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Abstract 

 
DEVELOPMENT OF COMPUTATIONAL FLUID DYNAMICS (CFD) 

BASED EROSION MODELS FOR OIL AND GAS 

INDUSTRY APPLICATION 

 

Deval Pandya,PhD 

The University of Texas at Arlington, 2013 

 

Supervising Professor: Brian Dennis 

Erosion prediction plays a critical role in different oil and gas 

industry segments including drill bit manufacturing, measurement & 

logging while drilling (M&LWD), and reservoir engineering/completions 

tools. Recently, Computational Fluid Dynamics (CFD) is used to predict 

erosion due to multiphase flows in complex geometries. Currently used 

CFD-based erosion models are able to predict erosion regions fairly 

accurately in various applications but they are highly inaccurate when it 

comes to predictions of quantities like erosion rate. Predicted quantities 

within an order of magnitude of the measured values are common and 

may be considered acceptable for many applications in the industry simply 

because more accurate prediction tools do not exist. This research aims at 
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developing a more robust and accurate CFD-based erosion model and 

formulating best practice CFD guidelines for the application of the model. 

An extensive set of experimental data was made available by Baker 

Hughes for experiments conducted on a 900 elbow. The present Baker 

Hughes erosion model was studied and modified to better fit the 

experimental data. The model was prepared for low sand concentration 

(1-10%) applications and was validated by comparing the predicted 

erosion region to that observed in the experimental results. Effect of 

various computational turbulence models and wall treatments were 

studied. A grid convergence study was performed to see the effect of near 

wall resolution on erosion prediction accuracy. Just by improving the CFD 

modeling approach, the mean percentage error decreases from around 

60% to 40%. A statistical analysis was performed on the CFD output 

parameters to identify the parameters that effect erosion rates the most. 

Correlation analysis and non-parametric statistical analysis was carried 

out. Various regression models were employed for approximating the 

erosion rates as a function of the identified parameters. A new model 

specific to different y+ range was proposed and a considerable decrease 

in mean percentage error was observed. Two new regression models 

based on turbulent kinetic energy and surface shear stress were also 

developed. They provide excellent results with a further decrease in mean 
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percentage error to around 30%. Finally, an artificial neural network model 

was developed. A multilayer feedforward model with backpropogation 

algorithm and Levenberg-Marquardt training was used. The model gave a 

mean error percentage of less than 30%. Bayesian regularization was 

used with the training algorithm to avoid over fitting of the model. This 

model with regularization gave less than 10% mean percentage error for 

920 data points.  
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Chapter 1  

Introduction 

1.1 Background 

Erosion is defined as, “Gradual destruction or diminution of 

something”, by oxford dictionary. Damage is caused by the solid particles 

when they impinge on a surface. This mechanical damage, Erosion, is a 

big problem in various engineering applications. Erosion phenomenon is 

critical in failure of various tools that encounter multiphase flow where 

solid particles are present in fluid phase. Oil and Gas industry experiences 

erosion challenges in various applications. Sand erosion resulting from 

sand production in various high-rate wells is a common phenomenon. 

High erosion rates are observed even with low sand concentrations due to 

high production velocities. Hence, erosion modeling is a handy tool in 

sand control in completion and production. Predicting erosion regions and 

rates can be critical in drill bits design as well.  It is a fairly recent practice 

to use erosion modeling for design and development of Measurement 

while Drilling (MWD) and Logging while Drilling (LWD) tools. Solid particle 

erosion thus, can be a limiting factor in design phase and a big concern for 

scheduling maintenance. It can be costly and may cause premature failure 

of components if not predicted within certain accuracy.  
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Chapter 2 Erosion is a complex phenomenon. It is observed that various 

factors affect erosion in oil and gas application. Geometry of the tool, 

material of the tool, particle size, particle concentration, particle shape, 

fluid velocity, viscosity of fluid, etc. affect the erosion region and rate.  

Chapter 3 Oil and gas manufacturers, operators as well as service 

industry, all are interested in methods to predict erosion. A erosion 

prediction method that is reliable, can not only save money but also lives 

but predicting failure accurately and help in maintaining the safety of the 

equipment. Equipment used in sand production, drill-bits or MWD /LWD 

tools, all operate at extreme conditions. Thus, it is extremely difficult to 

replicate working condition for laboratory testing.  Even if it is possible in 

some cases like drill-bits to test it before deployment, it is extremely 

expensive and time consuming to predict erosion using experiments.  

Chapter 4 Computational Fluid Dynamics (CFD) based erosion modeling 

has been employed and explored extensively. CFD- based erosion 

models offer a cheaper and faster solution to the erosion modeling 

problem. But erosion modeling using CFD is a complex task involving 

various physical phenomenon that need to be accounted for. Flow 

modeling, particle interaction with fluid, wall effects, fluid properties, as 

well as the erosion model characteristics are just some of the properties 

that need to be considered. In addition, adequate modeling of the 
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geometric and discretization of the domain (meshing) are critical aspect in 

the success of the overall CFD-based erosion modeling procedure. The 

biggest advantage of CFD-based erosion modeling over other simplistic 

models is that complex geometries and flow fields can be easily 

accounted for using CFD. It is a powerful tool that can predict erosion 

regions accurately presenting a low cost, qualitatively accurate and timely 

method to predict erosion in various tools and geometries.   

1.2 Research Purpose and Approach  

There are two main goals of this research, improving CFD modeling 

techniques using the existing Baker Hughes model and developing a new 

more robust model including more physical parameters.  

The CFD- based erosion modeling procedure essentially consists 

of three steps. (1) Flow modeling using CFD, (2) Modeling of Discrete 

phase (DPM) to obtain particle trajectories and wall interactions and finally 

(3) Erosion calculations based on an empirical equation.  Each of these 

steps affects the accuracy of final erosion prediction and is critical to 

overall analysis. This analysis presents guidelines for each of the above 

steps. The results of CFD simulations are largely affected by the quality of 

the CFD mesh. Flow results can vary substantially with mesh, hence a 

thorough grid dependency study was performed to determine the 
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appropriate grid density required to achieve the most accurate erosion 

results. Turbulence modeling and the near wall treatment is another major 

factor that plays a role in accurately capturing the physics of erosion. 

FLUENT is a commercial finite volume code available from ANSYS Inc. 

and is the software employed for CFD modeling in this research. Various 

turbulence models are available in fluent which were explored for this 

study. An important consideration of turbulent flow modeling is near wall 

treatment.  Different Wall Functions as well as wall integration approaches 

are explored in this work as well as various parameters in DPM 

calculations. These include the number of particles, particle restitution 

coefficients and method of injection into the flow field. Once, satisfactory 

results are obtained a suitable erosion equation is employed to obtain 

accurate erosion region and rate results. The predicted erosion regions 

are then validated qualitatively with available experimental data. 

Historically, CFD based erosion models adequately identify regions of 

erosion but are not sufficiently accurate in predicting the extent of erosion. 

A major effort in this research is focused on improving quantitative erosion 

rate predictions.  
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The major milestones in this research are summarized below: 

 

• Fluid flow modeling  

o Grid dependency study  

o Turbulence models exploration 

o Near wall treatment effects  

• Discrete Phase Modeling (DPM) 

o Restitution coefficient effect 

o Number of particle  

• New erosion models 

o Correlation analysis to identify dependent parameters 

o Evaluation of current models 

o Improved grid specific model 

o New Surface Shear stress model 

o New turbulent kinetic energy model 

o New Artificial Neural Network model 
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Chapter 2  

Literature Review 

2.1 Introduction  

Erosion damage is seen in almost any industrial application where 

a solid-fluid multiphase flow occurs. The particles are carried across the 

streamline due to momentum and they impinge on the walls causing 

material damage. Erosion can be sometimes limiting factor in design of 

equipment and might even cause failure. Thus, erosion process has been 

studied extensively since decades even though CFD based erosion 

modeling is fairly recent compared to experimental investigations. This 

chapter discusses pervious work on erosion predictions that can be helpful 

in understanding and realizing the potential of present work. 

2.2 Solid Particle Erosion  

Erosion mechanisms vary for brittle and ductile materials. Material 

is removed from surfaces differently in brittle and ductile materials due to 

material and surface properties like ductile strength, shear strength, etc. A 

significant amount of research has been conducted investigating the 
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mechanisms of the erosion in ductile and brittle materials some of these 

are presented below. 

2.2.1 Erosion in Brittle Materials  

Erosion in brittle materials is believed to occur as a result of crack 

formation. Cracks are formed on the material when particles collide on the 

surface. These cracks continue to grow as the impact load increases. 

Plastic defragmentation along the fracture occurs when impact load 

exceeds a defined level that is dependent on the hardness of the material. 

This phenomenon is discussed by Levy (1995) in detail. Figure 1, taken 

from Levy’s book, shows how stress fields can develop inwards from the 

plastically deformed crater produced by the initial particle impact. 

 

Figure 1 Schematics of stress fields and crack orientation under particle 

impact area (Levy, 1995) 
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Planer cracks are formed along the interface when the area is unloaded 

after particle rebounds from the surface. A network of cracks is formed by 

material near the surface in contact. These pieces can are then removed 

by particle impact thereafter. A.G. Evans, M.E. Gulden and M. Rosenblatt 

published a paper on impact damages in brittle materials (1978). Crack 

zones are clearly observed in ZnS material impacted by glass using 

optical reflected light micrographs as shown in Figure 2 below. 

 

Figure 2 The extent of radial and lateral cracks in ZnS material impacted 

by glass projectiles (Evans, et.al. 1978) 

 
2.2.2 Erosion in Ductile Materials 

Finnie (1960, 1972), JGA Bitters (1963), Hutchings and Winter 

(1974) and Hockey et.al (1977) conducted some of the early work focused 

on understanding erosion mechanisms. An analytical erosion model that 

predicts erosion in ductile materials was presented by Finnie(1960). He 

later published more detailed paper on erosion phenomenon in ductile 
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materials in 1972. The model presented my Finnie was based on the 

assumption that the erosion mechanism is a process of micro-cutting in 

which the surface material is removed in form of cuttings. Particles striking 

the surface at low impact angles form a crater. Material is then continually 

removed by further particle impacts. The inherent drawback of Finnie’s 

cutting theory model is that it neglects the effect of particles hitting the 

surface at right angles. This was accounted for by Finnie, (Finnie, 1960) 

who made modifications to his theory indicating that particles impacting a 

surface at larger angels will result in the surface material being piled up. 

This raised material is then removed by further particle impacts. J.G.A. 

Bitters (1963) also presents an erosion model based on two different 

mechanisms, repeated deformation and cutting wear, rather than just 

micro-cutting. 

The model based on micro-cutting phenomenon was found to be 

inaccurate. Experiments were conducted using scanning electron 

microscope to understand the erosion phenomenon in ductile materials 

(Hutchings, 1974) which led to observation of physical phenomenon 

occurring on the surface of materials. A theoretical analysis of erosion of 

metals by spheres at normal incidence was presented by Hutchings 

(1981). The new model employed the criterion of critical plastic strain to 

determine when material will be removed.  



 

10 
 

A two stage mechanism of erosion is proposed by G.P, Tilly (1973). 

The first stage is when impacting particles strike the surface and produce 

an indentation and may remove a chip of metal. The second stage occurs 

when subsequent The fragments in the hole left by chip of metal break up 

and fragments are projected radially from the primary site (Tilly, 1973). A 

platelet mechanism of erosion in ductile materials was presented by R. 

Bellman and A.V. Levy(1981). They suggested that erosion occurs by 

generation and loss of platelet like pieces of surface material. The 

impacting particles make shallow craters which then form platelets from 

the deformed surface. These platelets are forged, strain hardened, into the 

distressed condition which makes them vulnerable to being knocked off 

the surface by further particle impacts. Sequence of erosion by platelet 

mechanism is presented in Figure 3. Adiabatic shear heating occurs to the 

immediate surface region of the impact. A work-hardened zone forms 

beneath the surface in the immediate region of impact during this platelet 

formation. Platelets continue to form by subsequent particle impacts until 

they are eventually knocked free and removed. This mechanism explains 

low initial erosion rate compared to steady-state erosion rate (Levy, 1995). 

Various other mechanisms for solid particle erosion can be found in 

the literature. Target melting (Smeltzer et al., 1970 and Hutchings, 1979), 

subsurface cracking (Sargent, 1982), delamination wear (Jahanmir,1980) 
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and ploughing (Chase et al., 1992)  are some of the more prominent 

theories available in literature. It is out of the scope of this work to discuss 

in details each one of them. 

 

Figure 3 Proposed sequence of erosion of copper-plated steel specimen 

(Levy,1986) 
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2.3 Factors Affecting Erosion  

More than 100 different erosion models have been proposed by 

different researchers over the past few decades. Based on these studies it 

was determined that the three most important factors that govern erosion 

are: 1) Velocity of the particles 2) Angle of impact of these particles and 3) 

Type of material being eroded. Particle density plays a very important role 

in erosion rate. As the density increases so does the erosion rate and 

significant changes can occur to the distribution  of the erosion coefficient   

with respect to impact angle. Erosion of the down-hole tools used in the oil 

and gas industry is primarily caused by solid particle concentration in 

drilling fluids, fluid and particle velocities and densities, size and shape of 

particles, angle of impingement, hardness and fracture toughness of the 

impacted surface. Due to the multitude of variables involved in the erosion 

phenomena, predicting erosion rate is difficult. This section presents work 

done focused on some of the main factors affecting erosion process. 

 

2.3.1 Particle Impact Velocity 

Almost all the researchers since early studies of erosion agree that 

particle velocity is the most important factor affecting erosion. Each one of 
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them has concluded that erosion rate (ER) is proportional to particle 

impact velocity raised to some exponent.  

 

ER � V�� 

 
Various investigators have proposed different values for the 

exponent n. Finnie’s model considers that kinetic energy of the impacting 

particles determines its ability to cause erosion (Finnie, 1958,1960 and 

proposed the value of n as 2. Smeltzer et al. (1970) and Burnett et al. 

(1995) curve fitted the experimental data and proposed values of n varying 

from -0.3 to 4.5.  The aerodynamic effects in the erosion process were 

studied by Laitone (1979) and he suggested that change in local fluid 

velocities could affect the erosion and a better fit was achieved with higher 

n values up to 4. It is important to note that most of the experimental 

studies considered only fluid velocity rather than actual particle impact 

velocity, assuming the particles exactly followed the flow.  

A more recent model proposed by Oka et al. (2005a, 2005b), 

considers the exponent as a function of hardness of the eroded material 

which then is not a fixed number.  There are various mechanisms causing 

erosion and exact details of which are not yet clear but most of the 

experimental evidence suggests that the velocity exponent, n, varies from 
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2.0 to 3.0 for most applications. It will be assumed in this study that, 2.5 

should be a good estimate for velocity exponent n. 

2.3.2 Particle Impact Angle 

The angle at which a particle impinges on the surface is critical in 

determining erosion. The effect of angle of impact has been studied by 

numerous researchers including Finnie et al. (1992) , Oka et al. (1997) 

and Sheldon ( 1970) . Typical curve for normalized erosion rate as a 

function of impact angle for various materials is shown in Figure 4. 

 

 

Figure 4 Normalized erosion rates at impact velocities 100 m/s and 130 

m/s for five metallic materials (Oka et al., 1997)  

 
Cutting action and platelet formation are observed to be more 

prevalent mechanisms at lower impact angles for ductile materials 



whereas the repeated plastic deformation is considered dominant erosion 

mechanism in brittle materials. Both of these can be ide

erosion vs. impact angle graph in Figure 5

Figure 5 Erosion versus Particle Impact angle for various materials at 

particle velocity of 500fps (Sheldon,1970)
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whereas the repeated plastic deformation is considered dominant erosion 

mechanism in brittle materials. Both of these can be identified from the 

erosion vs. impact angle graph in Figure 5

Erosion versus Particle Impact angle for various materials at 

particle velocity of 500fps (Sheldon,1970) 

whereas the repeated plastic deformation is considered dominant erosion 

ntified from the 

 

Erosion versus Particle Impact angle for various materials at 
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Although, a considerable amount of research has been done to 

predict impact angle dependency of erosion rate, no single function for 

particle impact angle that satisfies all conditions has been identified.  

 

2.3.3 Properties of Particles 

Erosion occurs in a variety of applications as borne out by 

numerous investigations. The particles in each of these applications have 

different hardness, size, shape etc. This variation in particle properties 

also has a significant effect on erosion rate. 

Numerous researches have conducted investigations into the effect 

of particle shape and size on erosion rate which ultimately present 

different parameters to account for these effects. Oka et al. (2005a, 

2005b) published a model which incorporated different constants for 

different shape of particles. The University of Tulsa’s erosion –corrosion 

research center’s model (McLaury et at., 1997, 1998, 1999, Ahlert, 1994), 

incorporates shape factors for particles varying from 1.0 for sharp angular 

particles to 0.53 for semi-rounded particles and 0.2 for round particles.  

Salik et al., (1981) were amongst the first to suggest that angular particles, 

crushed glass in this case, cause much more erosion than rounded 

particles. Levy et al., (1983) concluded that angular particles can cause 
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four times more erosion as compared to rounded particles under the same 

conditions. Cousens and Hutchings (1983) found out that the shape of 

particles not only affects erosion rate but also the impact angle at which 

maximum erosion occurs. Bahadur and Badruddin (1990) presented an 

extensive study of effect of shape and size of particle on erosion. The 

behavior of erosion was analyzed considering the effect of rake angle in 

ploughing and micro-cutting. They found out that it is possible to explain 

the variation in erosion behavior with change in shape factors in terms of 

relative ploughing and micro-cutting contribution to total erosion.  

Also, the erosion rate increases with increased particle size for SiC 

and Al2O3 particles when impinging on maraging steel up to an 

asyomptotic value dependent on the size (Figure 6) 



Figure 6 Variation of erosion rate of 18Ni(250) marging steel with average 

area diameters of SiC and alumina particles (Bahadur and Badruddin , 

 
Tilly (1973) proposed a model where the erosion rate is a function 

of particle size. In his study, the measured erosion rates closely matched 

the experimental results.

Figure 7 Estimated and experimental data for different particle sizes and
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Variation of erosion rate of 18Ni(250) marging steel with average 

area diameters of SiC and alumina particles (Bahadur and Badruddin , 

1990) 

proposed a model where the erosion rate is a function 

of particle size. In his study, the measured erosion rates closely matched 

the experimental results. 

 

Estimated and experimental data for different particle sizes and

velocities (Tilly, 1973) 

Variation of erosion rate of 18Ni(250) marging steel with average 

area diameters of SiC and alumina particles (Bahadur and Badruddin , 

proposed a model where the erosion rate is a function 

of particle size. In his study, the measured erosion rates closely matched 

Estimated and experimental data for different particle sizes and 
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Oka et al. (2005a, 2005b) also included a particle size term in their 

erosion model. They used an exponential model stating that erosion 

increased with particle size raised to power 0.19.  The significant 

conclusion to be made is that almost all investigators agree that the rate of 

erosion due to increases in particle size becomes relatively constant at 

sizes above around 100 µm.   

The effect of particle concentration is also studied by various 

researchers. Andrews and Horsfield (1983) proposed a shielding 

mechanism in erosion to explain the effect of particle concentration on 

erosion rate. It states that, in low particle concentration flow, less number 

of inter particle collisions occur due to large distance between them. Thus, 

more particles can impact the wall surface. With increase in particle 

concentration more inter particle collision occur and more particle rebound 

this contributes in lesser erosion. Turenne et al. (1989,1990), Liebhard 

and Levy, (1991), Shipway and Hutchings (1994)  all investigated the 

effect of particle concentration. Turenne et al. (1990) varied the sand 

volume concentration ranging from 0.38% to 8.61 % in the tests and found 

out that erosion ration decreased following a power law of sand volume 

concentration. 



Figure 8 Empirical relation between the erosion rate W/M and the sand 

volume fraction f for aluminum eroded for 20 min. (Turenne et al., 1990)

 
2.3.4 Material Properties 

Properties of target material affect the erosion rate. Various 

properties of target material are studied to see its effect on erosion rate. 

Material hardness is the most widely used property representative of 

mechanical properties affecting erosion. Finnie

effect of hardness and concluded that higher hardness leads to greater 

erosion rate. This widely accepted conclusion was slightly changed by 

Levy’s platelet mechanism model (1981). The research suggested that 

ductility is more important and can give an indication of erosion resistance 

of material. Erosion is higher for extra  hard material. This is due to the 

fact that ductile materials resist erosion by distributing the kinetic energy of 
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Empirical relation between the erosion rate W/M and the sand 

volume fraction f for aluminum eroded for 20 min. (Turenne et al., 1990)

roperties  

Properties of target material affect the erosion rate. Various 

properties of target material are studied to see its effect on erosion rate. 

Material hardness is the most widely used property representative of 

mechanical properties affecting erosion. Finnie et al.(1967) studied the 

effect of hardness and concluded that higher hardness leads to greater 

erosion rate. This widely accepted conclusion was slightly changed by 

Levy’s platelet mechanism model (1981). The research suggested that 

ortant and can give an indication of erosion resistance 

of material. Erosion is higher for extra  hard material. This is due to the 

fact that ductile materials resist erosion by distributing the kinetic energy of 

 

Empirical relation between the erosion rate W/M and the sand 

volume fraction f for aluminum eroded for 20 min. (Turenne et al., 1990) 

Properties of target material affect the erosion rate. Various 

properties of target material are studied to see its effect on erosion rate. 

Material hardness is the most widely used property representative of 

et al.(1967) studied the 

effect of hardness and concluded that higher hardness leads to greater 

erosion rate. This widely accepted conclusion was slightly changed by 

Levy’s platelet mechanism model (1981). The research suggested that 

ortant and can give an indication of erosion resistance 

of material. Erosion is higher for extra  hard material. This is due to the 

fact that ductile materials resist erosion by distributing the kinetic energy of 



 

21 
 

impacting particles by the plastic deformation of a large region under the 

surface impact point. Many other properties like thermal properties, strain 

hardening, etc. have been studied and reported to affect erosion in some 

way or the other. A complex phenomenon like erosion cannot be 

successfully characterized by just one material parameter.  

2.3.5 Fluid Properties  

Fluid flow and its interaction with the particles is a complex 

phenomenon in itself. Various interactions like heat transfer and 

momentum transfer occur between fluid and particles. Thus, it is evident 

that fluid properties like density and viscosity have an effect on particles 

motion resulting in erosion caused by these particles. With increase in 

density and viscosity of fluid, drag force acting on the particle increases.  

In addition this can also be directly related to conclusion of research 

conducted by Smeltzer et al. (1970), that erosion rate decrease at higher 

test temperatures. At higher temperatures, density and viscosity of fluid is 

observed to decrease in most cases. Hence; particles tend to follow 

streamlines in liquid as compared to gases. The effect of turbulence has 

been studied by Pourahmadi and Humphry (1983, 1990). Impingements 

occur in region of high turbulence due to higher momentum transfer to the 

particles.  
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Russell et al. (2004) observed during this test with 90o elbows that 

secondary flow causes major erosion damage on the inner-side of walls 

rather than outer-side as might be expected. Secondary flow can change 

the particle trajectories greatly and hence the erosion pattern. Particle 

concentration at some location can vary drastically as compared to inlet 

mixture due to flow path and geometries of component. Boundary layer 

affects the particle motion in near wall regions. This in turn affects the 

erosion. Clark and Burmeister (1992) proposed a squeeze film model to 

account for cushioning effect due to fluid boundary layer. A phenomenon 

of boundary layer filtration in which particles are deflected due to high 

normal gradients in flow was observed by Clark (1992).    

 

2.4 Erosion Modeling  

In the oil and gas industry, the guideline followed for erosive service 

is, the American Petroleum Institute recommended practice API 14E that 

suggests a limiting flow velocity (Maximum allowable erosional velocity). 

The practice states that severe erosion does not occur if the production 

velocities are maintained below the flow velocity limit, which is calculated 

considering only the fluid density.  
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V� �  c
ρ� 

Where  


�= fluid erosional velocity, ft/sec 

C = empirical constant 

��= gas/liquid mixture density at flowing pressure and temperature, 

lb/ft3 

However, as we have seen in the previous section, the mechanism 

of erosion is very complex and the severity of erosion depends on many 

factors that are not included in API guidelines. Furthermore these 

guidelines do not take into consideration the shape of the material being 

eroded. 

As a results, several investigators and scientists have proposed 

erosion models to replace API 14E. Most of these erosion models can be 

primarily divided into two types; Theoretical models and Empirical models. 

While theoretical models can be applied to wide range of applications 

empirical models are developed for a specific application. It is impossible 

to discuss in detail each of these models but a few important ones are 

discussed below. 
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2.4.1 Theoretical Models 

There are several theoretical models available in literature. Three of 

the commonly available models are listed below: 

 

2.4.1.1 Finnie’s Model 

Finnie (1958) was amongst the earliest investigator to propose a 

theoretical model of erosion mechanism. It is based on the assumption 

that cutting wear is the major mechanism leading to erosion by solid 

particles. It has been improved constantly and equation loss for volume of 

material lost was presented by Finnie and McFadden (1978) : 

 


 � ����4��1 � ��� �⁄ � �� !� " # $%&'� (�) 
Where, V = Volume removed from surface 

   M = mass of eroding particle 

   m = mass of individual particle 

  I = moment of inertia of particle about its center of gravity 

  r = average particle radius 

  α = impact angle 

  U = particle impact velocity 

  P = horizontal component of flow stress  
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  c = fraction of particles cutting in an idealized manner 

  xo
’= horizontal velocity of the tip of the particle after cutting 

 

The major drawback of this model is that it predicts no erosion at right 

angle and erosion is overestimated for shallow impact angles and under 

estimated for large impact angles.  

 

2.4.1.2 Neilson and Gilchrist Model 

 
 Neilson and Gilchrist (1968) suggested a model that 

accounts for erosion due to both deformation wear as well as shearing 

wear. The eroded mass of the material is given by: 

 

α + α&: W �  M2 $V� 0 cos�α 0 sin nαφ � �V sin α # K��ε ( 

8 9 8&: : �  �2 $
� 0 � !�8; � �
 !<= 8 # >��? ( 

Where  

M = mass of eroded particles 

W = eroded mass produced by M at impact angle of α and velocity 

of V. 
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K = velocity component normal to the surface below which no 

erosion takes place in certain hard materials. 

α = angle of attack at which the residual parallel component of 

particle velocity is zero.  

α0 = angle of attack at which the residual parallel component of 

particle velocity is zero. Therefore at this angle (αo) both the above 

erosion equations predict the same erosion.  

The erosion rate is obtained by dividing the eroded mass of the 

material (W) by the mass of the erosive particles (M). 

 

2.4.1.3 ANSYS Fluent Standard Erosion Model 

It is important to mention that ANSYS Fluent also has an inbuilt 

erosion model.(ANSYS Fluent , User Manual, 2006, Theory guide ,2009). 

The erosion rate is defined by ANSYS FLUENT’s standard erosion model 

as a product of the mass flux, and specified functions for the particle 

diameter, impact angle, and velocity exponent. It is given as 

@�ABCDBE �  F �G HIJGKL�8�MN�O�PQRST�
U VSAWDTX�C

GYZ  

Where  

C(dp) = function of particle diameter 

α = impact angle of the particle path with the wall face  
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f(α) = function of impact angle 

υ = relative particle velocity 

b(υ) = function of relative particle velocity 

Aface = area of the cell face at the wall 

Default values are C = 1.8 x 10-9, f =1, and b=0.  

As with any model there are certain advantages and disadvantages 

with theoretical models. Theoretical models can be readily tuned to fit a 

particular application. For example, in FLUENT the parameters such as 

impact angle function and diameter function can be tuned to match the 

test results. But the disadvantage is that tuning may provide a perfect 

match for a particular variation of the application but they may not yield 

good results for other variations of the application.  

 

 

2.4.2 Empirical Models 

Several empirical models have been developed by researchers for 

specific applications. These models are generally developed through a 

combination of experimentation and modeling. Empirical models can be 

incorporated into FLUENT with the help of a User Defined Function (UDF) 

or a Custom Field Function (CFF).  
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2.4.2.1McLaury et al. Erosion model  

The McLaury (1996) and Ahlert (1994)  developed erosion model at 

the Erosion Corrosion Research Center (E/CRC), University of Tulsa, 

Oklahoma. The primary application areas for this model are chokes, pipe 

elbows, and oil & gas production equipment. 

 

[@ � Q\C
EL�8� 

L�8� � ]8� � ^8    8 + ] 

L�8� � %� !��8�!<=�8� � _!<=��8� � `    8 a ] 

Where 

a, b, c, w, x, y, z = constants for the impact angle function 

A = 1559 HB-0.59  x 10-9 , wher HB is Brinell Hardness  

n = velocity exponent 

 

2.4.2.2TULSA EROSION Model 

The Tulsa erosion model was also developed at the Erosion 

Corrosion Research Center (E/CRC), University of Oklahoma, Tulsa. It 

can also be used for Erosion prediction in chokes, pipe elbows, and oil & 

gas production equipment. 
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[@ �  Q\C\G
E�bG�cN  

Where 

A = constant 

Fe = sand sharpness correction factor 

F� = penetration factor for wall material 

B = brinell hardness of the material 

n = velocity exponent 

bG = pipe diameter 

b = hardness exponent 

 

 

2.4.2.3 Salama and Venkatesh Erosion Model 

The Salama and Venkatesh model is primarily used for erosion 

prediction in Pipe flows and elbows. (1983) 

[@ �  fg
��JGDG��  

Where 

Sk = geometry dependent constant  

     = 0.038 for short radius elbows 

     = 0.019 for ells and tees  



 

30 
 

JGDG� = diameter of the pipe 

m = sand flow rate 

V = particle impact velocity 

 

Similar to the theoretical model, the empirical models also have 

some of the advantages and disadvantages. The empirical models are 

very accurate for the application they are developed for. Once the model 

is developed, it can be used for different variations of the application. The 

biggest disadvantage with these models though, is that the constants in an 

empirical model are generally fixed for the application they were 

developed and cannot be tuned further.   

 

2.4.2.4Oka et al. model  

 
Oka et al. presented an erosion model considering impact angle 

dependence (1997).  The model is as follows: 

[�8� � h�8�[i& 

h�8� � �!<=j�Ek�1 � lM�1 # !<=j��Em, 

[i& � >�lM�gk n
G
 ogm nbGb ogp
 

Where: 

=Z �  !Z�lM�qk 
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=� �  !��lM�qm 

r� �  2.3�lM�&.&uv 

 

K, k1,k2,k3,s1,s2,q1, q2,n1 and n2  are constants and exponent values 

for particles material and targeted material. (Oka et al, 1997, Oka and 

Yoshida 2005, Oka et al. 2005) 

The equation for g (α) is a combination of two terms, the first term 

represents repeated plastic deformation and the second term represents 

cutting wear. Plastic deformation term represents brittle characteristics 

and increases with particle impact angle. Cutting wear term has biggest 

value when particle impact angle is zero and is more effective for smaller 

angles. Hv term represents Vicker’s hardness.  
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Chapter 3  

CFD Based Erosion Modeling  

3.1 Introduction  

Very complex tools with complicated geometries are involved in 

industrial applications where erosion damage can occur. In oil and gas 

industry, it is most of the time impossible to simulate the exact working 

conditions on a laboratory scale. Computational Fluid Dynamics (CFD) is 

a great tool that can be utilized to analyze flow in complicated scenarios 

and very complex geometry. With the advance in computing science, very 

large scale of problems can be solved and simulated using CFD within 

very little time. Various CFD tools have been developed for simulate 

complex multiphysics problem in oil and gas industry in past decade. 

Many complex commercial codes have also been developed to cater to oil 

and gas industry problems. CFD analysis not only saves a lot of time and 

money but also is more environmentally friendly in most of the cases.  

CFD has been widely used for erosion prediction since early 

1990’s. University of Tulsa, Oklahoma has been the hub for most of CFD-

based erosion prediction research since past two decades. McLaury 

(,1993,1996), was amongst the first to propose a CFD-based erosion 

prediction procedure. Edwards (2000), Chen et al. (1998.2004), Zhang 
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(2006), all have contributed in advancing capabilities of CFD-based 

erosion prediction procedure and models. Zhang et al. also recently 

presented procedures and improved guidelines for using commercial CFd 

code for erosion prediction (2009). 

Erosion modeling using CFD consists of three main parts: a flow 

model, a particle tracking model and an erosion model. 

3.2 Flow Modeling  

Flow modeling is the first step in CFD-based erosion prediction. It is 

critical as flow structure, velocity and turbulence greatly affect the particle 

motion and behavior in the flow. As it is the first step, any error or inclusion 

of non-physical behavior can magnify in the further steps. The flow field 

predicted is the input for particle tracking used to determine particle 

trajectories. Fluent is a finite volume code that solved Navier-Stokes 

equations to model motion of fluid. ANSYS meshing was utilized to create 

computational mech. Information about boundary conditions, turbulence 

models, and numerical schemes to follow are then selected. Finally, flow 

solver gives the flow filed information.  
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3.2.1 Conservation Equation 

 
Following are the conservation equation. 
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Where, 
wx = Velocity vector 

  ρ = density 

  u,v,w = velocity components in x,y and z directions  

  p = pressure 

  µ = dynamic viscosity 

  SM = other bodily forces 
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The key step in finite volume is to integrate the differential form of 

equation. The general integral form of conservation equations for mass, 

momentum and energy transport that are solved by the fluent to calculate 

the flow pattern and associated scalar fields is: 

 

 

 

Where, Φ  = 1  for continuity 

  = u for x-momentum 

  = v  for y-momentum 

  = w for z- momentum 

  = h for energy  

 S = is corresponding source term 

 

3.2.2Turbulence Modeling 

Fluent has several turbulence models such as standard k- epsilon , 

Renormalization-group (RNG) k- epsilon, realizable k- epsilon, standard k-

omega , shear-stress transport (SST) k-omega, Reynolds stress model 

(RSM) and large eddy simulation (LES) model. There is a trade-off 

between accuracy and computational cost for each of these models as 

shown in Figure 9 . 

( ) ( )
CV A A CV

dV dA grad dA S dV
t ϕρϕ ρϕ ϕ
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Figure 9 Fluent Turbulence models overview (ANSYS Fluent 

documentation) 

 
 Standard k- Ԑ model and realizable k- Ԑ models has proved to 

give good results for various applications and offer good balance between 

accuracy and computational effort. (ANSYS Fluent, User manual, 2006). 

Hence, these two models were investigated. The k- Ԑ model focuses on 

mechanism that affects the turbulent kinetic energy k. 

All the K-Ԑ models have similar transport equations for k and Ԑ. 

The major differences are:  

 
• The way in which turbulent viscosity is calculated  
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• Turbulent Prandtl numbers governing the turbulent diffusion 
k and Ԑ  

• The generation and destruction terms in Ԑ equation  
 

 
3.2.2.1Standard k-epsilon Model  

Standard k-epsilon model is a robust model which provides 

reasonable accuracy for wide range of flows. Hence, it becomes the first 

choice for any industrial problem. It does suffer with the weakness of over 

diffusivity and is weak at predicting jet spreading rates accurately. It is a 

semi empirical model. The model of transport equation for k is derived 

from exact equations mathematically whereas that for epsilon is obtained 

from physical reasoning. It assumes that the effects of molecular viscosity 

are negligible and hence is valid only for a fully turbulent flow.  

 

Turbulent kinetic energy transport equation: 
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Dissipation rate transport equation: 

2

1 2( )j ji
i t t

i i j i i i

Convection DestructionDiffusionGeneration
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U C C

x k x x x x x kε ε ε

ε ε ε ε
ρ µ µ σ ρ
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Where   are empirical constants 
 
 
3.2.2.2Realizable k- epsilon Model  

The two most important distinctions of this model from standard model 
are:  
 

• It contains alternative formulation for turbulent viscosity  

 

                                  

Where                                

 

Is a variable           

• (A0, As, and U* are functions of velocity gradients) 

• Ensures positivity of normal stresses;   

• Ensures Schwarz’s inequality; 

• The Ԑ transport equation is derived from an exact equation 

for the transport of mean-square vorticity fluctuations.  
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The term “realizable” is attached to the fact that this model satisfies 

constraints on the Reynolds stresses, and is consistent with physics of 

turbulent flows. The limitation of this model is that it produces non-physical 

turbulent viscosities in situation when domain contains both rotating and 

stationary fluid zones. But that not being the case in this analysis, this 

model is as robust as any other for our analysis. For our analysis and 

sensitivity study, Realizable k- epsilon model has proved to capture the 

physics with best accuracy and hence this model is finalized for further 

studies. It is thus important here to describe the mathematical formulation 

of this turbulence model. It is also a 2 equation model. 

 

Turbulent kinetic energy transport equation is same as standard model. 

Dissipation rate transport equation: 

 

 

 

 

 
3.2.3Wall Treatment  

Walls are the main source of vortices and turbulence. The presence 

of walls gives rise to turbulent momentum and thermal boundary layer. An 
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accurate near wall treatment can save a lot of computational time as a 

very fine mesh to resolve the steep velocity profile is not possible many 

times. Since the equations cannot be integrated down to the wall, some 

special near wall treatments are necessary. The following figure shows 

subdivision of near wall regions namely the viscous laminar layer, buffer 

layer and the fully turbulent layer.  

 

Figure 10 Subdivisions of the near wall region (Fluent User’s Guide) 

 
Many basic turbulence models like k-ε models, RSM and LES 

model are valid only in flow region far from walls. Other models like 

Spalart-Allamaras and k-ω are valid in viscous sub layers but that requires 

much higher density of grid in laminar region and hence is computationally 



much more expensive. Fluent gives us two major options to model near 

wall region. First is  wall functions approach which uses semi

formulas called ‘wall functions’ to bridge the viscosity affected regions 

between wall and fully developed turbulent region. The second is near wall 

modeling approach or popularly called wall integration approach.  In this 

approach the boundary layer is sufficiently resolved with a mesh all the 

way to the wall. Figure 

Figure 11  Wall functions (Left) and Wall integration approach (Right) for 

near wall modeling (Fluent User 

3.2.3.1Standard Wall Function 

Standard function options are specifically designed for high Re 

flows. The viscosity affected regions near the wall are not resolved. Also a 

coarse mesh can be used near wall with these options. The standard wall 
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much more expensive. Fluent gives us two major options to model near 

wall region. First is  wall functions approach which uses semi-empirical 

formulas called ‘wall functions’ to bridge the viscosity affected regions 

fully developed turbulent region. The second is near wall 

modeling approach or popularly called wall integration approach.  In this 

approach the boundary layer is sufficiently resolved with a mesh all the 

Figure 11 shows pictorial comparison between them.

Wall functions (Left) and Wall integration approach (Right) for 

near wall modeling (Fluent User Guide) 

Standard Wall Function  

Standard function options are specifically designed for high Re 

flows. The viscosity affected regions near the wall are not resolved. Also a 

coarse mesh can be used near wall with these options. The standard wall 

much more expensive. Fluent gives us two major options to model near 

empirical 

formulas called ‘wall functions’ to bridge the viscosity affected regions 

fully developed turbulent region. The second is near wall 

modeling approach or popularly called wall integration approach.  In this 

approach the boundary layer is sufficiently resolved with a mesh all the 

pictorial comparison between them. 

 

Wall functions (Left) and Wall integration approach (Right) for 

Standard function options are specifically designed for high Re 

flows. The viscosity affected regions near the wall are not resolved. Also a 

coarse mesh can be used near wall with these options. The standard wall 
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function becomes less reliable when flow departs from the conditions 

assumed. E.g. local equilibrium assumption may not be valid in strong 

pressure gradients or large curvatures. Small gaps are also present in 

their formulation.  

3.2.3.2Scalable Wall Functions  

These are much similar to standard wall function but it puts a limiter 

on the y* calculations. i.e to say that the wall surface collides with the 

edge of the viscous layer if the first grid point is too close. Thus it also 

helps to reduce dependency on y + values when wall functions are 

employed. Again this does require adequate boundary layer resolution.  

3.2.3.3Enhanced Wall Treatment  

This model combines enhanced wall functions and the two-layer 

model, it has been proved efficient for low Re flows with complex near wall 

phenomena. It requires a really fine mesh for resolving the near wall 

region. In enhanced wall function approach, the momentum boundary 

layer condition is based on blended law- of –the-wall and similar laws are 

applied for energy as well. This incorporated the effect of pressure 

gradient and thermal effects. The two layer model is used to determine the 

near-wall epsilon field. The domain is divided into viscosity-affected region 

and turbulent core region based on turbulent Reynolds number. Also , this 

is dynamic zoning and adapts to the solution.  



 

 

Figure 

The discussion on the mathematics and numerical details of 

models as well as wall treatment is out of scope of this document and 

FLUENT Theory Manual can be referred to for better and deeper 

understanding of turbulence modeling in fluent.

3.3Discrete Phase Modeling (DPM) 

Particle tracking is the second major step in CFD

modeling. In the Eulerian

field converges, the discrete phase is solved by tracking a large number of 

particles. A fundamental assumption of this

second phase occupies a low volume fraction (less than 10%). For flow 

conditions of interest in a drilling operation, the sand concentration is fairly 
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Figure 12 Near wall treatment trade offs 

The discussion on the mathematics and numerical details of 

models as well as wall treatment is out of scope of this document and 

FLUENT Theory Manual can be referred to for better and deeper 

understanding of turbulence modeling in fluent. 

Discrete Phase Modeling (DPM)  

Particle tracking is the second major step in CFD-based erosion 

modeling. In the Eulerian-Lagrangian approach, after the continuous flow 

field converges, the discrete phase is solved by tracking a large number of 

particles. A fundamental assumption of this approach is that the dispersed 

second phase occupies a low volume fraction (less than 10%). For flow 

conditions of interest in a drilling operation, the sand concentration is fairly 

 

The discussion on the mathematics and numerical details of all the 

models as well as wall treatment is out of scope of this document and 

FLUENT Theory Manual can be referred to for better and deeper 

based erosion 

Lagrangian approach, after the continuous flow 

field converges, the discrete phase is solved by tracking a large number of 

approach is that the dispersed 

second phase occupies a low volume fraction (less than 10%). For flow 

conditions of interest in a drilling operation, the sand concentration is fairly 
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small so that the effect of sand particles on the carrier fluid is assumed 

negligible. Thus one-way coupling method, that assumes the presence of 

solid particles has little or no effect on the flow field, is employed to 

calculate sand particle trajectories. FLUENT’s Discrete Phase Model 

(DPM) is used to model the sand particle flow and erosion on the tool 

geometry.  FLUENT computes the trajectories of the discrete phase 

entities using a Lagrangian formulation, by solving the governing 

equations of particle motion by taking into account the drag force, 

pressure gradient force, buoyancy force etc. acting on the particles.  

Fluent predicts the trajectory of a discrete phase particle (or droplet 

or bubble) by integrating the force balance on the particle, which is written 

in a Lagrangian reference frame. This force balance equates the particle 

inertia with the forces acting on the particle, and can be written as Particle 

transport equation as presented below.  
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 CD is drag coefficient and that can be calculated by any of the 

following equations: 
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Cliff and Gauvin (1971) proposed equation (a) . Equation (b) was 

proposed by Mosri and Alexander (1972) where a1 , a2 , a3 are constants 

for spherical particle over large range of Rer. Haider and Levenspiel 

(1989) proposed equation (c) where, 

 b1 = exp(2.3288-6.4581φ + 2.446φ2) 

 b2 = 0.0964 + 0.5565φ 

 b3  = exp(4.905-13.8944φ + 18.4222φ2 – 10.2599 φ3) 

b4  = exp(1.4618 +12.2584φ – 20.7322φ2 +15.8855 φ3) 
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and φ is the shape factor defined as  

     ; � Cy 

s is the surface area if a sphere having same volume as the particle and S 

is the actual surface area of the particle. 

Various other forces like pressure gradient, gravity and buoyancy and 

added mass can be included in the model as well.  

 Discrete random walk model is applied to account for effect of 

turbulent eddies on particles. The model assumes that the particles travel 

through as succession of turbulent eddies that are present in the flow. 

Each eddi that the particle encounters is characterized by Gaussian 

distribution random velocity fluctuations and tam time scale called eddy 

lifetime. This model accounts for the deviation of particle from their 

trajectories caused by turbulent eddies. A complete details about the 

theory of random walk model can be studied from Fluent theory 

guide.(2009). It is important in erosion modeling to include this Discrete 

random walk model as turbulent can change particle trajectories and this 

can in turn affect erosion prediction regions and rates. 

 Particle wall interaction is an important phenomenon that should be 

accounted for in DPM. The particle’s momentum is changed during 

particle-wall interaction. This change is accounted by restitution 

coefficients that are ratios of particle velocity components after 
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impingement to the corresponding component before impingement. 

Tabakoff and Wakeman (1982) proposed that restitution coefficients en 

and et define the amount of momentum that is retained by the particle after 

the impingement with the boundary, in the direction normal and tangential 

to the wall. Various other investigators have proposed various values of 

restitution coefficient. Foder et al. (1998) , Grant and Tabakoff (1974) are 

prominent amongst others .  

3.4Erosion Model 

Third and final step in CFD-based erosion modeling is to calculate 

the erosions. In Fluent, erosion predictions can be made considering 

empirical relations that can incorporated either by custom field function 

(CFF) or use defined function (UDF). We will be incorporating the erosion 

equation as CFF to determine the erosion rate in required units. CFF 

approach is relatively simple as Fluent allows the users to define a custom 

function incorporating properties that are already calculated by fluent like 

velocity or DPM concentration.  
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Chapter 4  

Baker Hughes Erosion Test and Erosion Model 

 

All the analysis done in this research is based on experimental 

results provided by Baker Hughes.  Tests were conducted at Baker Oil 

Tools for four different flow conditions considering two different flow rate 

i.e. 50 ft/s and 85.8 ft/s and for two different size of particles i.e. 256 

microns and 25 microns.( Russell ,2004) The test was performed on a 90o 

elbow with 1 inch inner diameter. Inconel 718, Nickel Alloy 825, 25% Cr, 

Nickel Alloy 925 , and 13% Cr L-80 material elbows were placed in series. 

The sand concentration was approximately 1% of liquid weight and 0.38 % 

by volume. (Russell, 2004). Erosion rate was measured at 230 different 

locations on the elbow. The experimental set up is shown in a schematic 

below: 
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Figure 13  Experimental setup for erosion experiment (Russell,2004) 

 
The details of erosion test fixture (elbow) are given below 
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Figure 14 Erosion test fixture  

4.1Baker Hughes -ERC Erosion Model 

The Baker Hughes-ERC-2003 erosion model was developed at 

Baker Oil Tools.  Ronnie Russell et al. (2004) presented this model that 

was based on extensive experiments on a 90 o elbow. Series of erosion 

tests were performed with different materials and under different flow 

conditions and sand concentrations. A predictive model was then created 
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based on the obtained results. The model is primarily used for straight line 

flows. 

E � K C V� 

Where  

K = empirical constant 

C = sand concentration 

V = velocity 

n = velocity exponent 

The Baker Hughes-ERC-2008 model is an improvement over the Baker 

Hughes-ERC-2003 model and is an exponential fit model. This model is 

more accurate when compared to the Baker Hughes -ERC-2003 model for 

low flow velocities.  

[ � > H {�| }� 
K = empirical constant 

C = sand concentration 

V = velocity 

n = velocity exponent 

R = proportionality constant on semi-log scale 

 

Exponential fit is the major strength of the model. However, erosion 

rates have been predicted to be affected by impingement angle 
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significantly and this model has an inherent weakness of not considering 

the impingement angle function for erosion prediction.  

The empirical constants were determined through parametric trial 

and error method. Hence, it provides further scope to improve the model. 

Throughout this study, Baker Hughes-ERC-2008 erosion model is further 

investigated and improved.   
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Chapter 5  

Data Analysis 

 
Various data analysis techniques like regression, exploratory data 

analysis and artificial neural networks are implemented in this work. 

Although, complete discussion of various data analysis techniques is out 

of the scope of this thesis, details about the methods and algorithms 

implemented are presented in this chapter. MATLAB was used for all data 

analysis performed during this work. 

 

5.1 Correlation Analysis 

 
The core to data analysis for erosion modeling is to establish 

relationship or association between various independent parameters to 

erosion (which is the dependent parameter in each case). The two 

variables are said to be associated if the behavior of one affects the 

behavior of other.  Correlation coefficients are measures of association. 

They assign a numerical value to the degree of association or strength of 

relationship between two variables (Gibbons, 1993). Several correlation 

coefficients are proposed to measure degree of correlation. Three major 

ones that are analyzed in this work are described below. A general 
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interpretation based on the values of these coefficients (ranging from -1 to 

1) is as follows; 

 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 
                      
 
 

 

 

 

5.1.1Pearson Correlation Coefficient 

This is arguably the most widely used correlation measure. It was 

developed by Karl Pearson in early 1900’s (Pearson K., 1901) based on 

idea proposed by Francis Galton. (Stingler S.M., 1989) It has been widely 

used since then. It is many a times referred to as Pearson product-

moment correlation coefficient and represented by ‘r’. It is a measure of 

linear correlation between two variables. It is important to mention here 

that linear correlation may exist even if variables having a nonlinear 

relation to one another. (David S., 2003) it varies from -1 to 1 where 0 

means no correlation, 1 means total positive linear correlation and -1 

means total negative linear correlation. For a paired x and y values in a 

sample, Pearson correlation coefficient r is given by: 

 

Strong negative 
correlation 

Strong positive 
correlation 

Weak 
negative 

correlation 

Weak 
positive 

correlation 

Little 
correlation 
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r = 
~����� �� ����� � ��~ � ���� �������� ~����� �� ����� � ��~ � ���� e���������� 

r = 
���������� �� � ��~ � �������� �� � ��~ �  

 

2 2

( )( )

( ) ( )

x X y Y
r

x X y Y

− −
=

   − −   

∑
∑ ∑  

Nonlinearity and outliners are major factor that affect the value of r .  

 

5.1.2Spearman’s Rank Correlation Coefficient –Rho 

Spearman’s rank coefficient is a nonparametric measure of 

dependence. As most of the variables encountered in this work do not 

have a strong linear or parametric relation to erosion, a nonparametric 

approach is important to consider while performing correlation analysis. 

Spearman rank coefficient is calculated using following formula: 

� � 1 # 6 ∑ J�=u # = 

Where  d  is the difference in rank between the two variables  

Once the data is collected, it is ranked by giving highest rank to 

highest value and so on. Then difference in rank of each data set is 

calculated and the values are plugged in the formula above. Spearman 

correlation can give a perfect value (1 or -1) when the two variables are 

related by any monotonic function in contrast to only linear function in 
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case of Pearson correlation. (Gibbons, 1990)(Lee Rodger J. and 

Nicewander W.A., 1988)  

 

5.1.3Kendall’s Rank Correlation Coefficient- Tau  

 
 Like Spearman’s rho, Kendall’s tau is also a nonparametric 

measure of correlation.. It was first introduced by Maurice Kendall in 1938 

(Kendall, 1938)  

The general formula for calculating the Kendall’s Tau is given 

below: 

 

� �  �=��^{�  L � =� �J]=� �]<�!� # �=��^{�  L J<!� �J]=� �]<�!�0.5=�= # 1�  

 
 

For a given sample of variables x and y , both with sample size of  

‘n’, there nC2 combinations possible for selecting distinct pairs (xi., yi) and 

(xj., yj )  Now these pairs are defined as concordant if (xi. >  xj  and yi  >  yj 

)  or (xi. <  xj  and yi  <  yj ) ; discordant if     (xi. >  xj  and yi < yj ) or (xi. <  xj  

and yi > yj )    and neither if xi = xj  or xi = yj  . 

Then the number of concordant pairs and discordant pairs are 

plugged into the above formula to get a coefficient which lies between -1 

to 1.  
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Although in many cases , as in ours, the interpretation of both 

Spearman’s rho and Kendall’s tau is much similar, Some people have 

argued that Kendall’s tau has an advantage of very direct observation and 

interpretation considering agreeable (concordant) and non-

agreeable(discordant) pairs.(Bolboaca S.D. and Jantschi L. ,2006) 

 

5.1.4Bootstrap Sampling 

Bootstrap resampling is one of the most controversial techniques in 

statistics (Kvan P.H., Vidakovic B., 2007).  The bootstrap described by 

Efron (1979, 1982) is arguably the most popular resampling tool in 

statistics and specifically nonparametric statistics today. Bootstrap 

resampling has a great advantage of a simple and straight forward way to 

derive properties of estimators. It measures the properties from number of 

resamples created by random data sampling with replacement from the 

data set. The number of elements in each bootstrap sample is equal to 

that in original data set.  It is a great tool in nonparametric statistics to 

reaffirm the inferences made based on a parameter value. It helps to 

determine how certain the conclusion made on a parameter value are. 

The argued disadvantage of bootstrap resampling is that as its tendency 

to be more optimistic in some cases due to resampling based on 

substitution.(Efron,1982) 
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5.2Curve Fitting and Regression 

 
Various different fits, algorithms and methods are explored to find 

the best fit for identified CFD parameter. MATLAB curve fitting toolbox is 

used for the purpose (2012). For all the methods implemented, input data 

is first centered and scaled. This normalized the predictor (input) data. The 

input variables have wide difference in scale in our data set and hence 

normalizing the data improved the fit.  

 

5.2.1Least-Squares Fitting 

Least square method is used by MATLAB while fitting the data. A 

parametric model relating the response data, erosion in our case, and 

predictor data with various coefficients depending on the fit desired is set 

up. Model coefficients are then estimated by minimizing summed square 

of residuals. Residues are defined as the difference between response 

(observed output) value and fitted value: 

           �D � _D # _��  

Response = data – fit   

Then minimization function, sum of square of residues is given by: 
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\�<= � F�_D # _����E
DYZ  

 

Three different least square fitting methods were implemented. 

Linear least square, Robust least square and nonlinear least square. 

 

5.1.1.1Linear Least Squares: 

Linear least-square method was employed when fit for a linear 

model (linear in the coefficients) was desired. In our case, it was used 

primarily when polynomial fit was desired. A detailed application of least 

square methods to various problems is covered by CL Lawson and RJ 

Hanson in their book (1974). The following example from MATLAB 

documentation (2013) illustrates application of liner least square fitting 

process: 

Let us consider we have n data points and want to fit the data by 

first-degree polynomial: 

_ � �Z% � �� 

Now we write S as a system of n simultaneous liner equation in two 

unknowns. The system is overdetermined if the number of equation are 

more than the number of unknowns. 
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f � FI_D # ��Z%D � ���K�E
DYZ  

The coefficients can be determined by differentiating S with respect 

to each parameter and setting the result equal to zero as least square 

fitting minimized the summed square of residuals. 

�f��Z � #2 F %DI_D # ��Z%D � ���K � 0E
DYZ  

�f��� � #2 FI_D # ��Z%D � ���K � 0E
DYZ  

Let us represent the true parameters by b. now substituting b1 and 

b2 instead of p1 and p2 the equations become: 

F %DI_D # ��Z%D � ���K � 0E
DYZ  

FI_D # ��Z%D � ���K � 0E
DYZ  

 

The summation runs from  i=1 to n and normal equations can be 

defined as : 

^Z F %D� � ^� F %D� � F %D _D 
^Z F %D � =^� � F _D 
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Now, solving for b1 and then b2 

^Z � = ∑ %D _D # ∑ %D ∑ _D= ∑ %D� # �∑ %D��  

^� � 1= �F _D # ^Z F %D� 

This concept can be extended to higher degree polynomials simply 

by adding normal equation for each liner term added to the model. 

 

5.1.1.2Weighted Least Square: 

Weighted least square is helpful when the assumption that the 

response data is of equal quality is violated. It improves fit by adding a 

weight (scale factor) in fitting process. The minimization function in this 

case will be: 

! � F �D�_D # _����E
DYZ  

The weight determines how much the response value influences 

the parameter estimates i.e. a high quality data point influences the fit 

more than low-quality data point. 

5.1.1.3Robust Least Square: 

The disadvantage of least square of being highly sensitive to 

outliers is rectified in Robust scheme. Two methods are available in 

MATLAB (2013) for Robust least square fitting 
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1. Least absolute residuals (LAR) - To reduce the effect caused 

by squaring of absolute residuals of outlier, it calculates the 

curve that minimizes the absolute difference. This way the 

outliers will have less influence on the fit. 

2. Bisquare weights – Weights are assigned to each data point 

depending on its distance from the fitted line. The points that 

are much farther from the line get a zero weight. Thus it  

minimizes the weighted sum of squares. Bisquare method is 

preferred most of the time as it finds the curve that fits 

majority of data still utilizing least-squares approach and 

neglects the outliers.  

 

A robust iteratively reweighted least-square algorithm is proposed 

by Holland and Welsh ( 1977). MATLAB implements the following steps 

for Robust fitting with Bisquare weights. (2013) 

1. Fit the model by Weighted least square 

2. Compute the adjusted residuals given by: 

�S�� � �D
1 # �D 
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ri is the usual least-square residuals and hi are the 

leverages that adjust the weight reducing weight of data 

points that had huge effect on least-square fit.  

3. Standardize the adjusted residues by: 

� � �S��>C  

Where K is the tuning constant with a value 4.685 ans s 

is the  robust variance given by: 

 

f �  �{J<]= ]^! ���{ J{M<]�< =  L �{!<J�{!0.6745  
 

4. Compute robust weights as a function of u: 

 

�D � �1 # ��D����          L �      |�D| ¢ 1  
�D � 0            L  �           |�D| 9 1               

        
 

5. Stop if fit converges else go back to step one for next 

iteration. 
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5.1.1.4Non Linear Least Square: 

A nonlinear least square method is employed to fit a model that has 

equation nonlinear in coefficients or is a combination of linear and 

nonlinear in the coefficients. Exponential and power functions fit were 

obtained using nonlinear methods. 

 

The general matrix from of the model is given by: 

y = f(X,β) +ε 

where,  

y is n-by-1 vector of responses 

β is m-by-1 vector of coefficients 

X is n-by-m design matrix for the model 

And ε is n-by-1 error vector. 

 

An iterative approach is required to solve for the coefficients in a nonlinear 

model. Following steps are performed by MATLAB function to solve for the 

coefficients in nonlinear least square regression for curve fitting (2013): 

1. Estimate the value of each coefficient 

2. Calculate the fitted response values given by 

_£ � L�¤, ^� 
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3. Adjust the coefficients following a fitting algorithm. And 

see if the fit improves. Two different fitting algorithms are 

available in MATLAB 

a. Trust-Region – This algorithm is described by More 

and Sorensen (1983) and Cartis et. al. (2009). It is 

used if the constraints on coefficients are known.  

b. Levenberg-Marquardt – it is one of the most popular 

algorithms employed since decades. Proposed by 

Levenberg (1944) and improved upon by 

Marquardt(1963), it has proved to give a good fit for 

wide range of nonlinear models. 

4. Stop if the convergence criteria is reached else return to 

step 2 for next iteration. 

 

A detailed discussion about development and implementation of 

each of the methods and algorithms is out of scope of this work but can be 

obtained from respective reference. Its application in MATLAB is 

discussed in Matlab Documentation (2013). 
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Chapter 6  

Artificial Neural Networks 

 

Human brain is a remarkable organ of the body. Many tasks 

performed by brain like reading, identifying a picture that you might have 

seen years ago or even recognizing a person’s face, are extremely difficult 

for even large scale computers to do. Artificial Neural Network (henceforth 

referred by ANN) is a system inspired from functioning of human brain. 

They are based on simulated nerve cells or neurons which are connected 

in various ways to for a network. Much like brain, they are capable of 

learning, memorizing and creating relationships amongst what may seem 

like a random data. 

Haykin, in his book “Neural Networks: a comprehensive foundation” 

(1994) defines ANN as “a massively parallel distributed processor that has 

a natural propensity for storing experiential knowledge and making it 

available for use”. Another simple definition is presented in DARPA Neural 

Network study (1987) as “ Neural network is a system composed of many 

simple processing elements operating in parallel whose function is 

determined by network structure, connection strengths, and the 

procession performed at computing elements or nodes.”  
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Since the advances in computing power, ANNs have been 

increasing applied to various real world problems. McCulloch and Pitts 

(1943) had developed a ANN model based on their knowledge of 

neurology. Frank Rosenblatt can be credited for development of first 

simple learning algorithm called Perceptron (1958). It was a very simplistic 

model. Yet another system called ADALINE (ADAptive Linear Element) 

was developed by Widrow and Hoff in 1960. It differed from Preceptron  in 

a way that it employed Least Mean Squares learning rule. It was in 1970’s 

and 1980’s that significant innovation in the field of ANN happened. 

ART(Adaptive Resonance Theory) network based on Grossberg and 

Carpenter’s school of thought which explored resonating algorithms(1985) 

was developed. Klopf (1972, 1975), developed basis for learning in 

artificial neuron inspired from biological principle of neuronal learning 

called heterostasis. But arguably one of the most important contributions 

in learning method was that by Paul Werbos (1974, 1988) called back-

propagation learning method. It is one of the most extensively used 

methods today in ANN. Rezaul Begg (2006) calls Back Propagation a 

“Perceptron with multiple layers, a different threshold function in neurons 

and a more robust and capable learning rule.” Today, ANNs are used for 

classification, forecasting, modeling and pattern recognition in various 

fields like Business, Engineering, Science and Medicine.   
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ANN has been successfully developed for reservoir modeling and 

estimation in oil and gas industry (S Mohaghegh et. al., 1995, M Shahab 

et. al., 1997). They have been implemented in analysis of log data (H 

Eskandari et. al., 2004) and for continuous oil field optimization (L. 

Saputelli, 2002). Veten et al. (2000) and Zhang et al. (2003) were amongst 

the first ones to implement ANN in wear of polymer composites. More 

recently work by Suresh et al. (2009) reports successful implementation of 

ANN in predicting solid particle erosion in composites. Multilayer feed 

forward network with back propagation training algorithm has been used 

widely in wear prediction (Zhang et al. 2003) Bayesian regularization 

training algorithm was found more accurate for erosion modeling by Zhang 

et al. (2003), Danaher et al. (2004) as well as Suresh et al.(2009). 

 

 

 

 

 

 

 



6.1

The basic building blocks of an ANN are (1) Network Architecture, 

(2) Transfer Functions and (3) Training methods. 

6.1.1Network Architecture

6.1.1.1Neuron Model 

 
The most basic element of human brain is neurons. They help us to 

recall process and apply previous experiences to our actions. Basic 

components and function of each component is presented in figure below:

Figure 

 
Similarly the basic unit of ANN is called artificial neurons. These 

neurons simulate the four basic functions of natural neurons. A basic 

artificial neurons is shown in figure below:

 

69 

6.1Artificial Neural Network Design 

The basic building blocks of an ANN are (1) Network Architecture, 

(2) Transfer Functions and (3) Training methods.  

Network Architecture 

The most basic element of human brain is neurons. They help us to 

recall process and apply previous experiences to our actions. Basic 

components and function of each component is presented in figure below:

 

Figure 15 Single Neuron (Klerfors, 1998) 

Similarly the basic unit of ANN is called artificial neurons. These 

neurons simulate the four basic functions of natural neurons. A basic 

artificial neurons is shown in figure below: 

The basic building blocks of an ANN are (1) Network Architecture, 

The most basic element of human brain is neurons. They help us to 

recall process and apply previous experiences to our actions. Basic 

components and function of each component is presented in figure below: 

Similarly the basic unit of ANN is called artificial neurons. These 

neurons simulate the four basic functions of natural neurons. A basic 



Figure 

 

Various inputs are represented by x(n). These inputs are then 

multiplied by connection weight represented by w(n). I

shown in the figure, these products are summed

function to generate result and then output.

A neuron represented by terminology used in MATLAB Neural 

Network user guide (Demuth and Beale,1993) is shown below:
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Figure 16 Artificial Neuron (Klerfors, 1998) 

Various inputs are represented by x(n). These inputs are then 

tion weight represented by w(n). In a simple case 

ure, these products are summed, fed through transfer 

esult and then output. 

A neuron represented by terminology used in MATLAB Neural 

Network user guide (Demuth and Beale,1993) is shown below: 

Various inputs are represented by x(n). These inputs are then 

n a simple case 

, fed through transfer 

A neuron represented by terminology used in MATLAB Neural 
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Figure 17 Single Neuron with Vector input (Demuth and Beale, 1993) 

 
Input vector is represented by ‘p’ with dimension shown in the 

bottom. The input to the transfer function f is n, sum of bias b and the 

product ‘Wp’.  Where ‘W’ is the weight function. It is passed to transfer 

function to get output from the neuron. It should be noted that if there were 

more than one neuron, the output would be a vector rather than a scalar. 

 

6.1.1.2Multiple Layered Network 

 A Network can be of multiple layers with different weight and 

biases for each layer.  Each layer may have different network architecture. 

The layer that produces the final output of the network is called Output 

layer. Rests of the layers are usually called hidden layers. A simple three 

layer network with on input layer, one hidden layer and one output layer is 

depicted below: 
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Figure 18 Schematic of a typical multilayer neural network model ( Hagan 

et al., 1996) 

 
A similar multilayer model with three hidden layers in MATLAB 

notations is shown in figure below: 

 

Figure 19 Multilayer neural network (Demuth and Beale, 1993) 



 

73 

6.1.2Transfer Functions 

Various different transfer functions have been employed in different 

ANNs. Discussion of each of them is beyond the scope of this document. 

However, two of most commonly employed transfer functions that were 

utilized in this work are discussed in this section. 

 

6.1.2.1Linear Transfer Function 

As the name suggests, it is an identity function given by: 

\�%�  �  %;  L � ]�� % 

Following is the picture of the graph and MATLAB notation associated with 

it. 

 

Figure 20 Linear Transfer Function (Demuth and Beale, 1993) 

 
6.1.2.2Hyperbolic Tangent Sigmoid Function 

 
Advantage of implementing Sigmoidal functions to accelerate 

convergence in back-propagation algorithms (discussed later in detail) 

have been discussed by Vogl et al. (1988) and Harrington (1993). The 

functional representation is  
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\�%� � 21 � exp�#2 ª %� # 1 � tanh �%� 
Function shape and MATLAB symbol is presented in figure below: 

 

Figure 21 Tan-Sigmoid Transfer Function (Demuth and Beale, 1993) 

6.1.3Learning 

The method of setting weights in an ANN enables the process of 

learning. Training is generally referred to as the process of modifying the 

weights in the connection between network layers to achieve expected 

output ( Shivanandam at el., 2006) The process that takes place while 

network is trained is called learning. Generally there are three different 

types of training. 

 

6.1.3.1Supervised Training 

Supervised training or training with a teacher is a process in which 

network is provided a series of sample inputs and the outputs are 

compared with expected responses. The network training continues till 

satisfactory output is obtained. There are target output vectors for 

sequence of input training input vectors. The weight are adjusted 
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according to different algorithms employed. Hebb’s net, Backpropagation 

network, counter propagation net, etc. are example of some supervised 

training algorithms. 

6.1.3.2Unsupervised Training 

If there are no target vectors for the training input vectors, the 

training is called unsupervised training. The weights are adjusted in such a 

way that most similar input vector is assigned to same output. They are 

more complex and difficult to implement. Binary Adaptive Resonance 

Theory(ART1), Competitive learning, Self-organizing maps and topology 

preserving maps (SOM/TPM) are some examples of unsupervised 

training. 

 

6.1.3.3Reinforcement Training 

It can be termed as a type of supervised training, where teacher is 

present to guide the direction but outputs are not presented. The network 

is presented with indication of whether it is successful or whether it failed 

is provided. It tries to maximize a performance index called reinforcement 

signal through trial and error. The system would know if the outputs are 

correct or not but not the exact outputs. 

There are various learning laws and algorithms that cannot be 

covered in this document. Books by Sivanandam et al.(2006), Hagen et al. 
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(1996), Begg and Palaniswami (2006), Mehrotra et al. (1997) and 

Haykin(1994) discuss in depth various training algorithms and more 

complex neural networks. 

Various combinations of network architecture and training algorithm 

are developed and successfully applied to different problems. All of them 

are impossible to cover in this text. A Multilayer feedforward network with 

backpropagation was modeled in this study and is explained in the next 

section. 

 

6.2Multilayer Feedforward Network with Backpropagation Algorithm 

Feedforward network with backpropagation algorithm (Rumelhart 

and McClelland, 1986) is one of the most commonly used networks.  It 

means that neurons are organized in layer and send their signals 

“forward”. The errors are then propagated backwards. The 

backpropagation algorithm falls under supervised learning category. The 

central idea for backpropagation algorithm is that of minimizing the error 

till the network is trained. As in many other networks, random weights are 

assigned at the beginning of training and they are adjusted till 

minimization criteria for error is reached. Hagan and Menhaj (1994) first 

demonstrated the development of Levenberg-Marquardt algorithm for 

neural networks. It’s reported to train the neural network 10 to 100 times 
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faster than then popular gradient descent backpropagation method. 

Bayesian regularization algorithm to avoid over fitting of data is introduced 

to Levenberg-Marquardt algorithm. Detail explanation about the method 

are available in MacKay(1992) as well as Foresee and Hagan(1997). 

A detailed derivation of any of the methods is easily available in 

literature mentioned and will not be discussed here. However, a top level 

overview of the steps involved in it is presented.  

 

6.2.1Backpropagation  

 The steps of backpropagation for a connection between hidden 

layer neuron A and output neuron B are simply explained below 

(MacLeod, 2013): 

1. Initialize random weights, apply inputs and calculate the 

outputs 

2. Calculate the error for neuron B. Remember that the transfer 

function is sigmoid function, hence error is: 

[�� �c �  ®�����c �1 # ®�����c��¯]�h{�c –  ®�����c�  
3. Update the weights by following equation 

:±²³  �  :±² �  �[�� �c 0  ®�����Q� 
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4. Calculate the error for the hidden layer neuron by back 

propagating them form output layer. It is done by taking error 

form output neuron and running them back through the 

weight to get hidden layer errors. If neuron is connected to 

two output neuron B and C then: 

[�� �Q �  ®����� Q �1 #  ®����� Q��[�� �c :±² �  [�� �H :±´� 

 

5. Go back to 3 to update the weight of hidden layer on the left 
 

A simple calculation for this procedure on a network with 2 

input , 2 output and 3 hidden layer neurons is show in figure 

below: 
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Figure 22 Calculation of Reverse pass for Backpropogation 

(MacLeod,2013) 
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6.2.2Levenberg-Marquardt Training 

The training process for Lavenberg-Marquardt algorithm is 

described in following steps (Yu and Wilamowski, 2012):  

1. With the initial weights (randomly generated), evaluate the 

total error (SSE). 

2. Perform the update as directed by Levenberg-

Marquardt update rule to adjust weights with the new 

weights, evaluate the total error.  

�g³Z � �g # �l�µZ¶g{g 

��{�{ � ]�{ �{<h�� ]� �{!�{��<M{ �{M{�! l <! ��{ l{!!<]= �]��<% ¶·¶ � μ�  
� <! <J{=�<�_ �]��<%, μ <! � !<�<M{ � �^<=]�< = � {LL<�<{=� ]=J { <! {�� � 

 

3. If the current total error is increased as a result of the 

update, then retract the step (such as reset the weight vector 

to the precious value) and increase combination coefficient µ 

by a factor of 10 or by some other factors. Then go to step ii 

and try an update again. 

4. If the current total error is decreased as a result of the 

update, then accept the step (such as keep the new weight 
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vector as the current one) and decrease the combination 

coefficient µ by a factor of 10 or by the same factor as step 4 

5. Go to step 2 with the new weights until the current 

total error is smaller than the required value 

 

A Block diagram for it is presented in figure below: 

 

Figure 23  Levenberg - Marquardt algorithm (Yu and Wilamowski, 2012) 
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6.2.3Bayesian Regularization 

Bayesian regularization is implemented in Levenberg-Marquardt 

algorithm to minimize a liner combination of squared errors and weights. It 

is one of the approaches to stop over fitting a problem.  It also reduced the 

need to test different number of hidden neuron for a problem. 

The typical performance function for feedforward network is mean 

sum of squares of the errors.  

\ � �!{ �  1¹ F�{D��U
DµZ  

A term consisting of mean sum of squares of the network weights is 

added to performance to improve generalization 

\ � º[� � 8[» 

Where α and β are parameters optimized in Bayesian framework 

(MacKay,1992).This results in smaller weight and forces a smooth 

response. In this framework the weights are assumed to be random 

variable with specified distribution. The regularization parameters are 

associated with variance of these distributions. The parameters are then 

estimated by statistical techniques.  

An expanded Levenberg-Marquardt Algorithm with Bayesian 

regularization is presented below (Souza, 2009): 

1. Compute the Jacobian  
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2. Compute the error gradient 

h � ¶·[ 

3. Approximate the Hessian matrix  

l �  ¶·¶ 
4. Calculate the performance function 

\ � º[� � 8[» 

5. Solve �l # ¼��½ � h to find δ 

6. Update the weights w using δ 

7. Recalculate performance function using updated 

weights 

8.  If the value has decreased  

a. Discard the new weights, increase λ using γ 

and go to step 5 

b. Else , decrease λ using γ 

9. Upgrade the Bayesian hyperparameter using 

MacKay’s formulae 

a. ¾ �  :  – �8 0  ���lµZ��  where W is number 

of network parameter (weights and biases) and  

tr= trace of the matrix 
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b. º � �¹ # ¾� �2.0 0 [��¿  where N is the number 

of entries in training set  
c. 8 �  ¾ �2.0 0 [»�À  

 

More details, proof and derivation of the algorithms can be obtained 

in MacKay(1992) and Foresee and Hagan (1997) 
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Chapter 7  

Results And Discussion 

7.1Performance Measures 

Before we jump into the results obtained by implementing various 

erosion prediction models, it is important to discuss the parameters used 

throughout results to measure efficiency and effectiveness of the models. 

Following are quantities measured and their implications are related to 

results in this work. 

 

7.1.1 Performance Measure for CFD Based Models 

 
7.1.1.1Percentage Error 

The most frequently used quantity to measure the quantitative 

performance of the model throughout this work is Percentage error 

defined by equation below: 

 

�{��{=�]h{ [�� � � ��{J<��{J M]��{ # [%�{�<�{=�]� M]��{[%�{�<�{=�]� M]��{ 0 100 

 

Lower the percentage error, better the model. 
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7.1.1.2Value Ratio 

 
Ratio of the predicted value to experimental value is a good 

measure to visualize the results when plotted. An Ideal situation would be 

when this value is 1, which would mean that predicted value and 

experimental values are the same. 

 


]��{ @]�< � ��{J<��{J M]��{[%�{�<�{=�]� M]��{ 

 

7.1.2 Goodness of Fit Measure for Statistical Models 

 
7.1.2.1Sum of Squares Due to Error 

Denoted by SSE, sum of squres due to error, measures the total 

deviation of the predicted value form the experimental value. It is also 

sometimes called as sum squared of residues.  

 

ff[ �  F�{%�{�<�{=�]� M]��{ # ��{J<��{J M]��{��E
DYZ  

Value closer to 0 means that the model has smaller random error  and is a 

better fit 
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7.1.2.2R-Square 

 
This measure is the most widely used measure to determine quality 

of fit for statistical models like regression or neural network. It measure 

how well the model is explains the variation in data. It is called coefficient 

of determination.  

R-square is defined as ratio of sum of squares of regression (SSR) 

and the total sum of squares (SST) is following way: 

 

ff@ �  F���{J<��{J M]��{ # �{]= M]��{��E
DYZ  

ff¯ �  F�[%�{�<�{=�]� M]��{ # �{]= M]��{��E
DYZ  

Also, SST= SSR+SSE 

Hence, 

@ # fÁ�]�{ � ff@ff¯ � 1 # ff[ff¯ 

Value closer to 1 means a better fit 
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7.1.2.3Root Mean Squared Error 

It is commonly called standard error of fit or standard error of 

regression.  It is a measure of estimation of standard deviation of random 

component in the data:  

@f�[ � Â1= F���{J<��{J M]��{! # {%�{�<�{=�]� M]��{!��E
DYZ  

Lower value characterizes a better model 

 

7.2CFD Best Practice and Analysis of Present Model 

 
In this section of results, we will compare the current Baker Hughes 

erosion model with Oka et al. model which is used widely in the industry. 

As all the models are based on CFD modeling, CFD best practices to 

improve quantitative prediction capability of current model is established. 

An exhaustive grid study is performed to examine the effect of grid on 

erosion prediction parameters. 

7.2.1CFD Simulation Results and Convergence Studies 

CFD-based erosion modeling steps discussed in previous section 

were employed on elbow. For preliminary study, symmetry of the model 

was exploited and only half model was used for simulation. A full model 
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was further developed mainly to have more number of data point for 

further model development and check for any physics that is not captured 

in assuming symmetry. Both half model and full model capture the flow 

physics in similar manner as will be seen from following results. Although, 

4 different cases as described in table below were simulated, only Test 1 

case results are presented here to avoid repetitive results.  

 

Table 1 - Test parameters simulated 

Test 1: 256 micron sand, 50 ft/s 

Test 2: 53 micron sand, 50 ft/s 

Test 3: 53 micron sand, 85.785 ft/s 

Test 4: 256 micron sand, 85.785 ft/s 

 

The geometry for both full and half model is presented in Figure 24 

below: 
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Figure 24 Geometry of CFD model (Half model on left and Full on right) 

 
Various different grids were used to perform grid dependency study 

which will be addressed in separate section.  

7.2.1.1Convergence Studies 

 
Convergence studies were preformed considering two different 

criteria for fluid flow modeling. Static pressure drop was monitored for 

various grids. Normalized values for pressure considering experimental 

value as a basis for normalization is presented below: 



Figure 

It can be observed from 

predict pressure close to max

and full model predict pressure within 2% error margin.  

As experimental velocities are not available, a law of wall plot for 

fully developed turbulent

velocity convergence. A law of wall plot for both half model and full model 

is presented below.  
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Figure 25 Pressure convergence  

It can be observed from Figure 25 that all the grids except grid 1 

predict pressure close to maximum pressure obtained. Also, half model 

and full model predict pressure within 2% error margin.   

As experimental velocities are not available, a law of wall plot for 

fully developed turbulent flow is considered as basis for monitoring 

velocity convergence. A law of wall plot for both half model and full model 

 

that all the grids except grid 1 

pressure obtained. Also, half model 

As experimental velocities are not available, a law of wall plot for 

flow is considered as basis for monitoring 

velocity convergence. A law of wall plot for both half model and full model 
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Figure 26 Law of wall comparison for wall integration approach (low y+ 

values) 

 

While employing wall function approach, specifically scalable wall 

function approach in FLUENT, the solver ensures that y+ is always greater 

than 11.225.  Comparison for such a case is presented below. 
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Figure 27 Law of wall comparison for wall function approach ( y + 

<11.225) 

It can be seen in this comparison as well that both half model and 

full model simulate the fully developed flow profile very accurately. Also, 

both the models predict similar values with less than 1% error in this case.  

Convergence studies for DPM model is also very important in this 

case as erosion rate measurements are influenced highly by DPM 

concentration. In our studies, only spherical surface injections were 

considered. However, a tracking parameter of number of steps is critical in 

predicting exact DPM rate. A convergence study for number of steps for 
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particles was performed and its effect on highest DPM concentration is 

observed.  Again, normalized values are presented here considering 

highest DPM concentration as the basis. It should be noted that these 

results are for single mesh as DPM concentration is highly sensitive to 

mesh density. It will be discussed in details in further sections. Also, these 

results are for Test 1 but similar studies for each test were conducted with 

comparable results. 

 

Figure 28 Convergence monitoring for number of steps in DPM 

 
It is clearly observed that for our case, number of steps of around 

110 thousand is optimum. All the further studies were carried out 

considering 110 numbers of steps in tracking parameter for DPM 

modeling. 
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7.2.1.2Comparison of Half Model and Full Model  

A symmetric half model was simulated for preliminary results. The 

results from full model compared very well with half model. The major 

reason for performing full model simulations is to have more number of 

data points for development of new erosion models as well as for 

improvement of current model. Contour plots of velocity, pressure, DPM 

concentration and impact angle are compared here for wall y+ value of 30-

200 for half model as well as full model. All the results show comparable 

results quantitatively (as seen in section above) as well as qualitatively 

(seen from contours below). All contours are plotted on same range of 

values. Values are not presented to maintain confidentiality. 
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Figure 29 Velocity contour at mid-section for Full model (Left) and 

Symmetry plane for Half model (right) 

 

 
Figure 30 Pressure contour at mid-section for Full model (Left) and 

Symmetry plane for Half model (right) 

 

It is established by results in this section as well as previous section 

that half model and full model results are in agreement with less that 1% 
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error margin. It is important to establish this fact as the results from both 

will be used interchangeably where ever necessary.  

 

7.2.2Evaluation of Present Model  

In this section, current Baker Hughes model is evaluated and 

compared with model presented by Oka et. al.,. A quantitative comparison 

is made.  Both the models do a great job in identifying the regions of 

erosion.  

 

 

Figure 31 Error comparison between Baker Hughes model and Oka et al. 

model 
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It is clearly observed from the graphs that Baker Hughes model 

does a better job at prediction erosion rates. Mean percentage error in 

Baker Hughes model is 57% compared to 93% for Oka Model. 

An effort is made to improve the efficiency of current model. The 

results are presented in following sections. 

7.3Grid Dependency Study  

A significant amount of time was spent to perform grid dependency 

studies. From initial results on half model, it was observed that grid size 

and wall y + values affect erosion prediction significantly. An exhaustive 

study of grid dependency was performed with more than 30 iterations of 

different grid being evaluated. This section present the primary results on 

symmetric half model and then the results on full model are presented. 

 

7.3.1Preliminary Results on Symmetric Half Model 

As observed in previous sections, both half model and full model 

produce similar results. Hence, to reduce computational time and manual 

time, an in-depth grid dependency study was performed on half model. 

The results were then utilized to simulate more efficient full model whose 

output parameters will be further explored in statistical analysis. 



Seven different mesh iterations were identified for post processing. 

Results for 4 different ones are presented below. The mesh 1 and 2 are 

quad meshes with no boundary layers whereas all 

tetrahedral with boundary layer. The most refined Mesh 7 has

7 with wall integration approach applied for solution.

Figure 32 Mesh (top-left 
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Seven different mesh iterations were identified for post processing. 

Results for 4 different ones are presented below. The mesh 1 and 2 are 

quad meshes with no boundary layers whereas all the others are 

tetrahedral with boundary layer. The most refined Mesh 7 has wall

7 with wall integration approach applied for solution. 

left – 7, top –right – 5, bottom-left - 4, bottom

2)  

Seven different mesh iterations were identified for post processing. 

Results for 4 different ones are presented below. The mesh 1 and 2 are 

the others are 

wall y+ of 1-

 

4, bottom-right - 
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Table 2 Elbow- Mesh information 

Grid Number  Elements Max. 
skewness 

Max. Aspect 
Ratio 

Y+  

1  17K 0.74 4 >2000 
2 41K 0.67 4 1000-2000 
3 125 K 0.84 72 650-750 
4 (baseline) 151 K 0.82 17 350-600 
5 389K 0.87 117 100-200 
6 795 K 0.87 45 60-110 
7 1 M 0.84 60 1-7 
 
 
 
 
 

 
 
Figure 33 Velocity contours at longitudinal section (top-left – 7, top –right – 

5, bottom-left - 4, bottom-right - 2) 
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Figure 34 Pressure contours at longitudinal section (top-left – 7, top –right 

– 5, bottom-left - 4, bottom-right - 2) 

 
Figure 35 DPM Concentration –Clipped to range (top-left – 7, top –right – 

5, bottom-left - 4, bottom-right - 2) 

 



 

102 

 
Figure 36 Erosion contours –Clipped to range (top-left – 7, top –right – 5, 

bottom-left - 4, bottom-right - 2) 

Erosion rate is computed at 230 locations on the elbow and 

compared to experimental data. Error analysis is then performed. The 

following figure explains what points are referred to as located in upstream 

and downstream 

 

 
Figure 37 Location of points  

Upstream 
Downstream 



As a first step of quantitative comparison, the total mean and 

median error for all 107 points was calculated and plotted. From those 

results it was found out that the coarse grid has less error as show in 

following graphs.  
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first step of quantitative comparison, the total mean and 

median error for all 107 points was calculated and plotted. From those 

results it was found out that the coarse grid has less error as show in 

 
 

Figure 38  Mean error for all 107 points 

Mean Error

first step of quantitative comparison, the total mean and 

median error for all 107 points was calculated and plotted. From those 

results it was found out that the coarse grid has less error as show in 



Figure 

 
To further investigate the nature of error. Line graph for all the grids 

comparing erosion rate at each point individually was plotted as shown in 

following Figure 40 
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Figure 39 Median Error for all 107 points 

To further investigate the nature of error. Line graph for all the grids 

comparing erosion rate at each point individually was plotted as shown in 

Error - Median

 

To further investigate the nature of error. Line graph for all the grids 

comparing erosion rate at each point individually was plotted as shown in 
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Figure 40 One on one comparison of erosion rates in (in/hr) for all 107 

points 

           CFD Results 
            Experimental Results 
 

Figure 40 show that the fine grid does a better job at predicting 

erosion rate in the critical regions. DPM concentration increases with grid 

refinement while keeping all other parameters constant. This is due to the 

fact that Ansys Fluent calculated DPM concentration as follows:  

DPM Concentration �  �QMh. �]��<��{ �]!! <= �{�� 0 �]��<��{ �{!<J{=�{ �<�{ 0 !��{=h��  L �]��<��{��{�� M ���{  

 f��{=h��  L �]��<��{ �  � �]� �]��<��{ L� � �]�{ �]!!  L !<=h�{ �]��<��{ <= ��{ !��{]� 
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A wall integrated boundary layer approach gives more accurate 

boundary layer velocity results that contribute to the erosion calculation.  

While considering all points, the major source of RMS error were 

points in low erosion regions as seen on the right side of the graph. It is 

also to be noted that the coarse grid may have small error but it does 

follow the exact pattern to that of experimental data in higher erosion rate 

region. 

 
Figure 41 Points distribution as can be seen from line graph 

 
Hence, so further calculations were performed considering two set 

of points : 

Upstream points – Less erosion (pts. 52-107) 

Downstream points – High erosion (pts. 1-51) 

 

A correlation plot explaining the error was plotted for two different 

set of points. It is clearly observed that as the mesh becomes finer, the 
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correlation points seem to move towards the center line suggesting less 

error for downstream (Figure 42) and they seem to move away from 450 

line for upstream points (Figure 43). This reinforces our conclusion that 

fine grid reduces error for calculating erosion rate in critical regions with 

higher erosion rate. 
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Figure 42 Error Correlation for downstream points (1-51) (CFD results on 

x axis vs. experimental results on y axis) 

 

 
  
   
Figure 43 Error Correlation for upstream points (52-107) (CFD results on x 

axis vs. experimental results on y axis) 
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Hence, if the mean error bars are plotted for upstream and 

downstream points separately, they show an exact opposite nature 

(Figure 44,Figure 45) 

 

 
Figure 44 Mean percentage error for downstream points 
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Figure 45 Mean percentage error for upstream points 

 
 

The following Figure 46 and Figure 47 represent the velocity vs. 

erosion rate / DPM concentration for a coarse grid and a fine grid. It can 

be seen that fine grid does a great job at prediction erosion for a wider 

range of velocity compared to coarse grid. 

 

0

20

40

60

80

100

120

140

P
e

rc
n

e
ta

g
e

 E
rr

o
r

Mean Error- Upstream



 

111 

 
Figure 46 Velocity vs. E/C for Coarse Grid 

 

 
Figure 47   Velocity vs. E/C for Fine Grid 

 
 

0.0001

0.001

0.01

0.1

1

0 50 100 150
E

ro
si

o
n

/C
o

n
ce

n
tr

a
ti

o
n

velocity

Coarse 3

Experimental

Coarse 2  

0.0001

0.001

0.01

0.1

1

0 50 100 150

E
ro

si
o

n
/C

o
n

ce
n

tr
a

ti
o

n

velocity

Refinement 3

Experimental

Refinement3 



 

7.3.2Full Model Results 

 A refined grid does better job at predicting erosion

regions and also for larger velocity range. But it is very difficult to 

understand how much refinement is required. Also, what might be higher 

erosion rate region for this application may not be so for other 

applications?  Hence, a full model

downstream regions is performed and a relation between a non

dimensional length unit 

Description for again 7 different grids is presented in 

Now onwards, rather than saying coarse or refined, grids are addressed 

by their respective wall y+ values.

Table 
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esults  

A refined grid does better job at predicting erosion rate in critical 

regions and also for larger velocity range. But it is very difficult to 

understand how much refinement is required. Also, what might be higher 

region for this application may not be so for other 

Hence, a full model analysis considering both upstream and 

downstream regions is performed and a relation between a non

length unit wall y+ and erosion rate prediction is established.

Description for again 7 different grids is presented in Table 

Now onwards, rather than saying coarse or refined, grids are addressed 

by their respective wall y+ values. 

Table 3 Grid description for Full model 

in critical 

regions and also for larger velocity range. But it is very difficult to 

understand how much refinement is required. Also, what might be higher 

region for this application may not be so for other 

analysis considering both upstream and 

downstream regions is performed and a relation between a non-

prediction is established. 

Table 3 below. 

Now onwards, rather than saying coarse or refined, grids are addressed 
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Comparison results, experimental vs. predicted regression plot and 

error ratio plot for each Test and three different grids are presented next. 

All regression plots are plotted with experimental values on x axis and 

predicted values on y axis. For comparison plots, data point number are 

plotted on x axis and normalized erosion rate on y axis. 

Table 4 Mesh and y+ information 

Grid Name Wall Y + Value 

Mesh B <30 (wall integration approach) 

Mesh B1 90-250 (wall functions approach) 

Mesh B2 30-90 (Wall functions approach) 

 

 
7.3.2.1Test 1  

 
Following Figure 48 and Figure 49  present comparison plots, 

regression plot and finally error ration plot for all the three grids 

considering 50ft/s inlet velocity and 256 micron particle size. 
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Figure 48 Comparison plot (top) and regression plot(bottom) for Test 1 
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Figure 49 Error ratio plot for Test 1 

 

Mesh B2 with y+ values of 30-90 predicts erosion more accurately 

for Test 1 

 

7.3.2.2Test 2 

Figure 50 gives comparison plot and regression plot whereas 

Figure 51 gives error ratio plot for 50 ft/s inlet velocity and 53 micron 

particle size. 
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Figure 50 Comparison plot (top) and regression plot(bottom) for Test 2 
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Figure 51 Error ratio plot for Test 2 

 

All the grids seem to give similar results. Mesh B2 give slightly 

better results compared to other two grids. 

 

7.3.2.3Test 3 

 
For inlet velocity of 85.78 ft/s and 53 micron particle size , Figure 52 

presents comparison plot and regression plot and  

Figure 53 presents error ration plots 
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Figure 52 Comparison plot (top) and regression plot(bottom) for Test 3 
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Figure 53 Error ratio plot for Test 3 

Again for Test 3, each grid has almost equivalent performance. A 

slightly better performance from mesh B2 is seen. But it need to be 

quantified to be sure. 

 

7.3.2.4Test 4 

 

Figure 54 below presents Comparison plot and regression plot for 

256 microns particle size and 85.78 ft/s inlet velocity. Error ratio plots are 

presented in Figure 55 
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Figure 54 Comparison plot (top) and regression plot(bottom) for Test 4 
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Figure 55 Error ration plot for Test 4 

 

In this case, it is clearly observed that again Mesh B2 is more 

accurate compared to other two meshes in terms of quantitative 

prediction. 

 

7.3.2.5 Results in Quantifiable Terms 

For particle size of 256 microns, it is clearly observed that mesh B2 

is more accurate whereas for 53 microns particle size, it is very close call. 

Hence, the results in terms of quantifiable parameter minimization function  

are presented here. 
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Minimization function is defined as :

 

 

Figure 56

 
 

Also, percentage error for all seven mesh in consideration is 

presented in figure below. 

Table 3. 
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Minimization function is defined as : 

    

56 Minimization function comparision 

Also, percentage error for all seven mesh in consideration is 

presented in figure below. X axis represents mesh number as described in 

Test 1 Test 2 Test 3 Test 4

Effect of Y + on minimization function 

90

30

<30

 

 

Also, percentage error for all seven mesh in consideration is 

X axis represents mesh number as described in 

90-200

30-90

<30



Figure 57 Percentage error for different mesh for full model

 

 Both percentage error graphs and minimization function graphs 

clearly depict that mesh 4 or 5 which correspond to 

300 predict erosion rates 

present Baker Hughes model and improved CFD modeling is represent in 

figure below. The percentage error is reduced from  57% to 39% . This 

depicts a 31.5 % improvement in overall predictions by just by 

implementation of appropriate CFD modeling techniques.
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Percentage error for different mesh for full model

Both percentage error graphs and minimization function graphs 

clearly depict that mesh 4 or 5 which correspond to wall y+ values of 30

rates most accurately. A error ratio comparison for 

present Baker Hughes model and improved CFD modeling is represent in 

figure below. The percentage error is reduced from  57% to 39% . This 

depicts a 31.5 % improvement in overall predictions by just by 

tation of appropriate CFD modeling techniques. 

 

Percentage error for different mesh for full model 

Both percentage error graphs and minimization function graphs 

y+ values of 30-

comparison for 

present Baker Hughes model and improved CFD modeling is represent in 

figure below. The percentage error is reduced from  57% to 39% . This 

depicts a 31.5 % improvement in overall predictions by just by 
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Figure 58 Error ratio comparison for current model before and after 

improved CFD modeling technique 

7.4Development of New Models 

Various new models are developed by performing regression 

analysis and curve fitting.  Models and algorithms used in this analysis are 

discussed in details in previous chapters.  

 

7.4.1Statistical and Correlation Analysis 

It was clearly observed that type of grid has great effect on erosion 

rate prediction. Effect of mesh on DPM concentration, Velocity, Shear 

stress and Turbulent Kinetic Energy is studies by analyzing standard 

deviation for each parameter for 7 different mesh sizes.    
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Figure 59 Standard deviation of critical parameters for different mesh 
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Standard deviation of critical parameters for different mesh 

sizes 

Test 2 Test 3 Test 4

Standard Deviation for 7 different mesh

Concentration

Velocity

TKE

Shear stress
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Figure 60 Deviation of DPM concentration in critical region 

 

 
Figure 61 Deviation of Velocity in critical region 
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Figure 62 Deviation of Turbulent Kinetic Energy in critical region 

 

 
Figure 63 Deviation of Surface Shear Stress in critical region 

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051

Mesh B 4 5 6 7 8 8 8 8 8 8 7 5 4 5 7 8 8 8 8 8 8 8 7 5 5 8 8 8 8 8 8 8 8 8 7 5 7 9 9 8 8 9 8 8 9 9 9 7 1010 9

Mesh B1 3 4 5 6 5 7 5 7 6 5 5 4 3 4 6 6 5 7 5 7 5 5 6 6 3 7 6 7 7 7 7 7 7 7 6 7 9 10 6 6 7 7 7 7 7 7 7 10 4 6 6

Mesh B2 5 6 7 8 8 9 9 8 8 8 7 6 6 7 9 9 9 8 9 8 8 9 8 8 8 1011 9 8 8 8 8 8 9 1111111513 9 7 8 7 8 7 9 1315142013

1

10

100

1000

T
u

rb
u

le
n

t 
K

in
te

ti
c 

E
n

e
rg

y

(J
/k

g
)

Point number

TKE Devation in critical region - Test 4

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051

Mesh B 101217212324242423211814101319222424242423201610122024252525252524211610152325262627262625241912192627

Mesh B1 781214182126262624251711631222232624222618231910102026292624212027231578162625262925312220201912193024

Mesh B2 609213232428292219201612461719242428263019192189132126272427232031231438202223253022312719182316223228

100

1000

10000

S
u

rf
a

ce
 s

h
e

a
r 

st
re

ss

(P
a

)

Point number

Surface Shear Stress Deviation in critical region - Test4



 

128 
 

Figure 60 to Figure 63 show deviation of DPM concentration, Velocity, Turbulent 

kinetic energy and Surface shear stress for test 4 in critical region . It is clearly observed 

from above figures as well as from standard deviation bar chart, that DPM concentration 

is highly effected by Mesh size. As discussed in sections earlier, this is primarily due to 

the way Fluent calculates DPM concentration.  Thus, models that do not incorporate 

DPM concentration for erosion rate predictions are more robust and less prone to error 

due to meshing strategy employed. 

 

7.4.2 Correlation Analysis 

 
Correlation analysis is performed to identify parameters that affect erosion rate 

the most. This analysis is performed on 920 data points obtained from CFD analysis of 

all four test cases. Aim is to develop more robust erosion rate prediction model.  Three 

different correlation coefficients are calculated. Pearson coefficient ‘R’ is most 

commonly used correlation coefficient. However, it evaluates linear correlation between 

parameters (Note: a linear correlation between parameters with nonlinear relationship is 

possible). Hence, Kendal’s ‘tau’ and spearman’s ‘rho’, both of which is rank correlations 

are also calculated.  Values closer to one depict strong correlations. Figure 64 shows 

correlation coefficient for various parameters. To avoid statistical error, a boot strap 

analysis with 100 sample data set for correlation coefficient is also performed. It is a 

procedure to be absolutely sure about statistical parameter value obtained.  Figure 65 

presents bootstrap analysis results. The results agree well with correlation analysis 

performed. It can be observed that turbulent kinetic energy is identified as most 

influential parameter followed by Surface shear stress, velocity and concentration. 



 

Impact angle does not have any conclusive correlation with 

also verified when overall performance of ANN was degraded by including impact angle 

as an input variable in the model.

Figure 

Figure 65 
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mpact angle does not have any conclusive correlation with erosion rate

also verified when overall performance of ANN was degraded by including impact angle 

as an input variable in the model. 

Figure 64 Correlation Coefficients 

 Correlation coefficient bootstrap results 
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Concentration has some positive correlation with erosion rate. An analysis is done to 

check if it DPM concentration can be used as a conditioning parameter in velocity based 

erosion models. A co-plot for Velocity, concentration and Erosion rate presented in 

Figure 66  shows that for every range of concentration, a similar trend line is observed. 

Hence, use of DPM concentration as conditioning parameter in present model is 

validated. 

 

 

Figure 66 Velocity, Concentration, Erosion rate Co-Plot 
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7.4.3Models Based on Different y+ Values 

As seen from previous section, mesh size has a great impact on erosion rate 

prediction. Different mesh may predict different value of erosion rate. It is therefore 

beneficial to develop models specific to y+ range obtained from  CFD simulations. 

Current Baker Hughes model is refitted and new parameters in the model are obtained 

by curvefitting of combined data of all four test cases.  Parameters for 3 different y+ 

range are obtained i.e. current model is personalized with new parameters depending 

on y+ range. 

 

 

Figure 67 Error ratio plot for three different mesh specific model paramete 

Goodness of fit parameter SSE, R-square, RSME and percentage error are 

presented below:  
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Table 5 Goodness of fit parameter for mesh specific models 

 SSE R -square RSME Percentage 
error 

     

y+ 90-200 1.71E-07 0.992 3.70E-05 37 

Y+ 30-90 5.70E-07 0.9957 2.50E-05 34 

Y+ < 30 1.12E-07 0.9927 1.10E-05 31 

 
 

A slight improvement in erosion rate prediction in terms of mean percentage error 

is observed in each model. Also, all three models have close performance measures. 

Thus depending upon the Y+ range necessary for CFD analysis, model with 

corresponding parameters can be utilized to predict erosion rate. (E/C =erosion 

rate/DPM concentration) 

Curve fit for each model are presented below: 

 

Figure 68 Curve fit for Y+ 30-90 model 
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Figure 69 Curve fit for Y+ <30 

 
 

 
Figure 70 Curve fit for Y+ 90-200 
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7.4.4Surface Fit Models  

Two different surface fit models were developed, Erosion rate- Concentration- 

Velocity model, and Erosion rate-TKE-Shear stress model.  The surface fit for each is 

show in figures below. TKE-Shear stress based model showed better results compared 

to other.  

 

Table 6 Surface fit models - goodness of fit parameters 

 SSE R -square RSME Percentage 
error 

     

Erosion rate-
Velocity-
Concentration 
model 

7.52E-05 0.9619 1.32E-03 52 

Erosion rate-
TKE-Shear 
stress model 

2.43E-05 0.9867 3.46E-04 48 

 

 

Figure 71 Erosion rate-Concentration – Velocity surface fit 
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Figure 72 Erosion rate- TKE -Shear Stress model surface fit 

 

7.4.5Surface Shear Stress Model 

Surface shear stress has a strong positive correlation with erosion rate and 

hence curve fitting through regression is performed to develop an erosion model as a 

function of Surface shear stress. Two different models are developed, polynomial model 

and exponential model. Results for which are presented below.  Exponential fit has 

lesser percentage error of 42 % mean error. Regression plots for exponential plot is 

shown  
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Figure 73 Surface Shear stress models -Error ratio 

 

Table 7 Shear stress model - Goodness of fit parameters 

 
 SSE R -square RSME Percentage 

error 
     

Polynomial fit 5.94E-05 0.9919 2.55E-04 47 

Exponential 
fit 

2.43E-05 0.9967 1.63E-04 42 
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Figure 74 Exponential curve fit for Surface Shear stress model 

 
7.4.6Turbulent Kinetic Energy (TKE) Models 

Pearson’s rank correlation coefficient showed a very strong positive correlation 

between TKE and erosion rate. Thus, as expected, TKE based model proved to be very 

efficient. Following Figure 75 shows Error ration plots and  Table 8 presents goodness 

of fit data for TKE based models. Three different models were developed linear fit, 5th 

degree polynomial fit and an exponential fit. Only polynomial fit and exponential fit , 

which showed great results , are presented below; 

Table 8 TKE models - Goodness of fit parameters 

 SSE R -square RSME Percentage 
error 

5th degree polynomial 2.10E-07 0.9801 1.52E-05 31 
Exponential 4.60E-08 0.9935 7.10E-06 29 
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Figure 75 Error ratio for TKE based models 

 

 
Figure 76 TKE liner polynomial model curve fit     
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Figure 77 TKE model exponential curve fit 

 
Exponential fit for TKE vs. Erosion rate gives the best predictions. It also shows 

excellent goodness of fit parameter values. The R-squared value if 0.9972 which is one 

of the best seen so far. Also mean percentage error is 29% which is great. It should also 

be observed that TKE model provides a better fit for large range as well as seen from 

Figure 77 above. 

7.5Artificial Neural Network (ANN) Based Erosion Model 

 
ANN model is developed as a black box to predict erosion rate. Four most 

influential parameters, Velocity, Concentration, TKE and surface shear stress were 

taken as input parameter to the ANN and Erosion rate was considered target variable. A 

multilayer feedforward- backpropogation algorithm with Lavernberg-Marquardt training 
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is implemented. A Bayesian regularization on Training algorithm give best results. More 

than 45 different networks were modeled and analyzed.  Description and Goodness of 

fit parameters for 11 different ANN models is presented in table below: 

Table 9 ANN model description and goodness of fit parameters 

Model Number Model R-Square value RSME 

1 4-[20]-1 0.8757 7.2e-6 

2 4-[35]-1 0.8987 6.3e-6 

3 4-[50]-1 0.9224 2.4e-6 

4 4-[10-10]-1 0.9654 1.1e-6 

5 4-[20-20]-1 0.9845 1.8e-6 

6 4-[10-20]-1 0.9799 5.1e-6 

7 4-[40-40]-1 0.9523 6.9e-6 

8 4-[10-10-10]-1 0.9664 2.7e-7 

9 4-[15-10-15]-1 0.9767 4.2e-7 

10 4-[25-10-25]-1 0.9814 6.8e-7 

11 5-[10-10-10]-1 0.667 8.3e-4 

 

 

Figure 78 Neural network representation for 4-[10-10-10]-1 
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Figure 79 Error percentage for ANN models 

 
Input parameter for 4-[10-10-10]-1 is Velocity, DPM concentration, Surface shear 

stress and Turbulent kinetic energy and target is experimentally observed erosion rates. 

Regression plot for ANN with three hidden layer and structure 4-[15-10-15]-1 with and 

without Bayesian regularization is presented next. Bayesian regularization avoid over 

fitting of the model and improved results significantly hence it is important to appreciate 

the comparison. A clearly visible better fit is obtained by Byesian Regularization. The 

mean percentage error is reduced from 27 % to as low as 7 % after regularization is 

forced on Lavernberg-Marquardt training algorithm.  The 5-[10-10-10]-1 network 

represents inclusion of impact angle as an input parameter. But it is observed that it has 

negative effect on performance of the network. 
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Figure 80 - ANN model without Bayesian Regularization 

 
 

Figure 81 ANN model with Bayesian Regularization 
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Below is presented a graph plotting measured and predicted values for all the 

points. 

 

Figure 82 ANN best model fit 

Reproducibility of the results by ANN has been questioned by few researchers 

and hence a bootstrap sampling on input parameter is performed. 100  sample input 

were created from current data set. Mean percentage error is presented in following 

histogram. 

Data Point number 

Normalized erosion rate 



 

144 
 

 

Figure 83 ANN mean percentage error bootstrap check 

 

7.6 All Models Comparisons 

Best of each model is selected and their prediction capability is compared in 

terms of percentage error and Error ratio in this section. 
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Figure 84 Percentage error comparison 

 

 
 

Figure 85 Error ratio plot 
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7.7Verification  

All the models are developed based on experimental results of an elbow case. 

Two different sand concentration and velocities were tested but it was still the same 

elbow case. Hence, there was no change in geometry. Verification is necessary with 

different geometric case. Experimental results for test on a completion tool are 

compared with the models developed. Due to proprietary data restrictions, the geometry 

of the tool is not presented here. But to give a comparative idea, flow conditions will be 

discussed. The erosion rate on tool is measured for 2% sand loading with 53 micron 

sand size and 66.47 ft/s inlet velocity. Erosion rate at 243 points is measured and 

compared with simulated results from New Baker Hughes Model, Shear Stress model, 

Turbulent Kinetic Energy model and ANN model. Regression results are presented 

below. 

 

Figure 86 Baker Hughes Model – Verification 
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Figure 87 Shear Stress model verification 

 
Figure 88 TKE model Verification 



 

Figure 

 
 

Mean percentage errors are represented in graph below. 

 

Figure 90

24

0

5

10

15

20

25

30

35

Baker Hughes 

New 

P
e

rc
e

n
ta

g
e

 E
rr

o
r

Percentage Error for model Verification

148 
 

 
Figure 89 ANN model verification 

Mean percentage errors are represented in graph below.  

90 Mean Percentage Error Verification 

31

21

3.4

Baker Hughes Shear Stress TKE ANN

Model Name

Percentage Error for model Verification

 

 



 

149 
 

It can be observed that in the verification case, each model performs better in 

comparison to elbow erosion rate prediction. This can be attributed to the fact that , 

geometry of verification model does not have major variations in terms of flow path. It 

has pretty much undisturbed streamline flow and is more comparable to upstream 

points in case of elbow. Even in elbow, mean error for upstream points is much lower 

compared to downstream where complex flow structures like vortices are generated.  
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Chapter 8  

Conclusion 

Following conclusions   were made from the studies performed in this work.  

• Current erosion models predict erosion region accurately but are many a 

times off by an order of magnitude when quantitative comparison is made. 

The mean percentage error in case of elbow was as high as 90% with 

more than 150% error at some points. 

•  Current Baker Hughes model was developed by data from a 

comparatively coarse grid and no significant study was performed to see 

the effect of CFD modeling parameters. Still it performed better than Oka 

et al. model quantitatively with 57% improvement in predicting erosion 

rate. 

• An exhaustive grid study was performed on elbow case and the current 

model parameters were adjusted accordingly. More than 30 grid iterations 

were carried out with grid size ranging from few thousand elements to 

more than a million elements. Erosion region were predicted well with 

each grid but erosion rates varied drastically. Less effect was seen on 

upstream region of the elbow as compared to downstream. Grid 

refinements show different effect on error prediction in upstream and 

downstream regions. This can be attributed to the fact that erosion rate on 

downstream region is much larger compared to upstream region. Also, 

downstream region has complex flow vortices contributing to recirculation 

of particles in certain areas and causing more erosion. 
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• Convergence studies on number of particles to be injected in Discrete 

Phase model was also carried out. Solution converged at about hundred 

thousand particles 

• As erosion rate predictions were found very sensitive to grid size, three 

separate models for different wall Y+ range were developed by regression. 

All there models now had comparable mean percentage error in the range 

around 35%. This is a 60% improvement from current baker hughes 

model. 

• Correlation analysis and bootstrap analysis was performed on 8 different 

CFD output parameters to identify parameters effecting erosion rate. 

Velocity, Surface shear stress, DPM concentration and Turbulent Kinetic 

Energy were found to have the greatest effect.  

• A new Shear stress based erosion rate prediction model was developed 

by implementing robust least square curve fitting. Both Least absolute 

residual and Bisquare weights method were explored. The new shear 

stress based model has average percentage error of 42 %. A turbulent 

kinetic energy based erosion model was also developed and it exhibited 

an error of 29% which is an improvement of about 20% from previous 

model. 

• Artificial neural network models were developed and analyzed to act as a 

black box where CFD output was taken as input parameter and erosion 

was the output. More than 45 different networks with different number of 

neurons in hidden layers as well as different number of hidden layers were 
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modeled. A multilayer feed forward network with backpropogation 

algorithm was implemented for each of the models. Training algorithms 

like Scaled Conjugate gradient and Levenberg-Marquardt were 

implemented. A Bayesian regularization was implemented on Levenberg-

Marquardt to avoid overfitting while training .This gave us the best results. 

The results from ANN model were excellent with mean percentage error of 

7% which is a further improvement of more than 20% points and 300% 

from Shear stress or TKE model. Overall, it brings down error from 57 

percent to 7 percent. This proved that ANN has a great potential to be 

developed further as a tool to predict erosion rate. 

• A CFD analysis was performed on a completion tool to verify the models 

developed. All the models showed improvement in predicting erosion rates 

when compared to elbow case. This is a little counter intuitive but the 

verification model has very simple flow path with no circulation regions. It 

can be compared to just upstream data points of the elbow where erosion 

rate prediction capabilities were found to be more accurate as compared 

to downstream points. Hence, the models were successfully verified on a 

different geometry.  



 

153 
 

Chapter 9  

Future Recommendation 

 
 

It was observed that Baker Hughes models were highly sensitive to grid size 

hence a study was performed to quantify this effect. Percentage change in DPM 

concentration and Velocity was measure for all four test cases considering a point 2 mm 

from the wall as reference. Results are presented below; 

 

Figure 91 DPM concentration variation with wall distance 

 
It can be clearly observed that DPM concentration is highly sensitive to wall 

distance.  As Concentration is a conditioning parameter in Baker Hughes. Grid size as 

well as distance of point from wall where it is measured, has a great impact on erosion 

rate prediction.  
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To eliminate this dependence, a case with eulerian modeling approach was 

simulated and similar study was performed: 

 

Figure 92 Concentration change comparision 

Eulerian model is found to be less sensitive to location of measurement. As a 

future work, it is highly advised to develop a model that is based on eulerial approach 

and compare it with present models. It has a great potential of  being more robust in 

terms of  erosion rate prediction with minor change in location of a point where CFD 

parameters are calculated. 

 All the models were developed based on experimentation on elbow. This is just 

one case and hence care should be taken to generalize it. Experimentation on more 

complex tools that are used in oil and gas industry and that face erosion problems day 

in and day out should be performed. This will help in development of a better model 

For any statistical model, more data points mean better model. And this can be 

achieved by more experimentation.  
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Material properties of the tool are believed to have great effect on erosion rate. 

Dependence of erosion rate on material properties like hardness or tensile strength 

should be explored. 

Lastly, although our studies show no significant effect of impact angle, may other 

experimental studies have found it to be a significant parameter affecting erosion.  

(Finnie et al. 1992, Sheldon 1970). More efforts should be made to implement a custom 

impact angle function into erosion models. 
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