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ABSTRACT

Publication No.

JKUMAR GOPALARATHNAM, M.S.

The University of Texas at Arlington, 2006

Supervising Professor: Dr.Guillermo Ramirez

The aim of the research is to develop expressions for the bond stress at a tension

splice in reinforced concrete. Many experiments have been conducted inorder to ascertain

the relationship between appropriate variables and develop an expression to evaluate the

bond stress. The scope of this research is to use existing experimental data to establish

a relation and develop an expression.

Before the preprocessing begins, the data are organized into different categories

such as bottom, top and side bars, and bars with transverse reinforcement.

The existing experimental data is evaluated for statistical validation. It is then

subjected to individual and relational variance tests to ascertain the variation of individ-

ual variables in comparison with each and every variable. It is also tested for significance

of presence.

This preprocessed data is subjected to correlation tests. Proper variables are then

selected whose ’contributions’ are significant to the endogenous variable which in this

case is the bond stress at splice length normalized with respect to the square root of the

characteristic compressive strength of the concrete.
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Once, the desired variables are established, a linear model is built and the coeffi-

cients of the desired variables are evaluated. The linear model is then tested for errors.

Since significant error is to be expected due to the omission of number of variables, the

equation is discretized over a discrete interval of a selected parameter.Thus, the error is

minimized and a fairly accurate expressions are developed.
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CHAPTER 1

INTRODUCTION

In a reinforced concrete member, the strength of the member essentially depends

on the bond between the steel reinforcing bar and the concrete. Concrete is not a ho-

mogenous or ductile material. There are important qualities for any material used in

structures. Ductility can be designed into behavior of concrete member by the appropri-

ate introduction of reinforcement bars.

In most of the texts related to reinforced concrete, steel reinforcement is considered

to impart ductility to the concrete member. Generally no discussion is given about the

mechanism involved behind this process. Numerous experiments have been conducted in

order to describe the parameters such as volume of concrete, number of stirrups, splice

length, longitudinal and transverse bar diameter etc. affecting the bond strength.

The aim of this project is not to discuss the mechanism of bond in detail but

to develop expressions for bond from existing data. The data from various sources are

collected. They are analyzed using statistical procedure and their relationships are an-

alyzed. Then, a linear relationship is developed between the desired variable and other

desired independent variables.

Chapter 2 describes the data arrangement that aids in better analysis. This chapter

discusses various types of variables and their importance in the analysis. It also describes

various possible relationships between the variables and how each variable is analyzed

and organized according to their importance in the relationship.

Chapter 3 describes the preliminary processing of the data. Analysis of variance

of the variable and how it affects the processing of data for regression are discussed.
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The significance of presence of each variable and its proportion of contribution to the

endogenous variable is evaluated. The types of errors that may possibly occur due to

omission of certain tests and wrong assumptions are also discussed. The data are tested

and probable variables for representing the endogenous variables are identified.

Chapter 4 gives a detailed account of regression analysis. General linear form

is described and derived and then extended to multiple regressions. The variables to

be involved in the regression analysis are treated for normality. Various processes and

methods to remedy any abnormality are discussed in detail. The upper bound and lower

bound values for the coefficients of the regression equation are evaluated.

Chapter 5 analyzes the procedure for optimizing the coefficients of the expression

to generate least error.

Chapter 6 describes the accuracy of the equations. The error quotient is calculated

for random set of data and their accuracies are checked.

Chapter 7 gives the conclusion. Possible scope of this project in future is also

discussed.

1.1 Linear Model - Why?

The important fact about linear functions is that they are easy to work with. They

are easy to solve, easy to plot, and easy to understand. So when looking for a function

to approximate the behavior of something in the real world, a linear function is generally

tried first; and only if that proves to be an unacceptable model, other kinds of functions

are then examined.

There are already many equations and theories present involving non-linear ap-

proaches for bond expressions. Here, only linear approach is considered to show that it is

easy to use and also produces results of higher accuracy compared to non-linear models.
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1.2 Importance of Bond

In traditional design capacity, bond between steel and concrete is achieved by

providing adequate length of bar or lap splice and to anchor the bar. This ensures that

the bar is capable of reaching yield under design loading. Usual approach to establish a

bond relationship is to deduce from experimental data for bond strength using empirical

relations.

Compatibility of deformations between concrete and the anchored bar becomes an

important issue when design criteria are based on the performance of the structure. The

increasing significance of performance based design has motivated new considerations

in bond design. The need to establish the performance of the existing buildings are

getting higher when new buildings are to be constructed nearby and when they are to be

connected structurally. While there are many approaches for designing bond strength,

there need to be an easy way to establish the bond stress. Since there is always a slip

in the bar although minimum development length is provided, need to know the bond

stress and its strength becomes important.[19]

1.3 Influence of Bond on Structural Performance

In general, building performance in dynamic loading conditions such as seismic

forces or sudden impacts should be satisfactory. In other words, under these loads, the

buildings should survive without any loss of strength and with little or no damage to

the structure. Damage to the structure due to heavy load occurs when plastic hinge

forms. This is due to insufficient moment resisting capacity. Adequate reinforcement

and ensuring bond between concrete and reinforcement can meet the requirements of

rotations of the member and avoid damage. [19]
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1.4 Observations on Bond Modeling

The requirement of bond modeling is to ensure the engagement of the bar deforma-

tions in concrete are sufficient to anchor the bar when it develops its full force capacity

given the detailing and section geometry. Since there is movement of bar observed when

the member is loaded, bond slip occurs between the steel reinforcement and concrete.

This increases the tensile strength in the concrete leading to cracks which migrate from

the surface of the steel to the free surface of the concrete. Long bar embedment or

increased cover or more transverse steel can minimize the cracks to a good extent.

1.5 Oversupply of Bond Resistance

Mode of failure is as important as the strength of the member. In concrete struc-

tures, beams are designed so that it is tension controlled and has ductile failure. It is

to be noted that bond improved beyond ability of the member to sustain it will result

in the change of mode of failure from pullout to splitting. To prevent this, additional

transverse reinforcement will be required. The increased bond also decreases the plastic

hinge rotation which leads to premature failure of structures.



CHAPTER 2

DATA ARRANGEMENT AND ORGANIZATION

2.1 Data Source

The project is based upon a set of data generated from various experiments per-

formed on various elements. The project is mainly concerned with the data itself and

not on the experiments from which the values are obtained.

The performance of reinforced concrete structures depends on adequate bond strength

between concrete and reinforcing steel. This project statistically analyzes bond and de-

velopment length of straight reinforcing bars under tensile load. Bond behavior and

the factors affecting bond are discussed, including concrete cover and bar spacing, bar

size, transverse reinforcement, bar geometry, concrete properties, steel stress and yield

strength, bar surface condition, bar casting position, development and splice length, dis-

tance between spliced bars, and concrete consolidation. Equations for development and

splice strength are presented and compared using a large database of test results.[1]

Experiments including pull-out tests[2, 25, 26, 14], flexure test of beam with single[17,

22, 26, 4, 16], two point[1, 20, 23, 11, 13] and three point loading [12, 10, 15, 5, 21, 6] are

performed to gather the data for analysis.

2.2 Application to Development Lengths

Similar behavior in cracking and splitting has been observed in tests for develop-

ment lengths of a single bar and lap splices. The mode of failure should be the same if

the bar is isolated or is adjacent to another bar as in the case of a splice. It seems, there-
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fore, that the empirical equation for splice strength should be applicable to development

lengths as well as splices.[1]

In order to check this, extensive tests were conducted by Ferguson, Thompson,

and Chamberlain.[7, 23, 10] These tests lead to a conclusion that for the same given

parameters, the same length is required for a lap splice as for development length of a

single bar. As a result, the same basic equation can be used for determining development

lengths of a single straignt bar as well as lap splices.[23, 8]

2.3 Data Basics

2.3.1 Variables

Variables are numeric representatives of parameters that measure, modify or con-

trol research. They are significant in that they can take the role of any quantity to

be measured and aid in assessing the desired quantities by qualitative or quantitative

measures.

2.3.2 Variables - Types

Based on the relationship between the variables involved in the research, variables

are of two kinds. They are as follows:

• Independent variables

• Dependent variables

Independent variables are measures whose values are bound to change but are not

affected in any way by any other measures bound to change. Independent variables are

sometimes referred to as manipulative variables in that they control or modify the values

of other variables namely dependent variables. The aforementioned kinds of variables get

their measure from direct observation of an experiment or from actual measurement. For
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example, a diameter of a steel rod measured constitutes a measure for an independent

variable.

Dependent variables are measures whose values are calculated based on the inde-

pendent variables based on their relationships.

2.3.3 Variables - Kinds

Not all variables are measured accurately. Hence, most of the variables have in-

herent error associated with them. Hence, in the analysis and research based upon these

variables, there has to be room for accomodating the error to find the value of the de-

pending variable more accurately.

• Nominal variable

• Ordinal variable

• Interval variable

• Ratio variable

Nominal variables allow for only qualitative classification. That is, they can be

measured only in terms of whether the individual items belong to some distinctively

different categories, but we cannot quantify or even rank order those categories.

Ordinal variables allow us to rank order the items we measure in terms of which

has less and which has more of the quality represented by the variable, but still they do

not allow us to say quantify.

Interval variables allow us not only to rank order the items that are measured, but

also to quantify and compare the sizes of differences between them.

Ratio variables are very similar to interval variables; in addition to all the properties

of interval variables, they feature an identifiable absolute zero point, thus they allow for

statements such as x is two times more than y.
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The type of variable that occurs in this research is nominal variable. This variable

gives the category that it represents and the quality measure of it and not any relationship

between any of other measures. In all practical relevance, variables are either referred as

dependent or independent variables.

2.3.4 Variables - Relationships

Among the variables involved in an experiment, there always exist a relationship

between them. The relationship would be evident from the distribution of the values of

the variables in a consistent manner. In any scientific experiment involved, there is no

such measure that does not have any link to other measures though how small it may

be. In order to explain the behaviour of any, say, variable, relationship of the interested

variable with other possible related variables must be established and studied. This

would give a good knowledge about the working of the system and gives the proportion

of contribution of each variable to the ultimate factor.

2.3.5 Properties of relation between variables

There are two distinguished properties exhibited by the variables considered in the

relationship.

• Magnitude or Size: This property indicates the physical relationship between the

variables. If two variables x and y are considered, this property would show if x is

greater than y or such.

• Reliability: This property indicates the extent to which the value can be used in

further research. In effect, it determines if the measure of this variable is closer to

accuracy. One way to measure the reliability is to use some significance tests.
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2.4 Typical Data

List of variables observed related to the material property are as follows:

1. Concrete strength ksi. f
′
c

2. Bar yield strength ksi. fy

3. Stirrup yield strength ksi. fyt

List of variables observed related to the geometric property of bar and its placement

are as follows:

1. Splice length in. ls

2. Diameter of the longitudinal bar in. db

3. Relative rib area. Rr

4. Number of spliced or developed bars. Nb

5. Nominal stirrup diameter in. dtr

6. Number of stirrups along splice or development length. Ns

7. Number of legs per stirrup. Nl

8. Bar area sq.in. Ab

9. Area of one leg of a stirrup. At

List of variables observed related to the placement of the bar are as follows:

1. Side cover for reinforcement in. cso

2. One-half clear spacing between bars in. csi

3. Bottom cover in. cb

List of variables observed related to the geometric property concrete are as follows:

1. Breadth of concrete element in. b

2. Height of concrete element in. h

3. Depth of concrete element in. d

The aim of the research is to develop an expression for the bond stress at tension

splice. Many experiments have been conducted in order to ascertain the relationship
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between appropriate variables and develop an expression to evaluate the bar stress. The

scope of this research is to use the experimental data already recorded to establish a

relation and develop an expression.

An expression should preferably be simple and easy to calculate. At the same time,

it should also have accurate answers without compromising on the quality and quantity

of the value evaluated. It is best to observe and record all possible parameters in an

experimental research. However, it is not possible to include all those parameters in the

expression. Hence there should be a way to assess what variables or parameters would

find a place in the expression.[1]

2.5 Scatter Plots

Scatter plots are two dimensional graph. It involves two variables.

• Explanatory variable or Independent variable

• Response variable or Dependent variable

Generally, explanatory variable is plotted on the X-axis and the response variable

on Y-axis. Scatter plots are used if very large amount of data are to be plotted for

analysis.For scatter plots, it is general procedure to standardize the X and Y axis with

respect to the mean value of the particular variable. This allows for better analysis and

comparison than using a standard X and Y axis.

Scatter plots provides information about the following:

• strength

• shape

• direction

• presence of outliers

This graph will have clusters of data points along the line explaining the correlation

between the variables.
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2.5.1 Cause and Effect

It should be noted that scatter plot need not necessarily signify a direct relation-

ship between the two variables involved. Indirect relationship through a third uninvolved

variable would also produce a scatter plot falsely signifying a relationship between the in-

volved variables. The term involved variables would include the explanatory and response

variables only.

2.5.2 Purpose

The purpose of the scatter plot is to determine if any relationship between the

variables is possible. The scatter plotting is usually performed even before data analysis

is considered or before testing the regression fitting model.



CHAPTER 3

PRELIMINARY ANALYSIS

3.1 ANOVA

Analysis of variance (ANOVA) is used to test hypotheses about differences between

two or more means. The t-test based on the standard error of the difference between two

means can only be used to test differences between two means. When there are more

than two means, it is possible to compare each mean with each other mean using t-tests.

However, conducting multiple t-tests can lead to severe inflation of the Type I error rate.

3.1.1 Type I and Type II Errors

There are two kinds of errors that can be made in significance testing: (1) a true

null hypothesis can be incorrectly rejected and (2) a false null hypothesis can fail to be

rejected. The former error is called a Type I error and the latter error is called a Type

II error. The probability of a Type I error is designated by the Greek letter alpha and is

called the Type I error rate; the probability of a Type II error (the Type II error rate) is

designated by the Greek letter beta.

A Type II error is only an error in the sense that an opportunity to reject the null

hypothesis correctly was lost. It is not an error in the sense that an incorrect conclusion

was drawn since no conclusion is drawn when the null hypothesis is not rejected. [18]

3.1.2 Sample Size

If the sample size is the same for all of the treatment groups, then the letter ’n’

(without a subscript) is used to indicate the number of subjects in each group. The total

12
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number of subjects across all groups is indicated by ’N.’ If the sample sizes are equal

then N = (a)(n); otherwise, N = n1 + n2 + ... + na.

3.1.3 Assumptions

Analysis of variance assumes normal distributions and homogeneity of variance.

Therefore, in a one-factor ANOVA, it is assumed that each of the populations is normally

distributed with the same variance σ2.

In between-subjects analyses, it is assumed that each score is sampled randomly

and independently.

3.2 Statistical Significance

In the process of developing relationship, there always exists a chance that the

relationship between the two said variables is by chance. Hence for all practical consid-

erations, no such relationship exists between the two variables.

In order to determine such false relationship, stastical significance of the result is

to be considered. This gives something about the truth of the relationship.

The p-value represents the reliability of a result in a decreasing order. The lower

the p-value, the more we can believe that the observed relation between the variable in

the sample is a reliable indicator of the relation between the respective variables in the

population.

In other words, the probability of error involved in accepting our observed result

as valid is represented by the p-value.

For example, a p-value of .05 (i.e.,1/20) indicates that there is a 5 percent proba-

bility that the relation between the variables found in our sample is a ’fluke.’ In other

words, assuming that in the population there was no relation between those variables

whatsoever, and we were repeating experiments like ours one after another, we could
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expect that approximately in every 20 replications of the experiment there would be one

in which the relation between the variables in question would be equal or stronger than

in ours.

There is no way to avoid arbitrariness in the final decision as to what level of

significance will be treated as really ’significant.’ That is, the selection of some level of

significance, up to which the results will be rejected as invalid, is arbitrary. In practice,

the final decision usually depends on whether the outcome was predicted a priori or only

found post hoc in the course of many analyses and comparisons performed on the data

set, on the total amount of consistent supportive evidence in the entire data set, and

on ’traditions’ existing in the particular area of research. Typically, in many sciences,

results that yield

p ≤ .05 (3.1)

are considered borderline statistically significant but remember that this level of signifi-

cance still involves a pretty high probability of error (5 %). Results that are significant

at the

p ≤ .01 (3.2)

level are commonly considered statistically significant, and

p ≤ .005 (3.3)

or

p ≤ .001 (3.4)

levels are often called ’highly’ significant. But remember that those classifications

represent nothing else but arbitrary conventions that are only informally based on general

research experience.
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The number of analyses being performed would make the relations meet the ex-

pected significance level. For example, calculation of correlations of ten variables would

yield about two correlation coefficient at

p ≤ 0.05 (3.5)

though the values of the variables donot follow any significant pattern or otherwise com-

pletely random and not in harmony with the distribution of other variables.

There is no said method to find the significance level without any error and establish

the importance of the variable in the analyses to be conducted. There is always a chance

of an error occuring in these unexpected findings.

3.3 Analysis of data with transverse reinforcement

3.3.1 Sigma test values Bottom Bar

The variable U denotes the bond stress of the tension splice.[1] The description of

the variables are given in section 2.4

Inorder to find variables eligible for the expression, the sigma 1-tailed test values

are to be analyzed first. The value 0.05 represents an error percentage of 5. Hence, lower

the value, better it will serve by its purpose in the equation.

In this way, the qualifying variables are

Secondly, another short list would be made with variables exhibiting higher corre-

lation values.

The variables are

ls

dtr

Ns
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Table 3.1. Sig-value and correlation-bottom bar

parameter pearson r sigma 1-t
U 1.000 -
ls 0.477 0.000
db -0.191 0.067
b 0.101 0.216
h 0.139 0.139
d 0.311 0.007
cso -0.181 0.078
csi -0.036 0.390
cb 0.007 0.477
Nb 0.278 0.014
dtr 0.426 0.000
Ns 0.518 0.000
Nl - 0.000
Ab -0.191 0.067
At 0.419 0.000
fy 0.314 0.006
fyt -0.117 0.181
Rr 0.382 0.001

At

If the correlation value

r ≥ 0.4 (3.6)

then, they are said to have ’significant’ correlation.

r ≤ 0.4 (3.7)

signifies weak correlation and

r ≤ 0.2 (3.8)

signifies very weak or nil correlation.
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Comparing the two short lists, the variable

Ni

is dropped as it exhibited very random distribution in scatter plot.

Since

At ⊂ dtr, dtr

being a more independent and easily measurable variable, the variable

dtr

would be preferred in the expression.

Hence, the variables

ls

dtr

Ns

are the three variables to be considered.

Also, since, all these variables are nominal variables and are measurable in the field

directly, this would make the equation not desk bound.

The value of

f
′

c

is not considered since the value of the stress is normalized with respect to

√
f ′

c.

From structural point of view,

ls

ld
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Table 3.2. Sig-value and correlation-top bar

parameter pearson r sigma 1-t
U 1.000 -
ls 0.775 0.000
dtr 0.791 0.000
Ns -0.245 0.050

Table 3.3. Sig-value and correlation-side bar

parameter pearson r sigma 1-t
U 1.000 -
ls 0.775 0.000
dtr 0.791 0.000
Ns -0.245 0.050

is a function of

fy

db

which will reiterate the fact that

fy

db

are indirectly affecting the said expression.

The correlation and significance test values for top and side bars are tabulated

below:

3.4 Data Screening

3.4.1 Multivariate normality

The estimation method assumes that all the univariate distributions are normal, the

joint distribution of any pair of the variables is bivariate normal and all bivariate scatter
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Table 3.4. Sig-value and correlation-top bar without transverse reinforcement

parameter pearson r sigma 1-t
U 1.000 -
db -0.388 0.001
Nb -0.648 0.000
fy 0.788 0.050

Table 3.5. Sig-value and correlation-side bar without transverse reinforcement

parameter pearson r sigma 1-t
U 1.000 -
db -0.053 0.386
Nb -0.108 0.277
fy 0.117 0.262

plots are linear and homoscedastic. Since it is often impractical to examine all joint

frequency distributions, it can be difficult to asses all aspects of multivariate normality.

Most of the data used in the analysis are found to be univariate.

3.4.2 Transformations

One way to deal with univariate nonnormality is with transformations. It is a

process of converting with a mathematical operation to new ones that may be more

normally distributed. Since transformations alter the shape of the distribution, they can

also be useful for dealing with outliers (values scattered off the expected curve of interest).

Since transformations would involve the use of polynomial or trigonometric usage, and

make the equation less than simple, it is not used. The effects that transformations

produce are effected upon at the end by obtaining the range and optimizing the predictor

coefficients to achieve coefficients with 95 % confidence interval.
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3.4.3 Outliers

The individual scatter plots of mean and standard deviations are used to identify

the outliers and eliminate them before analysis.

3.4.4 Multicollinearity

Another cause of singular covariance matrices is multicollinearity which occurs

when intercorrelations among some variables are so high that certain mathematical oper-

ations are either impossible or unstable because some denominators are close to 0. For the

aforementioned reason, the variables chosen as independent variables or predictors have

average correlation between themselves and also the dependent or criterion variable.[1]



CHAPTER 4

REGRESSION ANALYSIS AND RESULTS

4.1 Multiple Regression

The general purpose of multiple regression is to analyze the relationship between

several independent or predictor variables and a dependent or criterion variable.

The computational problem that needs to be solved in multiple regression analysis

is to fit a straight line (or plane in an n-dimensional space, where n is the number of

independent variables) to a number of points. In the simplest case – one dependent and

one independent variable – one can visualize this in a scatterplot (scatterplots are two-

dimensional plots of the scores on a pair of variables). It is used as either a hypothesis

testing or exploratory method.

4.1.1 General form

A one dimensional surface in a two dimensional or two-variable space is a line

defined by the equation

Y = b0 + b1 ∗X (4.1)

According to this equation, the Y variable can be expressed in terms of or as a

function of a constant and a slope times the X variable. The constant is also referred to

as the intercept, and the slope as the regression coefficient.

In general then, multiple regression procedures will estimate a linear equation of

the form:

Y = b0 + b1X1 + b2X2 + ... + bkXk

21
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where k is the number of predictors. Note that in this equation, the regression

coefficients or

b1

.....

bk

coefficients represent the independent contributions of each in dependent variable to the

prediction of the dependent variable. Another way to express this fact is to say that,

for example, variable X1 is correlated with the Y variable, after controlling for all other

independent variables. This type of correlation is also referred to as a partial correlation

The regression surface(a line in simple regression, a plane or higher-dimensional

surface in multiple regression) expresses the best prediction of the dependent variable

(Y), given the independent variables (X’s). The deviation of a particular point from the

nearest corresponding point on the predicted regression surface (its predicted value) is

called the residual value. Since the goal of linear regression procedures is to fit a surface,

which is a linear function of the X variables, as closely as possible to the observed Y

variable, the residual values for the observed points can be used to devise a criterion for

the ’best fit.’ Specifically, in regression problems the surface is computed for which the

sum of the squared deviations of the observed points from that surface are minimized.

Thus, this general procedure is sometimes also referred to as least squares estimation.

The actual computations involved in solving regression problems can be expressed

compactly and conveniently using matrix notation. Suppose that there are n observed

values of Y and n associated observed values for each of k different X variables. Then

Yi

Xik



23

ei

can represent the ith observation of the Y variable, the ith observation of each of the

X variables, and the ith unknown residual value, respectively. The multiple regression

model in matrix notation then can be expressed as

Y = X*b + e

where b is a column vector of 1 (for the intercept) + k unknown regression coeffi-

cients. Recall that the goal of multiple regression is to minimize the sum of the squared

residuals. Regression coefficients that satisfy this criterion are found by solving the set

of normal equations

X’Xb = X’Y

When the X variables are linearly independent (i.e., they are nonredundant, yield-

ing an X’X matrix which is of full rank) there is a unique solution to the normal equations.

Premultiplying both sides of the matrix formula for the normal equations by the inverse

of X’X gives

(X’X)−1X ′Xb = (X ′X)−1X ′Y

or

b = (X’X)−1 ∗X ′Y

This last result is very satisfying in view of its simplicity and its generality. With

regard to its simplicity, it expresses the solution for the regression equation in terms just

2 matrices (X and Y) and 3 basic matrix operations, (1) matrix transposition, which

involves interchanging the elements in the rows and columns of a matrix, (2) matrix

multiplication, which involves finding the sum of the products of the elements for each

row and column combination of two conformable (i.e., multipliable) matrices, and (3)

matrix inversion, which involves finding the matrix equivalent of a numeric reciprocal,

that is, the matrix that satisfies

A−1AA = A
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for a matrix A.

With regard to the generality of the multiple regression model, its only notable

limitations are that (1) it can be used to analyze only a single dependent variable, (2)

it cannot provide a solution for the regression coefficients when the X variables are not

linearly independent and the inverse of X’X therefore does not exist. These restrictions,

however, can be overcome, and in doing so the multiple regression model is transformed

into the general linear model.

4.1.2 Extension of Linear Model

One way in which the general linear model differs from the multiple regression model

is in terms of the number of dependent variables that can be analyzed. The Y vector

of n observations of a single Y variable can be replaced by a Y matrix of n observations

of m different Y variables. Similarly, the b vector of regression coefficients for a single

Y variable can be replaced by a ’b’ matrix of regression coefficients, with one vector

of b coefficients for each of the m dependent variables. These substitutions yield the

multivariate regression model, but it should be emphasized that the matrix formulations

of the multiple and multivariate regression models are identical, except for the number

of columns in the Y and b matrices. The method for solving for the b coefficients is also

identical, that is, m different sets of regression coefficients are separately found for the

m different dependent variables in the multivariate regression model.

The general linear model goes a step beyond the multivariate regression model by

allowing for linear transformations or linear combinations of multiple dependent variables.

This extension gives the general linear model important advantages over the multiple and

the so-called multivariate regression models, both of which are inherently univariate (sin-

gle dependent variable) methods. One advantage is that multivariate tests of significance

can be employed when responses on multiple dependent variables are correlated. Separate
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univariate tests of significance for correlated dependent variables are not independent and

may not be appropriate. Multivariate tests of significance of independent linear combi-

nations of multiple dependent variables also can give insight into which dimensions of the

response variables are, and are not, related to the predictor variables. Another advantage

is the ability to analyze effects of repeated measure factors. Repeated measure designs,

or within-subject designs, have traditionally been analyzed using ANOVA techniques.

Linear combinations of responses reflecting a repeated measure effect (for example, the

difference of responses on a measure under differing conditions) can be constructed and

tested for significance using either the univariate or multivariate approach to analyzing

repeated measures in the general linear model.

A second important way in which the general linear model differs from the multiple

regression model is in its ability to provide a solution for the normal equations when the X

variables are not linearly independent and the inverse of X’X does not exist. Redundancy

of the X variables may be incidental (e.g., two predictor variables might happen to be

perfectly correlated in a small data set), accidental (e.g., two copies of the same variable

might unintentionally be used in an analysis) or designed. Finding the regular inverse

of a non-full-rank matrix is reminiscent of the problem of finding the reciprocal of 0 in

ordinary arithmetic. No such inverse or reciprocal exists because division by 0 is not

permitted. This problem is solved in the general linear model by using a generalized

inverse of the X’X matrix in solving the normal equations. A generalized inverse is any

matrix that satisfies

AA−1A = A

for a matrix A.

A generalized inverse is unique and is the same as the regular inverse only if the

matrix A is full rank. A generalized inverse for a non-full-rank matrix can be computed
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by the simple expedient of zeroing the elements in redundant rows and columns of the

matrix. Suppose that an X’X matrix with r non-redundant columns is partitioned as

X
′
X =

A11 A12

A21 A22

where Aij (i=j=1) is an r by r matrix of rank r. Then the regular inverse of A11

exists and a generalized inverse of X’X is

(X
′
X)−1 =

(A11)
−1 012

021 022

where each 0 (null) matrix is a matrix of 0’s (zeroes) and has the same dimensions

as the corresponding A matrix.

In practice, however, a particular generalized inverse of X’X for finding a solution

to the normal equations is usually computed using the sweep operator. This generalized

inverse, called a g2 inverse, has two important properties. One is that zeroing of the

elements in redundant rows is unnecessary. Another is that partitioning or reordering of

the columns of X’X is unnecessary, so that the matrix can be inverted ’in place.’

There are infinitely many generalized inverses of a non-full-rank X’X matrix, and

thus, infinitely many solutions to the normal equations. This can make it difficult to

understand the nature of the relationships of the predictor variables to responses on the

dependent variables, because the regression coefficients can change depending on the

particular generalized inverse chosen for solving the normal equations. [18]

4.1.3 Unstandardized Variable

In order to compare the measure of the variables and to find relational values be-

tween them, the measures of the variables in its same scale should not be used. The

measures of the variables as obtained from different experiments are referred to as un-

standardized variables. For any analyses, they have to have a similar distribution and
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Table 4.1. Unstandardized Coefficients bottom bar

parameter B Value UnStd Coeff. Std Coeff β
ls 0.604 0.172 0.368
dtr 35.483 12.314 0.306
Ns 1.773 0.753 .267

constant 13.925 6.019 -

should be standardized. In other words, instead of the variables having a unit appropriate

from the experiments or observations, it should have statistical units.

4.1.4 Standardized Variable

A standardized variable is a variable that has been transformed so that its mean

is 0 and its standard deviation is 1.0. The standard way to standardize a variable is to

convert its raw scores to z scores or otherwise called normal deviates. A raw variable,

as it is called before being standardization, say X, is converted to a normal deviate with

the formula

z =
X −M

SD
(4.2)

Where X = experimental statistical values M = sample mean SD = standard de-

viation

Statistical results computed with standardized variables are called standardized es-

timates. They are interpreted in the same way for all variables. Unstandardized estimates

are derived with variables with its raw data obtained without treating it or processing it

with the statistical parameters. The standardized coefficients are evaluated with lower

bound and upper bound values for 95 percent confidence interval.

The table values gives the coefficients for the equation with 95% confidence interval.
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Table 4.2. Unstandardized Coefficients top bar

parameter B Value UnStd Coeff. Std Coeff β
ls 0.533 0.274 0.274
dtr 27.591 16.032 0.182
Ns 1.072 0.428 0.428

constant 13.928 - -

Table 4.3. Unstandardized Coefficients side bar

parameter B Value UnStd Coeff. Std Coeff β
ls 0.388 0.156 0.646
dtr 34.846 29.208 0.269
Ns -0.017 0.455 -0.010

constant 35.743 12.025 -

Table 4.4. Bound Values Coeff bottombar

parameter lowerbound upperbound
ls 0.260 0.947
dtr 10.843 60.123
Ns 0.266 3.280

constant 1.881 25.968

Table 4.5. Bound Values Coeff top bar

parameter lowerbound upperbound
ls -0.022 1.087
dtr -4.864 60.046
Ns 0.206 1.938

constant -2.424 30.280

Table 4.6. Bound Values Coeff side bar

parameter lowerbound upperbound
ls -0.022 1.087
dtr -4.864 60.046
Ns 0.206 1.938

constant -2.424 30.280



CHAPTER 5

OPTIMIZATION OF STATISTICAL VALUES

5.1 Post Processing

Once the upper bound and lower bound values of the B coefficients of the multiple

regression are tabulated, the optimization of the variables should be carried out. The

optimization is a process wherein the coefficients are obtained that the equation satisfies

the statistical data to a maxima i.e., the equation provides value close to the data sets.

5.1.1 Least Squares Optimization

In this variant process, the boundary values (upper bound and lower bound) are

divided into equally spaced regions. The equation is then substituted for these values

of each variable in each regions till the data set values are checked for error. The error

is then squared and summed up and identified for each region. Once all the regions are

run through the data set, the squared error list is picked for a least value. The region

associated with the least squared value would be the optimized values for the coefficients.

5.1.2 Discretization

Once the equations with optimized coefficients are obtained, the process of dis-

cretization begin. This is because of the nature of the data set. If the optimized equation

is expected to represent the whole dataset without any further modification, then, all the

variables have to be considered in order to ascertain the proportional contribution of each

and every one of them. And also, the nature of the equation would also be considerably

changed and will probably an exponential or a polynomial of third degree or higher. To

29
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avoid such lengthy equations and also to provide a simplified set of equations, linear

nature is assumed over a discrete set of data.

Here, the discreteness of the data over a parameter is to be established. Since the

parameter is unknown, it is required to establish the parameter first before proceeding

to discretize the equation.[1]

The difference in the equation produced values and the experimental values are

listed and percentage of variance calculated. The variance in the list is then categorized

according to the significant intervals. The dataset corresponding to the significant interval

are identified. For the variables involved in the analysis, a correlation test is performed

for each and every variable with the error %. This test identifies the parameter over

which the equation is to be discretized.[5, 23]

Once the parameter is established, re-optimization of the coefficients takes place

in order to re-minimize the squared error. Thus, different sets of equations over discrete

intervals are obtained.

5.2 Equation Summary

The equations obtained for discrete intervals are given below. The value of U in ksi.

is normalized to the square root of the characteristic compressive strength of concrete.

5.2.1 Bottom Bar with Transverse Reinforcement

U√
f ′

c

= 0.2 ∗ ls + 2 ∗ dtr + 0.5 ∗Ns + 20 (5.1)

for f
′
c ≤ 8ksi.[20, 22, 16, 21, 1]

U√
f ′

c

= 0.071 ∗ ls + 5 ∗ dtr + 0.5 ∗Ns + 22 (5.2)
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for f
′
c > 8ksi.[20, 1, 22, 16, 21]

5.2.2 Top Bar with Transverse Reinforcement

U√
f ′

c

= 0.2 ∗ ls + 2 ∗ dtr + 0.5 ∗Ns + 10 (5.3)

[25, 17, 1, 14]

5.2.3 Side Bar with Transverse Reinforcement

U√
f ′

c

= 0.2 ∗ ls + 16 ∗ dtr + 0.1 ∗Ns + 15 (5.4)

[1, 12, 11, 13]

5.2.4 Bottom Bar without Transverse Reinforcement

U√
f ′

c

= 0.5 ∗ db + 1.0 ∗Nb + 0.5 ∗ fy + 3 (5.5)

for f
′
c ≤ 8ksi.[9, 1]

U√
f ′

c

= −10 ∗ db − 3 ∗Nb + 0.5 ∗ fy + 3 (5.6)

for f
′
c > 8ksi.[1, 7, 6, 3]

5.2.5 Top Bar without Transverse Reinforcement

U√
f ′

c

= 0.5 ∗ db + 1.0 ∗Nb + 0.5 ∗ fy + 3 (5.7)

[24, 1, 7, 20, 2]



32

5.2.6 Side Bar without Transverse Reinforcement

U√
f ′

c

= −2.2 ∗ db + 1.2 ∗Nb − 0.4 ∗ fy + 55 (5.8)

[12, 11, 1]

The bottom bar has two equations whereas the top and side bars have only one

equation. This is because single equation for bottom bar showed much deviation from

expected values. When two equations are used, accuracy of the values generated im-

proved. The values of diameter of bar should be used in the equation such that if you are

using no. 8 bar, then input 8 into the equation for diameter of the bar-both longitudinal

as well as transverse bar.



CHAPTER 6

ACCURACY OF EQUATIONS

6.1 Accuracy of Model

In this chapter, the error associated with the obtained expression and the equations

in use are studied. Since a large database was involved in this analytical process, it would

be convenient to represent the error associated in the form of table with sub-sample set

selected at random from the complete sample set.

In these tables, u1 represents the bond stress calculated and tabulated along with

the data using ACI 318 and procedures currently in use and u2 represents the bond stress

calculated using the newly developed expression.

The last column, error quotient

eq = u1/u2 (6.1)

was calculated in order to give an idea as to how the newly developed expression

gives values relevant to the calculated values. The closer the ratio is to 1.0, the closer

the equation predicts the data value.

For bottom bar, there are four tables viz with transverse reinforcement and for con-

crete compressive strength less than or equal to 8 ksi. [20, 22, 16, 21, 1], with transverse

reinforcement and for concrete compressive strength greater than 8 ksi.[20, 1, 22, 16, 21],

without transverse reinforcement and for concrete compressive strength less than or equal

to 8 ksi. [9, 1] and without transverse reinforcement and for concrete compressive strength

greater than 8 ksi.[1, 7, 6, 3].
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Table 6.1. Bottom Bar Without Transverse ReinforcementL8

ls db Nb f
′
c fy u1 u2 eq

42.00 1.00 2 2660 63.50 40.42 37.25 1.08
50.75 1.41 2 2730 89.00 47.42 50.20 0.95
66.00 1.41 2 3140 73.00 42.07 42.21 0.99
82.50 1.41 2 3460 93.00 47.20 52.21 0.91
57.75 1.41 2 3530 65.00 33.86 38.20 0.89
39.00 1.00 2 3650 63.50 38.16 37.25 1.02
80.00 1.00 2 3740 99.00 49.85 55.00 0.91
42.00 1.00 2 3830 63.50 37.58 37.25 1.01
82.50 1.41 2 4090 65.00 38.58 38.21 1.01

Table 6.2. Bottom Bar With Transverse ReinforcementL8

ls db dtr Ns f
′
c fy fyt u1 u2 eq

14.96 0.75 0.37 02 3072 64.10 59.29 24.81 24.70 1.00
16.00 1.00 0.38 02 3820 81.00 64.55 24.99 24.91 1.00
18.00 1.00 0.50 05 4160 60.00 84.70 27.37 27.05 1.01
24.00 1.00 0.38 07 4190 75.00 69.92 28.76 29.01 0.99
36.00 1.00 0.38 03 4200 60.00 64.55 29.26 29.41 0.99
24.00 1.00 0.38 02 4230 79.00 64.55 26.86 26.51 1.01
21.77 0.99 0.31 07 4349 65.54 62.08 28.57 28.45 1.00
40.00 1.41 0.38 06 4700 81.00 64.55 31.98 31.71 1.01
18.70 0.99 0.31 13 5219 65.54 62.08 31.10 30.83 1.01
40.00 1.41 0.38 10 5250 81.00 64.55 33.58 33.71 1.00

Table 6.3. Bottom Bar Without Transverse ReinforcementG8

ls db Nb f
′
c fy u1 u2 eq

12.01 0.98 2 09514 61.79 17.38 18.05 0.96
45.00 1.41 3 10900 70.80 14.78 15.30 0.97
28.00 1.41 2 14400 66.69 16.18 16.25 0.99
36.00 1.41 2 14450 71.45 18.60 18.62 0.99
28.00 1.41 2 15034 71.45 18.03 18.60 0.96
45.00 1.41 2 15513 70.80 17.65 18.30 0.96
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Table 6.4. Bottom Bar With Transverse ReinforcementG8

ls db dtr Ns f
′
c fy fyt u1 u2 eq

17.50 1.00 0.50 5 8370 80.57 64.92 27.20 28.16 0.97
14.96 0.75 0.37 4 8832 76.87 59.29 24.56 26.86 0.91
22.44 0.75 0.37 3 8832 95.14 59.29 30.82 26.86 1.15
14.96 0.75 0.37 2 8931 102.68 59.29 27.97 25.79 1.08
21.00 1.00 0.38 4 9080 80.57 71.25 26.39 27.31 0.97
22.44 0.75 0.25 7 9216 122.23 199.12 28.12 28.48 0.99
20.00 1.00 0.38 5 10620 77.96 71.25 25.58 27.78 0.92

Table 6.5. Top Bar Without Transverse Reinforcement

ls db Nb f
′
c fy u1 u2 eq

21.00 0.88 1 2380 87.50 42.98 46.18 0.93
35.00 0.88 1 2810 87.50 48.62 46.19 1.05
28.00 0.88 1 3340 87.50 50.01 46.19 1.08
35.00 0.88 1 3360 87.50 42.33 46.18 0.91
21.00 0.88 1 3720 87.50 44.80 46.18 0.97
18.00 0.75 3 3740 68.20 33.90 34.47 0.98
28.00 0.88 1 3780 87.50 44.44 46.19 0.96
16.50 0.63 3 4490 62.98 30.19 31.80 0.94

Table 6.6. Side Bar Without Transverse Reinforcement

ls db Nb f
′
c fy u1 u2 eq

47.00 1.00 2 2775 70.00 30.62 28.40 1.07
98.00 2.26 2 2860 61.30 31.43 29.37 1.07
44.00 1.41 2 3060 65.00 31.44 29.58 1.06
45.00 1.41 3 3120 71.70 30.17 28.10 1.07
57.50 1.41 2 3250 65.00 31.06 29.58 1.05
36.00 1.41 1 3280 67.50 29.88 27.38 1.09
50.00 1.41 2 3550 65.00 31.58 29.58 1.06
57.50 1.41 2 3720 65.00 30.85 29.58 1.04
85.00 1.41 2 3900 65.00 30.64 29.58 1.03
32.00 1.00 2 3920 70.00 29.80 28.40 1.04
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Table 6.7. Top Bar With Transverse Reinforcement

ls db dtr Ns f
′
c fy fyt u1 u2 eq

33.80 1.41 0.25 17 2960 89.00 - 26.74 25.74 1.04
50.75 1.41 0.25 30 3430 89.00 - 34.99 35.63 0.98
22.00 1.41 0.38 4 3700 60.10 60.30 17.94 17.11 1.05
16.00 1.00 0.63 2 5100 69.00 - 16.81 15.39 1.09
18.00 1.13 0.38 3 8610 70.35 78.58 16.48 15.81 1.04

Table 6.8. Side Bar With Transverse Reinforcement

ls db dtr Ns f
′
c fy fyt u1 u2 eq

60.00 2.26 0.38 13 2620 52.60 56.60 33.58 34.30 0.97
30.00 1.69 0.25 13 3200 50.00 62.00 28.73 26.33 1.09
42.30 1.41 0.38 8 3200 70.00 56.50 33.65 30.26 1.11
60.00 2.26 0.38 10 3220 62.20 60.00 35.57 34.00 1.04
42.30 1.41 0.38 8 3340 65.00 56.50 34.86 30.26 1.15
54.00 1.69 0.25 19 3345 59.50 51.00 33.83 31.73 1.06
48.00 2.26 0.38 16 3400 59.40 60.00 33.05 32.20 1.02
57.50 1.41 0.25 8 3610 65.00 49.00 34.21 31.33 1.09
60.00 2.26 0.50 20 3940 66.00 50.50 33.97 37.00 0.91

For top bars, two tables are given - with transverse reinforcement [25, 17, 1, 14]

and with out transverse reinforcement [24, 1, 7, 20, 2].

Similarly for side bars, two tables - with transverse reinforcement [1, 12, 11, 13]

and without transverse reinforcement [12, 11, 1] are given.

6.2 Comparison with ACI equation

The model is compared with the ACI 318-R02 equation for development length.

The ACI equation is given below:

fy√
f ′

c

=
40

3
∗

c+Ktr

db

αβγλ
∗ ld

db

(6.2)
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The following two equations are used for comparison with transverse bar and with-

out transverse bar respectively.

U√
f ′

c

= 0.2 ∗ ls + 2 ∗ dtr + 0.5 ∗Ns + 20 (6.3)

for f
′
c ≤ 8ksi.

U√
f ′

c

= 0.5 ∗ db + 1.0 ∗Nb + 0.5 ∗ fy + 3 (6.4)

for f
′
c ≤ 8ksi.

The graphs for comparison with ACI equations show that the developed equations

in this project gives values well below the ACI predicted values combining a safety factor

in it. In other words, the new equations give a safe lower bound values. The bottom bar

data are considered for both with and without transverse reinforcement categories.

Figure 6.1. Comparison with ACI Equation - with Transverse Reinforcement.
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Figure 6.2. Comparison with ACI Equation - without Transverse Reinforcement.



CHAPTER 7

CONCLUSION AND FUTURE WORKS

7.1 Conclusion

In this research, we have studied the linear approach to develop expressions for the

bond stress in a tension lap splice in reinforced concrete. The importance of bond the

reason for choosing linear model were studied. It was shown that bond stress plays an

important role due to its link with the development length which is being used now.

The different data types were studied. The experimental data were identified for

their data types. The relationship between types of variables and their significance were

assessed. Scatter plot and its importance in selection of eligible variables were explained.

The data were reviewed and categorized. Preliminary analysis was performed to

assess the statistical significance of the data. Type I and Type II errors were identified

and appropriate methods applied to eliminate them before the statistical test. Regression

values and correlation values between the variables were evaluated and their relationships

are determined.

The method of linear modelling was seen in detail. Multiple regression and its

terminilogy were studied and the same applied to the statistically treated dataset. The

variables were again categorized into standardized and unstandardized variables before

forming the linear regression model.

The processed dataset and model were then refined for accuracy using procedures

such as least squares method, discretization etc. The summary of the equations developed

were given. The accuracy of the equations were shown by comparing the values obained

to the values evaluated using existing code. The scatter plots and the probability plots
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were also given to graphically explain the nature and behavior of the variables involved

in the research.

7.2 Future Work

The data that were used, though sufficient to generate a linear model, were less

in number. The research involved dividing the data into two groups viz with concrete

strength less than 8000psi and with concrete strength greater than 8000 psi. More ex-

perimental data would have permitted more detailed analysis by higher divisions. The

accuracy of the equations could be made as high as 99.9%.

The data when categorized implicitly exhibits a pattern that can be programmed.

For each of the variable involved, a existing behavior pattern can be established and

their regression analyzed in terms of its behavior rather than its quantity. Once the

behavior is established, its correlation with other variables would establish the boundary

conditions of the expected variable’s domain. In that way, no outliers exist and even the

odd behavior of the variable is present in the analysis thus contributing completely to

the correct behavior model. The output model can be expected to be linear without any

constraints in the input data it supports.
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PROBABILITY AND SCATTER PLOTS
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Figure A.1. Partial Reg. Plot U Vs ls bottom bar with transverse bars.

Figure A.20. Partial Reg. Plot U vs Nb Top Bar, no T/Bars.

Figure A.22. Partial Reg. Plot U vs db Side Bar, no T/Bars.

Figure A.24. Partial Reg. Plot U vs fy Side Bar, no T/Bar.

Data obtained from references [20, 22, 16, 21, 1, 20, 1, 22, 16, 21] are used for plots

for all variables regarding bottom bar with transverse reinforcement.Data obtained from

references [9, 1, 7, 6, 3] are used for plots for all variables regarding bottom bar with

transverse reinforcement.

Data obtained from references [25, 17, 1, 14] are used for plots for all variables

regarding top bar with transverse reinforcement. Data obtained from references [24, 1, 7,

20, 2] are used for plots for all variables regarding top bar with transverse reinforcement.

Data obtained from references [1, 12, 11, 13] are used for plots for all variables

regarding side bar with transverse reinforcement. Data obtained from references [12, 11,

1] are used for plots for all variables regarding side bar with transverse reinforcement.

In all the plots, the dependent variable U is plotted in Y axis against the indepen-

dent or primary parameters on the X axis. In scatter plots, the X axis and Y axis values

are different than the normal X and Y axis values. The values on the X axis are generally
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Figure A.2. Partial Reg. Plot U Vs dtr bottom bar with transverse bars.

normalized with respect to the mean value of the range of the variable. This offers for

better understanding from statistical view point instead of normal X and Y axis starting

with 0.
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Figure A.3. Partial Reg. Plot U Vs Ns bottom bar with transverse bars.

Figure A.4. Partial Reg. Plot U Vs ls bottom bar with transverse bars.
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Figure A.5. Partial Reg. Plot U Vs dtr bottom bar with transverse bars.

Figure A.6. Partial Reg. Plot U Vs Ns bottom bar with transverse bars.
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Figure A.7. Partial Reg. Plot U vs Ls top bar with transverse bars.

Figure A.8. Partial Reg. Plot U vs dtr top bar with transverse bars.
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Figure A.9. Partial Reg. Plot U vs ns top bar with transverse bars.

Figure A.10. Partial Reg. Plot U vs Ls side bar with transverse bars.
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Figure A.11. Partial Reg. Plot U vs dtr side bar with transverse bars.

Figure A.12. Partial Reg. Plot U vs ns side bar with transverse bars.
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Figure A.13. Partial Reg. Plot U Vs db Bottom Bar, no T/Bars.

Figure A.14. Partial Reg. Plot U Vs Nb Bottom Bar, no T/Bars.
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Figure A.15. Partial Reg. Plot U Vs fy Bottom Bar, no T/Bars.

Figure A.16. Partial Reg. Plot U Vs db Bottom Bar, no T/Bars.
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Figure A.17. Partial Reg. Plot U Vs Nb Bottom Bar, no T/Bars.

Figure A.18. Partial Reg. Plot U Vs fy Bottom Bar, no T/Bars.
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Figure B.1. Normal Residual Bottom Bar with Transverse Reinforcements.
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Figure B.2. Normal Residual probability Bottom Bar with Transverse Reinforcements.

Figure B.3. Normal Residual Bottom Bar with Transverse Reinforcements.
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Figure B.4. Normal probability Bottom Bar with Transverse Reinforcements.

Figure B.5. Normal Residual Top bar with Transverse Reinforcements.
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Figure B.6. Normal probability with Transverse Reinforcements.

Figure B.7. Normal Residual side bar with Transverse Reinforcements.



57

Figure B.8. Normal probability side bar with Transverse Reinforcements.

Figure B.9. Normal Residual Bottom Bar without Transverse Reinforcements.
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Figure B.10. Normal Residual probability Bottom Bar without Transverse Reinforce-
ments.

Figure B.11. Normal Residual Bottom Bar without Transverse Reinforcements.



59

Figure B.12. Normal probability Bottom Bar without Transverse Reinforcements.

Figure B.13. Normal Residual Top bar without Transverse Reinforcements.
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Figure B.14. Normal probability Top bar without Transverse Reinforcements.

Figure B.15. Normal Residual Side bar without Transverse Reinforcements.



61

Figure B.16. Normal probability Side bar without Transverse Reinforcements.
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