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ABSTRACT 
 
 

ENERGY-EFFICIENT CONNECTED k-COVERAGE, DUTY-CYCLING, AND  

GEOGRAPHIC FORWARDING IN WIRELESS SENSOR NETWORKS 

 

HABIB M. AMMARI, Ph.D. 

 

The University of Texas at Arlington, 2008 

 

Supervising Professor: Sajal K. Das 

With the fast advances in inexpensive sensor technology and wireless communications, the design 

and development of large-scale wireless sensor networks has become cost-effective and viable enough to 

attract the attention of a wide range of civilian, natural, and military applications, such as health and 

environmental monitoring, seism monitoring, and battlefields surveillance. The main challenge in the 

design of wireless sensor networks is the limited battery power of the sensors and the difficulty of 

replacing and/or recharging these batteries due to the nature of the monitored field, such as hostile 

environments, and cost. Thus, it is necessary that the sensors be densely deployed and energy-efficient 

protocols be designed to maximize the network lifetime while meeting the specific application 

requirements in terms of coverage and connectivity. In this dissertation, we propose a continuum 

percolation-based approach to compute the critical sensor spatial density above which a field is almost 

surely covered and the network is almost surely connected. This approach helps network designers 

achieve full coverage of a field with a minimum number of connected sensors, thus maximizing the 

network lifetime. In order to support different applications and environments with diverse requirements in 

terms of coverage and connectivity, we extend our above analysis to k-coverage with k � 3 using a 

deterministic approach so the network self-configures to meet these requirements. More specifically, we 
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propose a unified, energy-efficient framework for connected k-coverage, duty-cycling, and geographic 

forwarding in wireless sensor networks. Our framework, called Cover-Sense-Inform (CSI), includes 

randomized centralized, pseudo-distributed, and distributed protocols for connected k-coverage along with 

geographic forwarding protocols in duty-cycled, k-covered wireless sensor networks. We prove that k-

covered wireless sensor networks have connectivity that is higher than their degree of coverage k, thus 

providing architectures with high degree of fault-tolerance. 

In the centralized connected k-coverage protocol, the sink is responsible for selecting a minimum 

number of active sensors to fully k-cover a field while maintaining connectivity between them. Both of the 

pseudo-distributed connected k-coverage protocols consider different levels of network clustering and are 

run under the control of a subset of sensors, called cluster-heads, which are selected by the sink in each 

scheduling round. Each cluster-head is responsible for selecting a subset of active neighboring sensors to 

k-cover its cluster while guaranteeing connectivity between all active sensors. In the distributed connected 

k-coverage protocol, all the sensors are required to coordinate among themselves to fully k-cover a field 

while ensuring network connectivity. Simulation results show that our protocols select a minimum number 

of sensors, thus maximizing energy saving. 

Using a potential fields-based approach, we propose deterministic and hybrid geographic forwarding 

protocols for duty-cycled, k-covered wireless sensor networks with different levels of data aggregation. 

Simulation results show that CSI yields significant energy savings while guaranteeing high data delivery 

ratio. Besides, we extend CSI to address the stochastic connected k-coverage problem in wireless sensor 

networks using a more realistic sensing model that accounts for the stochastic properties of the sensors. 

We also extend CSI to three-dimensional wireless sensor networks and find that the extension of our 

analysis from two-dimensional to three-dimensional space is not straightforward. Finally, we propose a 

solution to the energy sink-hole problem, which is inherent to static wireless sensor networks, by exploiting 

energy heterogeneity, sink mobility, and energy aware Voronoi diagram. Simulation results show that our 

solution yields uniform energy consumption of all the sensors, thus extending the network lifetime. 
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CHAPTER 1 

INTRODUCTION 

Recent advances in miniaturization, low-cost and low-power circuit design, and wireless 

communications have led to the development of low-cost, low-power, and tiny communication devices, 

called sensors. Like nodes (or computers, laptops, etc) in traditional wireless networks, such as mobile ad 

hoc networks, the sensors have data storage, processing, and communication capabilities. Unlike those 

nodes, the sensors have an extra functionality related to their sensing capability. However, sensors suffer 

from severe limitations of their battery power (or energy) storage, processing, sensing, and 

communication resources compared to personal computers, for instance, with energy being the most 

crucial one. For an excellent survey on wireless sensor networks, the interested reader is referred to [6]. 

A wireless sensor network is composed of a large number of sensors that are densely deployed in a 

field of interest to monitor specific phenomena. Sensors can be engaged in a variety of sensing tasks, 

such as temperature, sound, vibration, light, humidity, etc. These sensors sense specific environment 

phenomenon and perform in-network processing on the sensed data before sending their results to a 

central gathering node, called the sink. In this type of network, sensors communicate with each other 

(possibly) through multi-hop communication links and forward sensed data on behalf of others so the sink 

can receive them on-time for further processing and analysis. Wireless sensor networks can be used for a 

wide variety of applications dealing with monitoring (health environments monitoring, seism monitoring, 

etc), control (object detection and tracking), and surveillance (battlefields surveillance). 

Compared to traditional wireless networks, such as mobile ad hoc wireless networks, wireless 

sensor networks have several inherent characteristics. First, sensors are very tiny and hence more 

susceptible to hardware failure. It is worth mentioning that battery power (or energy) is the most crucial 

resource, and hence sensors can fail due to low energy. Second, sensors are deployed in a field with high 

density to extend the network lifetime. Indeed, using a large number of sensors facilitates multi-hop 

communication between them, and hence sensors can save their energy by transmitting or forwarding 
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their sensed data through short distances. Third, the network topology may change very frequently as 

sensors join and/or leave the network. Thus, protocols designed for wireless sensor networks should 

account for all these features so these networks stay operational as longer as possible. 

The remainder of this chapter is organized as follows. Section 1.1 describes a sample of 

applications of wireless sensor networks while Section 1.2 gives the challenges that face their design. 

Section 1.3 presents the motivations of the work in this dissertation. Section 1.4 states the main problems 

that are addressed in this dissertation. Section 1.5 discusses the major contributions of this dissertation 

while Section 1.6 gives a summary of the chapters of this dissertation. 

1.1 Wireless Sensor Network Applications 

The design of wireless sensor networks should also be guided by the very specific requirements of 

the target applications. The knowledge gathered about the underlying application would help a network 

designer deploy more appropriate types of sensors and develop algorithms and protocols the meet the 

needs of the application. In this section, we describe some potential applications of wireless sensor 

networks spanning health, home, environmental, and military areas [6].  

• Tracking and monitoring a hospital: Sensors may be attached to patients and doctors. For a 

patient, specific sensors are used to perform a particular task. For instance, to detect the heart 

rate, a special sensor needs to be used. Also, to detect the blood pressure, another specific type 

of sensor has to be used. For a doctor, sensors may be used to track their locations in the 

hospital to facilitate their mission. 

• Smart environment: One of the home applications is the design and development of a smart home 

(or environment), where a wireless sensor network can be deployed to satisfy the specific needs 

of habitants. Sensors could be embedded anywhere in a room (or apartment) and communicate 

with each other to offer services desired by habitants. For instance, for saving energy, the light 

and temperature in a room could be controlled by sensors. In this case, the light is on only when 

the habitants are in the room and the temperature should be set to appropriate value depending 

on the time and season, for instance. The goal of this type of network is to provide habitants with 

the level of comfort they wish to have without any human intervention. 
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• Forest fire detection: Sensors could be randomly and densely deployed in a forest to detect the 

origin of a fire and report this information in a timely fashion to the end users to act accordingly 

before the fire spreads, and hence avoid catastrophic situations that may result. In this type of 

application, sensors may be used for a long period of time, and hence have to be equipped with 

continuous source of energy, such as solar cells. Furthermore, sensors need to collaborate with 

each other in their sensing activity to overcome several problems, such as obstacles. Also, 

sensors should be highly dense deployed for a quick and accurate detection. 

• Intruder detection and tracking: Business stores, for instance, could be covered with special 

sensors to detect and track the motion of intruders. To achieve high accuracy of detection and 

tracking of an intruder, sensor redundancy is desirable and hence a dense network should be 

deployed. When an intruder is detected by some sensors, several other sensors become awake 

to cover the trajectories of the intruder. The collected information about an intruder is reported to 

end users for analysis and processing. 

• Battlefield surveillance: A wireless sensor network can be deployed in a battlefield for performing 

detection and tracking of target objects, such as tanks and vehicles, and sending real-time 

information about the enemy mobility to a central control unit. Precisely, a network should be able 

to detect and classify multiple targets, such as vehicles and troop movements, using sensors that 

are capable of sensing acoustic and magnetic signals generated by different target objects. 

1.2 Wireless Sensor Network Challenges 

The design of network protocols for wireless sensor networks, including those for coverage 

configuration and data dissemination, is a challenging problem due to several constraints. Next, we 

describe these constraints that are imposed not only by the characteristics of the individual sensors, the 

behavior of the network, and the nature of physical environments (or sensor fields), but also by the 

requirements of the sensing applications in terms of some desirable metrics. 

1.2.1 Sensor Characteristics 

Because of their inherent characteristics, the design of wireless sensor networks for different 

applications running in different sensor fields is facing several challenges. First of all, energy efficiency is 
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the primary concern in the design of wireless sensor networks. Indeed, sensors forming a network suffer 

from the limitations of several resources, such as storage, CPU, bandwidth, communication, sensing, and 

battery power (or energy). In particular, energy is the most crucial resource as it determines the lifetime of 

the sensors and the lifetime of the entire network. Energy poses a serious problem for network designers 

especially in hostile environments, such as battle-field, where it is difficult or even impossible to access the 

sensors and recharge or renew their batteries. Furthermore, when the energy of the sensors reaches a 

certain threshold, they become unreliable (or faulty) and would not be able to function properly. As a 

consequence, the behavior of those faulty sensors will have a major impact on the network performance. 

Thus, network protocols and algorithms designed to be run by the sensors should be as energy-efficient 

as possible to extend their lifetime and hence prolong the network lifetime while guaranteeing good 

performance overall. Another challenge that faces the design of routing and data dissemination, and 

coverage and connectivity protocols is managing the locations of the sensors. Most of the routing and data 

dissemination protocols in wireless sensor networks assume that the sensors are equipped with global 

positioning system (GPS) receivers or use a localization technique [47], [96] to learn about their locations. 

1.2.2 Field Nature 

As mentioned earlier, a sensor field may cause a problem not only to access the sensors for 

replacing and/or recharging their batteries but also for their deployment. Thus, a deterministic sensor 

deployment strategy is not always possible. Such a strategy would help cover the field appropriately and 

minimize the total number of sensors required to achieve the specific needs of sensing applications in 

terms of their expected type of coverage. Indeed, an application may demand partial coverage where only 

a certain percentage of the field is covered; full coverage, where the entire field is covered; or redundant 

coverage, where every location in the field is covered by multiple sensors simultaneously. In the case 

where the sensors cannot be deployed deterministically because of the field nature, random deployment is 

the only remaining strategy. However, there is no guarantee that the coverage required by the application 

would be satisfied. There might be some areas that are not covered well or even not covered at all and 

this would lead to a problem, known as coverage hole. Moreover, all the deployed sensors are not 

guaranteed to be connected to each other or to the sink. This would lead to another problem, known as 

connectivity hole. These are two of the reasons why most of time wireless sensor networks are designed 



5 

 

with densely deployed sensors. Thus, the nature of the field has an influence on the network and this is a 

challenge for the designer and the investing party at least cost-wise. As will be discussed later, one of the 

most widely used assumption in the design of routing and data dissemination protocol is highly dense 

network. Although highly dense deployed wireless sensor networks involve more than necessary sensors, 

they help guarantee network connectivity and achieve the coverage demanded by the application. 

1.2.3 Network Features 

The topology of a wireless sensor network, which is defined by the sensors and communication 

links between them, changes frequently due to sensor addition and deletion. When new sensors decide to 

join the network, the neighbor set of some sensors have to be updated. Indeed, it may seem necessary to 

add more sensors to maintain certain properties of coverage of the sensor field and network connectivity. 

Similarly, when sensors deplete all their energy, they are considered faulty and no longer belong to the 

network. Thus, the neighbor sets of the fault sensors’ neighbors should be updated. Also, in mobile 

wireless sensor networks, the network topology gets updated as sensors move in the sensor field. 

Consequently, any topology change in the network will have an impact on the communication paths (or 

routes) between the sensors in the network. Therefore, routing and data dissemination paths should 

consider network topology dynamics due to limited energy and mobility of the sensors as well as 

increasing the size of the network to maintain specific application needs in terms of coverage and 

connectivity. It is worth noting that connectivity to the sink is very important. In fact, coverage would be 

meaningless if the sensed data cannot reach the sink, i.e., there is no communication path between the 

source sensors (or data generators) and the sink. Thus, connectivity between all source sensors and the 

sink, either directly or indirectly, should be guaranteed for the correct operation of the network. 

Another challenge is network scalability so routing and data dissemination protocols be able to scale 

with the network size. Also, the sensors may not necessarily have the same capabilities in terms of 

energy, processing, sensing, and particularly communication. Hence, communication links between the 

sensors may not be symmetric, i.e., a pair of sensors may not be able to have communication in both 

directions. This needs to be taken care of by the routing and data dissemination protocols.  

1.2.4 Sensing Application Requirements 

In most sensing applications, the sensed data should be as accurate as possible to assure better 
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decision making by the sink. Moreover, the sensed data needs to reach the sink in a timely manner. Thus, 

the delay metric should also be considered in the design process of wireless sensor networks; otherwise, 

the underlying network may not be useful. Also, for several sensing applications, data redundancy is 

desirable in that it increases data accuracy. For instance, in an intruder detection and tracking application, 

multiple sensors should be active at the same time to gather enough information about the intruder and 

track its motion accurately. Therefore, the design of routing and data dissemination, and coverage 

configuration protocols should guarantee data delivery and accuracy so the sink can gather the required 

knowledge about the physical phenomenon on time. Furthermore, sensors may deplete their energy 

before expected and become faulty. As discussed earlier, a sensor field may not be accessible and thus 

replacing those faulty sensors would be impossible. Hence, a wireless sensor network should tolerate the 

presence of faulty sensors and remain functional in spite of those failures. The degree of fault tolerance of 

a network depends on the underlying sensing application. Thus, routing and data dissemination, and 

coverage configuration protocols for wireless sensor networks should be fault-tolerant for this type of 

sensor failure. It is worth noting that link and sensing unit failures may also occur during the operation of a 

wireless sensor network. While sensing unit failure are due to imperfections in manufacturing or aging, 

link failure is caused by sensor mobility. In this thesis, however, we only consider sensor failure due to low 

battery. 

1.3 Motivations of this Dissertation 

There are several critical applications, such as intruder detection and tracking, where wireless 

sensor networks need to be deployed in a field in such a way that every point is sensed (or covered) by at 

least one sensor. In particular, it is sometimes desirable to deploy sensors to achieve redundant coverage 

of a field, where every point is guaranteed to be covered by at least k sensors simultaneously and we say 

that the network is configured to provide k-coverage. Indeed, there are at least three applications that 

require a degree of coverage at least equal to three, i.e., k � 3. First, in order to cope with the problem of 

sensor failures due their fragility, the design of sensor networks for planet exploration [151] should be as 

reliable as possible since failed sensors in space cannot be easily diagnosed and replaced. In [151], it was 

showed that k-cover deployment with k � 3 is necessary to guarantees data redundancy to improve data 
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reliability and fault tolerance of sensing applications. Second, multiple-sensor data fusion was found to be 

useful for at least a three-sensor system, i.e., system whose degree of coverage is k � 3 [102]. This helps 

detect, classify, and track the target objects. As at least all three sensors participate in the decision, it is 

unlikely that a false target would be detected as a true target [102]. Third, the design of triangulation-

based positioning systems requires that each point in a target field be covered by at least three sensors to 

increase the position accuracy [134]. 

The design of network configuration protocols for wireless sensor networks faces a challenging 

problem, namely energy conservation, due to the constrained battery-power of the sensors. Several 

energy conservation protocols for wireless sensor networks have been proposed at the MAC and network 

layers [38], [50], [184], [185], and a variety of energy-efficient coverage configuration schemes have been 

suggested [166], [176]. In general, the sensors are deployed with high density, and hence the design of 

network configuration protocols should benefit from this fact to provide k-coverage. It is well known that 

the best approach to save the sensors’ energy is duty-cycling so the sensors remain operational for as 

long as possible. Using a duty-cycling approach, the sensors can be turned on (i.e., active) or off (i.e., 

inactive) according to some sleep-wakeup scheduling protocol while guaranteeing k-coverage all the time. 

Achieving k-coverage becomes difficult especially in hostile environments, such as battle-fields, where 

access to the sensors is not feasible or even impossible. This implies that the sensors cannot be always-

on but rather duty-cycled; otherwise, they will deplete their energy and die quickly. Also, k-coverage of a 

field should use as minimum number of active sensors as possible to extend the network lifetime.  

The main goal of sensor deployment is to monitor a field and report data to the sink for further analysis 

and processing. Hence, the sensors should also be able forward data on behalf of each other. More 

importantly, the load of data forwarding should be evenly among all the active sensors, which currently k-cover 

the field, so all have the same chance to relay data for others. This implies that the network of active sensors 

should be connected; otherwise, sensed data will not reach the sink. Indeed, network connectivity is required 

for data routing and information dissemination. Thus, it is important that the network provide k-coverage while 

maintaining connectivity between all active sensors. It is well known that geographic forwarding, on the other 

hand, is an energy-efficient and practical scheme for wireless sensor networks in that the sensors are not 

required to maintain global and detailed information on the topology of the entire network. The sensors 
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need only maintain local knowledge on their one-hop neighbors. Therefore, for more effective sensor 

deployment, the load of k-coverage and data forwarding should be evenly distributed among all the 

sensors so that the network lifetime is maximized. These are the motivations of this dissertation research. 

1.4 Contributions of this Dissertation 

The contribution of this dissertation can be summarized as follows: 

Problem 1 (Almost Sure Connected Coverage): What is the critical sensor spatial density above which a 

field (respectively, network) is almost surely covered (respectively, connected)? 

We propose a continuum percolation-based approach to study phase transitions in coverage and 

connectivity in wireless sensor networks in an integrated fashion. Precisely, we propose a probabilistic 

approach to compute the critical sensor spatial density above which a field is almost surely covered and 

the network is almost surely connected. This approach helps network designers achieve full coverage of a 

field with a minimum number of connected, active sensors, thus maximizing the network lifetime. 

Problem 2 (Connected k-Coverage): What is a sufficient condition of the sensor spatial density for full k-

coverage of a two-dimensional (three-dimensional) field, where each point in a field is guaranteed to be 

covered by at least k sensors and what are the network connectivity and fault-tolerance of k-covered 

wireless sensor networks? How to design energy-efficient geographic forwarding protocols with and 

without data aggregation in duty-cycling, k-covered wireless sensor networks with k � 3? And how to 

extend these results to stochastic connected k-coverage and three-dimensional wireless sensor 

networks? 

In order to solve this problem, thus supporting different applications and environments with diverse 

requirements in terms of coverage and connectivity, we extend our above analysis to k-coverage using a 

deterministic approach so the network self-configures to meet these requirements. More specifically, we 

design a unified framework, called Cover-Sense-Inform (CSI), for geographic forwarding in duty-cycled, k-

covered wireless sensor networks. To this end, we compute the minimum active sensor spatial density 

that is necessary to achieve full k-coverage of a field while guaranteeing connectivity between all active 

sensors. Our analysis is based on Helly’s Theorem [39] and the geometric properties of the Reuleaux 

triangle. Then, we design randomized centralized, pseudo-distributed, and distributed connected k-
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coverage protocols for wireless sensor networks. We also compute the unconditional connectivity as well 

as the conditional connectivity of k-covered wireless sensor networks based on the concept of forbidden 

faulty set. The latter show shows that the classical connectivity used to capture network fault tolerance 

underestimates the resilience of large-scale networks, such as k-covered wireless sensor networks. 

Using a potential fields-based approach, we propose three geographic forwarding protocols for duty-

cycled, k-covered wireless sensor networks with different levels of data aggregation. We extend these 

results to address the problem of stochastic connected k-coverage in two-dimensional wireless sensor 

networks using a more realistic, stochastic sensing model instead of the deterministic one. We also study 

the connected k-coverage problem in three-dimensional wireless sensor networks. Surprisingly, we find 

that the extension of our analysis from two-dimensional to three-dimensional space is not straightforward 

due to the inherent properties of the Reuleaux tetrahedron. Thus, we propose a solution to this problem 

based on the “closest shape” to the Reuleaux tetrahedron. 

Problem 3 (Energy sink-hole): How and to what extent can a uniform energy depletion of all the sensors 

be guaranteed so as to avoid the energy sink-hole problem in always-on, static wireless sensor networks, 

where the sensors nearer the sink are heavily used in forwarding data to the sink on behalf of all other 

sensors, thus depleting their energy very quickly compared to all other sensors in the network? And how 

can this problem in homogeneous, always-on wireless sensor networks be addressed? 

We show that static wireless sensor networks suffer from the energy sink-hole problem regardless 

of how efficient a geographic forwarding protocol is. We propose a solution to this problem by enabling 

sensors to adjust their transmission range when sending/forwarding sensed data to the sink. However, we 

prove that this solution imposes a severe restriction on the size of the field. Thus, we propose an energy 

heterogeneity-based sensor deployment strategy so all the sensors in the network deplete their energy 

uniformly. When all the sensors have the same initial energy, we propose greedy, localized protocol, 

called energy aware Voronoi diagram-based data forwarding (EVEN), which exploits sink mobility and 

uses a new concept, called energy aware Voronoi diagram, where the locations of the sensors are time-

varying and are locally and virtually computed based on their remaining energy. 
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1.5 Organization of this Dissertation 

The remainder of this dissertation is organized as follows: 

Chapter 2 presents the necessary definitions and fundamental concepts and models used 

throughout this dissertation. It also describes the network model used in the design and development of 

our protocols. 

Chapter 3 reviews related work in coverage, connectivity, duty-cycling, and data forwarding in 

wireless sensor networks. 

Chapter 4 computes the critical sensor spatial density above which a field is almost surely covered 

and the network is almost surely connected. 

Chapter 5 computes the minimum sensor spatial density required to fully k-cover a field and 

describes our centralized, pseudo-distributed, and fully distributed connected k-coverage configuration 

protocols using the deterministic sensing model. These protocols form the basis of our CSI-Sensors 

framework. It also presents an extension of our protocols by considering a stochastic sensing model. 

Chapter 6 presents our energy-efficient, unified CSI framework for geographic forwarding in duty-

cycled, k-covered wireless sensor networks. 

Chapter 7 extends CSI by considering a stochastic sensing model to solve the stochastic connected 

k-coverage problem in two-dimensional wireless sensor networks. It also extends CSI to three-

dimensional wireless sensor networks. 

Chapter 8 describes the energy sink-hole problem in always-on, static wireless sensor networks and 

presents our protocol EVEN to solve it by exploiting heterogeneity, mobility, and our new concept of 

energy-aware Voronoi diagram. 

Chapter 9 computes the connectivity and fault-tolerance of k-covered wireless sensor networks. 

Chapter 10 summarizes our main contributions and discusses future work of this dissertation. 
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CHAPTER 2 

PRELIMINARIES AND NETWORK MODEL 

In this dissertation, we use some terminology and different models, such as Voronoi diagram model, 

energy model, sensing model, and continuum percolation model, to describe our proposed approaches 

and protocols for connected k-coverage, duty-cycling, and geographic forwarding in wireless sensor 

networks. Furthermore, our work is based on a specific network model. The goal of this chapter is to 

present the different terms and models we use in this dissertation work. 

The remainder of this chapter is organized as follows: Section 2.1 presents key definitions and 

fundamental concepts that are used in this dissertation. Section 2.2 presents deterministic and stochastic 

sensing models. Section 2.3 discusses different types of network connectivity. Section 2.4 describes the 

energy model while Section 2.5 presents the percolation model. Section 2.6 presents the network model 

that we used in the design of our energy-efficient framework for joint k-coverage, duty-cycling, and 

geographic forwarding in wireless sensor networks. Section 2.7 summarizes the chapter. 

2.1 Basic Definitions 

In this section, we give key definitions and describe some fundamental concepts used throughout 

this dissertation 

The sensing range (or detection range) of a sensor is  is a region where every event that takes 

place in this region can be detected by .is  The sensing neighbor set )( isSN  of is  is the set of all the 

sensors located in its sensing range. 

The communication range of a sensor is  is a region such that is  can communicate with any sensor 

located in this region. The communication neighbor set )( isCN  of is  is a set of all the sensors in its 

communication range.  

A wireless sensor network is said to be homogeneous if all of it sensors have the same storage, 

processing, battery power, sensing, and communication capabilities. Otherwise, it is heterogeneous. 
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The potential energy of a sensor is equal to its remaining energy. 

The width of a closed convex planar area is the maximum distance between parallel lines that 

bound it. The breadth of closed convex volume is the maximum distance between tangential planes on 

opposing faces or edges of the volume. 

The largest enclosed disk (respectively, sphere) of closed convex region A  is a disk (respectively, 

sphere) that lays inside A  and whose diameter is equal to the minimum distance between any pair of 

points on sA'  boundary. 

Let },...,{ 10 −= nssS  be a finite set of n  sites in the plane. The Voronoi diagram [33], also known as 

Dirichlet tessellation, represents one of the most fundamental data structures in computational geometry. It 

has interesting mathematical and algorithmic properties and potential applications. The Voronoi diagram of 

,S  denoted by ),(SVor  is a subdivision of the plane containing S  into n  cells ),( isVC  ,1 ni ≤≤  such that each 

cell )( isVC  includes only one site is  with the property that any point p  located in )( isVC  is closer to  is  than 

any other site in .S  The cell )( isVC  corresponding to site is  is called the Voronoi cell of is , which is a 

(possibly unbounded) open convex polygonal region. The edges of a Voronoi cell are called Voronoi edges 

and its endpoints are called Voronoi vertices. The Voronoi diagram of S  is the union of the Voronoi cells of all 

sites in .S  The Delaunay triangulation, denoted by ),(SDT  is the dual of the Voronoi diagram [33]. A )(SDT  

graph has an edge between two sites if and only if their Voronoi cells share a common edge. Notice that 

)(SDT  is a planar graph whose edges are orthogonal to their corresponding Voronoi edges. Figure 2.1 

shows a Voronoi diagram and its dual. 

 

Figure 2.1 The Delaunay triangulation (bold lines) on top of the Voronoi diagram (dotted lines) of a wireless 
sensor network 
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2.2 Deterministic and Stochastic Sensing Models 

In the deterministic sensing model (also known as binary), a point (or event) ξ  in a field is 

sensed/covered (or detected) by a sensor is  based on the Euclidean distance ),( isξδ  between ξ  and .is  

Throughout this chapter, we use “coverage of a point” and “detection of an event” interchangeably. 

Formally, the coverage ),( isCov ξ  of a point ξ  by a sensor is  is defined as follows: 
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As can be seen, the deterministic sensing model considers the sensing range of a sensor as a disk, 

and hence all sensor readings are precise and have no uncertainty. However, it was found that the radios’ 

communication range is highly probabilistic and irregular [182]. Thus, the deterministic sensing model 

does not reflect the real behavior of the sensing units of the sensors, which are irregular in nature. Hence, 

given the signal attenuation and the presence of noise associated with sensor readings, it is necessary to 

consider a more realistic sensing model by defining the coverage ),( isCov ξ  using some probability 

function. In other words, the sensing capability of a sensor needs to be modeled as the probability of 

successful detection of an event. Specifically, the sensor’s sensing capability should depend on the 

distance between it and the event as well as the type of propagation model being used (free-space vs. 

multi-path). Indeed, it has been showed that the probability that an event in a distributed detection 

application can be detected by an acoustic sensor depends on the distance between the event and sensor 

[64]. A realistic sensing model for passive infrared (PIR) sensors that reflects their non-isotropic range 

was presented in [48]. This sensing irregularity of PIR sensors was verified by simulations [48]. Thus, in a 

stochastic sensing model, the coverage ),( isCov ξ  is defined as the probability of detection ),( isp ξ  of an 

event occurring at point ξ  by sensor is  as follows: 
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where β  represents the physical characteristic of the sensors’ sensing units and 42 ≤≤ α  is the path-loss 

exponent. Precisely, β  measures the uncertainty introduced by the sensing unit of the sensors. Also, for 

the free-space model, we have 2=α  and for the multi-path model, .42 ≤< α  Our stochastic sensing 
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model is motivated by the one introduced by Elfes [66], where the sensing capability of a sonar sensor is 

modeled by a Gaussian probability density function. A probabilistic sensing model for coverage and target 

localization in wireless sensor networks was proposed in [187]. This sensing model is similar to ours 

except that it considers )(),( ei rrs −−ξδ  instead of ),,( isξδ  where r  is the detection range of the sensors 

and rre <  is a measure of uncertainty in sensor detection. Our stochastic sensing model is also similar to 

the one in [186], except that ours uses ,α  and reduces to the deterministic sensing model if we set .0=β  

Under the deterministic sensing model, a point ξ  in a field is said to be k-covered if it belongs to the 

intersection of the sensing ranges of at least k sensors. Under the stochastic sensing model, a point ξ  in 

a field is said to be k-covered if the detection probability of an event accruing at ξ  by at least k sensors is 

at least equal to some threshold probability .10 << thp  For both sensing models, A region A  is said to be 

k-covered if every point A∈ξ  is k-covered. A k-covered wireless sensor network is a network that fully k-

covers a field. We call degree of coverage provided by a wireless sensor network the maximum value of k 

such that a field is fully k-covered. 

2.3 Network Connectivity and Fault Tolerance 

A communication graph of a homogeneous (heterogeneous) wireless sensor network is an 

undirected (directed) graph, ),( ESG = , where S  is a set of sensors and E  is a set of (directed) edges 

between them such that for all Sss ji ∈, , Ess ji ∈),(  if , || iji R≤− ξξ  where iξ  and iR  stands for the location 

and radius of the communication disk of sensor .is  The vertex-connectivity (or connectivity) of G  is equal 

to Κ  if and only if G  can be disconnected by the removal (or failure) of at least Κ  nodes. The fault 

tolerance of the underlying network is equal to .1−Κ  

A forbidden faulty set of a graph ),,( ESG =  is a set of nodes SF ⊂  that cannot fail at the same time. 

According to our conditional fault-tolerance model, a faulty sensor set ΡF  is given by 

},)(:|{ UsCNSsSUF ii ⊄∈∀⊂=Ρ  where )( isCN  is the communication neighbor set of sensor .is  Thus, the 

communication neighbor set of a sensor cannot fail simultaneously, and hence it is a forbidden faulty set. 

Let Ρ  be “The faulty set cannot include the neighbor set of any sensor”, SF ⊂Ρ  a faulty set 

satisfying property ,Ρ  and ),( ESG =  a communication graph representing a wireless sensor network. The 
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conditional connectivity of G  with respect to ,Ρ  denoted by ),:( ΡGκ  is the minimum size of ΡF  such that 

the resulting graph ),( dd EFSG Ρ−=  is disconnected into components each having property Ρ . Another 

generalization of connectivity, called restricted connectivity, was proposed in [67] in which the restriction is 

on the faulty set (i.e., set of nodes that can fail). Restricted connectivity uses the concept of forbidden 

faulty set in which the entire neighbor set of a given node cannot be faulty at the same time. The 

conditional fault-tolerance of G  with respect to Ρ  is given by .1):():( −Ρ=Ρ GG κη  

2.4 Energy Model 

According to [88], the energy spent in transmitting one message of size κ  bits from sensor is  to 

sensor js  is computed as )),( ( ),( jielecjitx ssEssE αδεκ +=  and the energy spent in message reception is 

given by ,elecrx EE κ=  where elecE  represents the electronics energy, },{ mpfs εεε ∈  is the transmitter 

amplifier in the free-space )( fsε  or the multi-path )( mpε  model, 42 ≤≤ α  is the path-loss exponent, and 

),( ji ssδ  is the Euclidean distance between is  to js . Thus, the total energy consumption for is  when it 

receives a message and forwards it to js  is given by ).,(    2),( jielecjitot ssEssE αδεκκ +=  Moreover, the 

energy consumption rate in transmitting over a distance d  is given by bEddER electx  ) ( )( += αε  and the 

energy consumption rate in receiving is given by , bEER elecrx =  where bits/sec)(in   b  is the sensor’s data 

rate. We assume all sensors have the same data rate. For a fixed message size, the energy consumed by 

the sensors depends on the transmission distance d  and the path-loss exponent α , where 42 ≤≤ α . 

 

Figure 2.2 (a) Collaborating sensors is  and js , and (b) communicating sensors is  and js  
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Figure 2.3 (a) collaboration path and (b) communication path between is  and js  

2.5 Percolation Model 

Assume that the sensing and communication ranges of the sensors are represented by disks. Two 

sensors is  and js  are said to be collaborating if the Euclidean distance between the centers of their 

sensing disks satisfies , 2  || rji ≤− ξξ  where r  is the radius of their sensing disks. Intuitively, the two 

sensing disks centered at iξ  and jξ  are either tangential or overlapping (see Figure 2.2a). The 

collaborating set of the sensor ,is  denoted by )( isCol , includes all the sensors it can collaborate with, i.e., 

}.  2 ||  : {)( rssCol jiji ≤−= ξξ  Two sensors is  and js  are said to be communicating if the Euclidean 

distance between the centers of their communication disks satisfies , || Rji ≤− ξξ  where R  is the radius of 

the communication disks of the sensors (see Figure 2.2b). The communicating set of the sensor is  is the 

set of sensors it can communicate with, i.e., }.  ||  : {)( RssCom jiji ≤−= ξξ  

A collaboration path between two sensors is  and ,js  is a sequence of sensors ,is  ,1+is …, ,1−js  

,js  such that any pair of sensors ls  and ,1+ls , for 1−≤≤ jli , are collaborating (see Figure 2.3a). 

Similarly, a communication path between two sensors, is  and js , is a sequence of sensors, ,is  

,1+is …, ,1−js ,js  such that any pair of sensors ls  and ,1+ls  for ,1−≤≤ jli  are communicating (see Figure 
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2.3b). A wireless sensor network is said to be connected if there is a communication path between any 

pair of sensors. 

Let } 1: { ≥= iX iξλ  be a two-dimensional homogeneous Poisson point process of density ,λ  where 

iξ  represents the location of a sensor .is  Let )(ΑλX  be a random variable representing the number of 

points in an area Α . The probability that there are k  points inside Α  is computed as 

|| 

!

||
))(( 

Α−Α==Α λ
λ

λ e
k

kXP
kk

                                                    (2.3) 

for all 0≥k , where || Α  is the size of s'Α  area. 

The covered area fraction of a Poisson Boolean model }) 1:)( {, ( ≥irDX iλ  given by λaerA −−= 1)(  

[86] is the mean fraction of area covered by the sensing disks )( rDi , for 1≥i , in a region of unit area, 

where 2
 ra π=  is the area of a sensing disk and λ  is the density of the Poisson point process .λX  

A set of sensing disks } 1:)(  { mirDi ≤≤  is said to be a covered component if it is maximal (or not 

included in any other set except when it is equal to the original entire set of sensing disks) and there exists 

a collaboration path between any pair of sensors js  and ,ls  for all mlj ≤≤   ,1  and .lj ≠  A covered k-

component, denoted by ,kCC  is a covered component having k sensing disks. 

Assume that λ  is not a constant as the sensors could appear and disappear independently of one 

another. We want to compute the density ,cλ  called critical percolation density (or critical density) such 

that there exists an infinite covered component when ,cλλ >  and hence the Boolean model 

}) 1:)( {, ( ≥irDX iλ  is said to be percolating. Otherwise, there is no infinite covered component and hence 

}) 1:)( {, ( ≥irDX iλ  does not percolate. 

The critical covered area fraction of }), 1:)( {,( ≥irDX iλ  computed as ,1)( 
 ca

c erA λ−−=  is the 

fraction of area covered at critical percolation, where cλ  is the associated density of .λX  

A set of communication disks }1:)({ niRDi ≤≤  is said to be a connected component if it is maximal 

(or not included in any other set except when it is equal to the original entire set of transmission disks) and 
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there exists a communication path between any pair of sensors js  and ls , for all nlj ≤≤  ,1  and .lj ≠  A 

connected k-component, denoted by ,kCC  is a connected component with k  communication disks. 

Percolation processes were introduced by Broadbent and Hammersley [46] to model the random 

flow of a fluid through a medium. Because of their simplicity of description and display of critical behavior, 

where a model’s behavior changes abruptly (phenomenon known as phase transition) as a parameter 

value crosses a threshold, percolation models are attractive in several areas of mathematics, physical 

science, and engineering. A percolation model can be viewed as an ensemble of points distributed in 

space, where some pairs are adjacent (or connected) [69]. We consider a Boolean model [128] which is 

defined by two components, namely point process λX  and connection function .h  The set 

} 1: { ≥= iX iξλ  is a homogeneous Poisson point process of density λ  in a 2-dimensional Euclidean 

plane 2IR , where the elements of λX  are the locations of the sensors used to cover a field. The 

connection function h  is defined such that two points iξ  and jξ  are adjacent independently of all other 

points with probability ) || ( jih ξξ −  given by 

�
�
� ≤−

=−
otherwise       0 

  || if       1 
) || ( 

d
h ji

ji
ξξ

ξξ  

where || ji ξξ −  is the Euclidean distance between iξ  and .jξ  

Why a Continuum Percolation Model? We consider a continuum percolation model rather than a discrete 

percolation model for the following reason. In discrete percolation [81], also known as lattice model, the 

sites, which are randomly occupied in a discrete lattice, may have different configurations, namely square, 

triangle, honeycomb, etc. In continuum percolation [128], the positions of the sites are randomly 

distributed and thus there is no need to have different analysis for each of these regular lattices. Precisely, 

we consider a continuum percolation model, which consists of homogeneous disks whose centers (i.e., 

sensors’ locations) are randomly distributed in 2IR  according to a spatial Poisson point process of density 

.λ  In percolation theory, we are interested in the critical density cλ  above which an infinite cluster of 

overlapping disks first appears. The density cλ  is the critical value for the density λ  such that there exists 
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no infinite cluster of overlapping disks almost surely when cλλ < , but there is an infinite cluster of 

overlapping disks almost surely when cλλ >  and we say that percolation occurs. 

2.6 Network Model 

In this section, we specify the network model used in this dissertation unless stated otherwise. 

All the sensors are static and isotropic. In other words, all the sensors have the same sensing and 

communication ranges. Furthermore, the latter follow the unit disk model, i.e., they are modeled by disks 

(respectively, spheres) in two-dimensional (respectively, three-dimensional) wireless sensor networks, 

called sensing and communication disks (respectively, spheres) of radii r  and ,R  respectively, centered at 

the locations of their corresponding sensors. Moreover, all the sensors are homogeneous and always-on, 

meaning that they constantly report their sensed data to a single static sink. Hence, the sensors cannot be 

turned off while monitoring a physical phenomenon. Each sensor has a unique id (an integer, for instance) 

and is aware of its own location information through GPS (Global Positioning System) or some localization 

technique [96]. The sensors advertise their location information only once when they start their sensing 

task. In addition, each sensor advertises its remaining energy by piggybacking it on the data sent to the 

sink. The sensors are randomly, uniformly deployed in a field whose size is much larger than that of the 

sensing and communication ranges of the sensors. Moreover, the sensors are supposed to be densely 

deployed. As indicated in Chapter 1, the limited battery power of the sensors and the difficulty of replacing 

and/or recharging batteries on the sensors in hostile environments require that the sensors be deployed 

with high density in order to extend the network lifetime. We also assume that each sensor has transmit-

power control and hence can adjust its transmission distance so it can transmit its data over a distance 

that is less than or equal to the radius of its communication range. The communication links between the 

sensors are perfectly reliable while the sensors can fail or die independently due to low battery power. 

We should mention that some of these assumptions will be further relaxed so as to promote the use 

of our proposed protocols in real-world sensing applications. 

2.7 Summary 

In this chapter, we described a few applications of wireless sensor networks and presented the main 

challenges that have to be dealt with in the design process. The inherent features of wireless sensor 
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networks, such as limited battery power, high magnitude, high density, failures, and dynamic topology, 

require that their design and development be tailored to make them more practical and very effective. In 

particular, any protocol designed for wireless sensor networks should meet the constraint imposed by the 

limited battery power of the sensors. Also, we defined useful terms that are used throughout this 

dissertation. Also, we described the energy and percolation models as well as our network model. 
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CHAPTER 3 

RELATED WORK 

With the fast advances in inexpensive sensor technology and wireless communications, the design 

and development of large-scale wireless sensor networks has become cost-effective and viable enough to 

attract the attention of several applications, such as health/environmental monitoring and battlefields 

surveillance. Two fundamental aspects in the design of wireless sensor networks are sensor deployment 

and data forwarding. In fact, the main function of a wireless sensor network is to monitor a field and report 

data to a central gathering node, called the sink, for further analysis and processing. The sensors, 

however, suffer from several scarce resources, such as battery power (or energy), storage, CPU, and 

bandwidth, to name a few, with energy being the most critical one. 

Although several algorithms and protocols have been proposed for wireless mobile ad hoc 

networks, they cannot be directly applied to wireless sensor networks. This is mainly due to the inherent 

characteristics of the sensors, such as limited battery power, sensing, communication, processing, and 

storage; the number of sensors in a wireless sensor network is much higher than that of the nodes in an 

ad hoc network; the sensors are highly dense deployed due to their limited energy resources; the sensors 

are prone to failure due to their limited battery power; The topology of a wireless sensor network changes 

very frequently due to the limited energy of the sensors; the broadcast communication nature of wireless 

sensor networks; the sensors may not have global identification like nodes in a wireless mobile ad hoc 

network nodes due to their large number. Thus, protocols designed for wireless sensor networks, and 

particularly those for field coverage and data forwarding, should be as energy-efficient as possible to 

extend the operational network lifetime. 

The remainder of this chapter is organized as follows: Section 3.1 reviews probabilistic approaches 

that compute the sensor density to achieve coverage of a field. Section 3.2 describes related work in 

coverage, connectivity, and duty-cycling approaches for wireless sensor networks. Section 3.3 presents 

approaches for data forwarding in wireless sensor networks. Section 3.4 describes approaches for joint 
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coverage and geographic forwarding in wireless sensor networks. Section 3.5 describes existing 

approaches using the notion of conditional connectivity. Section 3.6 reviews stochastic coverage 

approaches. Section 3.7 describes protocols for minimizing and balancing energy consumption. Section 

3.8 discusses existing approaches for coverage and connectivity in three-dimensional wireless sensor 

networks. Section 3.9 presents percolation theory-based approaches for coverage and connectivity. 

Section 3.10 summarizes the chapter. 

3.1 Computing the Sensor Density for Coverage 

Adlakha and Srivastava [2] showed that the number of sensors required to cover an area of size A  

is in the order of ,)ˆ/( O
2

2 rA  where 2 ̂r  is a good estimate of the radius r  of the sensing disk of the 

sensors. Specifically, r  lies between 1 ̂r  and ,ˆ2 r  where 1 ̂r  overestimates the total number of sensor 

required to cover an area of size ,A  while 2 ̂r  underestimates it. Our approach, however, gives an exact 

value of the minimum sensor spatial density required for k-coverage based on the exact value of the 

sensing range of the sensors. Franceschetti et al. [71] investigated the number of disks of given radius ,r  

centered at the vertices of an infinite square grid, which are required to entirely cover an arbitrary disk of 

radius r  placed on the plane. Their result depends on the ratio of r  to the grid spacing. 

Kumar et al. [108] proved that for random deployment with uniform distribution, if there exists a 

slowly growing function )(npφ  such that ),()log(log)log(  
2 npnpknprpn φπ ++≥  then a square unit area is k-

covered with high probability when n  sensors are deployed in it, where p  is the probability that a sensor 

is active. It is worth noting that n  also represents the sensor spatial density given that the area of the 

square region is equal to 1. Hence, the above inequality can be written as ,
 

)()log(log)log(
 

2r
npnpknppn

π
φ++≥  

which means that the minimum sensor density required for k-coverage of a unit square region is equal to 

.
 

)()log(log)log(
2r

npnpknp
π

φ++  If we set 1=p  (i.e., every sensor is active), we obtain .
 

)()log(log)log(
2r

nnkn
π

φ++  

Recently, Balister et al. [35] computed the sensor density necessary to achieve both sensing coverage 

and network connectivity in finite region, such as thin strips (or annuli) whose lengths are finite. Balister et 

al. [35] applied this result to achieve barrier coverage [107] and connectivity in thin strips, where sensors 
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act as a barrier that ensures that any moving object or phenomenon that crosses the barrier of sensors 

will be detected. 

Zhang and Hou [175], [177] proved that the required density for k-coverage of a square field, where 

sensors are distributed according to a Poisson point process and always active, depends on both the side 

length of the field and k. Precisely, Zhang and Hou [175], [177] found that a necessary and sufficient 

condition of complete k-coverage of a square field with side length l  is that the sensor density is equal to 

),(loglog)1(log
22 lclkl +++=λ  where +∞→)(lc  as .∞→l  In another paper, given a wireless sensor network 

deployed as a Poisson point process with density λ  and every sensor is active, Zhang and Hou [174] 

provided a sufficient condition for k-coverage of a square region with area .A    Precisely, they proved that 

assuming ),(loglog 2log AcAkA ++=λ  if ∞→)(Ac  as ,∞→A  then the probability of k-coverage of the 

square region approaches 1. Zhang and Hou [174] provided the same result in the case where sensors 

are deployed according to a uniformly random distribution. Both results are based on the following 

statement: the square region is divided into square grids with side length ,
l

 2

ogA
rs =  where r  stands for the 

radius of the sensing range of the sensors. For a grid i  to be completely k-covered, it is sufficient that 

there are at least k  sensors within a disk centered at the center of the grid and with radius , u)-(1 r  

denoted by ),)1((  r-uBi  where .log/1 Au =  Based on this characterization, we can claim that the spatial 

density of active sensors required for k-coverage of a square region with area .A  is equal to .
 2

log
2

2

2 r
Ak

s
k =  

Wan and Yi [155] showed that with boundary effect, the asymptotic (k+1)-coverage of a square with 

area s  by Poisson point process with unit-area coverage range requires that the sensor density be equal 

to )(loglog)1( 2log ssks ξ+++  with .)(lim ∞=∞→ ss ξ  Without the boundary effect, however, the asymptotic 

(k+1)-coverage requires that the sensor density be computed as )(loglog)2( log ssks ξ+++  with 

.)(lim ∞=∞→ ss ξ  

It is easy to prove that ),( krλ  is much less than its counterpart λ  computed in [175], [177]. 

Furthermore, we always have 1>λ  when .2≥�  For a large square sensor field, the value of λ  [175], [177] 

is high. However, our density measure ),( krλ  depends on the radius r  of the sensing disks of the sensors 
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and tends to decrease as r  increases, thus reflecting a more expected behavior. Also, the density 

computed by Zhang and Hou [174] depends on the geometry of the sensor field and is much higher than 

).,( krλ  Also, the sensor density for k-coverage computed by Kumar et al. [108] depends on the number of 

deployed sensors and is higher than our density ).,( krλ  

3.2 Coverage, Connectivity, and Scheduling Protocols 

A variety of configuration protocols for coverage and connectivity in wireless sensor networks have 

been proposed in the literature with a goal to extend the network lifetime. In this section, we review a sample 

of these configuration protocols and summarize their shortcomings. 

The issue of determining the required number of sensors to achieve full coverage of a desired region 

was addressed in [2]. Precisely, an exposure-based model was proposed to find the sensor density based on 

the physical characteristics of the sensors and the properties of the target. The minimum number of sensors 

needed to achieve k-coverage with high probability was showed in [108] to be approximately the same 

regardless of whether the sensors are deployed deterministically or randomly, if the sensors fail or sleep 

independently with equal probability. Necessary and sufficient conditions for 1-covered, 1-connected wireless 

sensor grid network were given in [146], [147]. Also, a variety of algorithms have been proposed to maintain 

connectivity and coverage in large wireless sensor networks [146], [147]. The problem of coverage and 

connectivity in three-dimensional networks were studied in [7]. Also, a placement strategy based on Voronoi 

tessellation of a three-dimensional space was proposed [7]. In [142], several fundamental characteristics of 

randomly deployed wireless sensor networks regarding communication and sensing range for connectivity 

and coverage in three-dimensional sensor networks were investigated. 

An optimal deployment pattern for achieving k-barrier coverage was established, efficient global 

algorithms for checking k-barrier coverage of a given region were developed, and it was showed the non-

existence of localized algorithms for testing the existence of global barrier coverage [107]. To address this 

limitation, localized algorithms so sensors can locally determine the existence of local barrier coverage were 

proposed in [54]. Moreover, optimal polynomial-time algorithms were proposed to solve the sleep-wakeup 

problem for the barrier coverage model using sensors with equal and unequal lifetimes [109]. 

A directional sensors-based approach for network coverage was proposed in [3], where the 
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coverage region of a sensor depends on its location and orientation. The coverage problem in 

heterogeneous sensor networks was discussed in [112], [113]. They formulated the coverage problem as 

a set intersection problem and derived analytical expressions, which quantify the coverage achieved by 

stochastic coverage. Efficient distributed algorithms to optimally solve the best-coverage problem with the 

least energy consumption were proposed in [119]. Optimal polynomial time worst and average case 

algorithms for coverage calculation based on the Voronoi diagram and graph search algorithms were 

proposed in [129], [131]. In [91], polynomial-time algorithms, in terms of the number of sensors, were 

presented for the coverage problem formulated as a decision problem. A distributed algorithm was 

proposed in [1] to partition a wireless sensor network into k covers, each of which contains a subset of 

sensors that is activated in a round-robin fashion such that as many areas are monitored as frequently as 

possible. Surveys of a variety of approaches on energy-efficient coverage problems are in [49], [76]. 

In [34], an optimal deployment strategy to achieve both full coverage and 2-connectivity regardless of 

the relationship between communication and sensing radii of the sensors was proposed. In [93], the 

relationship between coverage and connectivity of wireless sensor networks was studied and distributed 

protocols to guarantee both their coverage and connectivity were proposed.  The problem of sensor selection 

to provide both sensing and connectivity was addressed in [106] and an approach for solving it based on the 

concept of connected dominating set was proposed. A joint scheduling scheme based on a randomized 

algorithm for providing statistical sensing coverage and guaranteed network connectivity was presented in 

[124]. A distributed algorithm to keep a small number of active sensors in a network regardless of the 

relationship between sensing and communication ranges was proposed in [176]. It was also proved that if the 

original network is connected and the identified active nodes can cover the same region as all the original 

nodes, then the network formed by the active nodes is connected when the communication range is at least 

twice the sensing range [152]. A probabilistic Markov model was proposed to solve the problem of minimizing 

power consumption in each sensor while ensuring coverage and connectivity [172]. 

In [83], centralized and distributed algorithms for connected sensor cover were proposed so the network 

can self-organize its topology in response to a query and activate the necessary sensors to process the 

query. Datta, et al. [61] proposed two self-stabilizing algorithms to the problem of minimal connected 

sensor cover [83]. In [180], a distributed and localized algorithm using the concept of the kth-order Voronoi 
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diagram was proposed to provide fault tolerance and extend the network lifetime, while maintaining a 

required degree of coverage. Control and coordination algorithms were designed for a multi-vehicle 

network with limited sensing and communication capabilities [58]. Also, adaptive, distributed, and 

asynchronous coverage algorithms were proposed for mobile sensing networks. Indeed, it was proved 

that mobility can be used to improve coverage in wireless sensor networks [122]. A distributed algorithm 

was proposed in [1] in order to partition a WSN into k covers, each of which contains a subset of sensors 

that is activated in a round-robin fashion such that as many areas are monitored as frequently as possible. 

The first combined study on k-coverage and connectivity was proposed in [166] and it was proved that 

if the radius of the communication ranges of sensors is double the radius of their sensing ranges, the network 

is connected provided that sensing coverage is guaranteed. In [166], the network connectivity was also 

computed based on whether the disconnected node is boundary or interior, and proposed a network 

configuration protocol based on the degree of coverage of the sensing application. The k-coverage set and 

the k-connected coverage set problems were formalized in terms of linear programming and two non-global 

solutions were proposed for them [167]. 

3.3 Data Forwarding Protocols 

Xing, et al. [165] proposed a greedy geographic routing protocol, called Bounded Voronoi Greedy 

Forwarding (BVGF). The nodes eligible to act as the next hops are the ones whose Voronoi regions are 

traversed by the segment line joining the source and the destination. The BVGF protocol chooses as the 

next hop the neighbor that has the shortest Euclidean distance to the destination among all eligible 

neighbors. This protocol does not help the sensors deplete their battery power uniformly. Each sensor 

has, indeed, only one next hop to forward its data to the sink. Therefore, any data dissemination path 

between a source sensor and the sink will always have the same chain of next hops, which will severely 

suffer from battery power depletion. The greedy geographic routing protocol BVGF allows sensing-

covered networks to achieve a lower routing path length compared to other existing protocols [60]. Bose 

and Morin [41] proposed a Voronoi routing for Delaunay triangulations that moves the data packet along 

the nodes whose Voronoi regions intersect the straight line between the sender and the receiver. The 

major problem of this algorithm is that it requires the construction of the Voronoi diagram and the 
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Delaunay triangulation of all the wireless nodes. This strategy is very expensive in distributed 

environments, such as sensor networks. Also, this protocol would consider the same path between the 

source and destination, and hence would deplete the battery power of the sensors very quickly. Karp and 

Kung [100] proposed a Greedy Perimeter Stateless Routing (GPSR) protocol for mobile wireless ad hoc 

networks. The GPSR protocol forwards data packets through long distances and hence consumes much 

energy. Our protocol, however, forwards sensed data through short Delaunay edges and hence achieves 

significant energy savings. Li et al. [115] studied different routing algorithms, such as compass routing 

[104], random compass routing [104], greedy routing [42], and most forwarding routing [150] on different 

graphs. Wang et al. [157] proposed a proxy-based sensor deployment protocol for mobile wireless sensor 

networks. A proxy sensor is a static sensor that is closest to the logical position of its delegated mobile 

sensor. As can be seen, checkpoints in our protocol differ from proxy sensors in Wang et al.’s protocol 

[157]. However, both of them are used for energy efficiency purpose. Proxy sensors are introduced to help 

mobile sensors move only when needed so that they save their energy, while our checkpoints are 

introduced to shorten data dissemination paths between source sensors and the sink, and hence minimize 

the total energy consumption. Choi and Das [55] proposed an applicative indirect routing (AIR) protocol for 

ad hoc wireless networks using the notion of proxy candidates. These proxies are defined as the 

neighbors that are shared by the sender and the receiver and are introduced to cope with unreliable links 

in the original path. Zhang et al. [173] proposed a dynamic proxy tree-based data dissemination 

framework for mobile wireless sensor networks. Mobile sources and mobile sinks are associated with 

stationary source proxies and sink proxies, respectively, and proxies related to the same source form a 

proxy tree. The latter is used to multicast data from the source proxy to the sink proxies. When the 

distance between sources or sinks and their proxies do not change beyond the threshold distance, the 

sources and sinks will keep the same proxies. This situation could lead to a battery power depletion of the 

associated proxies. In our protocol, checkpoints dynamically change based on both their closeness to the 

shortest path between the senders and receivers and their remaining energy. Zhang et al. [173] protocol 

introduces an overhead in reconfiguring the proxy tree due to source and sink mobility. The overhead 

introduced by our protocol is due to the construction of localized Delaunay triangulation which occurs only 

once as the network is static, thus yielding little overhead. Luo et al. [126] and Ye et al. [170] proposed a 
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scalable and efficient data delivery to multiple mobile sinks using two-tier data dissemination (TTDD) 

model. Ammari and Das [29] proposed an information theory-based approach for data dissemination in 

wireless sensor networks with a mobile sink. Also, Ammari and Das [18] formulated the energy-delay 

tradeoff for geographic forwarding in wireless sensor networks as a multi-objective optimization problem 

and solved it using an approach that is simpler than genetic algorithms [70]. 

Yang and Vaidya [168] proposed a wakeup scheme, called Pipelined Tone Wakeup (PTW), which 

achieves a balance between energy saving and end-to-end delay. The PTW scheme is based on an 

asynchronous wakeup pipeline that overlaps the wakeup procedures with the packet transmissions. It 

uses wakeup tones which allow a large value of duty cycle ratio without causing a large wakeup delay at 

each hop. Miller et al. [132] studied the trade-off between energy, latency and reliability. They presented a 

Probability-Based Broadcast Forwarding (PBBF) scheme which minimizes energy usage and optimizes 

latency and reliability. Bandyppadhyay and Coyle [36] proposed a transmission scheduling scheme using 

a collision-free protocol for gathering sensor data. They also studied many trade-offs between energy 

usage, sensor density, temporal and spatial sampling rates. Sohrabi et al. [149] proposed a sequential 

assignment routing (SAR) protocol which is used by sensors to select a path among multiple ones to the 

sink node. The SAR protocol selects a path based on the energy resources and the priority level of a 

packet. Lindsey et al. [121] presented a scheme, called PEGASIS (Power-Efficient Gathering in Sensor 

Information Systems), where each node can receive from and send to close neighbors. The data gathered 

by nodes in each round has to be collected and transmitted to the base station by only one designated 

node to reduce energy consumption and extend the life of the network. The PEGASIS considered 

delayenergy × as an optimization metric per round of data gathering in wireless sensor networks and 

showed that it outperforms the LEACH protocol [88]. Krishnamachari et al. [105] surprisingly showed by 

well-selected examples that when robustness and energy efficiency are the main concern, single-path 

routing outperforms multipath routing under the assumption of perfectly reliable source and destination 

sensors. Choi and Das [56] proposed a data gathering scheme which trades off coverage and data 

reporting latency while enhancing energy conservation. Kim et al. [101] proposed a Scalable Energy-

efficient Asynchronous Dissemination (SEAD) protocol for wireless sensor networks, which is based on 

dissemination trees that are built to disseminate data to mobile sinks. Every mobile sink is supported by a 
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special node, called access node, which acts as the relay between the mobile sink and source sensors. 

Boukerche et al. [45] proposed a novel protocol, called energy-aware data-centric (EAD), which builds a 

virtual backbone composed of active sensors that are responsible for in-network data processing and 

traffic relaying. EAD attempts to construct a broadcast tree that approximates an optimal spanning tree 

with a maximum number of leaves, thus reducing the size of the backbone formed by active sensors. Luo 

and Hubaux [125] discussed an energy efficient routing protocol for wireless sensor networks which 

exploits base station mobility and multi-hop routing. Different mobility strategies of a mobile station have 

been studied to identify the optimum one in terms of balanced load distribution. Intanagonwiwat et al. [94] 

proposed a data-centric paradigm for sensor query dissemination and processing in static wireless sensor 

networks, called directed diffusion (DD), which uses attribute-based naming to match data to sensors. The 

DD paradigm provides robust multi-path delivery and achieves energy saving when intermediate nodes 

aggregate responses to queries. When a data source detects a stimulus, it builds a data dissemination 

grid structure over the sensor field and sets up the forwarding information at sensors closest to grid points. 

For a more comprehensive survey on routing and data dissemination protocols in wireless sensor 

networks along with their taxonomy, the interested reader is referred to [60]. 

3.4 Joint Coverage and Geographic Forwarding Protocols 

The study of joint coverage and geographic forwarding, however, has received little attention. In 

particular, a few works addressed the problem of geographic forwarding on duty-cycled wireless sensor 

networks [38], [133], [184]. While Biswas and Morris [38] and Zorzi and Rao [184] assumed duty-cycling at 

the MAC layer, Nath and Gibson [133] considered both routing and duty-cycling at the routing layer. In 

traditional routing, a sender chooses the next forwarder before transmitting its data. However, when the 

link quality is poor, the probability that the selected forwarder receives the data is low. In contrast, using 

opportunistic routing, any node that overhears the transmission and is closer to the destination can 

participate in forwarding the packet. The packet duplication problem is solved using a scheme for 

contention among receivers. Zorzi and Rao [184] also gave a detailed description of a MAC protocol and 

an evaluation of the latency and energy performance. Zorzi and Rao [184] proposed an opportunistic data 

transmission scheme for wireless sensor networks, called geographic random forwarding (GeRaF), which 
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uses geographic routing where a sensor acting as relay is not known a priori by a sender. In other words, 

relay nodes are decided only after the transmission has started. Thus, GeRaF does not guarantee that a 

sender will always be able to forward a message towards the sink, and hence GeRaF is said to be best-

effort forwarding scheme. Biswas and Morris [38] proposed an integrated routing and MAC protocol, called 

ExOR, to enhance throughput in multi-hop wireless networks, where a source sends a batch of packets 

destined to the same destination. ExOR is also an opportunistic routing protocol that determines the next 

forwarder of a packet after the transmission of the packet. The node closest to the destination among all 

the candidate forwarders that receive the packet is selected in each hop. Nath and Gibbons [133] 

presented the first analysis of the performance of geographic routing on duty-cycled wireless sensor 

networks, where every sensor has k awake neighbors. They also proposed a sleep-wakeup scheduling 

protocol for opportunistic geographic routing. 

3.5 Network Connectivity Measures 

The concept of conditional connectivity [87] has been investigated in several research works. 

Esfahanian [67] presented a new fault-tolerance analysis for the n-cube networks based on the concept of 

forbidden faulty set. Latifi et al. [111] introduced a new measure of conditional connectivity for the n-

dimensional cube, where every node is required to have at least g good neighbors. Wu and Guo [164] 

computed the fault tolerance of the m-ary n-dimensional hypercubes using forbidden faulty sets. Also, 

Chen et al. [53] proposed a probabilistic approach for computing the fault tolerance of hypercube network 

using forbidden faulty sets. Malde and Oellermann [127] introduced the notion of F-connectivity as the 

smallest number of vertices of G  whose removal produces a trivial graph or a disconnected graph with 

each component a subgraph of F, where F is an induced subgraph of G . Oellermann [135] proposed the 

Ρ -connectivity of a graph G  with respect to hereditary properties, where every induced subgraph F  of a 

graph G  having property Ρ  also has property Ρ . Ammari and Das [26] proposed measures of conditional 

fault-tolerance of k-covered wireless sensor networks but considered connectivity from graph theory 

perspective, which is quite different from connectivity with the sink. Indeed, network connectivity is not 

necessarily a condition for the network to operate whereas connectivity to the sink is. Thus, more realistic 

measures of fault tolerance should be defined with respect to the sink. 
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Existing works on coverage and connectivity in wireless sensor networks assumed the concept of 

traditional connectivity. Our proposed approach [26], however, considers both concepts of traditional and 

conditional connectivity. The latter is based on the concept of forbidden faulty sensor set that includes 

subsets of sensors that cannot be faulty at the same time. Furthermore, our measures of connectivity and 

fault tolerance for k-covered wireless sensor networks take into consideration their morphology, where the 

sink is the most crucial node. 

3.6 Stochastic Coverage Approaches 

An exposure-based model to find the sensor density to achieve full coverage of a desired region based 

on the physical characteristics of the sensors and the properties of the target was proposed in [2]. In [108], it 

was showed that the minimum number of sensors needed to achieve k-coverage with high probability is 

approximately the same regardless of whether the sensors are deployed deterministically or randomly. The 

coverage problem in heterogeneous wireless sensor networks was formulated in [113] as a set intersection 

problem and analytical expressions, which quantify the coverage achieved by stochastic coverage, were 

derived. Necessary and sufficient conditions for 1-covered, 1-connected wireless sensor grid network were 

given in [146] and a variety of algorithms have been proposed to maintain connectivity and coverage in large 

wireless sensor networks [146]. The exposure in wireless sensor networks, which is related to the quality of 

coverage provided by these networks, was studied in [130] based on a general sensing model, where the 

sensing signal of a sensor at an arbitrary point by a function that is inversely proportional to the distance 

between the sensor and point. Three coverage measures, namely area coverage, node coverage, and 

detectability were studied in [123] using the general sensing model defined in [130]. 

A joint scheduling scheme based on a randomized algorithm for providing statistical sensing coverage 

and guaranteed network connectivity was presented in [124]. This scheme does not make any assumption 

on the relationship between sensing and transmission ranges, and works without the availability of per-node 

location information. A distributed approach for the selection of active sensors to fully cover a field based on 

the concept of connected dominating set was proposed in [186]. This approach is based on a probabilistic 

sensing model, where the probability of the existence of a target is defined by an exponential function that 

represents the confidence level the received sensing signal. 
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Solutions to the k-coverage sensor deployment problem using both deterministic and probabilistic 

sensing models were proposed in [159]. These solutions compute the minimum number of sensors required 

to k-cover a field as well as their locations, and schedule the sensors to move to these locations. In the first 

solution, the sink computes those locations and the sensors bid for their closest locations. The second 

solution enables the sensors to derive the target locations by themselves. The CCP protocol [166] was 

extended to provide probabilistic coverage guarantee based on a probabilistic coverage model, where the 

sensors may have non-uniform and irregular communication and sensing regions. According to this model, a 

point in a convex coverage area is guaranteed to be k-covered with a probability no lower than .β  CCP 

provides probabilistic coverage via a mapping of the -),( βk coverage requirement to a pseudo coverage 

degree ,'k  which is computed analytically. 

3.7 Minimizing Energy Consumption vs. Balancing Energy Consumption 

Data forwarding protocols for wireless sensor networks can be categorized into two main classes. 

The first one consists of protocols that attempt to minimize the energy consumption of sensors. 

Unfortunately, these protocols do not consider some particular regions in the network whose sensors are 

heavily used compared to others, and hence deplete their initial energy very quickly. This behavior may 

result in network disconnections although most of the rest of sensors have enough amount of energy to 

work correctly. The second class includes protocols that attempt to balance the energy consumption 

among all sensors in the network. The next two paragraphs review protocols for both classes. 

Chang and Tassiulas [51] proposed different approaches for maximizing the network lifetime based on 

finding the best link cost function. Boukerche et al. [44] proposed power-efficient data dissemination 

protocols that combine sleep/awake and probabilistic forwarding techniques. Boukerche et al. [45] also 

proposed a protocol, called energy-aware data-centric (EAD), which constructs a broadcast tree rooted at the 

sink. Gao and Zhang [75] proposed greedy forwarding algorithms for load-balanced routing in wireless 

networks when nodes lie either on a line or in a narrow strip. Sankar and Liu [144] proposed a distributed 

routing algorithm that checks whether it is possible to route flow in the network while satisfying all the 

demands in terms of total energy consumed by all nodes before threshold for lifetime expires. Zhou et al. 

[183] investigated the problem of finding energy-efficient paths to the sink using the notion of transmitter 
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power control. Shah et al. [145] proposed a three-tier architecture for data dissemination in sparse wireless 

sensor networks using the concept of MULES. Wang et al. [156] proposed distributed self-deployment 

protocols to discover coverage holes and cover those using mobile sensors. 

The energy sink-hole problem in wireless sensor networks has gained relatively less attention in the 

literature. This problem was originally addressed by Guo et al. [82]. They proposed an energy-balanced 

transmission scheme that adjusts the ratio between direct transmission to the sink and next-hop 

transmission. Precisely, sensors far away from the sink send larger percent of data to the next hop, while 

sensors near the sink send more data directly to the sink. Zhang et al. [178] also exploited this combination of 

hop-by-hop transmission and direct transmission to find a trade-off between them. Efthymiou et al. [65] 

proposed a probabilistic data propagation algorithm for balancing energy consumption among all sensors. 

Antoniou et al. [32] and Boukerche et al. [43] proposed a protocol, called Variable Transmission Range 

Protocol (VTRP). VTRP contributes to solve the energy sink-hole problem by varying the transmission range 

of sensors in order to bypass sensors lying close to the static sink and avoid their overuse. Powell et al. [141] 

used the probabilistic data propagation algorithm in [65] and proved that there is a relationship between 

energy balancing and lifespan maximization [95]. Leone et al. [114] considered non-uniform sensor 

distribution and proposed a blind algorithm that computes a solution to the energy-balancing problem on-line 

without prior knowledge on the occurrences of the events. Li and Mohapatra [117], [118] characterized the 

energy hole around the sink with an analytical model and investigated the effectiveness of a few approaches 

for mitigating the energy hole problem. Olariu and Stojmenovic [136] proved that energy-efficient routing can 

be guaranteed when the coronas of a circular field have the same width, but this would lead to uneven 

energy depletion of sensors. Hence, they computed the widths of coronas and their number to achieve even 

energy depletion of sensors. They also proved that uneven energy depletion is unavoidable for the free space 

model but can be prevented for the multi-path model. Lian et al. [120] showed that up to 90% of the total 

initial energy is unused due to the static network model with uniformly distributed homogenous sensors and a 

stationary sink. They also proposed a non-uniform sensor distribution-based deployment strategy. Non-

uniform node distribution was also considered in [162], [163] to achieve balanced energy depletion. Luo and 

Hubaux [125] proposed a data collection protocol for wireless sensor networks that makes use of multi-hop 

routing and base station mobility to solve the energy-sink-hole problem. 



34 

 

3.8 Three-Dimensional Coverage and Connectivity 

The study of coverage, connectivity, and routing  in three-dimensional wireless sensor networks, 

such as underwater sensor networks [4], has gained relatively less attention in the literature compared to 

that of two-dimensional wireless sensor networks. Alam and Haas [7] proposed a placement strategy 

based on Voronoi tessellation of a three-dimensional space, which creates truncated octahedral cells. 

Huang et al [92] proposed a polynomial-time algorithm to solve the α-Ball-Coverage (α-BC) problem 

whose goal is to check α-coverage of a three-dimensional region. Pompili et al. [140] proposed a 

deployment strategy for three-dimensional communication architecture for underwater acoustic sensor 

networks, where sensors float at different depths of the ocean to cover the entire three-dimensional 

region. Poduri et al [138] discussed some difficulties encountered in the design of three-dimensional 

wireless sensor networks, such as ensuring network connectivity in the case of uniform random 

deployment and restrictions imposed by the environment structure on sensor deployment. In [142], 

Ravelomanana investigated fundamental properties of randomly deployed three-dimensional wireless 

sensor networks for connectivity and coverage, such as the required sensing range to guarantee certain 

degree of coverage of a region, the minimum and maximum network degrees for a given communication 

range, and the network hop-diameter. Kao et al. [99] proposed a heuristic for routing in three-dimensional 

space using the two-dimensional face routing algorithm. Pompili et al. [139] proposed different routing 

algorithms for applications in underwater sensor networks depending on whether delay is sensitive or not.  

3.9 Percolation 

The concept of continuum percolation originally due to Gilbert [77], is to find the critical density of a 

Poisson point process at which an unbounded connected component almost surely appears so the 

network can provide long-distance multi-hop communication. For random plane networks, Gilbert claimed 

that the filling factor, representing the critical value of the expected number of points in a circle of radius 

,R  should be around .2.3  Since then, Gilbert’s model has become the basis for studying continuum 

percolation in wireless networks. Booth et al. [40] discussed different classes of covering algorithms and 

determined the critical density of a Poisson point process (centers of disks of radius r ) above which an 

unbounded connected component arises. They also discussed the almost sure existence of an 
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unbounded connected component based on the ratio of the connectivity range of the base stations to the 

connectivity range of the clients. Bertin et al. [37] proved the existence of site percolation and bond 

percolation in the Gabriel graph [73] for both Poisson and hard-core stationary point processes. The 

critical bounds corresponding to the existence of a path of open sites and a path of open bonds were 

found by simulation. Glauche et al. [78] proposed a distributed protocol, which guarantees strong 

connectivity almost surely of ad hoc nodes. They translated the problem of finding the critical transmission 

range of mobile devices to that of determining the critical node neighborhood degree above which an ad 

hoc network graph is almost surely connected. To achieve a little above this degree, each node needs to 

adjust its transmission power locally. Jiang and Bruck [97] proposed the concept of monotone percolation 

based on the local adjustment of the transmission radii of the nodes for efficient topology control of the 

network. Their proposed algorithms guarantee the existence of relatively short paths between any pair of 

source and destination nodes, which makes monotonic progress. Liu and Towsley [123] considered both 

Boolean and general sensing models, each with a variety of network scenarios, to characterize 

fundamental coverage properties of large-scale sensor networks, namely area coverage, node coverage, 

and detectability. According to their simulation setting, the critical sensor density is about .1053.3 3−×  

3.10 Summary 

In this chapter, we described a variety of approaches that compute the sensor spatial density that is 

needed to guarantee some degree of coverage of a field. However, all the proposed bounds for the 

sensor spatial density are asymptotic and depend on the geometry of the field and its size. We believe that 

the sensor spatial density to achieve (redundant) coverage should depend only on the sensing range of 

the sensors and the degree of coverage dictated by the underlying application. Hence, new approaches 

are required to provide more accurate bounds on the sensor spatial density. Furthermore, we presented 

different approaches for coverage, connectivity, duty-cycling, and data forwarding in wireless sensor 

networks. However, due to their dependency, a few protocols that combine some of them have been 

proposed. We believe that a more energy-efficient and unified framework should be proposed in which 

coverage, connectivity, duty-cycling, and geographic forwarding are jointly considered. 



36 

 

CHAPTER 4 

PHASE TRANSITIONS IN COVERAGE AND CONNECTIVITY 

In wireless sensor networks, sensing coverage reflects the surveillance quality provided by active 

sensors in a field, while network connectivity enables active sensors to communicate with each other in 

data forwarding to a central gathering node, called the sink. For the correct operation of the network, it is 

necessary that both sensing coverage and network connectivity be maintained. Assuming perfectly 

reliable wireless links, both sensing coverage and network connectivity are affected by the sensor spatial 

density. 

Given a field that is initially uncovered, as more and more sensors are continuously added to the 

network, the size of the partial covered areas increases. At some point, the situation abruptly changes 

from small fragmented covered areas to a single large covered area in the field. We call this abrupt 

change as the sensing-coverage phase transition (SCPT) [11]. The SCPT problem can be stated as follows: 

Given a field that is initially uncovered, what is the sensor spatial density corresponding to the first 

appearance of a single large covered component that spans the entire network? 

Likewise, given a network that is originally disconnected, the number of connected components 

changes with the addition of sensors such that the network suddenly becomes connected at some point. 

We call this sudden change in the network topology as the network-connectivity phase transition (NCPT) 

[11]. The NCPT problem can be expressed as follows: 

Given a network that is initially disconnected, what is the sensor spatial density corresponding to 

the first appearance of a single large connected component that spans the entire network? 

The nature of such phase transitions is a central topic in percolation theory of Boolean models. The 

process of the ground getting wet during a period of rain [128] gives us a better analogy with the SCPT and 

NCPT problems. A circular wet patch forms whenever a point of the ground is hit by a raindrop. At the start 

of the rain, one can see a small wet area within a large dry area. After some time and as many raindrops 

continue to hit the ground, the situation suddenly changes and one can see a small dry area within a large 
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wet area. This phase transition phenomenon occurs at a given density of the raindrops. This example 

helps us approach the SCPT and NCPT problems from a perspective of continuum percolation. In this 

chapter, we propose a probabilistic approach to compute the covered area fraction at critical percolation 

for both of the SCPT and NCPT problems. In [13], we proposed a different percolation theory-based 

approach for three-dimensional wireless sensor networks. 

As will be discussed later, the specific connection function used in NCPT problem has not been studied 

before and hence no bound on the critical covered area fraction is known. Furthermore, given that sensing 

coverage and network connectivity are not totally orthogonal [27], [166] (see Chapter 3), we propose a new 

model for percolation in wireless sensor networks, called correlated disk model, which allows network 

connectivity and sensing coverage to be studied together in an integrated fashion. We show that the SCPT and 

NCPT problems have the same solution (i.e., same critical covered area fraction). Precisely, we solve the SCPT 

and NCPT problems together, where the radii of the sensing disks )(r  of the sensors and the radii of their 

transmission disks )(R  are related by , rR α=  where .1≥α  We show that NCPT occurs provided that SCPT 

arises and the ratio rR /  has certain value. It is worth noting that the exact value of the critical density at which 

an infinite (or single large) cluster of overlapping disks first appears is still an open problem, and its 

approximation is either predicted by simulations [137], [143], [154] or computed analytically [72]. From now on, 

“infinite” means “single large”. 

The remainder of this chapter is organized as follows. Section 4.1 solves the SCPT problem. Section 

4.2 solves the NCPT problem. Section 4.3 discusses our results. Section 4.4 concludes the chapter. 

4.1 Phase Transition in Sensing Coverage 

This section discusses the sensing-coverage phase transition (SCPT) problem and solves it using a 

percolation-theoretic approach. 

Let } 1: { ≥= iX iξλ  be a two-dimensional homogeneous Poisson point process of density ,λ  where iξ  

represents a sensor .is  Given an initially uncovered field, the SCPT problem is to compute the probability of 

the first appearance of an infinite (or single large) covered component that spans the entire network. In 

particular, we are interested in the limiting case of an infinite field, where there exist no collaboration paths 

for sufficiently small density λ  and they suddenly appear at a critical percolation density .cλ  
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                                       (a)                                                                                 (b) 

Figure 4.1 (a) Schematic of overlapping disks (three covered components of size 1, two of size 2, one of size 3, and 
one of size 4) (b) Shape of a covered component 

4.1.1 Estimation of the Shape of Covered Components 

Each k-covered component kCC  is characterized by a reference point, called center and denoted 

by ).(kξ  Figure 4.1a shows various covered components of different sizes. Using the Poissonness 

argument stated in [68] (pages 200-202), as the centers } 1: { ≥iiξ  form a Poisson process with density 

,λ  the centers of all k-covered components also form a Poisson process with density ).(kλ  In other 

words, the covered components are randomly and independently distributed according to a Poisson 

process with a density of )(kλ  centers per unit area. We want to determine the smallest shape enclosing 

a k-covered component. In fact, the shape of the covered components varies depending on the number of 

its overlapping sensing disks. For tractability of the problem, we assume that the geometric form that 

encloses a k-covered component is a circle (Figure 4.1b), which tends to minimize the area of uncovered 

region around the covered component. Indeed, the circle is the most compressed shape. Let kR  be the 

radius of a circle, denoted by ),,( kRC k  which encloses a k-covered component. Thus, there is no other 

sensing disk that could overlap with the boundary of the circle. That is, the concentric circular band of 

width ,r  denoted by )(rCCB  and which surrounds the circle, should not include any other sensing disk. 

Hence, the annulus between radii kR  and rRk +  around the center )(kξ  must be empty. 
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Let )(P k  be the conditional probability that the circle encloses only one k-covered component. This 

probability is given by 

]empty   is )(|),(  [ rob)(P rCCBkRCk kΡ=  

By definition, this probability is computed as 

]empty   )(  [ rob

]empty   )( ),(  [ rob
)(P

rCCB
rCCBkRCk k

Ρ
∧Ρ=                                                       (4.1) 

where ]empty   )( ),(  [ rob rCCBkRC k ∧Ρ  can be interpreted as the probability that the circle of radius rRk +  

encloses only one k-covered component. Thus, 

]  ),( [ rob]empty   )( ),(  [ rob krRCrCCBkRC kk +Ρ=∧Ρ  

Using equation (2.3) (see Chapter 2), we obtain the following results: 
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It is worth mentioning that the analysis of SCPT and NCPT problems will be based on the form of 

conditional probability given in (4.2). 

4.1.2 Critical Density of Covered Components 

Although there exist a few definitions of the average distance between clusters (i.e., covered 

components), one of them is more appropriate. It is defined as the average of the minimum distance 

between all pairs of sensing disks, each from one covered component. Indeed, two covered components 

could be merged together into a single one if and only if there is at least a pair of sensing disks, one from 

each covered component, such that the distance between their centers is at most equal to .2r  Lemma 4.1 

computes the mean distance between neighboring k-covered components at critical percolation. 
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Lemma 4.1: Let }{ kCC  be a set of k-covered components with density )(kλ  and Y  a random variable 

representing distances between them. The mean distance 1
avgd  between two neighboring covered 

components at critical percolation is given by 

)( 2

11

k
d

c
avg λ

=                                                                         (4.3) 

where )(kcλ  is the density of }{ kCC  at critical percolation. 

Proof: Let kω  be the mean number of k-covered components in a circular field of radius .ℜ  Denote by 

)(σp  the probability that there is a covered component whose center is located at a distance upper 

bounded by σ  from the center, say ),(kξ  of a given covered component. We denote by σσ dP )(  the 

probability that a nearest center of a covered component to a given center )(kξ  is located at a distance 

between σ  and .σσ d+  Hence, σσ dP )(  can be viewed as the probability that there exists one of the 

1−kω  covered components at a distance between σ  and σσ d+  from the center )(kξ  and the other 

2−kω  covered components are at a distance larger than σ  from ).(kξ  Thus, 
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where σ
σ
σ dp

 

)( 

∂
∂  stands for the probability that there is a covered component whose center lies within a 

circular band located at a distance σ  from the center )(kξ  and whose width is .σd  Notice that )(σp  can 

be computed as the ratio of the number of covered components within the circle of radius σ  to the total 

number of covered components within the field. Thus, we obtain: 
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Substituting equation (4.3) in equation (4.4) gives 
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where .  2ℜ= πλω kk  We assume that the circular field contains all covered components. Now, the mean 

distance between two k-covered components can be computed as 
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Notice that at critical percolation, the value of kω  should be large enough )( ∞→kω  so an infinite 

covered component spanning the network could form. Since 
2

(3/2)
π=Γ  and , 2ℜ= πλω kk  the mean 

distance 1
avgd  between two neighboring k-covered components at critical percolation is given by 
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where )(kcλ  is the critical density of k-covered components.                                                                       � 

Lemma 4.2 computes the average distance between neighboring k-covered components at critical 

percolation using another approach. As can be seen later, Lemma 4.2 will help us compute the density of 

k-covered components at critical percolation. 

Lemma 4.2: Let }{ kCC  be a set of k-covered components with density ),(kλ  and Y  a random variable 

associated with the distances between them. The mean distance 2
avgd  between two neighboring covered 

components at critical percolation is computed as 
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where cλ  is the density of a set of sensing disks }1:)({ ≥irDi  at critical percolation. 

Proof: For a homogeneous Poisson point process, the probability that there is no neighbor within distance 

σ  of an arbitrary point is given by 2  σπλ−e  [59]. Therefore, the probability that the distance between a point 

and its neighbor is less than or equal to σ  is equal to 

2  1]  [ σπλσ −−=≤Ρ eY  

Hence, the corresponding probability density function is given by 

2     2)|( σπλσπλσ −=≤ eYYf  



43 

 

The mean distance 2
avgd  between two neighboring k-covered components of }{ kCC  at critical percolation 

is obtained when the distance σ  between two sensing disks, say )(rDi  and ),(rD j  each from one 

covered component, belongs to the interval ]. 2,0[ r  Therefore, 
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where )(xerf  is the error function [191].                                                                                                       � 

Lemma 4.3, which follows from Lemmas 4.1 and 4.2, computes the density of k-covered 

components at critical percolation. 

Lemma 4.3: The critical density of a set of k-covered components }{ kCC  is given by 
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where cλ  is the density of sensing disks at critical percolation and )(xerf  is the error function [191]. 

Proof: From Lemma 4.1 (equation 4.3) and Lemma 4.2 (equation 4.7), the mean distance between two k-

covered components at critical percolation should verify the following equality ,
21
avgavg dd =  which implies 

that the density of k-covered components at critical percolation )(kcλ  is given by 
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4.1.3 Critical Radius of Covered Components 

There is a particular value of the radius kR  of the circular shape enclosing a covered component 

that almost surely guarantees the formation of special class of k-covered components, called critical k-

covered components. Any non-empty circle of radius r2  should enclose a k-covered component. In other 

words, regardless of the number of sensing disks of radius r  located in a circle of radius ,2r  these 

sensing disks should definitely form a k-covered component. Moreover, this k-covered component is a 

complete graph in that each pair of sensors, say is  and ,js  whose sensing disks are included in this 
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circle of radius r2  are collaborating given that rji 2|| max ≤−ξξ . Lemma 4.4 computes the density of 

critical k-covered components at critical percolation. 

Lemma 4.4: At critical percolation, the density of k-covered components, which are enclosed in circles 

whose radii is equal to ,2r  is given by  

2  4
2

!

)  9(
)(

r
k

c
cc

ce
k

rk πλπλλλ −=                                                               (4.9) 

where cλ  and )(kcλ  are the densities of sensing disks and k-covered components, respectively, at critical 

percolation. 

Proof: Let Ν  be the total number of sensing disks that are randomly deployed on a circular field of radius 

ℜ  according to a spatial Poisson process with density equal to 

2
 ℜ
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π
λ                                                                         (4.10) 

Using ,  )( 2ℜ= πλω kk  which represents the mean number of k-covered components in the circular field, 

and equation (4.10) leads to 
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We can approximate 
Ν

kω  by the probability ]2)([ rCCrad k =Ρ  of finding a k-covered component whose 

radius is equal to .2r  Hence, we have 
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]2)([                                                             (4.12) 

Substituting equation (4.12) in equation (4.11) gives 

]2)([ )( rCCradk k =Ρ= λλ                                                           (4.13) 

Following the same reasoning as in Section 4.1.1, ]2)([ rCCrad k =Ρ  is the conditional probability of finding 

k  sensing disks enclosed in a circle with radius r2  and centered at )(kξ  such that the annulus between 

circles of radii r2  and rr +2  around the center )(kξ  is empty. Substituting rRk 2=  into equation (4.2) 

gives 
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and hence equation (4.13) becomes 
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where cλ  and )(kcλ  are the critical densities of sensing disks and k-covered components,  respectively.  � 

4.1.4 Characterization of Critical Percolation 

Now, we generate an equation that characterizes a set of k-covered components at critical 

percolation. By equating equations (4.8) and (4.9), we obtain a new equation ,0),,(1 =krg cλ  where 
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Instead of focusing on finding the critical value of the density cλ  of sensing disks at which an infinite 

covered component first appears, we consider a dimensionless metric, i.e., the covered area fraction at 

critical percolation given by 

2 
 1)(

r
c

cerA πλ−−=  

The benefits of using )( rA c  instead of cλ  are two-fold: first the number of unknown parameters is 

reduced to two, namely )( rA c  and ,k  thus removing any direct dependency of ),,(1 krg cλ  on .r  Hence, 

the parameter r  will not have any direct impact on the critical percolation density. Second, we know the 

exact domain of )( rA c  is ],1,0[  which helps us study exactly the entire behavior of the function 

0),,(1 =krg cλ  for all values of ).( rA c  Substituting )( rA c  into equation (4.14) and let ))(1log( rAc−−=µ  

gives a new function )),((1 krAg c  given by 
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                                      (a)                                                                           (b) 

 

   (c) 

Figure 4.2 No critical percolation at (a) k = 2 and (b) k = 3. (c) Critical percolation at k = 4 and Ac(r) = 0.575 

4.1.5 Numerical Results 

Figure 4.2 plots the function )),((1 krAg c  given in Equation (4.15) with respect to different values of 

k  and ).(rAc  Notice that for ,4<k  the function )),((1 krAg c  cannot be equal to zero (Figures 4.2a and 

4.2b). Thus, percolation first occurs at 4=k  and 575.0)( =rAc  (Figure 4.2c), which is a bit smaller than the 

values 0.688 of Vicsek and Kertesz [154], 0.68 of Pike and Seager [137], and 0.62 of Roberts [143] (all 

predicted by Monte Carlo experiments), and the value 0.67 as calculated by Fremlin [72] for studying the 

percolation of overlapping homogeneous disks. Thus, when the number of collaborating sensors of a 
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sensor is larger than four ),5( ≥k  it is almost surely that an infinite covered component that spans the 

entire network will appear for the first time. 

4.2 Phase Transition in Network Connectivity 

Let }1:{ ≥= iX iξλ  be a two-dimensional homogeneous Poisson point process of density ,λ  where 

iξ  represents the location of sensor .is  Given a network that is originally disconnected, the network-

connectivity phase transition (NCPT) problem is to compute the sensor spatial density corresponding to the 

first appearance of an infinite (or single large) connected component that spans the network. 

Notice that both of the SCPT and NCPT problems have similar structure although the difference of the 

concepts of collaboration (SCPT) and communication (NCPT) between the sensors in the SCPT and SCPT 

problems, respectively, as stated earlier in Section 2.5 (see Chapter 2). While in the SCPT problem, two 

sensing disks belong to the same covered component if the distance between them is at most equal to 

one diameter ), 2( r  the NCPT problem requires that two communication disks be at a distance of at most 

half the diameter )(R  from each other so they belong to the same connected component, where r  and R  

stand for the radii of the sensing and communication disks of the sensors, respectively. To our knowledge, 

the connection function of the NCPT problem has not been studied previously in the literature. 

Some sensing applications require that every location in the field be covered by at least one sensor 

and that the active sensors be also able to communicate with each other so the sensed data could reach 

the sink. Indeed, sensed data would be meaningless if connectivity between the sensors is not 

maintained. Thus, we are mainly interested in the formation of an infinite (or single large) connected 

covered component that spans the entire network. Next, we study the SCPT and NCPT problems together 

using percolation theory. 

4.2.1 Integrated Sensing Coverage and Network Connectivity 

We propose a new model for percolation in wireless sensor networks, called correlated disk model. 

Each sensor is associated with two concentric disks of radii r  and R  representing the radii of its sensing 

and communication disks, respectively. This kind of structure reveals a double behavior of the sensors 

that can be described by their collaboration and communication. The collaboration between sensors 

depends on the relationship between the radii of their sensing disks, whereas communication is related to 
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the relationship between the radii of their communication disks. Previous studies by Wang, et al. [160] and 

Ammari and Das [27] showed the existence of certain dependency between the concepts of sensing 

coverage and network connectivity. Our proposed correlated disk model allows us to study these two 

concepts together from a percolation-theoretic viewpoint to account for their correlation. This problem can 

be viewed as a correlated continuum percolation problem. Next, we study the simultaneous percolation of 

the sensing and communication disks of the sensors based on the ratio ./ rR  

4.2.1.1 Simultaneous Phase Transitions When R � 2r 

As mentioned earlier in Chapter 3, Wang, et al. [160] proved that if a wireless sensor network is 

configured to be covered and the radius R  of the communication disk of the sensors is at least double the 

radius r  of their sensing disk, then the network is guaranteed to be connected. Ammari and Das [27] 

provided a tighter relationship between R  and ,r  while achieving network connectivity provided that 

sensing coverage is guaranteed. In fact, the “worst-case” behavior is when the sensing disks of the 

sensors are tangential, i.e., the distance between their corresponding centers is equal to . 2 r  Hence, when 

, 2 rR ≥  there is a dependency between sensing coverage and network connectivity in that the former 

implies the latter. In other words, collaboration between the sensors will lead to their communication. In 

this case, the SCPT and NCPT problems are equivalent, and thus have the same critical covered area 

fraction. Thus, a set of communication disks percolates at 4=k  with a covered area fraction 

575.0)( =RAc  at critical percolation. Therefore, when the number of communicating sensors of a given 

sensor is larger than four ),4( =k  an infinite connected component spanning the network will almost 

surely form. 

4.2.1.2 Simultaneous Phase Transitions When r � R < 2r 

The interesting case is when the radii of the sensing and communication disks of the sensors are 

related by , rR α=  where .21 <≤ α  Precisely, we focus on the study of the percolation of the sensing 

disks of the sensors, where two sensors collaborate if and only if the distance between the centers of their 

sensing disks is equal to , rα  where .21 <≤ α  The communication disks of the sensors will also percolate 

given that . rR α=  Thus, our goal is to compute the critical covered area fraction above which both the 
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sensing and communication disks of the sensors percolate when . 2 rRr <≤  It is a valid assumption that 

the radius of the communication disks of the sensors cannot be less than the radius of their sensing disks 

as shown in Tables 2 and 3 [176] for a wide spectrum of sensor devices. 

 

                                       (a)                                                                          (b) 

 

                                       (c)                                                                           (d) 

Figure 4.3 Plot of the function ),),((  2 krAg c α  for different values of k  )52( ≤≤ k  and α  ).21( <≤ α  
No critical percolation occurs at k = 2 (a) and k = 3 (b). For k = 4 (c) and k = 5 (d), critical percolation 

depends on the value of α  

We consider the previous analysis in Section 4.1, where we replace r 2  by , rα  with .21 <≤ α  

Without repeating those details, we obtain a new equation that characterizes the set of k-covered 

components at critical percolation, which is given by ,0),,,(2 =krg c αλ  where 
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Let )).(1log( rAc−−=µ  We substitute )( rA c  in ),,,(2 krg c αλ  to obtain a new function ),),((2 krAg c α  

given by 
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Figure 4.3 shows the plots of the function ),),((  2 krAg c α  given in Equation (4.16) for different values of 

k  and ,α  where 52 ≤≤ k  and .21 <≤ α  As can be seen from Figures 4.3a and 4.3b, the function 

),),((  2 krAg c α  cannot be equal to zero for ,4<k  regardless of the value of .α  Furthermore, a set of sensing 

disks percolates (which occurs when 0),),((  2 =krAg c α ) faster for large values of .α  For instance, when 

1=α  (which corresponds to rR  = ), critical percolation occurs at 5=k  and 925.0)( =rA c  (Figure 4.3d). Thus, 

when ,1=α  it is almost surely that an infinite covered component spanning the entire network will appear when 

the number of collaborating sensors of a sensor is larger than five ).6( ≥k  However, when 5.1=α  

), 5.1  i.e.,( rR =  critical percolation occurs at 4=k  and 580.0)( =rA c  (Figure 4.3c). Finally, for 25.1=α  

), 25.1  i.e., rR( =  critical percolation occurs at 4=k  and 760.0)( =rA c  (Figure 4.3c). For the last two cases 

),5.1  and  25.1( == αα  it is almost surely that an infinite covered component that spans the entire network will 

appear when the number of collaborating sensors of a sensor is larger than four ).5( ≥k  Given the connection 

function defined for the collaboration between the sensing disks, percolation should be quicker for large disks 

than for smaller ones. In all cases, the value of the corresponding critical covered area fraction will almost 

surely guarantee the appearance of an infinite connected component that spans the underlying network 

provided that an infinite covered component arises and spans the entire network. Moreover, the value of critical 

covered area fraction depends on the ratio ./ rR  
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4.3 Discussion 

It is worth noting that both values of critical covered area fractions for sensing coverage and network 

connectivity represent only lower bounds. In other words, if the actual covered area fraction is higher than 

),(rAc  it is almost surely that there exists an infinite (or single large) covered component that spans the 

entire network. That is, a large portion of the sensor field is guaranteed to be covered. Otherwise, there 

are only a few small fragmented regions of the field that are covered. However, there is no guarantee on 

the size of the region of the field being covered. Similarly, if the actual covered area fraction is higher than 

),(RAc  it is almost surely that there exists an infinite connected component that spans the entire network. 

Otherwise, it is almost surely that the network is disconnected. However, there is no guarantee neither on 

the number of nodes being connected in this infinite component nor whether the sink belongs to the 

infinite connected component. 

There appears to be little disagreement between our theoretical calculation of the critical covered 

area fraction )575.0)(( =rAc  compared to the values previously obtained by approximate calculation and 

Monte Carlo simulation (between 62.0  and 688.0 ). Our analysis of phase transitions in both sensing 

coverage (respectively network connectivity) is mainly based on an estimation of the smallest shape 

enclosing a k-covered (respectively k-connected) component. We have assumed that this shape is a 

circle. Although it may not be always true that a circle is the smallest shape enclosing k-covered (and k-

connected) component, we have used it to simplify the analysis enough and make it mathematically 

tractable. We have also considered this shape as an ellipse with minor axis ka  and major axis .kb  

Maximizing ,
!

))( )(  (
)(P k  kba

k
kk e

k
rbra

k πλπλ −++
=  the probability that an ellipse encloses a k-covered 

component, leads however to a unique solution kk ba =  representing a degenerate ellipse or circle. 

4.4 Summary 

In this chapter, we have investigated two phase transition problems for sensing-coverage and 

network-connectivity in wireless sensor networks using a probabilistic approach [11]. Our goal is to 

determine when an infinite covered component (SCPT problem) and an infinite connected component 

(NCPT problem) could form for the first time. To achieve this objective, we have computed the covered 
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area fraction for SCPT and NCPT problems at critical percolation. The problem of overlapping disks has 

been studied extensively in percolation theory and is similar to the SCPT problem. We have found that the 

value of the covered area fraction is close to the one found by Monte Carlo simulations. The specific 

connection function of the Boolean model associated with the NCPT problem, however, has not been 

studied before and hence no bound exists in the literature. We have proposed a correlated disk model in 

order to study SCPT and NCPT problems in an integrated way from a continuum percolation perspective. 

Precisely, we have considered the physical correlation between them, which is based on the ratio of the 

radius of the communication disks of the sensors to the radius of their sensing disks. Thus, when an 

infinite covered component arises for the first time, an infinite connected component will almost surely 

appear based on the ratio ./ rR=α  
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CHAPTER 5 

MINIMUM-ENERGY CONNECTED k-COVERAGE CONFIGURATIONS 

Sensing coverage is an essential functionality of wireless sensor networks. However, it is also well-

known that coverage alone in wireless sensor networks is not sufficient because data originated from 

source sensors are not guaranteed to reach the sink for further analysis. Thus, network connectivity 

should also be considered for a network to function correctly. In wireless sensor networks, coverage and 

connectivity have been jointly addressed in an integrated framework. While coverage is a metric that 

measures the quality of surveillance provided by a network, connectivity provides a means to the source 

sensors to report their sensed data to the sink. Some real-world applications, such as intrusion detection, 

may require high degree of coverage (or redundant coverage), and hence large number of sensors to 

enable accurate tracking of intruders. For such highly dense deployed and energy-constrained sensors, it 

is necessary to duty-cycle them to save energy. Thus, the design of coverage configuration protocols for 

wireless sensor networks should minimize the number of active sensors to guarantee the degree of 

coverage of a field required by an application while maintaining connectivity between all active sensors. 

Hence, the first challenge is the determination of the number of sensors required to remain active to k-

cover a sensor field. Given that sensors have limited battery power and wireless sensor networks are 

generally randomly and hence highly dense deployed, the second challenge is the design of an efficient 

scheduling protocol that decides which sensors to turn on (active) or off (inactive) for k-coverage of a field.  

In this chapter, we study duty-cycling to achieve both k-coverage and connectivity in highly dense 

deployed wireless sensor networks [16], where each location in a convex sensor field (or simply field) is 

covered by at least 3≥k  active sensors while maintaining connectivity between all active sensors. Indeed, 

the limited battery power of the sensors and the difficulty of replacing and/or recharging batteries on the 

sensors in hostile environments require that the sensors be deployed with high density [148] in order to 

extend the network lifetime. Also, the sensed data originated from source sensors (or simply sources) 
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should be able to reach a central gathering node, called the sink, for further analysis and processing. 

Thus, network connectivity should be guaranteed so sources can be connected to the sink via multiple 

communication paths. Finally, wireless sensor networks suffer from scarce energy resources. A more 

practical deployment strategy requires that all the sensors be duty-cycled to save energy. With duty-

cycling, sensors can be turned on or off according to some scheduling protocol, thus reducing the number 

of active sensors required for k-coverage and helping all sensors deplete their energy as slowly and 

uniformly as possible. 

An important problem in the design of such network configurations is computing the minimum active 

sensor spatial density required to guarantee k-coverage of a field. For tractability of the problem, first we 

analyze the intersection of k  sensing disks so we can characterize k-coverage provided by a wireless 

sensor network regardless of whether the sensors have identical sensing ranges and whether the sensing 

range of each sensor follows the unit disk model. Based on this analysis, we derive a tight sufficient 

condition of the spatial density of active sensors to achieve complete k-coverage of a field. Although the 

problem of k-coverage has been well-studied in the literature, only a few elegant approaches 

characterized k-coverage of a field [166], [176]. However, none of them guarantees the deployment of a 

minimum number of sensors to achieve k-coverage of a field and hence they would result in shorter 

operational network lifetime. Previous works [166], [176] only characterized k-coverage. According to 

[166], a field is k-covered if all intersection points between the boundaries of sensing ranges of the 

sensors and all those between the boundaries of sensing ranges of the sensors and the boundary of a 

field are k-covered. This is a generalization of the result for 1-coverage [86]. Thus, if two sensing ranges 

intersect, one more is needed to cover their intersection point. A point in a field that coincides with an 

intersection point would be 3-covered instead of 1-covered. Hence, more than enough sensors are 

required to k-cover a field. However, our approach for characterizing k-coverage of a field is different from 

the ones proposed in [166], [176]. Precisely, our approach is able to quantify the minimum spatial density 

of active sensors to fully k-cover a field, thus computing the corresponding minimum number of sensors.  

The remainder of this chapter is organized as follows. Section 5.1 discusses the connected k-

coverage problem in wireless sensor networks and shows how to solve it. Sections 5.2, 5.3, and 5.4 
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present our connected k-coverage configuration protocols. Section 5.5 enhances the applicability of these 

protocols by relaxing some widely used assumptions in coverage protocols. Section 5.6 presents 

simulation results of our protocols and compares them with another existing protocol for connected k-

coverage in wireless sensor networks. Section 5.7 concludes the chapter. 

5.1 Achieving Connected k-Coverage 

In this section, we propose our approach for obtaining connected k-coverage configurations in 

wireless sensor networks. First, we model the connected k-coverage problem in wireless sensor networks. 

Then, we derive a necessary and sufficient condition of the active sensor spatial density such that a field is 

k-covered all the time during the operational lifetime of a network while all active sensors are being 

connected to each other. In Sections 5.2, 5.3, and 5.4, we propose four protocols for generating 

connected k-coverage configuration in wireless sensor networks based on the results of this section. 

5.1.1 Connected k-Coverage Problem Modeling 

Solving the connected k-coverage problem in wireless sensor networks requires finding a sensor 

deployment strategy such that each location in a field is covered by at least k  active sensors while all 

active sensors are connected. Our approach solution to the connected k-coverage problem in wireless 

sensor networks consists of decomposing it into two sub-problems, namely sensor field slicing and sensor 

selection, and solving them. The sensor field slicing problem is to slice a field into small regions of 

particular shape (to be defined later), each of which is guaranteed to be k-covered provided that at least k  

sensors are randomly deployed in it. The sensor selection problem is to select a minimum subset of 

sensors to remain active and connected such that each location in a field is guaranteed to be k-covered. 

Besides selecting a minimum number of active sensors, all selected sensors should have the maximum 

remaining energy. Hence, our min-max connected k-coverage problem can be formulated as follows: 

Definition 5.1 (min-max Connected k-Coverage Problem): Given a field, a set S  of sensors, and a positive 

integer ,k  select a minimum subset SS ⊂min  of sensors such that each point in the field is k-covered, all 

sensors in minS  are connected, and � ∈ min

)(remSs i
i

sE  is maximized, where )(rem isE  is the remaining energy 

of sensor .is                                                                                                                                                   � 
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Because the problem of selecting a minimum subset of sensors to k-cover a field is NP-hard [181], 

we propose efficient centralized, clustered, and distributed approximation algorithms to solve the min-max 

connected k-coverage problem. 

5.1.2 Sufficient Condition to Ensure k-Coverage 

We want to compute the minimum active sensor spatial density required to k-cover a field. To do so, 

we should compute the maximum size of a convex area A of a field so that A is k-covered with exactly k 

sensors. Intuitively, the distance between any point in A and each of the k sensors should be at most 

equal to the radius of their sensing disks. Lemma 5.1 gives an upper bound on the width of such a convex 

area. 

Lemma 5.1: Let r  be the radius of the sensing disks of the sensors and .3≥k  A convex area A  is 

guaranteed to be k-covered when exactly k  homogeneous sensors are deployed in it, if the width of A  

does not exceed .r                                                                                                                                         � 

Now, we present Helly’s Theorem [39] (page 90), a fundamental result of convexity theory, which 

characterizes the intersection of convex sets. 

Helly’s Theorem [39]: Let E  be a family of convex sets in nIR  such that for 1+≥ nm  any m  members of 

E  have a non-empty intersection. Then, the intersection of all members of E  is non-empty.                         

� 

Theorem 5.1, which is an instance of Helly’s Theorem [39], will help us compute the minimum 

sensor spatial density required to k-cover a field. More specifically, Helly’s Theorem [39] together with a 

geometric structure, called Reuleaux triangle [188], will be used to characterize k-covered wireless sensor 

networks. 

Theorem 5.1: Let .3≥k  The intersection of k  sensing disks is not empty if and only if the intersection of 

any three of those k  sensing disks is not empty.                                                                                         � 

Following Theorem 5.1, Lemma 5.2 states a sufficient condition for complete k-coverage of a field. 

Lemma 5.2: Let r  be the radius of the sensing disks of the sensors and .3≥k  A field is k-covered if any 

Reuleaux triangle region of width r  in a field contains at least k  active sensors. 

Proof: First, we compute the maximum area that is k-covered with exactly k  sensors. Let A be the 
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intersection area of the sensing disks of k  sensors. From Lemma 5.1, the width of A should be upper-

bounded by r  so that any point in A is k-covered by these k  sensors. Let us first consider the case of 

three sensors. Using the Venn diagram given in Figure 5.1a, the maximum size of the intersection area of 

the sensing disks of the sensors ,1s  ,2s  and ,3s  so that the distance between any pair of sensors is at 

most equal to ,r  is obtained when ,1s  ,2s  and 3s  are symmetrically located from each other. This area, 

called Reuleaux triangle [188], is denoted by )(rRT  and has a constant width equal to r  (see Figure 5.1b). 

Given that the intersection area of k  sensing disks is at most equal to that of three sensing disks such 

that the maximum distance between any pair of sensors is at most equal to ,r  the maximum size of A is 

equal to the area of ),(rRT  which we call slice (see Figure 5.2). Thus, any point in A is k-covered with 

exactly k  active sensors deployed in A. Since this applies to any )(rRT  region (or slice) in a field, it is 

guaranteed that the field is k-covered.                                                                                                          � 

                                        

                                (a)                                                                                 (b) 

Figure 5.1 (a) Intersection of three sensing disks and (b) their Reuleaux triangle 

                                                                    

           Figure 5.2 Three lenses of a slice.                                   Figure 5.3 Adjacent slices. 

As will be discussed in Section 5.2, our sensor selection scheme exploits the overlap between 
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adjacent slices in a field to select a minimum number of active sensors for full k-coverage of the field. 

Precisely, two adjacent slices intersect in a region shaped as a lens (also known as the fish bladder) so that 

the sides of their associated regular triangles fully coincide (Figure 5.3). Note that k  sensors located in the 

lens of two adjacent slices, say 1C  and ,2C  k-cover the area associated with their union. Indeed, the distance 

between any of these k  sensors located in the lens and any point in the area of the union of both 1C  and 2C  

is at most equal to .r  Lemma 5.3 states this result. 

Lemma 5.3: k  active sensors located in the lens of two adjacent slices surely k-cover both slices.          � 

Theorem 5.2, which exploits the results of Lemma 5.3, refines the result of Lemma 5.2 by stating a 

tighter sufficient condition for complete k-coverage of a field. 

Theorem 5.2: Let .3≥k  A field is guaranteed to be k-covered if for any slice in a field, there is at least one 

adjacent slice such that their lens contains at least k  active sensors.                                                         � 

Theorem 5.3, which exploits the result of Theorem 2, computes the minimum sensor spatial density 

required for complete k-coverage of a field. 

Theorem 5.3: Let .3≥k  The minimum active sensor spatial density required to guarantee k-coverage of a 

field is given by 

2
 )3 3 4(

 6
),(

r
kkr

−
=

π
λ  

where r  is  the radius of the sensing disks of the sensors. 

Proof: It is easy to check that the area ||)(|| rArea  of the union of two adjacent slices is computed as 

6  )3 3 4( 4 2||)(||
2

21 rAArArea −=+= π  

where 4 3
2

1 rA =  is the area of the central equilateral triangle of side r  and 2
2  )436( rA −= π  is the 

area of each of the three curved regions α  (Figure 5.1a). By Theorem 5.2, k  sensors should be deployed 

in the lens of two adjacent slices to k-cover both of them. Thus, the minimum sensor spatial density that 

guarantees k-coverage of a field is equal to 

2
 )3 3 4( 6||)(|| ),( rkrAreakkr −== πλ                                                         � 

It is worth noting that Adlakha and Srivastava [2] showed that the number of sensors required to 
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cover an area of size A  is in the order of ,)ˆ/( 
2

2 rAO  where 2 ̂r  is a good estimate of the radius r  of the 

sensing disks of the sensors. Precisely, r  lies between 1 ̂r  and ;ˆ2 r  1 ̂r  overestimates the number of 

sensors required to cover ,A  while 2 ̂r  underestimates it. 

One may suggest that the maximum area that is guaranteed to be k-covered with exactly k  sensors 

is a circle of radius .2/r  Fortunately, it is easy to check that our density ),( krλ  is smaller than the one 

corresponding to the configuration where k  active sensors are deployed in a circle of radius .2/r  In other 

words, .  4 )3 3 4( 6),(
22 rkrkkr ππλ <−=  

Using the Reuleaux Triangle model described earlier, we prove that k-coverage with 3≥k  implies 

connectivity when .rR ≥  Theorem 5.4 states this result. 

Theorem 5.4: Let .3≥k  A k-covered wireless sensor network is guaranteed to be connected if the radius 

R  of the communication disks of the sensors is at least equal to the radius r  of their sensing disks.        � 

 

Figure 5.4 Slicing grid of a square field. 

5.2 Centralized k-Coverage Protocol 

In this section, we present our centralized randomized connected k-coverage (CERACCk) protocol 

to fully k-cover a field while maintaining connectivity between active sensors. 

According to the min-max connected k-coverage model mentioned in Section 5.1.1, the protocol has 

two main steps. First, we slice a field into regions whose shape helps characterize the k-coverage property 
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of the field, and thus leads to compute the corresponding minimum number of active sensors. Then, we 

select an appropriate subset of sensors to guarantee k-coverage of each slice, and hence k-cover the 

entire field based on the geometric characteristics of those regions. 

Algorithm: CERACCk 
       Procedure Process_Slice ),,( minSki  
       Begin 
             1. 1=j  
             2. 0=CovD  
             3. While 3≤j  Do 
                 Begin 
                      3.1. Randomly select a subset 'S  of 3/k  
                             sensors from thj  lens 
                      3.2. |})(|,3/min{ jlenskCovDCovD +=  
                      3.3. 1+= jj  
                      3.4. ))(_(_ jadjsliceCovDUpdate  
                      3.5. 'minmin SSS �=  
                 End 
             4. If kCovD <  Then 
                  Begin 
             4.1. Randomly select a subset of sensors 'S  
                    of CovDk −  from middle area of the cell 
             4.2. |})(_|,min{ jslicemidCovDkCovDCovD −+=  
             4.3. 'minmin SSS �=  
             4.4. If kCovD <  Then 
                    4.3.1. Return (k-coverage cannot be provided) 
                 End 
       End 
Begin 
     1. Randomly slice a field into regular triangles of side r   
     2. Randomly pick a slice (or Reuleaux triangle) i  
     3. Call a Breadth-First-Search procedure to k-cover slice i   
End 

Figure 5.5 Sensor selection for k-coverage of a field. 

5.2.1 Sensor Field Slicing 

This section provides a solution to the sensor field slicing problem, where all sensors have the same 

sensing and communication disks whose radii are r  and ,R  respectively. 

Let us consider a square field and .3≥k  Based on the result of Theorem 5.2, it is easy to check 

whether a given network can k-cover the field. For this purpose, we propose a slicing scheme of a field by 

dividing it into overlapping Reuleaux triangles of width ,r  called slices as shown in Figure 5.2, such that two 
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adjacent slices intersect in a region shaped as a lens (also known as the fish bladder – see Figure 5.3). This 

implies that the field is sliced into regular triangles of side .r  The result of this slicing operation is called 

slicing grid. Figure 5.4 shows a slicing grid of a field. 

5.2.2 Sensor Selection 

In this section, we propose a centralized algorithm to select a minimum subset of active sensors 

that k-covers a field. We assume that the sink is responsible for this selection process. 

The selection algorithm (Figure 5.5) exploits the overlap between slices to select a minimum number of 

sensors to be active in a given round. As can be observed, sensors located in the lens of two adjacent slices 

participate in k-covering the area associated with their union (Figure 5.3). Lemma 5.4 states this result. 

Lemma 5.4: Sensors located in the lens of two adjacent slices participate in k-covering their union area. � 

Using Lemma 5.4, we start first by selecting sensors located in the three lenses of a given slice as 

shown in Figure 5.2 (a slice overlaps with at most three other slices). At every selection, we check whether 

we have already selected k  sensors to k-cover the underlying slice. At the same time, we update the degree 

of coverage of the other adjacent slices. We repeat this process until we visit all slices in a field. We assume 

that each slice has a unique id, such as an integer. 

Theorem 5.5 refines the result of Theorem 1 and exploits the claim of Lemma 5.4. 

Theorem 5.5: Let .3≥k  A field is guaranteed to be k-covered with a minimum number of sensors if all 

sensors are selected from lenses of adjacent slices.                                                                                    � 

The order in which the slices are treated is critical. It can be easily shown at the end of the sensor 

selection phase that if the slices are processed randomly, there is no guarantee that each slice is k-covered 

with a minimum number of sensors. Thus, the entire field is not guaranteed to be k-covered using a minimum 

total number of sensors. In order to avoid this problem, it is imperative that slices of a slicing grid be 

processed in a particular order. Assume that we have initially picked slice iC  for processing and let ,1iC  ,2iC  

and 3iC  be its adjacent slices. We use a FIFO (First-In-First-Out) data structure, called NYP (Not Yet 

Processed), to keep track of the slices whose degrees of coverage have been updated but not yet 

processed. Hence, when we process slice ,iC  we store the id’s ,  , 21 ii  and 3i  in NYP. When slice iC  has 

been processed, we consider slice 1iC  as the next one to be processed. After that, we pick 2iC  followed by 
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3iC  followed by the slices adjacent to 1iC  and so on. The sensor selection algorithm for k-coverage of a field 

is given in Figure 5.5. 

The sensor selection algorithm described earlier generates only one subset of active sensors to k-

cover a field. If this algorithm is executed in each round for the same slicing pattern of the field, sensors 

located in the lenses will be suffering from a severe battery power depletion problem. Hence, those sensors 

will die very quickly and possibly disconnect the network. Recall that the sensors have several limited 

resources with energy being the most critical one. Thus, it would be more efficient if in each round a different 

subset of sensors is selected for k-coverage of the field so all the sensors are given the same chance to be 

active. Our objective is to balance the load of k-coverage on all sensors so they deplete their energy 

uniformly. Next, we describe an approach to achieve this goal. 

5.2.3 Slicing Grid Dynamics 

Our goal is to select different subsets of sensors 1  , ≥iSi  such that each subset iS  is selected to 

remain active in the thi  round to k-cover a field. Notice that to achieve a better load balancing among 

sensors, we could add a restriction so that selected subsets of sensors are mutually disjoint, i.e., 

.   , jiSS ji ≠∀∅=�  However, the disjointness constraint yields a small number of mutually disjoint 

minimum subsets of sensors. Thus, we only require partially disjoint subsets of sensors. Given that our 

selection criterion is based on the remaining energy of sensors, it is guaranteed that sensors with low 

energy level would be avoided. Furthermore, it is rarely that the same sensors participate in several 

successive rounds to k-cover a field. The question that we want to address now is: How would minimum 

subsets of sensors be selected, each of which k-covers a field? 

To address this question, we consider the dynamics of slicing grid from one round to another. Recall 

that the result of slicing a field into slices is called slicing grid. The selection of different minimum subsets of 

active sensors will be determined based on the obtained slicing grids. Since our scheme for selecting active 

sensors highly prioritizes the ones located in lenses of all slices, it is important that those lenses be able to 

scan the entire field, and hence include distinct subsets of sensors in different rounds. Thus, it is necessary 

that the sink be able to generate a slicing grid randomly at each round. Our objective is to obtain as (partially) 

disjoint minimum subsets of selected sensors as possible. For each obtained slicing grid, the sink applies the 
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selection algorithm in Figure 5.5. Thus, the slicing grid undergoes some dynamics to achieve balanced load 

of k-coverage among all sensors during the operation of CERACCk. The question that we want to address 

now is: How would a slicing grid of a field be randomly generated in each round? 

First, we randomly generate one point 1p  in the field as shown in Figure 5.6. Point 1p  is temporarily 

considered as the center of the Euclidean plane. To randomly determine a second point ,2p  we generate a 

random angle πθ  20 ≤≤  so that the line segment 21pp  forms an angle θ  with the x-axis centered at 1p  

and the distance between 1p  and 2p  is equal to .r  Then, we deterministically find the third point 3p  to form 

the first regular triangle ),,,( 321 ppp  called reference triangle, as shown in Figure 5.6. As its name indicates, 

the rest of regular triangles of the slicing grid will be computed based on this reference triangle. Figure 5.6 

shows two randomly generated slicing grids. 

Theorem 5.6 states that CERACCk is a minimum-energy connected k-coverage configuration 

protocol that guarantees maximum network lifetime. 

Theorem 5.6: CERACCk fully k-covers a field with a minimum number of sensors in each round and 

maintains connectivity between them. Hence, it consumes minimum energy. 

    

Figure 5.6 Random slicing grids with different orientations. 

Proof: The sink guarantees that each slice of a field is covered by exactly k  sensors. Therefore, by 

Theorem 5.2, each slice of the field is k-covered, and hence the entire field is fully covered. Moreover, 

sensors are selected from lenses so all adjacent slices are k-covered with a minimum number of active 

sensors. Thus, by Theorem 5.4, CERACCk guarantees that a field is k-covered using a minimum total 

number of active sensors in each round, and hence, it consumes a minimum amount of energy in each 

round. By Theorem 5.4, a k-covered wireless sensor network is connected, assuming that .rR ≥  Given 
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that CERACCk prioritizes sensors with the highest remaining energy to remain active in each round, and 

given that it is based on the dynamics of slicing grid, necessarily all sensors deplete their energy slowly 

and uniformly, thus leading to a maximum network lifetime.                                                                        � 

In general, the sink is connected to an infinite source of energy, such as a wall outlet, and thus can 

be viewed as a line-powered node [169] that has no energy constraint. Hence, if node failure is due only to 

low battery power, the problem of single-point failure does not arise at all in this type of centralized 

wireless sensor network architecture. Also, under the centralized control of the sink, no coordination 

between sensors is required to select a minimum number of active sensors to k-cover a field. Given that 

sensors have limited energy, this approach would save them energy. Indeed, a schedule that determines 

which sensors should remain active in each round to k-cover a field is computed by the sink and 

forwarded to the selected ones. Thus, such a centralized approach is intended to gain insight into a lower 

bound on the number of sensors required for complete k-coverage of a field, and hence an upper bound 

on the network lifetime. In Section 5.5, we will show how to relax the centralized approach to implement 

CERACCk in a fully distributed manner. 

                                  

       Figure 5.7 Adjacent cluster-heads.                                             Figure 5.8 Clustering for D-CRACCk. 

5.3 Clustered k-Coverage Protocol 

In this section, we propose a family of clustered k-coverage protocols, called clustered randomized 

connected k-coverage (CRACCk), in which part of the duties of the sink in the centralized protocol 
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CERACCk is delegated to a subset of sensors, called cluster-heads. These protocols differ by their degree 

of granularity of network clustering, and hence produce clusters of different shapes and sizes. 

5.3.1 Cluster-Head Selection and Attributed Roles 

As in the centralized protocol CERACCk, the family of protocols CRACCk allows the sink to 

randomly generate in each round a slicing grid, which consists of adjacent overlapping Reuleaux triangles. 

In contrast with CERACCk, the sink randomly designates for each cluster a particular sensor, called 

cluster-head, which is responsible for k-coverage of its assigned cluster during a given round. Precisely, 

each cluster-head is located within the cluster it is in charge of selecting some of its sensing neighbors to k-

cover it. The sink advertises a packet, called ClusterHeadList, including all sensors’ ids that have been 

selected as cluster-heads. When a sensor receives ClusterHeadList, it checks whether its id is included. If 

so, it removes its id from the list and forwards the updated ClusterHeadList packet. Otherwise, it just 

forwards the original packet it has received. The CRACCk family of protocols requires that each cluster-

head coordinates its activity with its adjacent cluster-heads to k-cover its cluster, and hence select a total 

minimum number of sensors to k-cover a field. To achieve this goal, sensors that would remain active in 

each round to k-cover a cluster should be selected from lenses (i.e., intersection areas of adjacent 

Reuleaux triangles). For a better balance, a cluster-head attempts to select 3/k  sensors from each lens 

so any Reuleaux triangle in a cluster contains exactly k  sensors as per Theorem 5.2. The size of a cluster 

and the number of its adjacent ones depend on the type of clustering being used. As can be seen, the 

protocols of the CRACCk family are pseudo-distributed in the sense that the selection of active sensors for 

complete k-coverage of a field is not under the control of the sink. Next, we describe two protocols of the 

CRACCk family, namely T-CRACCk and D-CRACCk, for connected k-coverage in wireless sensor networks 

based on their degree of clustering. 

5.3.2 The T-CRACCk Protocol 

In T-CRACCk (“T” for Reuleaux triangle), a cluster is a slice in the obtained slicing grid and a cluster-

head is called slice-head. In each round, the sink is responsible for randomly generating a slicing grid of a 

field. Given that each slice has at most three adjacent slices (Figure 5.2), the T-CRACCk protocol requires 

that each slice-head coordinates its activity with its adjacent slice-heads to select a minimum total number 
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of sensors to k-cover a field. Figure 5.7 shows slice-head 0sh  sharing three lenses with slice-heads ,1sh  

,2sh  and .3sh  For instance, 0sh  could k-cover its slice by selecting sensors located in its three lenses. 

Then, it communicates the numbers ,1n  ,2n  and 3n  of sensors selected from lenses ,1 Lens  ,2 Lens  and 

,3 Lens  respectively, to its adjacent slice-heads ,1sh  ,2sh  and ,3sh  respectively. Slice-head 1sh  would need 

to select 1nk −  more sensors from its lenses to k-cover its slice. It would definitely coordinate with its 

adjacent slice-heads to k-cover its slice and so does each slice-head. 

Theorem 5.7 states that T-CRACCk yields minimum-energy connected k-coverage.  

Theorem 5.7: The T-CRACCk protocol fully k-covers a field. It also is a minimum-energy connected k-

coverage protocol. 

Proof: Each slice-head ensures that each slice of a field is k-covered by exactly k  sensors by coordinating 

with each of its three adjacent slice-heads. Also, the sink assigns a slice-head to each slice in a field. 

Thus, by Theorem 5.2, the entire field is fully k-covered. Moreover, active sensors are selected only from 

lenses. Therefore, by Theorem 5.5, T-CRACCk guarantees that a field is k-covered with a minimum 

number of active sensors, and hence consumes a minimum amount of energy in each round. By Theorem 

5.4, a k-covered wireless sensor network is connected, assuming that .rR ≥  Given that T-CRACCk favors 

sensors with highest remaining energy in each round and benefits from slicing grid dynamics, all sensors 

are equally likely to be selected for k-coverage of a field in each round. Thus, all sensors deplete their 

energy slowly and uniformly, thus leading to a maximum network lifetime.                                                  � 

5.3.3 The D-CRACCk Protocol 

The D-CRACCk (“D” for Disk) protocol has a higher network clustering granularity than T-CRACCk. 

Precisely, each cluster consists of six adjacent slices forming a disk (Figure 5.8). Notice that for ease of 

representation, Figure 5.8 represents each cluster by only six regular triangles instead of six Reuleaux 

triangles. In each round, the sink selects for each cluster a sensor, called disk-head, which is located 

nearer the center of its corresponding disk to k-cover it. Similarly, each disk-head needs to coordinate with 

at most six adjacent disk-heads to k-cover its disk with a minimum number of sensors so a field is 

guaranteed to be k-covered efficiently. First, we define the notions of interior and boundary lenses. 
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Definition 5.2 (Interior and boundary lenses): An interior lens of a disk is a lens that is shared with no other 

adjacent disk and a boundary lens is shared by two adjacent disks.                                                            � 

In order to k-cover its disk, each disk-head manages at most six interior lenses and six boundary 

lenses. Hence, a disk-head should select sensors from its interior lenses by itself with no coordination with 

any other disk-head but needs to coordinate with its adjacent disk-heads for selecting sensors from its 

boundary lenses. Thus, each disk-head applies the result of Theorem 5.2 so that each slice is k-covered 

by exactly k  sensors. 

Theorem 5.8 states that D-CRACCk yields minimum-energy connected k-coverage. 

Theorem 5.8: The D-CRACCk protocol fully k-covers a field. It also is a minimum-energy connected k-

coverage protocol. 

Proof: In each round, each disk-head uses exactly k  sensors to k-cover each of its six slices by 

coordinating with its six adjacent disk-heads. Also, the sink guarantees that each disk is under the 

responsibility of a disk-head. Thus, by Theorem 5.2, the whole field is k-covered. Moreover, each disk-

head k-covers its disk with sensors selected only from interior and boundary lenses. Therefore, by 

Theorem 43.5, D-CRACCk uses a minimum total number of active sensors in each round such that a field 

is guaranteed to be k-covered. Thus, D-CRACCk consumes a minimum amount of energy in each round. 

By Theorem 5.4, a k-covered wireless sensor network is connected, assuming that .rR ≥  Moreover, D-

CRACCk selects sensors with maximum remaining energy, thus helping all sensors deplete their energy 

slowly and uniformly. Hence, D-CRACCk guarantees maximum network lifetime.                                       � 

Notice that T-CRACCk requires more coordination between cluster-heads than D-CRACCk and 

hence has more overhead to k-cover a field. This is due to the difference of their cluster sizes. Thus, D-

CRACCk is more energy-efficient than T-CRACCk.  

5.4 Distributed k-Coverage Protocol 

In this section, we propose a fully distributed k-coverage protocol, called distributed randomized 

connected k-coverage (DIRACCk). The centralized protocol CERACCk presented in Section 5.2 does not 

rely heavily on global information. Thus, it can be redesigned in a fully distributed fashion based on the 

local information sensors have about their one-hop neighbors with regard to their physical locations and 



 

 

68 

 

remaining energy. Also, DIRACCk design requires coordination among sensors to achieve k-coverage of a 

field. Next, we describe DIRACCk. 

5.4.1 k-Coverage Checking Algorithm 

A sensor runs a k-coverage checking algorithm to find out whether its sensing disk is k-covered. To do 

so, each sensor slices it sensing disk into six overlapping slices as shown in Figure 5.9 such that two 

adjacent slices intersect in a lens. Thus, the slicing grid in DIRACCk consists of exactly six complete slices. 

Similarly, the k-coverage checking algorithm exploits the overlap between adjacent slices as in the case of 

centralized protocol CERACCk. 

 

Figure 5.9 Slicing grids of the sensing disk of a sensor. 

 

Figure 5.10 State diagram of DIRACCk. 

Using Lemma 5.4, each sensor checks whether each of the six slices forming its sensing disk is k-

covered. For each slice, a sensor checks whether the number of active sensors in the three lenses (Figure 

5.2) including itself is equal to .k  Otherwise, it checks whether the number of active sensors located the 
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entire slice, i.e., three lenses and middle of the slice (Figure 5.2), is equal to .k  For each slice, a sensor 

computes its degree of coverage and save the result in an array variable .esCovDegSlic  Based on the 

content of ,esCovDegSlic  a sensor activates a necessary number of its sensing neighbors to k-cover its 

sensing disk. 

If a sensor is unable to k-cover its sensing area when it runs the k-coverage checking algorithm, this 

means that the minimum sensor density required for k-coverage is not satisfied, and hence the field 

cannot be fully k-covered. 

5.4.2 State Transition Diagram of DIRACCk 

At any time, a sensor can be in one of the three states: READY, WAITING, or RUNNING. A state 

transition diagram associated with DIRACCk and indicating the three possible states of a sensor and 

transitions between them is shown in Figure 5.10. 

• In the READY state, a sensor is only listening to AWAKE messages and thus is ready to switch to 

the RUNNING state. 

• In the WAITING state, a sensor is neither communicating with other sensors nor sensing a field, 

and thus its radio is turned off. However, after some fixed time interval, it switches to the READY 

state to receive AWAKE messages if its neighbors decide to do so for achieving k-coverage of 

their sensing areas. 

• In the RUNNING state, a sensor can communicate with other sensors and sense the environment. 

• At the start of the monitoring task, all sensors are in the READY state except one that is in the 

RUNNING state. The single sensor in the RUNNING state is one of the communication neighbors of 

the sink that is chosen randomly by the sink to activate some of its sensing neighbors to achieve 

k-coverage of its sensing area. Those selected sensors will in turn use the same approach to k-

cover their sensing areas. This chain of sensor activations continues until the entire field is k-

covered. As mentioned earlier, when a given sensor is selected by any other sensor to become 

active, it sends out a NOTIFICATION-RUNNING message to inform all its neighbors. While in the 

READY state, a sensor keeps track of its sensing neighbors that are in the RUNNING state. If it finds 

out that its sensing area is k-covered, it will switch to the WAITING state. It is not cost-effective to 
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guarantee that a sensor is not selected more than once during one round. Indeed, guaranteeing 

disjoint subsets of selected sensors requires much coordination between the sensors, thus 

introducing unnecessary overhead. Hence, to use its remaining energy efficiently, a sensor may 

wish to switch from the RUNNING state to the WAITING state. For this purpose, a sensor broadcasts 

a RUNNING-to-WAITING message and waits for some transit time .transitt  If transitt  expires and it 

has not received any RUNNING-to-WAITING message, it switches to the WAITING state and 

sends a NOTIFICATION-WAITING message, where it can stay there for waitt  time. When waitt  

expires, it switches to the READY state, where it can stay for readyt  time. When a sensor (in the 

READY state) receives a RUNNING-to-WAITING message from its sensing neighbor, it either 

switches to the RUNNING state or sends an AWAKE message to one of its sensing neighbors. If a 

sensor finds out that it has not been awaken by its neighbors to be active within some inactivet  time, 

it will broadcast a READY-to-RUNNING message and wait for some transitt  time before switching 

to the RUNNING state. If transitt  expires without receiving any other READY-to-RUNNING message 

from its sensing neighbors, it will send out a NOTIFICATION-RUNNING message and switch to 

the RUNNING state. Otherwise, it stays in the READY state. 

Theorem 5.9 states that DIRACCk is a minimum-energy distributed connected k-coverage protocol. 

Theorem 5.9: The DIRACCk protocol fully k-covers a field. It also is as minimum-energy protocol as D-

CRACCk. 

Proof: We proceed by contradiction. Assume that the total area A  of a field is not fully k-covered by active 

sensors. Hence, A  can be decomposed into a k-covered area cA  and a non-k-covered area ,ncA  i.e., 

.ncc AAA �=  Thus, there is at least one sensor is  whose sensing disk intersects the area ,ncA  i.e., 

.),( ∅≠ncii ArSD �ξ  In particular, the sensing disk of is  is not fully k-covered. Hence, sensor is  is not active. 

Precisely, is  is in the WAITING state. According to DIRACCk, however, sensor is  must be in the RUNNING 

state (i.e., active) given that its sensing disk is not fully k-covered. This contradicts our assumption. Thus, 

the total area A  of a field is fully k-covered by active sensors. Let us now show that DIRACCk uses as 

minimum number of active sensors as D-CRACCk to k-cover a field. Using DIRACCk, each sensor checks 
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whether its sensing area is k-covered. In order to k-cover each of its six slices, each sensor makes sure 

that there are exactly k  active within its sensing disk. Each sensor favors active sensors that are located 

in the interior and boundary lenses of its sensing disk. Given that there is no pre-slicing of the entire field 

into adjacent slices as is the case with the three other protocols, there is no guarantee that all active 

sensors belongs to the lenses of each sensor. Therefore, it may happen that active sensors located in 

some lenses of the sensing disk of a sensor are located in the lenses and/or the middle of slices of other 

sensors. Definitely, these sensors will consider those active sensors located in the middle of their slices so 

they k-cover their sensing disks with as minimum number of active sensors as possible. By Theorem 5.2, 

it follows that DIRACCk could use a little more sensors than D-CRACCk to achieve complete k-coverage of 

a field. Hence, Thus, DIRACCk consumes as minimum amount of energy as D-CRACCk during the 

operational network lifetime. Similarly, DIRACCk selects sensors with highest remaining energy to remain 

active, thus helping all sensors deplete their energy as slowly and uniformly as possible, thus extending 

the network lifetime. By Theorem 5.4, a k-covered wireless sensor network is connected if .rR ≥              � 

5.5 Relaxation of Assumptions 

The design of our connected k-coverage protocols are based on the unit disk model and 

homogeneous sensor model. Although these assumptions are the basis for most of coverage and 

connectivity protocols in wireless sensor networks, they may not be valid in real-world wireless sensor 

network platforms. In this section, we relax these assumptions to promote the use of our protocols in real-

world applications. 

5.5.1 Relaxing the Unit Disk Model 

It was found that the communication range of MICA motes is asymmetric and depends on the 

environments [179] and that the communication range of radios is highly probabilistic and irregular [182]. 

For problem tractability, we consider a convex model, where the communication and sensing ranges of 

sensors are homogeneous and convex but not necessarily circular. 

Lemmas 5.5 and 5.6 correspond to Lemma 5.1 and Theorem 5.2, respectively. Their proof is literally 

the same as that in Section 5.1.2 by using the notion of largest enclosed disk. 

Let ledr  be the radius of the largest enclosed disk of the sensing range of sensors. 
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Lemma 5.5: Let .3≥k  A convex area A  is guaranteed to be k-covered when exactly k  homogeneous 

sensors whose sensing ranges are convex are deployed in it, if the width of A  does not exceed .ledr        � 

Lemma 5.6: Let .3≥k  A field is guaranteed to be k-covered if for any slice of width ledr  in a field, there is 

at least one adjacent slice of width ledr  such that their lens contains at least k  active sensors.                 � 

Now, we discuss how CERACCk, T-CRACCk, D-CRACCk, and DIRACCk can be implemented using 

the convex sensing model. The unit of slicing, i.e., Reuleaux triangle, has a width equal to .rled  Any other 

processing remains the same for each of those four protocols. Hence, the assumption of the unit disk 

model can be easily relaxed with the help of the notion of the largest enclosed disk of the sensing range of 

the sensors. 

5.5.2 Relaxing the Sensor Homogeneity Model 

Real-world sensing applications [90] may require heterogeneous sensors in terms of their sensing 

and communication capabilities to enhance the reliability of the network and extend its lifetime [169]. Even 

sensors equipped with identical hardware may not always have the same sensing model. In this section, 

we consider heterogeneous sensors with different yet convex sensing and communication ranges. 

Lemmas 5.7 and 5.8 correspond to Lemma 5.1 and Theorem 5.2, respectively. 

Lemma 5.7: Let .3≥k  A convex area A  is guaranteed to be k-covered when exactly k  heterogeneous 

sensors whose sensing ranges are convex but not necessarily circular are deployed in it, if the width of A  

does not exceed ,
min

ledr  the smallest radius of the largest enclosed disks of the sensors’ sensing ranges.  � 

Lemma 5.8: Let .3≥k  A field is guaranteed to be k-covered if for any slice of width min
ledr  in a field, there is 

at least one adjacent slice of width min
ledr  such that their lens contains at least k  active sensors.                � 

In the case of CERACCk, T-CRACCk, and D-CRACCk, the sink has to slice a field into slices of width 

min
ledr  and apply the same processing as in Section 5.1.2. For DIRACCk, each sensor needs to consider its 

largest enclosed disk and run the same steps as in Section 5.1.2. Thus, the assumption of homogeneous 

sensors can also be relaxed with slight updates to our protocols. 
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5.6 Performance Evaluation 

In this section, we present the simulation results of our protocols using a high-level simulator written 

in the C programming language. First, we specify the simulation environment as well as the energy 

consumption model that we use. Then, we present the simulation results with respect to several 

parameters. 

5.6.1 Simulation Settings 

We consider a square field of side length m. 1000  We use the energy model given in [171], where 

the sensor energy consumption in transmission, reception, idle, and sleep modes are 60 mW, 12 mW, 12 

mW, and 0.03 mW, respectively. Following [176], the energy required for a sensor to stay idle for 1 

second is equivalent to one unit of energy. We assume that the initial energy of each sensor is 60 Joules 

enabling a sensor to operate about 5000 seconds in reception/idle modes [171]. All simulations are 

repeated 20 times and the results are averaged. 

  

                                              (a)                                                                                         (b) 

Figure 5.11 ),( krλ  vs.  (a) k  and (b) .r  

5.6.2 Simulation Results 

In this section, we present the simulation results of our protocols. Figure 5.11a shows the sensor 

density versus the coverage degree  ,k  where the radius r  of the sensing range of sensors is fixed to 

m. 25=r  The sensor density increases with k  for a fixed ,r  as expected. As can be seen, the four 

protocols yield a sensor density less than the one given in Theorem 5.3. Also, CERACCk outperforms all 
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other protocols while DIRACCk uses more sensors than these protocols due to its distributed nature. 

Figure 5.11b plots the sensor density versus r  with .3=k  We observe that the sensor density decreases 

with r  for a fixed ,k  Likewise, the four protocols require a smaller sensor density than the one computed 

in Theorem 5.3. 

    

                                    (a)                                                                               (b) 

Figure 5.12 Number of active sensors vs. number of deployed sensors while varying (a) k  and (b) .r  

    

     Figure 5.13 k  vs. number an  of active sensors.              Figure 5.14 Remaining energy vs. time. 

Figure 5.12 shows the number of active sensors versus the total number of deployed sensors for 

DIRACCk. In Figure 5.12a, we consider different values of ,k  while in Figure 5.12b, we consider different 

values of .r  For higher values of ,k  more sensors need to be active to achieve the required coverage. 
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However, for higher values of ,r  less number of sensors is needed to k-cover a field. In both experiments, 

the number of active sensors does not depend on the number of deployed sensors but only on k  and .r  

Figure 5.13 shows the degree k  of coverage versus the total number an  of active sensors for 

DIRACCk. Notice that k  increases with .an  Also, for the same ,an  k  increases quickly as r  increases as 

a larger region of the field would be covered. 

Figure 5.14 shows that the total remaining energy of the sensors in the four protocols decreases 

smoothly (in this experiment, the number of deployed sensors is 16,000). Notice that the centralized 

protocol CERACCk consumes less energy than all other protocols while the distributed protocol for 

DIRACCk consumes the highest amount of energy. Thus, CERACCk yields longer network lifetime than 

DIRACCk. This shows the advantage of our centralized protocol (CERACCk) over the distributed one 

(DIRACCk). Indeed, the number of messages needed by CERACCk to distribute the optimal schedule to 

the selected sensors may be less than that required by DIRACCk due to the periodic messages 

exchanged by sensors to coordinate their mission for k-coverage of a field. 

    

                                                   (a)                                                                              (b) 

Figure 5.15 DIRACCk compared to CCP (a) k  vs. an  and (b) remaining energy vs. time. 

5.6.3 Comparison of DIRACCk with CCP 

In this section, we compare DIRACCk with CCP [166]. The CCP protocol provides different degrees 

of full coverage of a convex region. CCP was the first protocol that discussed k-coverage and connectivity 

within a unified framework. It was proved that coverage implies connectivity when rR  2≥  [166]. Hence, no 
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other mechanism would be necessary to guarantee connectivity. However, CCP was integrated with a 

topology maintenance protocol, called SPAN [52], to provide both coverage and connectivity guarantees 

when . 2 rR <  Recall that a convex region A  is k-covered in CCP if all intersection points between sensing 

disks of sensors and between sensing disks of sensors and sA'  boundary are at least k-covered. 

  

                                       (a)                                                                         (b) 

Figure 5.16 DIRACCk compared to CCP (a) an  vs. R  and (b) an  vs. .r  

Figure 5.15a plots the degree k  of coverage versus the number an  of active sensors for DIRACCk 

as compared to CCP. It shows that DIRACCk requires less active sensors than CCP to achieve the same 

degree of coverage, thus yielding significant energy savings. This is due not only to a higher number of 

active sensors required by CCP, and hence an additional energy spent in sensing, but also to the 

communication overhead caused by the exchange of messages between active sensors running CCP to 

coordinate among themselves and provide the requested k-coverage service. Thus, CCP consumes more 

energy than DIRACCk as shown in Figure 5.15b. Note that while CCP requires SPAN to provide 

connectivity between active sensors when , 2 rR <  DIRACCk does not need such a topology maintenance 

protocol as all it requires is ,rR ≥  thus providing connectivity when k-coverage is guaranteed. Indeed, 

DIRACCk is based on the analysis of sensors’ sensing range to provide k-coverage.  

Figure 5.16a plots an  versus R  with m, 30=r  while Figure 5.16b plots an  versus r  for different 

ratios ,/ rR=α  where .1≥α  In both cases, we fix .3=k  Given that ,1≥α  any increase in the 

communication range of sensors would not have any impact on the performance of DIRACCk. It would, 
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however, affect the performance of CCP. As can be observed, an  decreases as R  increases. Indeed, 

SPAN would require less number of sensors to maintain connectivity between active sensors as R  

increases. However, at some point, (surprisingly enough, this point corresponds to ), 2 rR ≥  the number an  

of active sensors required for k-coverage does not decrease any further. Indeed, when , 2 rR ≥  SPAN is 

not needed at all as both k-coverage and rR  2≥  would guarantee connectivity. Similarly, the performance 

of CCP improves as the ratio α  increases (Figure 5.16b), i.e., R  increases. That is, less number of active 

sensors is needed to provide k-coverage and connectivity. 

5.7 Summary 

In this chapter, we have studied the problem of connected k-coverage in wireless sensor networks, 

where each location in a field is covered by at least k  active sensors while all active sensors are being 

connected [16], [20]. First, we have characterized k-coverage of a field based on a geometric analysis of 

the intersection of sensing disks of k  sensors. We have proved that k-coverage implies connectivity 

between active sensors when the communication range of the sensors is at least equal to their sensing 

range. By looking at real sensor node platforms, it is always the case that the communication range of the 

sensors is higher than their sensing range, and hence our argument is always valid. Indeed, Tables I and 

II given in [176] show the communication range of Berkeley motes is much higher than the sensing range 

of several typical sensors, that and hence support our argument. We have also proved that a sufficient 

condition of k-coverage of a field is that the minimum sensor spatial density depends only on k  and the 

sensing range of the sensors. Moreover, we have proposed centralized (CERACCk), pseudo-distributed 

(T-CRACCk and D-CRACCk), and fully distributed (DIRACCk) protocols to solve the connected k-coverage 

problem in wireless sensor networks. We have also extended our analysis by relaxing several widely used 

assumptions in k-coverage configuration in wireless sensor networks. We have also extended our 

analysis by relaxing the assumptions of the unit sensing disk model and homogeneous sensor. These 

relaxations have helped us handle the convex sensing model and heterogeneous wireless sensor 

networks, and hence promote the use of our protocols in real-world applications. Our simulation results 

show that DIRACCk is more energy-efficient than CCP [166], with respect to the number of active sensors 

required for k-coverage and network operational lifetime. 
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CHAPTER 6 

GEOGRAPHIC FORWARDING ON DUTY-CYCLED SENSORS  

The design of protocols for wireless sensor networks is challenging due to the scarce battery power 

of the sensors. It is well known that sensor duty-cycling is an important mechanism that helps densely 

deployed wireless sensor networks save energy so the sensors remain operational for as long as 

possible. Geographic forwarding, on the other hand, is an energy-efficient and practical scheme for 

wireless sensor networks in that the sensors are not required to maintain global and detailed information 

on the topology of the entire network. The sensors need only maintain local knowledge on their one-hop 

neighbors with respect to their geographic location information. Although there is a dependency between 

sensor duty-cycling and data forwarding in the sense that data should be forwarded to a central gathering 

point, known as the sink, via active sensors, only a few works jointly consider them. Indeed, most of 

geographic forwarding protocols assume that all sensors are always on during forwarding. However, such 

an assumption is not realistic in densely deployed wireless sensor networks [148], where sensors are 

duty-cycled, i.e., switched on or off to save energy. While most efforts focused on only single aspect of the 

problem (coverage, duty-cycling, routing), this chapter offers clarity into the issues that must be addressed 

for joint protocol development, where k-coverage, duty-cycling, and geographic forwarding are discussed 

in a unified framework. 

In this chapter, we study the problem of joint k-coverage, duty-cycling, and forwarding in wireless 

sensor networks. Specifically, we focus on geographic forwarding in a duty-cycled, k-covered wireless 

sensor network, where each point in a field is covered by at least 3≥k  active sensors while all active 

sensors are connected. Geographic forwarding in k-covered wireless sensor networks, however, faces 

three major challenges. The first challenge is how to determine the number of active sensors required to 

fully k-cover a field. As of writing this chapter, there is no exact bound on the sensor spatial density for k-

coverage of a field. Besides k-coverage characterization, our approach quantifies the required minimum 

sensor spatial density. The second challenge is how to design a minimum-energy duty-cycling protocol for 
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a k-covered wireless sensor network that deploys as minimum number of active sensors as possible so all 

sensors deplete their energy slowly and uniformly. Our goal is to prolong the lifetime of the sensors in 

order to extend the network lifetime. Although several k-coverage protocols for wireless sensor networks 

have been proposed, none of them provided a guarantee of using a minimum number of active sensors. 

The third challenge is how to design energy-efficient geographic forwarding protocols running on top of a 

duty-cycled k-covered wireless sensor network with a specific requirement in terms of data aggregation. A 

few works on joint duty-cycling and forwarding exist in the literature [38], [133], [184]. The work in [133] 

jointly considers duty-cycling and opportunistic routing at the network layer. Our joint protocols are 

complementary to [133] and are more general in that they jointly consider geographic forwarding on a 

duty-cycled k-covered wireless sensor network along with different data aggregation levels [21], [22]. 

Although several elegant protocols have been proposed to solve the problem of k-coverage in 

wireless sensor networks as discussed earlier, the problem of routing on duty-cycled wireless sensor 

networks has received little attention in the literature. In particular, joint coverage and geographic 

forwarding in wireless sensor networks has been overlooked intentionally. This is due to the fact that all 

sensors are assumed to be always on during data forwarding. However, this assumption is not valid in 

real-world applications, where all sensors should not stay on all the times to save energy. This work is an 

effort complementing previous ones [38], [184], and particularly the one by Nath and Gibbons [133]. 

Precisely, we focus on the design of energy-efficient geographic forwarding on a minimum-energy duty 

cycled k-covered wireless sensor network, where every point in a field is covered by at least k sensors. 

Similar to [133], our joint sleep-wakeup scheduling and geographic forwarding in a k-covered wireless 

sensor network is done at the network layer. We believe that our joint protocols could be useful for several 

applications and particularly those requiring data aggregation at intermediate sensors along paths to the 

sink. To the best of our knowledge, this is the first study of geographic forwarding on a duty-cycled k-

covered wireless sensor network. 

The remainder of this chapter is organized as follows: Section 6.1 presents our sleep-wakeup 

scheduling protocol for full k-coverage of a field. Section 6.2 presents our geographic forwarding protocols 

for a duty-cycled k-covered wireless sensor network. Section 6.3 proposes relaxation of several 
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assumptions to generalize our protocols. Section 6.4 presents simulation results of our protocols. Section 

6.5 concludes the chapter. 

                      

                                      (a)                                                                              (b) 

Figure 6.1 (a) Randomly generated clustered sensor field and (b) intersection of adjacent slices. 

6.1. Sensor Selection to Achieve k-Coverage: Revisited 

First, we summarize the operation of field slicing and clustering. Then, we describe the coordination 

that is required between the cluster-heads to achieve k-coverage with a minimum number of sensors. 

6.1.1 Sensor Field Clustering 

In addition to slicing a field, we assume that the sink is also responsible for forming clusters of slices 

from the randomly obtained slicing grid. Precisely, each cluster consists of at most six adjacent slices 

forming a disk. Because of the random generation of slicing grids and the geometry of a field, some 

clusters consist of an entire disk, and hence called interior clusters, while others are formed by a portion of 

a disk, and hence called boundary clusters. Figure 6.1a shows a randomly generated clustered sensor 

field. Moreover, for each cluster, the sink selects a sensor, called cluster-head, which is located as near 

as possible to the center of its cluster. The random generation of slicing grid ensures that all sensors are 

equally likely to act as cluster-heads in each round. Each cluster is defined by one point, i.e., (x,y) 

coordinates, representing its center and at most six other points defining its slices (or slice portions for a 

non-complete cluster). These seven points define the slicing information of a cluster, which the sink would 

broadcast to its corresponding cluster-head. Next, we define interior/boundary lenses and potential 

energy. 

Definition 6.1 (Interior and boundary lenses): An interior lens of a cluster is not shared with any of its 
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adjacent clusters while a boundary lens is shared by two adjacent clusters.                                               � 

Notice that each cluster overlaps with at most six others as shown in Figure 1a. As discussed in 

Chapter 5, sensors located in the boundary lenses of a given cluster should be selected first in order to 

minimize the necessary total number of active sensors to achieve full k-coverage of a field. However, this 

would require certain coordination between cluster-heads. 

ALGORITHM 1: k-COVERAGE-SLEEP-WAKEUP (CSWk) 
(* This code is run in each round *) 
/* The following code is run by the sink */ 
1.   Slice randomly a field into adjacent slices 
2.   Select a set CH of cluster-heads for all clusters in such a 
      way they are located as close as possible to clusters’ centers 
3.   Broadcast the selected set CH with all slicing information 
/* The following code is run by each cluster-head */ 
4.   Select sensors from its cluster (high priority to boundary  
      lenses) and coordinate with all adjacent cluster-heads to k- 
      cover a cluster based on the potential energy of sensors 
5.   Return 

Figure 6.2 Sleep-wakeup scheduling for k-coverage. 

6.1.2 Cluster-Heads Coordination and Sensor Selection 

Each cluster-head is in charge of selecting some of its sensing neighbors to k-cover its cluster based 

on its slicing information. Precisely, each cluster-head exploits the overlap between the slices of its cluster as 

well as the overlap between its slices and those of its adjacent cluster-heads to select a minimum number of 

its sensing neighbors to k-cover its cluster. We assume that each sensor advertises its potential energy to 

its sensing neighbors at the start of a round when it turns itself on. Each cluster-head 
ichs  maintains a list 

of potential energy of its sensing neighbors, )],(:)([)(
ii chjjch sSNsss ∈=Π π  where )( isπ  is the potential 

energy of sensor .is  It uses this list to select the ones with high potential energy to stay active by sending 

a SELECT message including the cluster-head’s id as well as the id’s of all selected sensors. This would 

avoid those ones with low potential energy and help the sensors deplete their energy as slowly and 

uniformly as possible. We assume that at the beginning of each round, all the sensors are active. Those 

ones which are selected by their corresponding cluster-heads would remain active during the underlying 

round, while the others turn themselves off (or go to sleep). For the sensor selection, each cluster-head 

assigns priorities to sensors located in boundary lenses, interior lenses, and middle of slices in 
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descending order. In other words, sensors located in boundary lenses have high priority to be selected. 

Given that each cluster has at most six slices, each cluster-head manages at most six interior lenses and 

at most six boundary lenses. On the one hand, each cluster-head is responsible for selecting sensors 

from its interior lenses without any coordination with its adjacent cluster-heads. On the other hand, each 

cluster-head coordinates with at most six adjacent cluster-heads to select sensors from its boundary 

lenses in order to k-cover its cluster with a minimum number of sensors. For instance, in the case of a 

disk, its cluster-head, say 
0chs  (Figure 6.1a), would advertize the subsets 654321  , , , , , SSSSSS  of sensors 

selected from its six boundary lenses to its adjacent cluster-heads ,s ,s ,s ,s ,s ,
654321 chchchchchchs  respectively. 

The pseudo-code of our sleep-wakeup scheduling protocol (CSWk) for ensuring k-coverage of a field 

is given in Figure 6.2. 

6.2. Geographic Forwarding in a Duty-Cycled k-Covered Wireless Sensor Networks 

In this section, we present our first potential field [89] based solution for geographic forwarding on a 

duty-cycled k-covered wireless sensor network, called Geographic Forwarding through Fish Bladders 

(GEFIB), where data is forwarded through fish bladders (or lenses). Precisely, we discuss three 

geographic forwarding protocols with different levels of data aggregation. 

Assumption 6.1 (Data traffic model): We assume that in each round, every active sensor has data to 

report to the sink. Also, only sensors selected to k-cover a field act as relays.                                            � 

6.2.1 Potential Fields Based Modeling Approach 

Sensors can be viewed as particles, and hence are subject to virtual forces, which attract sensors to 

each other. These virtual attractive forces are due to the potential energy of the sensors and their 

geographic locations. Indeed, the sensors with highest potential energy are preferred to act as relays in 

order to avoid energy holes (i.e., regions whose sensors have depleted their energy) that may disconnect 

the network. Also, as the energy spent in data transmission is proportional to the transmission distance 

[88], the sensors prefer closer ones to act as relays, thus forwarding data over short distances. 

Using potential field terminology, each active sensor is subject to at least one attractive force, called 

energy-location based force and denoted by ,elF  which is exerted by some active sensor and defined as 

the gradient of a unique scalar potential field, called energy-location based potential field and denoted by 
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,elU  i.e., .elel UF −∇=  We should mention that this notion of attractive force is symmetric. That is, if a 

sensor is  exerts a force on sensor ,js  the latter also exerts on the former a force with the same 

magnitude. Also, only active sensors can exert forces on each other. Our approach to modeling the 

resultant force that a sensor is  exerts on its sensing neighbor js  is borrowed from electromagnetism 

theory [153]. Using Coulomb’s law [153], the magnitude of the electrostatic force ),( jiF  between two 

points electric charges iq  and jq  depends on their magnitudes and the Euclidean distance ),( jid  

between them and the permittivity 0ε  of free space, and is computed as 

),(

|| ||
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2
0 jid

qq
jiUjiF ji

επ
=−∇=  

In our model, the charge of a sensor is its potential energy and permittivity is the transmitter 

amplifier [88] in the free-space )( fsε  model )2( =α  or the multi-path )( mpε  model ),42( ≤< α  where α  is 

the path-loss exponent. Thus, the magnitude of the force ),( jiFel  that a sensor is  exerts on its sensing 

neighbor js  is proportional to the product of their potential energy, )( isπ  and ),( jsπ  and inversely 

proportional to the Euclidean distance ),( jid  between them. Moreover, it is important that ),( jiFel  account 

for the type of model being used, i.e., free-space model )( fsεε =  vs. multi-path model ).( mpεε =  Therefore, 

the attractive force ),( jiFel  is computed as 
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Similarly, there is an interaction between one sensor and a set of sensors. Precisely, the resultant 

force exerted by sensor is  on a set of sensors S  is given by 

�� ∈∈
∇−==

Ss elSs elel
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jiUjiFSiF ),( ),( ),(  

Next, we present three geographic data forwarding protocols for a duty-cycled k-covered wireless 

sensor network based on potential fields. 

6.2.2 Potential Fields Based Data Forwarding without Aggregation 

In this section, we propose a simple approach for geographic forwarding without data aggregation 

on a duty-cycled k-covered wireless sensor network based on artificial potential fields that were described 
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in Section 6.2.1. Let us first define the notion of best relay of a sensor. 

Definition 6.2 (Best relay of a sensor): A best relay of a sensor is  is a sensing neighbor ls  of is  located 

between it and the sink such that ),( biFel  is the maximum over all resultant forces exerted by is  on its 

sensing neighbors, i.e., )}.(:),(max{),( ijelel sSNsjiFliF ∈=                                                                              � 

When a sensor receives data for which it is its relay, it selects a best relay from its sensing neighbor 

set and forwards the data to it. Otherwise, it just ignores it. This process repeats until the sink receives the 

data. The pseudo-code of our geographic forwarding without data aggregation on a duty-cycled k-covered 

wireless sensor network, called GEFIB-1, is given in Figure 6.3. 

ALGORITHM 2: JOINT-k-COVERAGE-FORWARDING (GEFIB-1) 
(* This code is run in each round. It is called by every sensor is  holding data to be forwarded 
to the sink. It is assumed that CSWk has been already called to k-cover a field *) 
1.   Sort all active sensing neighbors in a list, LIST, based on 
      their resultant forces ),( jiFel  where )( ij sSNs ∈  
2.   Select a best relay ls  from the sorted list, LIST 
3.   Forward sensed data to ls  
4.   Return 

Figure 6.3 Joint k-coverage and forwarding (GEFIB-1). 

 

Figure 6.4 Communication between adjacent cluster-heads. 

6.2.3 Potential Fields Based Data Forwarding with Aggregation 

In this section, we present two geographic forwarding protocols with data aggregation on a duty-

cycled k-covered wireless sensor network. 

All data originated from sensors in a cluster are received by their corresponding cluster-head, which 



 

 

 85

aggregates them with its own data into only one single data. Precisely, each sensor sends its data directly 

to its cluster-head, where data is aggregated. We distinguish two types of aggregation. In the first 

scenario, referred to as local data aggregation, aggregation occurs only within clusters and all data 

aggregated by cluster-heads are forwarded to the sink without further aggregation. Thus, the sink receives 

data from each cluster-head in each round. In the second scenario, referred to as global data aggregation, 

the sink receives only one data packet in each round that represents the aggregation of all data 

aggregated by cluster heads. Precisely, each cluster-head also aggregates its own aggregated data with 

the aggregated data it has received from a cluster-head and forwards the result to another cluster-head. 

Before we discuss our geographic data forwarding protocol with data aggregation on a duty-cycled k-

covered wireless sensor network, namely GEFIB-2 (Section 6.2.3.1) and GEFIB-3 (Section 6.2.3.2), we 

define best slice, best lens, and best relay of a cluster-head with respect to a destination. 

ALGORITHM 3: JOINT-k-COVERAGE-FORWARDING (GEFIB-2) 
(* This code is run in each round. It is called by every sensor is   
    holding data to be forwarded to the sink. It is assumed that CSWk 
    has been already called to k-cover a field. We assume that each 
    sensor already sent its sensed data directly to its cluster-head *) 
     Procedure Identify_Best_Relay (id1, id2, id3: integer) 
     1.   Determine a best slice of 1ids  with respect to 2ids  
     2.   Sort the three lenses 321  , , LLL of this slice based on the 
           resultant forces ),1( jel LidF of their sensors )31( ≤≤ j  
     3.   Select a best lens 31 , ≤≤ bLb  
     4.   Select a best relay bid Ls ∈3  
     5.   Return(id3) 
     EndProcedure 
/*  The following code is run by a best relay */ 
1.   If is  is a relay Then /* i is the id of is  */ 
1.1.     Forward sensed data to the closest cluster-head 
2.   Else  /*  The following code is run by a cluster-head */ 
2.1.     Identify_Best_Relay(i,m,id) /* m is the sink’s id */ 
2.2.     Forward sensed data to ids  /* id is a best relay’s id */ 
       EndIf 
3.    Return 

Figure 6.5 Joint k-coverage and forwarding (GEFIB-2). 

Definition 6.3 (Best slice, visible lens, best lens, and best relay of a cluster-head): A best slice of a cluster-

head chs  with respect to a destination ,Dest  which could be a cluster-head or the sink, is a slice that is 
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crossed by a line segment connecting chs  and Dest  (Figure 6.4). A visible lens ),( DestiLv  of chs  with 

respect to ,Dest  is a lens that belongs to the best slice of chs  with respect to ,Dest  where 31 ≤≤ v  (Figure 

6.4). A best lens ),( DestiLb  of chs   with respect to ,Dest  is a visible lens   such that )),(,( DestiLiF bel  is the 

maximum over all resultant forces exerted by chs  on all its visible lenses ),,( DestiLv  where .3,1 ≤≤ vb  A 

best relay ls  of a cluster-head chs  with respect to a destination ,Dest  is a sensing neighbor of chs  selected 

from a best lens ),( DestiLb  such that ),( liFel  is the maximum over all resultant forces exerted by is  on its 

neighbors located in ).,( DestiLb  That is, }31:)),(,(max{)),(,( ≤≤= vDestiLiFDestiLiF velbel  and 

)}.,(:),(max{),( DestiLsjiFliF bjelel ∈=                                                                                                               � 

ALGORITHM 4: DAT-CONSTRUCTION (DAT-C) 
(* This code is run in each round by the sink and cluster-heads *) 
/*  The sink initiates the DAT construction process  */ 
1.  Randomly select one cluster-head as ring aggregator and two  
     adjacent cluster-heads as aggregation initiators 
2.  The sink assign a ring_id to the first ring (ring_id = 1) and 
     advertizes it to its ring aggregator and aggregation initiators 
3.  The sink designates one of the aggregation initiators as an  
     Aggregation proxy to designate two of its adjacent 
     cluster-heads as aggregation initiators for the next ring 
4.  The aggregation proxy advertizes ring_id clockwise while 
     the other aggregation initiator advertizes it counter-clockwise 
/*  Ring aggregators and aggregation initiators build the DAT  */ 
5.  ring_id = ring_id + 1 
6.  While (all cluster-heads are not being considered) Do 
7.     A ring aggregator selects one of its adjacent cluster-heads 
        as a ring aggregator for the next ring whose id is ring_id 
8.     An aggregation proxy selects two of its adjacent 
        cluster-heads as aggregation initiators for the next ring  
        whose id is ring_id. One of these cluster-heads 
        is designated as an aggregation proxy 
9.     An aggregation proxy advertizes ring_id clockwise while 
        an aggregation initiator advertizes it counter-clockwise 
10.   ring_id = ring_id + 1 
      EndWhile 
11. Return 

Figure 6.6 DAT construction algorithm (DAT-C). 

6.2.3.1 Locally Aggregated Data Forwarding 

First, each sensor sends its data directly to its cluster head without relaying them through other 

intermediate sensors. When a cluster head is  receives data from all sensors belonging to its cluster, it 
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aggregates them with its own data and forwards the result, called locally aggregated data (LAD), toward 

the sink. In each round, the sink receives as many LAD packets as cluster-heads. Indeed, when a cluster-

head receives LAD packets initiated from other cluster-heads, it just forwards them without any update. 

Precisely, a cluster-head finds the best slice with respect to the sink (Definition 6.4) and chooses the best 

lens in terms of attractive force out of the three visible lenses (Figure 6.4). From this lens, it selects the 

best relay based on the potential field-based force and forwards data to it. However, when a relay receives 

the data, it forwards it directly to the closest cluster-head. This forwarding process between cluster-heads 

using relays takes place through fish bladders (or lenses) and repeats until data arrives at the sink. All 

cluster-heads and relays apply the algorithm GEFIB-2 whose pseudo-code is given in Figure 6.5. 

        

                            (a)                                                                                                  (b)      

Figure 6.7 (a) Data forwarding on a random data aggregation tree and (b) its linear representation. 

6.2.3.2 Globally Aggregated Data Forwarding 

In each round, the sink would receive only one data, called globally aggregated data (GAD), which 

represents the result of aggregation of all locally aggregated data generated by their cluster-heads. This 

implies that at the end of each round, only one cluster-head would forward the data aggregated by all 

other cluster-heads after it has been aggregated with its own data. Therefore, it is necessary that all 

cluster-heads participate in the data forwarding process. It follows that each cluster-head would act as a 

relay on behalf of other cluster-heads until a GAD packet reaches the sink. Precisely, at any time, there is 

only one aggregated data packet that is forwarded by cluster-heads until it reaches the sink. 
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ALGORITHM 5: JOINT-k-COVERAGE-FORWARDING (GEFIB-3) 
(* This code is run in each round by a cluster-head or a relay .is  It is 
assumed that CSWk has been already called to k-cover a field and 
that each sensor already sent its data to its cluster-head *) 
/* Run the first step at the start of each round. The sink and 
    Cluster-heads participate in the DAT construction */ 
1.  Call to DAT-Construction algorithm (ALGORITHM 4) 
/* All aggregation initiators initiate the data forwarding process  
    on their corresponding ring in parallel */ 
2.  If is  is an aggregation proxy Then 
2.1.  Identify_Best_Relay(i,j,id) /* ids  is a best relay */ 
2.2.  Forward data clockwise to the immediate successor cluster- 
        head js  in the corresponding ring via the relay ids  
       (the destinations ids  and js  are inserted in the data packet) 

3.  Else /* The other aggregation initiator */ 
3.1.  Identify_Best_Relay(i,j,id) 
3.2.  Forward data counter-clockwise to the immediate successor  
        cluster-head js  in the corresponding ring via the relay ids  
       (the destinations ids  and js  are inserted in the data packet) 

    EndIf 
/*  Code is run by a best relay or a virtual cluster-head */ 
4.  If is  is a best relay or a virtual cluster-head Then  

4.1.  Forward data to the next cluster-head js  

5.  Else /* Cluster-heads and ring aggregators */ 
5.1.  If is  is a cluster-head Then /* Cluster-heads */ 

5.1.1.   Identify_Best_Relay(i,j,id) /* ids  is a best relay */ 
5.1.2.   Aggregate the received data with its own data 
5.1.3.   Forward data to the immediate successor cluster-head js  
            in the corresponding ring via the relay ids  
            ( ids  and js  are inserted in the data packet) 
5.2.  Else /* Ring aggregator */ 
5.2.1.  If is  is a ring aggregator Then 
5.2.1.1.   Identify_Best_Relay(i,j,id) /* ids  is a best relay */ 
               /*  js  is a successor ring aggregator or the sink  */ 

5.2.1.2.   Wait until receipt of aggregated data from the  
               immediate predecessor ring aggregator 
5.2.1.3.   Aggregate the received data from both neighboring  
               cluster-heads in its ring and the one received from a 
               predecessor ring aggregator with its own data 
5.2.1.4.   Forward data to js  via the relay ids  
               ( ids  and js  are inserted in the data packet) 
          EndIf 
       EndIf 
     EndIf 
6.  Return 

Figure 6.8 Joint k-coverage and forwarding (GEFIB-3). 
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Notice that we could enable forwarding of GAD packets only through cluster-heads. However, this 

solution would be very costly for cluster-heads [84], [85] as the energy spent in data transmission is 

proportional to the transmission distance, which would be around the nominal transmission range of the 

sensors. It is easy to check that the distance between the centers of two adjacent clusters is equal to r 3  

(Figure 6.1b), where r  is the radius of the sensors’ sensing disks. Also, if the radius R  of the 

communication disks of the sensors does not satisfy , 3 rR ≥  then cluster-heads cannot directly 

communicate with each other, and hence other relays should forward aggregated data between adjacent 

cluster-heads. On the other hand, inserting several relays between two adjacent cluster-heads would incur 

high delay [28]. 

We believe that a more balanced approach should be used to account for both energy and delay. 

First, we show how to construct a data aggregation tree to enable data aggregation at cluster-heads. 

Data Aggregation Tree (DAT) Construction: The process of forming a binary tree of cluster-heads rooted 

at the sink for data aggregation benefits from the distribution of cluster-heads in a field. The sink is 

supposed to be located at its optimum position in terms of energy efficient data gathering, which 

corresponds to the center of a field [125]. Recall that cluster-heads are selected to be as close as possible 

to the centers of their clusters. The algorithm is initiated by the sink (Figure 6.6). The sink starts by 

randomly selecting three cluster-heads: two of them, called aggregation initiators, are adjacent to each 

other and constitute the extreme points of an open ring that initiate data aggregation on the ring itself, 

while the third one, called ring aggregator, is located somewhere on the open ring and is responsible for 

the aggregated data on its ring. Each ring is associated with an identification number, called ring_id, which 

will be used by the cluster-heads to forward their aggregated data toward their corresponding ring 

aggregator. Furthermore, one of the aggregation initiators is designated as an aggregation proxy, which 

will select the aggregation initiators for the next ring and advertize the value of ring_id for this next ring. 

The first ring is the one whose center is the closest one to the location of the sink (i.e., center of a field) 

and has ring_id = 1. The value of ring_id is incremented by 1 from the sink out by aggregation proxies. 

Each cluster-head belongs to only one ring. While an aggregation proxy advertizes the value of ring_id 

clockwise to the cluster-heads members of its ring, the other aggregation initiator advertizes it counter-
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clockwise so all the cluster-heads that belong to the same ring receive the same value of ring_id. After the 

data aggregation tree construction, each cluster-head knows its immediate predecessor and successor 

cluster-head in its corresponding ring. Also, each ring aggregator knows its immediate predecessor and 

successor ring aggregators. Because of the boundary effect, the sink may designate a few sensors as 

virtual cluster-heads for clusters that are not complete (i.e., a portion of a disk) and which can be k-

covered by adjacent cluster-heads provided that they select sensors to remain active from their boundary 

lenses, which they share with these non-complete clusters. Precisely, these virtual cluster-heads will not 

play the role of cluster-heads but will simply act just as relays between non-neighboring cluster-heads on 

the same ring on the boundary of a field. Also, some cluster-heads located on the boundary of a field do 

not belong to any ring. They are called out-of-ring cluster-heads, which connect to the closest ring via their 

neighboring cluster-heads to which they forward their data to be aggregated with theirs. Figure 6.7 shows 

a data aggregation tree and its components, where Figure 6.7a is a linear representation of Figure 6.7b. 

Data Forwarding: We assume that the concentric rings are numbered ,... , , 321 CRCRCR  from the sink out. 

For a given ring ,iCR  while the aggregation proxy initiates data aggregation in one direction of the ring, the 

other one initiates data aggregation in the other direction of the ring. The ring aggregator of iCR  receives 

aggregated data originated from both of aggregation initiators of ,iCR  and aggregated data from a ring 

aggregator of an outer adjacent ring .1+iCR  At the end, the ring aggregator of 1CR  aggregates its own data 

with those originated from both of the aggregation initiators of its ring and the one received from the ring 

aggregator of 2CR  and forward the GAD toward the sink. Specifically, when a cluster-head receives data 

from its predecessor cluster-head, it aggregates with its own data and forwards it to its successor cluster-

head until it reaches the ring aggregator. Each ring aggregator would wait until it receives aggregated data 

from its immediate predecessor ring aggregator. Those out-of-ring cluster-heads would simply forward 

their data to the cluster-heads they registered with. Note that communication between adjacent cluster-

heads follows the same scheme shown in Figure 6.4. The pseudo-code of GEFIB-3 is given in Figure 6.8. 

6.3. Generalizability of GEFIB 

The design of GEFIB framework for joint k-coverage, duty-cycling, and forwarding is based on the 

sensing and communication disk, and sensor homogeneity models. Although these assumptions are the 
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basis for most of coverage and forwarding protocols, they may not be valid in practice. In this section, we 

show how to relax them to promote the use of our protocols in real-world applications. 

6.3.1 Convex Sensing and Communication Model 

As mentioned earlier in Chapter 5, the communication range of MICA motes was found to be 

asymmetric and environment-dependent [179]. Furthermore, the communication range of radios was 

found to be highly probabilistic and irregular [182]. In this section, for problem tractability, we consider 

convex sensing and communication models, where sensors have the same convex sensing and 

communication ranges but not necessarily circular. Precisely, we consider the largest enclosed disk of the 

sensing range of the sensors whose radius is equal to .ledr  In this case, the sink slices a field into 

overlapping Reuleaux triangles of width .rled  However, all other processing remains the same for all the 

protocols, namely GEFIB-1, GEFIB-2, and GEFIB-3. 

6.3.2 Sensor Heterogeneity Model 

It has been found that heterogeneity enhances reliability of the network and extends its lifetime 

[169]. In this section, we consider heterogeneous sensors with different yet convex sensing and 

communication ranges. Based on the notion of the largest enclosed disk of the sensing range of the 

sensors, the sink slices a field into overlapping Reuleaux triangles of width ,
min

ledr  the minimum radius of 

the largest enclosed disks of the sensing ranges of the sensors. However, a very small min
ledr  could 

overestimate the required sensor density in the network. Indeed, with a single sensor with a very small 

radius, the network would be required to have a large sensor density.  We believe that a more adaptive 

approach could be used to adapt the sensor density to the sensing ranges of the sensors in the area. 

6.4. Performance Evaluation 

In this section, we evaluate GEFIB performance using a high-level simulator written in the C 

programming language. We consider a square sensor field of side length 1000m where 16000 sensors 

are randomly and uniformly deployed. We use the energy model given in [171], where energy 

consumption in transmission, reception, idle, and sleep modes are 60 mW, 12 mW, 12 mW, and 0.03 

mW, respectively. Following [176], we define one unit of energy as the energy required for a sensor to stay 

idle for 1 second. We assume that the initial energy of each sensor is 60 Joules enabling a sensor to 
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operate about 5000 seconds in reception/idle modes [171]. All simulations are repeated 20 times and the 

results are averaged. 

First, we compare our k-coverage protocol CSWk with the Coverage Configuration Protocol (CCP) 

[166]. When the communication range of sensors is at least double their sensing range, Xing et al. [166] 

showed that full coverage implies network connectivity, and hence no other mechanism to guarantee 

connectivity is necessary. Otherwise, Xing et al. [166] integrated CCP with a topology maintenance 

protocol (SPAN) [52] to guarantee both coverage and connectivity. 

 

                                                (a)                                                                                      (b) 

Figure 6.9 CSWk compared to CCP (a) k  vs. an  and (b) total remaining energy vs. time. 

 

                  (a)                                                                                         (b) 

Figure 6.10 CSWk compared to CCP (a) an  vs. R  and (b) .r  
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In all simulations, we consider m 25=r  and 3=k  unless specified otherwise. Also, the energy 

consumption is due to all activities of each sensor necessary to achieve k-coverage as well as to forward 

and/or send control information. Figure 6.9a plots the degree k  of coverage versus the number an  of 

active sensors for CSWk as compared to CCP. It shows that CSWk requires less active sensors than CCP 

to achieve the same coverage degree, thus yielding significant energy savings. This is due not only to a 

higher number of active sensors required by CCP, but also to the communication overhead caused by the 

exchange of messages between active sensors running CCP to coordinate among themselves and 

provide the requested k-coverage service. Thus, CCP consumes more energy than CSWk as shown in 

Figure 6.9b. While CCP requires SPAN to provide connectivity between active sensors when , 2 rR <  

CSWk does not need such a topology maintenance protocol as all it requires is that ,rR ≥  thus providing 

connectivity when k-coverage is guaranteed. 

Figure 6.10a plots an  versus R  while Figure 6.10b plots an  versus r  for different ratios ./ rR=α  

Given the result reported in [176] with respect to the relationship between r  and R  for real-world sensor 

platforms ), ( rR ≥  we consider only the case .1≥α  Given that ,1≥α  any increase in the communication 

range of sensors would not have any impact on the performance of CSWk. It would, however, affect the 

performance of CCP. As can be observed, an  decreases as R  increases. Indeed, SPAN would require 

less number of sensors to maintain connectivity between active sensors as R  increases. However, at 

some point, (surprisingly enough, this point corresponds to ), 2 rR ≥  the number an  of active sensors 

required for k-coverage does not decrease any further. Indeed, when , 2 rR ≥  SPAN is not needed at all as 

both k-coverage and rR  2≥  guarantee connectivity. Similarly, the performance of CCP improves as the 

ratio α  increases, i.e., R  increases (Figure 6.10b). That is, less number of sensors is needed to provide 

k-coverage and connectivity. 

Second, we compare between GEFIB-1, GEFIB-2, and GEFIB-3. We assume that the energy 

consumption in data transmission and reception follows the model given in [88]. Recall that GEFIB-1, 

GEFIB-2, and GEFIB-3 use CSWk but different data collection protocols. Figure 6.11 shows that GEFIB-3 

outperforms GEFIB-1 and GEFIB-2 with respect to energy consumption and delay (i.e., average time for 
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data sent by sensors to reach the sink). As expected, data aggregation yields significant energy savings in 

CSWk as it reduces the amount of data communication in the network. Also, data aggregation improves 

on delay as relay forward data as they arrive without causing much delay overhead. 

 

               (a)                                                                                (b) 

Figure 6.11 GEFIB-1 vs. GEFIB-2 (a) total remaining energy vs. time and (b) average delay vs. .k  

 

                                               (a)                                                                                       (b) 

Figure 6.12 GEFIB-1 vs. CCP+BVGF (a) total remaining energy vs. time and (b) data delivery rate vs. .k  

Third, we consider CCP [166] with a geographic forwarding protocol, such as BVGF [165], on top of 

it, denoted by CCP+BVGF, and compare it to GEFIB-1. We have slightly updated BVGF to consider 

potential energy of the sensors that are candidate for data forwarding for a fair comparison. Here, the 

energy consumption is due to all activities of each sensor necessary to achieve k-coverage and to forward 
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and/or send sensed data as well as control information. Figure 6.12 shows that GEFIB-1 yields less 

average energy consumption and higher percentage of data delivery (i.e., success rate) than CCP+BVGF. 

This is due in part to CCP, which uses higher number of active sensors for k-coverage than CSWk. Also, 

BVGF forwards data over long distances. Hence, it consumes considerable energy. Those selected 

sensors would deplete their energy very quickly and die before expected, thus disconnecting the network. 

Moreover, data may reach sensors whose remaining energy is not enough to progress data towards the 

sink, which causes data to be dropped. Our potential field-based forwarding protocol, however, selects 

next forwarders based on their remaining energy and location, and hence all neighbors of a sensor are 

equally likely to be selected as next forwarders. 

6.5. Summary 

In this chapter, we have also proposed energy-efficient geographic forwarding protocols on duty-

cycled k-covered wireless sensor networks, where sensed data is forwarded to the sink through fish 

bladders (or lenses) [21], [22]. Our joint k-coverage and geographic forwarding (GEFIB) framework can be 

used for applications that demand high coverage degree, such as intruder detection and tracking. It is also 

useful for applications that require data aggregation and those where all data originated from sources 

should reach the sink. 
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CHAPTER 7 

STOCHASTIC CONNECTED k–COVERAGE AND THREE-DIMENSIONAL DEPLOYMENT 

The problem of coverage (and in particular k-coverage) has been well-studied in the literature [34], 

[107], [108], [119]. Also, the problem of coverage-preserving scheduling (or duty-cycling) has gained 

considerable attention [83], [93], [166], [176]. Several existing works on k-coverage in wireless sensor 

networks assumed a perfect sensing model (also known as deterministic sensing model), where a point in 

a field is guaranteed to be covered by a sensor provided that this point is within the sensor’s sensing 

range [176]. While some approaches focused on coverage only [2], others considered both coverage and 

connectivity in an integrated framework to ensure the correct operation of the network [166], [176]. Indeed, 

coverage deals with all locations in a field, and hence informs how well a phenomenon in the field is 

monitored, whereas connectivity is related to the locations of the sensors, and hence quantifies how well 

the active sensors communicate with each other and forward sensed data on behalf of each other to the 

sink. We have addressed this problem in Chapter 5, where centralized, pseudo-distributed, and distributed 

protocols are proposed. A few works, however, considered a more realistic sensing model (also known as 

stochastic sensing model) in the design of sensor scheduling protocols while preserving either full 

coverage [103], [123], [130], [186] or k-coverage of a field [159], [166], [186], where a point is covered by a 

sensor with some probability.  

As discussed in Section 3.8 of Chapter 3, three-dimensional settings reflect more accurately 

network design for real-world applications than their more traditional, two-dimensional counterparts. As of 

writing this dissertation, the assumption of two-dimensional space is well accepted by the sensor network 

community while that of three-dimensional space has been receiving little attention due to the challenges 

imposed by the design of three-dimensional wireless sensor networks [5]. Indeed, most (if not all) of the 

works on the design of protocols for wireless sensor networks, and particularly, those on deployment, 

have focused on two-dimensional space, where the sensors are deployed in a planar field. As mentioned 

by Poduri et. al [138], there is a tendency of ignoring the extension of protocols initially designed for two- 
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dimensional to three-dimensional wireless sensor networks either because it is simple or straightforward. 

Furthermore, Poduri et. al [138] showed that there are a few properties in two-dimensional wireless sensor 

networks that cannot generalize at all to three-dimensional wireless sensor networks. In general, the 

design of connected k-coverage configuration protocols for wireless sensor networks in three-dimensional 

space is more challenging than their counterparts in two-dimensional space. 

In this chapter, we consider two fundamental problems in two-dimensional and three-dimensional 

wireless sensor networks, respectively. First, we focus on the design of stochastic connected k-coverage 

configuration protocols for two-dimensional wireless sensor networks [23]. More specifically, we 

decompose this problem into two sub-problems: stochastic k-coverage characterization problem and 

stochastic k-coverage-preserving scheduling problem. Specifically, the first problem is to find a sufficient 

condition so that every point in the field is covered by at least k  sensors with a probability no less than 

,thp  called threshold probability, under our stochastic sensing model (see Chapter 2) and compute the 

corresponding minimum number of sensors. Second, we address the problem of connected k-coverage in 

three-dimensional wireless sensor networks using a deterministic sensing model of the sensors, and 

focus on the problem of sensor scheduling for k-coverage of a three-dimensional space [19], where .1>k  

Moreover, we focus on the problem of data forwarding on duty-cycled sensors in three-dimensional 

connected k-covered wireless sensor networks. Not surprisingly, we show that the extension of our 

analysis of two-dimensional wireless sensor networks is really not straightforward for three-dimensional 

wireless sensor networks due to the non-preserving nature of some of the properties for two-dimensional 

space when we consider three-dimensional space. 

The remainder of this chapter is organized as follows. Section 7.1 discusses the problem of 

stochastic connected k-coverage in two-dimensional wireless sensor networks under a more realistic 

stochastic sensing model, which is described in Chapter 2. It also presents simulation results of our 

proposed protocol. Section 7.2 presents a solution to the problem of connected k-coverage in three-

dimensional wireless sensor networks. It also describes a hybrid geographic forwarding protocol for duty-

cycled k-covered three-dimensional wireless sensor networks and presents simulation results of our 

proposed protocols. Section 7.3 concludes the chapter. 
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7.1 Two-Dimensional Stochastic Connected k-Coverage 

Although the approach on k-coverage in wireless sensor networks proposed in [166] is elegant and 

considers both deterministic and probabilistic sensing models, it does not provide any proof on whether its 

k-coverage eligibility algorithm would yield a minimum number of selected sensors to k-cover a field. 

In this section, we propose a solution to the stochastic connected k-coverage problem stated earlier 

using our stochastic sensing model, which reflects the real behavior of the sensing units of the sensors 

that are irregular in nature. 

 

(a) 

                

                                             (b)                                                                         (c) 

Figure 7.1 (a-b) Reuleaux triangle and (c) location of a least k-covered point. 
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7.1.1 Stochastic k-Coverage Characterization 

In this section, we exploit the results of Section 5.1 of Chapter 5 in order to characterize k-coverage 

in wireless sensor networks based on the stochastic sensing model described earlier. It is also similar to 

the stochastic sensing model in [186], except that ours accounts for the type of propagation model, i.e., 

.42 ≤< α  Precisely, we use the Reuleaux triangle model to compute the minimum k-coverage probability, 

denoted by ,mink,p  such that every point in a field is k-covered. Theorem 7.1 computes .mink,p  

Theorem 7.1: Let r  be the radius of the nominal sensing range of the sensors and .3≥k  The minimum k-

coverage probability mink,p  so that each point in a field is probabilistically k-covered by at least k  sensors 

under the stochastic sensing model defined in Equation (2.2) (Chapter 2) is approximately computed as 
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Proof: First, we identify the least k-covered point in a field so we can compute .mink,p  By looking at the 

Reuleaux triangle corresponding to three sensors and given in Figure 7.1a-b, it is easy to check that the 

center ξ  of the Reuleaux triangle is the least 3-covered point. Indeed, ξ  is located close to the 

boundaries of the sensing ranges of the sensors ,is  ,s j  and .ls  By Lemma 5.2 (see Chapter 5), k  

sensors should be deployed in each Reuleaux triangle regions of a field to achieve k-coverage with a 

minimum number of sensors. Thus, on the average, we can claim that the center ξ  is also the least k-

covered point in a field. Note that ξ  is equidistant from the sensors ,is  ,s j  and .ls  Using the configuration 

in Figure 7.1c, a little algebra shows that the distance between ξ  and each of these three sensors is 

equal to .3r  Let SssS kk ⊆= },...,{ 1  be a set of sensors that k-cover .ξ  As per the above observation, we 

can approximate the distance between any sensor in kS  and ξ  by ,3r  i.e., ,3),( rsi ≈ξδ  for each 

sensor .ki Ss ∈  Therefore, the minimum k-coverage probability (or detection probability) for the least k-

covered point ξ  by exactly k  sensors ),..,( 1 kss  under our stochastic sensing model is given by 
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The stochastic k-coverage problem is to select a minimum subset SS ⊆min  of sensors such that 

each point in a field is k-covered by at least k  sensors and that the minimum k-coverage probability of 

each point is at least equal to some given threshold probability ,thp  where .10 << thp  This helps us 

compute the sensing range ,sr  which provide full k-coverage of a field with a probability no less than :thp  
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Lemma 7.1 computes the value of the stochastic sensing range of the sensors. Lemma 7.2 states a 

sufficient condition for full k-coverage of a field while Lemma 7.3 states a sufficient condition to guarantee 

connectivity between sensors under our stochastic sensing model when both thp  and k  are known. 

Lemma 7.1: Let .3≥k  The stochastic sensing range sr  of the sensors that is necessary to fully k-cover a 

field with a minimum number of sensors and with a probability no lower than 10 << thp  is given by 
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where β  is the physical characteristic of the sensors’ sensing units and 42 ≤≤ α  is the path-loss 

exponent, which depends on the propagation model (free space model versus multi-path model).            � 

The upper bound on the stochastic sensing range sr  of the sensors computed in Equation (7.2) will 

be used as one of the input parameters to the k-coverage candidacy algorithm, which will be presented in 

Section 7.1.2. Figure 7.2 shows sr  for different values of thp  and k  while considering the free-space 

model )2( =α  (Figure 7.2a) and the multi-path model )4,3( =α  (Figure 7.2b-c). As can be seen, sr  

decreases as thp   and α  increase. However, it increases with .k  Indeed, to achieve higher degree of 

coverage, the stochastic sensing range of the sensors should increase. 

Lemma 7.2: Let .3≥k  A field is probabilistically fully k-covered with a probability no lower than 10 << thp  if 

any Reuleaux triangle region of width sr  in the field contains at least k  sensors.                                     � 
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Lemma 7.3: Let .3≥k  The sensors that are selected to k-cover a field with a probability no less than 

10 << thp  under our stochastic sensing model defined in Chapter 2 are guaranteed to be connected if the 

radius of their communication range is at least equal to ,sr  the sensors’ stochastic sensing range.           � 

 

                                              (a)                                                                                        (b) 

 

   (c) 

Figure 7.2: Upper bound of sr  vs. k  for (a) α = 2, (b) α = 3, and (c) α = 4. 

7.1.2 Stochastic k-Coverage-Preserving Scheduling 

In this section, we focus on the design of a distributed sleep-wakeup scheduling protocol for 

stochastic k-coverage (SCPk) of a field. The same approach could be applied for k-coverage under the 

deterministic sensing model by replacing sr  by .r  We exploit the results of Chapter 5 to present a 

distributed approach for the selection of a minimum number of active sensors to k-cover a field under the 
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stochastic sensing model defined in Equation (2.2) of Chapter 2. This approach is different from the one 

presented in Chapter 5 in the sense that each sensor decides whether it is eligible to turn itself active. This 

decision is based on the degree of coverage of its sensing range. More specifically, each sensor runs our 

k-coverage candidacy algorithm, which is given in Figure 7.3, before it takes this decision. 

ALGORITHM 1: k-COVERAGE-CANDIDACY(rs,k) 
(* This code is run by each sensor *) 
Begin 
/* Sensing range slicing */ 
1.   Randomly decompose sensing range into six  
      overlapping Reuleaux triangles RT(rs)i, 1≤ i ≤ 6 
/* Localized k-coverage candidacy checking */ 
2.   For each Reuleaux triangle RT(rs)i Do 
3.      If RT(rs)i contains k active sensors Then 
4.          Skip /* i.e., do nothing */ 
5.      Else 
6.          Return (“candidate”) 
7.      End 
8.   End 
9.   Return (“non-candidate”) 
End 

Figure 7.3 k-Coverage candidacy algorithm. 

k-Coverage Candidacy Algorithm: A sensor turns active if its sensing disk is not k-covered. Precisely, a 

sensor randomly slices its sensing range into six overlapping Reuleaux triangle of width sr  and checks 

whether each one of them contains at least k  sensors. Each sensor should know the status of its sensing 

neighbors only to decide whether it is candidate to turn active or not. If any of the six overlapping Reuleaux 

triangles of width sr  of the sensing range of a sensor is  does not have k  active sensors, the sensor is  is a 

candidate to become active. Figure 7.3 shows the pseudo-code of our k-coverage candidacy algorithm. 

State Transition of SCPk: Figure 7.4 shows a state transition diagram associated with our stochastic k-

coverage protocol (SCPk). Likewise, the state transition diagram of is a bit similar to the one given in of 

Chapter 5 by replacing r  with .sr  In this case, however, each sensor decides whether to turn itself on by 

running the k-coverage candidacy algorithm given in Figure 7.3. 

At any time, a sensor can be in one of three states: READY, WAITING, and RUNNING. 

• READY state: A sensor listens to messages and checks its candidacy to switch to the RUNNING state. 
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• RUNNING state: A sensor is active and can communicate with other sensors and sense the environment. 

• WAITING state: A sensor is neither communicating with other sensors nor sensing a field, and thus its 

radio is turned off. However, after some fixed time interval, it switches to the READY state to check its 

candidacy for k-coverage (Figure 7.3) and receives messages. 

• At the beginning of their monitoring task, all sensors are in the RUNNING state. Moreover, each sensor 

chooses randomly and independently of all other sensors a value kchect  between 0 and ax_k mchect  after 

which it runs the k-coverage candidacy algorithm (Figure 7.3) to check whether it stays active or not (i.e., 

switch to the WAITING state). Our intuition behind this random selection of kchect  is to avoid as much as 

possible higher or lower coverage of any region in a field. 

• When a sensor runs the k-coverage candidacy algorithm and finds out that it is a candidate, it sends out 

a NOTIFICATION-RUNNING message to inform all its neighbors. While in the READY state, a sensor 

keeps track of its sensing neighbors that are in the RUNNING state. If it finds out that its sensing area is 

k-covered, it will switch to the WAITING state. 

• For energy efficiency purposes, a sensor may wish to switch from RUNNING state to WAITING state. For 

this purpose, a sensor broadcasts a RUNNING-to-WAITING message and waits for some transit time 

.transitt  If transitt  expires and it has not received any RUNNING-to-WAITING message, it switches to the 

WAITING state and sends a NOTIFICATION-WAITING message, where it can stay there for twait time. 

When twait expires, it switches to the READY state, where it can stay for tready time. When a sensor in the 

READY state receives a RUNNING-to-WAITING message from its sensing neighbor, it runs the k-

coverage candidacy algorithm to check whether it needs to turn active. 

 

Figure 7.4 State transition diagram of SCPk. 
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• If a sensor in the READY state finds out that it has not been active for some tinactive time, it will broadcast a 

READY-to-RUNNING message and wait for some ttransit time. If ttransit expires without receiving any other 

READY-to-RUNNING, it will send out a NOTIFICATION-RUNNING message and switch to the RUNNING 

state. Otherwise, it stays in the READY state. A sensor in the READY state would also apply the same 

process if it finds out that it has not heard from one of its sensing neighbors within some talive time. This 

means that this sensing neighbor has entirely depleted its energy and died. To this end, each sensor in 

the RUNNING state should broadcast an ALIVE message after each tactive time. We assume that each 

sensor stays active for at least tactive time. 

  

                                        (a)                                                                                (b) 

 

(c) 

Figure 7.5 Sensor spatial density vs. degree of coverage k  for (a) α = 2, (b) α = 3, and (c) α = 4. 
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                                              (a)                                                                                       (b) 

 

    (c) 

Figure 7.6 Degree of coverage k  vs. number of deployed sensors for (a) α = 2, (b) α = 3, and (c) α = 4. 

7.1.3 Simulation Results 

In this section, we present the simulation results of SCPk using a high-level simulator written in the C 

programming language. We consider a square field of side length m. 1000  We use the energy model given 

in [171], where the sensor energy consumption in transmission, reception, idle, and sleep modes are 60 

mW, 12 mW, 12 mW, and 0.03 mW, respectively. Following [176], the energy required for a sensor to 

stay idle for 1 second is equivalent to one unit of energy. We assume that the initial energy of each sensor 

is 60 Joules enabling a sensor to operate about 5000 seconds in reception/idle modes [171]. All 

simulations are repeated 20 times and the results are averaged. 
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In Figure 7.5, we plot the sensor spatial density as a function of the degree of coverage k  for 

different values of the threshold probability thp  and path-loss exponent .α  As expected, the density 

increases with thp  and .α  Indeed, as we increase ,thp  more sensors would be needed to achieve the 

same degree of coverage .k  Recall that the width of the  Reuleaux triangle that is guaranteed to be 

covered with exactly k  sensors is equal to the stochastic sensing range of the sensors given in Equation 

(7.2) and hence decreases as thp  and α  increase. On the other hand, the sensor density required for full 

k-coverage of a field is inversely proportional to the area of this Reuleaux triangle as stated in Lemma 7.2.  

 

                                               (a)                                                                                        (b) 

 

    (c) 

Figure 7.7 Number an  of active sensors vs. number dn  of deployed sensors for k = 3 and (a) α = 2,        
(b) α = 3, and (c) α = 4. 



 

 

107 

 

Figure 7.6 plots the achieved degree of coverage k  versus the total number of deployed sensors. 

Moreover, we vary both thp  and .α  Definitely, higher number of deployed sensors would yield higher 

coverage degree. Here also, any increase in thp  and α  would require a larger number of deployed 

sensors to provide the same degree of coverage. Both experiments show a good match between 

simulation and analytical results. Figure 7.7 shows that the number of active sensors required to provide 

3- coverage increases with the characteristic of the sensors β  used in the definition of our stochastic 

sensing model presented in Chapter 2. Recall that β  measures the uncertainty of the sensing units of the 

sensors. This result is expected given the definition of the stochastic sensing range in Equation (7.2). 

 

                                              (a)                                                                                         (b) 

 

    (c) 

Figure 7.8 Total remaining energy vs. time for different k = 3, α = 2, and (a) pth = 0.7, (b) pth = 0.8, 
and (c) pth = 0.9. 
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Figure 7.8 shows the impact of thp  on the operational lifetime of the network to provide 3- coverage. 

As mentioned earlier, higher values of thp  require larger numbers of active sensors, and hence more 

energy consumption. To the best of our knowledge, the work in [166] is the only one on probabilistic k-

coverage. However, the probabilistic sensing model used in [166] is totally different from ours. While our 

stochastic sensing model quantifies the detection probability of a sensor by an exponential function, the 

one in [166] only assigns it a constant value. Therefore, it is impossible to provide a fair quantitative 

comparison between our SCPk protocol and the one in et al. [166]. Next, we focus on connected k-

coverage and geographic forwarding in three-dimensional wireless sensor networks. 

7.2 Three-Dimensional Connected k-Coverage and Geographic Forwarding 

While coverage and geographic forwarding in two-dimensional wireless sensor networks have been 

well studied, three-dimensional wireless sensor networks have gained relatively less attention in the 

literature. In this section, we focus on the problem of forwarding in duty-cycled three-dimensional k-

covered wireless sensor networks, where both k-coverage and data forwarding are discussed and 

addressed in a novel joint framework. We propose the first solution to the problem of geographic 

forwarding in duty-cycled three-dimensional k-covered wireless sensor networks. First, we analyze the k-

coverage problem in three-dimensional wireless sensor networks and propose a distributed k-coverage 

protocol for three-dimensional wireless sensor networks. Second, we design a hybrid forwarding protocol 

for duty-cycled three-dimensional k-covered wireless sensor networks, which benefits from the 

advantages of both deterministic and opportunistic forwarding. Third, we relax some widely used 

assumptions to promote the use of our joint k-coverage and hybrid forwarding protocol in real-world 

scenarios. Finally, we evaluate the performance of our joint protocol. Our work is complementary to 

existing ones, especially those few works which dealt with three-dimensional wireless sensor networks. 

First, we propose a minimum-energy k-coverage protocol for three-dimensional wireless sensor networks. 

Indeed, Alam and Haas [7] considered only 1-coverage and proposed deterministic sensor placement 

strategies to achieve full coverage of a three-dimensional space. However, 1-coverage is not always 

enough given that sensors are not highly reliable and some applications, such intruder detection and 

tracking, require high coverage of a target field. Moreover, Kao et al. [99] did not consider duty-cycling in 
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three-dimensional wireless sensor networks. Thus, no other existing work addressed the problem of 

forwarding in duty-cycled three-dimensional k-covered wireless sensor networks, where uncertainty 

caused by duty-cycling is a true challenge. Our work proposes a solution to this problem. 

7.2.1 Three-Dimensional Connected k-Coverage 

First, we show the problem that we encounter when we attempt to extend our analysis of connected 

k-coverage in two-dimensional to three-dimensional wireless sensor networks. We refer to this problem as 

the curse of dimensionality, which is due to the fact that some properties that are valid for two-dimensional 

space cannot hold for three-dimensional space. Then, we propose an energy-efficient connected k-

coverage protocol for three-dimensional wireless sensor networks. 

7.2.1.1 Problem Analysis: The Curse of Dimensionality 

In this section, we analyze the above problem from the perspective of the shape of a three-

dimensional region C  in a three-dimensional field corresponding to minimum k-coverage. In other words, 

we want to determine the shape of C  so that it is guaranteed to be k-covered when exactly k  sensors are 

deployed in it. Clearly, the breadth of C  should be less than or equal to the radius r  of the sensing 

spheres of sensors so that each location in C  is within the sensing spheres of these k  sensors. Since our 

goal is to achieve k-coverage of a three-dimensional field with a minimum number of sensors, the volume 

of C  should be maximum, and hence the breadth of C  must be equal to .r  Therefore, our problem 

reduces to the problem of finding the shape of this three-dimensional region C  that has a constant 

breadth equal to .r  

In order to solve this problem, we consider Helly’s Theorem [39] and apply the same analysis as in 

the case of two-dimensional space, which was described in Chapter 5. Thus, from Helly’s Theorem, we 

infer that a three-dimensional )3( =n  convex region C  is k-covered by exactly k  sensors )( k||E|| =  if and 

only if C  is 4-covered by any four )4( =m  of those k  sensors, where .4≥k  Now, let us identify the shape 

of a three-dimensional convex region C  whose breadth is constant and equal to the radius r  of the 

sensing spheres of sensors, and hence has a maximum volume. More importantly, this region C  should 

be guaranteed to be fully k-covered when exactly k  sensors are deployed in it. 
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Let kC  be the intersection of k  sensing spheres. Using Helly’s Theorem [39], the maximum volume 

of the intersection of these k  sensing spheres is equal to that of four spheres since .4≥k  However, the 

maximum intersection (or overlap) volume of four sensing spheres such that the maximum distance 

between any pair of sensors is equal to ,r  corresponds to the configuration where the center of each 

sensing sphere is at distance r  from the centers of all other three ones. In this configuration, the edges 

between the centers of these four spheres form a regular tetrahedron and the shape of their intersection 

volume is known as the Reuleaux tetrahedron [189] (Figure 7.9). 

                  

                                                              (a)                                                        (b) 

Figure 7.9 (a) Intersection of four symmetric spheres and (b) their Reuleaux tetrahedron. 

 

                                                                    (a)                                          (b) 

Figure 7.10 (a) Five regular tetrahedra about a common edge and (b) twenty regular tetrahedra about a 
shared vertex [57]. 

In [16], [20], we used Helly’s Theorem [39] in our analysis of the k-coverage problem and exploited 

the geometric properties of the Reuleaux triangle to derive a sufficient condition to fully k-cover a two-

dimensional field. Note that the Reuleaux triangle of side ,r  which represents the intersection of three 

symmetric, congruent disks of radius ,r  consists of a central regular triangle of side r  and three curved 
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regions. More importantly, it has a constant width equal to r  [188]. We found that a Reuleaux triangle 

region of width r  of a two-dimensional field is guaranteed to be k-covered with exactly k  sensors, where 

r  is the radius of the sensing range of the sensors [20]. Also, the regular triangle allows a perfect tiling of 

two-dimensional space. Based on this characterization, we designed an energy-efficient k-coverage 

configuration protocol for two-dimensional wireless sensor networks [16], [20]. 

Now, we provide some facts why the Reuleaux tetrahedron is not an appropriate solution to our 

minimum connected k-coverage problem. First of all, the Reuleaux tetrahedron does not have a constant 

breadth whose value is slightly larger than the radius r  of the corresponding spheres [189]. In contrast to 

the regular triangle, the regular tetrahedron does not allow a perfect tiling of a three-dimensional space. 

Indeed, Conway and Torquato showed that the dihedral angle of a regular tetrahedron is equal to 70.53º, 

which is not sub-multiple of 360º [57]. They also gave two arrangements of regular tetrahedra such that 

five regular tetrahedra packed around a common edge would result in a small gap of 7.36° as shown in 

Figure 7.10a, and that twenty regular tetrahedra packed around a common vertex yield gaps that amount 

to a solid angle of 1.54 steradians as shown in Figure 7.10b [57]. This shows that some properties that 

hold for two-dimensional space are not valid for three-dimensional space. Thus, the extension of the 

analysis of k-coverage in two-dimensional space [20] to three-dimensional space is not straightforward, 

and hence another approach should be used. More precisely, we want to address the following question: 

What is the “closest shape” to the Reuleaux tetrahedron that will guarantee energy-efficient k-coverage of 

a three-dimensional space? 

             

                                                                 (a)                                                     (b) 

Figure 7.11 Two-dimensional projection of (a) a half-sphere and its six slices, and (b) a slice. 
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To address this question efficiently, we consider two halves of the sensing sphere of the sensors, 

i.e., the top half and bottom half. Note that in two-dimensional wireless sensor networks, we divide the 

sensing disk of the sensors into six overlapping Reuleaux triangles [20]. By analogy with the two-

dimensional analysis given in [20], we divide each of the halves of a sensing sphere into six congruent 

three-dimensional regions, called slices, each of which has three flat faces and one curved face 

representing an equilateral spherical triangle (Figure 7.11a). Unfortunately, the distance between the point 

B  at the top of a slice and all the points E  on the edge of any spherical triangle is larger than .r  Thus, a 

sensor located at B  cannot cover any point E  and a sensor located at any point E  cannot cover .B  Any 

sensor located in the region >< DCA ,,  is able to cover the whole slice as shown in Figure 7.11b,. 

However, sensors located in the regions >< CBA ,,  and >< EDA ,,  cannot cover the entire slice. Thus, if 

,1 kk = then ;032 == kk  otherwise, .132 kkkk −==  In other words, to guarantee k-coverage of a slice and 

hence a sensing sphere with a minimum number of sensors, it is necessary that active sensors should be 

located in the region ,,, >< DCA  thus efficiently solving the minimum connected k-coverage problem. 

Theorem 7.2, which follows from the above analysis, states a tight sufficient condition for k-coverage of 

a three-dimensional field. 

Theorem 7.2: Let .1>k  A three-dimensional field is k-covered if any slice of the field contains at least k  

active sensors.                                                                                                                                              � 

Theorem 7.3, which follows from Theorem 7.2, computes the minimum sensor spatial density 

necessary to fully k-cover a three-dimensional field. 

Theorem 7.3: Let r  be the radius of the sensing spheres of sensors and .1>k  The minimum sensor 

spatial density required to guarantee k-coverage of a three-dimensional field is computed as 

3 

 9
),(

r
kkr

π
λ =  

Proof: The volume of a slice is .9/ )(
3rslicevol π=  By Theorem 7.2, each slice should contain at least k  

sensors. Thus, k-covering a three-dimensional field with a minimum number of sensors requires that 

every slice in the three-dimensional field contain exactly k  sensors. Thus, the minimum sensor density to 

k-cover a three-dimensional field is equal to .)(slicevolk                                                                               � 
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Using Theorem 7.2, Theorem 7.4 states a sufficient condition to maintain connectivity in three-

dimensional k-covered wireless sensor networks. 

Theorem 7.4: Let .1>k  A three-dimensional k-covered wireless sensor network is connected if ,rR ≥  

where r  and R  stand for the radii of the sensing and communication spheres of sensors, respectively.    � 

Algorithm 1: k-Coverage-Candidacy 
(* This code is run by each sensor *) 
Begin 
/* Sensing sphere slicing */ 
1.   Randomly decompose a sensing sphere 
      into twelve slices 
/* Localized k-coverage candidacy checking */ 
2.   For each slice Do 
3.      If it contains k awake sensors Then 
4.          Skip /* i.e., do nothing */ 
5.      Else 
6.          Return (“candidate”) 
7.      End 
8.   End 
9.   Return (“non-candidate”) 
End 

Figure 7.12 k-Coverage-Candidacy algorithm. 

7.2.1.2 Our Distributed k-Coverage Protocol 

In this section, we describe our distributed k-coverage protocol (DCPk) for three-dimensional field. 

First, we present our algorithm that enables a sensor to check its candidacy to become active. 

k-Coverage-candidacy algorithm: A sensor turns active if its sensing sphere is not k-covered. Based on 

Lemma 5.2 (see Chapter 5), a sensor randomly decomposes its sensing sphere into twelve slices of side 

r  and checks whether each one of them contains at least k  sensors. Each sensor should know the status 

of its sensing neighbors only to decide whether it is candidate to turn active or not. If any of the twelve 

slices does not have k  active sensors, a sensor is a candidate to become active. Else, it is not. Figure 7.12 

shows the pseudo-code of our k-Coverage-Candidacy algorithm. 

State Transition Diagram of DCPk: We use the same state transition diagram described in Section 7.1.2. 
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7.2.2 Hybrid Geographic Forwarding 

In this section, we propose a protocol, called hybrid geographic forwarding on a duty-cycled three-

dimensional k-covered wireless sensor network (HYGF-DCk). Sensors that can forward data are called 

relays. 

In deterministic forwarding, a sensor chooses a next best forwarder based on some metric and 

forwards data to it, i.e., the next forwarder is determined a priori. In opportunistic forwarding, however, a 

next best forwarder is decided on-the-fly and after the data is transmitted. Because of duty-cycling, 

sensors holding data to be forwarded to the sink and using deterministic forwarding are not totally certain 

that their currently awake sensing neighbors would remain awake after data is being forwarded. Clearly, 

duty-cycling introduces uncertainty at the sender side when selecting a next best forwarder, thus making 

opportunistic forwarding a most suitable approach. However, with opportunistic forwarding, several active 

sensors may hear the transmitted data, thus creating high contention at the receiver side to select a next 

best forwarder. Thus, it is important to find a trade-off between uncertainty due to duty-cycling with 

deterministic forwarding, and contention due to opportunistic forwarding. Next, we describe our hybrid 

forwarding approach in details. 

Our hybrid forwarding protocol HYGF-DCk takes advantages of both deterministic and opportunistic 

forwarding approaches in order to achieve good data forwarding performance in terms of data delivery 

ratio, delay, and control overhead. First, we define the notion of potential energy of a sensor. 

As mentioned earlier, only sensors currently active to k-cover a three-dimensional field act as 

relays, i.e., can participate in data forwarding. Precisely, a sender is  specifies in its data packet the id’s of 

the next best p  candidate relays with descending priorities (i.e., the first one has highest priority while the 

last one has the lowest priority) and broadcasts it using a transmission distance equal to .r  Recall that the 

sensing sphere of a sensor has six slices, each of which has width equal to .r  While the first sensor is the 

primary relay, the other 1−p  sensors act as backup relays. The priorities assigned by is  to sensors are 

based on the knowledge it has about their activity time, i.e., the time interval a sensor has been recently 

awake (or active), where high priority means high small activity time. If there is a tie, is  would break it 

using the knowledge it has about their potential energy. Thus, is  sorts its active sensing neighbors based 
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on their priority defined earlier and chooses the first p  ones as candidate relays. The question we want to 

address now is: which slice, called target slice, the next best p  candidate forwarders are selected from? 

First, a sensor is  randomly decomposes its sensing sphere into twelve slices (Figure 7.11b). The target 

slice is the one that is traversed by a segment line between the locations of is  and the sink .ms  Given that 

all next best p  candidate relays belong to the same slice, they are guaranteed to be connected to each 

other. Precisely, they are within sensing range of each other, and hence can be aware of the status of 

each other (i.e., awake vs. asleep). Thus, the problem of multiple transmissions does not arise in our 

approach. When a sensor forwards a data packet towards the sink, it would also send an ACK to the 

sender from which it has received the packet. This would allow all potential relays to know that the 

underlying data packet has been successfully forwarded to the sink, i.e., no more action is needed by all 

other candidate relays. 

When a sensor that is not located in a target slice receives data, it would simply ignore it. Otherwise, 

it checks whether it is one of the next best p  candidate relays. If so, it checks its priority and if it is the 

highest or the other next best 1−p  candidate relays are not awake, it would forward the data packet 

towards the sink using the same approach as the original sender. However, when a sensor that is located 

in a target slice receives data and the next best p  candidate forwarders are not awake, it is considered as 

a potential relay. It would run the opportunistic component of our hybrid forwarding protocol. First, we 

define the competition function ),( mlϕ  of a potential relay ls  as the ratio of its potential energy )( lsπ  to the 

Euclidean distance ),( ml ssδ  between it and the sink ,ms  i.e., 

),( 

)( 
),( 

ml

l

ss
s

ml αδ
π

ϕ =  

Intuitively, preference is given to potential relays that have higher potential energy and are closer to 

the sink. The opportunistic component of our hybrid forwarding protocol is based on the following lemma 

[39] (page 64), which adds some randomness to the selection process of a potential relay: 

Lemma 7.4 (Loaded Dice [39]): No matter what two loaded dices we have, it cannot happen that each of 

the sums 2, 3, …, 12 comes up with the same probability.                                                                           � 
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ALGORITHM 2: HYGF-DCk 
       Procedure Official_Relay_Declared 
       Begin 
1.         ls  forwards sensed data to the sink ms  
2.         ls  sends an ACK to the sensed (i.e., previous relay)  
       End 
Begin 
/* This code section is run by a sender */ 
1.   Sort all potential relays in a descending order of their  
      most recent time activity and break their tie using their  
      closeness to the sink ms  
2.   Select the first p  candidate relays as one primary and  
      1−p  back-up relays, store them in a sensed data packet,  
     and broadcast it using a transmission distance equal to r  
/* This code section is run by a candidate relay ls  */ 

3.   If ls  is active primary relay Then 

4.      ls  forwards sensed data to the sink ms  
5.   Else 
6.      If ls  is highest-priority, active back-up relay Then 

7.         ls  forwards sensed data to the sink ms  
8.      Else /* all other potential relays */ 
9.         Generate two random numbers in [1..6] and compute 
            their sum 
10.       Compute the competition function ),( mlϕ  
11.       Broadcast >=< 21 ),,( ,,)( idmlvalidsBID l ϕ  
/* Compare )( lsBID  to all received )( jsBID  broadcast by 
    potential relays js  */ 
12.       If ))(max{)( jl svalsval >  Then 

13.         Call Official_Relay_Declared 
14.       Else 
15.         If )},( {max),( ))(max{)( mjmlsvalsval jl ϕϕ >∧=  
16.             Then Call Official_Relay_Declared 
17.         Else 
18.            If )},( {max),( ))(max{)( mjmlsvalsval jl ϕϕ =∧=  
                     and )}( {max)( jidlid > Then 
19.                Call Official_Relay_Declared 
20.            End 
21.         End 
22.       End 
23.     End 
24. End 
25. Return 
End 

Figure 7.13 Joint k-coverage and hybrid forwarding protocol. 
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Each potential relay ls  runs the following steps: 

• Flips two loaded dices (i.e., randomly generates two numbers in [1..6]) and computes their sum val. 

• Computes its competition function ).,( mlϕ  

• Builds a small packet )( lsBID  containing the quadruplet >< 21 ),,( ,, idmlvalid ϕ  and broadcasts it within 

its sensing range only, where 1id  is the id of a sender of a sensed data packet and 2id  is the id of .ls  

Any active sensor as  that receives )( lsBID  will have to run the following sequence of steps: 

• Checks whether it is a potential relay for the underlying data packet by looking at the first field 1id  of 

).( lsBID  If not, it just drops the packet. Else, it runs the next step. 

• Compares its random value (generated by flipping two loaded dices) to the second field val  of all 

).( lsBID  If it is smaller, as  cannot be a candidate relay. If both values are equal, it compares the value 

of its competition function with the third field ),( mlϕ  of all ).( lsBID  If it is smaller, it does not consider 

itself as a candidate relay. If it is equal, it compares its id  with the fourth field 2id  of all ).( lsBID  If it is 

smaller, as  is not a candidate relay. 

As can be seen, the official relay of a sensed data packet is the one with the highest value of the 

second field .val  The values of the other two fields, namely the value of competition function and id, are 

used to break ties. At the end of this selection process, the potential relay that has been designated as an 

official relay would forward the data packet to the sink and send back an ACK to the sender of the data. 

Note that the opportunistic component of our hybrid approach requires a little coordination between 

potential relays. The pseudo-code of HYGF-DCk is given in Figure 7.13. 

7.2.3 Performance Evaluation 

In this work, we propose the first analysis and solution to the problem of joint k-coverage and 

forwarding in duty-cycled three-dimensional wireless sensor networks. Thus, it is impossible to provide a 

fair quantitative comparison between our protocols and other existing ones, such as ExOR [38], CKN 

[133], and GeRaF [184], which were proposed for two-dimensional wireless sensor networks. Also, CKN 

[133] considered only 1-coverage while Kao et al. [99] did not consider duty-cycling. In this section, we 
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evaluate the performance of HYGF-DCk with a high-level simulator written in the C programming 

language. 

We consider a cubic sensor field of side length m 1000  where all sensors are randomly and uniformly 

deployed. We use the energy model used in [171], where the sensor energy consumption in transmission, 

reception, idle, and sleep modes are 60 mW, 12 mW, 12 mW, and 0.03 mW, respectively. Following [176], 

one unit of energy is defined as the energy required for a sensor to stay idle for 1 second. We assume that 

the initial energy of each sensor is 60 Joules enabling a sensor to operate about 5000 seconds in 

reception/idle modes [171]. All simulations are repeated 20 times and the results are averaged. 

 

                         Figure 7.14 ),( krλ  vs. k.                                              Figure 7.15 ),( krλ  vs. r. 

 

                         Figure 7.16 ),( krλ  vs. R.                                        Figure 7.17: Data delivery vs. p. 
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Figure 7.14 plots the sensor spatial density ),( krλ  versus the coverage degree  ,k  where the radius 

r  of the sensing range of sensors is equal to m. 30  We observe a close to perfect match between our 

simulation and analytical results. Notice that ),( krλ  increases with k  for a fixed .r  Indeed, higher 

coverage degree of a field would require more active sensors. 

Figure 7.15 plots ),( krλ  versus the radius r  of the sensing range of sensors, where the degree of 

coverage k  is equal to .3  We observe that ),( krλ  decreases with r  for a fixed .k  In fact, sensors with 

larger sensing range would cover more areas and hence less number of active sensors is required to 

achieve a certain coverage degree k  of a field. 

 

                               Figure 7.18 Delay vs. p.                                         Figure 7.19 Remaining energy vs. p. 

Figure 7.16 plots ),( krλ  versus the radius R  of the communication range of sensors for different 

values of the radius r  of their sensing range, where the degree k  of coverage is equal to .3  Notice that 

),( krλ  does not increase with .R  Indeed, as we have found in Theorem 7.3, the sensor spatial density 

),( krλ  of active sensors to k-cover a field depends only on the radius r  of the sensing range of sensors. 

Also, our k-coverage protocol DCPk is based on the sensing range of sensors in the sense that each 

sensor guarantees that its sensing range only is k-covered. 

Figures 7.17, 7.18, and 7.19 show the impact of the number of candidate relays on the performance 

of our k-coverage and hybrid forwarding protocol HYFGF-DCk. As we increase the number p  of candidate 

relays, the data delivery ratio (i.e., percentage of sensed data packets successfully received by the sink) 
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increases (Figure 7.17). Notice that the setting 1=p  corresponds to deterministic forwarding. When a 

single sensor is selected as a candidate relay ),1( =p  there is no guarantee that after data transmission 

this selected sensor would remain active. If it does not stay active, data packets destined to it would never 

reach the sink. Thus, the presence of multiple candidate relays increases the chance that sensed data 

would reach the sink. However, this improvement of data delivery ratio would lead to additional delay 

(Figure 7.18) and more energy consumption (Figure 7.19). Indeed, candidate relays need to exchange 

their local data to identify the best one of them as a relay. This process, however, needs more time and 

control overhead. These simulation results show that opportunistic forwarding helps improve data delivery 

ratio but requires more delay. However, deterministic forwarding yields better delay but does not 

guarantee high data delivery ratio. Our hybrid forwarding protocol on duty-cycled three-dimensional 

wireless sensor networks benefits from these nice features of opportunistic and deterministic schemes. 

7.3 Summary 

In this chapter, we have proposed a distributed approach to solve the scheduling problem in 

stochastic k-covered wireless sensor networks [23], where the sensing ability of the sensors is 

represented by a probability function. Indeed, stochastic sensing models are more realistic than the 

deterministic sensing model, which does not capture the probabilistic nature of the sensors’ 

characteristics. Our methodology is based on a geometric analysis using the Reuleaux triangle model. For 

problem tractability, we have considered the deterministic sensing model and then extended the analysis 

to a stochastic sensing model. First, we have characterized k-coverage in wireless sensor networks and 

provided a necessary and sufficient condition to achieve k-coverage with a minimum number of sensors. 

Then, we presented our k-coverage-preserving scheduling protocol (SCPk) based on this characterization. 

Precisely, sensors activate themselves by running a k-coverage candidacy algorithm to ensure that their 

sensing ranges are k-covered. We have found a good match between simulation and analytical results. 

We have also investigated the problem of joint k-coverage and geographic forwarding in duty-cycled 

three-dimensional wireless sensor networks [19]. We have found that our model for k-coverage in wireless 

sensor networks does not generalize to three-dimensional wireless sensor networks due to the inherent 

characteristics of the Reuleaux tetrahedron that totally differ from those of its two-dimensional Reuleaux 
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triangle counterpart. Hence, we have proposed a new model and derived the minimum sensor spatial 

density to guarantee full k-coverage of a three-dimensional field. Furthermore, we have designed a hybrid 

geographic forwarding protocol for duty-cycled three-dimensional k-covered wireless sensor networks, 

thus combining both deterministic and opportunistic forwarding schemes. We have also relaxed some 

assumptions to promote the practicality of our joint protocol and evaluated its performance. 
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CHAPTER 8 

INVESTIGATING THE ENERGY SINK-HOLE PROBLEM AND ITS SOLUTIONS 

One way to extend the lifetime of a wireless sensor network is through load balancing so that all 

sensors deplete their energy slowly and uniformly during their monitoring activity. Particularly, the behavior 

of the sink has an impact on the network lifetime. Indeed, static always-on wireless sensor network (i.e., 

the radios of the sensors are turned on all the time) are much affected by the energy sink-hole problem, 

where sensors located around a sink suffer from severe battery power depletion problem. Indeed, the 

sensors close to the sink act as relays to the sink on behalf of all other sensors, and hence deplete their 

battery power more quickly, thus leading to possible disconnection of the network and disruption of the 

sensed data from reaching the sink. It was proved that it is impossible to guarantee uniform energy 

depletion of all the sensors in static, uniformly distributed, always-on wireless sensor network with 

constant data reporting to the sink when sensors use their maximum communication range to transmit 

sensed data to the sink [117], [120], [136], [162]. 

The deployment of static sink and sensors in real-world applications is very common, and hence 

efficient solutions should be provided to tackle the energy sink-hole problem, which is inherent to static 

wireless sensor networks. We believe that the network lifetime depends on three key design metrics, 

namely type of data forwarding (long range vs. short range), type of sensors (homogeneous vs. 

heterogeneous), and type of sink (static vs. mobile). This motivates us to account for these three design 

metrics in order to the energy sink-hole problem. First, we consider the transmission distance that 

distinguishes between short-range and long-range forwarding. Second, we consider sensor heterogeneity 

when deploying sensors for its ability to improve the reliability of the network and extend its lifetime [63], 

[169]. Third, when sensors have the same initial energy, we consider sink mobility for its ability to evenly 

distribute the data forwarding load among all the sensors to extend the network lifetime [158]. 

The remainder of this chapter is organized as follows: Section 8.1 analyzes the energy sink-hole 

problem and proposes a restricted solution [12]. Section 8.2 exploits energy heterogeneity to solve the 
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energy sink-hole problem [12]. Section 8.3 makes use of the sink mobility and our new proposed concept 

of energy aware Voronoi diagram [12] to solve the energy sink-hole problem for homogeneous wireless 

sensor networks. Section 8.4 concludes the chapter. 

                                   

   Figure 8.1 Slicing field into circular bands.                   Figure 8.2 Circular field with a centered static sink. 

8.1 Energy Sink-Hole Problem Analysis 

We consider always-on wireless sensor networks, where the sensors constantly report their sensed 

data to a single static sink. Hence, the sensor cannot be turned off while monitoring a physical 

phenomenon. We assume that the sensors are static and uniformly distributed in a circular field of radius 

ℜ  with sensor spatial density λ  (Figure 8.1). 

First, we discuss a base protocol, where the network has a static sink and uses a short-path routing 

protocol [75]. The static sink is supposed to be located at its optimum position in terms of energy efficient 

data gathering, which corresponds to the center of the field [125]. We will show that the sensors around 

the sink have higher energy consumption than all other sensors. 

8.1.1 Base Protocol Average Energy Consumption 

The model that we use to compute the maximum average energy consumption of sensors is similar 

to the model in [74]. The average energy consumption of a node located in an area of size 2A  that 

forwards traffic for other nodes located in another area of size 1A  is proportional to .221 AAA +  Our 

model focuses on the nodes within a distance R≤≤ σ�  from the sink, where R  is the radius of the 

nominal communication range of sensors and .R<<�  Specifically, we consider a circle σC  of radius σ  
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around the sink ms  which includes the most active forwarders to the sink, where R≤≤ σ�  and �  is an 

infinitesimal value, as shown in Figure 8.2. The number of sensors inside and outside σC  is 2
  σπλ  and 

)(  
22 σπλ −ℜ , respectively, where ℜ  is the radius of the circular field ℜC  and  λ  is the sensor spatial 

density. Let r  be the radius of an infinitesimal circular region whose area is θddrrdA   = , where σ≤≤ r0  

and .20 πθ ≤≤  The average distance between a sensor in σC  and the sink ms  is computed as 
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The energy consumption rate per sensor in σC  is given by 

),(),()( mm sCERsCERCER σσσ +=  

where ),( msCER σ  is the average energy consumption rate per sensor in σC  to directly send its data to the 

sink, and ),( msCER σ  is the average energy consumption rate per sensor in σC  to forward a subset of 

sensed data packets originated from sensors in σσ CCC −= ℜ  to the sink. Using the energy model in 

Chapter 2 (see Section 2.4), we obtain 
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Figure 8.3 Plot of ).( σCER  
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Thus, the energy consumption rate per sensor using the base protocol is given by 
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Figure 8.3 shows that )( σCER  increases significantly as we approach the center of the field (i.e., 

location of the sink). It is clear that all sensed data will be forwarded by sensors whose distance from the 

sink is at most equal to m. 300=R  Hence, we slice the field ℜC  into concentric circular bands (or simply 

bands) of width R  (Figure 8.1) and assume that the field has 1>k  bands such that . Rk=ℜ  

8.1.2 Nominal Communication Range–Based Data Forwarding 

Under the above-mentioned field slicing method, the energy consumption rate of sensors depends 

on which band they belong to as well as the communication range used in reporting their data to the sink. 

We assume that sensors are homogeneous and use their nominal communication range. 

Lemma 8.1 proves that sensors located in the thk  (i.e., outmost) band consume less energy than all 

other sensors. 

Lemma 8.1: Assume a uniform sensor distribution with spatial density λ  and sensors constantly transmit 

their data to the sink using their nominal communication range of radius .R  Sensors located in the thk  

band have longer lifetime than all sensors in the network. 

Proof: Any sensor located in the thk  band has only to report its own data to the sink. Indeed, given that the 

communication range of sensors coincides with the width of the bands, no one of the sensors in the thk  

band can participate in forwarding data to the sink on behalf of others. Using the energy model in Section 

2.4 of Chapter 2, the energy consumption rate per sensor in the thk  band is computed as 

bERRERkER electx  ) ()()( +== αε  

Let initE  be the initial energy of a given sensor. The average lifetime of a given sensor in the thk  band is 

equal to .
)(kER

Einit  To the contrary, all sensors located in any other band forward data on behalf of others. 

Precisely, a sensor in the thi  band forwards data originated from sensors in the thj  band, where .kji ≤<  
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The number of sensors in the thi  band is equal to 

2222
 )12(   ))1((  )( RiRiiiN −=−−= πλπλ  

Let is  be an arbitrary sensor located in the thi  band. Thus, under uniform sensor distribution and constant 

data reporting, the average number of messages forwarded by is  per unit of time is given by 
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Hence, the average energy consumption rate of a sensor in the thi  band is given by 

)())(( )1)(()( txrxtx RERERRERiMiER ++−=  

Using the energy model in Chapter 2 and the value of ),(iM  the above equation leads to 
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Hence, the average lifetime of the sensors in the thi  band is ,
)(iER

Einit  where .ki <  It is easy to check that 

,
)()( kER

E
iER

E initinit <  meaning that the lifetime of the sensors in the thk  band is longer than that of the sensors in 

all other bands.                                                                                                                                              � 

Lemma 8.2, which follows from Lemma 8.1, states that uniform energy depletion cannot be 

guaranteed under the assumption of constant data reporting by sensors using their nominal transmission 

range. Thus, all sensors do not have same lifetime.  

Lemma 8.2: Assume a uniform sensor distribution with sensor spatial density .λ  Also, suppose that 

sensors are always on and constantly report their sensed data to the sink using their nominal 

communication range of radius .R  It is impossible for a given pair of sensors in two different bands to 

have the same energy consumption rate in their lifetime.                                                                             � 

Next, we investigate the case where sensors may use their adjustable communication range to 

transmit or forward data to the sink. 

8.1.3 Adjustable Communication Range-Based Data Forwarding 

Given that the sensor distribution is uniform and that sensors constantly report their data to the sink, 
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the transmission distance remains the key parameter to check whether it is possible to guarantee uniform 

energy depletion of sensors. We consider the following two problems. 

8.1.3.1 Perfect Uniform Energy Depletion 

In the case of perfect uniform energy depletion, sensors in all bands consume energy at the same 

rate. Precisely, we want to compute the number k  of bands of a field such that the sensors located in the 

first and thk  bands have the same lifetime. 

Let 2  ℜ=Ν πλ  be the total number of sensors forming the network. Now, consider two arbitrary 

sensors 1s  and ks  that belong to the first and thk  bands, respectively. Given that sensors are uniformly 

distributed in the field, the average number of sensors in the first and the remaining )1( −k  bands, denoted 

by )1(N  and ),2( kN →  respectively, are equal to 

2
  )1( RN πλ=  

2222
 )1(  )(  )2( RkRkN −=−ℜ=→ πλπλ  

Moreover, sensors in the first band and, in particular, sensor 1s  acts as forwarder of the data coming from 

all other bands. Thus, the average number of messages forwarded by 1s  (including its own message) per 

unit of time is 
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Out of these 2k  messages, )1(
2 −k  were sent by sensors located in the )1( −k  remaining bands. To 

simplify the analysis, we assume that the sensor 1s  uses the transmission distance .1d  Hence, the 

average rate of energy consumption of 1s  is given by 
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On the other hand, the average rate of energy consumption of the sensor ks  is computed as 

bEDDERkDER eleckktxk  ) ()( ),( +== αε  

where kD  is the transmission distance used by .ks  The metric of energy depletion uniformity requires that 
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the average rate of energy consumption of all sensors is the same. Hence, equating the above two 

equations, i.e., ),,( )1,( 1 kDERdER k=  yield 

0 )1 (
2

 
2

1
2 =−−− kEdkD elec

k ε
αα                                                                   (3) 

where ,0 RDk ≤<  ,0 1 Rd ≤<  ,42 ≤≤ α  and .1>k  Notice that under uniform sensor distribution and 

constant data reporting, it is possible to guarantee uniform energy consumption of sensors located in the 

first and thk  bands if the transmission distances d  and kD  satisfy Equation (3). Thus, given that sensors 

in the thk  band do not forward data on behalf of others, their transmission distance kD  should be larger 

than that used by sensors in the lower )1( −k  bands. Achieving the goal of energy depletion uniformity 

requires that sensors in the lower )1( −k  bands adjust their transmission distances according to .kD  

Particularly, the transmission distance 1d  for sensors in the first band given by 
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Lemma 8.3 [14], [30], [31] approximates the minimum transmission distance mind  a given sensor 

can use for transmitting its own data or forwarding data on behalf of others to the sink.  

Lemma 8.3: The minimum transmission distance used by a sensor when it sends/forwards data to the 

sink, can be approximated by 
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From Lemma 8.3, it follows that a physical solution to Equation (3) exists if and only if 
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The above inequality implies that guaranteeing uniform energy depletion of all sensors is possible if and 

only if the number k  of bands of the field satisfies 
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Theorem 8.1 generalizes equation (4) and states the conditions under which uniform energy 
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depletion of sensors is achieved. 

Theorem 8.1: Assume that sensors can adjust their communication ranges when they transmit sensed 

data to the sink. Let kD  be the transmission distance used by sensors in the thk  band. Then, uniform 

energy depletion of sensors in the network can be guaranteed provided that 

(Condition 1) sensors in the thi  band with ki <  use a transmission distance id  given by 
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(Condition 2) the number of bands in a circular field is upper-bounded by  
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Table 8.1: Values of elecE  and ε  depending on .α  

 elecE  ε  

2=α  bitnJ /50  2
//10 mbitpJ  

42 ≤< α  bitnJ /50  2
//0013.0 mbitpJ  

 

Figure 8.4: Plot of  3/2 000067.0
2 += ku Dk  for  .2=α  Figure 8.5: Plot of  3/21087 10 +×= − α

ku Dk  for  .42 ≤< α  

Table 8.1 summarizes the values of the constants },{ mpfs εεε ∈  and elecE  [88], which depend on .α  

The upper bound on k  depends on whether the free-space )2( =α  or multi-path )42( ≤< α  propagation 
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model is used, and is computed as 
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Assume that the radius of the nominal communication range of sensors is equal to m. 300=R Figure 

8.4 plots the function uk  for the free-space model, while Figure 8.5 plots uk  for the multi-path model for 

different values of .α  As can be seen from Figure 8.4, the maximum number of bands for 2=α  is 2=uk  

and can be obtained only when sensors located in the thk  band use a transmission distance equal to at 

least m. 225=kD  However, for },5.3 ,3 ,5.2{∈α  as shown in Figure 8.5, there is no solution to the problem 

since ,1=uk  i.e., uniform energy depletion cannot be guaranteed for those values of .α  For ,4=α  

however, the number of bands can vary from 2 to 8. For instance, for ,8=uk  the transmission distance 

used by sensors in the thk  band should be m. 290≥kD  The corresponding value of the transmission 

distance d  used by sensors in the lower )1( −k  bands can be computed based on Equation (4) for each 

pair of values ).,( ku Dk  

Discussion: In [136], it was proved that that unbalanced energy depletion is unavoidable for .2=α  Using 

our analysis, however, we have proved that providing uniform energy consumption of sensors in all the 

bands (i.e., perfect uniform energy depletion) is possible although hard to achieve, especially for .2=α  

Indeed, the number of bands cannot exceed 2, which imposes a severe restriction on the size of the field. 

This is due to the gap in the energy consumed by sensors in the first and thk  bands. Indeed, most of 

sensors in the thk  band never forward data on behalf of others regardless of their transmission distance 

.D  Thus, our result is in sharp contrast with the one reported in [136]. Also, while our analysis shows that 

the number of bands has a certain upper bound that does not depend on the size of the field but depends 

only on the transmission distance D  and the propagation model considered, Olariu and Stojmenovic [136] 

found that the number of coronnas (or bands) is based on the size of the field. 

Next, we consider the following relaxed version of the above-mentioned problem. 
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8.1.3.2 Partial Uniform Energy Depletion 

Here, we investigate the value of ,i  where ki <<1  and , Rk=ℜ  such that a uniform energy depletion 

could be achieved among all sensors located in the lower i  bands (1 to ).i  Hence, our objective is to 

compute the value of i  such that sensors located in the first and thi  bands have the same energy 

consumption rate. Guaranteeing uniform energy depletion of sensors in the first and thi  bands will 

definitely yield uniform energy depletion of sensors located in the thj and thi  bands, for any ij < . Thus, we 

focus only on the lower i  bands instead of all bands in the field and investigate the achievement of partial 

energy depletion uniformity. 

Let is  be an arbitrary sensor located in the thi  band and ),( iDER i  the average energy consumption 

rate of ,is  where iD  is the transmission distance of .is  If we replace R  by iD  in Equation (1), we obtain 
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In order to achieve partial uniform energy depletion in the first and thi  bands, their corresponding sensors 

must have the same energy consumption rate, i.e., ).,()1,( 1 iDERdER i=  Hence, by equating equations (2) 

and (5), the transmission distance 1d  is computed as: 
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where RDi ≤<0  and .0 1 Rd ≤<  The value of i  should be chosen in a way such that the transmission 

distance 1d  is lower-bounded by .mind  Hence, a value of 1d  in Equation (6) exists if and only if .min1 dd ≥  

Hence, Equation (6) and Lemma 8.3 imply 
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Let ),( kiF  be a function defined as follows: 
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Let us evaluate the value of i  such that the function ),( kiF  is positive. For this purpose, we solve the 
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following two equations: 
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Notice that the value of k  is immaterial because we are only interested in achieving partial uniform energy 

depletion among the first i  bands, where .ki <  Equation (8) provides a physical solution opti  given by 
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    Figure 8.6 Plot of opti  for  .2=α  

 

      Figure 8.7 Plot of opti  for  .42 ≤< α  

 

               Figure 8.6 shows that partial uniform energy depletion can be achieved with regard to the first 

and the rd3  bands when ,2=α  where the sensors in this band use their nominal communication range. 

Figure 8.7 shows that for ,5.3=α  we get ;2=i  while for ,4=α  its value varies between 2 and 35. The 

number of bands does not depend on the size of the field. 

Therefore, the energy sink-hole problem can be solved provided that sensors adjust the radii of their 

communication ranges. However, this solution imposes a severe restriction on the size of the field in terms 

of the number of its bands especially for the free-space propagation model ).2( =α  Next, we propose a 

scheme to overcome this shortcoming with the help of heterogeneous sensors, and evaluate its 

performance. 
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8.2 Using Heterogeneous Sensors 

We consider heterogeneous sensors that are equipped with batteries with different initial energy. 

First, we describe our architecture for such a network with a goal to guarantee that all the sensors deplete 

their initial energy at the same time. Then, we evaluate its performance. 

8.2.1 Multi-Tier Architecture 

In this approach, heterogeneous sensors are assigned to the bands of the field in such a way that 

they all deplete their initial energy at the same time. In real-world scenarios, wireless sensor networks can 

have heterogeneous sensors with different capabilities, thus increasing the network reliability and lifetime. 

For tractability of the problem, we assume that energy is the only criterion that decides whether sensors 

are homogeneous or heterogeneous. Now, the bands do not contain the same type of sensors regarding 

their initial battery power. Precisely, each band has homogeneous sensors (i.e., sensors having the same 

amount of initial energy). But, any two bands have heterogeneous sensors (i.e., sensors with unequal 

amounts of initial energy). Sensors are supposed to use their nominal communication range when they 

forward data to the sink. Our goal is to guarantee uniform energy depletion of all sensors regardless of 

their bands. 

Yarvis et al. [169] proposed a three-tier architecture for heterogeneous wireless sensor networks. 

The top layer contains only one sink that receives sensed data and analyzes them. The second layer 

includes sensors with no energy constraint. These sensors, called line-powered sensors, have unlimited 

energy resources by connecting them to a wall outlet. The third layer contains battery-powered sensors 

that are one-hop away from line-powered sensors. The rationale behind this architecture is that sensors 

closer to the sink in multi-hop sensor network with many-to-one delivery, consume more energy than all 

other sensors in the network. Thus, those sensors should be line-powered. As can be observed, this 

three-tier architecture forms a dominating tree where each battery-powered sensor communicates with the 

sink via only line-powered sensors to transmit its sensed data. There is no communication among battery-

powered sensors in order to save their energy, and hence no battery-powered sensor can play the role of 

data forwarder on behalf of other sensors. Definitely, there should be a sufficient number of line-powered 

sensors. 

Now, we propose a multi-tier wireless sensor network architecture, where each band represents a 
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tier and no sensor is supposed to be line-powered. The data forwarding algorithm used by sensors is 

called next band-based data forwarding (NEAR) and is mainly based on the following premise: each 

sensor selects a neighbor in its adjacent band as its next hop forwarder the one whose remaining energy 

is the highest among all sensors in that band. Also, their transmission distance .R  We prove that with 

such a sensor distribution, all sensors in the network deplete their initial energy at the same time. 

Consider the thk  band. As discussed earlier, the average energy consumption rate per sensor in this band 

is , ) ( )( bERRER electx += αε  where b  (in bits/sec) is the sensor’s data rate. According to [74], the average 

lifetime of sensors of the thk  band is given by 
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where ),(0 kje  is the total initial energy of the thj  sensor in the thk  band whose total number of sensors is 

).(kN  Since a given band is homogeneous in terms of initial energy, 
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Similarly, for the thi  band, the average energy consumption rate per sensor in this band is given by 
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where the first term is due to a sensor transmitting its own data and the second term is due to data 

forwarding on behalf of sensors in the thth ki ,...,)1( +  bands. Similarly, the average lifetime of sensors of the 

thi  band is given by 
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Note that the above equation holds for all .1 ki ≤≤  Sensors in all bands will deplete their initial energy at 

the same time if 

)(...)(...)1( kTiTT ====  

Thus, ),()( kTiT =  for all ,11 −≤≤ ki  which implies the following relationship between the initial energy )(0 ie  
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and )(0 ke  of the thi  and thk  bands, respectively, 

)( ),()( 0 kekigie =  for 11 −≤≤ ki                                                                (9) 

where their ratio ),( kig  is given by 
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Theorem 8.2 states the condition under which uniform energy depletion of all sensors can be 

guaranteed. 

Theorem 8.2: Consider a deployment strategy where a circular field is sliced into k  concentric bands of 

constant width R  (i.e., nominal communication range of sensors) and the sensor spatial density is 

constant. Uniform energy depletion of sensors is guaranteed if each band is homogeneous and all bands 

are mutually heterogeneous in such a way that the ratio of the initial energy )(0 ie  of a sensor in the thi  

band to the initial energy )(0 ke  of a sensor in the thk  band satisfies 
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                Figure 8.8 Plot of ),( kig  for  .2=α                              Figure 8.9 Plot of ),( kig  for  .42 ≤< α  

Figures 8.8 and 8.9 plot the function ),( kig  for different values of ,i  ,k  and α  assuming a data rate 
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of 1024 bits/sec and m. 300=R  We use the same values of the other constants listed in Table 1. Both 

figures show that ),( kig  is high for the first inner bands and decreases continuously for the outer bands 

that tend to have comparable data forwarding load. 

8.2.2 NEAR Performance Evaluation 

We assume that m, 300=R  ,2=α  and 5  i.e.,  m, 1500 ==ℜ k  (there are 5 concentric circular bands in 

the circular field). The corresponding values of the constants fsε  and elecE  are given in Table 1. Moreover, 

we assume that every sensor continuously generates constant bit rate (CBR) data of 1024 bits/second, 

i.e., 4 data packets per second bits/sec).  1024( =b  Sensors are randomly deployed in the circular field and 

their initial energy is determined based on their bands following Equations (9) and (10). The simulation is 

run for multiple times and the simulated time for each run is equal to 1000 sec. Then, we average the 

results of all those runs. 

 

      Figure 8.10 Average energy consumption of NEAR             Figure 8.11 Uniform energy depletion of all sensors. 

In the first simulation, the number of sensors varies from 800 to 1600 (i.e., we vary the sensor 

spatial density). Figure 8.10 shows that sensors in all bands do not consume the same amount of energy. 

This remains true given that sensors are randomly and uniformly deployed. Indeed, sensors located in the 

bands closer to the sink still consume more energy than those placed in higher bands. However, the 

average energy consumption of sensors in a given band stays almost constant as we vary the total 

number of sensors deployed in the field. This implies that the energy sink-hole problem cannot be solved 

by simply increasing the number of sensors. 
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In the second simulation, the number of sensors is fixed to 1600. Assume that the initial energy of 

sensors in the thk  band is joule.  97.0)(0 =ke  By Theorem 8.2, the initial energy of sensors in all other bands 

are computed based on ).(0 ke  Figure 8.11 shows that the total remaining energy of sensors in all bands 

decreases as time advances since those sensors are continuously sending or forwarding sensed data to 

the sink. The simulation results almost totally agree with the theoretical results, which are omitted for the 

clarity of Figure 8.11. Notice that the curves related to those five bands do not have the same slope. This 

is due to the fact that sensors in those bands do not have the same load and hence the remaining energy 

of the inner bands depletes faster than that of the outer bands. More importantly, all sensors in all bands 

deplete their initial energy at the same time. This result confirms with the analysis of our sensor 

deployment strategy that assigns initial energy to sensors based on their load in data forwarding to the 

sink. Definitely, sensors closer to the sink have the highest initial amount of energy given that any sensed 

data should go through them before reaching the sink. 

Next, we propose a data forwarding protocol for homogeneous wireless sensor networks, which 

uses sink mobility and a new variant of Voronoi diagram whose structure is time-varying. 

8.3 Sink Mobility and Energy Aware Voronoi Diagram 

Here, we assume that the sink is mobile so its neighbors change over time. Moreover, all sensors 

are homogeneous and randomly and uniformly distributed in a circular field of radius ℜ  with sensor 

density .λ  We also assume that the mobility trajectory of the sink follows the random waypoint (RWP) 

mobility model [98], thus covering the entire field (i.e., all locations in the field are equally likely to be 

visited). Initially, the sink randomly selects a waypoint and a speed between 0  and ,maxv  and moves 

towards the selected waypoint at this constant speed. When it reaches a waypoint, the sink stays for a 

pause time and randomly selects new waypoint and speed. The sink repeats this process during the 

network lifetime. We assume that data collection continues via multi-hop forwarding wherever the sink 

stays. Thus, only the pause time has an impact on data dissemination. 

To answer both questions raised in Chapter 1 (see Section 1.4), we propose a new concept, called 

energy aware Voronoi diagram, where all sensors in ),( mi ssSCN  act as candidate forwarders. When the 

sink arrives at a waypoint, it randomly selects its next waypoint and broadcasts it along with its current one 
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and pause time in a single info packet, i.e., }.,,{ ptimerwprwpinfo futcur=  Each sensor that receives this info 

packet decides whether it would transmit its data to either the current or future waypoint of the sink based 

on its location and the average transmission delay. For a field whose size is in the order of a few miles, the 

average propagation delay is negligible compared to the average transmission delay [101]. Next, we 

discuss the concept of energy aware Voronoi diagram and compare it to weighted Voronoi diagram. 

8.3.1 Why Energy Aware Voronoi Diagram? 

The newly proposed concept of energy-aware Voronoi diagram differs from weighted Voronoi 

diagram [33]. While the Voronoi edges of the latter are not straight segments, the ones generated by the 

former are, indeed, straight segments. Also, energy aware Voronoi diagram depends on both the locations 

of sensors and their remaining energy. Hence, the structure of energy aware Voronoi diagram is dynamic 

in nature. As will be seen later, energy aware Voronoi diagram is an appropriate structure for data 

forwarding in wireless sensor networks for the following three reasons: First, it helps us design a localized 

routing protocol for wireless sensor networks in the sense that each sensor builds its energy aware 

Voronoi diagram based on its neighbors’ information. Second, most of the existing geographical routing 

protocols, except GeRaF [184], consider the closest sensor to destination as candidate forwarder. 

However, in GeRaF, a sensor may have the same subset of sensors alive as candidate forwarders. The 

concept of energy aware Voronoi diagram enables a sensor to have a subset of candidate forwarders 

from which it chooses the best one with respect to some metric. Third, it gives an equal chance to all 

sensors in the network to act as candidate forwarders on behalf of others to the sink. This is due to the 

randomness caused by the remaining energy metric to construct such a Voronoi diagram. 

 

Figure 8.12 Candidate forwarders of .0s  
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Protocol: EVEN 
Begin 
// Actions executed by a source sensor 0s  

1:   If sink )( 0sCNsm ∈  Then 

2:        Forward sensed data  packet directly to ms  
3:   Else 
4:        Identify a reference sensor refs  such that 

         )},,(:)(max{)( 0 βmjjremrefrem ssSCNssEsE ∈=  

5:       Compute the relative positions of the neighbors 
         ),( 0 mj ssSCNs ∈  

6:       Compute the energy-aware Voronoi diagram:  
         )),(},,({ 00 mmref ssSCNsssEAVor ∪  

7:       Identify a subset of candidate forwarders ),( 0 mssCF  

8:       Select an appropriate forwarder afs  in ),( 0 mssCF  

          such that  )},(:)(max{)( 0 mkkrafr ssCFssCEsCE ∈=  

9:       Forward the sensed data packet to afs  

// Actions executed by appropriate forwarders 
10:     While (sensed data packet has not reached ms ) Do 

11:            If sink )( afm sCNs ∈  Then 

12:                 Forward sensed data  packet directly to ms  
13:                 Break; 
14:            Else Repeat Steps 1-9 by replacing 0s  with afs  

15:            EndIf 
16:     EndWhile 
End 

Figure 8.13 The EVEN Protocol. 

Let )( isCN  be the communication neighbor set of a sensor ,is  which are located in its 

communication disk whose radius is equal to .iR  From )( isCN , the sensor is  considers only a subset of 

sensors, denoted by ),,( mi ssSCN  located between is  and the sink ms  to act as data forwarders to the sink. 

Definition 8.1 (Adjacent Voronoi region): Let ),( mij ssSCNs ∈  and ( )),(},{ mimi ssSCNssVor �  be a localized 

Voronoi diagram computed by .is  A Voronoi region )( msVR  of the sink ms  is said to be adjacent to the 

sensor js  if )( msVR  and )( jsVR  of ms  and ,js  respectively, have at least one common Voronoi edge.      � 

Definition 8.2 (Candidate forwarder): Let ).,( mij ssSCNs ∈  The sensor js  is said to be a candidate forwarder 
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of is  if )( msVR  is adjacent to ,js  where )).,(},({)( mimim ssSCNssVorsVR �∈  The set of candidate forwarders of 

is  is denoted by ).,( mi ssCF                                                                                                                             � 

Assume that a source 0s  wishes to disseminate its data to the sink .ms  Figure 8.12 shows the 

localized Voronoi diagram of ,0s  where }.181|{),( 0 ≤≤= isssSCN im  Notice that },,,,,{),( 1817151090 sssssssCF m =  

where the Voronoi region of each of those sensors shares one Voronoi edge with that of .ms  These 

shared edges are marked bold. 

Definition 8.3 (Reference sensor): Let ).,( miref ssSCNs ∈  A sensor refs  is said to be a reference sensor of is  

if refs  has the highest remaining energy among all sensors in ).,( mi ssSCN                                               � 

Next, we describe our protocol, evaluate its performance through simulations, and compare it with 

existing ones. 

8.3.2 EVEN Detailed Description 

Our proposed protocol (Figure 8.13), called energy aware Voronoi diagram-based data forwarding 

(EVEN), is composed of three phases, namely computing relative positions, computing energy-aware 

Voronoi diagram, and selecting appropriate forwarder. 

Computing Relative Positions: First, a source 0s  identifies its reference sensor .refs  All other neighbors 

will be positioned relatively to refs  based on their remaining energy. If there are multiple reference 

sensors, EVEN selects refs  with the smallest distance to the shortest path ].,[ 0 mss  The relative (x,y)-

coordinates of a neighbor js  of 0s  are computed as follows: 
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The intuition behind this computation is to “virtually” move sensors with low remaining energy away 

from the sink. Thus, these sensors will not be considered as “good” candidate forwarders until their 
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available energy reaches a certain value. Notice that only refs  has the same relative and physical 

positions with respect to is  as the ratio is equal to 1. 

Computing Energy-Aware Voronoi Diagram: A source 0s  computes its energy-aware Voronoi diagram, 

)),(},,({ 00 mmref ssSCNsssEAVor ∪  with respect to its own actual location and that of the sink ms  as well as the 

relative positions of sensors in the subset ).,( 0 mssSCN  As the remaining energy of sensors varies with 

time, the obtained structure of energy aware Voronoi diagram computed by sources and all forwarding 

sensors is time-varying too. 

Selecting Appropriate Forwarder: A source 0s  uses the relative EnergyCloseness ×  metric defined by 

)()()( jjrjr swswsCE ×=  to choose its appropriate forwarder ,afs  where ),,( 0 mj ssCFs ∈  

),(),(

),(
)(

0

0

mjrjr

m
jr ssss

sssw
δδ

δ
+

=  is the relative closeness ratio, 
� ∈

=
),,( 0

)(

)(
)(

βmk ssCFs krem

jrem
j

sE

sE
sw  is the energy ratio 

with )( jrem sE  being the remaining energy of sensor ,js  ),( 0 jr ssδ  is the relative Euclidean distance 

between 0s  and ,js  and ),( mjr ssδ  is the relative Euclidean distance between js  and .ms  The source 0s  

selects afs  such that )}.,(:)(max{)( 0 mkkrafr ssCFssCEsCE ∈=  Then 0s  forwards its data to afs . After 

receiving the data packet, afs  performs the same above phases to identify its appropriate forwarder. This 

process repeats until the sink receives the data. 

         

                                                       (a)                                                                                          (b) 

Figure 8.14 (a) Voronoi diagram )),(},({ 00 mm ssSNSssVor ∪  and (b) energy-aware Voronoi diagram 
)).,(},,({ 00 mmref ssSNSsssEAVor ∪  
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Using the concept of Voronoi diagram, only ,3s  ,7s  ,9s  and 10s  can act as candidate forwarders for 

0s  as shown in Figure 8.14a. However, the subset of candidate forwarders ),( 0 mssCF  may vary depending 

on the remaining energy of the sensors when the concept of energy-aware Voronoi diagram is used. 

Figure 8.14b shows that ,1s  ,3s  ,6s  and 7s  are candidate forwarders for ,0s  which are computed based on 

the reference sensor .7s  

Lemma 8.4 states that all sensors in ),( mi ssSCN  are equally likely to be selected as appropriate 

forwarders for .is  

Lemma 8.4: All sensors in ),( mi ssSCN  are equally likely to be selected as appropriate forwarders for is . 

Proof: First, is  will pick sensor 1is  having the maximum closeness ratio, i.e., 

)},,(:)(max{)( 1 mikki ssSCNsswsw ∈=  as a reference sensor and also as an appropriate forwarder. Obviously, 

is  will not select 1is  as reference sensor in the next data dissemination as 1is  will have less remaining 

energy than other sensors in ).,( mi ssSCN  Let 2is  be the second reference sensor, where 212 )()( wswsw ii +=  

and .10 2 << w  However, 1is  could be selected as an appropriate forwarder only if )()( 21 irir sCEsCE >  or 

.
)(

)(
)()(

22

2
21 wsw

swswsw
i

i
ii −

×>  Otherwise, either 2is  or another sensor in ),( mi ssSCN  will be selected as an 

appropriate forwarder. As can be seen, any sensor could be successively selected as an appropriate 

forwarder a very few times. Because of the relative values of the metric EnergyCloseness ×  and the notion of 

reference sensor, each sensor in ),( mi ssSCN  will be considered as an appropriate data forwarder for .is   � 

8.3.3 EVEN Performance Evaluation 

In this section, we study the performance of EVEN based on simulation programs written in the C 

programming language. Our simulation set-ups consider 800  sensors randomly and uniformly distributed 

in a circular field of radius m. 3000=ℜ  The radius of the communication range of the sensors is m. 300=R  

Also, when mobility is considered, the maximum speed of a mobile sink is m/s. 5max =v  

8.3.3.1 Impact of Sink Mobility 

In this experiment, we consider a Voronoi diagram-based greedy forwarding (VGF) protocol. VGF is 

similar to a greedy geographic routing algorithm, called Bounded Voronoi Greedy Forwarding (BVGF) 
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[165]. On the one hand, BVGF chooses the sensor that has the shortest distance to the sink and does not 

consider energy as a selection metric. On the other hand, VGF considers both the closeness of sensors to 

the sink as well as their remaining energy to build localized Voronoi diagram and select the best candidate 

forwarders. Notice that VGF and EVEN are quite identical except that the former uses the actual locations 

of sensors while the latter uses the virtual locations of sensors (computed in Section 8.3.2). We evaluate 

the performance of VGF for both cases of networks using a static sink and a mobile sink, respectively. We 

compute the average energy consumption of sensors as a function of their distance from the center of the 

field. A static sink is positioned at the center of the field for energy-efficient data gathering [125]. As can be 

seen in Figure 8.15, VGF has better performance with a mobile sink than with a static sink. Indeed, sink 

mobility distributes the data forwarding load among all the sensors. 

 

         Figure 8.15 VGF – static sink vs. mobile sink.                Figure 8.16 Comparing EVEN with VGF. 

8.3.3.2 Comparing EVEN with VGF 

In this experiment, we consider a mobile sink and compare the performance of EVEN with that of 

VGF. EVEN leads to better load balance than VGF as shown in Figure 8.16. While EVEN allows a sensor 

to select best forwarders among all of its neighbors, VGF considers only the closest sensors to the sink. 

As expected, EVEN distribute more evenly the data dissemination load among the neighbors of each 

sensor, and hence outperforms VGF. Figure 8.17 shows the impact of pause time of the mobile sink on 

the average energy consumption of sensors. As the pause time increases, more sensors will have the 

chance to transmit sensed data to the sink. Thus, sensors close to the sink become more active as they 
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receive more data from sources. When the pause time has large value, those heavily used sensors 

surrounding the sink deplete their energy more quickly than all other sensors. The performance of EVEN 

tends to that of VGF with a static sink. It is worth noting that no matter how energy-efficient a data 

forwarding protocol is, the use of static sink significantly degrades its performance. 

 

Figure 8.17 Impact of pause time on EVEN. 

 

Figure 8.18 Joint mobility and routing strategy [125]. 

8.3.3.3 Comparing EVEN with Another Protocol 

Luo and Hubaux [125] showed through simulations that under the short path routing strategy, a 

mobile sink reduces the average load of the sensors by about %75  compared to a static sink. This 

reduction implies approximately a %400  increase of the network lifetime. Luo and Hubaux [125] also 

showed by simulation that their joint mobility and routing strategy further reduces the network load by 

about %10  which corresponds to an overall improvement of the network lifetime of about %500  compared 
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with the case of static sink. Their joint mobility and routing strategy is elegant and efficient in that it exploits 

the available energy at the sensors close to the border of the network, which are almost not used in data 

forwarding. Moreover, the sink moving on a circle of radius ,RRm <  where R  stands for the radius of the 

field. Thus, the field is divided into two regions: the inner circle of radius mR  and the annulus between the 

periphery of the network and the trajectory of the sink as shown in Figure 8.18. The sensors within the 

inner circle use short path routing to transmit their sensed data to the sink whereas the sensors in the 

annulus send their data to the sink using two steps. First, a sensor uses round routing around the center 

of the network O  until the segment OB  is reached, where B  is the current position of the mobile sink. 

Then, the data is sent to the sink using a short path. 

EVEN does not necessarily choose a short path. Using the concept of energy-aware Voronoi 

diagram, all neighbors of each sensor have the chance to participate in data forwarding toward the sink. 

Thus, a mixture of short-range and long-range data forwarding patterns would take place. This helps the 

sensors deplete their energy slowly and uniformly. Also, as the sink is moving randomly, all areas in the 

field are equally likely to be visited, including those on its periphery. Thus, sensors close to the border of 

the network would be selected to act as forwarders towards the sink as their remaining energy permits. 

According to [125], the network lifetime is inversely proportional to the maximum average energy 

consumption of the sensors. Thus, as can be seen from Figure 8.16, EVEN improves the network lifetime 

by more than %430  compared with VGF that uses a static sink. Thus, EVEN has performance that is 

comparable to that of the joint mobility and routing strategy [125]. 

8.4 Summary 

In this chapter, we have studied the energy sink-hole problem in static always-on wireless sensor 

networks, where sensors around a sink are heavily used in data forwarding, thus depleting their energy 

quickly [12]. We proved that uniform energy depletion of all sensors can be achieved in uniformly 

distributed wireless sensor networks provided that the sensors adjust their communication ranges when 

forwarding data to a static sink. We have also proposed a deployment strategy using heterogeneous 

sensors that guarantees uniform depletion of sensors’ initial energy. Sensors are placed in their bands 

based on their data forwarding activity and initial energy. Precisely, the inner bands contain sensors with 
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large amount of energy as they are heavily loaded with data forwarding to the sink. We have found that 

our simulation results agree almost perfectly with our theoretical results. A critical factor for extending the 

lifetime of wireless sensor networks is load balancing in data dissemination, which depends on the nature 

of the sink and the selection scheme of appropriate forwarders. We have proposed a data dissemination 

protocol, called EVEN, which uses the concept of energy-aware Voronoi diagram to evenly distribute the 

load of data forwarding on all the neighbors of a given sensor, and exploits sink mobility to update the 

neighbors of the sink. The design goal of EVEN is to balance the load among the sensors so they deplete 

their energy as uniformly and slowly as possible, thus extending the network lifetime. Our results 

demonstrate that energy-aware Voronoi diagram and sink mobility lead to more than %430  improvement 

of the network lifetime compared to the case of static sink. 
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CHAPTER 9 

FAULT-TOLERANCE MEASURES OF CONNECTED k-COVERAGE CONFIGURATIONS 

Connectivity, primarily a graph-theoretic concept, helps define the fault tolerance of wireless sensor 

networks in the sense that it enables the sensors to communicate with each other so their sensed data 

can reach the sink. Indeed, a fundamental aspect in the design of wireless sensor networks is to keep 

them functional as long as possible. Because of scarce battery power (or energy), sensors may entirely 

deplete their energy or have low energy level that will not enable them to function properly. Those sensors 

are called faulty as they cannot perform their monitoring task properly. A wireless sensor network is said 

to be fault tolerant if it remains functional in spite of the occurrence of sensor failures. Precisely, a wireless 

sensor network is said to be functional if at any time there is at least one communication path between 

every pair of non-faulty sensors in the network, and, in particular, between any source and a sink. The 

existence of communication paths between pairs of sensors, however, is related to vertex-connectivity (or 

simply connectivity). Therefore, network functionality and hence network fault-tolerance strongly depends 

on connectivity [116]. On the other hand, sensing coverage, an intrinsic architectural feature of wireless 

sensor networks plays an important role in meeting application-specific requirements, for example, to 

reliably extract relevant data about a sensed field. 

Sensing coverage and network connectivity are not quite orthogonal concepts. In fact, it has been 

proven that connectivity strongly depends on coverage and hence considerable attention has been paid to 

establish tighter connection between them although only loose lower bound on network connectivity of 

wireless sensor networks is known. Furthermore, for a wireless sensor network to function correctly, both 

sensing coverage and network connectivity should be maintained. Hence, we investigate network 

connectivity, and hence network fault-tolerance, based on the degree of sensing coverage k  provided by 

k-covered wireless sensor networks, where the sensors are randomly and uniformly deployed with density 

λ  in a square field of area size A.  
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Although network connectivity can be used to measure the fault tolerance of small-scale networks, it 

is not appropriate for highly dense deployed networks, such as k-covered wireless sensor networks. 

Traditional (or unconditional) connectivity has no restriction on the faulty sensor set and assumes that any 

subset of sensors can potentially fail at the same time, including all the communication neighbors of a 

given sensor. However, k-covered wireless sensor networks can consist of thousands of sensors for 

which it is highly unlikely in this type of network that all the communication neighbors of a given sensor fail 

simultaneously. This is due to the following two reasons, assuming a planar field: 

•••• Assuming a uniform sensor distribution, the ratio of the size of the communication neighbor set 

of a given sensor to the total number of sensors in a planar field of area size A  is given by 

,/ 
2 ARπ  where R  )( AR <<  is the radius of the communication ranges of the sensors forming a 

homogeneous wireless sensor network. The probability of the failure of the entire neighbor set 

of a given sensor can be identified with this ratio and hence is very low. 

•••• In real-world scenarios, wireless sensor networks can be heterogeneous, where sensors have 

different sensing, processing, and communication capabilities, thus increasing the network 

reliability and lifetime [63], [169]. Hence, the probability that an entire neighbor set of a given 

sensor fail simultaneously in this type of network is very low. 

Thus, the unconditional connectivity may not reflect the actual fault tolerance of large-scale dense 

networks, such as k-covered wireless sensor networks, due to the above shortcomings. To alleviate this 

problem, we use the concept of restricted connectivity, which is based on the notion of forbidden faulty set 

The remainder of this chapter is organized as follows. Section 9.1 derives fault-tolerance measures 

for two-dimensional k-covered wireless sensor networks while Section 9.2 computes their conditional 

fault-tolerance measures. Section 9.3 summarizes the chapter. 

9.1 Unconditional Fault-Tolerance Measures 

In this section, we compute connectivity and fault-tolerance measures for homogeneous and 

heterogeneous two-dimensional k-covered wireless sensor networks [26] while those for three-

dimensional wireless sensor networks can be found in [15]. 
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9.1.1 Homogeneous k-Covered Wireless Sensor Networks 

We assume that the sink has the same communication range as the other sensors. In Chapter 5, 

we have computed the minimum sensor spatial density required to k-cover a two-dimensional field based 

on the Reuleaux triangle [188] model. We also have proved that when a two-dimensional wireless sensor 

network is configured to provide k-coverage of a two-dimensional field and the radius R  of the 

communication disks of the sensors is at least equal to the radius r  of their sensing disks, a two-

dimensional wireless sensor network is guaranteed to be connected. For the sake of making this chapter 

self-contained, we recall Lemma 5.2 given in Chapter 5. 

Lemma 5.2: Let r  be the radius of the sensing disks of the sensors and .3≥k  A field is k-covered if any 

Reuleaux triangle region of width r  in a field contains at least k  active sensors.                                       � 

From Lemma 5.2, we deduce that the minimum sensor spatial density required to guarantee k-

coverage of a field is given by 

2
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π
λ                                                                 (9.1) 

Indeed, since we are interested in the number of neighbors of a sensor, we need to consider this 

lemma instead of Theorems 5.2, which characterizes minimum k-coverage, and Theorem 5.3, which gives a 

tight bound on the sensor spatial density required for k-coverage. 

Theorem 9.1 computes the connectivity of homogeneous k-covered wireless sensor networks and 

derives their fault tolerance. In sharp contrast with the work in [166], which computes connectivity based 

on boundary and interior sensors, our study considers the sink given its critical role in data collection. 

Precisely, we focus on the size of the connected component containing the sink. Indeed, it is more realistic 

to relate network connectivity measure to the sink. Indeed,  we may have a giant connected component of 

sensors that does not include the sink, and hence their data cannot reach the sink. 

Theorem 9.1: Let G  be a communication graph of a homogeneous k-covered wireless sensor network 

deployed in a square field of area size A . The connectivity of G is given by 
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where rR /=α  and .3≥k  Its fault tolerance )(Gη  is given by 
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Proof: To compute the network connectivity of homogeneous k-covered wireless sensor networks, we 

need to consider the following three cases, which depend on the sink, denoted by 0s  and located at 0ξ . 

Since we assume that sensor failure is due to low battery power, we can use a powerful sink with infinite 

energy, thus eliminating the possibility of sink failure. 

 

        Figure 9.1 Plot of )(1 Gκ  (fix k  and vary α ).              Figure 9.2 Plot of )(1 Gκ  (fix α  and vary k ). 

Case 1 - Isolated sink: This situation occurs when the disconnected network has at least two connected 

components, one of them is the trivial component containing the sink. Given the definition of network 

connectivity, the number of disconnected components should be equal to two. Notice that the optimum 

location of the sink in terms of energy-efficient data gathering from the available sensors is the center of 

the square field [125]. The sink can be isolated only when all its neighbors fail. Therefore, we compute the 

number of neighbors of the sink whose failure would disconnect the sink. 

Let Χ  be a random variable that counts the number of sensor failures to isolate the sink. The 

expected minimum number of sensor failures to isolate 0s  is given by 

| ),(| ),(][ 0 RDkrE ξλ=Χ                                                                (9.4) 

where 2
0  |),(| RRD πξ =  is the measure of the area of the communication disk ),( 0 RD ξ  of the sink 0s  

located at .0ξ  Hence, the network connectivity in this case is given by 
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2
1   ),(][)( RkrEG πλκ =Χ=                                                              (9.5) 

Substituting Equation (9.1) in Equation (9.5) yields 
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απκ kG                                                                  (9.6) 

where rR /=α  and .3≥k  Figures 9.1 and 9.2 plot the function )(1 Gκ  given in Equation (9.6). Notice that 

connectivity increase with the ratio α  and the sensing coverage .k  We observe that the network 

connectivity )(1 Gκ  is also higher than the sensing coverage .k   

 

Figure 9.3 Non-trivial connected components of the disconnected network: (a) Connected component 
consists of all the neighboring sensors of the sink and (b) smallest connected component including the 

sink where the two connected components of the network do not surround each other. 

Case 2 - Non-trivial connected components: Similarly, the disconnected network has two connected 

component. We distinguish two particular network configurations that are worth of study. In the first one 

(Figure 9.3a), the connected component including the sink corresponds to its communication disk (whose 

area is 2
 Rπ ) and is surrounded by a circular band that contains no sensors. Furthermore, the distance 

between any pair of sensors from these two components is at least R  in order to disable any 

communication between the two connected components. Thus, the width of this empty band should be at 

least .R  Hence, the area of the smallest empty circular band ),(B 0 Rξ  should be equal to 

222
0   3 )2(  | ),(| RRRRB πππξ =−=                                                          (9.7) 

Thus, the expected minimum number of sensor failures to isolate the connected component of the sink is 

given by 
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| ),(| ),(][ 0 RBkrE ξλ=Χ                                                                 (9.8) 

Hence the network connectivity is equal to 

   ),( 3][)(
2

2 RkrEG πλκ =Χ=                                                            (9.9) 

If we set rR /=α  and substitute Equation (9.1) in equation (9.9), we obtain 

)3(

   6
)(

2

2
−

=
π

απκ kG                                                                   (9.10) 

The second configuration of the disconnected network (Figure 9.3b) corresponds to the smallest 

connected component containing the sink if the field has to be divided into two regions such that none of 

them surrounds the other. Hence, the width of the empty rectangular band, denoted by ),(B AR , which 

splits the field vertically should be equal to R . The expected minimum number of sensor failures to isolate 

the sink is given by 

   ),(][ ARkrE λ=Χ                                                               (9.11) 

We find that the network connectivity is equal to 

AREG   k)(r,][)(3 λκ =Χ=                                                          (9.12) 

Setting rR /=α  and substituting Equation (9.1) in equation (9.12) yields 

23
 )3(

   2
)(

r
kARG

−
=

π
κ                                                               (9.13) 

Notice that )()( 23 GG κκ >  given the hypothesis .AR <<  

Case 3 – Largest connected component: One of the components of the disconnected network has only 

one sensor that is not the sink. This case is similar to the first case in that a single sensor becomes 

isolated when all of its neighbors fail. Applying the same reasoning leads to the same result found in Case 

1. Thus, we have )()()( 31 GGG κκκ ≤≤  and hence the network fault tolerance )(Gη  is given by 

.1)()(1)( 31 −≤≤− GGG κηκ                                                                                                                                � 

It is easy to check that .)( kG >κ  Indeed, the Hopital’s theorem gives .0)(/lim =∞→ Gkk κ  Our result of 

connectivity for two-dimensional k-covered wireless sensor networks is in sharp contrast with that reported 

in [166] stating that the network connectivity of a homogeneous k-covered wireless sensor network is 
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equal to k  provided that the radius of the communication range of the sensors is at least double the 

radius of their sensing ranges, i.e., .2rR ≥ . 

 

Figure 9.4 1-Coverage and ii rR  2≥  do not imply connectivity. 

9.1.2 Heterogeneous k-Covered Wireless Sensor Networks 

In this section, we consider k-covered wireless sensor networks with heterogeneous sensors. In this 

case, it is easy to prove that the relationship rR 2≥  cannot guarantee network connectivity even when the 

network is configured to provide sensing coverage. Figure 9.4 shows that js  can connect to is  but is  

cannot connect to .js  Lemma 9.1 establishes a necessary and sufficient condition for connectivity of 

heterogeneous wireless sensor networks. 

Lemma 9.1: A heterogeneous wireless sensor networks is connected if for any sensor, the radius of its 

communication disk is at least equal to the sum of the radii of its own sensing disk and that of the most 

powerful sensor in terms of sensing capability, i.e., for all Ssi ∈ , maxrrR ii +≥ , where }.:max{max Ssrr jj ∈=  

Proof: Consider two sensors is  and js  whose sensing disks are tangential to each other at point p  

(Figure 9.6). Let maxrrR ii +=  and .maxrrR jj +=  Thus, jii rrR +≥  and ,jij rrR +≥  thus implying 

}.,min{ || jiji RR≤− ξξ  Hence, is  and js  are mutually connected. Thus, the underlying heterogeneous 

wireless sensor network is connected because it is k-covered.                                                                    � 

It is worth noting that achieving k-coverage depends on the least powerful sensors in terms of their 

sensing capability. Lemmas 9.2 and 9.3 for heterogeneous k-covered wireless sensor networks 

correspond to Lemmas 5.1 and 5.2 of Chapter 5, respectively. 
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Lemma 9.2: Let .3≥k  If the width of a closed convex area Α , )(Αω , satisfies min)( r≤Αω , where 

}:min{min Ssrr jj ∈= , then Α  is guaranteed to be k-covered by k  heterogeneous sensors. 

Proof: Our reasoning should be based on the least powerful sensors in terms of their sensing capability. In 

the worst case, when k  least powerful sensors (all of them have the smallest radius of their sensing 

disks) are deployed in the Reuleaux triangle of constant (maximum) width equal to ,minr  denoted by 

),( minrRT  then )( minrRT  is guaranteed to be k-covered, where }:min{min Ssrr jj ∈= .                                    � 

Lemma 9.3: Let }:min{min Ssrr jj ∈=  and .3≥k  The sensor spatial density necessary to guarantee k-

coverage of a field sensed by spatially distributed heterogeneous sensors is given by 

2
min

min
 )3(
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r
kkr

−
=

π
λ                                                           (9.14) 

Proof: The proof is verbatim and stems from the fact that if k  least powerful sensors (in terms of their 

sensing ranges) are able to k-cover a region Α, then any subset of k  sensors deployed in Α  will be able to 

do so. Using the Reuleaux triangle model, we can easily prove that the maximum size of Α  is 

2
)3()(

2
min

minmax

rr −=Α π . Thus, the required sensor spatial density is 
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where }:min{min Ssrr jj ∈= .                                                                                                                            � 

Lemma 9.4 computes connectivity of heterogeneous k-covered wireless sensor networks and their 

fault tolerance. 

Lemma 9.4: Let G  be a communication graph of a heterogeneous k-covered wireless sensor networks 

with 3≥k . The connectivity of heterogeneous k-covered wireless sensor networks is given by 

21 )( KGK ≤≤ κ                                                                  (9.15) 

where                                                         
2

min

2
min

1
 )3(
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r
kRK

−
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π
π  

2
min

max
2

 )3(

   2

r
kARK

−
=

π
 

}:min{min Ssrr jj ∈=  and }.:max{max SsRR jj ∈=  The fault tolerance, ),(Gη  is given by 

1)(1 21 −≤≤− KGK η                                                              (9.16) 
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Proof: Similarly, we consider three cases depending on the types of components of the disconnected 

network that contain the sink. 

Case 1 - Isolated sink: The sink is supposed to be the most powerful node in the network and hence the 

radius of its communication disk is equal to .maxR  Thus, the expected minimum number of sensor failures 

to isolate the sink is given by 

| ),(| ),(][ max0min RDkrE ξλ=Χ                                                            (9.17) 

Substituting Equation (9.14) in equation (9.17), we find that the network connectivity of heterogeneous k-

covered wireless sensor networks is computed as 

2
min

2
max

1
 )3(
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][)(

r
kREG

−
=Χ=

π
πκ                                                           (9.18) 

where },:min{min Ssrr jj ∈=   },:max{max SsRR jj ∈=  and .3≥k  

Case 2 - Non-trivial connected components: We consider the same two network configurations, which 

were studied in the case of homogeneous k-covered wireless sensor networks. Notice that the sensors 

located around the sink are heavily used in data forwarding and hence should be the most powerful ones 

in terms of sensing and communication capabilities. Otherwise, they will suffer severe energy depletion 

and die very quickly. Thus, the communication disk of the sink contains only powerful sensors. Hence, the 

width of the circular empty band surrounding the connected component containing the sink should be 

equal to .maxR  Thus, the area of this empty band ),( max0 RB ξ  should be equal to 

2
max

2
max

2
maxmax0   3 )2( |),(| RRRRB πππξ =−=                                               (9.19) 

The expected minimum number of sensor failures to isolate the sink is given by 

| ),(| ),(][ max0min RBkrE ξλ=Χ                                                            (9.20) 

If we substitute Equation (9.14) in Equation (9.20), we find that connectivity is equal to 

2
min

2
max

2
 )3(
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][)(
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kREG

−
=Χ=

π
πκ                                                           (9.21) 

Likewise, for the second configuration of the disconnected network, the width of the empty rectangular 

band ),(B AR  should be equal to maxR  and hence its area is equal to ARAR max|),(B| = . Therefore, the 

expected minimum number of sensor failures to isolate the sink is given by 
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|),(B|),(][ min ARkrE λ=Χ                                                           (9.22) 

Thus, the network connectivity is given by 

2
min

max
3

 )3(

   2
][)(

r
kAREG

−
=Χ=

π
κ                                                             (9.23) 

Case 3 – Largest connected component: In this case, the single-node component may include the least 

powerful or the most power sensor in terms of its communication capability. Hence, the network 

connectivity will have lower and upper bounds depending on whether the isolated sensor is the least or 

most powerful sensor, respectively. The expected minimum number of sensor failures to isolate a least 

powerful sensor is given by 

| ),(| ),(][ min0min RDkrElb ξλ=Χ                                                           (9.24) 

while the expected minimum number of sensor failures to isolate a most powerful sensor is given by 

 | ),(| ),(][ max0min RDkrEub ξλ=Χ                                                          (9.25) 

Let lbK  and ubK  be lower and upper bounds, respectively, on connectivity )(4 Gκ  of heterogeneous k-

covered wireless sensor networks. In this case, it is easy to establish that )(4 Gκ  satisfies 

)()()( 4 GKGGK ublb ≤≤ κ                                                              (9.26) 

where                                               
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Using the results of the above three cases, we find that connectivity of heterogeneous k-covered wireless 

sensor networks satisfies  

21 )( KGK ≤≤ κ  

and their fault tolerance is given by 

1)(1 21 −≤≤− KGK η  

where 
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2
min

max
32

 )3(

   2
)(

r
kARGK

−
=

π
κ  

},:min{min Ssrr jj ∈=  },:min{min SsRR jj ∈=  and }.:max{max SsRR jj ∈=  Using Hopital’s theorem, it is easy 

to prove that .)( kG >κ                                                                                                                                    � 

9.2 Conditional Fault-Tolerance Measures 

Motivated by the above-mentioned shortcomings of classical connectivity, we propose a new 

measure of fault tolerance for k-covered wireless sensor networks, called conditional fault-tolerance, using 

the concepts of conditional connectivity and forbidden faulty sensor set. In this section, we use the 

concepts of conditional connectivity [87] and forbidden faulty set [67], [68], as a remedy to the above 

shortcomings of the traditional (unconditional) connectivity metric. Our approach [17], [26] is based on 

forbidden faulty sensor sets. 

 
Figure 9.5 ),( 0 rRT ξ  and ),( 0 RA ξ  regions. 

Let ),( ESG =  be a communication graph representing a k-covered wireless sensor network and 

)( isCN  the communication neighbor set of sensor .is  Define a forbidden faulty sensor set of G  as a set of 

faulty sensors that includes the entire neighbor set of a given sensor. Consider the property :Ρ  “A faulty 

sensor set cannot include the entire neighbor set of a given sensor”. A faulty sensor set satisfying property 

Ρ  is denoted by ,ΡF  where ,SF ⊂Ρ  and defined by 

})(:|{ UsCNSsSUF ii ⊄∈∀⊂=Ρ  

The conditional connectivity of G  with respect to Ρ , denoted by ):( ΡGκ , is the minimum size of ΡF  



 158

such that the graph ),(
Ρ−Ρ−= FSd EFSG  is disconnected, where 

Ρ−FSE  is a set of remaining communication 

edges between the non-faulty sensors. 

9.2.1 Homogeneous k-Covered Wireless Sensor Networks 

In this section, we consider homogeneous sensors that possess the same sensing range and the 

same communication range. Our results prove that k-covered wireless sensor networks can sustain a 

larger number of sensor failures under the restriction imposed on a faulty sensor set. Theorem 9.4 

computes the conditional connectivity and conditional fault-tolerance of homogeneous k-covered wireless 

sensor networks. 

Theorem 9.4: The conditional connectivity of homogeneous k-covered wireless sensor networks is given 

by 

2

 )(  4
):(

r
krRRPG +=κ                                                       (9.27) 

where rR /=α  and .3≥k  The conditional fault-tolerance of G , is given by .1):():( −= PGPG κη  

Proof: We consider two cases based on the type of component to which the sink belongs. 

Case 1 - Smallest-size component including the sink: Under the assumption of forbidden faulty set, we 

assume the sink belongs to the smallest connected component that is disconnected from the rest of the 

network. Let 0ξ  be the location of the sink 0s . By hypothesis, any location in the field is k-covered with 

3≥k , and in particular the location 0ξ . Therefore, there must be a subset of sensors located at distance 

at most equal to r  from 0ξ . Using the Reuleaux Triangle model, the Reuleaux triangle of width 1ε+r  and 

centered at 0ξ , denoted by ),( 10 εξ +rRT , where 1ε  is an infinitesimal value, must be not empty; otherwise, 

the k-coverage property at 0ξ  is not satisfied, and particularly the forbidden faulty set constraint is not met. 

Our goal is to compute the minimum number of sensors to fail in order to disconnect the sink under the 

forbidden set constraint. Notice that the smallest connected component including the sink requires .01 =ε  

The region ),( 0 rRT ξ  is a guarantee that the sink will not be isolated by itself and hence the forbidden faulty 

sensor set constraint with respect to the sink is not violated. Indeed, only a subset of its neighbors fails 

and not all of them as in the case of classical connectivity (see previous section). In this configuration, the 

majority of the sensors are not connected to the sink, and hence the network is dead. Now, to disconnect 



 159

the sink together with its neighbors located in ),,( 0 rRT ξ  the annulus surrounding the region ),( 0 rRT ξ  and 

centered at 0ξ  should be empty and have a width equal to 2ε+R ; otherwise the network remains 

connected. Notice that the minimum number of sensor failure requires 02 =ε . Thus, this empty annulus, 

denoted by ),( 0 RA ξ  (Figure 9.5), will guarantee that the connected component in ),( 0 rRT ξ  is 

disconnected. Notice that the width of the outmost Reuleaux triangle centered at 0ξ  is equal to rR + 2 . 

Hence, the area of the annulus ),( 0 RA ξ  is given by 

)(  )3( 2 |),(||) 2,(|  |),(| 000 rRRrRTrRRTRA +−=−+= πξξξ                              (9.27a) 

Thus, the conditional expected minimum number of sensor failures to disconnect the smallest component 

including the sink is computed as 

] |),(| ),(]:[ 0 RAkrPE ξλ=Χ                                                   (9.27b) 

where Substituting Equation (9.1) and Equation (9.26a) in Equation (9.26b), we find that the conditional 

connectivity is computed as 

21

 )(  4
]:[):(

r
krRRPEPG +=Χ=κ                                            (9.27c) 

where r  and R  are the radii of the sensing and communication disks of the sensors, respectively, and k  

is the degree of coverage of the field. It is easy to prove that the forbidden faulty sensor set constraint is 

satisfied for both the faulty and non-faulty sensors. Any sensor inside the region ),( 0 rRT ξ  still has non-

faulty neighbors located in ).,( 0 rRT ξ  Also, any sensor outside the region ),( 0 rRRT +ξ  has non-faulty 

neighbors within ).,( 0 rRRT +ξ  Similarly, any faulty sensor within the annulus ),( 0 RA ξ  has non-faulty 

neighbors located in ),( 0 rRT ξ  and outside ).,( 0 rRRT +ξ  

Case 2 – Largest connected component: We assume that the sensors located in the annulus ),( RA iξ  as 

defined earlier fail. This case is similar to the previous one except that the sink belongs to the largest 

connected component of the disconnected network. Using the same reasoning as in Case 1, we obtain 

the same conditional network connectivity. Here again, to consider whether or not the resulting network is 

connected or not depends on the type of coverage (full coverage or partial coverage) required by the 

sensing application. Thus, we have ).:():( 12 PGPG κκ =  
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From both cases 1 and 2, it follows that the conditional network connectivity is ),:():( 1 PGPG κκ =  

and hence the conditional network fault-tolerance is given by .1):():( −= PGPG κη  It is easy to check that 

)():( GPG κκ >  and hence .):( kPG >κ  Indeed, the Hopital’s theorem gives .0):(/lim =∞→ PGkk κ  By 

definition, the conditional network fault tolerance is given by .1):():( −= PGPG κη                                        � 

This new measure shows that the classical connectivity used to capture network fault tolerance 

underestimates the resilience of large-scale dense wireless sensor networks, such as k-covered wireless 

sensor networks. 

9.2.2 Heterogeneous k-Covered Wireless Sensor Networks 

Because heterogeneous sensors are deployed randomly, they can be located anywhere in the 

square field. In this case, computing the conditional connectivity of heterogeneous k-covered wireless 

sensor networks is not a straightforward generalization of the process used previously for homogeneous 

k-covered wireless sensor networks. We found that disconnecting the network while satisfying the 

forbidden faulty set constraint is a challenging problem. If, on the one hand, we choose the width of the 

annulus to be maxR , then the sensors with communication range less than or equal to half of maxR  may be 

located in the annulus. Thus, the property Ρ  will be violated (Figure 9.6a) as the entire neighbor set of 

some sensors located within the annulus would fail at the same time. If, on the other hand, the width of the 

annulus is less than maxR , then the non-faulty sensors of one connected component might be able to 

connect to the non-faulty sensors of the other connected component of the disconnected network. Hence, 

the obtained network is not disconnected (Figure 9.6b). As can be seen, we cannot find an exact value of 

the conditional connectivity of heterogeneous k-covered wireless sensor networks in the absence of any 

deterministic sensor deployment strategy. Hence, we propose to compute lower and upper bounds on 

conditional connectivity based on particular sensor configurations in the annulus and around the annulus. 

While in the first scenario we assume that the annulus contains only least powerful sensors, the second 

scenario supposes that the annulus consists of most powerful sensors. 

Lemma 9.5 computes the conditional connectivity and conditional fault-tolerance of heterogeneous 

k-covered wireless sensor networks. 

Lemma 9.5: The conditional connectivity of heterogeneous k-covered wireless sensor networks is given by 
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):():():( 21 PGPGPG κκκ ≤≤                                                        (9.28) 

 

Figure 9.6 (a) The forbidden fault set constraint is violated (neighbor set of is  is within the circular band of 
width maxR ) and (b) connectivity is maintained (the radius of js ’s communication disk is larger than minR ). 
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,3≥k  }:min{min Ssrr jj ∈= , }:max{max Ssrr jj ∈= , }:min{min SsRR jj ∈= , and }.:max{max SsRR jj ∈=  The 

conditional fault tolerance of the network is given by 

1):():(1):( 21 −≤≤− PGPGPG κηκ                                                  (9.29) 

Proof: First assume that the annulus as well as the area surrounding it contains only least powerful 

sensors, and hence its width is equal to .minR  Furthermore, in order to guarantee that the sink will not be 

isolated, which would violate the forbidden faulty sensor set constraint, the width of the Reuleaux triangle 

centered at the location 0ξ  of the sink 0s  should be equal to .minr  These two conditions yield a 

disconnected network that satisfies the forbidden faulty sensor set constraint. First assume that the 

annulus as well as the area surrounding it contains only least powerful sensors, and hence its width is 

equal to minR . The area of the annulus ),( min0 RA ξ  is given by 
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Hence, the conditional expected minimum number of sensor failures to disconnect the connected 

component including the sink from the rest of the network is computed as 

|),(|),(]:[ min0min RAkrPE ξλ=Χ  

Thus, the lower bound on conditional connectivity is computed as 
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minminmin
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r
krRRPEPG +=Χ=κ                                              (9.30) 

where }:min{min Ssrr jj ∈=  and }.:min{min SsRR jj ∈=  To compute the upper bound on network 

connectivity, we assume that the sensors inside the annulus and around it are the most powerful ones. 

The analysis is similar to the previous one except that we just replace minr  by maxr  and minR  by maxR  in 

the denominator of the first part of Equation (9.7) in order to disconnect the network while meeting the 

forbidden faulty set constraint. We found that the network connectivity is given by 

2
min

maxmaxmax
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):(

r
krRRPG +=κ                                                   (9.31) 

where },:max{max Ssrr jj ∈=  },:min{min SsRR jj ∈=  and }.:max{max SsRR jj ∈=  Thus, the conditional 

network connectivity of heterogeneous k-covered wireless sensor networks with respect to the forbidden 

faulty set constraint P  satisfies 

):():():( 21 PGPGPG κκκ ≤≤  

and their conditional network fault-tolerance is given by 

1):():(1):( 21 −≤≤− PGPGPG κηκ                                                        � 

It is worth noting that there is neither a polynomial-time algorithm for computing ):( ΡGκ  for a 

general graph nor any tight upper bound for ).:( ΡGκ  However, our characterization of k-coverage based 

on the intersection of k  sensing disks and the Reuleaux triangle make it possible to compute the 

corresponding minimum sensor spatial density. This helps us derive conditional connectivity and 

conditional fault-tolerance of k-covered wireless sensor networks. 

9.3 Summary 

In this chapter, we have computed the connectivity of two-dimensional k-covered wireless sensor 

networks, where the sensors can be homogeneous or heterogeneous [17], [26], [27]. Network fault-
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tolerance and sensed data accuracy are highly desirable characteristics for wireless sensor networks that 

can be met through connected k-coverage. Our results on connectivity take into consideration an inherent 

characteristic of wireless sensor networks in that the sink has a critical role in terms of data processing 

and decision making, compared to the rest of the network. Therefore, we have computed the connectivity 

of two-dimensional k-covered wireless sensor networks based on the size of the connected component 

that includes the sink. We found that the connectivity of two-dimensional k-covered wireless sensor 

networks is much higher than the degree of sensing coverage k provided by the network. The traditional 

connectivity metric, however, is defined in an abstract way and does not consider the inherent properties 

of wireless sensor networks because it assumes that any subset of nodes can fail at the same time. This 

assumption is not valid for heterogeneous k-covered wireless sensor networks. To compensate for these 

shortcomings, we have used proposed more realistic measures of connectivity based on the concept of 

forbidden faulty set. We found that k-covered wireless sensor networks can sustain a large number of 

sensor failures if the neighbor set of a given sensor cannot fail simultaneously. 
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CHAPTER 10 

CONCLUSION AND FUTURE WORK 

The main challenge in the design of wireless sensor networks is the limited energy of the sensors 

and the difficulty of replacing and/or recharging their batteries due to the inherent characteristics of a field 

(hostile environments, for instance) and cost. To alleviate this problem, it is necessary that the sensors be 

densely deployed (i.e., redundant sensor deployment) and appropriate protocols be designed in order to 

exploit this redundancy while maximizing the operational lifetime of the network. Several network 

configuration protocols for connected k-coverage have been proposed in the literature with a goal to save 

the sensors’ energy while meeting the specific, critical application requirements in terms of coverage and 

connectivity. All those proposed protocols helped us design energy-efficient, centralized and distributed 

protocols for network configuration. Furthermore, this dissertation addressed the design issues of joint 

coverage, connectivity, duty-cycling, and data forwarding protocols for wireless sensor networks while 

considering energy efficiency in order to maximize the energy conservation, thus extending the operational 

network lifetime as much as possible. Our study has considered a many-to-one wireless sensor network 

architecture, where all sources sensors report their sensed data to a single sink. 

In this chapter we summarize the contributions that we have made in data forwarding, coverage, 

and connectivity in wireless sensor networks. Then, we present our future research work. 

10.1 Summary of Contributions 

We have studied coverage and connectivity in wireless sensor networks using percolation theory. 

Precisely, we have computed a non-trivial value of the covered area fraction at critical percolation, called 

critical covered area fraction, and derived the critical sensor spatial density above which a field is almost 

surely covered. Furthermore, we proposed a model for percolation in wireless sensor networks, called 

correlated disk model, to study both coverage and connectivity in an integrated manner based on the 

relationship between the communication and sensing ranges of the sensors. We have found that the value 

of the critical sensor spatial density depends on the ratio of the radius of the communication disks of the 
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sensors to the radius of their sensing disks. This study helps network designer fully cover a field with a 

minimum number of sensors while maintaining connectivity between them. 

Motivated by the existence of different applications and environments with diverse requirements in 

terms of degrees of coverage and connectivity, we extended our above analysis for 1-coverage to 

redundant coverage (or k-coverage) so the network can be self-configured in order to support these 

applications. Precisely, we considered a deterministic approach to analyze and characterize k-coverage of 

a field, and compute the minimum active sensor spatial density required to full k-cover a field. Our analysis 

is based on a fundamental theorem, namely Helly’s Theorem, which characterizes the intersection of 

convex sets, as well as the geometric properties of the Reuleaux triangle. We found that this density 

depends only on the degree of coverage k requested by a sensing application and the radius of the 

sensing disks of the sensors, thus reflecting the expected behavior of the sensors. Moreover, our analysis 

requires that the communication range of the sensors be at least equal to their sensing range so all active 

sensors in a k-covered wireless sensor network are guaranteed to be connected. Based on this analysis, 

we computed the unconditional and conditional connectivity of k-covered wireless sensor networks and 

proved that is higher than the degree of coverage k. Furthermore, we proposed four configuration 

protocols to achieve connected k-coverage in wireless sensor networks. In the first one, called centralized 

randomized connected k-coverage, the sink is responsible for selecting a minimum number of sensors to 

guarantee k-coverage of a field while maintaining connectivity between active selected sensors. Each of 

the second and third protocols, called Reuleaux triangle-based clustered randomized connected k-

coverage and disk-based clustered randomized connected k-coverage, is run under the control of the sink 

and a subset of sensors. Precisely, in each round, the sink selects a subset of sensors, called cluster-

heads, each of which is responsible for selecting a subset of neighboring sensors to k-cover its underlying 

cluster while remaining connected to each other. Both protocols consider different degree of network 

clustering. In the fourth protocol, called distributed randomized connected k-coverage, all the sensors are 

required to coordinate among themselves to k-cover a field in each round while being mutually connected. 

For our distributed connected k-coverage protocol, we designed two sensor scheduling schemes to 

guarantee full k-coverage of a field. In the first scheme, called Self-Scheduling driven k-Coverage, each 
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sensor turns itself on based on the local information it has about its sensing neighbors in order to k-cover 

sensing range. In the second scheme, called Triggered-Scheduling driven k-Coverage, each sensor is 

allowed to trigger a necessary number of its sensing neighbors to become active in order to achieve k-

coverage of its sensing range. We found that the latter outperforms the former in terms of the number of 

active sensors needed for k-coverage and network lifetime. Furthermore, we relaxed some commonly 

used assumptions for coverage configuration in wireless sensor networks, namely the sensing and 

communication disk model and sensor homogeneity model, in order to enhance the applicability of our 

connected k-coverage protocols in real-world sensing applications. Based on these connected k-coverage 

protocols, we designed an energy-efficient, unified framework, called Cover-Sense-Inform (CSI), where 

connected k-coverage, duty-cycling, and geographic forwarding are jointly considered. More specifically, 

on top of the connected k-coverage configuration protocols, we proposed several potential fields-based 

geographic forwarding protocols on duty-cycled sensors depending on whether data aggregation is 

considered. This effort constitutes the first design of geographic forwarding protocols for duty-cycled k-

covered wireless sensor networks with and without data aggregation. 

In order to account for the stochastic nature of the sensors, we adapted the analysis of the 

connected k-coverage problem in two-dimensional wireless sensor networks under a deterministic 

sensing model to solve the stochastic connected k-coverage problem under a stochastic sensing model. 

This helps us develop a global framework for connected k-coverage in wireless sensor networks that 

considers both deterministic and stochastic sensing models. Our stochastic sensing model takes into 

account not only the distance between the sensors and the target locations but also the type of 

propagation model, i.e. free-space model or multi-path model. In addition, we have focused on the 

problem of forwarding in duty-cycled three-dimensional k-covered wireless sensor networks, where k-

coverage, duty-cycling, and data forwarding are discussed and addressed in a novel joint framework. 

Using Helly’s Theorem [6], we find that the extension of the analysis of k-coverage in two-dimensional to 

three-dimensional wireless sensor networks is not straightforward. This is due to the fact that some 

properties that hold for two-dimensional space cannot generalize to three-dimensional space. Moreover, 

we have proposed a hybrid forwarding protocol in duty-cycled three-dimensional k-covered wireless 
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sensor networks, where both deterministic and opportunistic forwarding approaches are considered. Our 

hybrid forwarding approach provides a trade-off between uncertainty and contention, thus helping achieve 

good data forwarding performance in terms of delay and control overhead.  

Our CSI framework considers static wireless sensor networks, where all the sensors and the sink 

do not move. This type of architecture, however, suffers from a severe problem, called energy sink-hole, 

where the sensors nearer the sink suffer from severe battery power depletion problem. Indeed, the 

sensors close to the sink act as relays to the sink on behalf of all other sensors, and hence deplete their 

battery power more quickly, thus disconnecting the network. We have proposed solutions that exploit 

heterogeneity, mobility, and our new concept of energy-aware Voronoi diagram. However, these solutions 

do not take coverage into consideration as the energy sink-hole is coverage-independent, but assume that 

the network is connected for data forwarding to take place. For homogeneous sensors in terms of their 

initial energy, we proposed EVEN, an energy aware Voronoi diagram-based data forwarding protocol. 

EVEN is a greedy, localized protocol that combines sink mobility with a new concept, called energy aware 

Voronoi diagram whose sites (i.e., sensors’ locations) are time-varying as they depend on the remaining 

energy of the sensors. We find that EVEN yields a significant improvement in terms of network lifetime. 

10.2 Future Work 

As future work, we plan to extend our results described earlier as follows: 

The analysis of phase transitions in coverage and connectivity in wireless sensor networks 

considers homogeneous, two-dimensional wireless sensor networks. We plan to extend this analysis by 

considering heterogeneous sensors with different sensing and communication ranges capabilities. Real-

world sensing applications may require heterogeneous sensors in order to enhance the reliability of the 

network and extend its lifetime. Moreover, even sensors equipped with identical hardware may not always 

have the same sensing model. We also plan to extend our work to irregular sensing and communication 

ranges of the sensors whose shape is not necessarily circular. In addition, we plan to study coverage and 

connectivity in three-dimensional wireless sensor networks from a percolation theory perspective. 

Our CSI framework considers static, connected k-covered wireless sensor networks, which still 

suffer from the energy-sink problem although it uses sensor duty-cycling. Indeed, this problem is inherent 



 168

to static wireless sensor networks. We plan to benefit from the mobility that EVEN uses to solve the 

energy-sink problem. Precisely, we intend to study joint connected k-coverage and geographic forwarding 

in mission-oriented wireless sensor networks, where sensors are mobile to accomplish a specific mission 

at some time that is requested by the sink. In particular, we will exploit our previous results for static, 

connected k-covered wireless sensor networks in order to investigate the problem of guaranteeing mobile 

k-coverage while maintaining network connectivity in mission-oriented wireless sensor networks [24], [25]. 

We are also interested in solving the following problem: given that the sensors may die or fail 

anytime due to their low battery power, it is necessary to determine the necessary minimum number of 

sensors that need to join the network to guarantee certain requirements in terms of coverage and 

connectivity that should be satisfied for a sensing application. It is worth mentioning that heterogeneous 

wireless sensor networks require an adaptive approach in the sense that the sensor density should be 

defined based on the type of sensors deployed in a given area so as to achieve a certain degree of 

coverage of a field using as minimum number of sensors as possible. 

We believe that the problems of connected k-coverage and geographic forwarding in three-

dimensional, static wireless sensor networks deserve deep investigation. Particularly, the problem of 

ensuring k-coverage of a three-dimensional field needs to be addressed using different tiling strategies of 

a sphere, assuming that the sensing range of the sensors is represented by a sphere. Indeed, the 

problems of k-coverage and tiling in three-dimensional space seem to be very inter-related. Different 

models of titling of a sphere could be adapted to solve the problem of k-coverage in three-dimensional 

wireless sensor networks with better bounds on the required sensor spatial density. We also plan to 

compute tight bounds on their unconditional and conditional connectivity and fault-tolerance. Furthermore, 

we plan to extend the analysis our previous results to investigate the problem of stochastic k-coverage in 

three-dimensional wireless sensor networks using our stochastic sensing model. 

We also plan to extend our work [8], [9], [10] in order to build a hybrid network through the 

integration of wireless sensor networks, mobile ad hoc networks, and the global IP Internet. The hybrid 

network would benefit from the advantages of each of these three networks, namely mobility of mobile ad 

hoc networks, high density of wireless sensor network, and continuous connectivity of the IP Internet. 

Finally, the implementation of our CSI on a real sensor testbed is our ultimate goal. 
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