dm j m j   and if the semi-strongly connected digraph breaks into two semi-strong 

components then ( ) ( )D e Dm j m j  .  ■ 

5.5 Online Sequential Coalition Decision Games 

This section defines three online sequential decision games. These games are based on 

the marginal contribution made by the agents, and the results about its dependence on the graph 

topology established in the last section. These online decision games are defined on top of the 
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graphical coalitional game ( , )D v   of Definition 1. A background on sequential decision 

games can be found in Chapter 5 of [130]. 

In a sequential decision game, agents take turns sequentially in time to make valid or 

allowed moves (e.g. make or break an arc) to maximize their yield in terms of a prescribed 

objective function. Here, three online decision games are defined in terms of the objective 

function taken as the marginal contributions made by the agents towards the coalition, and 

varying the rules of the games. It is shown these three sequential decision games have different 

stable coalition structures. It is established that the stable structures are respectively multi-chains, 

semi-strongly connected digraphs, and chains of command. The machinery for establishing the 

results in this section rests on the formal Axioms of Value. 

The properties of sequential decision games depend on the allowed moves and the 

prescribed objective function. An important concept in sequential coalition decision games is 

stability of graph topologies [104], [110]. Stability is important in studying the steady-state graph 

topologies of sequential decision games.  Stable topologies show the structure of the coalitions 

that form under various allowed moves and decision objective functions. These stable structures 

are inherent properties of the objective functions of the three games, not parameter dependent as 

in [104]. 

5.5.1 Sequential Decision Games  

In the online decision games defined here, agents are free to make coalitions by making 

or breaking arcs with other agents according to the rules of the game. In contrast to [104], there 

is no cost associated with arcs involved. Based on marginal contributions, three online sequential 

decision games are defined. These online decision games are defined on top of the graphical 
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coalitional game ( , )D v   of Definition 1. The agents make allowed moves sequentially 

through time; the moves are made to maximize the prescribed objective function. 

In the sequential decision games, at each move, an agent is selected at random; this agent 

is free to unilaterally break any arc incident at it or to bilaterally make an arc, provided that the 

other agent incident on the arc agrees to make it, as detailed below. In a single step, an agent is 

allowed either to make or break several arcs.  

Definition 11: Allowed Moves. In a sequential decision game the move which a selected 

agent is allowed to make is called an allowed move.  ■ 

The objective function is the marginal contribution ( )Dm j  made by an agent, for each 

agent j in a coalition represented by graph D. Arcs are made or broken by a selected agent in 

order to maximize ( )Dm j  and according to the rules of sequential decision games defined next.  

Definition 12: Objective Function. In a sequential decision game the selected agents 

make moves according to the rules of the game to maximize this real valued function. In this 

paper, the objective function of an agent j is the marginal contribution ( )Dm j  made by the  

agent.  ■ 

Based on the Allowed Moves and the Objective Function the sequential decision games 

are defined as follows. 

Definition 13: No Make but Break Sequential Decision Game. In this sequential decision 

game a selected agent is not allowed to makes any arc and allowed to break arcs incident at it 

according to the rule 

a) An agent j breaks an arc ( , )e i j  or ( , )j i if ( ) ( )D e Dm j m j  .  ■ 
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Definition 14: Make and Strong Break Sequential Decision Game. In this sequential 

decision game a selected agent is allowed to makes an arc and to break an arc incident at it 

according to the rules 

a) An agent j makes an arc ( , )e i j  or ( , )j i if ( ) ( )D e Dm j m j   and ( ) ( )D e Dm i m i  . 

b)  An agent j breaks an arc ( , )e i j  or ( , )j i if ( ) ( )D e Dm j m j  . ■ 

Definition 15: Make and Break Sequential Decision Game. In this sequential decision 

game a selected agent is allowed to makes an arc and to break an arc incident at it according to 

the rules 

a) An agent j makes an arc ( , )e i j  or ( , )j i if ( ) ( )D e Dm j m j   and ( ) ( )D e Dm i m i  . 

b)  An agent j breaks an arc ( , )e i j  or ( , )j i if ( ) ( )D e Dm j m j  . ■ 

In these three sequential decision games an agent j is said to have a motive to make an arc 

if the condition of making an arc in the above sequential decision games is satisfied, and it is said 

to have a motive to break an arc if the condition of breaking an in the above sequential decision 

games is satisfied.  

5.5.2 Stability of Graph Topologies Under Sequential Decision Games  

For a set of N agents there are ( 1)2N N   possible strict digraphs. When agents are allowed 

to make valid moves, as they proceed, they may reach a digraph where no agent has a motive to 

make any further moves. Such graphs are called stable graphs. The structure of stable graphs is 

thus dependent on the allowed moves and the objective function of the sequential decision game.  

Definition 16: Stable Graph. In any online sequential decision game, a graph is called 

stable when no agent has a motive either to make an arc or to break an arc.  ■ 
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In [110], Myerson used the Shapley value as the objective function and allowed only the 

breakage of an edge of a simple graph as a valid move. Since breakage of an arc does not 

increase the competitive advantage, Lemmas 2 and 8 of [77], under such allowance, for the game 

in Definition 1 of [77], every graph is stable. In [104] the rules of making and breaking arcs are 

nearly the same as those in the sequential decision games defined in the last subsection. 

However, in [104], simple graphs are involved and there are costs associated with making edges. 

There, the balance between the value of being connected and the cost of maintaining arcs has a 

pivotal role in determining the stable graph structures. Here in this section, the stable structures 

are only dependent upon the marginal contribution made by the agents. The next development 

specifies the stable digraphs for the online sequential decision games. The next result establishes 

that if the initial digraph is weakly connected then under the No Make but Break Sequential 

Decision Game the stable structure is a multi-chain.  

Theorem 1: In an online No Make but Break Sequential Decision Game, with a game list 

obeying strong version (5.3) of Axiom 5, if the initial digraph is weakly connected, then the 

stable digraph is a multi-chain. Conversely, any multi-chain is stable under No Make but Break 

Sequential Decision Game. 

Proof: In an online, No Make but Break Sequential Decision Game, no agent is allowed 

to make a new arc. The agents are allowed to break an arc e within the digraph D, under 

condition ( ) ( )D e Dm j m j  . By Lemma 7 , if breaking of an arc e does not change the vertices in 

any of the semi-strongly connected components in D, then ( ) ( )D e Dm j m j  , and if the deletion 

of the arc e changes the vertices in a semi-strongly connected component then ( ) ( )D e Dm j m j  ; 
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this implies that agents have the motive to break only all arcs which do not change the semi-

strong connectivity of the agents. Breakage of all these arcs makes the digraph a multi-chain. 

Conversely suppose that the initial digraph in a No Make but Break Sequential Decision 

Game, is multi-chain. It implies that every semi-strongly connected component in this digraph is 

a chain of command. This implies that breaking of an arc definitely breaks at least one semi-

strongly connected component; it implies from Lemma 7, under such condition, 

( ) ( )D e Dm j m j  , which leaves no agent with a motive to break an arc.  ■ 

Remark 12: It follows from the technical Lemma D 14, and Lemma 7 that in the process 

of breaking the arcs in Theorem 5, no agent moves out of any semi-strongly connected 

component it already is a part. Breaking of arcs without changing the agents’ semi-strong 

components guarantees that in the coalitions with pinning agents [1], [2] , [3], [7], [8], [79], 

[135],  the agents reachable by various pinning agents remain unchanged.  ■ 

The following result establishes that the stable digraph structure for Make and Strong 

Break Sequential Decision Game, is a semi-strongly connected digraph. Semi-strongly connected 

digraphs assure a unique consensus value [1], [2] , [3], [7], [8], [79], [135]. 

Theorem 2: In an online Make and Strong Break Sequential Decision Game, with a game 

list obeying strong version (5.3) of Axiom 5, the stable digraph is a semi-strongly connected 

digraph. Conversely, any semi-strongly connected digraph is stable under Make and Strong 

Break Sequential Decision Game. 

Proof: In an online, Make and Strong Break Sequential Decision Game, an agent j is 

allowed to make a new arc ( , )e i j  or ( , )j i in the digraph D if ( ) ( )D e Dm j m j   and 

( ) ( )D e Dm i m i  . If the digraph is not semi-strongly connected there always exists an agent j and 
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agent i which do not share the same semi-strong component, and according to Lemma 6, 

( ) ( )D e Dm j m j   and ( ) ( )D e Dm i m i  ; which implies that according to the rule (a) of Make and 

Strong Break Sequential Decision Game, both the agents j and i have motives to make the arcs e. 

If the agent j or i is pivot vertex then making of this arc merge the two semi-strong components 

into one semi-strong component, technical Lemma D 5. Under rule (a) of the game, agents keep 

on making the arcs until a semi-connected digraph is reached. Within a semi-strongly connected 

digraph, according to Remark 11 and rule (b) of Make and Strong Break Sequential Decision 

Game, no agent has a motive to break an arc. 

Conversely suppose that the initial digraph in a Make and Strong Break Sequential 

Decision Game, is semi-strongly connected. Then according to Remark 11 and rules of the game 

no agent has any motive to make or break any arc. It implies that every semi-strongly connected 

digraph is stable.  ■ 

The following result establishes the stable digraph for Make and Break Sequential 

Decision Game. It is established that chain of command is the stable structure in this case. Chain 

of command is an important digraph structure where there is only one pinning agent who 

controls the whole coalition [1], [2], [3], [7], [8], [79], [135]. 

Theorem 3: In an online Make and Break Sequential Decision Game, with a game list 

obeying strong version (5.3) of Axiom 5, the stable digraph is a chain of command. Conversely, 

any chain of command is stable under Make and Break Sequential Decision Game. 

Proof: In an online, Make and Break Sequential Decision Game, an agent j is allowed to 

make a new arc ( , )e i j  or ( , )j i in the digraph D if ( ) ( )D e Dm j m j   and ( ) ( )D e Dm i m i  . If 

the digraph is not semi-strongly connected there always exists an agent j and agent i which do 



164 

not share the same semi-strong component, and according to Lemma 6, ( ) ( )D e Dm j m j   and 

( ) ( )D e Dm i m i  ; which implies that according to the rule (a) of Make and Break Sequential 

Decision Game, both the agents j and i have motives to make the arcs e. If the agent j or i is pivot 

vertex then making of this arc merge the two semi-strong components into one semi-strong 

component, technical Lemma D 5. Under rule (a) of the game, agents keep on making the arcs 

until a semi-connected digraph is reached. For any arc e, whose deletion does not change the 

semi-strong connectivity of the digraph, ( ) ( )D e Dm j m j   , Lemma 7, and its deletion is 

motivated according to rule (b) of Make and Break Sequential Decision Game. Deletion of arc 

makes every semi-strong component a chain of command, while making of arcs leaves only one 

of them. 

Conversely suppose that the initial digraph in a Make and Break Sequential Decision 

Game, is a chain of command. According to rule (a) of the game, an agent j has the motive to 

make an arc ( , )e i j  or ( , )j i if ( ) ( )D e Dm j m j   and ( ) ( )D e Dm i m i  , since agent is in a chain 

of command, it is in a unique semi-connected component; according to Remark 10, making of an 

arc does not increase the marginal contribution made by the agent. Similarly breaking of an arc 

will break the only semi-connected component, thereby reducing the marginal contribution made 

by the agent Remark 11, and thus according to rule (b) of the game no agent has any motive to 

make or break any arc. It implies that every chain of command is stable.  ■ 

5.6 Simulation Examples of Online Sequential Decision Games 

Simulation results for the three sequential decision games in Section 5.5 are presented 

here. In these simulations the games are started from an initial digraph and the agents are free to 

make allowed moves as in Definition 14, Definition 14, and Definition 15. One agent is 
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randomly selected to make moves at each time, and it can make or break some arcs to improve 

its marginal contribution.  

The simulations were run until one of the stable digraph structures is reached. The 

simulation results are shown and explained in Figure 5.1. These simulation results support the 

theory developed in Section 5.5. It is established that stable digraph under No Make but Break 

Sequential Decision Game is a multi-chain, the stable digraph under Make and Strong Break 

Sequential Decision Game is a semi-strongly connected digraph, and the stable digraph under 

Make and Break Sequential Decision Game is a chain of command. 

 

Figure 5.1:  Evolution of digraphs in online sequential decision games. (a) The initial digraph for 

all the sequential decision games. (b) Stable graph is a multi-chain in No Make but Break 

Sequential Decision Game when randomly selected agents are allowed to break arcs according to 

the rules of the game. (c) Stable graph is a semi-strongly connected digraph in Make and Strong 

Break Sequential Decision Game when randomly selected agents are allowed to make/break arcs 

according to the rules of the game. (d) Stable graph is a chain of command in Make and Break 
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Sequential Decision Game when randomly selected agents are allowed to make/break arcs 

according to the rules of the game. 

5.7 Conclusions 

A Graphical Coalition Game on digraphs is presented in this paper. Axioms of Value 

assign value to each digraph and are used to define the notion of marginal contribution made by 

an agent in a coalition from a graph theoretic view point, based on its connectivity. It is 

established that the game is convex; thereby, the core of the game is non-empty. The machinery 

of GCG on digraph is developed through a number of technical lemmas in the Appendix. These 

results elaborate the bunds of the value of digraph and about the dependence of value on the 

graph topology, and changes in the value due to changes in digraph topology. Further, on top of 

the GCG on digraphs, and based on the marginal contribution made by the agents, three online 

sequential decision games are defined by varying the rules of the game. The concept of stability 

is defined in these sequential decision games, and the stable graph topologies under the three 

games are detailed. It is established that stable graph structures are multi-chain, semi-strongly 

connected digraph, and chain of command; these digraph structures are essential in distributed 

control and consensus problems.  
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Chapter 6  

Impact Propagation Framework, the End of the Number Game 

This chapter presents a seamless, comprehensive, and integrated framework to compute 

the impact made by a scientific work, a scientist, an institution, a scientific journal, and a funding 

agency. The framework provides solutions to a number of problems about the existing indexing 

systems, under discussion, in the scientific community. These problems include but are not 

limited to the allocation of impact to scientists, excessive self-citation, gifted authorship, 

dependence of indices on disciplines, and excessive citations. The framework is evolved around 

a computation algorithm which is network-based, and distributed in nature. The framework thus 

includes the seminal effect of a work in the computation of impacts made by various entities and 

is readily implementable. Certain guidelines are provided for the implementation of the proposed 

framework. Work examples and simulation results show the working and usefulness of the 

proposed system in comparison to other existing systems. The proposed system has complete 

provision of peer input to cover delicate issues in impact calculations, yet the system can be 

employed fully automated during the earlier implementation stages. 

6.1 Introduction 

Citation of the work of earlier scholars has occurred throughout written history. The 

history of scientific citation can be tracked back at least to 428BC-322BC, the era of Plato and 

Aristotle who cited the work of earlier phosphors [143]. In the modern age of scientific work and 

publication, citations to earlier work can even be found in the first 1869 issue of Nature [144], 

the oldest continuing scientific journal. Yet the earliest account of popularizing the idea of 

systematic ranking of scientists by performance [145] is made by James McKeen Cattell through 

his 1906 work, American Men of Science [146]. In 1960, Dr. Eugene Garfield, based on his 
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1955 work [147], began to publish the Science Citation Index through the newly founded 

Institute of Scientific Information (ISI). Since then Garfield and ISI are best known for a citation 

based metric, the Impact Factor [145]. The paramount contribution made by them is to take the 

initiative in the compilation of a citation database, which, in spite of certain imperfections [145], 

[148] is a great asset to the scientific community. Though many other mechanisms are devised 

[145], [149], [150], [151], [152], [153], [154], [155] to measure the impact made by a scientific 

article or a journal or a scientist, all these mechanisms generally work around the citation 

database. 

The Institute of Scientific Information, being the pioneer in the area of bibliographical 

metrics, enjoyed a monopoly over the field for over four decades. Their pioneer product is the 

Journal Impact Factor (JIF) [156]. JIF is a ratio of the number of citations in the current year to 

any items published in the journal during the previous two years divided by the number of 

substantive articles published in the same two years [156]. Another metric to measure the impact 

made by a journal is the five years Journal Impact Factor [154]; this metric is very much similar 

to JIF except that two years duration in the JIF is replaced by five years [154]. Immediacy Index 

is another related index to judge the quality of a journal [154]; it is used to determine the current 

yearly rate at which a journal is cited. It is obtained by dividing the number of citations to 

articles published in a year by the number of articles published in that year. This index is 

reported by Thomson Reuters in Journal Citation Reports [157]. There are two other metrics to 

measure the performance of a journal, these are cited half-life and citing half-life [154]; details 

about them are omitted.  

There are certain bibliographical metrics which are based on the Google Page Rank 

algorithm; it is thus worthwhile to briefly explain the algorithm [149], [155], [158], [159], [160]. 
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In this algorithm, the importance of each page is defined as the sum of the ratios of the 

importance of pages where this page is cited to the number of citations at the citing page. Under 

the condition that each page has at least one citation, this is analogous to visualizing all the Web 

pages as nodes of a Markov Chain with no self-loops and transition probabilities equal to the 

reciprocal of the number of cited links at a page and to the number of cited pages [161]. The 

definition of the importance of each page is thus equal to the steady-state probability of a web 

surfer to be found at that web page, when the web surfer is following the hyperlinks at its current 

page and switching to a random page when there is no hyperlink at the current page.  

Eigenfactor is a web based [162] metric to calculate the impact of a scientific journal; it is 

based on a modified Google Page Rank algorithm implemented on the ISI database [163]. The 

modifications made to the Google page rank are the dilution of the effect of a dangling node 

[163] and accommodation of teleportation by means of weighted random search of scientific 

journals [163]. Thus Eigenfactor nicely automates a surfer who is going from one journal to 

another and sometime teleporting his course with a probability proportional to the number of 

articles produced by the journal [163], while ignoring the possibility of the surfer to stay at the 

same place, at least for some time slots. In this way, the Eigenfactor value is sensitive to the 

interconnectivity of journals. The Eigenfactor Score of a journal is defined as the percentage of 

the total weighted citations that the journal receives from their 7611 source items [163]. Another 

metric directly related to Eigenfactor Score is the Article Influence Score for each journal, which 

is a measure of the per-article citation influence of the journal [163]. Another very similar 

service is SCImago Journal Rank (SJR) [164]. SJR is on per article basis so it is comparable to 

Article Influence Score for each journal with some differences. First difference is SJR uses 

Scopus [165] as the database [166]. The second difference is that instead of dropping self-
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citations altogether these are capped at one third of total citations. Finally there are some minor 

differences in the mathematical equations the two methods use. SCImago also offers a service to 

rank countries [164]. 

Another journal ranking created in 2002 is F1000. The organization with a faculty of 10, 

000 experts is aiming to filter the research articles by selecting the prominent articles and rate 

them on a scale up to 10, with 6 as recommended and 10 exceptional. Then they produce 

normalized sum of these scores over the journals [153], [167]. 

A number of methods are proposed to rank scientists; some of them are discussed here. 

The first one is total number of papers published by a scientist [150]. The second one is total 

number of citations [150]. The third one is citations per paper [150]. The fourth one is number of 

significant papers [150]. Other than all these conventional metrics there are some newly 

emerging metrics. The most prominent of them all is H-Index [150]. H-Index of a scientist is 

defined to be h, if h of the publications has at least h citations and the rest of them have less than 

or equal to h citations [150]. Many variants of H-Index are introduced, a few of them are 

discussed here, yet most scientists still prefer the H-Index [145]. One is m-parameter which is 

obtained by dividing h by the scientific age of a scientist [151]. Another variant is g-index which 

is defined to be an integer g less than or equal to the number of highly cited articles such that 

each of them has on average g citation [168]. Since both h and g indices are integers by 

definition, their rational number variants are also proposed. Another index is Jin’s index which is 

defined as the average number of citations got by the articles counted towards H-Index [169]. 

The combined current system has served over a long time and gives some good outputs, 

yet there are certain issues with the existing system of bibliographical metrics which have caused 

a continuing unrest in the scientific community [145], [148], [150], [151], [156], [167], [170], 



171 

[171], [172], [173], [174], [175], [176], [177], [178]. Apart from the fact that there does not exist 

a single integrated system to give impact made by various entities like articles, journals, and 

authors there are also certain issues with the individual metrics. Taking the cases of JIF or its 

variant 5 years JIF; the first major issue which the scientific community is pointing to is the 

inconsistency in the nominator and denominator of the ratio JIF [156]. The nominator contains 

citations to all kinds of articles including editorials, letters, meeting abstracts, primary research 

papers, reviews and even the retracted papers while the denominator counts only the primary 

research papers, notes, and the reviews; this results in an inflated value of impact factor [148], 

[154], [178]. The second major issue is that this method to calculate the impact of a journal 

incites the editorial staff to persuade and promote self-citation of the journal, which causes the 

shadowing of the significant citations and results in the complete annihilation of its significance; 

this also promotes the editorial staff to publish more and more review articles instead of actual 

scientific articles since review articles attract more citations [170], [148], [174], [178]. The third 

major issue is that this method to calculate the impact of a journal disfavors those areas of study 

like mathematics and physics which have a natural tendency of lower numbers of citations 

compared to those having higher number of citations like clinical sciences and engineering [148]. 

Though measure such as normalization of the impact factor across disciplines is proposed to 

overcome this issue [156], [179], inter discipline boundaries are so soft that the scientific 

community is still concerned over it [145]; in this reference these concerns are expressed at the 

level of an individual scientist yet these concerns are valid at the level of a journal. In case of 

Immediacy Index, besides the problems discussed above there is another issue of disadvantage 

for those journals who publish in the later part of the year [154].  
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One problem with Eigenfactor based approaches is that they favor journals publishing a 

large number of papers [154]. Moreover, Eigenfactor completely ignores self-citations [163] 

which is not completely correct, since self-citations of journals are significant. Further, the 

method to calculate Eigenfactor takes care of the dangling node yet no such special measures are 

taken to take care of small inter-citing groups [162], [163]; the situation of dangling node and 

small inter-citing groups may be tackled on a case by case basis. In SJR the nominator contains 

all the citations of the journal but the denominator contains only the main articles, reviews and 

conference papers [166]. Though SJR makes a somewhat different importance wise ordering of 

journals [152], it is shown in [166] that a strong positive correlation exists between SJR and JIF 

which indicates that in spite of the entire background mathematical modeling, web based 

approaches are unable to make a big difference from the simple technique of JIF. In these 

approaches more importance is given to the citations coming from more important journals 

[149], [155], [158], [159], [160], whereas the importance of a citation is based on its use in the 

research [151], [170], [178]. In Google Page Rank based approaches a scientist is modeled as a 

random surfer from one journal to another, this model is by itself very divergent from the 

working of a scientist which is more deterministic and objective. Moreover, by virtue of using 

this model one may capture the frequency by which a reader comes across a journal, but how 

does it calculate the impact made by the journal is still under question [145].  

There are certain questions posed about the methodology devised by F1000. The first one 

is based on the human nature which may cause to bias the scores according to the interests of the 

member faculty. The second one is based on the limited capacity of the system when compared 

to the huge size of the scientific literature produced every year. The third question is about an 

inherent system problem that a few over enthusiastic members can enhance the score of a 
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journal; another aspect of this question is related to the integrity of the reviewers. Even at the 

initial implementation stage of the project such problems are already pointed out [167].  

Certain disadvantages of metrics evaluating the scientists are also under discussion in the 

scientific community. The fundamental problem is that all these metrics encourage scientists not 

only to aggressively join the number game but also that there is a rampant increase in the self-

citations. Scientists prefer to present half-baked ideas rather than striving for significant results. 

Scientists prefer to join overly large groups with the name of every member of the group on the 

papers produced by the group, publishing pacts to include each other’s name are also common, 

similarly clique building is also observed, repetition of the same idea is also a significant issue, 

irrelevant self or gifted citations are also there [170], [171], [173], [175], [178], [180]. All these 

metrics are unable to measure the stature of scientists across disciplines [148], [171], though 

certain normalizing measures are proposed; yet the scientific community has some valid issues 

with the normalization [145]. None of these metrics are designed to measure the seminal effects 

of a research work. Some other problems with the classical individual level metrics are detailed 

in [150]. Other than the problems discussed above, problems specifically related to H-Index are 

under discussion in the scientific community [151], [180]. Since H-Index results in loss of 

information about a person, some even consider average citation per paper a better metric then 

H-Index [180]. 

Owing to the existence of a vacuum of having a satisfactory system to evaluate a 

scientist, many times scientists are judged by the impact of the journals they are publishing in; 

many times jobs, promotions and grants get associated with this criterion. There is almost a 

consensus in the scientific community that this is an improper practice while some say that it is a 

sin [145], [148], [171], [177], [181].  
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All the analysis made above indicates that there are certain issues with the existing 

system of measuring scientific impact of various entities, including authors, scientists, articles, 

presentations, journals etc. The various components of the system are related but they lack in 

complete harmony. There is generally a want of a new generation system which is capable of 

giving some meaningful numbers related to the impact actually made, decimate the problems 

associated with the current system, and take care of delicate issues of the peer review and human 

interaction [145], [170], [172], [174], [176], [177], [178], [182]. This paper provides an 

integrated system which takes care of all these needs. The proposed system is built on the 

citation database but additionally takes input about an article like its nature, its authors, and the 

nature of the articles it is citing. Based on this input this system primarily quantifies the impact 

made by an article. Moreover, impact made by an article on the human life is also calculated. 

These impacts are then translated into the impacts made by scientists, authors, agencies etc. 

Universities and institutes are integral part of the research activity. Many popular university 

rankings exist [183], [184], [185], [186]. These approaches make use of various inputs like 

citation data base, number of alumni winning Nobel Prizes, Field Medals etc. and many other 

useful entities. The system elaborated in this paper proposes an approach integrated with the 

ranking of scientific work, articles, scientists and all the other affiliated entities, to rank 

universities as well. Since implementation of such a system needs a lot of comments and 

suggestions from the scientific community many proposed parameters are left open for 

discussion.  

The next section provides all the formal details of the proposed framework. These details 

include required definitions, notations, graph theory background, computation algorithms, and 

mathematical results. Some examples and numbers of remarks are also provided in this section 
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for better insight of the framework, and to invite feedback from the scientific community. 

Section 6.3 provides the simulation results to further elaborate the usefulness of the proposed 

system, and presents conclusions. Proofs of the results in Section 6.2 are provided in the 0 at the 

end. 

6.2 Impact Calculation Framework  

In this section, a completely unified and integrated system to calculate the impact of a 

scientific article, a scientific journal and an author upon research activity is introduced. The 

proposed system provides a single framework to calculate impact of every single entity involved 

in the research activity including articles, journals, periodicals, conference proceedings, scientific 

articles, surveys, thesis, book chapters, webpages, posters, authors, mentors, coauthors, funding 

agencies, institutes and universities, etc. In this paper any kind of single scientific work is 

referred to as work, any journal or conference is referred to as object, any author, coauthor, 

presenter is referred to as person, any other human involved is referred to as mentor, any funding 

agency involved as agency and any institute, laboratory or university as institute. A person and 

mentor is jointly referred to as human. If a work i is presented/published in an object k and a 

person p is author/coauthor/presenter of this work then in this paper it is said that person p is a 

part of work i and the work i is a part of the object k, and denoted as  

 ,p i i k   (6.1) 

It is proposed that only those journals and conferences are included in the proposed 

systems having some standard procedure to accept a work; similarly, only those works which are 

part of such journals or conferences are considered. The standard procedure is discussed in this 

work. 
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Similarly, if a funding agency g has supported a work i then it is said that agency g is a of 

the work i and it is written as 

 g i  (6.2) 

Similarly, if an institution y is in the list of affiliations of a work i then it is said that the 

institution y has some affiliation in work i and it is written as 

 y i  (6.3) 

And if a human p is working with an institution y then it is said that human p is a part of 

institution y and it is written as  

 p y  (6.4) 

In this paper the scientific impact upon research activity at some time t of a work i is 

denoted as ( )iTW t , scientific impact of an object k is denoted as ( )kTO t , and the scientific 

impact of a person p is denoted as ( )pTP t . Some other notations are defined later in this section. 

This framework can be dynamically tuned in such a way that it is immune to the problems in the 

current indexing systems [148], [150], [151], [170], [174], [175], [177], [178]. Impact of a work i 

is not only upon a work where it is cited rather any work has seminal effect on the further works; 

the framework proposed in this paper also captures this part of impact made by a work. The 

proposed framework models the complete bibliographic system as a graph; this section, thus 

takes the start from a brief account of graph theory. 

6.2.1 Graph Theory Background 

Graphs are mathematical objects extensively used to study entities and their interactions. 

Entities can be people, robots, organisms, scholarly articles or a group of any other things in 

some kind of interaction with each other. Entities are represented as vertices in a graph. In this 
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paper these entities are generally scientific works and scientists involved in these works. 

Interactions between the entities can be of a variety of type; these can be communication, chain 

of command or dependence of one on others. These interactions thus can be non-directional or 

directional; these are respectively represented by edges or arcs between the vertices. On the 

bases of the existence of edges or arcs between vertices, graphs are generally classified as simple 

graphs or digraphs. Based on the nature of interactions, weights can also be associated with the 

edges or arcs. Since the interactions under study are generally asymmetric and directional in 

nature; weighted directional graphs or digraphs are used in this paper. In this paper the weights 

can assume any real value between 0 and 1.  

In this paper a weighted digraphs are generally represented as ( , )G V E  with V a finite 

nonempty set of entities and set E V V I    a set of arcs. Here V V is the set of all the 

ordered pairs of the elements of V and I is the closed interval of real numbers between 0 and 1. 

The triple product V V I   is used here to represent a situation of an ordered pair associated 

with a weight within the interval I. Cardinality of the elements in V is taken as N. 

If an arc of nonzero weight exists between a vertex i and a vertex j then they are called 

neighbors of each other and the collection of all the neighbors of a vertex i is called its 

neighborhood set denoted as { : ( , , ) , 0 0}i ij ij jiN j i j t E t t     . A sequence of distinct vertices 

0 1, , ..., ; 1Mi i i i j M    starting from a vertex i to another vertex j such as there exist an arc of 

nonzero weight from vertex ki to the vertex 1ki  for all 0,1,2,..., 1k M   is called a directed path 

of hop count M from i to j for a weighted digraph G, it is written as 

1 10 1 2 1{ , , ,..., : , 0,1, 2,..., 1 ( , , ) , 0}
l l l lk l m l l i i i ip i i i i i j l m i i l k i i t E t
             . If there is 

a path from vertex i to vertex j then the later is said to be reachable from the earlier otherwise 
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vertex j is said to be disconnected or unreachable from vertex i. The number of arcs in a path is 

known as path length and the minimum path length from a vertex i to a vertex j is called directed 

distance from i to j. A detailed account on graphs can be found at [187]. 

6.2.2 Definitions and Preliminaries 

This section defines the basic elements involved in the framework of impact and their 

mutual relationships. 

Definition 1: Direct Impact Factor of a Work on another Work.  In a situation when work i 

is cited in another work j, the first one has certain factor of impact on the second one; this is 

named Direct Impact Factor of work i on work j and denoted as ijt and it may assume any value 

within the interval (0,1) . ■ 

A null or zero value of the direct impact factor ijt  means that work i has no direct impact 

on work j. A mechanism elaborating the assignment of the Direct Impact Factor value is outlined 

in the next subsection. 

In this paper all the works are represented as vertices of a weighted digraph ( , )G V E  with 

matching labels, and weighted arcs from vertex i to vertex j if and only if work i is cited in work 

j. The weight of the arcs ( , , )iji j t  is the corresponding values of direct impact factor ijt . 

Definition 2: System of Works. The weighted digraph ( , )G V E  as elaborated in the above 

paragraph is defined as System of Works.  ■ 

Definition 3: Path Impact Factor of a Work on another Work.  For a work j reachable from 

a work i through a path 

1 10 1 2 1{ , , ,..., : , 0,1, 2,..., 1 ( , , ) , 0}
l l l lk l m l l i i i ip i i i i i j l m i i l k i i t E t
              in 

the System of Works ( , )G V E ,  the Path Impact Factor of the work i upon the work j is denoted 
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as  
~i j
pT  and it is defined as the product of the Direct Impact Factors taken on the arcs along the 

path p and given by the equation 

 
1

0~
( )

l l

k

i i
li j

pT t




  (6.5)■  

Definition 4: Impact Factor of a Work upon another Work.  The Impact Factor of a work i 

upon another work j where the later is reachable from the earlier in the System of Works ( , )G V E , 

is denoted as ijT and given by 

 
~

max( )
i j

pij
p

T T  (6.6)■ 

Remark 1: The Impact Factor ijT  defined in this equation gives the maximum lower 

bound of the impact factor of work i on work j over all the directed paths from i to j in the 

digraphs; further, it is shown in the later sections that it makes it possible to devise a framework 

of trust propagations. Impact Factor of a Work upon another Work of the work i upon itself is 

defined as 1, that is to say 1iiT  . Moreover, if there is no path from the work i to the work j then 

the Impact Factor ijT  of the work i upon the work j is defined as 0. Furthermore, if there is a 

unique path p from the work i to the work j then 
~i j
pijT T .  ■ 

6.2.3 The Framework of Impacts 

This subsection details the proposed framework of the impacts involving works, objects 

and persons. The proposed framework addresses various problems involved in the existing 

indexing systems [148], [150], [151], [170], [174], [175], [177], [178] by quantifying the impacts 

made and by using a competitive approach.  
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6.2.3.1  Direct Impact Factor Assignment and Impact Factor Propagation 

When a work i is a part of an object k; this work i cites some other works j. The citation of 

works in another work implies that these cited works have certain impacts upon the new work. In 

the current system of indexing, no mechanism of measuring the impact of a cited work upon the 

citing work exists; each cited work is given the same credit [150], [156]. Since some works are 

cited just to make a connection with the existing literature [170] while others are cited since the 

results established or surveys made in them are used in the citing work, it is unfair to assign 

equal credit to each cited work. Moreover, currently there is no defined finite amount of impact 

which is to be distributed to the cited works. This results in excessively high numbers of citations 

with motives other than to indicate research impacts [148], [151], [170], [174]; this flaw is also 

highlighted by an editor by citing all articles published during the last two years in an editorial 

[188], as a protest to the current system. In this subsection some rules are outlined to assign the 

Direct Impact Factor (Definition 1) of the cited works on the citing work. 

1. Proportional Assignment: Sum of all the Direct Impact Factors taken over all the cited 

woks at a work i is 1, that is to say 

 1ijj
t


  (6.7) 

This rule is proposed for the proportional assignment of the impact and to contain the 

citations to those works having real impact on the citing work by offering a competitive 

distribution. 

2. Trivial Assignment: For a work i citing total J number of works j, each of the ijt is 

assigned as reciprocal of J, that is to say 
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1

1,2,...ijt j J
J

    (6.8) 

Though this trivial assignment does not resolve the issue of uneven impacts made by 

cited works yet it is according to the rule of proportional assignment and up to quite a good 

extent contains the number of citations to the works with real impact on the citing work. 

Moreover, this assignment is easy to apply at the initial stages of the implementation of the 

proposed framework. Further, trivial assignment works well with works like surveys, reviews, 

news articles and editorials. 

3. Weighted Assignment: A number of weighted assignments can be proposed. These 

weighted assignments can be discussed at the level of scientific community and at the 

level of objects’ editorial boards. Following are general guidelines for the weighted 

assignments: 

a. Persons and referees involved agree upon the background citations and citations 

which are used in a work. This classification can be generally made by separating 

those citations which are not involved but in the introduction part of the work. 

This mechanism offers an interface to provide delicate human input to the system 

while minimizing the issues related to human interaction in ranking the research 

[167]. 

b. If there is at least one citation which is involved in the development of the work 

then the Direct Impact Factor of a background citation is always less than the 

Direct Impact Factor of other citations.  
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c. If there is at least one citation which is involved in the development of the work 

then the sum of the Direct Impact Factors of a background citation is always less 

than the sum of Direct Impact Factor of other citations.  

d. An upper limit on the sum of Direct Impact Factors of self-citations is 

recommended if possible while obeying b and c.   

4. Communication of Assignment: If a new work j is a part of object k and it has a citation of 

work i which is a part of object l, then object k communicates the Direct Impact Factor ijt  

of work i upon work j to object l. 

 

Figure 6.1: System of Works showing three objects in the form of three big top open 

rectangles. Time is increasing from bottom towards top. The small rectangles represent the works 

and happy faces in the works are the persons involved. Arcs showing the citations of the works at 

the tail ends of the arcs in the works at the head ends of the arcs. Weights on the arcs are not 

shown to avoid rush in the figure. 
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Example 1: System of Works. Consider a small system of works shown in Figure 6.1. In 

this figure three big rectangles open from the top represent three objects. The small rectangles in 

these objects are the works, parts of these objects. Moreover, the happy faces within the works 

show the persons involved in these works. Time is increasing from bottom towards the top. 

Object at the left represents a pure mathematical object with lower number of works in each of 

its issue while the object in the center represents an applied mathematics and natural science 

based object while the one at the right represents an applied object. The arcs between the works 

show the citation of a works at the tail ends in the works at the head ends. Weights on the arcs are 

dropped in the figure to avoid rush in the figure.  ■ 

Example 2: Direct Impact Factor . Consider a small segment of system of works shown in 

Figure 6.2. Here, weights are also shown on the arcs as detailed in this section.  ■ 

 

Figure 6.2: A segment of System of Works with Direct Impact Factors shown. 

6.2.3.2 Properties of Impact Factor 
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Certain important properties of the Impact Factor ijT which the work i has on the work j 

within the System of Works are mentioned in this subsection. These properties are important to 

establish the Impact Factor propagation results in the next subsection.  

6.2.3.2.1 Range of Impact Factor 
For any two works i and j, ijT  lies between 0 and 1. The Impact Factor value 0ijT   

means i has absolutely no impact on j, while the impact factor value 1 means i has full impact on 

j.  

6.2.3.2.2  Bounds on Impact Factor 
It follows from the definitions in this section that for any three works i, j and k the Impact 

Factor ikT  always lies between ij jkT T  and 1 that is to say 1ij jk ikT T T  .  

6.2.3.2.3 Semi Ring Property of Impact Factor 
In this subsection, the semi-ring property of the Impact Factor is established. In a 

framework with this property it is possible to propagate Impact Factor over a digraph [189]. Let 

T be the set containing 
~i j
pT for all the possible vertex pairs, for all the possible paths in all 

possible digraphs and for all the possible direct Impact Factor values, that is to say 

~
{ : , , [0,1], }p ij

i j
T T i j V t p P      , here P is the set of all paths between i and j of a weighted 

digraph  ( , )G V E  with| | 2V   and having every possible arc. It is to establish that the triplet 

( , ,*)T Max forms a semi-ring. In this formulation the product operation is used to combine 

Impact Factor values along a path. The Max operation is used to combine Impact Factor options 

received about a work from more than one intermediate work by taking the maximum over all the 

received values.  



185 

Lemma 1: The triplet ( , ,*)T Max  forms a semi-ring. 

Proof: Proof is in the Appendix.  ■ 

With the setting up of ( , ,*)T Max being a semi-ring, it can be said that the Impact Factor 

as defined above can be treated algebraically in all operation which does not involve cancellation 

[189], as done in proving result about its propagation in the next section. 

6.2.4 Impact Factor Propagation 

Once the Direct Impact Factor between the neighboring works in the System of Works is 

known, this subsection shows how to determine the Impact Factor ijT for the two works ,i j V

who are not necessarily neighbors in the System of Works ( , )G V E . The constructions of the 

previous subsection are used to propose a mechanism for the Impact Factor ijT  propagation for 

all pairs of works ,i j V within the System of Works. The computational complexity of the 

mechanism is 2( )O N for a work i V computing its Impact Factor ijT for another work j V . 

In this algorithm a work i maintains an N vector iT ; at the end of the following algorithm 

its j-th  entry i
jT , represents ijT  the Impact factor work i has on the work j. 

Algorithm 1: Computation of Impact Factor of works i. Following are the steps involved 

in the algorithm.  

1. Preliminaries 

Input: The System of Works ( , )G V E and N vector ( 1, 2,... )iT i N   

Output: Vector iT  

Initialization: 0 , 1, 2,...,i
kT i k N   , set 1i

iT    

2. Relaxation  
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for ( 1)N   time  do 

 for each work i   do 

 for each arc ( , , )iji j t E  do 

 for each k V  do 

 if i j
k ij kT t T   then 

 i j
k ij kT t T   

 Return iT  

The above algorithm can also be expressed as follows. 

Mathematical formulation of Algorithm 1: Computation of Impact Factor of works i. 

 

{ }

0

1

| | 1

( ( , , ) ( max [ ]))
i

i

i
i

i j
ij k ij k

j N i

T

T

for count V

i V i j t E k V T t T

end

 




 

      

 (6.9) 

return iT  ■ 

Theorem 1: The Algorithm 1 converges to give i
k ikT T . 

Proof: Proof is in Appendix.  ■ 

Since the vector iT can be updated by corresponding work i by using only the local 

information, the above algorithm can be readily implemented distributed on each of the works i 

[190]. The following example depicts the distributed working of Algorithm 1. 

Example 3: Impact Factor Propagation. Consider a System of Works as shown in Figure 

6.3 (a), four tables show the vectors : 1, 2,3, 4iT i   and the weighted arcs between then show the 
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direct impact factors of the works upon each other. Figure 6.3 (b)-(c) show the working of the 

Algorithm 1, and Figure 6.3 (d) shows the steady state value of all the impact factors of works on 

each other. ■  

 

Figure 6.3: Impact Factor Propagation. (a) Initial setting. (b)-(c) Propagation. (d) Steady state. 

Remark 2: The Impact Factor ijT  computed by the Algorithm 1 is the highest lower 

bound of the contribution made by work i to work j.  ■  

6.2.4.1 Impact of a Work on another Work 

By using the analogy developed so far in this section, all the works form a System of 

Works ( , )G V E  with the works are represented as vertices with matching labels, and weighted 

arcs from vertex i to vertex j if and only if work i is cited in work j. The weight of the arcs 

( , , )iji j t  is the corresponding value of direct impact factor ijt . Currently, only those works j citing 

a work i are generally counted while evaluating the impact of a work [150]. This is equivalent to 
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counting only those works at 1 hop form the work i in the System of Works ( , )G V E . Generally, 

in the existing system there is no way in use to directly calculate the impact made by a work on 

another work; impacts made by works are projected from either the journal or from the citations 

they got when calculated for persons involved. This system to calculate the impact of a work has 

many shortfalls [150], [151], these include: 

1. Not a Measure of Real Impact. The simple count is not a measure of a work’s impact, 

since a citation could merely be for the introduction purposes. Moreover, persons 

involved are driven to give more and more self-citations [151], [170], [178]. 

2. Consideration of Citing Object. Owing to the absence of a reliable system to calculate the 

impact of a work many times works are evaluated by using the impact of the objects 

which they are part of. There is a consensus in the scientific community that this is not 

fair due to many reasons [145], [148], [171], [177], [181].  

3. No Consideration for Further Referencing. As mentioned earlier, the current system 

counts the citations at one hop of the cited work [150], [151]. This is completely against 

the way cause and effect work in nature [191], [192], [193]. 

The mechanism to calculate the impact of a work, step by step developed in the later part 

of this section, addresses these problems. The Impact Factor of one work upon the other work 

thus given by Algorithm 1 takes care of the seminal effect of a work. This leads to the following 

definition. 

Definition 5: Direct and Indirect Citation. In the System of Works ( , )G V E  if there exists 

a path of length 1 from a work i to a work j then the first one is called a direct citation of the 

second one and if a path of length greater than 1 exists then it is called an indirect citation. ■ 
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Remark 2: It is to be noted that if no more arcs between the existing vertices of the 

System of Works are added after ikT  is calculated then it remains fixed for the works i and the k 

which were in the System of Works at that time. That is to say if no omission is made in the 

System of Works then for the given works i and the k calculation of ikT  is a one-time process.■ 

6.2.4.2 Computation of Scientific Impact of a Work ( )iTW t   

In spite of the fact that work is the fundamental entity in the whole of the citation 

scenario, little effort is made to elaborate the impact of a work. This section defines the impact 

made by a work which is further used in the next sections to define the impacts made by other 

entities involved. The impact made by each work depends upon the type of the work and its 

participation in scientific activity. For example, while a regular scientific work has full 

participation, a survey may have some partial participation and an editorial or correspondence 

may have minimal participation in scientific activity [148], [154], [178]. The following 

definition is thus made.  

Definition 6: Participation Factor. Participation Factor of a work j in an object k is 

denoted as jk  and is a number between 0 and 1, that is to say 0 1jk  . Participation Factor 

signifies the type of work j in object k.  ■ 

Remark 3: The unit value may be assigned to all jk  at the time of the implementation of 

the proposed system; the scientific community is invited to give input to tune the assignment of 

jk  for various types of works, including regular papers, survey papers, short papers, 

correspondences, reviews, news articles, editorials etc. etc.  ■ 

Once the System of Works is set and Impact Factors are calculated, the framework is 

ready to define the Impacts of individual works on the research activity.  
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Definition 7: Current Scientific Impact of a Work. The Current Scientific Impact of work 

i at some time t is written as ( )iTW t  and defied as  

 
:

( ) .i ij jkj j k
TW t T  

 (6.10)■ 

Since more and more works are produced at every moment, the System of Works is a 

changing entity. Suppose that at some time t the System of Works is ( ( ), ( ))G V t E t  and the 

Scientific Impact of a work i is ( )iTW t . Then every work can asynchronously update its impact 

in the event of getting a new direct or indirect citation (Definition 5). Representing the instance 

of updating as 1t  , the System of Works at this instance is represented as ( ( 1), ( 1))G V t E t  . 

The updated value of the Scientific Impact of Work is written as  ( 1)iTW t   and given by the 

following algorithm. 

Algorithm 2: Updating the Impact of a Work. 

 
:

( 1) ( ) ( ).i i ij ij jkj j k
TW t TW t T T     

 (6.11) 

Here ijT   is the Impact Factor (Definition 4) of work i on work j in the System of Works 

( ( 1), ( 1))G V t E t  .  ■ 

Remark 4: Computationally more efficient formulation can be made for the 

implementation of Algorithm 2, the algorithm in (6.11) is presented in its present form for its 

better readability. ■ 

Remark 5: The updating of the Scientific Impact of Work in Algorithm 2 is a one-time 

process, and happens only when a new direct or indirect citation is reported to the work by 

Algorithm 1 or there is some change in the existing values of ijT . Generally there is an increase 
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in ijT  except when some work is withdrawn, in this way the system has the flexibility to take care 

of such changes. ■ 

6.2.4.3 Computation of Scientific Impact of an Object ( )kTO t  

Currently the impact of an object is computed by calculating the average number of 

citations made by the works which are parts of the object [147], [154]. This current method to 

compute the impact of an object has certain problems, these include: 

1. Not a Measure of Real Impact. The simple average is not a measure of an object’s 

impact, since a citation could merely be for introduction purposes. Moreover, the 

editorial board involved is driven to coercive citation, the act of giving more and more 

self-citations [174]. 

2. No Consideration of Citing Work. The current method only counts the number of 

citations without any consideration of the impact of citing work. 

3. No Consideration of Past History. The current method to calculate the Impact of an 

object, considers only the articles of the object cited during the past one year with 

absolutely no consideration of past history. Moreover, citations of older works are not 

considered [147], [163], [166].  

In Google Page Rank based approaches, Eigenfactor and SRJ, a scientist is modeled as a 

random surfer from one journal to another, this model is by itself very divergent from the 

working of a scientist which is more deterministic and objective. Moreover, by virtue of using 

this model one may get the frequency by which a reader comes across a journal but how does it 

calculates the impact made by the journal is still under question [145]. In this subsection a 

mechanism to compute the Scientific Impact of objects is defined. This method takes care of the 
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problems mentioned above and gives a dynamic and stable system. This section also proposes a 

transition of this proposed system without disturbing the existing systems. For the purpose of this 

transition, the following definition is made. This definition gives the initial value of the Scientific 

Impact of an object.  

Definition 8: Scientific Impact of an Object. The Scientific Impact of an object k is 

written as kTO  and the initial value assigned to it is equal to the current 5 years impact factor of 

the object in the present system. A mechanism to update this assignment is presented in this 

subsection. The value of kTO is published.  ■ 

The Scientific Impact of an object for a past one year is generally calculated as the ratio 

of the number of citations made to the past one year works which are parts of the object and the 

number of works added in the object during that year [147], [163], [166]; in contrast, it is an 

established fact that scientific works generally have long term effects [194], thus it is not rational 

to deprive an object of the credit of an older work being cited currently. Following the same 

lines, but adopting the proposed framework, in this paper the Scientific Impact of an object for a 

year is proposed to be dependent upon the ratio of the sum of changes in the Scientific Impact of 

the works which are parts of the object to the number of works increased during the year. Thus 

the following definitions are made. 

Definition 9: Yearly Change in the Current Scientific Impact of a Work. For a work i 

who’s Scientific Impact was ( )iTW t  at the start of a year or just after its becoming a part of an 

object k, whichever occurrence is latest, and ( )iTW t  is its Scientific Impact at the end of the year 

then Yearly Change in the Scientific Impact of the Work i is denoted as iTW  and defined as  

 ( ) ( )i i iTW TW t TW t    (6.12)■ 
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Remark 6: Any event of the citation of a work is considered to occur after the work has 

become part of some object.  ■ 

Definition 10: Yearly Change in Scientific Impact of an Object. Yearly change in the 

Scientific Impact of an object k for a year is denoted kTO  and is defined as the ratio of the sum 

of that’s yearly changes in the impacts of works which are parts of the object to the sum of 

participation factors (Definition 3) of all the works i added in the object k during that year. That 

is to say 

 
ii k

k
iki k

TW
TO




  





 (6.13)■ 

Remark 7:  

1. As the time passes impacts of the existing works generally increase. This results in 

nonnegative value of the Yearly Change in the Scientific Impact of an Object in the 

above definition. 

2. The ratio in (6.13) neither favors nor disfavor an object as attributed to the current system 

[147], [166].  ■ 

The Scientific Impact of an object is proposed to be updated any time, preferably every 

year, which is in line with the current practice [147], [163], [166]. The following algorithm is 

proposed to update the Scientific Impact of an object kTO  every year. 

Algorithm 3: Updating the Scientific Impact of an Object k. 

 (1 )k k kTO TO TO      (6.14) 

The constant  can be typically taken 0.2, if 5 years Impact is required.  ■ 
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Remark 8: The above algorithm gives a running average of the impact made by the object 

which is a reasonably true measure of the current value [195].  ■ 

6.2.4.4 Scientific Impact of a Person 

The current ways to measure the research impact of a person have certain issues [145], 

[148], [150], [151], [170], [171], [173], [175], [177], [178], [180], these include. 

1. Self-Citation. The current system drives the authors to make more and more self-

citations. 

2. Excessive Works. The current system drives persons to play the number game, and to act 

on the analogy of publish or perish. This makes it difficult to find real works. 

3. Credit of Work. Currently there is almost no mechanism to distribute credit of work 

among authors. Generally some intangible credit is given to the first author but credit 

allocation to the second author is much more mystical, who could have put a lot more 

effort in the work.  

4. Gifted Authorship. The current system to measure the research impact of a person does 

not give any penalty to gift authorship to some persons who are not involved in the 

research. Many times names of all the persons working in a lab are placed in the list of 

persons without considering their real efforts involved in producing the work.  

The mechanism proposed in this subsection addresses these issues by offering a 

competitive environment. In this competitive environment every person p, who is a part of work 

i, is assigned with a fraction of the Impact made by the work. This is reached by the following 

definition. 

Definition 11: Participation Fraction of a Person in a Work. For a person p who is a part 

of a work i, the Participation Fraction is a number pif  existing within the interval (0,1] .  ■ 
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The following recommendations are made for the assignment of values to pif , and the 

scientific community is requested to comment to reach a consensus over it. 

1. Proportional Assignment: Sum of all the Participation Fractions taken over all the 

persons involved in a work i is 1, that is to say 

 1pip i
f  

 (6.15) 

This rule is proposed for the proportional assignment of the Impact of Work and to 

contain the persons involved to those who put real efforts, by offering a competitive distribution. 

2. Trivial Assignment: For a work i having total P number of persons as its parts, each of the 

pif is assigned as reciprocal of P, that is to say 

 
1

1,2,...,pif p P
P

    (6.16) 

Though this trivial assignment does not resolve the issue of uneven contributions made 

by contributing persons yet it is according to the rule of proportional assignment and to quite a 

good extent contains the number of persons to real contributors. Moreover, this assignment is 

easy to apply at the initial stages of the implementation of the proposed framework. Further, 

trivial assignment works well with all the persons having equal contribution in a work. 

3. Weighted Assignment: A number of weighted assignments can be proposed. These 

weighted assignments can be discussed at the level of scientific community. Following 

are general guidelines for the weighted assignments: 

a. Persons involved may reach a consensus over Participation Fraction of all.  

b. Participation Fraction can be based upon the quantum of the impact of persons in 

the topic work. 
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c. If there are more than two persons the sum of Participation Fractions of first and 

second persons may be greater than or equal to 0.5.  

d. Participation Fraction of any other person involved is always less than the 

Participation Fraction of the first and second persons. 

e. Special recommendations can be made for works produced in the partial 

fulfillment of an academic degree. 

f. Some probability distribution can be devised by keeping in view the opinions of 

established persons. For example assuming that in an ordered list of persons who 

are the part of a work, each subsequent person is picked by the preceding person 

for any reason; and accordingly the preceding person shares half of its 

Participation Fraction. The distribution of Participation Fraction pif  of a person 

at index p of an ordered list of P persons who are part of a work i is given by 

 
11/ 2

1/ 2 1,2,..., 1 1

P

pi p

p P
f

p P for P

  
  

 (6.17) 

Based on the Participation Fraction of persons the Scientific Impact of a Person is 

defined next. 

Definition 12: Scientific Impact of a Person. Scientific Impact of a person p is denoted as 

( )pTP t  and defined as 

 ( ) ( )p pi ip i
TP t f TW t 

 (6.18)■ 

Remark 9: The Scientific Impact of a Person changes upon participation of a new work or 

upon change in the Impacts of Works that the person has involved. It follows from the above 

definition that Scientific Impact of a Person directly depends upon the quantum of participation 
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made by the person, the Direct and Indirect Impacts upon works. Moreover, it quantifies the 

seminal effect of a person on research activity. ■ 

6.2.5 Freshness of Entities 

In whole of the above development the Current Scientific Impact of a Work (Definition 

7) and given by (6.10) plays the pivotal role in whole of the framework defined in this paper. All 

the impacts defied in this paper are directly or indirectly depend upon this entity. The Current 

Scientific Impact of a Work adds up all the impact made by a work at any time; thus, it does not 

count for the freshness of the impact made by the work. The following definition is made to take 

care of the freshness in the impact made. 

Definition 33: Fresh Scientific Impact of a Work. The fresh scientific Impact of a work at 

some time t (in years) is written as ( )iFTW t  and defined as  

 
:

.
( )

1
ij jk

i j j k
j

T
FTW t

t t




  
 (6.19) 

in this equation jt  is the time (in year) when the work j was made part of the object k.■ 

Involving ( )iFTW t  in all the above definitions gives the freshness versions of all these 

impacts defined earlier. These impacts are also part of the framework; further details are omitted 

to contain the length of this paper. 

6.2.6 Implementation and Scalability of the Proposed Framework   

Implementation of the proposed system is possible with the help of the existing data base. 

It is proposed that at the first stage of the implementation trivial assignments are made to the 

Direct Impact Factors (Definition 1) and Participation Fractions (Definition 11). With the 

availability of the citation database these trivial assignments can be automated, thereby incurring 
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little cost. This first step of the implementation will setup the entities of works, objects, persons 

and institutes. In the next step of implementations the governing bodies of the established objects 

will be requested to make the nontrivial assignments to the Direct Impact Factors (Definition 1) 

and Participation Fractions (Definition 11) during their review processes.  

6.3 Results and Conclusion 

A comprehensive and seamless framework for the impact factor propagation and 

computation of impacts made by scientific works produced is elaborated in the last section. The 

proposed framework takes a work as the fundamental entity and then assigns the value of 

impacts made by other entities including journals, scientists, and institutions. This section 

establishes the superiority of the proposed system by presenting examples, simulation results and 

mathematical modeling. 

6.3.1 Comparison of the Proposed System of Impacts with the Existing Systems 

In this subsection comparison of the existing systems of indexing, impacts and factors is 

made with the proposed system. The most distinctive feature of the proposed framework is that it 

provides an integrated and seamless system to measure the impact on research activity of every 

entity involved including journals, conference proceedings, articles, papers, thesis, books, 

authors, coauthors, presenters, mentors, universities, funding agencies and others. 

The effectiveness of the proposed framework in addressing the issues like measuring the 

impact of a scientist, excessive self-citations, and gifted authorship, is evident from the structure 

of the framework by itself. To further emphasize the significance of the propose system and its 

superiority over the existing systems, consider a segment of the system of works in Figure 6.4; 

here all the nodes are works with triangle, oval, rectangle, and hexagon represent works 

significant in this example. It is evident that in the existing system, both triangle and over will 
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contribute exactly same in, ISI index, H-Index, number of citations etc. From the Figure 6.4 it is 

clear that oval has much more impact to the scientific activity, since it has seminal effect on it, 

and the proposed system takes care of this seminal effect assigns more worth to the oval work 

than triangle work. Hexagon is a typical case of a survey work, in the current system it is given 

much more worth than any other work in the Figure 6.4, but it is evident that the oval one has 

more significance, which is duly assigned by the proposed system. Similarly the work 

represented as a rectangle is superior to the oval one but its superiority cannot be judged by the 

present system. 

 

Figure 6.4: A section of the systems of works. 

It is also worth noting that equation (6.13), which computes the impact made by an object 

corrects the discrepancy of denominator which favors the publishing of reviews, survey articles, 

and other non-scientific works. The numerical values of the entities involved in the proposed 

framework and their significance is also apparent from the dynamics of the underlying algorithm 

and illustrated examples, but may need further insight about the extent of the proposed system in 

dealing with the cross discipline distribution of impact. To provide this insight, the citation 

system is simulated for 27 objects. The citations of the works in these are simulated according to 

the power law distribution, as proposed in [202]. In all 27 objects are simulated in three 
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categories, the first nine simulated objects are pure theory objects having typical trend of having 

3-4 citations in a work, the next nine simulated objects are applied theory objects having typical 

trend of having 15-25 citations in a work, and the last nine simulated objects are application 

science objects having typical trend of having 30-60 citations in a work; the power law 

distributions of these different types of objects are tuned to give typical Impact Factor values in 

the present system; the Impact Factors of the nine representative simulated objects, three from 

each category, in the current citation system are shown in Figure 6.5 (a); first three of them are 

pure theory objects, the next three are applied theory objects, and the last three are application 

science objects. The impact factors of these objects are calculated by using the current method 

being used by ISI as explained in the Section 6.1. The proposed framework is also simulated for 

the same objects and the seminal impacts made by the objects are calculated by using (6.13); the 

simulation results are shown in Figure 6.5 (b).  

 

Figure 6.5: Scientific Impacts of various simulated objects  in the (a) current system and in the 

(b) proposed system. The first three simulated objects are pure theory objects having typical 

trend of having 3-4 citations in a work but are cited in the applied work, the next three simulated 

objects are Applied Theory objects having typical trend of having 15-25 citations in a work but 

are cited in pure application science works, and the last three simulated objects are application 

science objects having typical trend of having 30-60 citations in a work. The figure shows 
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minimum, maximum and mean of the scientific impacts made by various objects; some instances 

of the impacts made by objects are shown in line graphs. Graph in (a) shows that in the current 

system of calculating scientific impact of an object, those objects having a trend of fewer number 

of citations in a work get a severe penalty in the form of their lower scientific impacts; while 

graph is (b) shows that the objects containing works with minimal value of direct impact factor 

has minimal value of the scientific impact made, objects containing works with moderate value 

of direct impact factor has moderate value of the scientific impact made, and objects containing 

works with maximal value of direct impact factor has maximal value of the scientific impact 

made. 

The simulation results in Figure 6.5 (b) show that there is a significant effect of indirect 

impact made by the works in an object on the impact made by it. The first object in each category 

is the one containing works with small value of direct impact factors, the second object in each 

category is the one containing works with moderate direct impact factors and the last one 

containing works with high value of direct impact factors. The simulation results show that the 

first object in each category generally has minimal value of the scientific impact made, the 

second one has moderate vale of the scientific impact made and the third one has the maximal 

value of the scientific impact made. Moreover, a trend of having the excessive number of 

citations, generally do not result in excessive value of scientific impact made.  

The example and simulation results presented in this section so far provide an insight to 

the superiority of the proposed framework over the existing system. The following theorem 

establishes the robustness of the proposed framework from game theoretic view point [203], 

when the persons and the anonymous referees are rational [203]. Moreover the referees are 



202 

rationally picked, rationally picked referees mean that if a work is places in the system of works, 

the work has some nonzero impact on the referee. 

Theorem 2: If all the persons and rationally picked anonymous referees are rational then 

the proposed system is immune against gifted authorship and against irrelevant citations. 

Proof: Proof is in Appendix.  ■  

6.3.2 Conclusion 

This paper provides a comprehensive system to measure the impact made by a work not 

only over the research activity but also to the human life. The seamless system presented in this 

paper takes care about a number of problems with the current system, under discussion in the 

scientific community; these include but not limited to: excessive self-citations, excessive 

publishing of non-scientific material, publishing of half cooked ideas, cross discipline 

normalization, seminal effect made by a work, and gifted authorship. The proposed system takes 

a research work as a basic unit of contribution and on its basis, calculates the impact made by the 

rest of the entities like scientists, institutes, universities, funding agencies, mentors etc. The 

system does not calculates the impact made by the work on the basis of its citations rather it 

computes the impact made by a work on the basis of its seminal effect on the research activity. 

The network based approach used in the proposed system does not change the representative 

graph of the system by adding teleporting arcs as done in present network based approaches 

[162], [164], in contrast, the proposed system does not add additional arcs to the network; 

furthermore, instead of using a random surf model as in [162], [164], the proposed system 

assigns the impact made by a work i on another work j on the basis of proportional contribution 

made by work i on work j. Moreover, the system assign’s the impact made by the scientists on 

the basis of proportional contribution made and bars the nonscientific practices inculcated in the 
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scientific activity. Though the system can be implemented in an autonomous way but there is lot 

of room in the system to take delicate inputs from the authors and the reviewers, making it more 

realistic and useful. By making work as the fundamental unit of contribution, and by allocating 

the impacts made by the rest of the entities involved on the basis of their contribution in the 

works, the proposed system eliminates many non-scientific practices in evaluation of scientists, 

and journals. The proposed system ends the number game, and promotes the true scientific 

activity by discouraging the gifted authorship and excessive self-citations, and by providing the 

advantage of the quantification of seminal impact made by a work. 
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Chapter 7  

Future Work 

This work studies various aspects of internal structure and dynamics decision involved in 

coalitions on graphs. Moreover, the work provides a machinery to explore the contributions 

made by individual agents within the coalition and cost associated with the agents joining the 

coalition. Furthermore, impact made by one agent over the other is also studied. There are five 

aspects of the contribution made in this work. These aspects are summarized in the next 

subsection and the futuristic expansion of this work is discussed in the further subsection. 

7.1 Summary of this Work 

First of all this work investigates the cooperation between agents to achieve a common 

goal. The problem of steering a swarm of autonomous agents out of an unknown maze to some 

goal located at an unknown location is discussed in this context. The routing algorithm given 

here provides a mechanism for storing data based on the experiences of previous agents visiting 

a node that results in routing decisions that improve with time. Algorithms are based on an 

underlying network of communicating nodes. 

Next a certain graphical coalitional game is introduced, where the internal topology of the 

coalition depends on a prescribed communication graph structure among the agents. The 

graphical coalitional game satisfies basic properties of convexity, fairness, cohesiveness, and full 

cooperativeness. Three measures of the contributions of agents to a coalition are introduced: 

marginal contribution, competitive contribution, and altruistic contribution. Based on these 

different contributions, three online sequential decision games are defined on top of the graphical 

coalitional game. The stable graphs under each of these sequential decision games are studied, 

and give the structures of the coalitions that form in each sequential game.  
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A Positional Cost is also introduced next; the cost is assigned to each agent based on 

Shapley value and connectivity of the agent within the communication graph. Based on the 

advantage and cost, a notion of Net Payoff or Allocation is defined; this notion is used to further 

define three measures of net advantages. Taking maximization of these measures of net 

advantages as the objective functions of agents, three online sequential decision games are 

defined on top of the coalitional graph game. Stable graphs under each sequential decision game 

are studied by varying the cost, and certain results about the coalition structure are established. A 

threshold of cost is reached above which no agent is interested to stay in a coalition irrespective 

of their motives. 

Next a certain graphical coalitional game on digraphs is introduced, where the internal 

topology of the coalition depends on a prescribed communication graph structure among the 

agents, when the flow of information can be unidirectional. Novel digraph structures, including 

semi-strongly connected digraphs and multi-chain, are defined. The marginal contribution made 

by an agent in a digraph is introduced. Based on marginal contributions, and by varying the rules 

of the game, three online sequential decision games are defined on top of the graphical 

coalitional game. The stable graphs under each of these sequential decision games are studied, 

and give the structures of the coalitions that form in each sequential game. It is shown that the 

stable graphs under these games are semi-strongly connected digraphs, multi-chain, and chain of 

command. 

Finally the notion of impact of one agent in the coalition upon the other agents is 

investigated, and a complete impact propagation framework is proposed. The analogy of impact 

propagation is use to present a seamless, comprehensive, and integrated framework to compute 

the impact made by a scientific work, a scientist, an institution, a scientific journal, and a funding 



206 

agency. The framework provides solutions to a number of problems about the existing indexing 

systems, under discussion, in the scientific community. These problems include but are not 

limited to the allocation of impact to scientists, excessive self-citation, gifted authorship, 

dependence of indices on disciplines, and excessive citations. The proposed system has complete 

provision of peer input to cover delicate issues in impact calculations, yet the system can be 

employed fully automated during the earlier implementation stages. 

7.2 Applications and Future Expansions of the Work 

The work can be applied to various areas of study and there is a lot of room to expand all 

the five aspects of this work in multiple ways. Owing to immense diversity in the fields of study, 

these applications and expansions cannot be fully comprehended at this stage, yet some very 

immediate ones of them are mentioned here. 

7.2.1 Routing Algorithm without Communication Network 

The routing algorithm devised in Chapter 1, computes the shortest path in an unknown 

graph to an unknown goal. The working of the algorithm is based on an underlying 

communication network. In future this part of the work can be expanded to devise a routing 

algorithm independent of the communication network.  

The algorithm in this work, and the proposed expansion can be used in various 

engineering applications, including cyber cooperation, and information hunting over the Internet 

[1], [2], [3], [4], [5], [6], [7], [8]. [9], [10], [11], [12]. 

7.2.2 Graphical Coalition Game with Positional Advantage 

The graphical coalition game proposed in this work can be expanded in variety of ways. 

First of all the machinery developed in this work can be further developed mathematically. 
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Certain mathematical results can be obtained connecting the graph theoretic parameters with 

GCG and contribution of an agent within a coalition.  

It seems to be tractable to work out a distributed approach to compute the positional 

advantage of an agent. Advent of such an algorithm has a potential to revolutionaries the 

techniques involving the assignment of value to the network nodes [78], [149], [155]. 

The graphical coalitional game and the sequential decision games proposed in this paper 

can be used in a variety of ways in problems involving situations of simultaneous competition 

and collaboration among anonymous agents. The GCG with Positional Advantage can be used to 

determine the social standing of various kinds of agents purely on the basis of the 

communication structure. GCG also distinguishes between the events of making a 

communication link for self-interest and for the coalition’s sake [71], [75], [124], [126]. The 

development in Section 3.4 can be used to determine the strategic importance of graph points. 

The development in this paper can also be used to understand the notions of competition and 

cooperation in groups of biological species [90], [92], [103], [106], [133], [141]. The sequential 

decision games in the Section 3.5 can be used to understand the internal structure of a coalition 

based on the notions of competition and altruism. Situations in economics, communication, and 

swarm control are very complex; here a lot of agents interact in situations of simultaneous 

competition and cooperation. The theory developed in this paper can be used to understand 

complex situations of joint competition and cooperation [74], [81], [82], [111], [117], [123], 

[125], [131], [140].  
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7.2.3 GCG on Digraphs and Cooperative Control theory 

Novel digraph structures and GCG on digraphs is introduced in Chapter 5. This works 

can also be expanded mathematically to show the connection between digraph structures and 

other digraph parameters like, circuits, in-degree, out-degree etc. etc.  

The GCG on digraphs, and the sequential decision games proposed in this paper can be 

used in a variety of ways in problems involving situations of simultaneous competition and 

collaboration among anonymous agents. The GCG on digraphs can be used to determine the 

social standing of various kinds of agents purely on the basis of the communication structure, 

where there are asymmetric relations between agents [71], [75], [124], [132]. The notion of 

marginal contribution made by the agent developed in Section 5.4 can be used to determine the 

comprehensive contribution of an agent to digraph structure [74]. The sequential decision games 

in the Section 5.5 can be used to understand the internal structure of a coalition based on the 

notions of marginal contribution. The novel digraph structures and theory of sequential decision 

games developed in this paper can be used in cooperative control theory [1], [2], [3], [7], [8], 

[79], [135].  

7.2.4 Graphical Coalition Game and Fidler Eigen Value 

It is known that Eigen Values of the graph Laplasian matrix plays a fundamental role in 

determining the rate of convergence to the consensus value of the coalition. In situations where 

agents converge to coalitions through local voting protocols, the graph structures like multi-

chains, semi-strongly connected digraphs, chain of commands and trees are the key structures 

having minimal Fidler Eigen Values and maximal rate of convergence to the consensus [1], [2], 

[3], [7], [8], [79], [135]. The relation between positional advantage and Fidler Eigen values can 

be explored. 
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7.2.5 Graphical Coalition Game and Economics  

Since the economic activity is also determined by how feasible it is for the agents to 

make coalitions, the graphical coalitional games introduced in this paper can be used to study the 

coalition formation in economic setup. In economic setup these games can be used to study the 

state of recession and study of measure to avoid it.  

7.2.6 Impact Propagation Framework 

The impact propagation framework introduced in Chapter 6 is ready to use to make a 

next generation tool to compute impact made by any entity in the research activity. The proposed 

framework is immune to many problems which are attributed to the current system. 
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Appendix A 

Technical Lemmas for Chapter 3 
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In the following results symbols k, n, and m are integers. 

Lemma A.1: The Positional Advantage of a node within a graph is the PA of the node 

within its connected component.  

Proof : Let the vertex i is contained in the component nG  of the graph G. Further suppose 

that \m nG G G is the rest of the graph not connected with i. Now every \{ }S G i   can be 

partitioned into S  and mS  such that \{ }nS G i  and m mS G . That is to say  

 \{ }, : \{ }m n m m mS G i S S S S G i S G S S             (8.1) 

Since S  and mS  are disconnected, thus by using Axioms 1 and 2, this holds 

 ( ) ( ) ( ) ( )m mv S v S S v S v S      (8.2) 

Similarly this also holds 

 ( { }) ( { } ) ( { }) ( )m mv S i v S i S v S i v S        (8.3) 

Using (8.2) and (8.3) 

 ( { }) ( ) ( { }) ( )v S i v S v S i v S       (8.4) 

Using Definition 3 the PA of node i within the graph G is given by  
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G

 


     (8.5) 

And the positional advantage of node i within its component nG  is given by 

  | | 1
| |\{ }

( ( { }) ( ))1
( )

| |n n

n

G G
SS G in

v S i v Si
G

 


    (8.6) 

Using (8.4), (8.5) can be written as  

  | | 1
| |\{ }

\{ }

( ( { }) ( ))1
( )

| |
n

G G
SS G i

S G i

v S i v Si
G

 




    (8.7) 



212 

Further, rearranging this by collecting all the terms involving ( ( { }) ( ))v S i v S   for the 

same value of S, using (8.1) and the fact that | | | |n mG G G  gives  

  
| |

| | 1

| |\{ } 0

( ( { }) ( ))

| |

1
( )

| | | | 1(| | | |)

| |

m

n

m

G

G G

SS G i k m nn m

v S i v S

G

k
i

G GG G

S k




 

 
 



 
   

   
 
 

   (8.8) 

Using mathematical induction on | |mG  it can be established that 

 
| |

0

1
| | 1

| |

| |

1 1

| | | | 1(| | | |) | |

| |

m

m

G

k m nn m n
nG
S

G

k

G GG G G

S k


 
  
 




 



 
   

   
 
 

  (8.9) 

Using this result in (8.8), the desired result that ( ) ( )
nG Gi i  is obtained.  ■ 

Lemma A.2: If a positive integer n, such that 0 n N  , is written as a sum of positive 

integers 1 2 ... mn n n n    then 
1 2

...
mn n n nv v v v      

Proof: Using the Axiom 3 these inequalities hold 
1

1, 2,...,i n nn v nv i m   . Summation of 

these inequalities for all values of i gives 
1

1 1

m m

i n n
i i

n v nv
 

   or 
1

1 1

m m

n i n
i i

v n n v
 

  . Using the given 

condition that 1 2 ... mn n n n    , the desired result is obtained. ■ 

Lemma A.3: If 2 12v v  then 1 ( 1)m mmv m v    with 0 1m N   . 

Proof: The result is true for 1m  . Making the induction hypothesis that 1 ( 1)k kkv k v   . 

Using the Axiom 4 2 1 1k k k kv v v v     . Using the induction hypothesis in this inequality proves 

the desired result. ■ 

Lemma A.4: If m, n and k satisfy 0 , 0n m N k k      then m k m n k nv v v v    . 



213 

Proof: Using the Axiom 4 these inequalities hold 1 1m k m k n k n kv v v v        ,

1 2 1 2m k m k n k n kv v v v          ,…, 1 1m m n nv v v v    . Addition of these inequalities gives the 

desired result. ■ 
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Appendix B 

Proofs of Lemmas in Chapter 3  
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Proof of Lemma 2: Let G is a graph with the nodes i and j not neighbors of each other. 

By the definition of Positional Advantage, Definition 3, and the underlying game Definition 1, 

this can be written  

   | | 1 | | 1
| | | |\{ } \{ }

( ( { }) ( )) ( ( { }) ( ))1 1
( ) ( )

| | | |G G G G
S SS G i S G i

v S i v S v S i v Si i
G G

    
  

      
    

For each \{ }S G i  , not containing  j, an identical \{ }S G i  exists. Thus above equation be 

written as 

   | | 1 | | 1
| | | |\{ } \{ }

( ( { }) ( )) ( ( { }) ( ))1 1
( ) ( )

| | | |G G G G
S SS G i S G i

j S j S

v S i v S v S i v Si i
G G

    
  

 

      
    

Since ,i S S  , thus for each \{ }S G i  , an identical \{ }S G i  exists. Above equation can be 

written 

    | | 1 | | 1
| | | |\{ } \{ }

( { }) ( { })1 1
( ) ( )

| | | |G G G G
S SS G i S G i

j S j S

v S i v S ii i
G G

    
 

 

   
    

Since | | | |G G  , above equation can be written as 

   | | 1 | | 1
| | 1 | | 1\{{ } { }} \{{ } { }}

( { } { }) ( { } { })1 1
( ) ( )

| | | |G G G G
S SS G i j S G i j

v S i j v S i ji i
G G

   
      

        

In this equation { } { }S i j G    , { } { }S i j G   . For each S  an S can be found with 

identical vertex set, and for such pair of S and S , according to Lemma A.2, 

( { } { }) ( { } { })v S i j v S i j     . Thus ( ) ( )G Gi i    is nonnegative. ■ 

Proof of Lemma 3: It is established in the proof of Lemma 2 that ( ) ( )G Gi i    in non-

negative and is 

 | | 1
| | 1\{{ } { }}

\{{ } { }}

( { } { }) ( { } { })1
( ) ( )

| |G G G
SS G i j

S G i j

v S i j v S i ji i
G

  
   

 

        
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In this equation both S and S   have the identical vertex set but S is an induced subgraph of G and 

S   is an induced subgraph of G . According to Lemma A.2, ( { } { }) ( { } { })v S i j v S i j     , for 

all S and S   which implies that ( ) ( )G Gi i    is nonnegative in general. Now for S S   , 

2
( { } { })v S i j v    and 

1
( { } { }) 2v S i j v   , thus under the given condition 2 12v v , 

( { } { }) ( { } { })v S i j v S i j      which implies that ( ) ( )G Gi i    is positive. ■ 

Proof of Lemma 4: Since the vertices i and j are already connected in G then by Axiom 2 

sum of the PAs of the coalition ( )v G  does not change with the making of the new edge { , }i j . By 

Theorem 1, making the edge{ , }i j  changes the PAs of both the end vertices by the same non-

negative value.  ■ 

Proof of Lemma 6: Consider a node k in a disconnected graph G with agents i and j in 

distinct components. Let G  be the graph obtained by G by making the edge{ , }i j . Thus 

    | | 1 | | 1
| | | |\{ } \{ }

( ( { }) ( )) ( ( { }) ( ))1 1
( ) ( )

| | | |
G G G G

S SS G k S G k

v S k v S v S k v S
k k

G G
    

  

      
    (9.1) 

For each \{ }S G k  , not containing i or  j, an identical \{ }S G k  exists. Thus above equation 

can be written as 

  

 

| | 1
| | 2\{ } { } { }

| | 1
| | 2\{ } { } { }

( ( { } { } { }) ( ) { } { })

( ( { } { } { }) ( { } { }))

( ) ( )

1

| |

1

| |

G G

G
SS G k i j

G
SS G k i j

v S k i j v S i j

v S k i j v S i j

k k

G

G

 

 
    


  

      

     

 









 (9.2) 

If k is connected to i in the original graph G then by using the Axiom 2 and the fact that 

| | | |G G  , above equation can be written as 

   | | 1 | | 1

| | 2 | | 2\{{ } { } { }} \{{ } { } { }}

( ( { } { } { }) ( ) { } { }) ( ( { } { }) ( { }))1 1
( ) ( )

| | | |
G G G G

S SS G k i j S G k i j

v S k i j v S i j v S k i v S i
k k

G G
   

        

               
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Using Axiom 4 it follows that the right hand side of this equation is always nonnegative, that is 

to say ( ) ( ) 0
G G

k k    . It can be seen that (9.2) is symmetric with respect to i and j, thus the 

result also holds true for those agents k connected with agent j in the original graph G. ■ 

Proof of Lemma 8: From (3.25), the competitive contribution of the agent i is given by 

 
\

( ) ( ) ( )G G Gj G j G i
c i j j 

 
     

or ( ) ( )G Gc i i .  This is the desired result.  ■ 

Proof of Lemma 9: The marginal contribution ( )Gm i  for an agent i within a connected 

graph G is given by using (3.27). For a connected graph G the first term in the right hand side of 

(3.27) is constant, thus ( )Gm i  is minimum when the second term 
1

i

p

k
i

v

  in the right hand side of 

this equation is maximum, which under the given condition in (3.27) and Lemma A.2 is | | 1Gv   

when the agent i is not a cut vertex. This minimum marginal contribution is given by 

 | | | | 1( )G G Gm i v v    (9.3) 

This minimum value is independent of the structure of G and only depends upon | |G . ■ 

Proof of Lemma 10: For an agent i within a connected graph G the marginal contribution 

( )Gm i  is given by (3.27). For a connected graph G the first term in the right hand side of this 

equation is constant, thus ( )Gm i  is maximum when 
1

j

p

k
j

v

  is minimum, which by Lemma A.2, 

under the given condition in (3.27) is 1(| | 1)G v , which is possible only when removal of agent i 

from G leaves rest of the agents isolated.  ■ 
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Proof of Lemma 11: For an agent i within a graph G the altruistic contribution ( )Ga i  by 

using (3.26) is 

 \\ \
( ) ( ) ( )G G G ij G i j G i

a i j j 
 

     

Since the agent i is isolated, using Lemma A.1, \( ) ( )G G ij j j i    . ■ 

Proof of Lemma 12: The altruistic contribution of an agent i is given by (3.26). Let the 

agent i is not isolated and G is a graph obtained from G by removing the entire edges incident at 

the agent i. By using  (3.26) the altruistic contribution of the agent i can be written as 

 
\

( ) ( ( ) ( ))G G Gj G i
a i j j  

   (9.4) 

Let the altruistic contribution of the agent i is 0. By Lemma 6, ( ( ) ( ))G Gj j    is nonnegative, 

thus  

 ( ) ( ) 0G Gj j j i       (9.5) 

Using Definition 3 above equation can be written as 

    | | 1 | | 1
| | | |\{ } \{ }

( ( { }) ( )) ( ( { }) ( ))1 1
0

| | | |G G
S SS G j S G j

v S j v S v S j v S j i
G G  

  

       
   (9.6) 

Since both G and G   share the same vertex set, thus this can be written as 

 
 | | 1

| | 1\{{ } { }}

\{{ } { }}

( ( { } { }) ( { })) ( ( { }) ( ))1
0

| |
G

SS G j i

S G j i

v S j i v S i v S j v S
j i

G

 

  

           (9.7) 

Here S and S  have the same vertex set. Using Axiom 2 all the terms within the summation are 

non-negative with, under the given condition, at least one term is positive for | | 0 | |S S   and j 

some neighbor of i. This proves the desired result. ■ 
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Appendix C 

Proofs of Lemmas in Chapter 4  
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Lemma C.1: For a valid game list 1 2( , ,.... )Nv v v v , 1 1 1( ) 1k k kk v v v v k N       . 

Proof: Proof follows from Axiom I.4. ■ 

Lemma C.2: For a valid game list 1 2( , ,.... )Nv v v v , 1

1

1

2

N
N

i
i

v v
v

N 


   

Proof: Proof follows by induction on N and by using Lemma C.1.  ■ 

Lemma C.3: For a valid game list 1 2( , ,.... )Nv v v v  with 2 12v v , 

1 1

: 1
i

p p
n

n j i
i i

v
v v j n

n 

     . 

Proof: From Remark 4 of [77]  1
1

min( )
i

p

n j n n
i

v v v v 


    and it follows from Axiom I.4 

that under condition (4.2) 1
n

n n

v
v v

n  , the desired result follows. ■ 

Lemma C.4: For a GCG with Positional Cost ( , )G u   if u satisfies (4.5), 2 0u  , then 

for 0N m n    then . .m nn u m u . 

Proof: The proof of this Lemma follows from Lemma 5 of [77]. ■ 

Lemma C.5: If 1 2( , ,.... )Nv v v v  is a Valid Game List  for a GCG with PA then for  iu  in 

(4.8) such that 1 2 1 1 1( , ,.... : ( ), : 0)N i i i m m n nu u u u u k v iv k k k k N m n           is a Valid 

Game List for a GCG with PC. 

Proof: The proof follows by establishing that u satisfies Axiom II.1 and II.4. From the 

given value of u, 

 1 1 1 1( 1 ) 0u k v v    (10.1) 

This is according to Axiom II.1. For any integers n and m, such that 1 0N m n    , then 
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 1 1 1( ) ( )m m m m m mu u k u k u       (10.2) 

where 1, , 1i iu v iv i m m     , and it can be written as  

 1 1 1 1( ) ( )m m m m m m m mu u k u u k k u           (10.3) 

Similarly  

 1 1 1 1( ) ( )n n m n n n n nu u k u u k k u           (10.4) 

It is established in Lemma 1 that 1 2 1( , ,.... : , 1,2,3..., )N i iu u u u u v iv i N          is a Valid 

Game List for a GCG with PC. Moreover under the given condition that 

1 1 : 0m m n nk k k k N m n       , from (10.3) and (10.4) 

 1 1m m n nu u u u     (10.5) 

Thus u being satisfying both the Axioms II.1 and II.4, is a Valid Game List. ■ 

Lemma C.6: The PC of an edge given by Definition 5 is always non-negative. 

Proof: The PC of an edge e in a graph G for a GCG with PC ( , )G u   is given by (4.6)  

  , || || 1
|| ||\

( ( ) ( ))1
( )

|| ||G u G
SS G e

u S e u Se
G

 


    (10.6) 

By Axiom II it follows that ( ) ( ) 0u S e u S   , this proves the desired result. ■ 

Lemma C.7: The PC of an edge e in a graph G is its PC in its connected component. 

Proof: The Proof is similar to the proof of Lemma 1 of [77]. ■ 

Lemma C.8: The PC of an edge of and agent i in a graph G is its PC in its connected 

component. 

Proof: The proof follows from the above lemma and (4.7). ■ 

Lemma C.9: If a graph G  is obtained from a graph G by adding a new edge e  in it then 

change in the PC of some edge e G  is given by 
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  , , || ||
|| || 1\

( ( ) ( )) ( ( ) ( ))1
( ) ( ) .

|| || 1G u G u G
SS G e

u S e e u S e u S e u Se e
G

 


        
   (10.7) 

Proof: The PC of an edge e in a graph G for a GCG with PC ( , )G u   is given by (4.6)  

  , || || 1
|| ||\

( ( ) ( ))1
( )

|| ||G u G
SS G e

u S e u Se
G

 


    (10.8) 

Similarly the PC of e in the graph G  for the GCG with PC Cost ( , )G u   is given by  

  , || || 1
|| ||\

( ( ) ( ))1
( )

|| ||G u G
SS G e

u S e u Se
G

   


 
   (10.9) 

Since || || || || 1G G   , the above equation can be written as 

  , || ||
|| ||\

( ( ) ( ))1
( )

|| || 1G u G
SS G e

u S e u Se
G

 


 
   (10.10) 

or 

 
   , || || || ||
|| || || ||\ \

( ( ) ( )) ( ( ) ( ))1 1
( )

|| || 1 || || 1G u G G
S SS G e S G e

e S e S

u S e u S u S e u Se
G G

 
  

  

    
    (10.11) 

or 

    , || || || ||
|| || 1 || ||\ \

( ( ) ( )) ( ( ) ( ))1
( ) ( )

|| || 1G u G G
S SS G e S G e

u S e e u S e u S e u Se
G

 
 

       
    (10.12) 

From equations (10.8), (10.12) and by using the identity  

 
1 1 1
|| || 1 || || || ||

(|| ||) (| || 1) (| || 1)
|| || || || || || 1

G G G
G G G

S S S

 
     

           

 (10.13) 

the following equation can be written  

  , , || ||
|| || 1\

( ( ) ( )) ( ( ) ( ))1
( ) ( )

|| || 1G u G u G
SS G e

u S e e u S e u S e u Se e
G

 


        
   (10.14) 
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This is the desired result. ■ 

Lemma C.10: In a GCG with PC ( , )G u  , where G is a connected graph, if a graph G  

is obtained from G by adding a new edge e  in it then sum of the changes in the PC of all edges 

e G  is equal to the PC of the new edge e . 

 , , ,( ) ( ( ) ( ))G u G u G ue G
e e e   
    (10.15) 

Proof: Since G is a connected graph thus by the Axiom II.1 

 ( ) ( )u G u G   (10.16) 

Moreover Shapley value is efficient, thus using (4.6) the above equation can be written as 

 , ,( ) ( )G u G ue G e G
e e  
   (10.17) 

Rearrangement of the above equation gives 

 , , ,( ) ( ) ( )G u G u G ue G e G
e e e    
     (10.18) 

The desired result follows from the above equation. ■ 

Lemma C.11: In Graphical Advantage and Cost Games ( , , )G v u   and ( , , )G v u  , 

where G  is obtained from G by disconnecting a part of the connected component of a cut 

vertex i, if 1( ) : 1,2,..., ,0 1i iu k v iv i N k      then in the graph G the Net Marginal Advantage 

of the agent i is at least the NMA of the agent i in G .  

Proof: Let the agent i exists in a connected component of size n within the graph G; 

NMA of the agent i in this graph G is given by (4.67)  

 , , 1
1 1

( ) (1 )( ) : 1
i

p p

G v u n k i
i i

i k v v kv k n
 

        (10.19) 

Supposing that the agent i exists in a connected component of size n  within the graph G ; 

NMA of the agent i in this graph G  is similarly given by 
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 , , 1
1 1

( ) (1 )( ) : 1
i

p p

G v u n k i
i i

i k v v kv k n 
 

        (10.20) 

Moreover, by hypothesis n n  and by the construction of G  the above equation can be 

written as  

 
1, , 1 1

1 1

( ) (1 )( ) : 1,
i

p p

G v u n n k i
i i

i k v v v kv k n n n n 
 

           (10.21) 

where 1n  is the size of the component disconnected from i in the hypothesis. By Lemma 4 of 

[77]
1n n nv v v  , thus comparison of (10.19) and (10.21) gives the desired result. ■ 

Lemma C.12: In GACGs ( , , )G v u   and ( , , )G v u  , where G  is obtained from G 

by disconnecting a part of the connected component of a cut vertex i, if 

1( ) : 1,2,..., ,0 1i iu k v iv i N k      and 2 12v v  then in the graph G the NMA of the agent i is 

more than the NMA of the agent i in G .  

Proof: The proof is similar to the proof of the above lemma, except that by Remark 4 of 

[77], the given condition 2 12v v implies that 
1n n nv v v  . This establishes the desired strict 

inequality. ■ 
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 Appendix D 

Proofs of Lemmas in Chapter 5 
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In Section A1 are given some technical lemmas required for the proofs of results in the 

paper. In Section A2 are given the proofs of some of the results in the paper. In the following 

results symbols k, l, n, and m are integers. 

A1 Technical Lemmas 

Lemma D 1: For a GCG on digraph, ( , )D v  , Axiom 5 implies Axiom 4. 

Proof: Axiom 5 says that for | | 1 0D m     

 1 12 ( 1)m mv v m v     (11.1) 

For positive integers n and k such that m n k  , k times recursive substitution of (11.1) 

yields 

 1 2 1
12 (2 ( 1) 2 ( ) ... 2 ( 3) ( 2))k k k

m m kv v m k m k m m v 
            (11.2) 

or 

 12 ( 2 )m n m n
m nv v n m v     (11.3) 

Substituting 0n   and using (3.1) , yields 

 1mv mv  (11.4) 

From (11.3), this can be written 

 12 ( 2 )m n m n
m nnv n v n n m v     (11.5) 

By using the inequality ( 2 ) 0 | | 1m nn m D m n       , and (11.4), this can be written 

as. 

 2 ( 2 )m n m n
m n nnv n v n m v     (11.6) 

or 

 m nnv mv  (11.7) 
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For 0n   this inequality trivially holds; this completes the proof.  ■ 

Lemma D 2: For a GCG on digraph, ( , )D v  , Axiom 5 implies Axiom 4 of [77]. 

Proof: Axiom 5 says that for | | 1 0D m     

 1 1( 1)m m mv v v m v      (11.8) 

Using Lemma D 1, 1 1( 1)mv m v   , this gives 

 1 1m m m mv v v v     (11.9) 

For positive integers n and k such that m n k  , k times recursive substitution of (11.9) 

yields 

 1 1m m n nv v v v     (11.10) 

This completes the proof.  ■ 

Lemma D 3: For a GCG on digraph, ( , )D v  , if S is a subgraph of D then 

1 | || | ( ) SS v v S v  . 

Proof: The result is established by using induction on | |S . By using the Axioms of value 

it is trivial to establish that the desired result holds for some small values | | 2,3S  . Let the result 

is true for all digraphs with | |S m .  

Consider a subgraph S   with | | 1S m   . Clearly, by Axiom 4, the result holds true if S   

is completely disconnected, or it is consisting of a single semi-strongly connected component. 

Similarly, by Remark 8.4, Axioms of Value, and Lemma A2 of [77], the result holds true. 

Suppose that S   consists of 1k   semi-strongly connected components, 

: 1, 2,..., ( 1) | |,iv S S
iS i k P v P    , by using Axiom 3, it can be written as  
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1 2

1
1

1 ... 1

( ) ( 1) ( )i j

l
S

i j

lk
vl

l i i i j
v P

v S v S




    


      (11.11) 

It can be written as 

 1 1

1 2
1

1

1 ... 1 1

( ) ( 1) ( ) ( ) (( ) )i j k l k

l
vS k

i j

l kk
v v v vl

l i i i j l
v P S

v S v S v S v S S 





     
 

          (11.12) 

or 

 1 1

1 1

( ) ( ) ( ) (( ) )l k l k

k k
v v v v

l l

v S v S v S v S S 

 

       (11.13) 

All the sets 1 1

1 1

, , ( )l k l k

k k
v v v v

l l

S S S S 

 

   are of the size less than or equal to m, thus by 

using the induction hypothesis, (11.13) can be written as 

 1

1

1

|(( ) )|1

( ) ( ) ( )l k
k

v vl k

l

k
v v

S Sl

v S v S v S v







   


  (11.14) 

By using Axioms of Value, and Lemma A2 of [77]  

 1
1

1 1 1

1 1

| |
|(( ) )| (| | |( ) |)

( )k
v k kk

v v v v vl k k l k

l l

v

S
S S S S S

v S v v v


  

 

  
  

 
 (11.15) 

or 

 1

1 1 1

1 1

(( ) ) (| | |( ) |)

( )k
k k

v v v v vl k k l k

l l

v

S S S S S

v S v v

  

 

  
 
 

 (11.16) 

By using Axiom 5, this can be written as 

 1 1 1

1

1

1
(( ) ) 1

( ) (| | | ( ) |)k k l k
k

v vl k

l

k
v v v v

S S l

v S v S S S v  





 

   


  (11.17) 

and (11.14) becomes 
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 1 1
1

1 1

( ) ( ) (| | | ( ) |)l k l k

k k
v v v v

l l

v S v S S S S v 

 

       (11.18) 

By induction hypothesis 1
1 1

( ) | |l l

k k
v v

l l

v S S v
 

   and (11.18) becomes 

 1 1
1

1 1

( ) (| | (| | | ( ) |)l k l k

k k
v v v v

l l

v S S S S S v 

 

       (11.19) 

By using the principal of counting this can be written as 

 
1

1
1

( ) | |l

k
v

l

v S S v




    (11.20) 

or 

 1( ) | |v S S v   (11.21) 

This establishes one part of the desired inequality; for the other part of the desired 

inequality, consider (11.13) 

 1 1

1 1

( ) ( ) ( ) (( ) )l k l k

k k
v v v v

l l

v S v S v S v S S 

 

       (11.22) 

All the sets 1 1

1 1

, , ( )l k l k

k k
v v v v

l l

S S S S 

 

   are of the size less than or equal to m, thus by 

using the induction hypothesis, (11.22) can be written as 

 1 1
1

1 1

( ) ( ) ( ) | (( ) ) |l k l k

k k
v v v v

l l

v S v S v S S S v 

 

       (11.23) 

or 

 1
1

1

1| |
| | 1

( ) | (( ) ) |l k
k vk

vl

l

k
v v

S
S l

v S v v S S v





    


  (11.24) 

By Axiom 5  
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 1

1 1

1 1

1
|(( ) )| 2 |(( ) )| 1 1

2 | (( ) ) |l k
k k

v v v vl k l k

l l

k
v v

S S S S l

v v S S v

 

 

    

   
 

  (11.25) 

Making this substitution in (11.24) yields 

 1
1 1 1

1 1 1 1

| |
| | |(( ) )| 1 |(( ) )| 1 |(( ) )| 2

( ) ( ) ( )k k v k kk
v v v v v v vl l k l k l k

l l l l

S
S S S S S S S

v S v v v v v
  

   

     
     

   
 (11.26) 

Since 1 1

1

| | | (( ) ) | 1k l k

k
v v v

l

S S S 



    , by using Lemma A4 of  [77] 

 1
1 1 1

1 1 1 1

| |
| | | | |(( ) )| 1 | | |(( ) )| 1

k k v k kk
v v v v v v vl k l k l l k

l l l l

S
S S S S S S S

v v v v
  

   

     
  

   
 (11.27) 

Using this in (11.26)  

1 1
1 1 1 1

1 1 1 1

| | | |
| | | | |(( ) )| 1 |(( ) )| 1 |(( ) )| 2

( ) ( ) ( )k k v v k kk k
v v v v v v v vl k l k l k l k

l l l l

S S
S S S S S S S S

v S v v v v v 
   

   

       
     

   
 (11.28) 

or 

 
1 1 1 1

1 1 1 1

| | | | |(( ) )| 1 |(( ) )| 1 |(( ) )| 2

( ) ( )k k k k
v v v v v v v vl k l k l k l k

l l l l

S S S S S S S S

v S v v v
   

   

       
   

   
 (11.29) 

Again, by using Lemma A4 of [77] 

1 1 1 1 1 1

1 1 1 1 1 1

| | | | |(( ) )| |(( ) )| 2 | | | | |(( ) )| 1 |(( ) )| 1
k k k k k k

v v v v v v v v v v v vl k l k l k l k l k l k

l l l l l l

S S S S S S S S S S S S

v v v v
     

     

          
  

     
 (11.30) 

and (11.29) becomes 

 
1 1

1 1

| | | | |(( ) )|

( ) k k
v v v vl k l k

l l

S S S S

v S v
 

 

  
 

 
 (11.31) 

or 

 | |( ) Sv S v    (11.32) 

This and (11.21) complete the proof.  ■ 
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Lemma D 4: For a GCG on digraphs ( , )D v   if S a semi-strongly connected 

component of D and A is a subgraph of S then ( ) ( )v A v S . 

Proof: Since S is a semi-strongly connected component, | |( ) Sv S v , it is already 

established in the Lemma D 3 that for any subgraph A, | |( ) Av A v .  Since A is a subgraph of S, 

| | | |A S . Thus by the Axioms of Value | | | |( ) ( )A Sv A v v v S   . This completes the proof.  ■ 

Lemma D 5: For a GCG on digraphs ( , )D v   if 1vS  and 2vS  are two semi-strongly 

connected components of the digraph D and S is a digraph produced by making an arc from 1v  to 

2v , then S is semi-strongly connected and 1 2( ) ( )v vv S v S S  . 

Proof: The semi-strong connectivity of the digraph S follows from the Definition 4, since 

with the making of the new arc from 1v  to 2v , 1v  becomes a pivot vertex, Definition 1, of S. The 

value of S is thus given by Axiom 1, and by (5.1) 

 
1 2 1 2| | | | | | | |( ) S S S S Sv S v v      (11.33) 

The value of 1 2v vS S , by Axiom 3 is  

 1 2 1 2 1 2( ) ( ) ( ) ( )v v v v v vv S S v S v S v S S      (11.34) 

by using Axiom 1 

 1 2 1 2
1 2| | | |

( ) ( )v v

v v v v

S S
v S S v v v S S      (11.35) 

Using Lemma D 3, it can be written as  

 1 2 1 2
1 2 1| | | |

( ) | |v v

v v v v

S S
v S S v v S S v      (11.36) 

Using Axiom 3, it can be written 

 1 2
1 2 1 2 1 2 1| | 2 | | 1 | | 1

| |v v v v v v

v v

S S S S S S
v v v S S v

     
     (11.37) 
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For 1vS  and 2vS , two different semi-strongly connected components of the digraph D  

1 2 1 2| |, | | | | 1v v v vS S S S    , by using Lemma A4 of [77] 

 
1 1 1 2 1 2| | 1 | | | | 2 | | 1v v v v v vS S S S S S

v v v v
    
    (11.38) 

using this in (11.37) gives 

 1 2
1 1 1 2 1| | 1 | | | | 1

| |v v v v

v v

S S S S
v v v S S v

  
     (11.39) 

or 

 1 2
1 1 2 1 1| | 1 | | 1 | |

| |v v v v

v v

S S S S
v v v S S v

  
     (11.40) 

again 

 
1 2 1 2 1 2 2 1 2 1 1 2| | | | | | | | | | | | | | 1 | | 1v v v v v v v v v v v vS S S S S S S S S S S S

v v v v
         

    (11.41) 

or 

 
1 2 1 2 2 1 1 2| | | | | | | | | | 1 | | 1v v v v v v v vS S S S S S S S

v v v v
     

    (11.42) 

Using this in (11.40) and rearranging gives 

 1 2
1 2 1 2 1 2 1| | | | | | | | | |

| |v v v v v v

v v

S S S S S S
v v v S S v

  
     (11.43) 

Comparison of this and (11.36) gives 

 1 2
1 2 1 2| | | | | |

( ) v v v v

v v

S S S S
v S S v

  
   (11.44) 

using (11.33) 

 1 2( ) ( )v vv S S v S   (11.45) 

This completes the proof.  ■ 
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Lemma D 6: For a GCG on digraphs ( , )D v   if : 1, 2,...,ivS i k  are semi-strongly 

connected components of the digraph D and S is a digraph produced by making arcs from 1v  to 

2,...,iv i k  , then S is semi-strongly connected and 
1

( ) ( )i

k
v

i

v S v S


  . 

Proof: The proof follows by extending Lemma D 5, by mathematical induction on the 

number of semi-strongly connected components.  ■ 

Lemma D 7: For a GCG on digraphs ( , )D v   if : 1, 2,...,ivS i k   are semi-strongly 

connected components of the digraph D and S is a digraph produced by making arcs from 1v  to 

iv  for some 2,...,i k , then 
1

( ) ( )i

k
v

i

v S v S


  . 

Proof: Making of a new arc from 1v  to 2v leaves components 1 , : 3, 4,...,ivvS S i k   such 

that 1 1 2( ) 3, 4,...,i iv vv v vS S S S S i k       . This implies that  

 1 1 1 2 1 2

3 1

( ) ( ) ( ( ) ( ) ( )) ( )i i

k k
v vv v v v v v

i i

v S S v S v S v S v S S v S
 

          (11.46) 

Using Lemma D 5 

 1

3 1

( ) ( )i i

k k
v vv

i i

v S S v S
 

     (11.47) 

The desired result follows by making any number of arcs from 1v  to iv  for 2,...,i k .  ■ 

Lemma D 8: For a GCG on digraphs ( , )D v   if : 1, 2,...,ivS i k  are semi-strongly 

connected components of the digraph D and S is a digraph produced by making arcs from 

another vertex 0v  to iv  for some 1, 2,...,i k , then 1
1

( ) ( )i

k
v

i

v S v S v


  . 

Proof: Using Lemma D 6,  
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1

| |1

( )i
k

vi

i

k
v

Si

v S v







  (11.48) 

Whereas by the construction of S, the Axioms of Value, and the definition of semi-

strongly connected components 

 

1

| | 1

( ) k
vi

i

S

v S v







 (11.49) 

by using Lemma A4 of [77] 

 

1 1

1
| | | | 1

k k
v vi i

i i

S S

v v v

 


 

 
 (11.50) 

This along with (11.48) and (11.49) gives the desired result.  ■ 

Lemma D 9: For a GCG on digraphs ( , )D v   if 1vS  and 2vS  are two semi-strongly 

connected components of the digraph D and S is a digraph produced by making an arc from 

1vv S  to 2vv S , then 1 2( ) ( )v vv S v S S  . 

Proof: Since 1vS  and 2vS  are two semi-strongly connected components of the digraph D, 

the value of 1 2v vS S , by Axiom 3 is  

 1 2 1 2 1 2( ) ( ) ( ) ( )v v v v v vv S S v S v S v S S      (11.51) 

by using Axiom 1 

 1 2 1 2
1 2| | | |

( ) ( )v v

v v v v

S S
v S S v v v S S      (11.52) 

Using Lemma D 3, it can be written as  

 1 2 1 2
1 2 1| | | |

( ) | |v v

v v v v

S S
v S S v v S S v      (11.53) 

Making of the new arc increases the size of the component 1vS by 2:1 | |vk k S  , to make a new 

component 1 1 1:| | | |v v vS S S k    ; using Axiom 3 the value of the new digraph 1 2v vS S   is 
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 1 2 1 2 1 2( ) ( ) ( ) ( )v v v v v vv S S v S v S v S S        (11.54) 

by using Axiom 1 

 1 2 1 2
1 2| | | |

( ) ( )v v

v v v v

S k S
v S S v v v S S


       (11.55) 

Using Lemma D 3, it can be written as  

 1 2
1 2 1 2| | | | | |

( ) v v v v

v v

S k S S S
v S S v v v

 
      (11.56) 

Making of the new arc increases the size of the component 1vS by 2:1 | |vk k S  , which may 

cause an increase in the size of 1 2v vS S  by at the most k, that is to say 

1 2 1 2| | | |v v v vS S S S k     ; and (11.56) becomes 

 1 2
1 2 1 2| | | | | |

( ) v v v v

v v

S k S S S k
v S S v v v

  
      (11.57) 

For 1 2 1| | | |v v vS S k S   , using (11.3) in the proof of Lemma D 1 

. 

1 1 2 1 1 2
1 2

1 1 2 1

1
1 2

| | | | | | | |

| | | | | |

1 | |

2 ((| | )2

(| | ))

v v v v v v

v v v v

v v

v vS S S S S S

S k S S k S

v

S S k

v v v S S k

S k v v

   
  

 

    

  
. (11.58) 

or 

 

1 1 2 1 1 2
1 2

1 1 2 1

1 1 2 1
1 2

| | | | | | | |

| | | | | |

1 1| |

(2 2) ((| | )2

2(| | )) (2 | | | |)

v v v v v v

v v v v

v v

v vS S S S S S

S k S S k S

v v v v

S S k

v v v S S k

S k v v S S k S v

   
  

 

     

      
 (11.59) 

or 

By Lemma A4 of [77] 

 1 2 1 1 2
1 2 21 1| | | |

(2 | | | |) | |v v v

v v v v v

S S k S
v S S k S v v S S v

 
        (11.60) 

Using this to compare (11.53) and (11.59) for 1 2 1| | | |v v vS S k S    gives 

 1 2 1 2( ) ( )v v v vv S S v S S     (11.61) 
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Similarly using (11.3) in the proof of Lemma D 1, for 1 2 1| | | |v v vS S k S   ,  

 1 1
1 1 2 1 1 21| | | | | | | |

2 (| | 2 (| | ))v v v v v v

v vk k

S k S S k S S S k
v v v S S k v v

    
       (11.62) 

or 

1 2
1 1 2 1

1 1 1 2
1 1 2

1| | | | | |

1| | | |

( | | )

(2 1) (| | 2 (| | | |))

v v v v

v v v

v v

S k S S k S

v v v vk k

S S S k

v v v S S v

v S S k S S v v

  

 

    

      
 (11.63) 

By Lemma A4 of [77] 

 1 1 1 2
1 1 21| | | |

(2 1) (| | 2 (| | | |)) 0v v v

v v v vk k

S S S k
v S S k S S v v

 
         (11.64) 

or 

 1 2 1 1 2
1 2 21 1| | | |

(2 | | | |) | |v v v

v v v v v

S S k S
v S S k S v v S S v

 
        (11.65) 

Using this to compare (11.53) and (11.59) for 1 2 1| | | |v v vS S k S    gives 

 1 2 1 2( ) ( )v v v vv S S v S S     (11.66) 

Using this to compare (11.53) and (11.59) for 1 2 1| | | |v v vS S k S    gives 

 1 2 1 2( ) ( )v v v vv S S v S S     (11.67) 

This and (11.61) gives the desired result.  ■ 

Lemma D 10: For a GCG on digraphs ( , )D v   if : 1, 2,...,ivS i k  are semi-strongly 

connected components of the digraph D and S is a digraph produced by making an arcs from 

ivv S  to :jvv S j i  , then 1

1

( ) ( )
k

v

i

v S v S


  . 

Proof: The proof follows by extending Lemma D 9 by using mathematical induction and 

by iterating making the arcs.  ■ 
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Lemma D 11: For a GCG on digraphs ( , )D v   with strict inequality in Axiom 5, if 

: 1, 2,...,ivS i k  are semi-strongly connected components of the digraph D and S is a digraph 

produced by making an arcs from ivv S  to :jvv S j i  , then 1

1

( ) ( )
k

v

i

v S v S


  . 

Proof: A strict inequality in Axiom 5 leads to a strict inequality in (11.3), which leads to 

strict inequalities in (11.58) and (11.62), and consequently results in strict inequality in Lemma 

D 9. The proof follows by extending this result by using mathematical induction and by iterating 

making the arcs.  ■ 

Lemma D 12: For a GCG on digraphs ( , )D v   if : 1, 2,...,ivS i k  are semi-strongly 

connected components of the digraph D and S is a digraph produced by making an arcs from 

ivv S  to ivv S , then 1

1

( ) ( )
k

v

i

v S v S


  . 

Proof: The proof follows by Lemma D 3, Lemma D 10 by using the fact that making of 

such an arc does not change the value of the individual semi-strongly connected component but 

it may cause to increase the value of the intersection of two or more semi-strongly connected 

components, according to Lemma D 10.  ■ 

Lemma D 13: For a GCG on digraphs ( , )D v   with strict inequality in Axiom 5, if 

: 1, 2,...,ivS i k  are semi-strongly connected components of the digraph D and S is a digraph 

produced by making an arc from ivv S  to ivv S , such that both v and v  are in more than 1 

semi-strongly connected components in D, then 1

1

( ) ( )
k

v

i

v S v S


  . 

Proof: The proof follows by Lemma D 3, Lemma D 11 by using the fact that making of 

such an arc does not change the value of the individual semi-strongly connected component but 
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it causes to increase the value of the intersection of two or more semi-strongly connected 

components, according to Lemma D 11.  ■ 

Lemma D 14: For a GCG on digraphs ( , )D v   with strict inequality in Axiom 5, if 

: 1, 2,...,ivS i k  are semi-strongly connected components of the digraph D and D e  is a 

digraph produced by deleting an arc e, such that it does not change the vertices in any of the 

semi-strongly connected components in D, then 1

1

( ) ( )
k

v

i

v D e v S


   . Moreover if the deletion of 

an arc e changes the vertices in a semi-strongly connected component then 1

1

( ) ( )
k

v

i

v D e v S


   . 

Proof: The proof follows by Lemma D 3, Lemma D 13 by using the fact that deletion of 

such an arc does not change the value of the individual semi-strongly connected component but 

it causes to increase the value of the intersection of two or more semi-strongly connected 

components, according to Lemma D 13.  ■ 

Lemma D 15: For a GCG on digraphs ( , )D v   if A and B are two induced subgraphs of 

D then ( ) ( ) ( ) ( )v A B v A v B v A B     , where A B  is the union of induced subgraphs A 

and B. 

Proof: Since A and B are two subgraphs they can be represented as unions of semi-

strongly connected components, Remark 6, that is to say : 1, 2,... | |,iv A A
iS i k P v P    and 

: 1, 2,... , | |,iv B B
iS i k k k m m P v P       are semi-strongly connected components of A and B. 

By using Axiom 3, the value of A B  is 

 
1 2

| | | |
1

1 ... 1

( ) ( 1) ( )
A B

i j

l
A B

i j

P P l
vl

l i i i j
v P P

v A B v S




    
 

      (11.68) 
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or 

1 2

1 2 1 2

1 2

| |
1

1 ... 1

(| || | | |
1 1

... ( , ) (1,1) ...1 1 1| | 1
...

,

( ) ( 1) ( )

( 1) ( ) ( 1) (( ) ( ))

A

i j

l
A

i j

AA B

i iij jk

A
l l

B
li j A B

i ij k

P l
vl

l i i i j
v P

PP P l t l
v vvl l t

i i i l t i i ij k jl P
i i iv P

v P v P

v A B v S

v S v S S



    



  

         
  
 

   

   

 

  



  
,| |)BP


 (11.69) 

or 

 ( ) ( ) ( ) ( )v A B v A v B v A B      (11.70) 

This completes the proof.  ■ 

Lemma D 16: For a GCG on digraphs ( , )D v   if A and B are two induced subgraphs of 

D then ( ) ( ) ( ) ( )v A B v A v B v A B     , where A B  is the subgraph of D induced by 

vertices in A and B.  

Proof: The proof follows from Lemma D 10 and Lemma D 15.  ■ 

Lemma D 17: For a GCG on digraphs ( , )D v   if A and B are two induced subgraphs of 

D such that A B  then ( ) ( )v A v B . 

Proof: Proof follows from Lemma D 10 and Lemma D 15. ■ 

Lemma D 18: For a GCG on digraphs ( , )D v   if S an induced subgraph of D then 

1 1 2 2 | | | |( ) ... s Sv S a v a v a v     such that 
| |

1

| |
S

i
i

a i S


  where 1, 2,..., | |ia i S   are integers. 

Proof: The proof follows from the Axioms, the counting principle mentioned in (5.1), 

Axiom 3, and by using mathematical induction on the number of components in S.  ■ 
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 Appendix E 

Proofs of Results in Chapter 6 
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Lemma 1: The triplet ( , ,*)T Max  forms a semi-ring.  

Proof: For this purpose the following three properties of semi-ring are to be satisfied. 

Property 1: ( ,*)T  is a Commutative Monoid with Identity Element 1  

1. ( ,*)T  is closed  

Let 1 2,T T T  

1 2, , : ,ij jki j k V T T T T      

~ ~i j k ij jkT T T   

~ 1 2, : i ki k T T T    

Thus T is closed under *. In this framework it means that if there are two adjacent paths 

with given Impact Factor values then the combined path will have the Impact Factor value which 

is the product of the Impact Factor values of the two path’s Impact Factor values and is present 

in T.  

2. ( ,*)T  is associative  

Let 1 2 3, ,T T T T R  then associative property under * is followed from the real numbers. 

In this framework it signifies that if there are three adjacent paths with Impact Factor values 

1 2 3,T T and T  in whatever order they are combined the net Impact Factor value is the same. 

3. Existence of identity in ( ,*)T   

According to the definition of T in Section 6.2, 1 T also let t T  

, , : 1,ij jki j k V T T t      

~ 1.i k ij ik jkT T T t t T      

1ijT  is identity element in T under *  
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In this framework it means that if there is a path of Impact Factor value 1 and it is 

concatenated with another path with the Impact Factor value t then the Impact Factor value of the 

concatenated path is also t.  

4. ( ,*)T  is commutative  

Let 1 2,T T T R  then commutative property under * is followed from the real numbers. 

In this framework it means that whatever the order of concatenation of two paths is the Impact 

Factor value of the concatenated path remains the same.  

 Property 2: ( , )T Max  is a Commutative Monoid with Identity Element 0  

1. ( , )T Max  is closed  

Let 1 2,T T T  

1 2
~ ~

, : ,P Q
i j j k

i j V T T T T     

~ ~ ~
( , )R P Q

i j i j j k
T Max T T   where R is the union of the paths P and Q . In this paper act of 

selecting a path of maximum Impact Factor out of two available paths is called the union of 

parallel paths. 

Thus T is closed under M. In this framework it means that if there are two parallel paths 

with given Impact Factor values then the combined path will have the Impact Factor value which 

is the max of the Impact Factor values of the two path’s Impact Factor values and is present in T. 

2. ( , )T Max  is associative  

Let 1 2 3, ,T T T T R  then associative property under Max is followed from the real 

numbers. In this framework it signifies that if there are three parallel paths with Impact Factor 

values 1 2 3,T T and T  in whatever order they are combined their Impact Factor value is the same. 
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3. Existence of identity under ( , )T Max   

According to the definition of T in Section 6.2, 0 T also let t T  

~ ~
, : 0,P Q

i j i j
i j V T T t     

~ ~ ~
( , ) (0, )R P Q

i j i j i k
T Max T T Max t t     

0ijT   is identity element in T under Max  

In this framework it means that if there is a path of Impact Factor value 0 and it is parallel 

with another path with the Impact Factor value T then the Impact Factor value of their union is 

also T.  

4. ( , )T Max  is commutative  

Let 1 2,T T T R  then commutative property under M is followed from the real numbers. 

In this framework it means that whatever the order of two parallel paths is the Impact Factor 

value of their union remains the same.   

Property 3: In ( , ,*)T Max  * is distributive over Max 

Let 1 2 3, ,T T T T R  then distribution of * over Max is followed from the real numbers. 

In this framework it means that if there are two paths between two works i and j such as parts of 

the paths, say from i to a vertex k are common with 1 2 3
~ ~

, ,P Qik
k j k j

T T T T T T   . Then whether the 

combination of the two parallel paths is made first by taking the maximum of 2T and 3T  and then 

concatenate the result with 1T  to get the Impact Factor value ijT or the path ~i k  is concatenated 

with ~
P

i k and path  ~i k  is concatenated with ~
Q

i k and then take the maximum over the two 

paths the same result is obtained. It can also be written as 1 2 3 1 2 1 3( , ) ( , )T Max T T Max T T T T .  ■ 
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Theorem 1: The Algorithm 1 converges to give i
k ikT T .  

Proof: It is sufficient to prove the correctness of the algorithm for one source vertex i to a 

destination vertex k. Since the numbers of works are finite and there is at the most one arc 

between two vertices so the numbers of arcs are also finite. Now for every arc ( , , )iji j t E , the 

direct Impact Factor ijt  lies between 0 and 1, and ikT  is the maximum of the product of direct 

Impact Factor values taken along the paths between source and destination. Clearly each loop 

has a product lesser than or equal to 1 and the number of paths containing each loop at the most 

one are finite. Thus, a maximum ikT  can always be found out of these finite many paths between 

i and k.  

Let 
1 10 1 2 1{ , , ,..., : , 0,1, 2,..., 1 ( , , ) , 0}

l l l ls l m l l i i i ip i i i i i k l m i i l s i i t E t
            

be the path from i to k along which the maximum Impact Factor value ikT exists. Also suppose 

that it is also the one with the least number of the vertices among such paths. Now such a path 

has at the most N vertices and hence has at the most N-1 directed arcs. Also if j is some 

intermediate vertex in the path then the part of this path from i to j is also the path for maximum 

Impact Factor value or otherwise p could not be the path of maximum Impact Factor value from i 

to k.  

The base case of strong induction for step number 0 i.e. at the time of initialization the 

self-Impact Factor value of i is 1 and its Impact Factor value for any other vertex is 0 which is 

true as there is no path of length 0 from i to j for all vertices in the path. Now suppose that at the 

j-th step of the outer most loop, i attains the maximum Impact Factor value of all the vertices 

along this path up to vertex j which is at a distance of j hops from i. Let l be the next vertex along 

the path. Path from i to j must be the path of maximum Impact Factor from i to j. In the next 
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iteration of the outer most loop the algorithm makes the comparison ( , ) , i j
l ij li j E T t T   and 

make the following substitutions 

{ : ( , , ) }i i
l jl l ijT Max t T j V i j t E j i        

Thus at the ( 1)j  -th iteration i
lT  is equal to the maximum Impact Factor value for the 

vertex l. This completes the proof. ■ 

Theorem 2: If all the persons and rationally picked anonymous referees are rational then 

the proposed system is immune against gifted authorship and against irrelevant citations. 

Proof: The proof of the first part of the result follows from the rational behavior of 

persons involved. Involving a new author in the list of authors decreases the share of at least one 

author (Section 6.2.4.4) unless it changes the type of the work (Section 6.2.4.1). It implies that if 

involving a person does not add a value to the work there is always one author who suffers from 

the involvement of a new such author and thus will not allow to have a gifted authorship. 

Similarly, if an irrelevant citation does not belong to all the authors definitely reduce the impact 

made by any citation which an author is a part (Section 6.2.3.1). Moreover, if all the authors are 

part of an irrelevant citation then a rationally picked anonymous referees suffers from such 

citation (Section 6.2.3.1), and thus such citation cannot be in a work. ■  
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