

DECISION AND CONTROL IN DISTRIBUTED COOPERATIVE SYSTEMS

by

PRASANNA MOHAN BALLAL

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2008

Copyright © by Prasanna Mohan Ballal, 2008

All Rights Reserved

 iii

ACKNOWLEDGEMENTS

In the past three years as a PhD candidate, there have been many people who

have helped me choose the right direction and made this dissertation possible. This

dissertation is dedicated to them.

I would like to begin by thanking Dr. Frank Lewis for his direction, assistance,

guidance and most importantly his friendship throughout my days as a PhD researcher.

I wish to thank the members of my committee, Dr. Harry Stephanou, Dr. Dan

Popa, Dr. Qilian Liang and Dr. Kamesh Subbarao, for their support, patience, and good

humor. Special thanks should be given to my student colleagues who helped me in

many ways, especially Draguna Vrabie and Pritpal Dang. Thanks for being there for me

during my difficult times.

This work is dedicated to the greatest teachers of my life, my loving parents

Kalanidhi and Mohan Ballal who have taken great pains to see me prosper in life. I

thank them for believing in my abilities, and constantly providing the support I needed.

July 3, 2008

 iv

ABSTRACT

DECISION AND CONTROL IN DISTRIBUTED COOPERATIVE SYSTEMS

Prasanna Mohan Ballal, PhD.

The University of Texas at Arlington, 2008

Supervising Professor: Frank Lewis

 This dissertation presents novel matrix-based approaches for decision and control

in distributed cooperative systems such as wireless sensor networks. A novel matrix-

based Discrete Event Controller has been implemented for task planning and resource

dispatching in a network consisting of stationary ground sensors and mobile agents also

known in the literature as mobile wireless sensor networks. The use of shared resources

in such systems can sometimes cause a phenomenon called system deadlock, where all

the processes in the system come to a standstill. This work presents a new matrix-based

algorithm that has been implemented for deadlock avoidance in a system with shared

resources and dynamic resource assignment. The analysis of deadlock is based on certain

Petri Net objects in such systems called critical siphons and critical subsystems.

 The analysis of deadlock avoidance becomes even more difficult when routing of

tasks and resources are involved. The critical siphons and critical subsystems have to be

redefined. This dissertation presents a new matrix-based approach for deadlock

 v

avoidance in such systems. This is a generalized approach that can be used for systems

with or without routing. This work also presents a method for tackling a certain

pathological case called second order deadlocks.

 In routing systems, dynamic decisions have to be made. In the presence of

numerous agents which act as resources, a collective decision can be made based on the

individual decisions of agents. This method is called data fusion. Dempster Shafer (DS)

theory has been extensively used in the past for data fusion since it provides an excellent

framework for conditions involving uncertainty. But the mathematics of computation

involving DS belief functions is difficult to fathom because of the many summations over

set inclusions and intersections. The equations are often difficult to comprehend and

discourage readers due to their complexity, and are often difficult to implement using

software. This dissertation provides a new matrix formulation for updating evidence and

computing beliefs and plausibilities in DS theory. The work also shows how evidence

theory can be used in routing systems for Condition Based Maintenance.

 Finally, this work presents a framework for trust propagation and maintenance in

a network of nodes or mobile agents that yields global consensus of trust under rich

enough communication structure graphs. This work considers the case where the graph

structure is a time-varying function of the trusts based on the graph connectivity. This

makes the trust consensus scheme bilinear. This trust consensus is incorporated into

cooperative control laws that depend on local information from neighboring nodes, yet

yield team-wide desired behavior such as flocking and formations.

 vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS………………………………………………..……… iii

ABSTRACT………………………………………………………………………. iv

LIST OF ILLUSTRATIONS………………………………………………….….. x

LIST OF TABLES……………………………………………………….……….. xiii

Chapter Page

 1. INTRODUCTION………….…………………………..…………. 1

 1.1 Distributed Cooperative Systems……………………………... 1

 1.2 The Problem……………………..………………………….… 2

 1.3 Objective………………………….……………………...…… 5

 2. MATRIX-BASED DISCRETE EVENT CONTROLLER…………… 9

 2.1 Introduction…………….…………….……………..………... 9

 2.2 Petri Nets….…………….…………….……….……………... 10

 2.3 Circular Waits…………….…………….…..………………... 11

 2.4 Marking Place Vector……….…………….…………………. 12

 2.5 Circular Blocking…..……….…………….…………………. 13

 2.6 Siphons………………….…………….……………………... 14

 2.7 PN Analysis of Multiple Reentrant Flow-Lines…………...… 15

 2.8 Matrix Formulation for PN Objects…….…………………… 17

 vii

 2.9 Discrete Event Controller….…………….………………..….. 19

 2.10 Implementation on Sentries & UGS….…………….……….. 30

 2.11 Decision for routing of resources……….…………...……..... 38

 3. MULTIPLE REENTRANT FLOW-LINES WITH DYNAMIC

 RESOURCE ALLOCATION…………………………………….…... 40

 3.1 Need for Dynamic Resource Assignment.………………..….. 40

 3.2 One Step Look-ahead Deadlock Avoidance…………………. 41

 3.2.1 Circular Waits…………..……………..…………… 42

 3.3 Deadlock-free Dynamic Resource Assignments………….…. 43

 3.4 Simulation Results…………………………………………… 47

 3.4.1 Resource Assignment- Attempt 1……..……….…... 48

 3.4.2 Resource Assignment- Attempt 2…………...……... 49

 3.4.3 Resource Assignment- Attempt 3………………….. 51

 3.5 Implementation Results……………………………………… 53

 4. FREE-CHOICE MULTIPLE REENTRANT FLOW-LINES …….…. 57

 4.1 Introduction…………..………………………………………. 57

 4.2 Petri Net Analysis of FMRF Systems………………..………. 60

 4.2.1 Definition of FMRF Systems………………....……. 60

 4.2.2 Circular Waits in FMRF Systems……………….…. 62

 4.2.3 Siphons in FMRF Systems…………………………. 63

 4.3 Critical Siphons & Deadlock Avoidance for FMRF Systems.. 65

 4.3.1 FMRF Critical Siphons…………..……………..….. 66

 4.3.2 FMRF Critical Subsystems……………………..….. 74

 viii

 4.4 Matrix Computation of Petri Net Objects in FMRF Systems.... 78

 4.4.1 Circular Waits in Matrix Form……………...…….... 78

 4.4.2 Matrix Algorithm for Computing Cp(C)………..….. 81

 4.4.3 Critical Siphons & Subsystems in Matrix Form….... 82

 4.4.4 MAXWIP Dispatching Policy for DA………........... 85

 4.5 Examples……………………………….…………..………… 85

 5 DECISION-MAKING IN FMRF………………..……..……………… 93

 5.1 Introduction……………………………………………….…. 93

 5.2 Dempster Shafer Theory……………………………...…..…. 96

 5.3 Matrix Formulation for Dempster Shafer Theory…………… 99

 5.4 Embedding DS into FMRF Systems………………………… 104

 6 TRUST CONSENSUS IN DIRECTED GRAPHS……………………. 111

 6.1 Introduction………………………………………..……..….. 111

 6.2 Background on Trust Graphs……………………………..…. 114

 6.2.1 Trust Consensus Protocols…………………..…..… 115

 6.3 Convergence of Trust………….……………………...…..…. 118

 6.3.1 Consensus in the Discrete-time Scheme………..…. 119

 6.3.2 Consensus in the Continuous Time Scheme………. 121

 6.3.3 Relation of the Continuous & the Discrete-time

 Protocols………………………………...……..…... 123

 6.3.4 Network Containing Distrusted Nodes..................... 125

 6.4 Team Behaviors Based on Trust…………………………….. 126

 ix

 6.4.1 Flocking in a Network of Trusted Nodes………….. 126

 6.4.2 Flocking in a Network Containing Distrusted

 Nodes………………………………………………. 129

 6.4.3 Formations in a Distributed Network…………..….. 132

 7 CONCLUSION……………………………………….…………...…... 134

 7.1 Conclusion…………………………………………...…..…... 134

 7.2 Future Research...………………………………………....…. 135

REFERENCES………………………………….……………………………….. 138

BIOGRAPHICAL INFORMATION……………..………..……...…………….. 151

 x

LIST OF ILLUSTRATIONS

Figure Page

 2.1 MRF system……………………..………………………………………… 16

 2.2 Complete System Architecture ………………………………………….... 23

 2.3 Sequencing of missions……………………………………………..……... 24

 2.4 Matrix formulation …………………………………………………...…… 25

 2.5 Reallocation of resources through matrix operations ...…………………… 26

 2.6 Initial priorities ……………….………………………………………….... 27

 2.7 Changed priorities ……………………………………………..………….. 28

 2.8 Initial resource matrix ………………………………………………..…… 29

 2.9 Changed resource matrix ………..…………………………………...…… 30

2.10 Mission1 job sequencing matrix 1

vF (a),

 resource requirement matrix 1

rF (b) .. 35

 2.11 Mission1 Task start matrix 1
vS (a) and resource release matrix 1

rS (b.……... 36

2.12 Mission2 Task sequencing matrix 2
vF (a), resource requirement matrix

 2
rF (b) and conflict resolution matrix)1(2

RFud (c)…………………..…...… 36

2.13 Mission2 Task start matrix 2
vS (a) and resource release matrix 2

rS (b)……. 37

2.14 Overall monitoring operation- Matrix formulation matrices Fv,

 Fr, Sv, Sr……………………………………………………….…………... 37

 2.15 Utilization time trace of the WSN- Experimental results …………..…….. 37

 xi

 3.1 Flow chart representation of the deadlock-free dynamic

 resource assignment algorithm ……..………………………………..…… 47

 3.2 Petri net representation of the system after attempt 1…………..………… 48

 3.3 Event time trace resource assignment attempt 1: system is in deadlock….. 49

 3.4 Petri net after second attempt of resource assignment:

 system is not regular……………………………………………..………... 50

 3.5 Resource assignment attempt 3: all requirements are met,

 the new configuration is accepted…………………………………….…… 51

 3.6 Event time trace resource assignment attempt 3:

 deadlock free dynamic resource assignment …………………..……..…… 52

3.7 Test-bed at Automation & Robotics Research Institute……………...…… 53

 3.8 Automatic generation of matrices.………………………………………… 54

 3.9 Automatic Petri-Net generation ………………………………………....... 54

 3.10 Initial Resource assignment ………………………………………...…….. 56

 3.11 Final Resource assignment ….………………………………………..…… 56

 4.1 FMRF system……………………………………....……………………… 62

 4.2 Sample FMRF system …………………………………………………...... 63

 4.3 Representation of simple CW dependence through decision places ……... 67

 4.4 Graphical representation of digraph matrix W ………..……………..…… 80

 4.5 Case where φ≠∩ +))(())((0 CCJCCJ pp ..………………..……………… 88

 4.6 Example of an irregular system ……………….……………………..….... 90

 5.1 Overview of Maintenance ……………………………………..………….. 95

 5.2 Sets- Unions and Intersections ………………………………………..…… 99

 5.3 Decision in FMRF system ……………………………………..………….. 105

 xii

 5.4 Updating the state transition matrix x …………………………….…..…… 107

 5.5 Example of FMRF for CBM ………………………………………..…….. 108

 5.6 Event trace of Example 5.2…………………………………………...…… 109

 6.1 A Six Node Directed Graph ………………………………………...…….. 120

 6.2 Trust Consensus in the Discrete Time Scheme ………………..……..…… 121

 6.3 Trust Consensus in the Continuous Time Scheme…………………..…….. 123

 6.4 Trust Consensus in the Discrete Time Scheme ………………..……..…… 124

 6.5 Trust Consensus in the Continuous Time Scheme using

 scheme (6.11)…………………..……………………………..……..…….. 124

 6.6 One Step Distrust Model for negative trusts (a), Graph Pruning to

 remove the distrusted node (b)……………………………………..……… 126

 6.7 Tree network with one leader and five followers…………………..……... 128

 6.8 Convergence of trusts of all the nodes (a), Convergence of headings

 of all the nodes in a tree network (b)………………………………..…….. 128

 6.9 Convergence of headings of all the nodes in a tree network………….…… 129

 6.10 Pruning malicious node 5. Its follower 6 is also pruned.…………..…….. 130

 6.11 Convergence of trusts of all the nodes (a), Convergence of

 headings of all the nodes in a tree network after

 pruning and reconnection (b)……………………….……………..…...….. 131

 6.12 Pruning malicious node 5 with reconnection of its trusted follower 6.…… 131

 6.13 Convergence of positions of all the nodes in a tree network

 to a hexagon formation ……………………….…………………………… 133

7.1 Fiedler Eigenvalues of F and L, Discrete time case (a), Continuous

 time case (b).…………..………………………………………………...… 137

 xiii

LIST OF TABLES

Table Page

2.1 Mission 1 Task sequence ………………………...……………………… 34

2.2 Mission 1 Rule-base …………………………………………………….. 34

2.3 Mission 2 Task sequence ...…………………………………………….... 34

2.4 Mission 2 Rule-base..……….……………………………………………. 35

3.1 Rule-Base for the two missions in Section 3.4…...…………...………….. 55

1

CHAPTER 1

INTRODUCTION

1.1 Distributed Cooperative Systems

Most of the systems and applications in real world are inherently distributed.

This research considers distributed systems where autonomous participants pool

together their local resources towards a global service. Such distributed systems provide

extensibility, protection against failures, and an adequate architecture to cope with

spatially distributed real-world applications. These systems are widely used in

distributed databases, telecommunication, security, wireless sensor networks [7, 57, 65],

and education. The challenge in developing cooperative distributed systems is in

modeling and engineering the interactions between the entities of the system.

Modern design of large complex systems requires cooperation among many

agents (humans or computers) that may be physically separated and/or operating under

diverse environments. Implementing a distributed cooperative system is a huge

technical challenge. Cooperative control of distributed multi-agent systems is organized

into four main themes of cooperative control: distributed control and computation,

adversarial interactions, uncertain management and complexity management.

Cooperation in distributed systems is very important since cooperation is not

usually guaranteed by design and the result of non-cooperation could lead to a total

system failure. Distributed cooperative systems make existing services better and

2

cheaper; the only gamble being that autonomy is such systems could imply lack of trust.

In this research we consider distributed cooperative control and decision-making in

wireless sensor networks as a case study.

1.2 The Problem

There has been increased research interest in systems composed of multiple

autonomous agents such as mobile robots and stationary agents such as unattended

ground sensors exhibiting distributed cooperative behavior. Emphasis has been put on

developing wide area distributed wireless sensor networks with self-organization

capabilities to cope with sensor failures, changing environmental conditions, and

different environmental sensing applications. In particular, mobile wireless sensor

networks hold out the hope to support self-configuration mechanisms, guaranteeing

adaptability, scalability and optimal performance, since the best network configuration

is usually time-varying and context dependent. This work provides solutions for task

assignment and resource dispatching (i.e. supervisory control), deadlock avoidance,

decision-making and trust establishment in mobile wireless sensor networks.

Different techniques are available to coordinate the task assignment and

resource dispatching in mobile wireless sensor networks such as decentralized and

centralized techniques. In decentralized coordination, the robots and sensors only have

information about their local neighbors and do not have complete information of the

entire network, whereas, in centralized technique, a supervisor controls the coordination

of the robots and sensors. In the decentralized approaches, robots possess similar

functionalities, perform similar tasks and just one mission at a time is usually

3

implemented. To overcome the inherent limitations of decentralized approaches,

supervisory (centralized) control techniques are preferred. Some significant results in

supervisory control have also been obtained using Petri Nets (PN). Nevertheless the

implementation of high-level mission specifications is not straightforward, the

dynamical description of the system is incomplete and a new design stage, almost from

scratch, is required if objectives or resources change. Thus, there is a lack of

supervisory control and decision-making techniques, which can sequence different

missions according to the scenario (adaptability) and reformulate the mission if some of

the robots fail (fault tolerance) in a predictable way and using a high-level interface.

Discrete Event Controller (DEC) was first used in manufacturing systems [30,

32, 47, 50] in order to sequence the most suitable tasks for each agent according to the

current perception of the environment. A novel matrix formulation makes the

assignment of the mission planning straightforward and easily adaptable if agents or

applications change. It represents a complete dynamical description of the system that

allows computer simulation analysis. The matrices are direct to write down given the

sequence rules for a given task. Priority rules for efficiently dispatching shared

resources and handling simultaneous missions can also be easily taken into account.

Note that this controller is centralized but there could be many sensors in the network

which have same functionalities. Selection of an ideal sensor to do the job can be done

in a distributed fashion. This leads to the problem of decision-making. This dissertation

is mainly concerned with the decision-making and control which involves combining

decisions coming from several experts.

4

Decision-making becomes difficult when uncertainty is involved. Mobile

wireless sensor networks present a range of challenges as they are closely coupled to the

physical world with all its unpredictable variation, noise, and asynchrony; they involve

many energy-constrained, resource-limited devices operating in concert; they must be

largely self-organizing, self-maintaining and robust despite significant noise, loss, and

failure.

In the case of shared resources, problems of deadlock can occur. Deadlock is a

situation when all the tasks in a network come to a halt. Also, analysis of deadlock

becomes difficult when routing of these shared resources is allowed. Routing of tasks

and resources has to be done carefully, which again involves planning and decision-

making.

Another issue in such systems is the establishment of trust among the nodes. In

a distributed network, trust is interpreted as a set of relations among the nodes

participating in the network activities. Trust establishment in distributed communication

networks such as mobile ad hoc networks (MANETs), sensor networks and ubiquitous

computing systems is considered to be more difficult than in traditional hierarchical

structures such as the Internet and Wireless LANs centered on base-stations and access

points. Given the presence of enemy components and the possibility of node

compromise, a trust consensus must be reached by the network that determines which

nodes to trust, which to disregard, and which to avoid. Trust algorithms for network

nodes must be autonomous computationally efficient numerical schemes. However,

existing schemes for control of dynamical systems on communications graphs (in the

5

style of work by [3, 23, 37, 52, 59, 60, 64]) do not take into account trust propagation

and maintenance (such as work by [38, 86]). Yet it is a fact that biological groups such

as flocks, swarms, herds, do have built-in trust mechanisms to identify team members,

team leaders, and enemies to be treated as obstacles or avoided. Cooperative mission

planning should involve decisions made in the context of the trust opinions of all nodes,

and be based on performance criteria set by network team leaders. These performance

criteria may change with time depending on varying mission objectives in the field.

1.3 Objective

The main objective of this research is to develop a matrix-based approach for

decision and control in distributed cooperative systems with a case study on mobile

wireless sensor networks. First, we develop a supervisory control for task planning and

resource assignment using the DEC. Chapter 2 provides a brief introduction to Petri

Nets (PN) and the DEC and shows how this matrix-based DEC can be used in

distributed cooperative control. One can guarantee a smooth flow of logical operation in

DE systems, including dynamic task sequencing and shared resource assignment,

without blocking phenomena, including deadlock and others.

Chapter 3 presents a novel approach to implement on-line deadlock-free

resource assignment for multi-agent systems with multiple missions. At each event

occurrence, when resource changes are required, a greedy algorithm is first

implemented by on-line updating of the resource requirements matrix [47]. The new

resource assignment is accepted if it is compatible with a certain Maximum Work in

Progress (MAXWIP) deadlock avoidance policy. Specifically, the discrete event system

6

representing the new mission plan has to satisfy two conditions: After the

implementation of the new resource assignment, it is necessary to guarantee that (1) the

system is not already in deadlock and (2) the new system is regular in a sense described

in chapter 3. In order to check the latter condition the regularity test proposed in [32] is

launched every time a new resource assignment is proposed. Having produced an

allowable assignment of resources, the DEC described in chapter 2 is run to assign the

next tasks in the multiple missions based on priority assignment policies.

Chapter 4 describes the deadlock avoidance scheme used in systems where

routing decisions have to be made. The analysis of shared resources becomes even

harder when choices are allowed for tasks. This means routing decisions have to be

made [13]. These systems are called the Free Choice Multi-Reentrant Flow Lines

(FMRF). FMRF systems are also known as S3PR (System of Simple Sequential

Processes with Resources). In the case of FMRF, the known methods of deadlock

avoidance provided for MRF do not work. There are many Deadlock Prevention (DP)

methods for S3PR systems in the literature, but this work is mainly concerned with

Deadlock Avoidance policies (online deadlock control). Certain objects such as Circular

Waits, Critical Siphons, and Critical Subsystems have to be defined to avoid deadlock

in FMRF [47, 50]. Chapter 4 describes how these objects can be computed for FMRF.

Also, the chapter extends the matrix formulation in chapter 3 which can efficiently

compute these objects for FMRF. This matrix formulation allows fast and efficient

numerical computation techniques to be applied to Petri Net analysis. We show how a

MAXWIP dispatching policy can be formulated for FMRF to avoid blocking

7

phenomena. Under this policy, deadlock in FMRF can be avoided by limiting the work

in progress (WIP) in the Critical Subsystems of each CW. There is another type of

deadlock called the second order deadlock [32, 50]. Chapter 4 provides a regularity test

to find key resources in the FMRF systems that cause second order deadlocks.

Chapter 5 deals with decision-making involved in systems where routing is

necessary. It provides a novel method for job and resource dispatching for condition-

based maintenance using Free-Choice Petri Nets and Dempster-Shafer Evidence theory.

In case of unreliable sensors in the system, there is uncertainty in decision-making. This

uncertainty is modeled using Dempster Shafer Theory of combination (DS), which is

used to decide which path to take in the event of choice decisions in the PN. The

computations required in DS theory are difficult to perform due to the many required

summations over set inclusions and intersections. Therefore, a new matrix formulation

is given herein for efficiently combining evidence and finding belief, plausibility, and

other quantities in Dempster Shafer theory. This, coupled with a previously developed

matrix formulation for PN, makes it direct to implement the decision framework as a

DEC using computer software. Examples are given showing how to apply the matrix

formulation for decision-making in intelligent diagnostics.

Chapter 6 presents a framework for trust propagation and maintenance in a

network of nodes or mobile agents that yields global consensus of trust under rich

enough communication structure graphs. Most of the work in literature considers the

graph to be static or have static weights. This chapter considers the case where the

graph structure is a time-varying function of the trusts based on the graph connectivity.

8

This makes the trust consensus scheme bilinear. This trust consensus is incorporated

into cooperative control laws that depend on local information from neighboring nodes,

yet yield team-wide desired behavior such as flocking. Chapter 7 concludes the work

with ideas for future research.

9

CHAPTER 2

MATRIX-BASED DISCRETE EVENT CONTROLLER

2.1 Introduction

 The integration and cooperation of heterogeneous agents in a distributed system

such as mobile wireless sensor networks is potentially very appealing, but requires a

coordination supervisory controller suitable to sequence different missions according to

the events and to the functionalities of the agents. In supervisory control, some

significant results have been obtained using Petri Nets [40, 41], but the implementation

of high-level mission specifications is not straightforward, the dynamical description of

the system is incomplete and a new design stage, almost from scratch, is required if

objectives or resources change.

 In [32, 47] a matrix-based DEC has been proposed, proving to be very efficient

in sequencing tasks in manufacturing environments [50]. The matrix formulation allows

fast, direct design and reconfiguration of discrete event controllers. It provides a better

dynamical description and a higher level interface than other popular tools for discrete

event systems, such as Petri Nets. This chapter proposes the use of the matrix-based

DEC as a central planner to produce high-level missions for a distributed network of

stationary sensing units and mobile robots cooperating for a common goal. Its

formulation allows one to switch between missions as priorities change or exception

situations occur, and to accommodate node failures. Before moving on to the matrix-

10

based DEC, it is important to understand the concept of Petri Nets, Circular Waits,

Marking Vector, Circular Blocking, Critical Subsystems and Siphons.

2.2 Petri Nets

 A Petri Net (PN) a bipartite digraph (P, T, I, O), where P is the set of places, T

is a set of transitions, I is the set of input arcs from places to transitions, and O is the set

of outputs arcs from transitions to places [55]. One can represent I as an input

incidence matrix which has I(i,j) =1 if there is an input arc from place j to transition i

and O as an output incidence matrix which has O(i,j)= 1 if there is an output arc from

transition i to place j. The incidence matrix is defined as

 W=O-I (2.1)

Given a node v (either transition or place), we define v• as the pre-set of v (set of nodes

with arcs to v) and •v as the post-set of v (set of nodes with arcs from v). Similarly, for

a set of nodes S= {vi}, define }{ ivS •=• and }{ •=• ivS .

The following assumptions allow one to represent a discrete event system by a Petri

Net:

1. There are no machine failures.

2. No pre-emption. A resource cannot be removed from a job until it is complete.

3. Mutual exclusion. A single resource can be used for only one job at a time.

4. Hold while waiting. A process holds the resources already allocated to it until it

has all the resources required to perform a job.

11

2.3 Circular Waits

 The following background is taken from [47, 48, 50]. We say resource ri waits

for resource rj (denoted ri � rj) if the availability of rj is an immediate prerequisite for

the release of ri, i.e., φ≠•∩• ji rr . A wait relation digraph is defined as Gw = (R, A)

where R is the set of nodes and A = {aij} is the set of edges with aij drawn if ri� rj (i.e.

each aij represents a transition in •∩• ji rr). In Gw, define an R-path between ri and rk

as a set of R-places such that ri�rj�…�rk. Then ri is said to wait over an R-path for

rk, denoted ki rr � , if there is an R-path between ri and rk. A circular wait (CW) is a set

of resources RC ⊂ , with |C|>1, such that for any ordered pair jrr C,}r,{r iji �⊂ . A

CW always contains at least one shared resource.

 The simplest CW is a set of resources RC ⊂ , such that for some appropriate re-

labeling, one has 121 ... rrrr q →→→→ , with ji rr ≠ for qjiji ≤≤≠ ,1, . This will be

referred to as a simple circular wait. A simple circular wait is a simple circuit in the

graph and is a CW not containing any other CW. Consider a wait relation graph Gw and

a CW wGC ⊂ . Then for every Cr ∈ , there exists at least one simple circular wait

C⊂σ such that σ∈r . A CW is a strongly connected sub graph in the digraph Gw and

can be obtained by taking unions of non-disjoint simple CW.

 Given a CW C= {ri}, one can partition the set of transitions ir• as

+•∪•=• iioi rrr , where ior• = }|{ φ≠∩•∈ CxTx , the set of input transitions of ri with

input arcs from some other Cr j ∈ , and +• ir = }|{ φ=∩•∈ CxTx , the set of input

12

transitions of ri with no input arcs from any other Cr j ∈ . We loosely say that the

transitions ior• are ‘in the CW C’.

 The job set of CW C= {ri} is given by J(C) =)(
1

i

n

i

rJ∪
=

. Partition this as

J(C)= 0)()(CJCJ ∪+ ,where },|)({)(0 CrrpCJpCJ iio ∈•∈•∈= and

},|)({)(CrrpCJpCJ ii ∈•∈•∈= ++ .

2.4 Marking Place Vector

 A place POPIRJPp ∪∪∪=∈ is said to be marked when it contains a

token, which depending on the place containing it indicates an ongoing job, the

existence of an available resource, a part in, or a product out. In a FMRF, the initial

marking vector denoted as m0 assigns tokens only to R and PI-places. It is assumed that

the PO-places are always empty.

 Given Pp ∈ , m(p) denotes the marking of p, i.e. the number of tokens in p.

Given a set of places S, m(S) denotes the number of tokens in S. A set of places is said

to be unmarked or empty if none of its places has any tokens.

 Given the set of places P, the PN place vector, or p-vector, p
�

 has dimension of

P , and one element corresponding to each place. Let the set of all places be

},...,,{ 21 QpppP = . Then the place vector has Q elements. Any set of m places

},...,2,1|{ mkPp
ki

=∈ can be represented as a |P|-vector p
�

 having m entries 1=
ki

p
�

13

and zero entries otherwise. The PN marking vector
PT

Npmpmpm ∈=])()([)(21 �
�

,

with the natural numbers N= {0, 1, 2...}, gives the number of tokens in each place.

 Define the PN transition vector, or x-vector, x to have dimension of T , and one

element xi corresponding to each transition. Let the set of all transitions be

},...,{ 21 LxxxT = . Then the transition vector has L elements. A set of m transitions

},...,2,1|{ mkTx
ki

=∈ can be represented as an L-vector x having m entries 1=
ki

x

and zero entries otherwise.

The well-known PN marking transition equation [55],

xWpmpm T+=
→→

+)()((2.2)

gives the new marking vector)(
→

+ pm in terms of the previous marking vector)(
→

pm and

the transitions that have fired appearing as 1’s in x.

A p-invariant is defined as a set of resources and places that is in the null space of W.

i.e.

Wp=0. (2.3)

Note that if p is a p-invariant, then)()()(
→→→

+ =+= pmpxWppmppmp TTTTT so that the

number of tokens in a p-invariant is constant. One type of p-invariant is given by any

resource plus all of its jobs,)(rJr ∪ .

2.5 Circular Blocking

 A circular blocking CB is a circular wait that is empty and will always remain so

[32, 47, 50, 92]. That is, for a CW C= {ri}:

14

1. m(C)=0, and

2. no tokens will ever be added to C.

 In this situation, one is said to have deadlock, where the resources in the CW are

waiting for each other and will never again become available. If a resource on a given

part path is involved in a CB, then all downstream activity along that part path will

eventually end. That is, after some time, the downstream jobs on that part path will

never again be performed. Let C ={Ci} be a set of disjoint CW. Then,C is said to be in

CB if each CW Ci is in CB.

2.6 Siphons

 The analysis of CB and deadlock can be carried out formally using the notion of

siphon. A siphon is a set of places having the property that its input transition set is

contained in its output transition set i.e.

•⊂• SS (2.4)

A siphon has the key property that, once it is unmarked, it remains so.

 A minimal siphon of a CW C is the smallest siphon containing the CW. Define

a critical siphon for a CW C as a smallest siphon which has the property that a CW is a

CB if and only if the critical siphon is empty.

 Next section defines a type of PN structure which is quite often used in wireless

sensor networks for resource allocation and task planning, namely multiple reentrant

flow lines.

15

2.7 PN Analysis of Multiple Reentrant Flow-Lines

 A special case of PN is the multiple reentrant flow-line system (MRF), see

figure 2.1. For MRF systems, we partition the set of places, POPIRJP ∪∪∪= ,

with the places in J, R, PI, PO representing respectively, the jobs performed, the

availability of resources, input of parts, and output of products. Each part path starts

with a PI-place and terminates with a PO-place. We denote the set of job places J for

part type j as Jj so that jj JJ ∪= . Let the set of transitions along part path j be xj1,

xj2,…,xjLj, with xj1 and xjLj being the initial and terminal transitions respectively.

 R(p) is the set of resources needed by job p. For any resource Rr ∈ define the

jobs performed by r as)(rJ . We partition the resource set R as Rs and Rns, with Rs being

the set of shared resources, i.e. those needed for more than one job, and Rns being the set

of non-shared resources. Then, 1)(=rJ if nsRr ∈ and 1)(>rJ if sRr ∈ , with |S|

denoting the cardinality of a set S (i.e. the number of elements).

 We formally define MRF systems as a class of systems satisfying the following

properties (φ being the empty set):

Properties of MRF

1. φ=•∩•∈ ppPp ,

2. on part path j, xj1 φ=∩• JP \ and φ=∩• JPx jLj \

3.)(:, pRRpRpJp =∩••=∩••∈∀ with 1)(=pR

4. kijki ppkiJpp ≠≠∈∀ ,,,

5. φ=•∩•≠∈∈∀ lkjilkji ppljJpJp ,,,

16

7. Rs φ≠

 This means that there are: (1) no self loops, (2) each part path has a well-defined

beginning and an end, (3) every job requires only one resource with no two consecutive

jobs using the same resource, (4) there are no part path loops, (5) for any two distinct

jobs on different part paths there is no assembly, i.e. two part paths cannot merge into

one, (6) there are shared resources.

 According to property 3, RpRppR ∩••=∩••=)(, with the cardinality

1)(=pR ; Under the foregoing assumption, one has JrJrrJ ∩••=∩••=)(.

 In MRF, one has 1=•p . A transition •∈ px is said to be a posterior

transition of p. A decision place has multiple posterior transitions, i.e. 1>•p . The

resources used by decision places are called decision resources.

 Figure 2.1 shows a sample MRF. In figure 2.1, the part paths are independent

and neither split nor recombine. R1 is a shared resource along a single part path, and

R2 is a shared resource between two part paths.

Figure 2.1 MRF system

 Pi1 t1 R1A t2 R2A t3 R1B t4 R3A t5 Po1

 R2

 R4 R6

 Pi2 t6 R4A t7 R2B t8 R6A t9 Po2

 R1 R3

17

2.8 Matrix Formulation for PN Objects

 PN provides great pictorial insight and mathematical techniques for analysis, but

they have sometimes had the deficiency of not providing an efficient computational

framework for simple computer-based analysis. A matrix framework for computing

structural objects of a PN can correct these deficiencies [47].

 Commensurate with the partitioning POPIRJP ∪∪∪= with J, R, PI, and

PO being the sets of job places, resource places, input places, and output places

respectively, partition the place vector as Tpopirvp][=
�

, with

POpoPIpiRrJv ∈∈∈∈ ,,, .

 Similarly, partition the input incidence matrix as][oirv FFFFI = . Note

that there are no input arcs to transitions from the places in PO, so that 0=oF , a

matrix of zeros. Partition the output incidence matrix as][
T

o

T

i

T

r

T

v SSSSO = .

Note that there are no output arcs from transitions to the places in PI, so that 0=iS .

These sub-matrices are Boolean matrices having entries of 0 or 1.

2.8.1 Or/And Algebra For Computing PN Objects

 Given Boolean matrices][ijaA = and][ijbB = , define a logical or/and

matrix algebra wherein addition operations are replaced by logical ‘or’ and

multiplication operations by logical ‘and’. That is, the matrix product is defined by

BAC ⊗= with �∨∧∨∧∨∧=)()()(332211 jijijiij bababac , with ∧

denoting logical ‘and’ and ∨ denoting logical ‘or’. The matrix sum is defined by

18

BAC ⊕= with ijijij bac ∨= . Note that these matrix products are easily performed

using standard software programs including MATLAB
®
, etc.

 Then one has computational methods for computing PN objects based on the

following results in [2].

Lemma 2.1: Matrix computation of PN pre and post sets for places.

1. Let v represent a set of job places. Then

a. •v is represented by the vector vFv ⊗

b. v• is represented by the vector vS
T

v ⊗

2. Let r represent a set of resource places. Then

a. •r is represented by the vector rFr ⊗

b. r• is represented by the vector rS
T

r ⊗ ■

Lemma 2.2: Matrix computation of PN pre and post sets for transitions:

1. Let x represent a set of transitions. Then

a. Jx ∩• is represented by the vector xSv ⊗

b. Rx ∩• is represented by the vector xS r ⊗

c. Jx ∩• is represented by the vector xF
T

v ⊗

d. Rx ∩• is represented by the vector xF
T

r ⊗ ■

This allows one to formulate the desired scheduling strategies for MRF systems

using matrices. In the next section we describe the discrete event controller for MRF

systems.

19

2.9 Discrete Event Controller

An efficient Discrete event controller (DEC) based on matrices was first

introduced in [47] and it has been in constant development [1, 2, 28, 29, 50, 82]. The

DEC is completely based on matrices and it has important advantages in design,

flexibility, computer simulation and online supervisory control of DE systems. The

DEC has also been implemented on a practical robotic cell in [50]. This section presents

a matrix-based discrete event controller for modeling and analysis of complex

interconnected DE systems with shared resources, routing decisions, and dynamic

resource management in a mobile wireless sensor network. This approach provides a

rigorous, yet intuitive mathematical framework to represent the dynamic evaluation of

DE systems according to linguistic if-then rules such as “If <conditions hold> then

<consequences>”.

Multi-agent systems such as one composed of mobile robots and wireless sensor

network face problems of coordination. One can write down a set of if-then rules to

define the mission planning of the sensor agents, such as:

Rule i: If <sensor 1 has completed task1 (data acquisition), robot 1 is available and a

fire hazard is detected > then <robot 1 starts task2 and sensor 1 is released>

These linguistic rules can be easily represented in mathematical form using

matrices. Following the same notation used in [1, 2, 47], let r be the vector of resources

used in the system (i.e. mobile robots and UGSs), v the vector of tasks that the resources

can perform (i.e. go to a given target, perform data acquisition, and deploy UGS), u the

vector of input events (i.e. occurrence of sensor detection events) and y the vector of

20

completed missions (outputs). Finally, let x be the state logical vector of the rules of the

DE controller, whose entry of ‘1’ in position i denotes that rule i of the supervisory

control policy is currently activated. Then we can define two different sets of logical

equations, one for checking the conditions for the activation of rule i (matrix controller

state equation), and one for defining the consequences of the activation of rule i (matrix

controller output equation). In the following, all matrix operations are defined to be in

the or/and algebra, where + denotes logical or and ‘times’ denotes logical and.

The controller state equation is

d
u

ud
Fu

u
Fr

r
Fv

v
Fx +++=

 (2.5)

where x is the task or state logical vector, Fv is the task sequencing matrix, Fr is

the resource requirements matrix, Fu is the input matrix. Fud is the conflict resolution

matrix and ud is the conflict resolution vector. They are used to avoid simultaneous

activation of conflicting rules, as will be shown later. The current status of the DE

system includes task vector v, whose entries of `1' represent `completed tasks', resource

vector r, whose entries of `1' represent `resources currently available’, and the input

vector u, whose entry of 1 represent occurrence of a certain predefined event (fire

alarm, intrusion etc.). The over bar in equation (1) denotes logical negation so that tasks

complete or resources released are represented by ‘0’ entries. Fv is the task sequencing

matrix [47], and has element (i,j) set to '1' if the completion of task vj is an immediate

prerequisite for the activation of logic state xi. Fr is the resource requirements matrix

[47] and has element (i,j) set to '1' if the availability of resource j (robot or UGS) is an

immediate prerequisite for the activation of logic state xi.

21

On the ground of the current status of the DE system, equation (2.5) calculates

the logical vector x, i.e. which rules are currently activated. The activated rules

determine the commands that the DEC has to sequence in the next iteration, according

to the following equations

xSv vs =
 (2.6)

xSr rs =
 (2.7)

xSy y=
 (2.8)

Sv is the task start matrix and has element (i,j) set to '1' if logic state xj

determines the activation of task i. Sr is the resource release matrix and has element (i,j)

set to '1' if the activation of logic state xj determines the release of resource i. Sy is the

output matrix and has element (i,j) set to '1' if the activation of logic state xj determines

the completion of mission i.

The task start equation (2.6) computes which tasks are activated and may be

started, the resource release equation (2.7) computes which resources should be released

(due to completed tasks) and the mission completion equation (2.8) computes which

missions have been successfully completed.

Vector vs, whose `1' entries denote which tasks are to be started, and vector rs,

whose `1' entries denote which resources are to be released, represent the commands

sent to the DE system by the controller. ‘1’ entries in vector y denote which missions

have been successfully completed.

22

Equations 2.5-2.8 represent the rule-base of the supervisory control of the DE

system. All the coefficient matrices are composed of Boolean elements and are sparse,

so that real time computations are easy even for large interconnected DE systems.

The task sequencing matrices (Fv and Sv) are direct to write down from the

required operational task sequencing. On the other hand, the resource requirements

matrices (Fr, Sr) are written down based on the resources needed to perform the tasks

and are assigned independently of the task sequencing matrices. Matrix Fud in equation

(2.5) is used to resolve conflicts of shared resources, i.e. conflicts deriving by the

simultaneous activation of rules, which start different tasks requiring the same resource.

Matrix Fud has as many columns as the number of tasks performed by shared resources.

Element (i,j) is set to '1' if completion of shared task j is an immediate prerequisite for

the activation of logic state xi. Then an entry of ‘1’ in position j in the conflict resolution

vector ud, determines the inhibition of logic state xi (rule i cannot be fired). It results

that, depending on the way one selects the conflict-resolution strategy to generate vector

ud, different dispatching strategies can be selected, in order to avoid resource conflicts

or deadlocks.

To use the DEC as a Supervisory Controller for task assignment and resource

dispatching in mobile wireless sensor networks, one needs to have an architecture that is

modular, flexible and adaptable. One such architecture consists of three layers, namely

agent control layer, network control layer and organization control layer. The important

aspect of this architecture is that improvements and updates on one layer results in

minor changes in other layers, making the system intelligent and adaptable.

23

The first layer (agent control level) deals with the control of each agent (being either a

UGS or a mobile robot), keeping into account its peculiar functionalities. At this level

one defines the processing capabilities of the UGSs (e.g. signal processing) and the

control algorithms for the behavior of each robot (e.g. reach the target, follow another

robot etc.). The second layer (network control level) deals with the implementation of

communication protocols for energy efficient data transmission between the UGS,

robots and the supervisor. The third layer (organization control level) consists of

matrix-based DE supervisory controller whose matrix formulation allows one to employ

a high-level human interface to define the mission planning, the resource allocation and

the dispatching rules. The supervisor is in charge of sequencing the tasks each agent has

to perform according to the perception of the environment; assuming that the agent

level controllers correctly perform the assigned tasks and that the communication

protocol for each agent perfectly works.

The complete architecture is shown in the figure 2.2.

Figure 2.2 Complete System Architecture

24

Thus, using this architecture, a complex system can be decomposed into

missions, tasks and rules for task sequencing, resource dispatching and conflict

resolution (figure 2.3).

Environment monitoring operation

Mission 1 Mission i Mission n

…

… …

Task sequencing rules

Fv

Priority rules

Fud

Task
1
1(r

1..m
) Task

1
q1(r

1..m
) Taskn

qm(r1..m) Taskn
1(r

1..m)

Resource assignment rules

Fr

Fv
1

Fr
1

Fv
n

Fr
n

Figure 2.3 Sequencing of missions

 This block diagram can be represented using matrices using the technique of

DEC. Suppose that there are m resources r
j
 j=1…m (mobile robots and stationary

sensors) each one capable of performing pj tasks, and define n different missions, each

one composed of qi tasks. For each mission, there are corresponding set of

matrices i

vF , i

rF ,
i

vS , i

rS which represent the coordination rules of the agents in the

execution of the tasks. In order to take into account the priority among missions, there is

a global conflict resolution matrix Fud.. After assigning a priority order k to each

mission, calculate for every resource j and every mission i, a matrix (()
j

i

ud rF), creating

a new column for every ‘1’ appearing in the jth column of i

rF . Then one constructs the

global conflict resolution matrix of resource rj (()
jud rF) inserting each ()

j

i

ud rF matrix in

position (i,k).

25

As shown in figure 2.4 the matrix formulation of the overall environment

monitoring operation is then obtained by stacking the set of matrices together. The

correspondence between figure 2.3 and the matrices is very obvious.

[])()...()...(1 mudjududud rFrFrFF =

 ni qqq1 m























=

n

v

i

v

v

F

F

F

F
V

...

...

1























=

n

r

i

r

r

r

F

F

F

F

...

...

1

Figure 2.4 Matrix formulation

In WSN, two issues have to be tackled i.e. adaptability and scalability.

Adaptability and scalability are crucial requirements to guarantee optimal performances

for agent team operations. These issues can be tackled by using the principle of DEC.

Adaptability: Adaptability is the ability of an agent team to change its behavior

according to the dynamical evolution of the environment. Following methods make the

system adaptable using DEC.

1. Implementation of distributed algorithms:

Adaptability can be resolved both at the agent control level and at the supervisor

control level. In the agent control level, individual agents are autonomous and perform

tasks using their perception of the environment. In the framework of the DEC, these

operations can be considered as a generic (fully decentralized) mission i (or part of it)

composed of simultaneous tasks. Therefore there is enhanced adaptability decision, at

26

the supervisor level (on the grounds of the present situation), which decentralized

mission has the priority (changing i

udF) and which resources should be used (changing

i

rF and i

rS).

2. Dynamic reallocation of resources:

A dynamic reallocation of the agents to missions can be performed by

rearranging the ‘1’ relative to similar resources in the matrices rF and rS when new

missions (or new agents) are added. Due to the matrix representation of the mission

plans, these objectives can be pursued using computationally efficient algorithms.

 R1 R2 R3 R1 R2 R3











































=

...101

...110

...001

...101

...100

...001

...100

...001

...100

...100

)(tFr











































=+

...101

...110

...001

...011

...010

...001

...010

...001

...100

...100

)1(tFr

Figure 2.5 Reallocation of resources through matrix operations

Figure 2.5 shows an example of reallocation of tokens among three similar

resources (R1, R2 and R3) in the case of two missions. After the reallocation, the

workload of the resources is more balanced since each resource performs a similar

number of tasks (equal to the number of ‘1’ in the corresponding column).

3. Combining multiple plans for the same mission:

Mission

Mission

27

In certain circumstances, different sequences of tasks can be used to implement

the same mission. A computationally efficient algorithm can be used to combine the

plans together and derive one single compact matrix representation for the DEC. In this

way, the DEC automatically sequences the most suitable succession of tasks depending

on the current available resources.

4. Priority among missions:

Another way to adapt to the WSN control scenario is to make the set of mission

priority rules adaptable. For example, suppose that resource r1 is shared among three

different missions whose priority rank is 3, 1, 2. After defining the conflict resolution

matrix of r1 for each mission ()(1

1
rFud ,)(1

2
rFud ,)(1

3
rFud), the overall conflict resolution

matrix of r1 ()(1rFud) is built as shown in figure 2.6.

 priority
1
 priority2 priority3

















=

00)1(

)1(00

0)1(0

)(
3

2

1

3

2

1

1

rF

rF

rF

mission

mission

mission

rF

ud

ud

ud

ud

Figure 2.6 Initial priorities

If the priority of the missions changes in 2, 3, 1 then one can have the following

configuration as shown in figure 2.7.

28

 priority
1

 priority2 priority3

















=

0)(0

00)(

)(00

)(

1

3

1

2

1

1

3

2

1

1

rF

rF

rF

mission

mission

mission

rF

ud

ud

ud

ud

Figure 2.7 Changed priorities

Thus, a change of priority results in a simple permutation of the block

matrices i
udF for each resource.

Scalability: Scalability defines the possibility to add and remove agents. One can use

the DEC to tackle scalability at the supervisor level, updating the matrix based

representation of the missions to take into account the failure of agents as well as the

adding of new ones.

If a new agent is added to the system, a new column is added in the matrices Fr

and '

rS (Sr transpose). Then, dispatching algorithms (based on matrix operations) can

be applied to rearrange the tasks among resources. In a similar fashion, an agent

failure can be tackled rearranging the tasks among the resources so that the column

vectors relative to the failed resources in Fr and Sr’ are null. In the following example,

a simple algorithm is used for reallocating (off-line, i.e. when no missions are in

progress) resources after agent failure. The mission planning is revised in such a way

that predefined back-up agents execute the tasks of the failed agents. In the matrix

formulation this is equivalent to move the elements equal to one in the matrices i

rF

and i

rS from the column of the failed resource to the column of the back-up resource.

29

This can be achieved through a simple linear combination of the columns of i

rF and

i

rS respectively. Thus,

ioldi

r

newi

r BFF ⋅= ,, (2.9)

ioldi

r

newi

r BSS ⋅= ,, (2.10)

where B
i
 is a square matrix of dimension equal to the number of the resources of the

system. The diagonal elements of B
i

(aj) are parameters which are equal to 1 if

resource rj is working properly and 0 otherwise. On row j the element (j,j) is equal to

aj and the element (j,k) is equal to 1- aj, where k is the column of matrix i

rF

corresponding to the back-up resource of agent j for mission i. If aj =0, the jth column

of newi

rF
, will be null (meaning that agent j is not supposed to perform any task) and

the kth column will have ‘1’s in correspondence of the tasks for which resource j was

required. If no failure occurs, B
i
 is the identity matrix and mission plans are not

changed. Clearly, in the definition of the matrix B
i
 one has to make sure that each

back-up agent does not perform any simultaneous task with the resource they are

supposed to substitute. For example, suppose there are three agents, and that, for a

certain mission i, the resource requirement matrix and the back-up matrix B
i
are as

shown in figure 2.8.

















=

100

110

001
,oldi

rF
















−

−

=

33

2

11

01

00

01

aa

a

aa

B
i

Figure 2.8 Initial resource matrix

30

The B
i
 matrix corresponds to the case where, in mission i, agent 2 is the backup

of agent 1, agent 2 has no back-up and agent 1 is the back up of agent 3. If agent 1

fails (a1=0) whereas agent 2 and 3 work properly (a2=a3=1),

















=

100

010

010
i

B and
















=

100

110

010
,newi

rF

Figure 2.9 Changed resource matrix

i.e., in mission i, agent 1 has been replaced by agent 2.

Another method to cope up with agent failure is by routing resources, which

means that one has to define a set of multiple resource choices initially for certain

critical tasks. The routing resources automatically assign to the task the first available

resource of the corresponding set providing redundancy and robustness against agent

failures. This novel matrix formulation supports task routing efficiently, since there is

no need to distinguish between physical and logical resources. Routing of resources

will be explained later in the chapter.

2.10 Implementation on Sentries & UGS

It is well known that a matrix approach can be used to describe the marking

transitions of a Petri Net using the PN transition equation

)()'()()1(txFStmtm ⋅−+=+ (2.11)

where S and F are the output and input incidence matrix respectively. This equation

gives a useful insight on the dynamics of discrete event systems but does not provide

a complete dynamical description of DE systems.

31

Observe that the vector x in equation (2.11) is the same as in equation (2.5), then one

may identify x as the vector associated with the PN transitions and u, v, r, ud as

associated with the places. Then it follows that,

[]')'(,)'(,)'(,)'()(tutrtvtutm d= (2.12)

[]'',',',',' yurvu SSSSSS
d

= (2.13)

[]'',',',',' yurvu FFFFFF
d

= , (2.14)

Therefore, we can use equation (2.5) to generate the allowable firing vector to

trigger transitions in equation (2.11). The combination of the DEC and the PN

marking transition equation, therefore, provides a complete dynamical description of

the system.

In order to take into account the time durations of the tasks and the time required for

resource releases, one can split m(t) into two vectors, one representing available

resources and current finished tasks ()(tma) and the other representing the tasks in

progress and idle resources ()(tmp)

)()()(tmtmtm pa += (2.15)

This is equivalent to introducing timed places in a Petri Net and to dividing each

place into two parts, one relative to the pending states (task in progress, resource idle)

and the other relative to the steady states (task completed and resource available). As

a consequence, we can also split equation (2.15) into two equations

)()()1(txFtmtm aa ⋅−=+ (2.16)

)(')()1(txStmtm pp ⋅+=+ (2.17)

32

When a transition fires a token is moved from)(tmp to)(tma where it may be

used to fire subsequent transitions. Therefore equations (2.5), (2.16) and (2.17)

represent a complete description of the dynamical behavior of the discrete event

system and can be implemented for the purposes of computer simulations using any

programming language (e.g. Matlab® or C). In the case of a mobile wireless sensor

network, where experiments on wide and hostile areas can be really complex and

challenging, it allows one to perform extensive simulations of the control strategies

and then test experimentally only those that guarantee the most promising results.

Consider an experimental scenario; A network consisting of two mobile robots and

two wireless sensors. Two different missions have been implemented to show the

potentialities of the proposed DEC. In the first mission, after one of the sensors

launches an intruder alert, the network automatically reconfigures its topology to

further investigate the phenomenon. In the second mission, one of the sensors detects

a huge vibration indicating that there is an earthquake. The procedure for

implementing the supervisory control policy consists of three different steps. First of

all one defines the vector of resources r present in the system and the tasks they can

perform. In ARRI DIAL test-bed there are two robots (R1 and R2), each one able of

performing certain number of tasks (say 4 or 5), and two stationary sensors (UGS1,

UGS2), each one able of performing one task (i.e. taking measurement). The resource

vector is r = [R1, R2, UGS1, UGS2].

Then for each mission i, define the vector of inputs u
i
, of outputs y

i
 and of tasks

v
i
, and the task sequence of each mission (refer table 2.1 and 2.2 for mission 1 and

33

mission 2), and write down the if-then rules representing the supervisory coordination

strategy to sequence the programmed missions (table 2.3 and table 2.4). In the

definition of the rule bases particular attention has to be devoted to the definition of

consecutive tasks performed by the same resources. If the consecutive tasks are

interdependent (e.g. go to sensor 2 and retrieve sensor 2), the corresponding resource

should be released just at the end of the last of the consecutive tasks. Instead, if the

tasks are not interdependent, before starting the new consecutive task, the DEC

releases the corresponding resource and makes sure that no other missions are waiting

for it. If after a predetermined period of time no other missions request that resource,

the previous mission can continue. Finally translate the linguistic description of the

coordination rules into a more convenient matrix representation, suitable for

mathematical analysis and computer implementation. As an example, the following

shows a derivation of the matrix formulation from the rule-base of mission 1 (table

2.1).

For example, considering the rule-base of mission1 (table 2.2), one can easily

write down the 1

vF and 1

rF matrices considering that),(1
jiFv is ‘1’ if task j is

required as an immediate precursor to rule i and),(
1

jiFr is ‘1’ if resource j is required

as an immediate precursor to rule i.

If one sees Mission 2, Robot 1 is shared resource. Hence one needs to construct

the Fud matrix. The 1

vS matrix is built considering which tasks should be executed

after a rule fires. The 1

rS matrix is built considering that 1

rS (i,j) is 1 if resource i has

34

to be released after rule j has been fired. In the same way, the set of matrices relative

to mission 2 can be built.

Table 2.1 Mission 1 Task sequence

mission1

Notation Description

Input 1 U
1
 UGS1 launches

earthquake alert

Task 1 T1a UGS2 takes

measurement

Task 2 T2a R1 goes to UGS1 and

takes measurement

Task 3 T3a UGS1 takes

measurements again

Task 4 T4a R2 goes to UGS2 and

takes a measurement.

output Y
1
 False Alarm, Mission 1

completed

Table 2.2 Mission 1 Rule-base

Mission1-operation sequence

Rule1 1
1x If input then T1a

Rule2 1
2x If T1a then T2a

Rule3 1
3x If T2a then T3a

Rule4 1
4x If T3a then T4a

Rule5 1
5x If T4a then y

Table 2.3 Mission 2 Task sequence

Mission2 Notation Description

input U

2
 UGS2 detects intruder

Task 1 T1b UGS2 takes measurement again

Task 2 T2b UGS1 takes measurement

Task 3 T3b R1 goes to UGS2

35

Table 2.3- continued

Task 4 T4b R2 goes to UGS1

Task 5 T5b R1 goes to the door

output Y
2
 Intruder detected, Mission 2

completed

Table 2.4 Mission 2 Rule-base

Mission2- operation sequence

Rule1 2
1x If input then T1b

Rule2 2
2x If T1b then T2b

Rule3 2
3x If T2b then T3b

Rule4 2
4x If T3b then T4b

Rule5 2
5x If T4b then T5b

Rule6 2
6x If T5b then y

2

 T1a T2a T3a T4a R1 R2 UGS1UGS2























=

1000

0100

0010

0001

0000

1

5

1

4

1

3

1

2

1

1

1

x

x

x

x

x

Fv























=

0000

0010

0100

0001

1000

1

5

1

4

1

3

1

2

1

1

1

x

x

x

x

x

Fr

 (a) (b)

Figure 2.10 Mission1 job sequencing matrix 1

vF (a), resource requirement matrix 1

rF

(b)

36

 1

1x 1
2x 1

3x 1
4x 1

5x 1
1x 1

2x 1
3x 1

4x 1
5x



















=

01000

00100

00010

00001

4

3

2

1

1

aT

aT

aT

aT

Sv



















=

00010

01000

10000

00100

2

1

2

1

1

UGS

UGS

R

R

Sr

 (a) (b)

Figure 2.11 Mission1 Task start matrix 1
vS (a) and resource release matrix 1

rS (b)

One can implement the control system directly on the WSN test-bed. Figure

2.16 shows the actual experimental utilization time trace of the agents, assigning

higher priority to mission 1. Notice that the time duration of the real WSN runs in

terms of discrete-event intervals. This is a key result since it shows that the DEC

allows one to perform a “simulate and experiment” approach for a WSN, with

noticeable benefits in terms of cost, time and performance.

 T1b T2b T3b T4b T5b R1 R2 UGS1 UGS2



























=

10000

01000

00100

00010

00001

00000

x

x

x

x

x

x

2

6

2

5

2

4

2

3

2

2

2

1

2

vF



























=

0000

0001

0010

0001

0100

1000

2

6

2

5

2

4

2

3

2

2

2

1

2

x

x

x

x

x

x

Fr

 (a) (b)



























=

00

10

00

01

00

00

)1(

2

6

2

5

2

4

2

3

2

2

2

1

2

x

x

x

x

x

x

RFud

 (c)

Figure 2.12 Mission2 Task sequencing matrix 2
vF (a), resource requirement matrix 2

rF

(b) and conflict resolution matrix)1(
2

RFud (c)

37

 2
1x 2

2x 2
3x 2

4x 2
5x 2

6x 2
1x 2

2x 2
3x 2

4x 2
5x 2

6x























=

010000

001000

000100

000010

000001

5

4

3

2

1

2

bT

bT

bT

bT

bT

Sv





















=

000010

000100

010000

101000

2

1

2

1

2

UGS

UGS

R

R

Sr

 (a) (b)

Figure 2.13 Mission2 Task start matrix 2
vS (a) and resource release matrix 2

rS (b)











=

2

1

2

1

0

0

v

v

v
F

F

x

x
F 










=

2

1

2

1

r

r

r
F

F

x

x
F











=

2

1

2

1

0

0

v

v

v
S

S

v

v
S ()21

rrr SSrS =

Figure 2.14 Overall monitoring operation- Matrix formulation matrices Fv, Fr, Sv, Sr

Figure 2.15 Utilization time trace of the WSN- Experimental results

38

2.11 Decision for routing of resources

“Reentrant flow lines” are of great importance in manufacturing systems [34]

where the resources needed for each job are pre-defined. Resource assignment and

dispatching for such systems is well understood [32, 47]. But in the case of mobile

WSN there are many resources such as distributed sensors and it is not known

beforehand which sensor is most useful for resolution of certain events. Dynamic

sensor selection is a special sort of routing problem [4, 13, 55], or free-choice Petri Net,

which requires highly complex decision-making. Therefore, one can use a new method

for dealing with dynamic sensor selection using a novel Dynamic Priority Assignment

Weighting Matrix.

 Greedy activity/ resource selector algorithm [9] can be used for dynamic

selection of resources most appropriate for a task in the DEC format. This can be done

in the following method:

 For each task that has a choice of resources to use, define a Dynamic Priority

Assignment Matrix (DPAM) according to the example:

Dc=

















1

4.0

6.0

0

0

1

1.0

1

0

3

2

1

3.2.1.

task

task

task

resresres

which indicates that task 1 may be efficiently performed by resource 2, or less

efficiently by resource 3. The numerical entry in position (i,j) is between 0 and 1, and

indicates the efficiency with which resource j performs task i, with 0 indicating that

resource j cannot perform task i, and 1 indicating that resource j performs task i with

39

maximum efficiency. Note that this matrix indicates that task 1 may be performed with

either resource 2 or resource 3, in contrast to the matrix Fr, where multiple entries of 1

in a row indicate that all those resources are required for that task.

 According to greedy dispatching policies [9], one selects the resource to perform

a given task according to the immediate 1-step look ahead maximum payoff. Thus,

depending on the DPAM, at each step, for the free-choice tasks modify the resource

matrix Fr to have 1’s in the entries corresponding to the maximum values of the DPAM

in each row. This effectively selects the current most efficient resource to perform each

task. Then, compute the DEC equations (2.5)-(2.8) to determine which tasks to start

and which resources to reset.

 The DPAM dynamically updates based on the evaluation information from the

task on how well the assigned resource performed, after the tasks are over. Thus,

resources that perform well will be assigned next time to that task. In this way, the

DPAM ensures that an optimal resource is always assigned to a particular task to

improve the overall efficiency of the system.

 The next chapter describes the concept of dynamic resource allocation in MRF

systems with deadlock avoidance.

40

CHAPTER 3

MULTIPLE REENTRANT FLOW-LINES WITH DYNAMIC RESOURCE

ALLOCATION

3.1 Need for Dynamic Resource Assignment

 The coordination of a multi-robot system for the execution of cooperative tasks

is a very active research field [6, 10, 11, 26, 27]. In particular, related literature has

extensively tackled the problem of dynamic resource assignment, to on-line allocate a

resource to a task according to predefined criteria (see e.g. [26] for a thorough

overview). However in most cases the robot team is in charge of executing one mission

at a time and no shared resource conflicts arise. If multiple missions are executed

simultaneously, then system deadlock or conflicts might arise if the resource assignment

is not properly made [17, 32, 47, 50]

 The main objective of this chapter is to implement dynamic coordination of a

mobile sensor network in presence of multiple missions. Therefore it is necessary to

develop a control strategy in charge of simultaneously performing dynamic resource

assignment and solving on-line shared resource conflicts.

 In related literature the implementation of multiple missions for multi-robot

systems has not been adequately studied. However, since the peculiarities of MSN

require multiple competing missions and network topology changes, including mobility

and addition/removal of nodes, dynamic resource assignment algorithms should be

included in the framework of the DEC.

41

 This chapter presents a novel approach to implement on-line deadlock-free

resource assignment for multi-robot systems with multiple missions. At each event

occurrence, when resource changes are required, a greedy algorithm is first

implemented by on-line updating of the resource requirements matrix [47]. The new

resource assignment is accepted if it is compatible with a certain MAXWIP deadlock

avoidance policy specified herein. Specifically, the discrete event system representing

the new mission plan has to satisfy two conditions: After the implementation of the

new resource assignment, it is necessary to guarantee that (1) the system is not already

in deadlock and (2) the new system is regular in a sense described herein. In order to

check the latter condition the regularity test proposed in [32] is launched every time a

new resource assignment is proposed. Having produced an allowable assignment of

resources, the Discrete Event Controller (DEC) described in Chapter 2 is run to assign

the next tasks in the multiple missions based on priority assignment policies.

3.2 One Step Look-ahead Deadlock Avoidance

 The matrix approach in the discrete event controller presented in Chapter 2

provides a rigorous, yet an intuitive mathematical framework to represent the dynamic

evolution of DE systems according to linguistic if-then rules. As shown in [47], the

presented matrix constructions can also be efficiently used to implement deadlock

avoidance policies for discrete event multi-robot systems.

42

3.2.1 Circular Waits

 As mentioned in Chapter 2, for any two resources ri and rj, ri is said to wait for

rj, denoted ri�rj, if the availability of rj is an immediate requirements for the release of

ri. Circular waits (CW) among resources are a set of resources ra, rb,… rw whose wait

relationship among them are ra�rb�…�rw and rw�ra. The simple circular waits

(sCW) are primitive CWs which do not contain other CWs. For a complete analysis of

the deadlock structures, all the CWs need to be identified, not only the sCWs.

 In order to avoid deadlocks, we have to monitor those tasks of the MSN whose

completion activate rules which consume resources in a CW. The task set of a CW C,

J(C), is the set of tasks which need at least one of the resources of C to be started.

Under the assumptions previously presented, a deadlock condition occurs if and only if

there is an empty circular wait [92]. For these systems, an empty CW can only be

caused by activation of tasks of the corresponding critical subsystem. Using the matrix

formulation of (1)–(4) and some matrix manipulations, we can come up with a compact

matrix representation of critical subsystems Jo as follows [47].

)()()()(vd

T

vdvdvdo FCSCFCCFJ ∧=∧= (3.1)

where each entry of ‘1’ in position (i, j) means that task j is included in the critical

subsystem of CW i. dC and Cd are called the input and output rules of a CW and have

‘1’ entry in position (i, j) if the j
th

 rule increases or reduces the number of available

resources in the i
th

 CW respectively.

43

 A simple deadlock avoidance strategy consists in not allowing the number of

activated tasks of the critical subsystem to become equal or greater than the number of

available resources in the i
th

CW Ci (MAXWIP policy [47]).

)())((ioio CmCJm < (3.2)

 Therefore, we can conveniently update the conflict resolution input ud to inhibit

rules which, if activated, would violate condition (9) and lead to deadlock conditions.

 Our dispatching policy follows three main steps:

i. Based on the structure of the system defined by matrices F and S, we calculate

the CWs, their corresponding critical subsystems and the number of available

resources)(io Cm in the ith CW Ci .

ii. For every DE-iteration, we calculate from the current marking vector, mcurrent,

the corresponding possible successor-marking vector, mpossible. Equation (6) provides

this possible successor ma(t+1)=mpossible; ma(t)=mcurrent; mpossible is readjusted keeping

into account possible shared resource conflicts (on-line computation). If the selected

mpossible does not satisfy condition (9), then it is necessary to eliminate the task that is

attempting to cause a deadlock, inhibiting the corresponding rule. This is done by

conveniently updating vector ud. Then the algorithm restarts from step 2 (on-line

computation).

3.3 Deadlock-free Dynamic Resource Assignments

 The concept of dynamic resource assignment is highly substantial in multi-robot

systems to adapt to unstructured and dynamic environments [26]. In other words, to

44

improve the coordination of a mobile sensor network, it is necessary to continuously

update the set of matrices defined in the DEC based on new environmental conditions.

 To cast the dynamic selection of resources most appropriate for a task into the

DEC format, one may use the Greedy activity/resource selector algorithm from [9] to

on-line modify the resource assignment matrix Fr as follows.

 For each task that has a choice of resources to use, define a Dynamic Priority

Assignment Matrix (DPAM) (Chapter 2) according to the example:

 3.2.1. resresres

1

5.0

7.0

0

0

1

2.0

1

0

3

2

1

task

task

task

Dc =

which indicates that task 1 may be efficiently performed by resource 2, or less

efficiently by resource 3. The numerical entry in position (i, j) is between ‘0’ and ‘1’,

and indicates the efficiency with which resource j performs task i, with ‘0’ indicating

that resource j cannot perform task i, and ‘1’ indicating that resource j performs task i

with maximum efficiency. Note that this matrix indicates that task 1 may be performed

with either resource 2 or resource 3, in contrast to the matrix Fr, where multiple entries

of ‘1’ in a row indicate that all those resources are required for that task.

 According to greedy dispatching policies [29], one selects the resource to

perform a given task according to the immediate 1-step look ahead maximum payoff.

The algorithm looks for an ideal resource for a particular task. If it does not find a

resource, it waits for a resource that is most suitable and available for that particular

task. The task is not started till the resource is found. Therefore, depending on the

45

DPAM, at each event step, for the free-choice tasks, the resource matrix Fr is modified

to have 1’s in the entries corresponding to the maximum values of the DPAM in each

row. This effectively selects the current most efficient resource to perform each task.

Then, the DEC equations (1)-(4) are computed to determine which tasks to start and

which resources to reset.

 After the tasks have been performed, the DPAM is dynamically updated based

on evaluation information from the task on how well the assigned resource performed.

Thus, resources that perform well will be assigned next time to that task. The

implementation of this resource assignment policy optimizes the single association

resource/task without taking into account the global effect of all the associations. In

multi-mission systems this way of proceeding may lead to shared resource conflicts and

deadlocks. In [32] a similar approach was used which did not take into consideration the

dynamic resource assignment problem.

 In [28], the implementation of the deadlock avoidance policy assumed fixed

structure of the matrices F and S. However the MAXWIP deadlock avoidance policy

presented in Section 3.2 is based only on the current status of the system, i.e. on the

current configuration of matrices F and S. Therefore it is possible, after every iteration,

to update the resource requirement matrices of the DEC using the DPAM and then

check if the resource assignment conflicts with the MAXWIP deadlock avoidance

policy. If a conflict arises, then a new resource assignment is presented until the

requirements of the MAXWIP policy are met. Figure 3.1 shows a flowchart

46

representing the procedure to update the DEC to adapt to the changing operating

conditions while guaranteeing a deadlock free dispatching.

The procedure is as follows:

 1) After a new transition of the DEC, if a resource reallocation or a priority

change is needed, the mission plans can be accordingly updated by redefining matrices

Fr, Sr and Fud through a human operator or an automatic decision making algorithm

(DPAM). The only constraint to be observed is that it is not possible to reassign the

resource to a task currently in progress.

 2) We then calculate the new set of circular waits CW and the new sets of

critical subsystem Jo. At this point, before applying the MAXWIP policy, two

conditions must be met.

 First of all we have to apply Gurel’s regularity test described in [32], in order to

be sure that no key resources [50] are present in the system after applying the new

resource assignment. The output of the Gurel’s algorithm is a matrix Rescw which is a

matrix of critical resources. There is a certain pathological case that requires extreme

care in the process of deadlock avoidance and dispatching. This situation is called

second level deadlock (SLD) (see [19, 20, 21, 22] for more details). SLD is not a

circular wait even if necessarily evolves into a deadlock in the near future. SLD exists

on the presence of critical resources known as bottlenecks ([50]) and key resources.

Bottleneck resources are identified by analyzing interconnectivities in circular wait

relationships. Secondly, we have to make sure that the system is not already in a

deadlock situation.

47

 If at least one of these two conditions is not satisfied then another resource

assignment attempt is made and algorithm restarts from step 1.

 3) If the system is regular and not currently in deadlock, then the new resource

assignment is actually implemented. The MAXWIP policy is compatible with the new

system.

This procedure can be seen as a constrained optimization in resource

assignment. It ensures that all the tasks are performed using the best resources available

which do not cause the occurrences of deadlocks.

3.4 Simulation Results

 Matlab simulation results are proposed to illustrate the proposed control

approach. Two missions have been implemented for a sensor network composed of 7

mobile robotic sensors. The two missions encompass a sequence of 4 and 7 tasks

respectively. The proposed algorithm can be easily extended to networks with several

resources.

Resource reallocation,

priority changes

New missions start

Update F and S

Calculate CW and Jo

Deadlock avoidace

policy (MAXWIP)

DEC transition

System regular

and no deadlock

present?

N

Y

Input u

Figure 3.1 Flow chart representation of the deadlock-free dynamic resource assignment

algorithm

48

3.4.1 Resource Assignment-Attempt 1

 Consider figure 3.2. Suppose that at a certain instant of time, a new resource

assignment is performed and the resource requirement matrix is accordingly updated.

Also, suppose that resources R1, R2, R3 and R4 are currently busy, i.e. the resource

vector is r = [0 0 0 0 1 1 1].

R2

 R1 R3 R6 R7

 R4 R5

x6 x7 x8 x9 x10 x11 x12 x13

x1 x2 x3 x4 x5

u1
y1

u2 y2

Figure 3.2 Petri net representation of the system after attempt 1

The new resource matrix Fr would then be:





























=′

0100000000000

0001000001000

0010000000000

0000100100000

0000010000100

0000000000010

0000001000001

 rF

Using the equation presented in previous section we can then calculate the matrices of

circular waits, critical subsystems and critical resources respectively corresponding to

the new resource assignment:

49









=

0001111

0001101
 CW 








=

00001110011

00001110000
oJ









=

0 0 0 0 0 0 0

0 0 0 0 0 0 0
Re cws

 Analyzing vector r and matrix CW, it results that resources R1, R3, and R4,

which compose the first circular wait (first row of matrix CW), are all busy. If this

resource assignment was accepted, the circular wait would be empty and the system

would be in a deadlock (see figure 3.3).]. For sake of clarity Figure 2 reports the Petri

Net corresponding to this first candidate resource assignment highlighting the empty

circular wait.

Figure 3.3 Event time trace resource assignment attempt 1: system is in deadlock

3.4.2 Resource Assignment- Attempt 2

 The greedy algorithm makes a second attempt for a new resource assignment.

The resource requirement matrix, the circular waits, critical subsystems and critical

resources become:

50





























=′

0010000000000

0000000001000

0000100000000

0001010000000

0000001000000

0000000000010

0100000100101

 rF



























=

1011111

1011101

1001111

1001101

0011000

0000011

 CW



























=

01111110011

01111110000

01100110011

01100110000

00011000000

00000000011

oJ

 R4 R5

 R1 R3 R6 R7

R2

 x6 x7 x8 x9 x11 x12 x13

x1 x2 x3 x4 x5 u1 y1

u2 y2 x10

Figure 3.4 Petri net after second attempt of resource assignment: system is not regular

 Analyzing vector r and matrix CW, it is possible to note that this assignment

would result in a deadlock (compare with the corresponding Petri Net in figure 3.4 for

tasks 1 and 2). Also, by applying the Gurel’s test for regularity [32] to calculate the

matrix of critical resources Rescw for the new candidate system, it results that R4 is a

critical resource

51



























=

0000000

0000000

0001000

0001000

0001000

0000000

Re cws

The system is therefore irregular and a second order deadlock is present: the MAXWIP

policy cannot be applied.

3.4.3 Resource Assignment- Attempt 3

 Therefore the proposed resource assignment is discarded and the greedy

algorithm comes up with a new assignment (see figure 3.5).

 x9 x10 x12 x13

x1 x2 x3 x4 x5

 R4 R5 R7

 R1 R3 R6

R2

u1 y1

u2 y2 x7 x8 x11 x6

Figure 3.5 Resource assignment attempt 3: all requirements are met, the new

configuration is accepted





























=′

0001000000000

0100100000000

0000001000000

0010000100000

0000010000100

0000000001010

0000000000001

 rF

The circular waits, critical subsystems and critical resources in this case are:

52



















=

1111110

1111100

1101000

0000110

CW



















=

01111110110

01111110000

01110000000

00000000110

oJ



















=

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

Re cws

 The obtained system is regular (see Rescw matrix) and does not present empty

circular waits (compare vector r and matrix Cw). This configuration is accepted and a

successful implementation of the tasks with the new resource assignment can finally

take place (figure 3.6).

Figure 3.6 Event time trace resource assignment attempt 3: deadlock free dynamic

resource assignment

53

 A good application for this technique is monitoring of a warehouse using ground

sensors and mobile robots [29]. Appropriate allocation of resources is critical in such

applications.

3.5 Implementation Results

 To show the effectiveness of the proposed strategy, the same scenario discussed

in Section 3.4 is implemented at Automation and Robotics Research Institute (ARRI).

The test-bed consists of four Acroname
®
 Garcia robots which act as mobile resources

while three Crossbow
®

 Mica2 sensors act as stationary resources. The mobile robots are

also endowed with Crossbow
®
 sensors, so that we have a test-bed consisting of mobile

and stationary sensors. Also, MIT cricket sensors (ultrasound ranging) are used for

localization of the mobile resources. All the resources can communicate with each other

for transmisson of data to and from the base-station. The greedy resource allocation is

based on how close the resource is to the current task. Figure 3.7 shows the existing

test-bed at ARRI.

Figure 3.7 Test-bed at Automation & Robotics Research Institute

54

 When the number of tasks and resources are increased, the formulation of the

required system matrices becomes cumbersome. The LabVIEW
®
 toolkit developed at

ARRI generates the matrices with a default conflict resolution matrix automatically

when the resources are assigned to the tasks. The user can either manually change the

resource allocation or the resource allocation can be changed automatically by the

greedy resource assignment. Figure 3.8 and 3.9 show the front panel of the toolkit. The

toolkit also generates the Petri Net for better visualization.

 Figure 3.8 Automatic generation of matrices

 Figure 3.9 Automatic Petri-Net generation

55

 Suppose the rule-base of the two missions discussed in section 3.4 is defined as

shown in table 3.1.

Table 3.1 Rule-Base for the two missions in Section 3.4

TASK NO. TASKS/EVENTS RESOURCES

Mission 1

INPUT
Event detected at Door1

First

Attempt

Final

Attempt

Task 1 Get Data from Door 1 R1 R1

Task 2 Robot 1 (R2) starts monitoring its round R2 R2

Task 3 Get data from Machine 1 R3 R3

Task 4
Collect data from Door1 and send data back to

Base station
R6 R2

Mission 1

OUTPUT
Base station receives data

Mission 2

INPUT
Machine malfunction detected

Task 6 Get data from Machine 3 R4 R4

Task 7 Get data from Machine 2 R1 R5

Task 8 Get data from Machine 1 R3 R3

Task 9 Get data from Machine 2 again R4 R6

Task 10 Get Data from Door 2 R6 R7

Task 11 Get Data from Door 3 R5 R4

Task 12 Send all information back to the Base station R7 R6

Mission 2

OUTPUT
Base station receives data

 Here R2, R3, R4 and R6 are mobile robots while R1, R5 and R7 are stationary

sensors. As the robots change position while performing tasks, they become suitable for

other tasks. Thus, based on the position of the resources with respect to the tasks, the

greedy algorithm reassigns the resources.

As shown in figures 3.10 and 3.11, the highlighted tasks are the tasks currently

being executed (tokens are in the tasks). Figure 3.2 shows the first attempt of resource

assignment in table 3.1.

56

Figure 3.10 Initial Resource assignment

Figure 3.11 Final Resource assignment

Currently R1, R2, R3 and R4 are busy, and if the first attempt assignment shown in table

1 is made, deadlock will occur (see figures 3.2 and 3.3). As the robots change their

locations, the assignment shown in figure 3.11 seems more appropriate. This

assignment does not create any system deadlock. The advantage of the toolkit is that the

resource assignment is done in run-time ensuring that the best set of resources is used

for the tasks with no blocking phenomenon.

 The next chapter considers deadlock avoidance in systems where routing of

tasks are allowed.

Machine 2

Machine 3

Machine 1

Base

Station

Door1

Door3

D
o

o
r2

R1

R5

R6

R2

R3

R4

R7

Machine 2

Machine 3

Machine 1

Base

Station

Door1

Door3

D
o

o
r2

R1

R5

R6

R2

R3

R4

R7

57

CHAPTER 4

FREE-CHOICE MULTIPLE REENTRANT FLOW-LINES

4.1 Introduction

 Resource assignment and task sequencing play important roles in applications

involving mobile wireless sensor networks, manufacturing systems, and other decision

resource systems. But, the use of shared resources in these discrete event systems (DES)

creates major problems while sequencing tasks. If the assignment of the resources is not

correctly made, serious problems might arise. Such problems include blocking and

system deadlock [1, 2, 17, 18, 19, 20, 21, 22, 32, 39, 45, 46, 47, 49, 54, 56, 61, 62, 92,

93, 96], which are dangerous situations that eventually stop all the activity in the flow

line involved.

 In the past decade, considerable research has been done on developing deadlock

control policies and routing in PN structures [4, 13, 32, 47, 50]. [97] provides an up-to-

date survey on deadlock control policies used in PN. Vishwanadham et al. [89]

suggested the use of PN for deadlock control. They define two main approaches for

tackling the deadlock problem, namely, deadlock prevention (DP) [17, 35, 36, 44, 46]

and deadlock avoidance (DA) [32, 47, 50, 54]. In DP methods, the system model is

modified off-line so that the resulting controlled model is deadlock-free. DP approach

makes use of adding extra control places to the original PN structure to prevent

deadlock. DA algorithms check the system flow on-line to see that the system does not

58

fall in a deadlock state. DP and DA approaches require setting up a suitable control

policy to regulate the shared resource allocation in the system. This chapter mainly

focuses on the DA approach for a class of PN called FMRF. This is an online deadlock

avoidance policy which does not require the addition of extra control places to the

original PN structure.

 Several existing approaches for DA in the literature are designed for the case of

Multi Reentrant Flow Line systems (MRF) [1, 32, 47, 50, 87], where resources are

shared and can perform more than one task. MRF systems are also known as S2LSPR

(System of Simple Linear Sequential Processes with Resources) where flexible routing

of tasks is restricted [54]. Analysis of deadlock avoidance and prevention is well

understood for MRF. An important aspect in deadlock avoidance strategies in MRF is

the concept of a Circular Wait (CW) [32] among the resources. It has been shown in

[47, 92] that deadlock occurs in MRF when blocking develops in a CW.

 The analysis of shared resources becomes even harder when choices are allowed

for tasks. This means routing decisions have to be made [4, 13, 53]. These systems are a

generalized case of MRF systems called the Free Choice Multi-Reentrant Flow Lines

(FMRF). FMRF systems are also known as S3PR (System of Simple Sequential

Processes with Resources). In the case of FMRF, the known methods of deadlock

avoidance provided for MRF do not work. There are many DP methods for S3PR

systems in the literature, but we are mainly concerned with DA policies (online

deadlock control).

59

 It should be noted that in Free-Choice PN, choices for tasks are allowed [2, 4,

13] whereas there are some other PN structures called Choice-Free PN where task

choices are not allowed. Also, FMRF structure differs from PN structures such as

ES3PR (Extended S3PR) [35, 36] or S3PGR2 (System of Simple Sequential Processes

with General Resource Requirements) [54]. Such structures make use of more than one

resource for a given task. Also, this work deals with deadlock avoidance in Free-Choice

Petri Nets and not on the routing of resources employed in such systems. The routing

mechanism is well studied in the literature and also features in the work of Park and

Reveliotis [54], Lawley [42], etc. This work deals with deadlock avoidance and

resource dispatching (not allocation) in systems where job path choices are allowed.

 A matrix-based discrete event controller has been proposed, proving to be very

efficient in computing PN objects and in sequencing tasks in manufacturing

environments as well as sensor networks [1, 28, 29, 32, 47, 48, 50] for MRF systems.

This chapter provides an extension of the matrix-based DA results of MRF systems to

FMRF systems.

 PN objects such as Circular Waits, Critical Siphons, and Critical Subsystems

have been defined to avoid deadlock in MRF [32, 47, 50]. Due to the existence of

decision place in FMRFs, which are followed by two or more decision branches, these

objects cannot be used for deadlock avoidance there without redefinition.

This chapter shows how these objects can be computed for FMRF. The key

issue is that it is necessary to redefine, or generalize the definition of, critical

subsystems to FMRF. Also, we extend a matrix formulation which can efficiently

60

compute these objects for FMRF. This matrix formulation allows fast and efficient

numerical computation techniques to be applied to PN analysis. We show how a

MAXWIP dispatching policy can be formulated for FMRF to avoid blocking

phenomena. Under this policy, deadlock in FMRF can be avoided by limiting the work

in progress (WIP) in the Critical Subsystems of each CW. There is another type of

deadlock called the second order deadlock [32, 47]. In this chapter we provide a

regularity test to find key resources in the FMRF systems that cause second order

deadlocks.

 The rest of the chapter is organized as follows. In Section 4.2 we describe the

properties that characterize FMRF/S3PR systems using Petri Nets. In Section 4.3 we

show the correlation between circular waits and structures referred to as Critical

Siphons and Critical Subsystems. We generalize the notion of critical siphon to the

case of FMRF. Section 4.4 presents a matrix formulation over an or/and algebra that

makes it efficient and direct to compute the Petri Net objects needed for deadlock

avoidance. In Section 4.5, we illustrate the new notions by computing them for three

FMRF/ S3PR examples. The first example admits deadlock while the second does not.

The third example is an FMRF system that contains a key resource.

4.2 Petri Net Analysis of FMRF Systems

4.2.1 Definition of FMRF Systems

 More general than MRF are the free-choice multiple reentrant flow-line systems

(FMRF), which have no predetermined resource allocation for the jobs. That is, several

61

different resources may be capable and available to perform a specific job. Then,

routing decisions may be required along the part path about which resources to use for

the next job, see figure 3.1.

 We formally define FMRF systems as a class of systems satisfying the following

properties (φ being the empty set):

Properties of FMRF

1. φ=•∩•∈ ppPp ,

2. on part path j, xj1 φ=∩• JP \ and φ=∩• JPx jLj \

3.)(∩∩,∈∀ pRRpRpJp =••=•• with 1)(=pR

4. 1, ≥•∈ pJp

5. kijki ppkiJpp ≠≠∈∀ ,,,

6. φ=•∩•≠∈∈∀ lkjilkji ppljJpJp ,,,

7. Rs φ≠

 This means that there are: (1) no self loops, (2) each part path has a well-defined

beginning and an end, (3) every job requires only one resource with no two consecutive

jobs using the same resource, (4) there may be some jobs that can be done by different

resources (i.e. routing decisions may have to be made), (5) there are no part path loops,

(6) for any two distinct jobs on different part paths there is no assembly, i.e. two part

paths cannot merge into one, (7) there are shared resources.

 According to property 3, RpRppR ∩••=∩••=)(, with the cardinality

1)(=pR ; Under the foregoing assumption, one has JrJrrJ ∩••=∩••=)(.

62

Property 4 distinguishes MRF from FMRF systems. A FMRF system can have

1>•p for some Jp ∈ , so that routing decisions are needed. We call such job places

‘decision places’. In MRF, one has 1=•p Jp ∈∀ . That is, MRF are a special class

of FMRF. A transition •∈ px is said to be a posterior transition of p. A decision

place has multiple posterior transitions, i.e. 1>•p . The resources used by decision

places are called decision resources.

 Figure 4.1 shows a sample FMRF. In figure 4.1 the part paths split at decision

places. The decision places are B1 and B2, each followed by two transitions. A choice

is required there to decide which resource (R1 or R2, respectively R3 or R4) to use for

the next job.

Figure 4.1 FMRF system

4.2.2 Circular Waits in FMRF Systems

 In chapter 2 we defined J(C)+ and J(C)0. Note that for FMRF, one may

have φ≠∩+ 0)()(CJCJ . In fact, if)(CJp ∈ is a decision place with C a simple

 R2 R4 R5

 R6A R7A

Pi2 t12 R4B t13 t14 t15 Po2

 R6 R7

 t3 R2A t5 t7 R4A t9

 Pi1 t1 B1 t2 R1A t4 B2 t6 R3A t8 B3 t10 R5A t11 Po1

 B1 R1 B2 R3 B3

63

CW, i.e. 1>•p so that it has more than one posterior transition, then, +∈)(CJp

and 0)(CJp ∈ . This is precisely what distinguishes deadlock avoidance in MRF from

deadlock avoidance in FMRF systems.

Figure 4.2 Sample FMRF system

 Figure 4.2 shows a FMRF system. Here, R1-B2-M1-B3 is a CW C. Here, r1a,

m1, b2 and b3 are in J(C)0 and r1b is in J(C)+. b2 and b3 are decision places and B2 and

B3 are the respective decision resources. In FMRF systems, due to their construction,

the decision places (b2 and b3 in this example) are also a part of J(C)+.

4.2.3 Siphons in FMRF Systems

 The analysis of CB and deadlock can be carried out formally using the notion of

siphon. A siphon is a set of places having the property that its input transition set is

contained in its output transition set i.e.

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

R1

R2

B1 B2 B3

M1

M2

r1a r1b

r2a r2b

b1 b2 b3

m1

m2 Pin1 Pout1

Pin2 t14 r2c t15 r3a t16 r4a t17 Pout2

 R3 R4

64

•⊂• SS (4.1)

A siphon has the key property that, once it is unmarked, it remains so.

 A minimal siphon of a CW C is the smallest siphon containing the CW. Define

a critical siphon for a CW C as a smallest siphon which has the property that a CW is a

CB if and only if the critical siphon is empty. It is shown in [32, 47] that a minimal

siphon in MRF is a critical siphon.

For MRF systems, for every CW C, the set of places
∧

cS defined by

+

∧

∪=)(CJCS c (4.2)

is a minimal siphon as well as a critical siphon, where J(C)+ was defined earlier [32,

47].

 In the case of FMRF systems, this object is still a minimal siphon, but it cannot

be used in deadlock analysis due to decision places. Hence it is not a critical siphon as is

now shown.

Lemma 4.1: For FMRF systems,
∧

cS is a minimal siphon for the CW C.

Proof: To prove that
∧

cS is a siphon, we need to show •⊆•
∧∧

cc SS , i.e., every transition

having an output place in
∧

cS has an input place in
∧

cS . It is known that, for every

Cri ∈ , there exists jiCr j ≠∈ , , such that φ≠•∩• ji rr . So, if,
_

rnsi BRCr ∩∩∈ with

Br being the decision resources, then 1=• ir , and there exists some jiCr j ≠∈ , , such

that }{ •∈• ji rr . On the other hand,)(rsi BRCr ∪∩∈ , then for every }{ irx •∈ , either

65

}{ •∈ jrx , for some jiCr j ≠∈ , , or •∈ px , for some +∈)(CJp . Moreover,

,)(+∈∀ CJp }{ •∈• rp for some r C∈ by Property 3. This proves that •⊆• cc SS ˆˆ ,

therefore by construction, Sc is a siphon.

The minimality of
∧

cS is obvious from the way it is constructed in FMRF systems. If

any +∈)(CJp is left out, then there will be some sk RCr ∩∈ with •⊄•
∧

ck Sr }{ .

Similarly if one of the resources in C is not considered, Cri ∈ is left out, then there will

be at least one Cr j ∈ with •⊄•
∧

cj Sr }{ . Both the cases violate the definition of siphon.■

Lemma 4.2: Let C be a simple CW and
∧

cS contain a decision place whose associated

decision resource is not a shared resource, then
∧

cS contains a p-invariant and can never

be empty.

Proof: Let C be a simple CW and
∧

cS be defined by (4.2). Suppose
∧

cS contains a

decision place p with an associated resource place rp that is not shared, i.e. J(rp) = p.

Then 1∩ =•• prC and 1>•p , so that 0)(CJp ∈ and +∈)(CJp . Therefore,
∧

∈ cSp .

Moreover,
∧

∈ cp Sr so that the p-invariant)(pp rJr ∪ is in
∧

cS . ■

4.3 Critical Siphons & Deadlock Avoidance for FMRF Systems

 Lemma 4.1 shows that
∧

cS given by (4.2) is indeed a minimal siphon, even for

FMRF, but Lemma 4.2 shows that in some situations for FMRF,
∧

cS can never be

66

empty. Since deadlock can still occur in such situations, it is necessary to provide an

alternative formula for critical siphons for FMRF.

4.3.1 FMRF Critical Siphons

 Let Cs be the set of all simple CWs in a FMRF system. Let p be a decision place

with resource place rp=R(p). Define the set of all the simple CWs in Cs containing the

decision resource rp as

 }|{ CrCCC psp ∈∈= (4.3)

Given a CW C, let the set of its decision places be

 }1|)({)(>•∈= pCJpCJ dec (4.4)

Define,

)}(|{)(CJpCCC decpp ∈= (4.5)

which is the key to deadlock analysis in FMRF systems.

 We need to recursively compute Cp(C), as each individual simple CW in Cp(C)

defined in (4.5) may contain more decision resources, and so on as shown in figure 4.3.

Hence we need an algorithm to calculate Cp(C). Algorithm 1 shows a modified version

of the greedy activity selector algorithm [9]. Define cη as the number of CW in the

system. A method for determining all the CWs in a system is given in Section 4.4.

67

Figure 4.3 Representation of simple CW dependence through decision places

Algorithm 4.1: Compute Cp(C) for a CW C

 Given a CW C,

 1. Calculate Cp(C) using Equation 8

 2. x = 1

 3. y = cη

 4. For x  1: y

If any xppxp CCCCCCr \)())((∉⊂∈ (for each decision resource in the system)

 Cp(C) = [Cp(C) ∪ Cp(Cx)]

5. Return Cp(C) ■

 Note that this algorithm computes the set Cp(C) for a single CW. The time

complexity of this algorithm is known to be linear [9] as the running time is directly

proportional to cη . Hence the complexity from step 4 to 5 is O(cη). The complexity for

computing Cp(C) for all the CWs in the system is O(cη 2
)

C6

C5

C4

C1

C2

C3

C4

68

 Also, when this algorithm terminates, Cp(C)=Cp(Cp(C)). This algorithm

terminates in one of the two ways:

a) φ=∩+ 0))(())((CCJCCJ pp or

b) φ≠∩+ 0))(())((CCJCCJ pp .

 In the discussions ahead, we will prove that in case (b), Cp(C) can never be in

CB and hence no CW in Cp(C) can be in CB.

 Define a relation
~

~ CC , if there exists a resource
~

CCr ∩∈ . Note that

“ ~ ”satisfies the following properties:

 1.
~~

~ CC (Reflexivity)

 2. If
~

~ CC then CC ~
~

 (Symmetry)

 3. If
~

~ CC and
_~

~ CC then it is not guaranteed that

_

~ CC (Not Transitive)

Therefore, ~"" is not an equivalence relation. Define a second relation
~

CC ≈ if there

exists a set of CW Ci such that
~

21 ~~...~~ CCCCC n . Note that,

 1. CC ~ (Reflexivity)

 2. If
_

~ CC then CC ~
_

 (Symmetry)

 3. If
~

CC ≈ then CC ≈
~

 (Transitive)

69

Therefore the relation ""≈ is an equivalence relation [33] and partitions the set of all the

CW into disjoint equivalence classes K(C) ={ CCC ≈
__

: }, i.e. K(C)=K(
_

C).

Corollary 4.1: For any simple CW)(CCC p∈
−

, Cp(C) =)(
_

CC p .

Proof: The algorithm merely computes the set Cp(C)=K(C). Therefore, Cp(C) =

)(
_

CC p . ■

Lemma 4.3: Cp(C) is a CB if and only if:

1. φ=∩+ 0))(())((CCJCCJ pp

2. m(Cp(C)) = 0 and

 3. for each)(),(ipi rJpCCr ∈∀∈ with 0)(≠pm , 0))((CCJp p∈

Proof: Necessity: Let Cp(C) be in CB i.e it is empty. This means that m(Cp(C))=0. Let

))((CCJp p∈ and suppose +∈))((CCJp p . Then either φ=•∩• rp or there exists a

resource)(CCr p∉ such that φ≠•∩• rp . This means that a transition •∈ pt may fire

and put a token in R(p) so that Cp(C) does not remain empty. Therefore, all the marked

jobs are in J(Cp(C))0 and not in J(Cp(C))+ and conditions 1 and 3 hold.

Sufficiency: Conditions 1 and 3 of Lemma 4.3 imply that any)(CCr pi ∈ can get a

token if and only if some)(CCr pj ∈ with ij ≠ , can get a token. However by condition

2 of Lemma 4.3, all the R-places in Cp(C) are empty, and hence none of them can ever

get any token. In other words, Cp(C) is in CB. ■

Lemma 4.4: For MRF, C is in CB if and only if:

1. m(Cp(C)) = 0 and

70

2. for each)(),(ipi rJpCCr ∈∀∈ with 0)(≠pm , 0))((CCJp p∈

Proof: In MRF, Cp(C) = C and condition 1 of Lemma 3 always holds. ■

Given a CW C define the object,

 +∪=))(()(CCJCCS ppc (4.6)

 The next results show that cS is a critical siphon for C for FMRF systems under

a certain condition.

Lemma 4.5: For any CW C, cS defined in (4.6) is a minimal siphon for Cp(C).

Proof: One needs to show that •⊆• cc SS , i.e., every transition having an output place

in Sc has an input place in Sc. By construction,)(CCS pc •⊂• , i.e., the output places for

these transitions are resources in Cp(C). It is known that, for every)(CCr pi ∈ , there

exists jiCCr pj ≠∈),(, such that φ≠•∩• ji rr . So, if nspi RCCr ∩∈)(, there exists

some jiCCr pj ≠∈),(, such that }{ •∈• ji rr . On the other hand, spi RCCr ∩∈)(, then

for every }{ irx •∈ , either }{ •∈ jrx , for some jiCCr pj ≠∈),(, or •∈ px , for some

+∈))((CCJp p . Moreover, ,))((+∈∀ CCJp p }{ •∈• rp for some r)(CC p∈ by

Property 3. This proves that •⊆• cc SS , therefore by construction, Sc is a siphon.

Minimality follows by the way Sc is constructed. ■

Note, for MRF, Cp(C) = C,
^

cc SS = and Lemma 4.1 is recovered.

Lemma 4.6: If φ≠∩+ 0))(())((CCJCCJ pp , then Sc contains a p-invariant and can

never be empty.

71

Proof: If φ≠∩+ 0))(())((CCJCCJ pp , it means that there exists a decision place p

such that +∈))((CCJp p and 0))((CCJp p∈ . Also, by definition of Sc, cSp∈ . If rp is

the corresponding resource of p, cp Sr ∈ , so the p-invariant)(pp rJr ∪ is also in Sc.

Hence it can never be empty. ■

 The next result shows that Sc is a critical siphon for Cp(C).

Theorem 4.1: Given Cp(C) and let φ=∩+ 0))(())((CCJCCJ pp . Then Cp(C) is in CB

if and only if cS is empty.

Proof. Necessity: If Cp(C) is in CB, Lemma 4.3 shows that m(Cp(C))=0 and m(p) 0≠

only for 0))((CCJp p∈ . Suppose cS is not empty. Then there is a place p’ such that

+∈))((' CCJp p and 0)'(≠pm . This is a contradiction.

Sufficiency: cS is a siphon and by definition, once it is empty, it will remain so. Thus,

when m(Cp(C))=0, with all the tokens lost to some)(irJp ∈ , with m(p) 0≠ means that

+∉))((CCJp p and hence, 0))((CCJp p∈ . Since φ=∩+ 0))(())((CCJCCJ pp , by

Lemma 4.3 Cp(C) is in CB. ■

 Theorem 4.2: Let φ≠∩+ 0))(())((CCJCCJ pp . Then Cp(C) can never be in CB.

Proof: For Cp(C) to be in CB, m(Cp(C))=0 and m(p) 0≠ only with 0))((CCJp p∈ .

Suppose also +∈))((CCJp p . This implies)()(CCRp p∉∩•• . Thus, this token can be

fired. Hence, deadlock does not occur. ■

72

 There exists a relationship between Lemma 4.6 and Theorem 4.2. When

φ≠∩+ 0))(())((CCJCCJ pp , it means Sc has a p-invariant and hence, Cp(C) can never

be in CB.

Lemma 4.7: Given a CW C={ri}. Then

 (i) 00))(()(CCJCJ p⊂

 (ii)If φ=∩+ 0))(())((CCJCCJ pp , then ++ ⊂))(()(\)(0 CCJCJCJ p

Proof: (i) Given C={ri}. Then by definition)(CCC p⊂ . Now, let there be place p’

such that 0)(' CJp ∈ and 0))((' CCJp p∉ . In this case, φ≠∩•• Cp)'(and

φ=∩••)()'(CCp p . This means that)(CCC p⊄ , which is a contradiction. Hence,

},|)({)(0 CrrpCJpCJ iio ∈•∈•∈=)}(,|)(({ 0 CCrrpCCJp pjjp ∈∈∈⊂

0))((CCJ p⊂

(ii) In FMRF, if C is a CW with decision place p then, 1>•p , 0)(CJp ∈ and also

possibly +∈)(CJp as stated earlier. Hence the set })(\)({ 0CJCJ + strictly consists of

job places belonging to J(C)+ without decision places. Let })(\)({ 0CJCJ + be denoted

by J(C)s+ . Now by definition, J(C) = 0)()(CJCJ ∪+ and

J(Cp(C))=J(Cp(C))+ ∪ J(Cp(C))0 . By (i), 00))(()(CCJCJ p⊂ . Since)(CCC p⊂ ,

J(C) ⊂ J(Cp(C)). Therefore, J(C)\J(C)0 ⊂ J(Cp(C))\J(Cp(C))0 . The term J(C)\J(C)0 is

equal to J(C)+\J(C)0 i.e. J(C)s+ . Also, the term J(Cp(C))\J(Cp(C))0 is J(Cp(C))+ as

φ=∩+ 0))(())((CCJCCJ pp . Thus, ++ ⊂))(()(\)(0 CCJCJCJ p . ■

 The next results show that Sc is a critical siphon for C.

73

Theorem 4.3: If φ=∩+ 0))(())((CCJCCJ pp then CW C is in CB if and only if Cp(C)

is in CB.

Proof: Necessity: Suppose C be in CB and Cp(C) is not in CB.

Case 1: If C does not contain decision places then C=Cp(C) and the result follows.

Case 2: If C is in CB, then m(C)=0. Consider a resource r C∈ and its job place p such

that r is dead i.e. m(r)=0 for all future firings. Since r is dead, rp •∈• and hence,

RrRp ∩••∈∩••)(must all be dead for C to be in CB. Cp(C) and C are related to

each other by their decision resources. So, iterating this process in a PN from r

backwards to a path of transitions and R-places which include all resources of Cp(C),

must be dead. For C to remain in CB, no token should be added to C and hence no

token should be added to Cp(C). Thus, all the jobs in Cp(C) must be in J(Cp(C))0. The

condition φ=∩+ 0))(())((CCJCCJ pp ensures that when Cp(C) is in CB, all the tokens

are in J(Cp(C))0 and not J(Cp(C))+. Hence C is in CB.

Sufficiency: Let Cp(C) be in CB. Then m(Cp(C))=0 and hence m(C)=0. Also by Lemma

4.3, all marked jobs are in J(Cp(C))0. and not in J(Cp(C))+ and

φ=∩ +))(())((0 CCJCCJ pp . By Lemma 4.7 00))(()(CCJCJ p⊂ and

J(C)s+ ⊂ J(Cp(C))+ where J(C)s+ = })(\)({ 0CJCJ + . Now, J(C)s+ ∩ J(Cp(C))0 = φ .

Hence for all resources ri in C and)(irJp ∈ having 0)(≠pm , 0)(CJp ∈ . Therefore,

Cri ∈ can get a token if and only if some other)(CCr pj ∈ has a token. Hence C is in

CB. ■

74

Corollary 4.2: Given a CW C, and suppose φ=∩ +))(())((0 CCJCCJ pp , then C is in

CB if and only if Sc is empty.

Proof: By Theorem 4.3, C is in CB if and only if Cp(C) is in CB. Then Theorem 1

completes the proof. ■

Corollary 4.3: Given φ=∩ +))(())((0 CCJCCJ pp , Cp(C) is in CB if and only if all

the simple CWs in Cp(C) are in CB.

Proof: Necessity: Suppose Cp(C) is in CB. Let there be a simple CW)(1 CCC p⊂ such

that it is not in CB. It means either m(C1) ≠ 0 or token can be added to C1. Since

)(1 CCC p⊂ , 0))((≠CCm p or tokens can be added to Cp(C). Hence, Cp(C) is no

longer in CB.

Sufficiency: If all the simple CWs in Cp(C) are in CB, it means m(Ci)=0 and no tokens

will ever be added to Ci. Since Cp(C)= iC∪ , m(Cp(C))=0 and m(J(Cp(C)0)) φ≠ . Hence

by definition of CB, Cp(C) is in CB, provided φ=∩ +))(())((0 CCJCCJ pp . ■

Corollary 4.4: Given a CW C, and suppose φ=∩ +))(())((0 CCJCCJ pp , then any

CW)(CCC p∈
−

 is in CB if C is in CB.

Proof: By Theorem 4.3, C is in CB if and only if Cp(C) is in CB. Then Corollary 4.3

completes the proof. ■

4.3.2 FMRF Critical Subsystems

 For better perspective on achieving dispatching policies with deadlock

avoidance, the concept of critical subsystems [32] is introduced. To avoid deadlock,

75

work in progress (WIP) must be limited within certain critical subsystems that are

constructed by using critical siphons, called MAXWIP.

 A critical subsystem for a CW C in MRF is defined as the set of J-places J(C)0.

In case of FMRF, Critical Subsystem for a CW C can be defined if

φ=∩ +))(())((0 CCJCCJ pp and in this case it is defined as the set of J-places

J(Cp(C))0. Define the set 0

*
))((CCJSS pcc ∪= called the support of the binary p-

invariant that minimally covers Sc.

 Define Tpre(C) = •• 00)(\)(CJCJ as the precedent transitions of CW C and

Tpos(C)= 00)(\)(CJCJ •• as the posterior transitions of CW C.

Definition 4.1: Key Resources: Let {Ci, Cj} be two simple CWs such that 1|| =∩ ji CC

and define kji rCC =∩ . If •⊂∩ kjpreipos rCTCT)()(and •kiprejpos rCTCT ⊂)(∩)(,

then {Ci, Cj} is a cyclic CW (CCW). If in addition, m(rk)=1, then rk is called a key

resource. A system with key resources is called an irregular system.

 Vishwanadham et al. [89] showed that predictive simulation in PN can be used

to avoid deadlocks. We formalize this by defining critical subsystems, which are the

objects that must be examined in predictive simulation to avoid deadlock. Critical

subsystems must be examined for WIP content in the look-ahead deadlock avoidance

methods. To avoid deadlock in systems without key resources, 1-step look ahead is

good enough [47]. If key resources are present, one must look ahead 2 steps to avoid

deadlock [47]. Key resources are also related to the siphon depth variable ξ in [44]. For

76

regular FMRF systems, a depth variable ξ =1 is good enough. If key resources are

present, one requires ξ >1.

 The marking condition m(*
cS) can be given in terms of the initial marking of

Cp(C) i.e m(Cp(C)), since for FMRF, the initial marking assigns tokens only to R and PI

places.

Lemma 4.8: In any FMRF system, the critical siphons Sc is empty if the critical

subsystems J(Cp(C))0 are full.

Proof: Since 0

*
))((CCJSS pcc ∪= is the support of the binary p-invariant, the total

number of its tokens is conserved. Thus, Sc will be empty if and only if all the tokens

are in J(Cp(C))0 i.e. the critical subsystem. ■

Lemma 4.9: In a regular FMRF system, the critical siphons Sc are never empty if and

only if the critical subsystems J(Cp(C))0 are not full (i.e. m(J(Cp(C)0) ≤m(Cp(C))-1) at

each step.

Proof: Necessity: Suppose Sc is not empty. If J(Cp(C)0) is full, Lemma 4.8 proves that Sc

has to be empty. This is a contradiction. Hence, J(Cp(C)0) is never full.

Sufficiency: Suppose J(Cp(C)0) is not full in a regular FMRF system and let the

m(J(Cp(C)0)=m(Cp(C))-1. This restriction ensures that at least one resource in Cp(C) will

have a token which will not be used for J(Cp(C))0 but will be used for J(Cp(C))+ such

that Sc will never be empty. If Sc still remains empty, it means that there exists two CWs

Ci, Cj∈Cp(C) such that kji rCC =∩ and m(rk)=1. Let there be two transitions t1, t2 such

that t1)()(jposipre CTCT ∩∈ and t2)(∩)(∈ iposjpre CTCT . •1t and •2t use the same

77

resource rk. By construction, •1t +∩∈)()(0 ji CJCJ and •2t 0)(∩)(∈ ji CJCJ + .

Hence, at the next time step, if a token is present in •1t , then •2t will always remain

empty and vice versa even if the condition m(J(Cp(C)0)=m(Cp(C))-1 holds true, since

m(rk) becomes zero. Hence, Sc will remain empty. This is a definition of an irregular

system and rk is a key resource. For regular systems, Sc will never be empty if the

restriction m(J(Cp(C)0) ≤m(Cp(C))-1 is satisfied. ■

 Note that one can now avoid deadlock of a simple CW C by ensuring that the

marking of its critical subsystem Sc
*
 is less than the total marking of the initial resources

in Cp(C). To be able to analyze FMRF systems (and for MRF systems) and all its

possible deadlock structures, we need to identify the set of all CWs i.e simple CWs and

CWs composed of union of non-disjoint simple CWs (unions through shared resources

among simple CWs) [13, 25]. Let us denote this set as CWr.

Lemma 4.10: There is no CB in the FMRF system if for every rCWC ∈ , the set Cp(C) is

not in CB.

Proof: By Theorem 4.1, when Cp(C) is not in CB, it implies that Sc is not empty. Then

Theorem 4.1 and Lemma 4.10 complete the proof. ■

Lemma 4.11: In a regular FMRF, there is no CB in the system if and only if for every

C rCW∈ , one has m(J(Cp(C))0 one less than the initial marking of Cp(C). ■

 If key resources are present, one can limit the WIP in the critical subsystems to

m(Cp(C))-2 instead of looking ahead 2 steps. This is overly restrictive, but not by much.

 These results show that we can avoid deadlock by MAXWIP, i.e. limiting WIP

in all the critical subsystems.

78

4.4 Matrix Computation of Petri Net Objects in FMRF Systems

 PN provides great pictorial insight and mathematical techniques for analysis, but

they have sometimes had the deficiency of not providing an efficient computational

framework for simple computer-based analysis. A matrix framework for computing

structural objects of a PN can correct these deficiencies [47].

4.4.1 Circular Waits in Matrix Form

A wait relation digraph for MRF [36, 39] is defined as

W
r
= (S

r
⊗ F

r
)
T

(4.7)

Each ‘one’ in the elements w
ij
 of W

r
, represents that the digraph has an arc from

resource i to resource j. CWs appear as loops in this digraph. Simple CW appear as

simple loops e.g. not containing any smaller loops. Wr is used to compute all the simple

CWs in MRF systems using a binary string algebra approach used by [50] which gives

an output matrix CWr
*
. Each CW is represented as a row in the matrix CWr

*
. In this

matrix CWr
*
 each entry of ‘one’ in position (i,j) means that each resource j is included

in the i
th

 simple CW.

 However, due to the complexity of the Free-Choice extension of the MRF

systems, and due to the diversity of loop paths that a set of resources contained in a

simple CW might have, we need to identify not only the resources that compose each

simple CW, but also the transitions that link them. This will give us specific information

needed to locate siphons needed for constructions of our deadlock policy for FMRF

systems. We define Wt (by duality of W
r
) as

W
t
= (F

r
 ⊗

S

r
)
T
 (4.8)

79

 This is a digraph of transitions. That is, W
t

is a digraph having arcs from

transition t
i
to transition t

j
(by ‘bypassing’ a resource •t

j
∩t

i
•.). Each ‘one’ in the elements

w
ij
 of Wt, represents that the digraph has an arc from transition i to transition j. Then,

one can identify loops among transitions by using string algebra as above which gives

the output matrix CWt
*
. We loosely say t is in CW if

*

tCWt ∈ .

 But, even if we calculate two outcomes from the string algebra, transition loops

and resource loops, we will not be able to identify which set of transition loops

correspond to which set of resource loops (due to the behavior of the algorithm.). To do

this, define,









=

tr

rr

OF

SO
W (4.9)

where O
r

is a zero-matrix having nxn elements, O
t

is a zero-matrix having mxm

elements, n be the number of resources or rows (column) of S
r

(F
r
), and m be the

number of transitions or rows (columns) of F
r
(S

r
). This is a digraph of transitions T and

resources R.

 For example, this digraph can be obtained by erasing all the jobs places from

Figure 4.2, and keeping the resources, the transitions, and all the links between them, as

shown in figure 4.4.

80

Figure 4.4 Graphical representation of digraph matrix W

 Note that, using this digraph matrix W with the binary string algebra algorithm

given in [18, 28], we get the set Cw = [CWr
*
 CWt

*
], where CWr

*
 is the set of simple CW

of resources and CWt
*

is a set of simple CW of transitions.

 In order to find the complete set of simple CWs and the union of non-disjoint

simple CWs, we use the Gurel algorithm [32, 50] which gives a matrix G. G provides

the set of composed CWs (rows) from unions of simple CWs (columns) i.e. an entry of

‘1’ in every (i, j) position implies j
th

 simple CW is included in the i
th

 composed CW.

Then, we can calculate the set of loop resources CWr and loop transitions CWt using the

following constructions,

*

r

T

r CWGCW ⊗= (4.10)

*

t

T

t CWGCW ⊗= (4.11)

 Note that * denotes a simple CW, while CWr and CWt refer to all the CWs (i.e.

simple and their unions).

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

R1

R2

B1 B2 B3

M1

M2

Pin Pout

R3 R4

Pin2 t14 t15 t16 t17 Pout2

81

4.4.2 Matrix Algorithm for Computing Cp(C)

 Property 4 of FMRF, i.e 1, ≥•∈ pJp , is what differentiates FMRF from

MRF systems. We apply this property of FMRF to compute Cp(C) using matrices. To

do so, we must first compute Cp and Jdec(C) for each CW as required to run Algorithm

4.1. The next algorithm shows a routine which can easily be implemented using tools

such as MATLAB
®
, to compute Cp and Jdec(C).

Algorithm 4.2:

Calculating Cp using matrices

for i=1:|(CWr)|

 if max(CWr(i,:)*Sr*Fv)>1 [(i,:) implies entire i
th

 row]

 Cp(i,:)=CWr(i,:)

 end

 end

Calculating Jdec(C)

for i=1:|(CWr)|

 if max(CWr(i,:)*Sr*Fv)>1

 Jdec(i,:)=CWr(i,:)*Sr*Fv

 end

end

Jdec(Jdec==1)=0

Jdec(Jdec>1) =1

Finding initial Cp(C)

82

D=Cp*Sr*Fv

m=1

for i=1:|(CWr)|

 if max(and(D(i,:),Jdec(i,:)))==1

 Cp(C)((m,:))=CWr(i,:)

 m=m+1

 end

end ■

 After computing Cp, Jdec(C) and the initial Cp(C) using Algorithm 4.2, we use

Algorithm 4.1 to compute Cp(C) recursively. Note that Algorithm 1 only computes the

set Cp(C) for a CW C under consideration.

 Then, this set is converted to a single row by using union of all the rows of

Cp(C). The same procedure is followed for all the other CWs in the system using a

simple ‘for loop’ to get the complete set Cp(C) for all the CWs in the system.

 The complexity of Algorithm 4.2 is O(|(CWr)|) as the running time is directly

proportional to the number of CWs in the system. For calculating the same for all the

CWs in the system, the complexity is O(|(CWr)|
2
).

4.4.3 Critical Siphons & Subsystems in Matrix Form

 In this section we use matrices to compute the PN objects i.e. Critical Siphons

and Critical Subsystems required in Section III for deadlock analysis in FMRF systems.

We also show how key resources can be found using matrices.

83

•• CandC are the set of input and output transitions from a CW C. Once CWr is

constructed, we use Algorithm 2 and then Algorithm 1 to construct Cp(C) for each

rCWC ∈ . Let)(CC p• and •)(CC p be the set of input and output transitions from

Cp(C). In matrix formulation, it is denoted as dCp(C) and Cp(C)d respectively. It is

computed as:

dCp(C)= Cp(C) ⊗ Sr (4.12)

Cp(C)d=Cp(C) ⊗ Fr
T

 (4.13)

To find the set of transitions CWt(Cp(C)) between resources in the set Cp(C), we use,

)())((CCCCCW pdpt = ⊗ dp CC)((4.14)

The critical subsystems J(Cp(C))0 for a given CWr are given by,

vptp FCCCWCCJ ⊗=))(())((0 (4.15)

The siphon job sets J(Cp(C))+ are given by,

 vdppdpdp FCCCCCCCCJ ⊗⊗⊗=+))()(()())(((4.16)

Equations (4.15) and (4.16) are used for checking the condition

φ=∩+ 0))(())((CCJCCJ pp (in Theorem 4.1-4.3). Equation (4.15) is used for

deadlock avoidance in FMRF systems using the MAXWIP policy.

 It is necessary to find key resources in the FMRF system to verify its regularity.

To find key resources, following formulations are used.

The job sets J(C)0 for each CW are given as,

 CWtCJ =0)(⊗ Fv (4.17)

The precedent and posterior transitions of CWr is given as,

84

00)(^)(
T

vrvrpre FCWJSCWJT = (4.18)

00)(^)(vr

T

vrpos SCWJFCWJT = (4.19)

The set of cyclic circular waits (CCW) are given by,

 TT

posprepospre TTTTCCW)(^= (4.20)

The cyclic precedent and posterior transitions are given as,

 prepospre TCCWTT ^
^

= (4.21)

 posprepos TCCWTT ^
^

= (4.22)

The set of key resources in the system is given by,

 rprerpos FTFTsCW
^^

^Re = (4.23)

If ResCW is empty, it means that the system does not contain key resources and the

system is regular. . In fact it is easy to see that Equation (4.23) is a matrix form of the

condition in Definition 4.1 for key resources. Equation (4.23) is the test for regularity

in FMRF systems. If the system is not regular, it should be redesigned so that the

deadlock avoidance policy in the next section can be used.

 Now we have all the machinery to compute using matrices the objects required

for deadlock avoidance using Theorem 4.3 and Lemma 4.11. The important equations

are (4.15), (4.16) and (4.23).

85

4.4.4 MAXWIP Dispatching Policy for DA

 Lemmas 4.8, 4.9, and 4.10 formulate the MAXWIP dispatching policy for

deadlock avoidance in FMRF systems. According to this policy, CB in FMRF is

avoided by limiting WIP in the critical subsystems of each CW C. This policy can be

implemented as a real-time deadlock avoidance control scheme by controlling the firing

of the precedence transitions of the critical subsystems.

4.5 Examples

 We now illustrate the new notions developed in this chapter, as well as the

power of the matrix formulation, by computing them for two example FMRF systems.

In the first example, deadlock can occur, while a small change in the structure yields

Example 4.2, where deadlock can never occur. The third example is taken from [44]

and is an example of an irregular system.

Example 4.1: Consider Figure 4.3. This particular system contains three decision

resources B1, B2 and B3. According to Section 4.4, the relevant matrices for calculating

the siphon jobs and critical subsystems are Fr, Sr, Fv and Sv . Fv is a matrix of jobs

required to fire transitions. Sv is a matrix of jobs started on firing of transitions. Fr is a

matrix of resources required to fire transitions and Sr is a matrix of resources released

when transitions are fired. These matrices for the system in Figure 4.3 are given by,

86

 R1 R2 R3 R4 M1 M2 B1 B2 B3 R1 R2 R3 R4 M1 M2 B1 B2 B3

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

000000000

000001000

000000100

000000010

000000000

000000000

000000010

000000001

100000000

100000000

000100000

000010000

010000000

010000000

000000010

000000001

001000000

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

Fr





























































=

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

000001000

000000100

000000010

000000000

000000010

000000001

100000000

100000000

000100000

000010000

010000000

010000000

000000010

000000001

001000000

001000000

000000000

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

S
T

r





























































=

 b1 r1a r2a b2 m1 m2 b3 r1b r2b r2c r3a r4a b1 r1a r2a b2 m1 m2 b3 r1b r2b r2c r3a r4a

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

100000000000

010000000000

001000000000

000000000000

000100000000

000010000000

000001000000

000001000000

000000100000

000000010000

000000001000

000000001000

000000000100

000000000010

000000000001

000000000001

000000000000

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

F
v





























































=

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

000000000000

100000000000

010000000000

001000000000

000000000000

000000000000

000100000000

000010000000

000001000000

000001000000

000000100000

000000010000

000000001000

000000001000

000000000100

000000000010

000000000001

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

S
T

v





























































=

The set of CWs in this system using the binary string algebra [32, 50] is given by:

 R1 R2 R3 R4 M1 M2 B1 B2 B3

CWr =





































110110010

110100011

110110011

110010011

110110001

110100010

110010010

110100001

110010001

87

 Each row in this set represents a CW e.g. the first row of this set represents the

CW R1-M1-B1-B3. Using Algorithm 4.2 and 4.1, the set Cp(C) for this system is

computed as:

 R1 R2 R3 R4 M1 M2 B1 B2 B3

Cp(C) =





































110110011

110110011

110110011

110110011

110110011

110110011

110110011

110110011

110110011

We observe that in this case, each row is the same, which indicates that each CW in

CWr is related by the decision resources B2 and B3. This is why we end up with the

same resources in each row of Cp(C). In fact, all the CWs in CWr are in the same

equivalence class Cp(C).

 The siphon jobs and critical subsystems using Equations (4.15) and (4.16) are

given by
 b1 r1a r2a b2 m1 m2 b3 r1b r2b r2c r3a r4a

J(Cp(C))+ =





































001110000000

001110000000

001110000000

001110000000

001110000000

001110000000

001110000000

001110000000

001110000000

 b1 r1a r2a b2 m1 m2 b3 r1b r2b r2c r3a r4a

J(Cp(C))0 =





































000001111110

000001111110

000001111110

000001111110

000001111110

000001111110

000001111110

000001111110

000001111110

88

In this case, φ=∩ +))(())((0 CCJCCJ pp . Hence, if all the jobs in J(Cp(C))0 i.e.

r1a, r2a, b2, m1, m2, and b3 are marked, then according to Theorem 4.3, Cp(C) is in CB

and deadlock will occur (See Figure 4.3). One can also verify that this system is

regular by applying Equation (4.23). When the MAXWIP policy in Lemma 11 is

applied, deadlock is avoided. ■

Example 4.2: Figure 4.5 shows a small change in the PN structure of Figure 4.2. A new

resource R5 is added to the system which performs the task r2b, i.e. R2 is not used for

r2b.

Figure 4.5 Case where φ≠∩ +))(())((0 CCJCCJ pp

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

R1

B1 B2 B3

M1

M2

r1a r1b

r2a r2b

b1 b2 b3

m1

m2 Pin Pout

R5
R2

Pin2 t14 r2c t15 r3a t16 r4a t17 Pout2

 R3 R4

89

Here, only the Fr and Sr matrices change. The matrices Fv and Sv remain the

same. This is because a new resource is added to the system, but the tasks and their

transitions remain the same. The addition of a new resource results in an additional

column in the Fr and Sr
T
 matrices.

 R1 R2 R3 R4 R5 M1 M2 B1 B2 B3 R1 R2 R3 R4 R5 M1 M2 B1 B2 B3

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0000000000

0000001000

0000000100

0000000010

0000000000

0000000000

0000010000

0000000001

1000000000

1000000000

0001000000

0000100000

0100000000

0100000000

0000000010

0000000001

0010000000

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

Fr































































=

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0000001000

0000000100

0000000010

0000000000

0000010000

0000000001

1000000000

1000000000

0001000000

0000100000

0100000000

0100000000

0000000010

0000000001

0010000000

0010000000

0000000000

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

S T
r































































=

The corresponding CWr and Cp(C) matrices are given by:

 R1 R2 R3 R4 R5 M1 M2 B1 B2 B3

















=

1101100001

1101000001

1100100001

rCW

 R1 R2 R3 R4 R5 M1 M2 B1 B2 B3

















=

1101100001

1101100001

1101100001

)(CC p

 The siphon jobs and critical subsystem using Equations (4.15) and (4.16) are

given by:

 b1 r1a r2a b2 m1 m2 b3 r1b r2b r2c r3a r4a

















=+

000011000000

000011000000

000011000000

))((CCJ p

90

 b1 r1a r2a b2 m1 m2 b3 r1b r2b r2c r3a r4a

















=

000001111010

000001111010

000001111010

))((0CCJ p

 We see that φ≠∩ +))(())((0 CCJCCJ pp . Here,)(5 CCR p∉ and therefore, the task

0))((3 CCJb p∈ and +∈))((3 CCJb p . Hence, according to Theorem 4.2, deadlock can

never occur. ■

Figure 4.6 Example of an irregular system

Example 4.3: Figure 4.6 is a sample FMRF/S3PR PN from [44]. This system is an

example of an irregular system. Using Algorithm 4.2 and 4.1, one can see that Cp(C) =

CWr.

Following are the relevant matrices for this system.

 Pin1

 t1 B1

 b1 Pout2

 t2 t3 R2 t11

R1

 r1 r2a r2b

 t4 t5 t10

 r3a R3 r3b

 t6 R4 t9

 r4a r4b

 t7 t8

 Pout1 Pin2

91

 B1 R1 R2 R3 R4 B1 R1 R2 R3 R4

11

10

9

8

7

6

5

4

3

2

1

00000

00100

01000

10000

00000

10000

01000

00000

00100

00010

00001

t

t

t

t

t

t

t

t

t

t

t

Fr











































=

11

10

9

8

7

6

5

4

3

2

1

00100

01000

10000

00000

10000

01000

00100

00010

00001

00001

00000

t

t

t

t

t

t

t

t

t

t

t

S
T

r











































=

 b1 r1 r2a r3a r4a r4b r3b r2b b1 r1 r2a r3a r4a r4b r3b r2b

11

10

9

8

7

6

5

4

3

2

1

10000000

01000000

00100000

00000000

00010000

00001000

00000100

00000010

00000001

00000001

00000000

t

t

t

t

t

t

t

t

t

t

t

Fv











































=

11

10

9

8

7

6

5

4

3

2

1

00000000

10000000

01000000

00100000

00000000

00010000

00001000

00000000

00000100

00000010

00000001

t

t

t

t

t

t

t

t

t

t

t

S
T

v











































=

 B1 R1 R2 R3 R4

















=

11100

11000

01100

rCW

Equation (4.23) gives ResCW as,

 B1 R1 R2 R3 R4

















=

00000

01000

01000

Re sCW

92

This means R3 is a critical resource and when m(R3)=1, R3 becomes a key resource

and system becomes irregular. If the system is not regular, it should be redesigned so

that the deadlock avoidance policy in Lemma 4.11 can be used. ■

 Chapter 5 shows how real-time dynamic decisions for resource dispatching and

task assignment can be taken in a FMRF system using matrix-based Dempster Shafer

Theory.

93

CHAPTER 5

DECISION-MAKING IN FMRF

5.1 Introduction

 High Quality of service and good performance of a system are goals which

engineers always strive to achieve. Reliability engineering integrates quality and

performance of a system from the beginning to the end of the system life. Failure

avoidance is the main approach for reliability assurance. There are two main types of

failure avoidance in terms of maintenance, namely preventive and corrective. In

preventive maintenance, all actions are intended to keep equipments in good operating

condition. It should be able to indicate when a failure may occur so that actions can be

taken to avoid failures. In corrective maintenance, a repair is performed after a failure

has occurred. Condition-based maintenance (CBM) is an approach of preventive

maintenance. Figure 5.1 shows an overview of maintenance strategies used in industries

[4, 83, 89, 90, 95, 96]. The process of CBM involves monitoring the system, predicting

failures and making repairs before these failures occur. This process can be scheduled

or continuous. A system can contain many fault modes and a decision has to be taken

on the type of repair necessary for eliminating any future faults. The task flow of

detection and repair can be modeled using Petri Nets.

 Petri Nets (PN) [55] have been used for job scheduling in manufacturing

systems and wireless sensor networks [12, 32, 47, 48, 50, 51, 95]. One particular type of

94

PN called Free Choice Petri Nets can be used for CBM for fault diagnosis and fault

avoidance in machinery. In Free-choice Petri Nets, also called as Free-choice Multi

Reentrant Flow lines (FMRF) [2], there is a choice for tasks to be performed in the

system. Hence decisions have to be made. There are multiple resources (Machines or

sensors) present in the system that can perform tasks.

 Though the PN framework offers rigorous grounds for theoretical analysis, it is

sometimes inconvenient for actual computational analysis of the practical DES, causing

problems of computational complexity in scheduling. Matrix techniques that exploit the

PN structure can be used to alleviate this. Matrix-based discrete event controller in [47]

has proved to be very efficient in computing PN objects and in sequencing tasks in

manufacturing environments as well as sensor networks. This matrix form for DES

provides a means for efficient implementation of DE controllers in actual systems. We

use the matrix formulations of [47] in the CBM framework.

 Since decisions have to be made in FMRF systems, various methods can be used

such as belief PN, fuzzy PN and possibilistic PN [58]. In this chapter, we use evidence

theory (also called Dempster Shafer theory [14, 15, 66-81]) for making decisions. Since

routing choices must be made in FMRF systems, we use Dempster Shafer decision-

making to select the correct job path in the PN structure. The reason for using Dempster

Shafer theory is that it provides an excellent framework for conditions involving

uncertainty.

95

Figure 5.1 Overview of Maintenance

 Dempster Shafer (DS) theory has been used extensively for data fusion in

manufacturing systems and sensor networks. Smets [68-81] provides a framework for

Transferable Belief Model for representing the quantified beliefs held by an agent at a

given time on a given frame of discernment. It concerns the same concepts as

considered by the Bayesian model, except it does not rely on probabilistic

quantification, but on a more general system based on belief functions.

 The mathematics of computation involving DS belief functions is difficult to

fathom because of the many summations over set inclusions and intersections. The

equations are often difficult to comprehend and discourage readers due to their

complexity, and are often difficult to implement using software.

 However, most of the operations in belief function theory happen to be linear

operations and can be represented using the matrix notation [68-81]. Therefore, in this

chapter we provide a new matrix formulation for updating evidence and computing

beliefs and plausibilities in DS theory. This makes DS computations very easy to

Maintenance

Preventive Corrective

(After Failure)

 CBM
Predetermined

Scheduled,

Continuous, on

request

Scheduled

96

perform using computer software such as MATLAB. Matrices also help greatly for the

readability of the equations and the ease in their manipulations.

 The chapter is organized as follows. In section 5.2, we give a brief description of

Dempster Shafer theory and the rule for combination of evidence. Section 5.3 provides

a new matrix formulation required for computing objects in the framework of evidence

theory. Our motivation is to use PN for detecting machine failures and assigning actions

for CBM. We use the class of PN called FMRF where multiple tasks can be assigned in

a flow line. In Section 5.4, we show how evidence theory can be used in FMRF systems

for CBM. Examples are provided in Sections 5.3 and 5.4 for better understanding of the

framework.

5.2 Dempster Shafer Theory

 In this section we provide a brief background on Dempster Shafer theory and the

rule for combination of evidence. If θ is a frame of discernment then a function m: 2
θ

�[0, 1] is called a basic probability assignment (bpa) if m(φ) =0

and

 ∑
⊂

=
θA

Am 1)((5.1)

 The term m(A) is called A’s basic probability number and m(A) is the measure of

the belief that is committed exactly to A. The subsets A of the frame of discernment θ

for which m(A) are strictly positive are called the focal elements of the basic probability

assignment. The union of all the focal elements of a belief function is called its core.

Properties of bpa:

97

1. It is not required that m(θ)=1.

2. It is not required that m(A) ≤ m(B) when A ⊂ B.

3. No relationship between)(Am and)(Am is required.

4. Also)()(AmAm + does not always have to be 1.

 A Belief function Bel: 2
θ
� [0, 1] is defined as,

 Bel(A)=∑
⊂ AB

Bm)((5.2)

For any ⊂A θ. Bel(A) measures the total belief of all possible subsets of A. The belief

function measures how much the information given by a source supports the belief in a

specified element as the right answer.

Properties of the Belief Function:

1. Bel(Ф)=0.

2. Bel(θ)=1.

3.)....()1(..)()()...(1

1

1 n

i ji

n

jiin AABelAABelABelAABel ∩∩−++∩−≥∪ ∑ ∑
<

+

 A Plausibility function Pl: 2
θ
� [0, 1] is defined as,

 Pl(A)= ∑
≠∩ 0

)(
AB

Bm (5.3)

Plausibility measures how much the information given by a source does not contradict a

specified element as the right answer, i.e. how much we should believe in an element if

all unknown beliefs are assigned to it.

Properties of the Plausibility Function:

1. Pl(Ф)=0.

98

2. Pl(θ)=1.

3.)....()1(..)()()...(1

1

1 n

i ji

n

jiin AAPlAAPlAPlAAPl ∪∪−++∪−≤∩ ∑ ∑
<

+

 Let Bel1 and Bel2 be two belief functions induced by two distinct pieces of

evidence. Let m1 and m2 denote their bpas, respectively. The Dempster rule of

combination aims at building the bpa that represents the impact of the combined

evidence. It is defined as,

m1,2(A)= 1 2
() ()

1

i j
m B m C

κ−

∑ (5.4)

where the conflict к =
1 2() ().i j

B C

m B m C
φ∩ =

∑ The conflict к is the normalizing factor. The

Dempster’s rule is called the conjunctive rule of combination as it builds the bpa when

both pieces of evidence are accepted.

 Smets [68-81] provides a method for decision-making in the context of

Transferable Belief Model (TBM). The TBM works at two modes:

1. The Credal level where the beliefs are entertained and are represented by belief

functions.

2. The Pignistic level where the beliefs are used to make decisions and are

represented by probability functions called pignistic probabilities.

The pignistic probability Bet is defined as,

∑
⊆

∩
=

θA

Am
A

AB
BBet),()(for all θ⊂B (5.5)

This function will allow us to take decisions under uncertainties in a FMRF system

which will be explained in Sections 5.3 and 5.4.

99

5.3 Matrix Formulation for Dempster Shafer Theory

 The mathematics of DS theory can become quite difficult due to various

summations over set inclusions and intersections. This has hampered the use of DS

theory in real-time discrete event control systems. The DS formulation can be

represented using matrices as most of the operations in DS theory are linear. In this

section we define matrix techniques that can ease the computation involved in DS

theory and make it practically more useful for real-time supervisory control.

 Consider for illustration, the sets in the frame of discernment as shown in the

Figure 5.2.

Figure 5.2 Sets- Unions and Intersections

Given a frame of discernment θ with focal elements
1 2{ , , , }qS S S� , define a q q×

containment matrix C as a matrix with element (i, j)=1 if
i jS S⊃ , and (i, j)=0 otherwise.

For example, C for Figure 5.2 is given as,

100

 A B C D E F G





























=

1000000

0100000

0010000

0001000

1100100

0000010

1000001

C

G

F

E

D

C

B

A

 Define a q q× intersection matrix E having element (i, j)=1 if φ≠∩ ji SS , and

(i,j)=0 otherwise. For example, E for Figure 5.2 is given as,

 A B C D E F G





























=

1000101

0100100

0010001

0001110

1101111

0001110

1010101

E

G

F

E

D

C

B

A

For a given E, the conflict matrix is defined as
_

= EK , with the over-bar denoting the

logical negation.

 Define a q-vector of bpas indexed by the focal elements of θ as

T
qSmSmSmm)]()...()([= 21 . Define a commensurate belief q-vector T

qSBelSBelBel)]()...([= 1

and similarly a plausibility q-vector Pl. Then, the following Lemmas can be used to find

the Belief and Plausibility using matrices.

Lemma 5.1: Given the containment matrix C and the bpa vector m, the Belief can be

calculated as,

 Bel C m= • (5.6)

101

Proof: C(i, j)=1 only if
i jS S⊃ , and C(i, j)=0 otherwise. Since, m is a vector of bpas of

all the focal elements, Cm denotes the vector

θ∈,|,|1,)()(∑
⊂

ji

SS

ji SSmtojiforSmSBel

ij

== . ■

Lemma 5.2: Given the intersection matrix E and the bpa vector m, the Plausibility can

be calculated as,

 Pl E m= • (5.7)

Proof: In the same lines as Lemma 1, E(i, j)= 1 only if φ≠∩ ji SS and zero otherwise.

Since, m is a vector of bpas of all the focal elements, Em denotes the vector

θ
φ

∈,|,|1,)()(∑
≠∩

ji

SS

ji SSmtojiforSmSPl

ij

== . ■

 The Dempster rule of combination is computed efficiently as follows. Given

two bodies of evidence, the two bpa vectors m1 and m2 will not generally be

commensurate since the two cores are different, e.g. the two vectors are indexed by

different focal element sets. Therefore, merge the two cores to obtain the joint core,

consisting of all the focal elements of the two bodies of evidence, each occurring once.

Expand the two bpa vectors m1 and m2, indexing each by the same joint core set and

adding zeros as necessary to the vectors. Define the combination matrix,

T

mmS 12= (5.8)

and the conflict as,

 122,1 KmmK
T

= (5.9)

102

Lemma 5.3: For the given bpa vectors m1 and m2, the Dempster’s rule of combination

to find m1,2 using matrices is given by,

)1/())()((2,12,1 KSdiagSCCSdiagm
T −−×+×= (5.10)

Proof: C(i, j)=1 only if ji CC ⊃ and zero, otherwise. S is the combination matrix. Now,

let S1=SC. S1(i, j) = ∑
=

n

r

rjirCS
1

. The diagonal S1(i, i) contains the sum of all the elements

such that ij mm ⊂ , ji,∀ . Similarly, let S2=C
T
S. Again, the diagonal S2(i, i) contains the

sum of all the elements such that, ji mm ⊂ ji,∀ . Let m1,2= diag(S1+S2). Since

diag(S)=diag(S
T
), the additional term in the diagonal diag(S1+S2) must be eliminated

from the sum m1,2 such that the condition)()(2

0

1 ji

ACB

CmBm∑
≠=∩

 holds. Hence, m1,2=

diag(S1+S2-S)/(1-K), satisfies the condition,
κ−

∑
≠=∩

1

)()(2

0

1 ji

ACB

CmBm

. ■

Example 5.1 (Diagnostics): Let t1 denote a mechanical failure, t2 denote an electrical

failure and (t1, t2) denote a mechanical or an electrical failure. Then the bpa vector

consists of [t1,t2,(t1,t2) θ]
T
 where θ contains all the sets. Sensor 1 provides the initial bpa

vector for these sets as m1=[0.4 0.3 0.3 0]
T
 and sensor 2 provides the initial bpa vector

as m2=[0.5 0.2 0.3 0]
 T

. Then, the relevant matrices for this problem are:

t1 t2 t1, t2 θ t1 t2 t1, t2 θ



















=

1111

0111

0010

0001

C

θ
21

2

1

, tt

t

t

and



















=

1111

1111

1110

1101

E

θ
21

2

1

, tt

t

t

103

Using equations (5.8), (5.9) and (5.10), we get the combination of evidence as

m1,2=[0.6104 0.2727 0.1169 0]
 T

. This means that there is 61.04% chance of a

mechanical failure, 27.27% chance of an electrical failure and 11.69% chance of

electrical or mechanical failure. The combined belief and plausibility using equations 6

and 7 are [0.6104 0.2727 1 1]
T
 and [0.7273 0.3896 1 1]

T
 respectively. ■

 Finding Belief and Plausibility is not sufficient for taking concrete decisions.

For instance, providing the Bel and Pl of the set {t1, t2} does not show how to choose

whether t1 or t2 occurred. The pignistic transformation provides concrete probabilities

for the elements in a set so that a decision can be taken. Smets [68-81] provides a

formulation for finding the pignistic probabilities using matrices. Let m be the bpa

vector. Then the pignistic transformation is given as,

 mBetMBet ×= (5.11)

where, BetM is a user-selected matrix that transfers belief from a given set to its subsets

for decision-making. In the example just given it is not enough to assign Bel and Pl to

the set {t1, t2} for taking concrete decisions on t1 or t2. For the set {t1, t2, (t1,t2) θ }, the

matrix BetM can be given as,

 t1 t2 t1, t2 θ



















=

0000

0000

02/110

02/101

BetM

θ
21

2

1

, tt

t

t

Each element in BetM matrix is chosen in such way that the sum of all the elements in

Bet equals one. The BetM matrix is selected by the designer to apportion probabilities as

104

prescribed by the sets. Hence, decision can now be taken on t1 and t2 in the presence of

uncertainty because we have pignistic probabilities for each primitive event, i.e. t1 and t2

instead of basic probability assignments on sets of events.

 For Example 5.1, the pignistic probabilities are given as,

 TT
mBetMttttBet]003312.06688.0[]),([2,121212,1 =×=θ

This means the probability of mechanical failure (Bet(t1)) is 0.6688 and probability of

an electrical failure (Bet(t2)) is 0.3312 i.e. the machine is much likely to have a

mechanical failure than an electrical failure.

5.4 Embedding DS into FMRF Systems

 In CBM, we are required to monitor a system, predict failures and repair the

system before the failures occur. The flow of detection and repair can be modeled as a

FMRF PN, where a decision place denotes the decision-making component involved in

predicting failures. For example, in the PN shown in Figure 4.2 (Chapter 4), Pin might

represent fault detection in a system. The resources might represent sensors that detect

the faults or machines that repair the faults. The decision places represent the tasks that

decide which future job path to take to repair the faults based on the type of fault in the

system.

 In chapter 4, we mentioned that a decision must be made to decide which

transitions in a FMRF system must be enabled. Consider figure 5.3. The system in

figure 5.3 consists of two decision transitions namely t1 and t2, while A is a decision

place.

105

Figure 5.3 Decision in FMRF system

 The problem in FMRF system is to find which transition out of t1 and t2 should

be enabled. The possibilities are t1 is enabled, or t2 is enabled.

 From Equation 2.5, the post transitions are given by vFv ⊗ . In the case of

FMRF systems, vFv ⊗ enables multiple transitions if v is a decision place. In the case

of Equation 2.5, x is the vector of transitions and multiple transitions can be enabled if a

given task is a decision task and a given resource is a decision resource. A Matlab

routine can be used to find the number of decision transitions in a FMRF system as

shown in Routine 5.1.

Routine 5.1. Finding Decision Transitions

t0

t2

t1

 B

 A

 C

% Initialize matrices Fv, Sv, Fr and Sr

sizeFv=size(Fv)

n=zeros(sizeFv(2),1) % Initialize job vector

for i=1:sizeFv(2)

 n(i)=1;

 Y=Fv*n

 if sum(Y)>1 % finding decision transitions in FMRF

 A= find(Y==1) %finds the indices of decision transitions

 end

 n(i)=0;

end

106

 The vector A contains the indices of the decision transitions. This can be used

for updating vector x in the DEC sequence after a decision is made. Let m1, m2…mn be

the bpas for the decision transitions and their unions in ascending order. Then the

probability of each transition can be found using equations (5.5-5.8). The decision

transition vector ζ which is actually a ‘Bet’ on transitions is then given by,

mBetM ×=ζ (5.12)

 Here, ζ is the pignistic probability of the transitions and their unions discussed in

Section 5.3-Equation 5.11. Each decision place has associated bpas for its post

transitions in the vector ζ.

We define a threshold th, such that,

Otherwise

thiifi

0

)(1)(

=

>= ζζ

The state transition vector can then be updated using a Matlab routine as shown below:

Routine 5.2. Updating state transition vector x

The process of decision-making is shown in figure 5.4.

% Given A, BetM, x, th and ζ represented as z

z(z>=th)=1

z(z<th)=0

for i=1:length(A)

 x(A(i))=z(i)

end

107

Figure 5.4 Updating the state transition matrix x

Example 5.2 (Machine Diagnostics): Consider figure 5.5. In this example, when a

fault in a machine is detected, the DEC sequence is triggered. The sequence is as

follows:

1. Sensor A has to find whether machine has an electrical fault or a mechanical

fault or both.

2. Machine M has to repair a mechanical fault.

3. Machine E has to repair an electrical fault.

4. Output is “Machine is repaired”.

Event Detected

Find x using equation (2.5)

Update x using eqn (5.12) and

Routine 5.2

Next Iteration

Update vs, rs and os using (2.5-2.8)

Initialize relevant matrices

Start DEC sequence

Acquire bpa vector for

decision transitions

Find decision transitions

using Routine 5.1

108

Figure 5.5 Example of FMRF for CBM

 Sensor A can be a combination of multiple sensors detecting mechanical or

electrical faults. In the case of uncertainties, Sensor A has to decide what action has to

be taken. The relevant matrices for this example are:

 a m e (tasks) A M E (resources)

4

3

2

1

0

100

010

001

001

000

t

t

t

t

t

Fv























=

4

3

2

1

0

000

000

100

010

001

t

t

t

t

t

Fr























=

4

3

2

1

0

000

000

100

010

001

t

t

t

t

t

S
T

v























=

4

3

2

1

0

100

010

001

001

000

t

t

t

t

t

S
T

r























=

 When the task ‘a’ is competed, equation 13 gives the value of x as, []Tx 00110= .

This means that transitions t1 and t2 are both triggered. Now we use Dempster Shafer

formulation to decide the path. Using Routine 5.1, two decision transitions are found,

namely t1 and t2. Suppose Sensor A is composed of two unreliable sensors giving bpas

for t1 and t2 as in Example 5.1, and the threshold th is given as 0.5 then the output of

M

E

A

a

e

m

Input Output

t0

t1

t2

t3

t4

109

Routine 5.2 gives []Tx 00010= , which means transition t1 is enabled and task ‘m’ will

be performed and resource M will be used. This is because; the probability of the

mechanical fault is higher than the electrical fault.

 In figure 5.6, the system is triggered two times with different bpas for transitions

t1 and t2. In the first case, let the bpa vector [t1 t2 (t1 ,t2) θ]’=[0.5 0.3 0.2 0]
 T

, and second

case, let it be [0.2 0.6 0.2 0]
 T

. The transition vector for these cases when []Tx 00110= are

[]Tx 00010= , and []Tx 00100= respectively, since ζ =[0.6 0.4 0 0]
T
, and [0.3 0.7 0 0]

 T

for the two cases. ■

Figure 5.6 Event trace of Example 5.2

 This example depicts a very simple system, but this architecture can be extended

to complicated systems with more number of decision transitions. Some systems may

have shared resources which might cause problems of deadlock. This can be resolved

using the MAXWIP deadlock avoidance policy mentioned in [47].

Job ‘a’

Job ‘m’

Job ‘e’

Bet(t1)=0.6
Bet(t1)=0.3

Bet(t2)=0.7 Bet(t2)=0.4

m(t1)=0.5 m(t1)=0.2

m(t2)=0.3 m(t2)=0.6

m(t1,t2)=0.2 m(t1,t2)=0.2

Resource ‘A’

Resource ‘M’

Resource ‘E’

110

 Chapter 6 shows how trust can be established between nodes in a distributed

system so that dynamic decisions can be taken for a consensus.

111

CHAPTER 6

TRUST CONSENSUS IN DIRECTED GRAPHS

6.1 Introduction

 Battlefield or disaster area teams may be heterogeneous networks consisting of

interacting humans, ground sensors, and unmanned airborne or ground vehicles (UAV,

UGV). Developed team scenarios include the War-fighter Information Network-

Tactical (WIN-T), DARPA Agile Information Control Environment (AICE), C4ISR

Architectures for the War-fighter (CAW), Joint Force Air Component Commander

(JFACC) Project, etc. Such scenarios should provide intelligent shared services of

sensors and mobile nodes to augment the capabilities of the remote-site mission

commander and on-site war-fighter in terms of: (1) extended sensing ranges, (2) sensing

of modalities such as IR and ultrasound not normally open to humans, and (3)

cooperative control of UAV/UGV to extend the war fighter strike range. Also (4)

Automated decision assistance (via, e.g., handheld PDAs) should be provided to the war

fighter based on algorithms that only depend on local information from nearest neighbor

sensor nodes or humans, yet yield network-wide guaranteed performance.

 Given the presence of enemy components and the possibility of node

compromise, a trust consensus must be reached by the team that determines which

nodes to trust, which to disregard, and which to avoid. Trust algorithms for unmanned

nodes must be autonomous computationally efficient numerical schemes. However,

112

existing schemes for control of dynamical systems on communications graphs (in the

style of work by [3, 37, 52]) do not take into account trust propagation and maintenance

(such as work by [38, 86]). Yet it is a fact that biological groups such as flocks, swarms,

herds, do have built-in trust mechanisms to identify team members, team leaders, and

enemies to be treated as obstacles or avoided. Cooperative mission planning should

involve decisions made in the context of the trust opinions of all nodes, and be based on

performance criteria set by human war fighter nodes or team leaders. These

performance criteria may change with time depending on varying mission objectives in

the field.

 Recently, many researchers have worked on problems that are essentially

different forms of agreement problems with differences in the types of agent dynamics,

properties of graphs and the names of the tasks of interest. In [23], graph Laplacians

were used for the task of formation stabilization for groups of agents with linear

dynamics. In [37], directed graphs were be used to represent the information exchange

between the agents. In [16], a linear update scheme was introduced for directed graphs.

In [8] a Lyapunov-based approach was used to consider stability of consensus

synchronization for balanced and weakly connected networks. The work by [52] solved

the average consensus problem with directed graphs which required the graph to be

strongly connected and balanced. In [59], it was shown that under certain assumptions

consensus can be reached asymptotically under dynamically changing interaction

topologies if the union of the collection of interaction graphs across some time intervals

has a spanning tree frequently enough. The spanning tree requirement is a milder

113

condition than connectedness and is therefore suitable for practical applications. They

also allowed the link weighing factors to be time-varying which provides additional

flexibility. In contrast to the aforementioned schemes, the work in this chapter uses a

bilinear scheme for trust consensus in directed graphs.

 In this chapter, we develop a framework for trust propagation and maintenance

in team networks of nodes that yields global consensus of trust under rich enough

communication structure graphs. Most of the work in literature considers the graph

Laplacian to be static or have time-varying weights. In this chapter we consider the case

where the graph Laplacian is a time-varying function of the trusts based on the graph

connectivity. This makes the trust consensus scheme bilinear.

 Also, most of the consensus schemes in the literature consider the case where

the trust consensus lies in [0, 1]. Attacks on the security of networked systems can often

be characterized in terms of malicious nodes [38]. To characterize malicious nodes,

negative trust values are needed. For the case that trust is in [-1, 1] the situation is more

realistic, interesting, and complex. We can now talk about identifying and pruning out

malicious nodes. Now, 1 means complete trust, 0 means no opinion, and -1 means

complete distrust. For this, we make use of ‘One-step Distrust model’ [38] or ‘Graph

Pruning and Reconnection’ to achieve trust consensus in the case of distrusted nodes.

 There has been a tremendous amount of interest in flocking and swarming that

has primarily originated from the pioneering work of Reynolds [63]. The trust

consensus schemes developed in this chapter is incorporated into cooperative control

114

laws that depend on local information from neighboring nodes, yet yield team-wide

desired behavior such as flocking.

 This chapter is organized as follows. In Section 6.2, we describe the notions

involved in trust graphs and formally devise a bilinear trust consensus scheme in

continuous time and discrete time. Section 6.3 contains our main results with the

convergence performance for the two consensus schemes. Section 6.4 gives examples

of emerging team behavior using these schemes with a case studies on flocking and

formations.

6.2 Background on Trust Graphs

 Given a network of N agents or nodes V={v1,…,vN} who are to engage in

cooperative trust evaluation. Define a trust graph G = (V, E), where edge (vi, vj) E∈ if

node vj obtains a direct trust evaluation about node vi. Note this is backwards from [10,

18]. Define the direct trust neighborhood of node vi as }∈),(:{= EvvvN ijji , i.e. the set

of nodes with edges incoming to vi. The graph is directed since if node j can obtain a

direct evaluation of trust about node i, the reverse may not be true. Given the trust

graph, define the graph adjacency matrix A = [aij] where aij = 1 if eji is an edge, and

aij = 0 otherwise. A is a constant matrix defined by the direct trust relations between

nodes. In fact, adjacency matrix A captures the information flow in the trust graph.

Define the in-degree matrix as D = diag{ni}, ni =
i

ij

j N

a
∈

∑ , and the trust graph Laplacian L

as L=D-W. If there is a directed path, e.g. a sequence of nodes 0 1, , , rv v v� such that

1(,) , {0,1, , 1}i iv v E i r+ ∈ ∈ −� , then, node vr should be able to form an indirect trust

115

opinion about node v0 based on the opinions of the agents along the path. Likewise, if

two paths converge at an agent vr, each of which contains agent v0, then vr has a basis to

form a more confident opinion about the trustworthiness of agent v0 than if there were

only a single path.

6.2.1 Trust Consensus Protocols

 We encode the trust opinions an agent i has about other agents in the network as

a trust vector iξ nR∈ associated with each node, with elements indexed by all the nodes

about which node i has an opinion. That is T

iiiii ...][
21

ξξξ = where ξ ij is the trust node i

has for node j. Here, the trust is assumed to be in [0, 1]. We can also have the case

where trust is in [-1, 1], where 1 means ‘fully trusted’, 0 means ‘no opinion’ and -1

means ‘fully distrusted’. For the latter, we make use of ‘One-step Distrust model’ or

‘Graph Pruning and Reconnection’ to take care of the distrusted nodes (explained in

Section 6.3.4).

 Consider the following trust consensus scheme in continuous time.

ii u=
.

ξ (6.1)

 ∑
∈

)-(

iNj

ijiji wu ξξ= (6.2)

 In [59], wij was taken as
ij ij

a σ where
ij

σ is a time-varying weighting factor

chosen from any finite set. In [38], wij was taken as aijcij, where cij is the confidence

node i has in its trust opinion of node j. Hence each node has an associated [ξ ,c], i.e.

116

trust and confidence which form a semi-group [86]. In [38], the weights cij were kept

constant throughout.

 In this paper, we propose the following local voting continuous-time trust

protocol,

 ()
i

i ij ij j i

j N

u a ξ ξ ξ
∈

= −∑ (6.3)

 This protocol is bilinear in the trust values. Note that this defines a graph

topology that stays constant, yet the edge weights are equal to
ij

ξ , the trust that node i

has for its neighbor node j. The weighted adjacency matrix is defined

by [] []
ij ij ij

W w a ξ= = . This defines a graph which has a constant topology given by the

adjacency matrix A, yet whose edge weights vary as node i changes its trust opinion

about its neighbor nodes. If ξ i’s are scalars, (6.3) can be rewritten as,

 ()
i

i ij ij j i

j N

u a ξ ξ ξ
∈

= −∑

(() ())

i i

ij ij j ij ij i

j N j N

i

a a

D t W t

ξ ξ ξ ξ

ξ

∈ ∈

= −

= − −

∑ ∑

 (() ()) ()
i i i

D t W t L t
i

ξ ξ ξ= − − = − (6.4)

 Here, D(t) and W(t) are time-varying in-degree and weighted adjacency matrices

respectively, that are functions of node trusts ξ . Also, L(t) is a time-varying matrix

which is a function of node trusts. Note that the node trust vectors ()
i

tξ have nonzero

entries
ij

ξ corresponding to the weights of incoming edges eji, which have aij = 1, but

there may also be nonzero entries ()
ij

tξ that do not correspond to edges in the graph.

117

Thus, though a node i forms a trust opinion about more and more nodes as trust

propagates through the graph, its direct trust neighbors (the graph edges coming into

node i) never change, and are defined by the adjacency matrix A.

 Since
i

ξ NR∈ , we must use Kronecker Product [31, 34] to write,

 L(-
.

=ξ (t) ⊗)
N

I ξ (6.5)

where IN is an identity matrix of N×N.

 Here,
2

1[]T T T N

N
Rξ ξ ξ= ∈� is the overall network trust vector.

 The Laplacian L(t) corresponds to a time-varying trust graph G(t). The initial

Laplacian L(0) corresponds to the initial trust graph G(0). Note that the row sum of L(t)

is zero for t∀ . Hence, L(t) has a zero eigenvalue corresponding to the right eigenvector

of 1, where 1 is a column vector with all entries equal to one.

 We also propose the following nonlinear local voting discrete-time trust

consensus protocol based on the Vicsek model [88],

 ∑ (
1

1
)()1(

iNj jij

i

ii
n

kk
∈+

+=+ ξξξξ -)iξ (6.6)

 Equation (6.6) can be rewritten in the scalar case as,

 Iki ()1(=+ξ -))((kDI + -1
)(kL))(kiξ

)()()1(kkFk ii ξξ =+ (6.7)

where

 1 1() (()) () (()) (())F k I I D k L k I D k I W k− −= − + = + + .

118

Since N

i
Rξ ∈ , we must use Kronecker product to write,

 (1) (()) ()
N

k F k I kξ ξ+ = ⊗ (6.8)

 Here,
2

1[]T T T N

N
Rξ ξ ξ= ∈� . Note that F(k) is a time-varying stochastic matrix

that depends on the trust values ijξ . The matrix F(k) corresponds to a time-varying trust

graph G(k) with Laplacian L(k) F(0) corresponds to the initial trust graph G(0) with

initial Laplacian L(0). For each k, F(k) has a eigenvalue of one corresponding to the

right eigenvector of 1, where 1 is a column vector with all entries equal to one. Even if

F(k), F(k-1), F(k-2),…, F(0) are time-varying, the graph topology remains the same,

only the weights in F change, which we prove in Section 6.3.

6.3 Convergence of Trust

 We say that a protocol achieves (asymptotic) consensus if for every i, j one has

*() ()
i j

t tξ ξ ξ→ → in continuous-time, *() ()
i j

k kξ ξ ξ→ → in discrete-time, where *ξ is

called the consensus trust vector value. If this occurs, then in the limit one has
ip jp

ξ ξ=

for all i, j so that all nodes arrive at the same trust value for each other at node p.

 The main result of this paper is that the bilinear trust protocol (6.5) for

continuous-time and (6.8) for discrete-time achieve asymptotic consensus for a trust

graph G if and only if the initial trust graph G(0) has a spanning tree . We are of course

inspired by [59], which covers the case of linear integrator dynamics.

 Two nonnegative matrices are said to be of the same type if their zero elements

are in the same locations [59]. We will use the notation P ~ Q to denote that P and Q

119

are of the same type. Two graphs on the same nodes are of the same type if their edge

sets are the same.

6.3.1 Consensus in the Discrete-time Scheme

 In this section, we prove that the trust consensus scheme in Equation (6.8)

achieves asymptotic consensus for a trust graph G if the graph has a spanning tree. For

each F(k) associate a set of graphs {G(k)}. Now, F is a time-varying function of the

trusts with the initial trusts)0(iξ in [0, 1]. Consider the local voting discrete time trust

consensus scheme based on the Vicsek model in Equation (6.7). Let F(0) represent the

initial directed graph G(0). If)0(ijξ is an edge in G(0) then)(kijξ is an edge for all G(k),

for k 0≥ . This is formalized in the next result.

Lemma 6.1: Consider a network with initial graph G(0) running the discrete-time

consensus scheme in (6.8) with initial condition)0(ξ . Let 0)(>kijξ for some time

instant 0≥k . Then 0)1(>+kijξ . As a result, G(k) for 0≥k are all of the same type.

Proof: From Equation (6.8), each updated node trust is a weighted average of its

neighboring trust values such that the weights are nonnegative and less than 1, because

the row sum of F(k) and F(k) ⊗ IN is 1, i.e. they are stochastic. Equation (6.8) can be

rewritten for each state as,

 ∑)()()1(
l

ljilij kkfk ξξ =+

 ∑
≠

)()()()(
il

ljilijii kkfkkf ξξ +=

120

where fij(k) is the (i,j)
th

 element of F(k). Then by definition of F(k), we know that,

1<)(≤0 kf ij , for i j≠ and 0<fii(k) ≤ 1. Also, fii= 0
1

1
>

+ in
. Hence, if 0)(>kijξ , the first

term is always positive. The second term is a weighted average which once again is

always nonnegative for non-zero initial trusts. Therefore, for 0≥k , if 0)(>kijξ ,

)1(+kijξ 0> .

 Thus, if 0)0(>ijξ is an edge weight for G(0), then 0,0)(>∀> kkijξ is an edge

weight for G(k). Therefore, G(k), 0≥∀ k are all of the same type. ■

Theorem 6.1: The discrete time trust consensus scheme in Equation (6.8) achieves a

trust consensus for ijξ (k) if and only if the initial graph G(0) has a spanning tree.

Proof: Now G(0) has a spanning tree if and only if G(k), k∀ >0, has a spanning tree by

Lemma 6.1. This is a necessary and sufficient condition for the union of graphs over

any finite time interval to have a joint spanning tree. Therefore, the result (Theorem 3.8)

in [59] and convergence of SIA from [91] proves the result. ■

Figure 6.1 A Six Node Directed Graph

Example 6.1: Consider a six node network as shown in Figure 6.1. Let the

initial 6)0(R∈ξ selected randomly in [0, 1].

1 2

6 3

 5 4

121

 Figure 6.2 shows convergence of trust in a six node network with 6 states using

the discrete time scheme given by Equation (6.8). ■

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Steady State in DT scheme

Time

C
o
n
s
e
n
s
u
s

Figure 6.2 Trust Consensus in the Discrete Time Scheme

6.3.2 Consensus in the Continuous Time Scheme

 In this section, we prove that the trust consensus scheme in Equation (6.5)

achieves asymptotic consensus for a trust graph G if the graph has a spanning tree. For

each L(t) associate a set of graphs {G(t)}. For the continuous time scheme, let

L(t)=[lij(t)], lij ≥ 0, ji ≠ and ∑ =
j

ijl 0 . Let),(φ 0tt be the corresponding transition matrix

of L(t) and is defined as),(0ttφ = ...12)2()1(1)1(∫∫∫
1

000

+++
σ

σσσσσσ
t

t

t

t

t

ddLLdLI From

[59], we know that the transition matrix),(0ttLφ of L(t) is a nonnegative stochastic

matrix with positive diagonal elements. Also, the corresponding transition matrix of

L(t) ⊗ In is),(0ttLφ ⊗ IN which is once again a nonnegative stochastic matrix with

122

positive diagonal entries. In the same lines as in Lemma 6.1, we can prove the following

Lemma.

Lemma 6.2: Consider a network with initial graph G(0) running the continuous time

consensus scheme in (6.5) with initial condition)0(ξ . Let 0)0(>ijξ . Then for ∀ 0>t ,

0)(>tijξ . As a result, G(t) for 0≥t are all of the same type.

Proof: Solution of Equation (6.5) can be written as)0,(()(tt Lφξ = ⊗ IN))0(ξ . This can

be rewritten for each state as,

 ∑
≠

)0()0,()0()0,()(
il

ljLilijLiiij ttt ξφξφξ += (6.9)

Here, the diagonal elements of)0,(tLφ ⊗ IN are always positive and therefore the first

term in the RHS of Equation (6.9) will always be positive for 0)0(>ijξ . The second

term in the RHS of Equation (6.9) is always nonnegative since)0,(tLφ ⊗ IN is a

nonnegative stochastic matrix with positive diagonal entries. Thus, if 0)0(>ijξ is an

edge weight for G(0), then 0∀,0)(>> ttijξ is an edge weight for G(t). Therefore, G(t),

0≥∀ t are all of the same type. ■

Theorem 6.2: The continuous time trust consensus scheme in Equation (6.5) achieves

trust consensus for ijξ (t) if and only if the initial graph G(0) has a spanning tree.

Proof: Now G(0) has a spanning tree if and only if G(t), t∀ has a spanning tree by

Lemma 6.2. Also)0,(tLφ is a continuous function of L(t) for the interval [0, t]. This is a

necessary and sufficient condition for the union of graphs over any finite time interval

123

to have a joint spanning tree. Therefore, the result (Theorem 3.2) in [60] proves the

result. ■

Example 6.2: Consider the same six node network as shown in Figure 6.1. Let the

initial 6)0(R∈ξ be the same as in Example 6.1. Figure 6.3 shows convergence of trust in

a six node network with six states using the continuous time scheme given by Equation

(6.5). It can be observed that the discrete time and the continuous time schemes give

different consensus values for the same initial conditions. ■

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Steady State in CT scheme

Time

C
o
n
s
e

n
s
u
s

Figure 6.3 Trust Consensus in the Continuous Time Scheme

6.3.3 Relation of the Continuous & the Discrete-time Protocols

 The Laplacian L in the continuous time scheme is related to the stochastic

matrix F in the discrete time scheme at each time instance. As shown in Figures 6.2 and

6.3, the trust consensus using (6.8) and (6.5) do not converge to the same consensus.

This is because the graph represented by F(k) is not the same as the graph represented

by L(t). In fact,

 F = I-(I+D)
-1

L (6.10)

124

It can be seen that the discrete time consensus scheme is the first order Euler

approximation of the continuous time scheme given by,

 =
•

iξ -)(DI +
-1

L iξ (6.11)

 If this scheme is used, both the continuous time in (6.11) and the discrete time

scheme in (6.8) would approximately converge to the same consensus. See Figures 6.4

and 6.5. Here for the same network in Figure 6.2, initial trusts 6)0(R∈ξ are selected

randomly in [0, 1].

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Steady State in DT scheme

Time

C
o
n
s
e
n
s
u
s

Figure 6.4 Trust Consensus in the Discrete Time Scheme

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Steady State in CT scheme

Time

C
o
n
s
e
n
s
u
s

Figure 6.5 Trust Consensus in the Continuous Time Scheme using scheme (6.11)

125

6.3.4 Network Containing Distrusted Nodes

 Attacks on the security of networked systems can often be characterized in terms

of malicious nodes [38, 86]. To characterize malicious nodes, negative trust values are

needed. For the case that trust is in [-1, 1] the situation is more realistic, interesting, and

complex. One can now talk about identifying and pruning out malicious nodes. Here, 1

means complete trust, 0 means no opinion, and -1 means complete distrust. When trust

can take on negative values, many philosophical issues arise about how to propagate

distrust. i.e. if there are two negative trusts along a trust path, do negative values

multiply? This would mean that the enemy of one’s enemy is one’s friend. One could,

for instance, take here the ‘one step distrust’ paradigm from [38]. This means that if

one has a distrusted neighbor, then one discounts all his opinions about any other nodes.

Since we take the trust values as the graph edge weights, the edge weights can become

negative as trust consensus propagates. When this happens, we cut the edges to isolate

the distrusted neighbor. Figure 6.6(a) shows the ‘one step distrust model’ for a tree

network.

 Another method to account for negative trusts is to use the ‘Graph Pruning and

Reconnection’ method. A simple algorithm to strip out distrusted nodes and reconnect

the trusted nodes around it is shown in Figure 6.6(b). In this algorithm, after a

malicious node is pruned, its neighbors are fully reconnected along all the cut paths.

This means that if the pruned node has in-degree of m and out-degree of n, then mn new

edges are added. This method has in fact been well studied in graph theory.

126

Figure 6.6 One Step Distrust Model for negative trusts (a), Graph Pruning to remove the

distrusted node (b)

6.4. Team Behaviors Based on Trust

Different team behaviors will emerge automatically depending on the trust each

node has for its neighbors, e.g. flock [43, 84, 85], or swarm [24, 25] with trusted

neighbors, follow trusted leader, avoid enemy node. In this section we explore flocking

behavior in a distributed network of agents.

6.4.1 Flocking in a Network of Trusted Nodes

 The flocking model consists of three steering behaviors which describe how an

individual agent maneuvers based on the positions and velocities of the neighboring

flock-mates (Reynolds’ rules [63]):

1. Separation: steer to avoid closely located flock-mates.

2. Alignment: steer towards the average heading of local flock-mates.

3. Cohesion: steer to move toward the average position of local flock-mates.

(a) (b)

Distrusted Node

Distrusted Node

127

 The superposition of these three rules results in all agents moving in a formation

[8, 16], with a common heading while avoiding collisions. Generalizations of this

model include a leader follower strategy, in which one agent acts as the group leader

and the other agents would just follow the aforementioned rules, resulting in leader

following.

 Consider the node dynamics having local rule,

 ()
c
i

i ij ij j i

j N

x w x x� ξ
∈

= −∑ (6.12)

with wij some control graph edge weights (control gains) and c

i
N the control

neighborhood of node i. Suppose the trust of node i for node j satisfies the bilinear trust

local voting dynamics,

 (-)
t
i

i ij ij j i

j N

a�ξ ξ ξ ξ
∈

= ∑ (6.13)

with t

i
N the trust neighborhood of node i. Note that this is a coupled system.

Example 6.3: Let xi represent the heading of node i in a formation. Consider the

formation graph shown in Figure 6.7. First we run the trust update protocol above on

the case of fully trusted nodes. That is, the initial trust vectors)0(iξ of the nodes have

all entries positive or zero. Then, as the trusts change, the edge weights change but stay

positive, so the graph structure is preserved. Then, all nodes converge to the initial

heading value x1(0) of the leader.

128

1

2

3
4

5

6

1

2

3
4

5

6

Figure 6.7 Tree network with one leader and five followers

 Let the initial 6)0(R∈ξ selected randomly in [0, 1]. Figure 6.8(a) shows that the

trusts of the followers converge to the initial trusts of the leader node. Let the heading

of each node be 1
R∈θ . Figure 6.8(b) shows the heading consensus in this network.

Here, the heading of the followers converge to the heading of the leader. Note that even

if the node headings are negative, the network heading will converge since)0(ξ is in [0,

1].

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time

T
ru

s
ts

Trust Consensus using Equation (22)

(a)
0 5 10 15 20 25 30

-120

-100

-80

-60

-40

-20

0

20

40

60

Time

H
e
a
d
in

g

Heading Consensus using Equations (21) and (22)

(b)

Figure 6.8 Convergence of trusts of all the nodes (a), Convergence of headings of all the

nodes in a tree network (b)

 Figure 6.9 shows the motion of each node with the follower node headings

converging to the heading of the leader node. Here the velocity of each node is

considered to be the same. ■

129

10 20 30 40 50 60 70 80 90 100

-200

-150

-100

-50

0

50

100

150

200

Heading Update using Spanning Tree Trust Update

x

y

Leader

Figure 6.9 Convergence of headings of all the nodes in a tree network

6.4.2 Flocking in a Network Containing Distrusted Nodes

 When the trust consensus scheme is used for trust values in [-1, 1], we make use

of methods described in Section 6.3.4 to either disconnect the distrusted node or use

pruning and reconnection.

Example 6.4: Pruning Distrusted Node in Flocking

 Here we consider one distrusted node i.e. node 5. Specifically, the initial trust

vectors)0(iξ of the nodes have most entries positive or zero, but several of nodes have

negative initial trust values
5(0)iξ for node 5. If the bilinear trust update algorithm is run

on this graph, the trust consensus for node 5 eventually becomes negative, and its edge

is cut from the group. Its follower (node 6) follows it. Neither reaches the leader’s

consensus heading. This is shown in Figure 6.10. ■

130

leader

Distrusted node 5

Node 5’s follower,
node 6

leader

Distrusted node 5

Node 5’s follower,
node 6

leader

Distrusted node 5

Node 5’s follower,
node 6

Figure 6.10 Pruning malicious node 5. Its follower 6 is also pruned.

Example 6.5: Pruning and Reconnection

 In this example we consider that, though node 5 eventually becomes distrusted,

all nodes in fact continue to trust node 6. The bilinear trust consensus scheme is run

again, but when node 5 is pruned out, its follower node 6 is reconnected to the leader

node 1. Now, all nodes except node 5 achieve the consensus heading. Figure 6.11(a)

shows the convergence of trusts and Figure 6.11(b) shows the convergence of the

headings. It can be seen that the heading of node 6 converges to the heading of the

leader when network reconnection is used. Figure 6.12 shows the motion of each node

with the follower node headings converging to the heading of the leader node while

node 5 remains completely disconnected and never converges to the heading of the

leader. ■

131

 (a)

(b)

Figure 6.11 Convergence of trusts of all the nodes (a), Convergence of headings of all

the nodes in a tree network after pruning and reconnection (b)

Node 6

5

Node 6

5

Figure 6.12 Pruning malicious node 5 with reconnection of its trusted follower 6.

132

6.4.3 Formations in a Distributed Network

Formation of autonomous vehicles refers to a set of spatially distributed vehicles

whose dynamic states are coupled through a common control law. Following shows an

easier way to maintain formations in a desired configuration. Moreover, as the desired

configuration changes, the formation can quickly be moved into the new desired

structure.

Consider the following dynamics,

 Fkx ()1(=+ (k) ⊗ I3))(kx (6.14)

 Fk ()1(=+ξ (k) ⊗ IN))(kξ (6.15)

 Here x =])...()()[(21
Td

N
TdTd xxx with 3d

i
x R∈ the desired (x,y,z) position of node i

in the formation with respect to the leader. All other nodes take their initial states as

their own actual initial positions. Also note that F is a time-varying function ofξ . For a

tree structure with leader as the root node, the consensus value assuming constant trust

values is given by xss = x1(0).

Example 6.6: For the same tree network in Example 6.5, we want the desired positions

of the nodes in the hexagonal formation structure. Let the initial state leader contain the

desired formation positions. If we run the above coupled node dynamics and bilinear

trust update, all nodes converge to the initial state of the leader, i.e. to their desired

formation positions as shown in Figure 6.13. If the desired relative positions of all or

some of the nodes change, then the leader simply resets xss = x1(0), and all nodes will

133

automatically converge to the new consensus trust and positions, as specified by the

leader in its initial state vector. ■

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

Formation in a Tree using Trust Updates

Leader

Figure 6.13 Convergence of positions of all the nodes in a tree network to a hexagon

formation

 Chapter 7 concludes the work in this dissertation with some ideas on future

work.

134

CHAPTER 7

CONCLUSION

7.1 Conclusion

 This dissertation presented novel matrix-based methods for decision and control

in distributed cooperative systems. A novel matrix-based Discrete Event Controller has

been implemented for task planning and resource dispatching in a distributed network

consisting of stationary ground sensors and mobile agents.

 A new matrix-based algorithm has been developed and implemented for

deadlock avoidance in systems consisting of shared resources and utilizing dynamic

resource assignment. The analysis of deadlock is based on objects called critical siphons

and critical subsystems in such systems.

 The analysis of deadlock avoidance becomes even more difficult when routing

of tasks and resources are involved. The critical siphons and critical subsystems have to

be redefined. This dissertation presented a new matrix-based approach for deadlock

avoidance in such systems. This work proved that the new approach is a generalized

approach that can be used for systems with or without routing. This work also presented

a method for tackling a certain pathological conditions called second order deadlocks

using a regularity test.

 In the presence of numerous agents in a distributed network, a collective

decision can be made based on the individual decisions of agents which is called data

135

fusion. Dempster Shafer (DS) theory has been extensively used in the past for data

fusion since it provides an excellent framework for conditions involving uncertainty.

This dissertation provided a new matrix formulation for updating evidence and

computing beliefs and plausibilities in DS theory. The work also showed how evidence

theory can be used in routing systems with a case study on Condition Based

Maintenance.

 Finally, this work presented a framework for trust propagation and maintenance

in a network of nodes or mobile agents that yields global consensus of trust under rich

enough communication structure graphs. This work considered the case where the

graph structure is a time-varying function of the trusts based on the graph connectivity

which makes the trust consensus scheme bilinear. This trust consensus is incorporated

into cooperative control laws that depend on local information from neighboring nodes,

yet yield team-wide desired behavior such as flocking and formations.

7.2 Future Research

 This research considered the problem of deadlocks in MRF and FMRF systems.

There are other types of distributed cooperative systems having different structural

properties. FMRF is a general form of MRF systems. The FMRF structure differs from

PN structures such as ES3PR (Extended S3PR) or S3PGR2 (System of Simple

Sequential Processes with General Resource Requirements). Such structures make use

of more than one resource for a given task. Deadlock prevention in such systems is well

studied. We need to investigate deadlock avoidance algorithms in such systems.

136

 In the case of trust propagation and maintenance in a distributed network, the

final consensus value of all the nodes is well defined for graphs that are strongly

connected and balanced with constant edge weights. For a weaker case such as a

spanning tree, the final consensus value is not known even if the convergence of trusts

has been proven.

 The bilinear trust propagation scheme mentioned in this dissertation is more

flexible than the constant edge weight case, which assumes that each node continues to

put the same weight on the opinions of its neighbors even though its trust about those

neighbors changes. However, analysis is a bit more tricky and interesting. In fact, note

that the steady-state or consensus values of trust obey the quadratic

equation 0 (())
N

L t I ξ= − ⊗ . It would be interesting to investigate the final consensus

value of trusts for different graph structures using the bilinear trust consensus scheme.

 The convergence rate of trust consensus protocols depends on the Fiedler

eigenvalues [52]. Figure 7.1 shows the Fiedler eigenvalues for continuous and discrete-

time cases. Note that the continuous-time trust update scheme converges faster than the

discrete-time scheme. This has to do with the way the Fiedler eigenvalue 2 ()Lλ maps

to the Fiedler eigenvalue 2 ()Fλ . Note further that the analysis is complicated by the

fact that L and F are both time-varying.

 Figure 7.1 shows the Fielder eigenvalue of F(k) for the discrete-time trust update

(figure 7.1 (a)) and L(t) for the continuous time update (figure 7.1 (b)) for the examples

6.1 and 6.2. Also shown in figure 7.1 (a) is the Fiedler eigenvalue of L(k) in discrete-

137

time for example 6.1. Interestingly, the Fiedler eigenvalues of L(k) and L(t) converge to

the same value.

 It is interesting that the small-world model [38] has a Fiedler eigenvalue that

decays quickly, so that information propagates quickly in this model and consensus is

quickly achieved.

0 2 4 6 8 10 12 14 16 18 20

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Time

F
ie

d
le

r
E

ig
e
n
v
a
lu

e

Fiedler Eigenvalue of F and L

Fiedler Eigenvalue of F

Fiedler Eigenvalue of L

 (a)
0 10 20 30 40 50 60 70 80 90

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Time

F
ie

d
le

r
E

ig
e
n
v
a
lu

e

Fiedler Eigenvalue of L

(b)

Figure 7.1 Fiedler Eigenvalues of F and L, Discrete time case (a), Continuous time case

(b)

 Baras et al., [86] study convergence and convergence rates in trust propagation

using the Fiedler eigenvalue, and show means to speed up the convergence rate. It is

interesting to study the design of good communication graph structures for trust in

networked teams such that the Fiedler eigenvalue has the fastest decay rate.

138

REFERENCES

[1] Ballal P., Giordano V., Lewis F., "Deadlock Free Dynamic Resource Assignment in

Multi-Robot Systems with Multiple Missions: A Matrix-Based Approach,"

Proceedings of Mediterranean Conference on Control & Automation, Ancona, Italy,

June 2006.

[2] Ballal P., Lewis F., Mireles J., Sreenath K., "Deadlock avoidance for free choice

multi-reentrant flow lines: Critical siphons and critical subsystems", Proc.

Mediterranean Conf. Control & Automation, Athens, Greece, June 2007.

[3] Beard R., and Stepanyan V., “ Synchronization of information in distributed

multiple vehicle coordinated control,” in Proc. IEEE Conf. Decision and Control,

Maui, HI, Dec. 2003, pp. 2029-2034.

[4] Baccelli F., Foss S., and Gaujal B., “Free-choice Petri nets—An algebraic

approach,” IEEE Trans. Automat. Contr., vol. 41, pp. 1751–1778,Dec. 1996.

[5] Bengtsson M., “Condition Based Maintenance System Technology – Where is

Development Heading?” In proceedings of the 17th European Maintenance

Congress, May 11-13, 2004, AMS (Spanish Maintenance Society), Barcelona,

Spain, B-19.580-2004.

[6] Butler Z., Rus D., “Event-based motion control for mobile-sensor network”, IEEE

Transactions on Pervasive Computing, vol.2 issue 4, October-December 2003

139

[7] Chong C., Kumar S., “Sensor Networks: Evolution, Opportunities and Challenges”,

Proceedings of the IEEE, col. 91, no.8, August 2003

[8] Chopra N., Spong M., “Passivity-based control of multi-agent systems,” in

“Advances in Robot Control: From Everyday Physics to Human-Like Movements,”

ed. S. Kawamura and M. Svinin, pp. 107-134, Springer-Verlag, Berlin, 2006.

[9] Corman, T., Leisenson, C., and Rivest R., “Introduction to Algorithms,” Prentice

Hall of India, 2001.

[10] Cortes J., Martinez S., Karatas T., Bullo F., “Coverage control for mobile sensing

network”, IEEE Transactions on Robotics and Automation, Vol. 20, Issue 2, pp.

243–255, April 2004

[11] Dantu K., Rahimi M., Shah H., Babel S., Dhariwal A., Sukhatme G., “Robomote:

enabling mobility in sensor networks”, Information Processing in Sensor Networks,

2005. IPSN 2005. Fourth International Symposium on 15 April 2005 Page(s):404 –

409

[12] Davey A., Grosvenor R., Morgan P., Prickett P., "Petri-net based machine tool

failure diagnostics", in Rao, R.B.K.N (Eds),Condition Monitoring and Diagnostic

Engineering Management, Sheffield Academic Press, pp.722-3, 1996.

[13] Desel J., Esparza J., “Free choice petri nets,” Cambridge Tracts in Theoretical

Computer Science, vol. 40, Cambridge University Press, Cambridge, UK, 1995.

[14] Dempster A., “Upper and lower probabilities induced by a multiple valued

mapping, Ann. Math. Statist. 38 (1967) 325–339.

140

[15] Dempster A., A generalization of Bayesian inference, J. Roy. Statist. Soc. B 30

(1968) 205–247.

[16] Dunbar W., and Murray R., “Distributed receding horizon control for multi-vehicle

formation stabilization,” Automatica, vol. 42, pp. 549-558, 2006.

[17] Ezpeleta, J., Colom J.M., Martinez J., “A Petri Net Based Deadlock Prevention

Policy for Flexible Manufacturing Systems,” IEEE Transaction on Robotics and

Automation, Volume 11, Issue 2, April 1995 Page(s):173 – 184.

[18] Ezpeleta J., Recalde L., “A deadlock avoidance approach for nonsequential resource

allocation systems,” in Proc. IEEE Int Conf. Syst., Man, Cybern., Oct. 2002.

[19] Fanti M. P., Maione G., and Turchiano B., “Distributed Event-Control for Deadlock

Avoidance in Automated Manufacturing Systems,” International Journal of

Production Research 39(9), 2001, Page(s): 1993-2021.

[20] Fanti M.P., Maione B., Mascolo S., Turchiano B., “Event-based feedback control

for deadlock avoidance in flexible production systems,” IEEE Transactions on

Robotics and Automation, Volume 13, Issue 3, June 1997 Page(s):347 - 363

[21] Fanti, M.P., Maione B., Turchiano B., “Comparing digraph and Petri net approaches

to deadlock avoidance in FMS,” IEEE Transactions on Systems, Man and

Cybernetics, Part B, Volume 30, Issue 5, Oct. 2000 Page(s):783 - 798

[22] Fanti M., Zhou M., “Deadlock control methods in automated manufacturing

systems,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems

and Humans, 34(1):5-22, 2004.

141

[23] Fax J., and Murray R., “Information flow and cooperative control of vehicle

formations,” IEEE Trans. Automatic Control, vol. 49, no. 9, pp. 1465-1476, Sept.

2004.

[24] Gazi V., and Passino K., “Stability analysis of swarms,” IEEE Trans. Automatic

Control, vol. 48, no. 4, pp. 692-697, April 2003.

[25] Gazi V., and Passino K., “A class of attractions/repulsion functions for stable swarm

aggregations,” Int. J. Control, vol. 77, no. 18, pp. 1567-1579, 2004.

[26] Gerkey B., Mataric M., “Sold! Auction methods for multirobot coordination”, IEEE

Transactions on Robotics and Autoation, vol. 18, no. 5, October 2002

[27] Gerkey B., Mataric M., “A formal analysis and taxonomy of task allocation in

multi-robot systems”, Int. Journal of Robotics Research, vol.:18 , no.5 , September

2004

[28] Giordano V., Lewis F., Mireles J., Turchiano B., “Coordination Control Policy for

Mobile Sensor Networks with Shared Heterogeneous Resources,” Proceedings of

the IEEE International Conference on Control and Automation, Budapest, June

2005.

[29] Giordano V., Ballal P., Lewis F., Turchiano B., Zhang J. B., “Supervisory Control

of Mobile Sensor Networks: Math Formulation, Simulation, Implementation,” IEEE

Transactions on Systems, Man and Cybernetics, Part B, Volume 36, Issue 4, Aug.

2006 Page(s):806 – 819.

[30] Giordano V., Lewis F., Turchaino B., Ballal P., Yeshala V., “Matrix Computational

Framework for Discrete Event Control of Wireless Sensor Networks with Some

142

Mobile Agents,” Proceedings of the Mediterranean Conference on Control &

Automation, Limassol, Cyprus, June 2005.

[31] Godsil C., and Royle G., "Algebraic Graph Theory," Springer Graduate Texts in

Mathematics, no. 207, New York, 2001.

[32] Gurel, A., Bogdan S., Lewis F., “ Matrix Approach to Deadlock-Free Dispatching

in Multi-Class Finite Buffer Flowlines,” IEEE Transactions on Automatic Control,

Volume 45, Issue 11, Nov 2000 Page(s): 2086-2090.

[33] Herstein I. N., “Topics in Algebra,” Blaisdell Publishing Co., 1964.

[34] Horn R., and Johnson C., “Matrix Analysis,” Cambridge, UK., Cambridge Univ.

Press, 1985.

[35] Huang Y., Jeng M., Xie X., Chung D., “Siphon-Based Deadlock Prevention Policy

for Flexible Manufacturing Systems”, IEEE Trans. On Systems, Man, Cybernetics,

Part A, Vol 36, Issue 6, Nov, 2006.

[36] Huang Y., Lin H., Lin J., “A Siphon-Based Deadlock Prevention Policy for FMS”,

IEEE Conf. on Systems, Man and Cybernetics, 2005.

[37] Jadbabaie A., Lin J., and Morse A., “Coordination of groups of mobile autonomous

agents using nearest neighbor rules,” IEEE Trans. Automatic Control, vol. 48, no. 6,

pp. 988-1001, June 2003.

[38] Jiang T., and Baras J., “Trust evaluation in anarchy: a case study on autonomous

networks,” Proc. Infocom, Barcelona, 2006.

143

[39] Judd R., Zhang W., Deering P., Lipset R., “A Scalable Deadlock Avoidance

Algorithm for Flexible Manufacturing Systems with Free Choice in Part Routing,”

Proceedings of IEEE American Control Conference, 2000.

[40] King J., Pretty R., Gosine R., “Coordinated execution of tasks in multiagent

environment”, IEEE Transactions on Systems, Man and Cybernetics- Part A:

Systems and Humans, Vol. 33, Issue 5, pp. 615–619, September 2003.

[41] Kusiak A., “Intelligent scheduling of automated machining systems,” in Intelligent

design and Manufacturing. A. Kusiak (ed.) Wiley, New York (1992).

[42] Lawley M., “Integrating Routing Flexibility and Algebraic Deadlock Avoidance

Policies in Automated Manufacturing Systems,” International Journal of Production

Research, , 2000, Page(s): 2931-2950.

[43] Lee D., and Spong M., “Stable flocking of multiple inertial agents on balanced

graphs,” preprint, 2007.

[44] Li Z., Zhou M., “Elementary Siphons of Petri Nets and their Application to

Deadlock Prevention in Flexible Manufacturing Systems”, IEEE Trans. On

Systems, Man, Cybernetics, Part A, Vol 34, Issue 1, Jan 2004.

[45] Li Z., Wei N., “An Improved Deadlock Control Policy using Elementary Siphons

and MIP Approach”, IEEE conf. on Industrial Technology, ICIT 2005.

[46] Li Z., Wei N., Zhu R., “ Deadlock Prevention Policy for FMS using Petri Nets”,

ICCA 2005.

144

[47] Lewis F., Gurel A., Bogdan S., Docanalp A. Pastravanu O., “Analysis of Deadlock

and Circular Waits Using a Matrix Model for Flexible Manufacturing Systems,”

Automatica, vol.34, no. 9, September 1998.

[48] Lewis F., “Wireless sensor networks,” Smart environments: Technologies,

Protocols, and Applications, ed. D. J. Cook and S. K.Das, John Wiley, New York,

2004.

[49] Maione G., Naso D., “New control policies preventing deadlock in automated

manufacturing systems,” Proceedings of IEEE Conference on Emerging

Technologies and Factory Automation, September 2003

[50] Mireles J., Lewis F., Gurel A., “Implementation of a Deadlock Avoidance Policy

for Multipart Reentrant Flow Lines Using a Matrix-Based Discrete Event

Controller,” Proceedings of the International symposium on advances in robot

dynamics and control, New Orleans, November 2002.

[51] Murata, T. “Petri Nets: Properties, Analysis and Applications,” Proceedings of the

IEEE, vol.77, no.4, April 1989, pp.541-80.

[52] Olfati-Saber R., and Murray R., “Consensus problems in networks of agents with

switching topology and time-delays,” IEEE Trans. Automatic Control, vol. 49, no.

9, pp. 1520-1533, Sept. 2004.

[53] Ozmutlu, S. And Harmonosky, C.M., “A Real Time Methodology for Minimizing

Mean Flowtime in FMSs With Routing Flexibility: Threshold Based Alternate

Routing,” European Journal of Operational Research, 2005, Pages(s): 369-384.

145

[54] Park J., Reveliotis S., “Deadlock Avoidance in Sequential Resource Allocation

Systems with Multiple Resource Acquisitions and Flexible Routings,” IEEE

Transactions on Automatic Control, Vol. 46, 2001, pp 1572-1583.

[55] Peterson, J. L., “Petri Net Theory and the Modeling of Systems,” Prentice-Hall,

Englewood Cliffs, NJ, 1981.

[56] Piroddi L., Ferrarini L., “ A Modular Approach for Deadlock Avoidance in FMS,”

Proceedings of IEEE Conference on Decision and Control, 2005.

[57] Puccinelli D., Haenggi M., “Wireless Sensor Networks: Applications and

Challenges of Ubiquitous Sensing”, IEEE Circuits and Systems Magazine, vol. 5,

pp. 19-29, August 2005.

[58] Qiu D., “Supervisory control of fuzzy discrete event systems: A formal approach,”

IEEE Trans. Syst., Man, Cybern., B, vol. 35, no. 1, pp. 72–88, Feb. 2005.

[59] Ren W., and Beard R., “Consensus seeking in multiagent systems under

dynamically changing interaction topologies,” IEEE Trans. Automatic Control, vol.

50, no. 5, pp. 655-661, May 2005.

[60] Ren W., Beard R., Kingston D., “Multi-agent Kalman Consensus with Relative

Uncertainty,” Proceedings of ACC, June 2005..

[61] Reveliotis S., “On the Siphon-based Characterization of Liveness in Sequential

Resource Allocation Systems,” Tech. Report, School of Industrial & Systems, Eng.

Georgia Tech, 2001.

[62] Revliotis S., “Real-time Management of Resource Allocation Systems: A Discrete

Event Systems Approach”, NY, Springer, 2005.

146

[63] Reynolds C., “Flocks, herds and schools: a distributed behavioral model.,”

Computer Graphics, 1987, 2 1 (4):25-34.

[64] Saligrama V., Alanyali M., and Savas O., “Distributed detection in sensor networks

with packet losses and finite capacity links,” IEEE Trans. Signal Proc., vol. 54, no.

11, pp. 4118-4132, Nov. 2006.

[65] Sinopoli B., Sharp C., Schenato L., Schaffert S., Sastry S., “Distributed Control

Applications Within Sensor Networks”, Proceedings of the IEEE, vol. 91, no.8,

August 2003

[66] Shafer G., “Allocation of Probability: a Theory of Partial Belief,” Ph.d. thesis,

Princeton University, 1974.

[67] Shafer G., “A Mathematical Theory of Evidence,” Princeton University Press,

Princeton, NJ, 1976.

[68] Smets P., “The transferable belief model for quantified belief representation,” in:

D.M. Gabbay, P.Smets (Eds.), Handbook of Defeasible Reasoning and Uncertainty

Management Systems, vol. 1,Kluwer, Doordrecht, The Netherlands, 1998, pp. 267–

301.

[69] Smets P., “Decision making in a context where uncertainty is represented by belief

functions,” in R.P. Srivastava, T. Mock (Eds.), Belief Functions in Business

Decisions, Physica-Verlag, Heidelberg, Germany, 2002, pp. 17–61.

[70] Smets P., “Upper and lower probability functions versus belief functions”, Proc.

International Symposium on Fuzzy Systems and Knowledge Engineering,

Guangzhou, China, July 10-16, pg 17-21., 1987.

147

[71] Smets P., “Belief functions”, in Smets P, Mamdani A., Dubois D., and Prade H. ed.

Non-standard logics for automated reasoning. Academic Press, London p 253-286.

1988.

[72] Smets P., “The combination of evidence in the transferable belief model”, IEEE-

Pattern analysis and Machine Intelligence, 12:447-458. 1990

[73] Smets P., “The transferable belief model and possibility theory”, Proc. NAFIPS-90,

pg. 215-218. 1990.

[74] Smets P., “Constructing the pignistic probability function in a context of

uncertainty”, Uncertainty in Artificial Intelligence 5, Henrion M., Shachter R.D.,

Kanal L.N. and Lemmer J.F. eds, North Holland, Amsterdam, , 29-40. 1990.

[75] Smets P., “The Transferable Belief Model and Other Interpretations of Dempster-

Shafer's Model”, Procs of the 6th Conf.on Uncertainty in AI, Cambridge, MA. 1990.

[76] Smets P., “Varieties of ignorance”, Information Sciences. 57-58:135-144. 1991.

[77] Smets P., “Belief functions: the disjunctive rule of combination and the generalized

Bayesian theorem”, Int. J. Approximate Reasoning, 1991.

[78] Smets P., “The nature of the unnormalized beliefs encountered in the transferable

belief model”, in Dubois D., Wellman M.P., d’Ambrosio B. and Smets P.

Uncertainty in AI 92. Morgan Kaufmann, San Mateo, Ca, USA, 1992, pg.292-297.

1992.

[79] Smets P., “The transferable belief model and random sets”, Int. J. Intell. Systems

7:37-46. 1992.

148

[80] Smets P., “Decision making in the TBM: the necessity of the pignistic

transformation,” Int. J. Approx. Reason. 38 (2005) 133–147.

[81] Smets P., “The application of the matrix calculus to belief functions, Int. J. Approx.

Reason. 31 (2002) 1–30.

[82] Tacconi D., Lewis F., “A new matrix model for discrete event systems: application

to simulation”, IEEE Control System Magazine, vol.17 October 1997

[83] Takata S., Kirnura F., Houten F., Westkamper E., Shpitalni M., Ceglarek D., Lee J.,

“Maintenance Changing role in Life Cycle Management,” Annals of the CIRP 53

(2004) (2), pp. 643–655.

[84] Tanner H., Jadbabaie A., and Pappas G., “Stable flocking of mobile agents, Part i:

Fixed Topology,” in Proc. IEEE Conf. Decision and Control, Maui, HI, Dec 2003,

pp. 2010-2015.

[85] Tanner H., Jadbabaie A., and Pappas G., “Stable flocking of mobile agents, Part ii:

Dynamic Topology,” in Proc. IEEE Conf. Decision and Control, Maui, HI, Dec

2003, pp. 2016-2021.

[86] Theodorakopoulos G., and Baras J., “On trust models and trust evaluation metrics

for ad hoc networks,” IEEE J. Selected Areas in Communications,” vol. 24, no. 2,

pp. 318-328, Feb. 2006.

[87] Uzam M., Zhou M., “An Improved Iterative Synthesis Method for Liveness

Enforcing Supervisors of FMS”, International Journal of Production Research, Vol

44, Issue 10, May 2006.

149

[88] Vicsek T., Czirok A., Jacob E., Cohen I., and Schochet O., “Novel type of phase

transitions in a system of self—driven particles,” Phys. Rev. Lett., vol 75, pp.1226-

1229, 1995.

[89] Viswanadham N., Narahari Y., Johnson T., " Deadlock prevention and deadlock

avoidance in flexible manufacturing systems using Petri net models," IEEE Trans.

on Robotics and Automation, vol. 6, pp. 713-723, Dec. 1990.

[90] Williams J. H., Davies A., Drake P.R., “Condition-Based Maintenance and Machine

Diagnostics,” Chapman & Hall, 1992.

[91] Wolfowitz J., “ Products of indecomposable, aperiodic, stochastic matrices,” Proc.

Amer. Math. Soc., vol. 15, pp. 733-736, 1963.

[92] Wysk, R.A.; Yang, N.S.; Joshi, S.; “Detection of Deadlocks in Flexible

Manufacturing Cells,” IEEE Transactions on Robotics and Automation, vol.:7 ,

Issue: 6 , December 1991.

[93] Xing K.Y., Hu B.S., Chen H.X., “Deadlock Avoidance Policy for Petri-net

Modeling of Flexible Manufacturing Systems With Shared Resources,” IEEE

Transactions on Automatic Control, Volume 41, Feb 1991 Page(s): 289-295.

[94] Xing K., Jin X., Feng Y., “ Deadlock Avoidance Petri Net Controller for

Manufacturing Systems with Multiple Resource Service,” Proceedings of IEEE

Conference on Robotics and Automation, 2005.

[95] Yang B., Jeong S., Oh Y., Tan A., “Case-based reasoning system with Petri nets for

induction motor fault diagnosis,” Expert Systems with Applications 27 (2004) 301–

311.

150

[96] Yang, S., “A condition-based failure-prediction and processing-scheme for

preventive maintenance,” IEEE Transactions on Reliability, Vol. 52 No. 3, pp. 373-

83, 2003.

[97] Zhou M., Fanti M., “ Deadlock Resolution in Computer-Integrated Systems”,

Marcel Dekker, Inc, Singapore, 2004.

151

BIOGRAPHICAL INFORMATION

 Prasanna Mohan Ballal received his Bachelor of Engineering degree in

Electronics and Telecommunication from Mumbai University, India in 2002. He then

worked for IndiaGames Ltd., as a software programmer. He received his Master of Science

degree in Electrical Engineering in 2005 and PhD in Electrical Engineering in 2008 from

University of Texas at Arlington, USA. He has been working as a Graduate Research

Associate in Distributed Intelligence & Autonomy Laboratory at Automation and Robotics

Research Institute, Fort Worth, USA and has authored or co-authored over 14 journal and

conference publications. His research interests include Control System Design, Wireless

Sensor Networks and Signal Processing.

