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ABSTRACT

STEPPING-STONE NETWORK ATTACK KIT (SNEAK) FOR EVADING

TIMING-BASED DETECTION METHODS UNDER THE CLOAK

OF CONSTANT RATE MULTIMEDIA STREAMS

Jaideep D. Padhye, M.S.

The University of Texas at Arlington, 2008

Supervising Professor: Matthew Wright

With the advent of the Internet, network-based security threats have been con-

stantly on the rise. The source of an attack could be traced by studying the system

logs and the source IP address of the attack can be used to identify and prosecute the

attacker. To avoid getting traced and to mislead the forensic investigators, attackers usu-

ally compromise weaker nodes on less secure networks and use them as stepping stones

to attack the victim. This technique makes it difficult for the investigators to trace the

real source of attack.

Hence, it is important to research the stepping stone detection techniques so that

the attackers can be apprehended. An interesting approach towards detecting stepping

stones is to correlate incoming and outgoing streams at the stepping stone. A popular

way of achieving this is to watermark packet streams as it is effective against a wide range

of evasion techniques. Previous investigators have described a promising technique by

which an attacker could effectively evade any timing-based detection technique, includ-
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ing watermarking. Their basic idea was to remove timing information from the packet

streams by disguising the attack traffic as constant rate multimedia stream.

In this thesis, we investigate the effectiveness and plausibility of this approach.

We present the design and implementation details of Stepping stone NEtwork Attack

Kit (SNEAK), a system that implements the previously described evasion techniques.

SNEAK includes implementations of two algorithms for managing traffic at the stepping

stone. The first algorithm is the sender-side dropping algorithm, in which the stepping

stone makes decisions about dropping packets as needed when packets are sent. The

second algorithm is the receiver-side dropping algorithm, in which the stepping stone

makes decisions about dropping packets as needed, when packets are received. To counter

the packet drop and the packet loss, we maintain redundancy in the packet streams.

Both algorithms are suitable for practical use, depending on the needs of the attacker.

We defined metrics for robustness, usability and effectiveness, and we studied the trade-

offs between them. We implemented a prototype of the SNEAK system and tested it

on the PlanetLab network. Our prototype provides reliable transmission and reasonable

performance for shell commands over at least two stepping stones and the traffic has

the characteristics of a constant rate multimedia stream. We tested the effectiveness of

SNEAK against a centroid-interval-based watermarking technique that is currently the

best available timing-based detection technique. The experimental results indicate that

timing information embedded in the incoming stream is completely eliminated in the

outgoing stream. The results also demonstrate that SNEAK is suitable for practical use

without affecting the overall usability of the system and SNEAK is effective against all

timing based detection techniques. The experimental results demonstrate the need to

consider the true potential of the attacker and develop detection methods that use more

than low-level timing information to defeat such attacks.
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CHAPTER 1

INTRODUCTION

1.1 Attack using stepping stones

Hackers attack systems on the Internet to steal sensitive information or to disrupt

services and they need to cover their tracks to avoid being discovered and identified. One

of the ways to cover their tracks is to launch attacks indirectly by relaying the attack

through a chain of intermediate (previously compromised) systems called stepping stones

(also known as hop points). The networks that carry these stepping stones are called host

networks. The attacker constructs a chain of interactive connections using protocols like

Telnet or SSH. The commands that the attacker types on his local terminal are relayed

through the stepping stones until they reach the victim. The quality of communication

over the Internet has improved multifolds, and targets can be attacked on the other side

of the world without facing cumbersome delays. A basic attack using stepping stones is

illustrated in Figure 1.1.

1.2 Stepping stone detection

The attacker uses the stepping stones to relay the traffic to the victim. The ob-

vious way to detect stepping stones would be to compare the incoming stream with the

outgoing stream at each of the suspected hosts. An intuitive approach towards stream

comparison would be to compare the contents of the incoming and outgoing packets in a

network to find packets with the same content. However, the use of encrypted commu-

nication protocols like SSH, have made this approach ineffective. We need to use other

characteristics of the traffic such as inter-packet timing to detect stepping stones. Ac-
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Figure 1.1 Basic attack using stepping stone.

tively perturbing the incoming stream by embedding a pattern and trying to detect that

pattern in the outgoing streams is a promising approach. This approach can be made

robust to random changes in packet timing introduced by the attacker [3].

In our work, we investigate the ways in which the attacker can evade detection. A

simple technique would be to remove all the timing information from the packet streams

and convert to a constant rate stream. Our primary assumption is that the constant-

rate traffic will not be flagged as unusual. Since multimedia streams are becoming more

and more common on the Internet, particularly with the growing use of Internet tele-

phony (VoIP) and video content [4], we feel that this is a reasonable assumption. These

trends may not hold in certain corporate and high-security environments, but these en-

vironments can easily be avoided while choosing stepping stones. As stepping stones are

intermediate hosts and can be located in more open environments like homes and college

campuses, even while the hacker aims for more secure targets.

In our proposed technique, the attacker uses stepping stones and disguises his traffic

as an encrypted constant rate multimedia stream. Encrypted packets pass through each

of the stepping stones in the attack path before making it to their destination. At

each stepping stone between the attacker and the target, a receiving process receives and

decrypts these packets and places the payloads in a small buffer. A different process



3

running on the stepping stone, the sending process, takes these payloads from the buffer,

re-encrypts them and sends them at a constant rate to the next node, also disguised as

an encrypted constant rate multimedia stream. Whenever the buffer is empty, a dummy

packet is sent instead. The key principle is that the sending process is independent of

the receiving process. The timing characteristics of the packets generated by the sending

process have no dependence on the timing of packets from the incoming stream, so all

timing information is removed.

1.3 Contribution

An earlier study of evasion of stepping stone detection simulated the attack and

verified its effectiveness [2]. Although the simulations indicate the possibility of the

attack being successful, the practical feasibility of the attack had not been studied. Our

contribution was to implement the algorithm in the form of the SNEAK system and test it

on PlanetLab network. We also discovered the shortcomings in the original algorithm and

proposed changes to make it more effective. We then proposed an alternative algorithm

that performs better. In this context, we discuss concepts of usability, robustness and

effectiveness and define metrics to measure them. Finally we discuss the trade-off for

configuring and selecting the algorithms to use.

1.4 Thesis Organization

In Chapter 2, we discuss the background concepts and the related work for our

thesis. In Chapter 3, we discuss the design of SNEAK systems and discuss various

components of the system in detail. In Chapter 4, we describe the prototype application

and its implementation. Chapter 5 discusses the experimental setup and the results.

Finally Chapter 6 concludes with ideas for future work.



CHAPTER 2

BACKGROUND

This chapter discusses stepping stones, including a real life scenario for their use.

Then, we discuss the prior work in stepping stone detection and traceback. Further, we

discuss two watermarking techniques and the basic evasion approach that forms the basis

of this thesis.

2.1 Attack using stepping stones

A connection chain is a sequence of logins where a person logs into one computer,

from there logs into another, and so on [5]. A stepping stone is any intermediate host on

a connection chain [6]. An attack path is a connection chain that links all the stepping

stones that are used to launch the attack. A stepping stone is usually a less secure unit,

which is compromised by the attacker to use it to relay the attack traffic to its destina-

tion. A connection that carries the attack traffic to the destination is called an upstream

connection and the one that brings back the response is called a downstream connec-

tion. Generally the attackers use terminal emulation programs like SSH and Telnet to

create connection chain to the victim. Stepping stones thus formed are called interactive

stepping stones. Although the attacker might use stepping stones to form a one-way

communication, for this research project, we only investigate interactive stepping stones.

Stepping stones can be used for launching denial of service attacks or hacking into

systems to steal secure data. Let us a consider a hypothetical case study where an

attacker seeks to penetrate a tightly secured server and retrive some top secret data

from a carefully monitored government network. We assume that the attacker has the

4
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Figure 2.1 Real life attack using stepping stones. Source: [1]

technical expertise to carry out this task, but then needs to cover up his tracks to prevent

forensic investigators from tracing him using the system logs. To ensure that the source

of the attack is anonymous, he first selects nodes with weak security across geographically

diverse locations as candidates for being stepping stones and compromises them. Then

he selects and compromises two more weak nodes in the proximity of the target network,

that are to act as the controller and receiver. Next he attacks the target network and

compromises a few relatively less secure nodes to use them as zombies1 inside the target

network, that can later be used to launch an attack on the victim. This attack scenario,

described in Mitre workshop report [1], has been illustrated in Figure 2.1. This approach

guarantees anonymity to the attacker, as even if the forensic investigators manage to

1A zombie is computer that the hacker compromises and commands using a remote controller.



6

trace the attack path till the controller, they might not get access to the system logs on

the stepping stones. To stay anonymous, the attacker can also use commercial services

like anonymizer.com, but the information can be subpoenaed [7]. Thus, attack using

stepping stones is the most favorable attack mechanism that guarantees anonymity for

the attacker.

2.2 Traceback

Let us again consider the scenario depicted in Figure 2.1. To apprehend attack-

ers and to deter future attacks, forensic investigators need a comprehensive and potent

approach to track down the attackers to their source and apprehend them. One way of

achieving the goal is to build a comprehensive legal mechanism and a lot of progress has

been made in this regard [8]. However, to collect evidence and facilitate traceback of

attackers, they need the cooperation of intermediate networks that carry the stepping

stones, which can be very difficult in some cases. Due to international policies, the co-

operation of the intermediate networks cannot be guaranteed. We need to find a way to

trace the attacker that is simple yet effective. Hence, IP traceback and stepping stone

detection have gained high priority in network security domain [1].

Few approaches towards IP traceback have been proposed that are broadly clas-

sified into two categories: Host-based and Network-based approach. The host-based

approach [9] [10] requires some kind of monitoring software to be installed on each par-

ticipating host. This approach has a disadvantage as the attacker can manipulate the

results of the monitoring software if he has control over the host machine. The network-

based approach [5] [6] [11] requires tracing software to be installed in network routers

and switches. This ensures that the whole of the network comes under the purview of

the scan and the hosts do not need to participate individually.



7

Figure 2.2 Basic approach towards stepping stone detection

2.3 Stepping Stone Detection

It is important for the investigators to detect whether a node was used as a step-

ping stone. The intuitive approach would be to try to correlate incoming and outgoing

connections. This approach is implemented by intercepting the incoming and outgoing

packet streams at a node. Network level devices fingerprint the incoming and outgoing

packet streams and the information is sent to a network monitor that tries to match

them. The packet stream could be fingerprinted based on its contents, inter-packet tim-

ings or any other parameter which is suitable for the purpose. The characteristics of

the incoming and outgoing streams are compared to determine whether it is a stepping

stone. The basic approach towards stepping stone detection is illustrated in Figure 2.2.

Passive monitoring and active perturbation are the two main approaches for detection.

Passive monitoring involves correlating traffic streams based on characteristics of

traffic. The problem of interactive stepping stones was formulated and proposed by

Staniford and Heberlein [5]. They proposed a content-based algorithm that created

thumbprints of packets streams and compared them. This approach was rendered in-
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effective due to the growing use of encryption. Zhang and Paxson [6] were the first

researchers who were able to correlate encrypted traffic streams. Their algorithm was

based on the ON/OFF periods of the interactive traffic. This approach formed the basis

of current research. A deviation-based approach was proposed by Yoda and Etoh [11]

that used packet timings and sequence numbers to correlate packets streams. An ap-

proach purely based on inter-packet timings was proposed by Wang, Reeves and Wu [12].

Donoho et al. [13] proposed that an attacker can selectively or randomly delay packets at

the stepping stone to perturb the timing characteristics of a connection. This seriously

degrades the effectiveness of timing-based correlation.

Active perturbation of the packet streams turned out to be an effective approach

against the perturbations introduced by the attacker. In this approach, an incoming

packet stream is modified and those perturbations are detected in the outgoing streams.

The easiest way would have been to modify the packet contents or the packet header or

inserting additional packets in the stream. However, that would be easy to detect for

the attacker and hence it was imperative that the perturbations be transparent. Wang

and Reeves [3] proposed the first active watermark based correlation scheme that was

robust against random perturbations by the attacker. The concept was later on adapted

by Wang, Chen, and Jajodia [14] to track VoIP calls on the Internet. This scheme had

many drawbacks however as it failed against packet drops by the attacker, it could not

deal with cover traffic and it also failed in cases where the packet flows split, mixed or

merged. It also needed sender/receiver synchronization. To address these defects, Wang

et al. [15] improved their concept by introducing an interval-centroid-based watermarking

technique. This technique could handle cover traffic introduced by the attacker and it

could deal with flow splitting, mixing and merging. It also did not require the encoder and

decoder to be synchronized. The technique is currently the best available in watermark-

based stepping stone detection. We discuss this technique in detail in the Section 2.4.
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2.4 Watermark-based correlation

The effectiveness of watermark-based stepping stone detection techniques make

them an interesting topic for further research. Watermarking primarily consists of an

encoding stage in that a network monitor embeds a watermark in the incoming packet

stream and a decoding stage where you look for the watermark in the outgoing stream. A

watermark is a sequence of binary bits thus, encoding the watermark involves modifica-

tion of the packet timings in a way that creates a pattern that represents the watermark’s

bit sequence in the incoming stream. We discuss two ways in which the watermark can

be encoded and decoded, that are of particular interest to us.

2.4.1 Probabilistic watermarking to trace VoIP calls

In this technique proposed by Wang et al. [14], a fixed number of packet pairs

are chosen independently and probabilistically for encoding a particular bit. The chosen

packets are delayed by a certain amount. Since the attacker doesn’t know which packets

are delayed, he cannot directly adjust the packet timings to degrade the watermark.

Following is a brief description of the watermark embedding process:

• Consider a packet flow P1, ..., Pn with time stamps t1, ..., tn respectively where

(ti < tj for 1 ≤ i < j ≤ n).

• Sequentially look at first n− d (0 < d≪ n) packets and determine independently,

with probability p = 2r
n−d

, whether the current packet will be chosen.

• Independently and randomly select 2r distinct packets denoted as Pz1, ..., Pz2r(1 ≤

zk ≤ n− d for 1 ≤ k ≤ 2r).

• For each of these packets say Pzk, another packet is chosen at a distance d to create

2r packet pairs: < Pzk, Pzk+d > (d ≥ 1, k = 1, ..., 2r).

• Inter-Packet Delay (IPD) is calculated for each of these packet pairs < Pzk+d, Pzk >

as: ipdzk = tzk+d − tzk, (k = 1, .., 2r).
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• Thus, the 2r IPDs obtained are divided into two groups of equal size ipd1,k,d and

ipd2,k,d (k = 1, ..., r).

• Let Yk,d =
(ipd1,k,d−ipd2,k,d)

2
(k = 1, .., r) be the difference in between individual IPDs

of the groups.

• Then, the average of group of normalized differences is represented as : Yr,d =

1
r

r
∑

k=1

Yk,d.

• As Yr,d is symmetrically centered around 0, increasing or decreasing it by an amount

a > 0 will shift the distribution to the left or right. This property is used for

embedding bits ‘0’ or ‘1’ by decreasing or increasing the value Yr,d.

• We decrease or increase Yr,d by delaying the packets in ipd1,k,d or ipd2,k,d respectively.

For decoding the watermark, we calculate Yr,d to decode the bits.

The advantage of this scheme is its robustness against random perturbations of

packet timing by the attacker. It also guarantees even time adjustment and it is suitable

to be applied to VoIP traffic that flows at near constant rate. The watermark that is

embedded is difficult to detect for the attacker.

The disadvantage of this scheme is that it requires encoder/decoder synchronization

to function properly and it is not robust against packet drops by the attacker. This

scheme cannot handle inter-flow or intra-flow transformations.

2.4.2 Interval-centroid-based watermarking

This technique [15] has also been proposed by Wang et al. The time duration for

embedding the watermark is divided into equal intervals and using the timings at which

the packets appear in the interval, the centroid of the interval is calculated. The difference

between time of arrival of a packet and the start time of the interval in which appears, is

called as the time difference. The mean of time difference for all the packets in an interval

is defined as the interval-centroid. The difference between values of interval-centroids is
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used to encode or decode bits thus making it an interval-centroid-based technique. This

technique is an improvised version of the previous watermarking algorithm described in

the Section 2.4.1. It can be used to detect a stepping-stone attack even if the attacker uses

cover traffic or packet flow splitting and merging. The common procedure for encoding

and decoding bits is as follows:

• Create 2n intervals for the time duration Td where n = R ∗ L where R is the

redundancy number and L is the number of bits in the watermark.

• With equal probability, randomly create group A and B with n intervals each.

• Assign R intervals each from Group A and Group B to each bit i ∈ L.

To encode a bit ‘0’ or ‘1’, carry out following steps:

• For each bit i ∈ L, for each interval j < 2R assigned to it, for each packet k ∈

interval j, calculate ∆ti,j,k and ∆t′i,j,k where ∆ti,j,k is time difference from start of

interval and ∆t′i,j,k = a +
(T−a)∆ti,j,k

T
is the adjusted delay.

• To encode bit ‘1’, delay the packets in Group A intervals by ∆t′i,j,k.

• To encode bit ‘0’, delay the packets in Group B intervals by ∆t′i,j,k.

Please refer Appendix A, Algorithm 3 for further details.

To decode the bit ‘0’ or ‘1’, carry out following steps:

• Store the arrival timings of all the packets in the 2n intervals.

• Calculate the centroids of packets in each interval.

• For each bit i ∈ L, calculate the aggregated centroids CentA and CentB of Group

A and Group B intervals.

• If CentA − CentB is positive then we decode that bit as ‘1’.

• If CentA − CentB is negative then we decode that bit as ‘0’.

Please refer Appendix A, Algorithm 4 for further details.
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2.5 Evading detection

For evading detection, the attacker select nodes that are seldom used and are not

monitored frequently, for using them as stepping stones. However, in our technique, the

attacker selects stepping stones that experience a lot of incoming and outgoing traffic

streams resulting due to various protocols like SSH, HTTP, constant rate multimedia

etc. The high volume of traffic on the node helps the attacker to continue using the node

as stepping stone without being detected. The attacker cloaks his attack traffic as any

one of the legitimate traffic streams; let us consider constant rate multimedia traffic in

this example. Thus, attacker’s traffic stream remains indistinguishable from the traffic

streams.

Venkateshaiah [2] proposed an algorithm that helps the attacker evade stepping

stone detection by using buffering and chaff along with selective dropping of packets.

The key idea was to remove any correlation between the input and the output streams.

This can be achieved by making the output stream send packets at preselected times that

are independent of the input stream. Data packets from the input stream are placed into

a buffer. When the output stream sends a packet, it first checks the buffer for data. If

data is present in buffer, it is sent, otherwise it sends a chaff packet. We could use any

pre-determined pattern for the output stream, such as random or bursty, as long as it is

independent from the input stream. We choose to use a constant-rate stream for both

performance and the fact that it can be made to look like any number of multimedia

streams. Performance is important for interactive sessions, and a constant rate stream

with many packets will provide the output stream a chance to send buffered data soon

after it arrives. However, if a constant rate packet stream is encountered and is not a

multimedia packet stream, then it might be flagged as suspicious. So, we convert this

traffic into a multimedia packet stream by encoding the attack data as the payload of a
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Figure 2.3 Traffic time-line. Source: [2]

multimedia packet and to avoid content-based detection, we encrypt the payload of the

packets. Following is the summary of the algorithm:

• Profile the connection and obtain the standard deviation of inter-packet delays.

• When the first packet arrives, delay the packet by the maximum buffering delay.

– From the arrival of first packet, wait for a tolerance of 3σ, and trigger a send

event at intervals of duration ipd, where σ is the standard deviation of the

inter packet delays of the incoming packet stream.

– From the second packet onwards, buffer the packets that arrive before an event

is triggered.

• When a send event is triggered:

– If there is no packet in the buffer, send a dummy packet.

– If there are more than two packets in the buffer, drop the first packet and send

the second packet.

– If there are less than or equal to two packets in the buffer, send the first packet

in the buffer.

The algorithm is illustrated in Figure 2.3. The authors have simulated their algorithm and

verified that it is practically feasible to implement such an algorithm. The disadvantage

of this algorithm is that it does not perform well under adverse network conditions.



CHAPTER 3

SNEAK SYSTEM DESCRIPTION

In this chapter we describe the components of SNEAK and define parameters for

measuring the performance of the system. The system primarily consists of two algo-

rithms that help in removing the timing information from the packet streams. We also

discuss performance and consider the tradeoffs in the use of these algorithms.

3.1 Overview

As described in Section 2.4, the detection mechanism tries to correlate traffic flows

for stepping stone detection or IP traceback. For our research, we are specifically inter-

ested in the timing-based detection approach and we develop a mechanism to evade the

detection. The technique of active perturbation proposed by Wang et al. [15] is currently

considered to be the best available detection mechanism. We try to defeat this detection

mechanism using the approach proposed by Venkateshaiah [2] that uses buffering and

chaff and selective dropping of packets to evade detection. This approach is described in

Section 2.5. We use the same assumptions made by Venkateshaiah [2] that are as follows:

• The attacker has complete control over the stepping stone and he can install or

modify any software on the system.

• The attacker has access to the victim and can install and operate a small server on

the victim.

• The detection mechanism does not have prior knowledge of the presence of a step-

ping stone in the network.

14
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• The attacker does not know which packets are watermarked by the detection mech-

anism.

• The attacker does not know about any of the watermarking parameters, i.e. delay,

offset, etc.

3.2 SNEAK components

Consider an attacker who is using a stepping stone to attack his victim. For

simplicity, let us assume that the attacker is using just one stepping stone. The detection

mechanism is trying to expose the stepping stone by watermarking the incoming stream

to the stepping stone and looking for the watermark in the outgoing streams. The

attacker tries to evade detection by severely degrading the embedded watermark so that

it is difficult to detect with accuracy. The attacker uses three components of SNEAK

to carry out this attack: the Client, the Server, and the Agent. The attacker uses the

Client to issue commands, while the Server runs on the victim, receives the commands,

executing them on the shell, and sending back the replies. The Agent program resides

on the stepping stone and removes all the timing information embedded by the detection

mechanism. We concentrate mainly on the algorithms used in the Agent program as

they form the crux of the evasion mechanism. The basic use of SNEAK is illustrated in

Figure 3.1.

3.3 Robustness, Usability and Effectiveness

In this section, we formally define the terms robustness, usability and effectiveness,

as used in the evaluation of SNEAK. Let us consider a typical SNEAK system where an

attacker uses the Client, Agent, and Server to carry out an attack using stepping stones

as illustrated in Figure 3.1. If the attacker sends a command and receives a reply, we
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Figure 3.1 Basic attack using SNEAK

call it a successful command and the time elapsed between the issuing of the command

and the receipt of the first reply packet is called as the response time. In the context of

this attack, the percentage of successful commands is used as the metric for robustness

and the response time is used as the metric for usability. For an ideal system, hundred

percent success rate is essential and expected response time should be no worse than the

case when SSH is used for attack. SSH protocol was designed to work on TCP protocol

that provides a very good quality connection that gives lowest possible response time

while giving high robustness.

Consider a scenario in which a network monitor embeds a binary watermark in

the packet stream from the Client to the Agent and tries to detect the watermark in

the stream from the Agent to the Server. Then, the Hamming distance1 between the

binary string embedded and detected by the monitor is called the bit difference. The

average bit difference is used as the metric for effectiveness. If the average bit difference

is too low, then the detection mechanism can have required amount of confidence about

presence of a watermark. On the other hand if the average bit difference is too high,

then it can be argued that the watermark is present, but it has been flipped. For the

detection mechanism to have the least confidence, it is imperative that the bit difference

1For binary strings a and b, the Hamming distance is equal to number of ones in a⊕ b.
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Figure 3.2 SNEAK sender-side dropping algorithm timeline

should be close to 50% of the total number of bits in the watermark. Additionally, it

has been observed in our experiments that for an unwatermarked stream, the average bit

difference observed is around the half way mark, which implies that the confidence of the

detection mechanism is least for an unwatermarked packet stream. For example, consider

a network monitor that is using sixteen bit watermarks for stepping stone detection. If

the monitor finds the resulting average bit difference in the outgoing stream to be closer

to eight bits, then the stream is classified as unwatermarked. If the outgoing stream is a

result of an evasion algorithm used by an attacker, then we call it an effective algorithm.

3.4 Algorithm 1: Sender-side dropping algorithm

In this section, we describe the first algorithm proposed by Venkateshaiah [2]. Since

the attacker does not know which packets are watermarked, he removes all the timing

information by generating a constant rate output stream, independent of the packet

timings in the input stream. For that, the attacker buffers packets that arrive early and

drops packets when they arrive late. The attacker has the knowledge of the rate at which

he is sending packets from the Client. He triggers a send event at every ipd = 1/rate

microseconds. The attacker divides the time into fixed-length slots, beginning with the

arrival of the first packet. The length of each slot is ipd = 1/rate, which is the mean

inter-packet delay (IPD) at the source of the traffic. Since the attacker is unlikely to
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generate a data packet in every slot, the Client adds cover traffic as needed to ensure a

constant rate packet stream. It buffers and selectively drops packets using the following

scheme. Each packet is expected to arrive in its respective slot, but packets may arrive

earlier or later than expected due to the Internet and watermarking delays encountered

by packets. If an incoming packet arrives early, it is delayed till the next available slot.

If an incoming packet is delayed, i.e. it does not arrive in its slot, then a dummy packet

is sent instead. When the delayed packet arrives, it is buffered and sent at the next

available slot. Some packets may arrive very late immediately followed by the packets

that arrive in time. If the sender finds more than 2 packets in the buffer, it drops the

one that arrived first and sends the next one. We call this Strategy 1.

This algorithm was successful in generating a constant rate traffic stream at the

output that was independent of input stream. It performed well under normal network

conditions but gave increased response times under adverse network conditions. We

found that the packets would queue up in the buffers and increased the buffering delays

and thereby increased response time. We further discuss performance issues in detail in

Section 3.6

We made some changes to the algorithm and added Strategy 2 that requires the

sender to drop packets more aggressively to prevent packet build up in the buffers. In

adverse network conditions, we often find more than two packets in the buffer. In Strategy

2, we drop all but the last two packets in the buffer. Aggressively dropping packets also

affects the overall robustness of the system. To deal with packet loss in general, we create

redundancy in the number packets containing data and we call it redundancy number ’r’.

Whenever we send a data packet, we send r copies of it. Sending these redundant copies

of a packet does not cost us additional resources as they substitute the cover traffic

(dummies) required to be sent in the absence of a data packet in the buffer. The cost of

filtering out the redundant copies is minimal at the Server.
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In the original algorithm by Venkateshaiah [2], the Agent first profiled the incoming

connection and using ipd = 1/rate as the mean, calculated the standard deviation of

IPDs called σ. It was assumed that jitter follows normal distribution. Prior research has

suggested that jitter should be exponentially distributed [16] or gamma distributed [17].

The use of a normal distribution helps in designing the system for good performance,

but this approach can be modified for various network conditions.With this knowledge of

the distribution of the IPDs around the mean, the Agent could adjust the start time of

the outgoing stream, in tolerance. In theory, tolerance was supposed to help in adjusting

the start of send intervals to account for the normally distributed inter-packet delays.

However, we found that the tolerance hardly had any effect on the robustness or usability

of the algorithm. We have seen that even if we do not use tolerance and a packet comes

later than expected, it gets buffered and is sent in the next slot. Figure 3.2 illustrates

the timeline for the modified algorithm. For a full specification, see to Algorithm 1 of

Appendix A.

3.5 Algorithm 2: Receiver-side dropping algorithm

Under adverse network conditions, usability and robustness of sender-side dropping

algorithm was affected. The Strategy 1 gave better robustness, but gave higher response

times, while Strategy 2 improved the response time but the robustness degraded. It was

identified that the packet build up in the buffers was the root cause of problems. These

issues are further discussed in detail in the Section 3.6. One way to solve the issue of

packet build up would be to reduce the amount of data being buffered. We need to buffer

only one copy of data packet and drop all the redundant copies. This can be done at the

Agent while receiving the incoming packets and while sending the packet to the next hop,

the redundancy can be reintroduced. This approach has two advantages: first we do not

pay additional cost for buffering redundant packets, and second we maintain complete
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redundancy on all hops that ensures that we have enough redundant packets to counter

the drops.

In sender-side algorithm, we buffer all the packets including the late packets. In

the case of a bunch of late packets, we buffer and and later drop them in case there

is packet build up in the buffer. As a result we end up wasting some resources in the

process. We would save some resources if we directly drop all those packets. We need a

way to determine whether a packet is late, and the measure of lateness of a packet should

depend on the prevailing network conditions. Hence, we need to profile the connection to

determine the standard deviation of inter-packet delays. We use the connection profiling

technique proposed by Venkateshaiah [2]. In this technique, we record the inter-packet

delays (IPDs) of the incoming packet stream and we already have the knowledge of the

rate at which we send the packets from the Client. We assume that the inter-packet

delays are normally distributed when the packets reach the Agent. Based on that, we

calculate the ipd = 1/rate and use it as mean to calculate the standard deviation σ as

follows:

σ =

√

√

√

√ 1
n−1

(n−1)
∑

i=1

(ipdi − ipd)2

Here n is the total number of packets in consideration and ipdi is the inter- packet delay

between packet Pi and the previously received packet.

In this algorithm, we try to eliminate all the late packets by using σ to determine

it’s lateness. We know that the IPD distribution is a normal distribution, and hence we

know that almost all the IPDs will lie within 3 × σ of the mean. Thus, if the IPD is

greater than ipd+3×σ, then we instantly drop the packet, otherwise we buffer it. Using

this algorithm, we do not expect more than two packets in the buffer at any given time.

When a send event is triggered, we send a data packet if it is available, or we send a

dummy packet instead. The process can be summarized as follows:

• Profile the connection to determine the standard deviation σ of the IPDs.
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Figure 3.3 SNEAK receiver side dropping algorithm timeline

• The receiver thread accepts only those packets that have come within ipd + 3σ of

the arrival time of the last received packet.

• After accepting a packet, put it in the buffer; discard any duplicates (see Sec-

tion 4.2).

• The sender thread wakes up according to the constant rate schedule and checks for

packets in the buffer.

– If there is a packet in the buffer, remove it from the buffer, copy it, and send

it; schedule the redundancy numbers worth of duplicates in the coming slots.

– If there is no packet in the buffer, send a chaff packet.

Figure 3.3 illustrates the timeline for the algorithm. For further details, please refer

Appendix A, Algorithm 2

3.6 Performance issues and trade off

Both the algorithms are equally effective against watermarks though they exhibit

different robustness and usability characteristics. The use of a particular algorithm or a

strategy should be dictated by the requirements of the user. In case of Algorithm 1, the

fixes we introduced eliminated the cascading delays in case of the original algorithm under



22

adverse network conditions and redundancy in packet traffic balanced the aggressive

dropping strategy. Although it increased the robustness of the algorithm and avoided

cascaded delays in the buffer, the usability of the algorithm suffered up to a certain extent.

To counter the high drop rate, we used redundant packets that get queued in the buffers

till they get dropped at the server. Buffering all these packets required some additional

resources, and those ultimately get wasted as the redundant packets are dropped at the

server. However, it has been experienced that the success rate was really high. Thus,

Algorithm 1 with both strategies performs well in terms of robustness.

In case of Algorithm 2, under normal network conditions, not more than two packets

are enqueued in the buffer at one time. However, this algorithm causes packet build up

in case of varying network conditions. Suppose if the network conditions are adverse

when the connection is profiled and then improve over the course of the connection and

become normal. If under the adverse conditions, the standard deviation σ is greater

than or equal to the mean ipd, then during the normal conditions, the factor by which

it is greater decides the number of packets entering the buffer at a time. For ex: if σ

becomes twice the mean ipd, then two packets are put in the buffer. This condition

can be avoided by putting an upper bound on the value of the σ. Another problem is

that, this scheme will drop a packet that comes late even if there are no other packets

waiting in the buffer. This cuts out late packets, decreasing average response time but

also affecting the success rate. However, with an increase in redundancy number, this

Algorithm 2, gives the required usability and robustness.



CHAPTER 4

SNEAK PROTOTYPE

In this chapter, we describe the design of an experimental prototype application

that employs our algorithm to evade detection.

4.1 Prototype Design

Our goal is to create a pseudo-shell application that allows the attacker to run

commands on the victim’s machine. This is a proof of concept application and it lacks

the superior shell functionality provided by Telnet and SSH. The software has been pro-

grammed in C on Linux kernel 2.6.22. We send packets using the Real-time Transport

Protocol (RTP) [18], thus creating a packet stream that resembles VoIP or some other

multimedia. RTP provides end-to-end delivery services for data with real-time charac-

teristics, such as interactive audio and video data. Applications typically run RTP on

top of UDP to make use of its multiplexing and checksum services. Many of the popular

VoIP protocols such as H.323 and SIP use RTP as their transport level protocol [19].

We also need to encrypt the payload to prevent the contents of our packet streams

from being inspected by monitoring software. Hence, we use the Secure Real-time Trans-

port Protocol (SRTP) [20], a profile of RTP that provides confidentiality and message

authentication. We used libsrtp-1.4.2, which is a freely available implementation of SRTP.

We also used a fixed packet size of 64 bytes to match existing VoIP packets (packet sizes

vary depending on the codec). Our application consists of three components: the Client,

the Server, and the Agent. The Client resides on the attacker’s machine, while the Server

resides on the victim’s machine. Note that, for attacking hosts that are yet to be com-

23
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promised, the victim could be used as a stepping stone. The incoming SRTP stream

and any outgoing packets caused by shell commands should be difficult to correlate, but

the Server can add random delays to make it even more challenging. Finally, the Agent

resides on the stepping stone and it relays the packets between the Client and the Server.

For a multiple number of hops, we need to install the Agent on each of the nodes involved.

4.1.1 SNEAK Client

The Client program issues the attack commands that are to be run on the victim’s

machine. It uses separate threads for sending and receiving (the sender and the receiver).

The sender continuously sends packets at a constant rate over a UDP socket, while the

receiver simultaneously receives packets on the same socket and prints them out on the

screen. The sender thread monitors the attacker host’s standard input and prepares any

typed commands to be sent to the Agent in the next time slot. If any commands or

replies require more data than is available in our fixed packet size, we simply break the

data into multiple packets and queue them all for sending one at a time in the constant

rate stream. Whenever there is no command available, it keeps sending chaff packets.

To create chaff packets, we simply fill the payload with “NUL” characters. Thus, the

chaff packets are filtered out by the recipient by testing for the presence of all “NUL”

characters in the payload. The use of AES counter mode prevents the observer from

determining which packets are chaff and which are real.

4.1.2 SNEAK Server

The Server program responds to the received command by executing the command

on the victim’s machine and sending back the response to the Client. It has a two-thread

design similar to the Client. The sender forks a child process that creates a shell and ties

its standard input, output, and error descriptors with input and output pipes. When the
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Figure 4.1 SNEAK Agent architecture

receiver receives a command on its UDP socket, it writes to one end of the input pipe.

On execution of the command, the shell writes the output on the output file descriptor.

The sender listens on the other end of the output pipe and sends the data back on the

socket. Similar to the Client, the sender sends at a constant rate, sending data only at

the designated times and sending chaff packets otherwise.

4.1.3 SNEAK Agent

The Agent program receives data from the previous host in the connection chain

and sends it to the next host. It acts as a relay, while employing our algorithm, to

selectively forward or drop packets. It primarily consists of four threads that do the

work of sending and receiving in each direction and we call them client-side or server-side

threads. The prefix client-side or server-side indicates that the data is coming from the

direction of the Client or Server respectively but it may come from an Agent on another

host. Another important component is the FIFO queue for each direction, that we call
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Figure 4.2 Structure of 64 Byte payload.

the upstream buffer (client-side to server-side) and the downstream buffer (server-side to

client-side). Whenever any data appears on the client-side socket, the client-side receiver

puts the packet in the upstream buffer. The server-side sender picks up a packet from the

buffer in the next available slot and sends the packet towards the Server. Similarly, the

server-side receiver collects responses from the server-side socket and puts them in the

downstream buffer, from that the client-side sender gets them and sends them towards

the Client. The architecture of Agent is illustrated in Figure 4.1.

4.2 Robustness mechanism

RTP and SRTP do not provide any quality of service guarantees. They don’t

guarantee timely delivery or prevent out-of-order delivery. Recreating a TCP-style re-

transmission mechanism would result in a complex protocol. Hence, for the sake of

simplicity, we have implemented a simple mechanism that provides an acceptable level

of robustness. For each packet containing a real message, we send multiple copies of the

same packet over the network in succession while maintaining the constant packet rate.

This increases the probability of the message reaching is destination. We call the number

of copies of a packet sent over the network the redundancy number. For any network

conditions, we can achieve the required level of robustness by increasing the redundancy

number. Sending additional copies of the same packet doesn’t increase the work for the

application, as the application will continually send packets to maintain a constant rate

stream.



27

Additionally, we must remove duplicate packets, so as not to execute commands

repeatedly. We track the packets by storing a unique internal sequence number (ISN) in

each packet sent (including chaff packets). For a 64-byte payload, the first two bytes are

used for storing the ISN as demonstrated in Figure 4.2. We mark the packet number as

received in a bit vector, according to its ISN, and we drop any duplicate packets that

arrive later.

4.3 Miscellaneous implementation issues

We need to ensure that the Agent, which is supposed to be installed on the stepping

stones does not consume too many resources in order to remain undetected. The markup

tables needed to keep track of the sequence number of the packets received would consume

lot of space if array of integers is used. So we used bit vectors to reduce the footprint of

the process in memory. We also converted the bit manipulation functions to macros so

that the speed of execution is not affected. For the part of profiling the connection,we

use the GNU Scientific Library (GSL-1.11). It provides us with useful functions for

calculating the standard deviation (σ) of the inter-packet delays of the arriving packets.

We used circular buffers for the upstream and downstream buffers in the Agent. The

buffers were accessed simultaneously by two threads, the sender and the receiver. To

avoid the race condition, we employed mutual exclusion by using binary semaphores.



CHAPTER 5

EXPERIMENTS

In this chapter, we describe the experimental setup of the SNEAK system. We

then describe the results on the PlanetLab experimental network.

5.1 SNEAK Experimental setup

The experimental setup involved the use of SNEAK for evading watermark-based

detection. We decided to conduct our experiments over two hops but this system should

work with as many hops as needed with linear increase in delay. The real life scenario

of an attack using stepping stones would involve nodes at a considerable geographical

distance, and hence we would expect significant latency and jitter. To test our software

against such an environment, we chose nodes that were spread across the United States

and we used two hops to attack the victim. For our experiments, our Client was placed on

isec.uta.edu and we used two Agents that were placed at ricepl-1.cs.rice.edu and

pl2.csl.utoronto.ca respectively. The Server was placed at ricepl-3.cs.rice.edu.

We selected these nodes for their relatively high performance among PlanetLab nodes

we tested. As PlanetLab uses virtualization, many nodes introduce high delays for in-

teractive sessions even when no buffering is used. Figure 5.1 illustrates the experimental

setup.

5.2 Watermarking mechanism

We use the algorithms described in the Section 2.4.2 to watermark the incoming

packet streams and detect the watermark in the outgoing packet streams. Ideally the

28
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Figure 5.1 Experimental setup of SNEAK

watermark encoder would intercept the incoming traffic and embed the watermark and

detect it by intercepting the outgoing stream. This would be typically done by a device

like a router in the real world mechanism. However, we just needed a simple proof of

concept mechanism to prove that SNEAK is effective against timing-based watermarks.

So we coupled the watermarking encoder with the Client and embedded a decoder in the

Agent and the Server. The Client encodes the watermark bits and the agent and server

report the detection results by calculating the hamming distance between received bit

stream and the original binary watermark string. Figure 5.1 illustrates the watermarking

setup.

5.3 Results

We now describe the results we obtained by testing our prototype on the PlanetLab

network. Our main focus was on testing the robustness, usability and effectiveness of

SNEAK. We tested and compared the sender side drop algorithm i.e. Algorithm 1 and

the receiver side drop algorithm i.e. Algorithm 2 with all the strategies. The packet rate
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Figure 5.2 Success rates for SNEAK under normal conditions

was 40 packets/sec and the capacity of the upstream and downstream buffers was fixed

at 10 packets per buffer. The watermarking mechanism used 16 bit watermarks with

redundancy number as 6. For our measurements, we report results from five sessions,

each with 10 commands, for a total of 50 commands. We did this for redundancy numbers

between one and six, where redundancy number one means that only one copy of packet

is sent i.e. no redundancy.

5.3.1 Robustness

To test whether the scheme described in Section 4.2 works to provide sufficient

robustness for shell type applications, we tested the effect of redundancy number on

the success rate of the queries. We defined success rate as the percentage of successful

queries. To evaluate this, we issued a number of commands that would result in a single

reply packet being sent, such as uname and date. One could estimate the success rates

of commands resulting in multiple reply packets by the success rates we have obtained.
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Figure 5.3 Robustness of Algorithm 2 under different network conditions

We show the results of this test in Figure 5.2. For Algorithm 1(Strategy 1 & 2), we see

a 100% success rate from redundancy number one till six, i.e. even with no redundancy

high robustness was achieved. While for Algorithm 2 (Strategy 3), 100% success rate was

achieved at a redundancy number of three and above. Thus, to compensate the drops,

we needed to increase the redundancy number to achieve desired robustness. Thus, for

normal conditions, even at reasonably low redundancy levels, we have very high success

rates. However, these numbers do get affected in case of adverse network conditions.

For example, in case of adverse network conditions the Algorithm 2 (Strategy3) achieves

desired robustness at redundancy number six as demonstrated in the Figure 5.3. Note

that, in most cases, an attacker can rerun a command to get the result. Alternatively,

the attacker could have the application adjust the redundancy number as needed so a

few critical commands are sure to be correctly received.

Figure 5.2 also illustrates the drop rates experienced during the experiments. Up-

drop1, Updrop2, Dndrop1 and Dndrop2 indicate the upstream drop1 (Agent1), upstream
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drop2 (Agent2), downstream drop1 (Agent2) and downstream drop2 (Agent1) respec-

tively. We see that no significant drops were experienced for Algorithm 1(Strategy 1

& 2) for redundancy number one to six. While consistant drop rates in the range of

10% to 15% are reported for the Algorithm 2(Strategy 3). The drop rates are relatively

consistent across our experiments. Let us assume that all drops are independent events.

If we consider the drop rate for the experiments with redundancy number of six, the

chance that a given packet makes it to the Server and a response gets back is only 60%.

However, with six duplicates, the chance that the query gets through and gets one valid

response is 1 − (1 − 0.6)6 = 99.4%. Allowing for some variation, we see that we get

approximately what we would expect from our redundancy approach.

We tested the system for usability by measuring the maximum amount of data

buffered for a session of 10 single packet commands and taking an average for the total

number of sessions. Thus, each of the algorithms was profiled for the maximum amount

of data buffered on average. As the buffering delays are associated with any packets

that get buffered, the amount of data buffered can affect the response time of the system

and thus will affect the overall usability of the system. Figure 5.4, Figure 5.5 and Fig-

ure 5.6 illustrate the data buffered by Algorithm 1(Strategy 1), Algorithm 1(Strategy 2)

and Algorithm 2(Strategy 3) respectively. Upbuf1, Upbuf2, Dnbuf1 and Dnbuf2 indicate

the data buffered at upstream buffer1(Agent1), upstream buffer2(Agent2), downstream

buffer1(Agent2) and downstream buffer2(Agent1) respectively. Each of the readings in-

dicates the sum of all the data buffered for the session. It can be seen that, for Algo-

rithm 2(Strategy 3) the data buffered always remains constant at 256 Bytes while the

data buffered for Algorithm 1(Strategy 1 & 2) increases with the increase in redundancy

number. These observations are consistent with our theory that the Algorithm 2 is the

best in terms of usability as compared to Algorithm 1(Strategy1 & 2). It can also be
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Figure 5.4 Total buffer usage for Algorithm 1(Strategy1)

noted that the maximum amount of data buffered is still less that 1 Kilobyte, which is

really less and it helps in maintaining stealthiness for the Agent program.

5.3.2 Usability

We tested the usability of the system by first using it to execute a series of com-

mands manually. We found the response times to be reasonable for interactive use. We

also measured the response time of the system from the time the command is sent to the

time the first response packet is received. We observed during the experiments that the

response time of the system is largely dependent on the prevailing network conditions

and the PlanetLab node responsiveness. Despite the variable network conditions, our

system consistently provides response times of less than one second, which is sufficient

for an attacker to get reasonable use from the system. The lowest response time of

around 125 ms was recorded for the Algorithm 2(Strategy 3) at redundancy number six

while the highest was around 200 ms which was noted for Algorithm 1(Strategy 2) for

redundancy number 4. It can also be noted that the response time will depend upon



34

Figure 5.5 Total buffer usage for Algorithm 1(Strategy2)

Figure 5.6 Total buffer usage for Algorithm 2(Strategy3)
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Figure 5.7 Comparison of response times

the amount of data buffered in the upstream and downstream buffers for that particular

session. Buffering more data increases the response time, which affects the usability. We

also tested the effects of running commands with long results. In particular we ran the

command “ls /*”, that resulted in high number of packet responses. We found that with

redundancy number six, high robustness was achieved with both the algorithms. The

Algorithm 2(Strategy 3) performed better than Algorithm 1(Strategy 1 & 2) in terms of

usability.

5.3.3 Effectiveness

We now present the results of our experiments to test the effectiveness of SNEAK,

in terms distribution of IPDs and the difference in bits. We also verify that our technique

causes the watermarking approach of Wang et al. [15] [14] to fail.

It was observed that all 16 bits of the watermark are correctly detected for all the

trials for Algorithm 1(Strategy 1 & 2) and Algorithm 2(Strategy 3) at the Agent1 i.e.
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the bit difference was zero. This indicates that the watermark was correctly embedded

by the Client. The Figure 5.8 indicates the difference in bits of watermarks detected

at the Agent2 for Algorithm 1 (Strategy 1 & 2) and Algorithm 2(Strategy 3). The bit

difference is distributed around the 8 bit mark with the values spread in the range of 4

to 12. The Figure 5.9 demonstrates the bit difference at the server and the bit difference

is distributed around the 8 bit mark with the values ranging from 4 to 13. We measured

the distribution of bit difference for an unwatermarked packet stream and it was seen

that the distribution is normal around the 8 bit mark. Thus, the results indicate that

the incoming packet stream at Agent2 and Server is unwatermarked and the timing

information embedded by the Client has no bearing on it.

The Figure 5.10 demonstrates the distribution of inter packet delays(IPDs) for the

watermarked stream from the Client to the Agent.It can be clearly seen that the stream

is watermarked indicated by the spikes generating a pattern in the plot. The Figure 5.11

demonstrates the distribution of IPDs of the outgoing packet stream from the Agent.

The use of SNEAK results in a packet stream that is devoid of any timing information

and it flows from the Agent to the Server. Thus from these results, it is evident that

SNEAK is effective against watermarking mechanism described in Section 2.4.2.
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Figure 5.8 Distribution of bit difference at Agent2

Figure 5.9 Distribution of bit difference at Server
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Figure 5.10 Distribution of IPDs for watermarked flows

Figure 5.11 Distribution of IPDs after buffering and chaff



CHAPTER 6

CONCLUSION

In this thesis, we have improved the existing method for evading stepping stone

detection schemes and proposed a new algorithm for the same. We have proved using

experimental data that our system should be effective against all the timing-based de-

tection schemes currently available. Our results also demonstrate that the watermark

detection is degraded severely and yet the system remains usable. We have defined the

concepts of usability, robustness and effectiveness and specified the metrics for measuring

them. We also developed a prototype of SNEAK and verified that it was usable over two

stepping stones on the PlanetLab network.

6.1 Future Work

Although our work largely discusses evasion techniques, our our algorithms could be

applied by network administrators to secure their networks. As discussed by Gianvecchio

and Wang [21], the watermarking technique proposed by Wang, Chen, and Jajodia [14]

can be considered to be a type of covert channel. Thus, our technique also breaks timing

based covert channels present in the network. Additionally, our technique might be

useful for strengthening anonymity systems against watermark-based attacks. In both

cases, however, there is a substantial cost that the system would pay for the increased

security in terms of bandwidth and latency. The attacker in our system does not pay

for the bandwidth and has rather low bandwidth and usability needs, making it more

practical in the scenarios we have outlined. Hence, this aspect of the system needs to be

investigated further.
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Algorithm 1: SNEAK algorithm with sender side drops

Input: Incoming watermarked packet stream
Output: Constant rate packet stream

/* Strategy1 -> Drop current, send next.

Strategy2 -> Drop all, till only 2 remain */

/* Receiver thread */

begin
Start receiving packets from previous hop with sequence number i;

foreach packeti where i← 0 to n do
if packeti contains all NULs then

Discard packeti as dummy;
else

Enqueue packeti in buffer;
end

end

end

/* Sender thread */

begin
Start sending packets to next hop;
Trigger send event after every ipd µs ;

foreach send event triggered do
if buffer 6= empty then

if More than two packets in buffer then
if Strategy1 then

Drop current and send next packet ;
else/* Strategy2 */

Drop all but last two packets in buffer;
. Send next packet;

end

else
Send current packet;

end

else
Send dummy packet;

end

end

end
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Algorithm 2: SNEAK algorithm with receiver side drops

Input: Incoming watermarked packet stream
Output: Constant rate packet stream

/* Strategy3 -> Don’t buffer packets that come late */

/* Receiver thread */

begin
Profile connection to get σ using ipd as mean;
Start receiving packets from previous hop with sequence number i;

foreach packeti where i← 0 to n do
timestampcurr ←received packet timestamp;
IPDi ← timestampcurr - timestampprev;
if IPDi ≤ 3σ+ipd then

if packeti contains all NULs then
Discard packeti as dummy;

else
if packeti is marked then /* Check for duplicates */

Discard packeti as duplicate;
else

Enqueue the packeti in buffer;
Marked packeti as received;

end

end

else
Drop packeti ;

end
timestampprev ← timestampcurr;

end

end

/* Sender thread */

begin
Start sending packets to next hop;
Trigger send event after every ipd µs ;

foreach send event triggered do
if buffer 6= empty then

Send current packet;
else

Send dummy packet;
end

end

end
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Algorithm 3: Realtime watermark encoding algorithm

Input: Tuple < o, T, RNG, s, R, L>
Output: Watermarked packet stream
Generate the watermark ’W’, 2n time intervals where n = R× L;
Distribute them randomly with a probability 0.5 in two groups A and B ;
foreach i ∈ L where 1← 1 to L do

Randomly assign r = n
l

group A and B intervals with probability 1
l
;

if i ≡ 0 then
Mark group B intervals for delaying;

else
Mark group A intervals for delaying;

end

end
Use delay vector ’D’ for encoding the watermark ;
max← 2× R× L;
foreach packet ∈ interval Ii where i← 1 to max do

if first packet overall then
Note time stamp of the first interval;

end
Get time stamp and calculate interval number of current packet;
Calculate time stamp and interval number of expected packet;
if Expected interval 6= Current interval then

Mark expected packet as first packet in interval;
else

Increase expected packet number by one;
end
if Ii marked for delay in D then

if first packet in interval then /* Use above calculated values */
Calculate ∆ti,j,k for the expected packet;
Calculate ∆′ti,j,k for the expected packet;
Effective delay← ∆′ti,j,k −∆ti,j,k + packet rate;

else /* Use information from previous packet */
Calculate ∆ti,j,k for the expected packet using ∆ti,j,k(prev);
Calculate ∆′ti,j,k for the expected packet;
Effective delay← ∆′ti,j,k −∆′ti,j,k(prev);

end
∆′ti,j,k(prev) ← ∆′ti,j,k;
∆ti,j,k(prev) ← ∆ti,j,k;

else
Effective delay←packet rate;

end

end
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Algorithm 4: Realtime watermark decoding algorithm

Input: Tuple < o, T, RNG, s, R, L>,Watermarked packet stream
Output: Decoded watermark
Generate watermark ’W’, 2n time intervals where n = R× L;
Distribute them randomly with a probability 0.5 in two groups A and B ;
foreach i ∈ L where 1← 1 to L do

Randomly assign r = n
l

group A and B intervals with a probability 1
l
;

Store intervals assigned to i and in a bit group vector ’BG’;
end
max← 2× R× L;
foreach packet ∈ interval Ii where i← 1 to max do

if first received packet overall then
Note time stamp of the first interval;

end
Get time stamp and calculate interval number of current packet;
if Current interval ≡ max then

foreach bit i ∈ L where i← 0 to L-1 do
Using BG, find intervals for bit i in group A and B;
Calculate total packet delay and packet number for each group;
Calculate Group A and Group B centroids;
if Group A centroid > Group B centroid then

Received bit is 1;
else

Received bit is 0;
end

end
Reverse the binary watermark string and convert to integer;
Calculate the hamming distance between W and received integer;

else
if Current interval ≡ Previous interval then /* Received packet

lies in the same interval */
Add ∆ti,j,k to the total packet delay;
Increase the total packet number in the interval by 1;

else /* Received packet lies in new interval */
Store the total packet delay and number of packets for previous
interval;
Start calculating total packet delay for the new interval;
Start calculating total number of packets for the new interval;

end

end

end
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