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ABSTRACT 

 

SIMULATION OF TETRAHEDRAL MESH BASED ORGAN DEFORMATION USING 

PARAMETER OPTIMIZED SPRING CONSTANTS  

 

 

Koyel Mukherjee, M.S.  

The University of Texas at Arlington, 2008 

 

Supervising Professor: Venkat Devarajan 

 Virtual reality based surgical simulators are becoming increasingly popular for training 

doctors on minimally invasive surgery. For these simulators, it is necessary to generate 3D 

organ models and create virtual environments depicting visually realistic deformation response 

by tissues and organs to manipulations by surgical tools. For creating a 3D model, several 

different approaches have been used by the computer graphics community, among which 

polygonal/polyhedral meshes have gained popularity for real time virtual reality applications.  

This work investigates two problems in 3D organ modeling for virtual reality simulators. 

Firstly, we consider the use of unstructured 3D meshes for generation of organ models.  We 

investigate a class of algorithms for simplification of meshes, that is, for reduction in the number 

of elements, and also for improving the quality of generated mesh. We propose a new algorithm 

for mesh simplification by building up on existing approaches. This algorithm has better and 

quicker simplification performance.  At the same time we ensure that the quality of simplified 

mesh elements is not degraded beyond a certain user-specified limit.  We compare the results 

obtained by our algorithm to existing rapid procedures.  
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The second problem investigated in this work deals with mass-spring-damper models, 

as applied to the tetrahedral mesh for modeling the physically deformable nature of the organs.  

We extend the work reported by Wang and Devarajan in 2007 [1] and apply the suggested 

parameter optimization to the more general case of irregularly shaped organs with a higher 

deformation tendency. We optimize the Hooke’s constant for the springs used in the Mass-

Spring-Damper (MSD) model in the mesh based on some constraints to generate a more 

realistic and visually appealing physically-based deformation response.  We set up a stand-

alone framework for modeling the deformation response of MSD model based organs and 

determine all relevant environment parameters for a stable simulation.  
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CHAPTER 1 

INTRODUCTION 

1.1 3D Modeling 

 In 3D computer graphics, 3D modeling is the process of developing a mathematical 

representation of any three-dimensional object (either inanimate or living) via specialized 

software. A 3D model can be displayed as a two-dimensional image through a process called 

rendering or used in a computer simulation of physical phenomena.  

3D models have a variety of applications. Detailed organ modeling is used in virtual 

medical applications. Modeling of characters and objects for animation and real-life motion 

pictures is common in the film industry. Figure 1.1 is an example of 3D model creation for 

animation in a film. 3D models are widely used in computer and video games. Other 

applications include detailed modeling of chemical compounds, designing new devices, vehicles 

and structures, buildings and landscapes, geological modeling and a host of other areas.  

 

Figure 1.1 A 3D model of a “Mangalore” from the film The Fifth Element in the 3D modeler 
LightWave, shown from different perspectives 

 

1.1.1 Modeling Process 

Creation of a 3D model requires specification of the 2D surfaces or surface modeling, as well as 

representation of volumes surrounded by surfaces, known as solid modeling. Figure 1.2 shows 
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the well known model of the Utah Tea Pot, widely used in education as an example of an object 

that requires modeling of smooth curved surfaces.  

 

                                          Figure 1.2 The Utah Teapot 

 

Popularly used techniques for surface modeling are as follows [19] : 

• Polygon Mesh - It is a set of connected edges, vertices and polygons, where each edge 

connects two vertices, and is shared at most by two polygons, and each polygon is a 

closed sequence of edges. Examples are triangular meshes, quadrilateral meshes etc.  

• Parametric Polynomial Curves – Points on a 3D curve are specified by three 

polynomials defined in terms of a variable parameter, one for each dimension x, y and 

z. Commonly used Curves are Hermite Curves, Bezier Curves, various forms of B-

Splines (curve segments whose local behavior is controlled by ‘weighted’ control points) 

like Uniform Non-rational B-Splines, Non-Uniform Non-Rational B-Splines and Non-

Uniform Rational B-Splines (also known as NURBS). 

• Parametric Bivariate Polynomial Surface Patches – Coordinates of points on curved 

surfaces are defined by three bivariate polynomials, one for each of x, y and z. The 

boundaries of the patches are parametric curves (if both are cubic, then they are known 
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as Bicubic Surfaces). Examples are Hermite Surfaces, Bezier Surfaces, B-Spline 

Patches. 

• Implicit Surfaces – In this case, surfaces are defined implicitly by an equation f(x,y,z) = 

0. If f is a quadric polynomial in x, y and z, it is referred to as a Quadric Surface. They 

are used for representations of spheres, cylinders etc.  

Commonly used solid modeling techniques are as follows [19, 21]: 

• Primitive Instancing – A set of primitive 3D solid shapes are defined that are 

relevant to the application area. These primitives are typically parameterized to 

define a ‘family’ of parts, with similar behavior and small variations. 

• Sweeps – A new object is defined by sweeping an object through a trajectory in 

space. Translation Sweep or Extrusion is defined by a 2D area swept along a linear 

path normal to the plane of the area to create a volume. Rotational Sweeps are 

defined by rotating areas about axes. General Sweeps follow arbitrary curved 

trajectories.  

• Boundary Representations (B-rep) – This involves description of an object in terms 

of its surface boundaries: vertices, edges and faces. Some B-reps are restricted to 

planar, polygonal boundaries. Polyhedral meshes, e.g., tetrahedral meshes (used in 

this work) fall under this category, and are discussed in detail in later sections.  

• Spatial Partitioning Representations – A solid is decomposed into a collection of 

adjoining, non-intersecting solids which are more primitive than the original solid 

and may not be the same type as the original solid. Commonly used approaches 

are Cell Decomposition, Spatial Occupancy Enumeration (voxel based method), 

Octrees and Binary Space-Partitioning (BSP) trees.      
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• Constructive Solid Geometry (CSG) – Simple primitives are combined by means of 

regularized Boolean set operators. An object is stored as a tree with operators at 

the internal nodes and the simple primitives at the leaves. 

Modeling can be performed by means of a dedicated program (e.g., Maya, 3DS Max, 

Blender) or an application component (Shaper, Lofter in 3DS Max) or some scene description 

language (as in POV-Ray).  

1.1.2 Illumination, Shading and Texture 

Illumination can be modeled as having three components [19]: Ambient, Diffuse and 

Specular. While ambient light models a diffuse, non-directional source of light, diffuse and 

specular lighting mainly model lighting effects due to a point source of light and are responsible 

for varying light reflections and shininess across object surfaces, depending on the light and 

object positions and object material. Figure 1.3 illustrates the illumination types.  

 

 

Figure 1.3 Lighting [a) Only Ambient Light, b) Only Diffuse Light, c) Only Specular Light, d) All 
three types of Lighting present] [Source: http://www.naturewizard.com/tutorial0107.html]  
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Shading refers to the method used for calculating lighting effects as applied on a 

particular object.  Commonly used models are flat shading, Gouraud Shading and Phong 

Shading.  

The method of applying 2D texture image to the model's surface to create a 

photorealistic effect is called texture mapping. Texture images are normal digital images which 

are assigned special information called texture coordinates or UV coordinates to indicate which 

parts of the texture image map to which parts of the 3D model's surface. Figure 1.4 is an 

example of a 3D model with texture mapping, lighting and shading effects. 

 

Figure 1.4 A fully textured rendering of a 3d model with lighting effects 
 

One of the main applications of 3D models is in virtual reality (VR) based surgical 

simulators for the purpose of training surgeons. The work presented in this thesis is mainly 

applicable in this area. The following sections provide some background information on this 

area and the motivation behind this work.  

1.2 Application of 3D models in VR based Training Systems 

1.2.1 Importance of VR based Surgical Training Systems  
 

Traditionally, surgical residents receive hands-on training by observing experienced 

surgeons and progressively performing surgical steps in the course of patient care [29]. Using 

real patients as resources for practice might result in potential harm to them due to mistakes of 

the beginners. Also, experienced surgeons might need training with new and upcoming surgical 
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procedures. Especially, in minimally invasive surgery (MIS), where a camera and surgical 

instruments are inserted in a patient’s body through small incisions, surgeons are handicapped 

by the limitations of current technology, like limited visualization, difficult hand-eye coordination, 

limited haptic (sense of touch) feedback and restricted translational movements.   

 MIS, which includes laparoscopic (Figure 1.5) and endoscopic surgery, is gaining in 

popularity because it does not require large, painful incisions. The pain and scarring associated 

with surgical procedure are considerably less and the patient can return to normal activities 

much faster [25, 29]. However, due to the very limited operational space, difficult manipulation 

and lack of depth information from the two-dimensional image, surgeons usually have to be 

extensively trained to avoid accidents and reduce complications and recurrence rate [25, 29]. 

Training on cadaver and live animals incurs huge costs and criticism on ethics [25]. Plastic 

models or mannequins do not provide realistic or dynamic experience. Therefore, in order to 

provide realistic visual and haptic cues, it is becoming increasingly important to build virtual 

reality (VR) based surgical simulators.  

 

 

Figure 1.5 Scene from an actual Laparoscopic Surgery [22] 
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1.2.2 Steps in developing a VR based Surgical Simulator [22,29] 

 A virtual reality based surgical simulator lets the trainee touch, feel, and manipulate 

virtual tissues and organs through the same surgical tool handles used in actual MIS while 

viewing images of tool-tissue interactions on a monitor as in real laparoscopic procedures [29] 

These images are created to be as realistic as possible and to mimic the look and feel of a 

patient’s anatomy. 

 Figure 1.6 shows the main processing blocks in developing a VR based surgical 

simulator. The very first step is the generation of 3D anatomical models of organs from medical 

images, labeled Offline Processing. This is generally accomplished using segmentation and 

reconstruction techniques of computer vision and computer graphics. Next, the deformation 

responses of soft tissues and organs are modeled.  

The deformation models created are used for both graphic visualization as well as 

haptic modeling. Collision detection and response techniques have to be developed to simulate 

the real-time interactions of simulated surgical instruments and the manipulated organs. In order 

to realistically portray the response of tissues and organs to such manipulations, both the 

graphical display as well as force feedback are important, and are implemented through 

effective deformable modeling.   

Finally, the real time controls and synchronizations have to be set in place. Rendering 

with texture mapping and special effects generates the visual display.  For enabling haptic 

feedback, the feedback force needs to be calculated and the haptic devices need to be 

interfaced with the software simulation environment. This is necessary for the tactile response.  

 In this work, we are mainly concerned with the offline processing module, more 

specifically, 3D organ modeling, framework set up, and deformation response modeling.  
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Figure 1.6 Steps in Developing a VR based Surgical Simulator [25] 

 

1.2.3 Motivation and Problem Statements 

 In this work, we mainly concentrate on the first two steps of building a VR based 

simulator, or in other words, developing a 3D model of a human body organ with a more 

realistic real time deformation response than currently used real time models.  

 For this work, we have generated a 3D model of an organ using tetrahedral meshes. 

Mass spring damper (MSD) model has been used to simulate the physically deformable nature 

of the organ. Since real time performance is important, we used polygonal modeling for 2D 

surface modeling and a polyhedral mesh for 3D volume modeling. The tetrahedral mesh used to 

model the organ is generated from an existing 2D triangular surface mesh. Also, we have used 
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the MSD model to generate deformation response in real time, in place of other more accurate 

but computationally intensive models.  

 Our objective is to develop a 3D unstructured organ model and then use parameter 

optimization on an existing 3D MSD model to generate a better visual response. We extend the 

work by Wang and Devarajan [1], in which they have applied parameter optimization to 3D 

models in regular symmetric isotropic bodies with a small number of mesh elements. Here, we 

apply the same parameter optimization method for unstructured meshes to the modeling of 

irregularly shaped human organs, with different elastic and material properties compared to 

regular solids, and which require a very large number of mesh primitives for faithful reproduction 

of the irregular shape. We accomplished this by generating a tetrahedral mesh, simulating a 

virtual MSD based model, optimizing its parameters and updating them as needed, determining 

the values of other relevant parameters for a stable virtual organ simulation, and rendering the 

organ in real time.  

 However, in the course of performing this task, we encountered another problem. The 

mesh size was becoming prohibitively large for processing the parameters without using high 

performance computing resources. Though we did use a high computing facility for performing 

the parameter optimization calculations, this motivated us to explore the highly researched field 

of mesh simplification and quality improvement. We investigated some of the existing algorithms 

and proposed, developed and tested a new algorithm for mesh simplification, or reduction of the 

number of mesh elements without further deterioration of the quality of the mesh.  

 The problem statements for the two main problems investigated in this work can thus 

be summarized as follows:  

Problem Statement 1: Development of an efficient and rapid mesh simplification and quality 

improvement algorithm, and its implementation. 

Problem Statement 2: Simulation of a 3D organ model using unstructured tetrahedral meshes 

and MSD principles and the calculation of optimized MSD parameters and other relevant 
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parameters for the realization of a stable virtual reality based system, exhibiting realistic visual 

deformation response to applied displacements and force.  

1.3 Organization of the Thesis 

Chapter 1 gives an overview of the main aspects and commonly used techniques of 3D 

modeling and also the main problems investigated in this work. Chapter 2 deals with mesh 

simplification and mesh quality improvement. Mesh construction is explained and previous work 

on mesh simplification is investigated. A novel mesh simplification and quality improvement 

algorithm is proposed as an improvement over the existing approaches. Chapter 3 explains the 

workings of some physically based deformable models, with special emphasis on MSD systems 

and outlines previous work done in the optimization of a MSD model. The parameter based 

spring constant optimization method, originally suggested in [1, 25] and which we have 

extended in this work for simulating deformation response of a 3D organ model is explained. 

Chapter 4 discusses the implementation details of both the mesh simplification algorithm as well 

as the optimized mass spring damper system and presents the results obtained. It also 

suggests possible future work in both these areas.  
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CHAPTER 2 

TETRAHEDRAL MESH SIMPLIFICATION AND QUALITY IMPROVEMENT 

 
Triangles and quads (four sided polygons) are the most common shapes used in 

polygonal modeling. A group of polygons connected together by shared vertices and edges in a 

non-self intersecting manner is referred to as a mesh. We provide some background information 

on the generation of triangular and tetrahedral meshes in Appendix A.  

2.1 Polyhedral Mesh Simplification – Previous Work 

Three dimensional meshes consisting of tetrahedral elements are widely used in most 

computer graphics and animation applications. They are also used in finite element analysis, 

surgical simulators, three dimensional image reconstructions etc. In order to generate realistic 

models, often these meshes are highly detailed. As a result, three dimensional tetrahedral 

meshes commonly used in engineering and research applications generally have a very large 

number of mesh primitives, namely vertices, faces, edges and tetrahedra. The data volume 

becomes too large at times for realistic possibility of further processing or handling of the data. 

In such situations, it is necessary to reduce the number of tetrahedral elements to generate a 

mesh with smaller number of primitives, which can then be processed in systems with limited 

memory and processing capabilities. At the same time, it is sometimes necessary to improve 

the quality of meshes generated. In fact, for many of the critical applications of three 

dimensional meshes, it is necessary to ensure that the quality of tetrahedral elements meets a 

certain criteria. 

Mesh simplification is commonly applied to both triangular and tetrahedral elements as 

a preprocessing step to reduce their geometric complexity. In the following section we outline 

some of the previous research [2-16] in mesh simplification, both triangular and tetrahedral, that 

is relevant to our work.  
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  For 2D meshes, using triangular surface elements, retriangulation into smaller triangles 

has been suggested by some approaches [8-9].  2D meshes have been simplified using surface 

fitting approach too, as suggested by Turk [10] and to some extent by Kalvin et al [8]. Schroeder 

et al [9] suggest making multiple passes through the mesh and removing vertices selectively. 

Retriangulation is thereafter used to patch up holes left by vertex removals. Kalvin et al [8] 

present an algorithm to approximate the original mesh within a specified error tolerance.  

For simplification of tetrahedral meshes, the most common operation is edge collapse 

[6-7] (Figure 2.1). Other operations commonly used for three dimensional mesh simplifications 

are edge split, edge swap, vertex split (the reverse of edge collapse) and vertex merge. Cignoni 

et al [5] provide a comprehensive study of mesh simplification operations. They also propose an 

iterative edge-collapse based method for tetrahedral mesh simplification in [4]. In most of the 

‘edge collapse’-based decimation methods, one of the main issues explored were prevention of 

mesh inconsistencies due to simplification and decimation operations [4, 7,13]. While many 

methods have been developed for accurate error evaluation metrics for the simplified mesh 

[4,13], most of these algorithms are slow and hence become inapplicable to high volume data 

sets. 

 

 

Figure 2.1 Diagram illustrating Edge Collapse [65] 
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M. Garland [16] in his survey report on multi-resolution modeling presents a detailed 

description of decimation strategies used in polygonal meshes. A tetrahedral collapse operation 

has been suggested by Trotts et al. [12] as a tetrahedral mesh reduction technique. They define 

a tetrahedral collapse operation as a sequence of three edge collapses, while keeping the 

overall error (based on a unique spline-segment representation of each tetrahedron) below a 

tolerance range. However, due to the use of ‘edge-collapse’ operations, the time and space 

complexities for this algorithm are high.  

‘Edge-collapse’ has been used as the basic mesh reduction operation by Staadt and 

Gross [7] in their work on progressive tetrahedralization as well as by Hoppe in his seminal work 

[6]. The algorithm stated in [7] preserves the topological and geometric features and handles 

problems like flipping (negative tetrahedra) and tetrahedron-boundary intersections at concave 

interiors.  However, this algorithm is also time consuming. 

Trotts et al. [13] in extension of their earlier work on tetrahedral mesh simplification [12] 

revert to a single edge collapse as the atomic decimation operation.   

Error evaluation techniques have been explored by Cignoni et al. in [4]. Local 

accumulation, gradient difference, and brute force strategies are used to evaluate error 

introduced in a tetrahedral mesh due to ‘edge-collapse’ based operations.  

2.2 Our Approach to Mesh Simplification 

Most of the earlier work deals with mesh simplification, instead of mesh quality 

improvement. The simplification process might itself introduce deterioration in mesh quality, 

which is generally ignored. Also, the computational overload and time complexity of most of the 

earlier approaches are quite daunting.  

We propose an algorithm to simplify and improve the quality of tetrahedral meshes 

using a systematic and controlled approach. A new kind of data structure is proposed to store 

the connectivity information of the meshes. This structure allows us to employ a step-by-step 

simplification algorithm which controls the quality of mesh generated, at the same time. 
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We found that Tetfusion suggested by Chopra and Meyer [2] in 2002 was the most 

efficient method for removal of tetrahedral primitives. We also found that for evaluating the 

quality of each tetrahedron the approach suggested in [3] by Cutler et al was a good baseline 

approach. Our approach modifies the approach in [2] and uses the quality definition in [3] to 

create a novel hybrid method.  

Our proposed algorithm is a robust and systematic procedure which achieves rapid 

tetrahedral deletions, and simultaneously tries to maintain a good enough mesh quality. It tries 

to overcome the extremely localized greedy nature of the approach in [2], while reducing the 

computational complexity and time complexity of the approach suggested in [3], where various 

other operations are used for tetrahedral deletions (instead of fusion). Also, our algorithm 

introduces a systematic and hierarchical processing based on the mesh connectivity which 

would achieve better performance than random selection as suggested in [3] by ensuring a 

constant check on the tetrahedral quality.  

An additional novelty in our approach lies in the unique representation of mesh 

connectivity information, which helps us to proceed through the mesh in a controlled manner, 

deleting tetrahedra based on quality considerations and at the same time ensuring that the 

overall mesh quality does not get impaired too much by the simplification process. 

2.3 Proposed Algorithm 

We propose building a conceptually ‘tree’ like data structure to help us in processing the 

mesh in a systematic and hierarchical manner. We associate a 'level' (or depth) information with 

each tetrahedral element that forms a part of the mesh. The 'level' information is determined 

based on the mesh connectivity, as well as visual perception. We mention visual perception 

here to emphasize the importance that our approach associates with tetrahedral elements 

forming a part of the surface of the model, or in other words, tetrahedra which determine the 

boundary of the 3D model. 
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2.3.1. Preprocessing 

The 'level' information increases progressively inwards from the boundary. Specifically, 

the tetrahedral elements which form the boundary, that is, which contain any vertex which lie on 

the surface of the model, are assigned a level value of '0'. Then, from the connectivity of the 

mesh, we determine the neighboring tetrahedral elements for each boundary tetrahedron. We 

then conduct a Breadth-First Search of depth one on every tetrahedron of the current level, (that 

is, the ones with a ‘level’ value of 0). Now, for each neighbor visited, if it is not a boundary 

tetrahedron, its level is then assigned equal to 1. The same process is then repeated for each of 

these level 1 tetrahedra and each of their neighbors, if not visited already (that is, if its level is 

not set already), is assigned a level of 2. The process is continued iteratively, namely, the 

neighboring tetrahedral elements are determined for each tetrahedron assigned a level in the 

previous step, and if these neighbors do not have a level assigned, they are assigned the next 

higher level from their immediate parent set. We keep a counter, which keeps track of the total 

number of tetrahedra with levels already assigned at any given stage of the processing. When 

this counter value becomes equal to the total tetrahedral count in the mesh, the process is 

terminated. Figure 2.2 illustrates this diagrammatically. 

To store this level information, we have employed a combination of doubly linked list 

and dynamic array (Figure 2.3). Each node in the linked list represents one level in our 

proposed tree-like data structure, with the level numbers increasing from the first node onwards. 

Each node again contains a dynamic array, which lists all the tetrahedral elements belonging to 

the same level. The dynamic array grows as the number of tetrahedra in each level increases. 

The linked list is made doubly linked to facilitate the implementation of the second part of our 

proposed processing algorithm. 
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Figure 2.2 Diagrammatic Representation of proposed Data Structure 

 

Figure 2.3 Data Structure Implementation 

2.3.2. Quality Determination 

At each level, we do a second stage of processing to determine the quality values of the 

tetrahedral elements in each stage. The quality is determined based on approaches suggested 

in [3], namely by using a geometric mean approach. It is evaluated as the geometric mean of 

several quality factors (discussed later). The minimum quality factor for each 'level' is 

determined, and associated with that level as one of its properties. This helps us to detect the 

worst shaped tetrahedral elements in every stage, that is, sliver tetrahedra, needle tetrahedra, 

wedge tetrahedra etc. (Figure 2.4). The final data structure form has been shown in Figure 2.5. 
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Figure 2.4 Different undesirable types of tetrahedra (poor quality factors) (a) Sliver Tetrahedra  

(b) Needle Tetrahedra (c) Wedge Tetrahedra 
 

 
Figure 2.5 Block Diagram of Suggested Data Structure 

 

  
2.3.3 Systematic Mesh Simplification 

We start the simplification from the highest 'level' (or from the interior most tetrahedral 

elements). Hence, we start from the end node or last node of the proposed doubly linked list 

and progressively move backwards.  

At each level, we first determine if every tetrahedral element, if not deleted already, is a 

possible candidate for deletion or not. We employ the technique of TetFusion illustrated in [2] for 

deletion of tetrahedral elements. Specifically, when every tetrahedral element is deleted, it is 

replaced by its barycenter, and all tetrahedral elements sharing more than one vertex with this 

deleted tetrahedron get deleted as well. 

Before we delete any tetrahedra, we first evaluate its suitability for deletion. Firstly, we 

determine if this tetrahedron was deleted, how it would affect the quality of the tetrahedra in the 
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previous (immediate parent) level. The resultant quality of every affected tetrahedron (the ones 

sharing one vertex with the candidate for deletion) is measured.  

The new quality factor of every affected tetrahedron should be greater than or equal to 

some set value. If the lowest quality value of the parent level was qmin, then the new quality 

factor can be restricted to be at least equal to qmin/100 or some such metric to limit the quality 

degradation. However, if the resultant quality factor falls below this set metric, then the 

tetrahedron under consideration is marked as unsuitable for deletion in the current pass. 

Secondly, deletion of any tetrahedron should not result in flipping of connected 

tetrahedra, that is, it should not result in negative volume. This is again determined by the dot 

product of the normals to the unaffected surface of the affected tetrahedra before and after the 

prospective deletion. 

If a tetrahedron passes the above two tests in the current level, its quality is determined. 

Then among all these suitable candidates for deletion, the worst tetrahedron (in terms of the 

quality metric) is chosen for deletion. Actual deletion of a tetrahedron has been implemented as 

suggested in [2]. The four vertices of the deleted tetrahedron are replaced by a single vertex at 

its barycenter. The tetrahedra sharing an edge or a face with this tetrahedron get deleted as 

well, because now their total number of valid vertices becomes less than four. The tetrahedra 

sharing one vertex only with the deleted ones get updated with the new vertex position 

(barycenter vertex) accordingly. 

After the worst shaped tetrahedron among the current ones have been deleted, we 

repeat the procedure again. Now, the worst shaped tetrahedron among the remaining ones is 

deleted and so on. A counter is maintained such that when the number of tetrahedral elements 

for the current level falls to zero, then we proceed to the next lower (parent level: our level 

values decrease inwards from the boundary) and repeat this process. The transition to the next 

parent level may be done earlier too if the current level runs out of tetrahedral elements which 

are suitable candidates for deletion. 
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This process is continued for every node having a 'level' value of 2 or more. We exclude 

the tetrahedral elements forming the boundary and their immediate neighbors from this process 

since we are using tetrahedral fusion [2] as our tetrahedral element deletion mechanism, and 

we would like to preserve the original boundaries. 

2.3.4. Hierarchical Mesh Quality Improvement 

The approach outlined above simplifies and improves the mesh quality hierarchically, or 

in a level-by-level manner. We start from processing the inner most elements and progressively 

proceed towards the boundary. In every step, we delete the tetrahedra which are the worst 

shaped and hence, of the poorest quality. This way, we ensure that even if the tetrahedral 

elements belonging to the immediate parent level of the deleted tetrahedra get diminished in 

quality, the worst affected of them have a high chance of getting deleted themselves when the 

processing proceeds to its own level. It is because we do the quality comparison for deletion at 

every level.  

This 'level-by-level' or hierarchical approach helps our algorithm to come quite close to 

generating the globally optimum solution for a simplified and improved quality mesh. Though at 

every level our algorithm proceeds in a locally greedy manner by choosing the worst of the 

available ones, we try to approach the global optimum by the systematic approach facilitated by 

our proposed data structure. Also, at every level, our data representation ensures that our 

algorithm is allowed to detect the worst shaped one among the current set for deletion, instead 

of being assigned the first available one while proceeding in a sequence as in [2]. 

2.3.5. Discussion of Quality Evaluation Procedure 

We evaluate the quality factor for every tetrahedron based on the approach suggested in 

[3]. Our aim is to preserve the better shaped tetrahedra, while getting rid of the poorer shaped 

ones as much as possible.  

Our metric for the shape of tetrahedra is based on solid angle measurement, edge length 

measurement and volume measurement [3]. The tetrahedra which are close to being a regular 
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tetrahedron are considered better shaped. Needle, wedge and sliver tetrahedra should be 

reduced and the volume of the entire model should be more regularly distributed among all the 

constituent tetrahedra. If the user would like to add any other metric for measurement of better 

shaped tetrahedra, the definition of quality factor in the implementation of our algorithm needs 

to be altered accordingly. It is because our work is not directed at determining what properties 

constitute a good tetrahedron, but at finding the most optimal solution or method to 

simplification and improvement (based on the application or the user's criteria) of tetrahedral 

meshes.  Here we have followed the approach suggested previously and we elaborate here on 

the definition of quality factor that we have adopted following [3]. Our quality metric is measured 

as the geometric mean of the following three factors: 

1. Minimum Solid Angle: The ratio of the absolute value of the  minimum solid angle of a 

tetrahedron to the ideal value of 0.55 steradians  =>   

2. Edge length Ratio: The ratio of the magnitudes of the shortest and the longest edge is 

considered  => 

3. Volume: The ratio of the tetrahedral volume to the ideal volume (given by the total 

volume of the 3D model divided by the total number of tetrahedra) clamped to 1 => 

 

Based on the above definition of quality factor, it is always going to be less than or equal to 

The implementation details have been presented in Chapter 4.  

2.3.6. Discussion of Tetrahedral Deletion Process 

We remove tetrahedra by deleting them as a whole and replacing them by a single new 

vertex at the barycenter. Here we follow to some extent the approach suggested by Chopra and 

Meyer in [2], namely Tetfusion (Figure 2.6). We discuss the tetrahedral fusion process briefly 

here. 
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Figure 2.6 TetFusion or Tetrahedral Fusion [2] 

 

Once a particular tetrahedron has been selected for deletion based on quality 

considerations, we replace its four vertices by a single vertex at its barycenter. The selected 

tetrahedron is of course deleted and removed from the mesh. Along with it, the tetrahedra which 

shared two or more vertices with the deleted one (that is, the ones which either shared an edge 

or a face with it), also become degenerate and are deleted. However, all of the vertices of these 

neighboring degenerate tetrahedra are not removed from the mesh. 

The tetrahedra which shared only one vertex with the selected one (replaced by 

barycenter) get updated, that is, their affected vertex gets replaced by the new vertex at the 

barycenter. This might result in over-stretching (low solid angle or poor ratio of edge lengths) or 

flipping (negative volume) of the affected tetrahedra (Figure 2.7). However, we ensure by pre-

checks that the affected tetrahedra will not fall too low in quality measurement. Even if they do, 

our hierarchical approach ensures that these affected tetrahedra themselves have a high 

chance of getting deleted if their quality falls below accepted values. The neighbors of the 

tetrahedra, who got degenerate by default due to the fusion process, do not get deleted 

themselves, but their shape might get altered due to change in vertex position. 
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Figure 2.7 Flipping due to Tetrahedral Fusion [2] 

 

Our algorithm employs the techniques suggested in sections 2.3.5 and 2.3.6 and 

attempts to find the best possible way to ensure simplified and better quality meshes.  The 

implementation of tetrahedral deletion procedure is presented in Chapter 4.  

2.3.7. Salient Features of Our Algorithm 

The proposed algorithm has the following properties which make it a very good mesh 

simplification procedure to adopt. 

1. Robustness: Our algorithm is a robust approach towards mesh simplification and 

improvement of mesh quality regardless of the mesh structure.   

2. More Optimal Solution: It proceeds in a level by level fashion based on the mesh 

connectivity and at every level it picks the worst shaped tetrahedra and deletes them. 

This is continued for every level until a limit to tetrahedral removal is reached. Thus, we 

try to find a more optimal mesh structure upon simplification or tetrahedral reduction, 

than obtained by previous approaches. This approach however does not find the 

absolute global optimum (which would have entailed high computational and processing 

overhead). It is not restricted to proceed sequentially and pick up the first available 

tetrahedra, and hence avoids the entirely locally greedy nature of previous approaches. 

Also, it does not pick up any random tetrahedra element from the mesh, but proceeds 
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with some kind of regularity to ensure better overall mesh generation by removing worst 

affected ones as well. 

3. Flexibility of being Application Specific: We do not propose any fixed metric of quality of 

tetrahedra. The tetrahedral quality metric definition can be altered as needed. This way 

our approach can be used to generate optimum simplification as required by different 

specifications. 

4. Efficient and Rapid:  Since we employ the tetrahedral fusion, our algorithm gives a rapid 

mesh simplification, because of the high rate of decimation inherent in the tetrahedral 

fusion approach. 

5. Boundary Preservation: We do not process boundary tetrahedra and also those 

tetrahedra which are immediate neighbors of boundary tetrahedra. This ensures that 

the overall contour or shape of the desired 3-D model is preserved.  

2.3.8. Proposed Algorithm Steps 

The following steps illustrate the implementation of our algorithm.  

Step 1: Build the Tree type data structure from mesh connectivity information. 

• Get information about the neighboring tetrahedral elements for every tetrahedron in the 

mesh. 

We conduct a BFS on every tetrahedral element to determine its immediate neighbors. 

• Create and initialize the proposed Data Structure. 

The linked list node form that we use is depicted below 

 Node{ 

  Array Tetrahedra 

  Pointer to Node of next level  

   Pointer to Node of previous (parent) level 

  Minimum quality for this level 

         } 
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For doing the above we implement the following pseudo code: 

LLEV is the current value of 'level' being processed. Also, we set a flag, flag_end, as 1 when the 

'level' information has been set for all the tetrahedra in the mesh. 

Set initial value of 'level' =  LLEV = 0 

Set flag_end = 0  

Initialize the first Node of the linked list 

Number of Tetrahedra with Level Information Set =  cnt_lev = 0 

Let total number of tetrahedra in mesh = N 

 

 For all tetrahedra T in the mesh M 

  If T is a boundary tetrahedron 

        Set the 'level' of T = LLEV 

       Add T to the Array of first node in the list 

                      Increment cnt_lev by 1 

       If cnt_lev =  N 

             flag_end = 1 

                             stop 

          End 

              Else  

    Continue 

             End 

 End  

While flag_end is not set 

 

        Increment LLEV by 1 

                      Initialize a new node of the linked list and make it the current node 

   

        For all tetrahedra T in the previous level 

 

                              Visit each neighbor Nb of T 

                     If Nb has 'level' set 

            continue to next Nb 

       Set 'level' of Nb = LLEV 

                                    Add Nb to the array of current node 

     Increment cnt_lev by 1 

      If cnt_lev = N 

             flag_end = 1 

             stop 

                                   End 

     If flag_end = 1 

                                          stop 

    Else 

            continue to next Nb    

  End 

       End 

                End 
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Step 2:  Get the quality information 

For implementing the above step, the following pseudo code is used: 

Traverse the linked list from the start node to the end 

For every node: 

       Evaluate quality_factor for every tetrahedron in the Array of the node 

 

       Find the minimum value of  quality_factor among all the tetrahedra of one 'level'  = qmin 

 

      Store qmin as the minimum quality data field for the node 

 

Step 3. Simplify the mesh 

• Proceeding from the end of the linked list, we progressively move backwards in 

this step, deleting tetrahedra and simplifying the mesh step by step in each level or node of 

the list and we stop at 'level' 2. The pseudo-code is illustrated below: 

'curr_level' : Maximum value of 'level' set 

 

While 'curr_level' > 1 

   n : Size of the array of 'curr_level' node 

       

   While n>0  

       For all Tetrahedra T in the array of  curr_level: 

              If T is not deleted: 

      If T is a suitable candidate for deletion: 

            Evaluate and store the quality_factor of  current T 

      End 

                            End  

                      End 

       If there are no T suitable for deletion: 

         stop 

         decrement curr_level by 1 

         go to previous 'level' 

                     End 

      Find the Tetrahedron with the lowest quality_factor  = T_target 

 

 Delete T_target and other tetrahedra sharing edge or face with T_target. Update the vertex 

of   information of other affected (but not deleted) tetrahedra by the barycenter of T_target. 

  

    Decrement n by the number of tetrahedra deleted along with T_target  

 

             End 
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         Decrement curr_lev by 1. Go to previous level 

 

    End   
 

Since the quality evaluation and tetrahedral deletion processes are already suggested by 

previous work [2, 3], we do not elaborate on their pseudo-code implementations here. 

• Build a new mesh from the connectivity information in the non-deleted, existing tetrahedral 

elements. This step can be implemented in whatever method is most efficient for the given 

application. So we do not suggest any pseudo code for this step. 

The flowchart for the simplification part of the algorithm has been shown in Figure 2.8. 

              

Figure 2.8 Flowchart of the Suggested Mesh Simplification Algorithm 
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2.3.9. Comparison to Existing Approaches 

Our algorithm ensures that the mesh is progressively simplified, retaining only the 

tetrahedra possessing the best possible quality in each step. In this way we strive to reach the 

globally optimum solution for mesh simplification with better quality of mesh elements 

(tetrahedra). Our approach differs in quite a few aspects from the previous approaches. For 

example, we do not put any restriction on deletion of tetrahedra affected by prior deletions. This 

allows us to not only have a higher rate of mesh reduction, but also helps us to control the 

quality of mesh elements much more compared to existing approaches. Our processing time is 

somewhat higher of course, because we try to reach some approximation to the global optimum 

by local approximations instead of following a completely locally greedy approach.  

The systematic hierarchical level by level approach gives a better quality performance 

compared to the sequential approach followed in [2]. It is because it allows our algorithm the 

luxury of choice, for picking the worst quality tetrahedron among suitable ones starting from the 

innermost level.  

Our algorithm has considerably shorter running time compared to some of the existing 

approaches for simultaneous mesh simplification and improvement. Since tetrahedral fusion is 

much more rapid compared to other approaches like edge collapse, vertex split etc, our 

algorithm takes significantly less processing time for achieving the same number of tetrahedral 

reduction. For example, if we consider ‘edge-collapse’ as a simplification operation, then we 

would require at least 6 applications of ‘edge-collapse’ procedure for deleting a single 

tetrahedron in a mesh, since a tetrahedron has 6 edges. Compared to that, a single application 

of tetrahedral fusion results in the deletion of at least 11 tetrahedra from any given mesh.  

Finally, we do not start with some initial target tetrahedral count (as in some previous 

approaches [3]), but let our algorithm simplify and refine the mesh unrestricted till it reaches the 

limit.  
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Previous work also mentions randomly picking any tetrahedron for deletion and 

measuring its quality [3]. However, the systematic restriction that we suggest likely helps 

achieve better mesh quality than would be possible in a random approach. In other words, our 

algorithm strikes a good balance between the sequential and random approach, and efficiently 

combines both performance improvement in terms of tetrahedral reduction in a short time and 

maintaining a better quality of resultant simplified meshes. 

The results obtained by the application of the proposed algorithm have been presented 

in Chapter 4.  
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CHAPTER 3 

PARAMETER OPTIMIZATION OF MASS SPRING DAMPER MODEL 
  

3.1 Physically Based Deformable Models 

Deformable models are used in Computer Aided Design (CAD) to simulate the 

deformation of industrial materials and tissues. In image analysis, deformable models are used 

for fitting curved surfaces, boundary smoothing, registration and image segmentation [27]. 

Deformable models have been used in computer graphics for the animation of clothing, facial 

expressions, and human and animal characters [28]. The modeling of deformable soft tissue 

and organs is very important for medical imaging, virtual surgery environments and computer 

assisted surgery (CAS) where interaction with virtual objects are required for generating 

physically realistic simulation of complex tissue and organ mechanics. 

Existing modeling approaches can be physical or non-physical. Models based on purely 

geometrical techniques, rather than physical principles are known as non-physical models, eg. 

B-Splines etc.[28]. Models based on solving continuum mechanics problems under 

consideration of material properties and other environmental constraints are called physical 

models [27].  

 Since the seminal paper by Terzopoulos et al on elastically deformable models [26], 

many deformable models have been proposed. The most popular ones are the MSD model [25, 

30, 40-44, 46-48], FEM [25, 33, 34], the method of finite spheres (MFS) [25, 31, 32], the 

elasticity theory method [37], the tensor-mass model [35], the quasi-static elastic model [35], the 

long element method (LEM) [36] etc. Some of these methods are explained below. The MSD or 

Mass Spring Damper model has been used in this work.  
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3.1.1 Mass-Spring-Damper Systems [25] 

In the MSD model, an object is represented as a collection of point masses connected by 

springs in a lattice structure (Figure 3.1). It is generally used for polygonal/polyhedral objects 

where every vertex is assigned a mass and every edge is assigned a spring (interconnecting 

the mass points by the springs). Both linear and nonlinear springs can be used to model 

deformable objects such as human organs that exhibit nonlinear behavior. The springs exert 

forces on neighboring points, when a mass is displaced from its rest positions.  

 

 

                    Figure 3.1 The MSD system structure [25] 

 

In a dynamic MSD system, Newton's Second Law governs the motion of each mass point 

in the lattice structure: 
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where im  is the mass of the i
th
 particle, ir

r
∈  R

3 
is its position, ijf

r

 is the force exerted on it by 

the spring between mass particles i and j, ef
r

 is the sum of external forces (e.g. gravity or forces 

applied by the user) acting on particle i, and iγ  is the damping coefficient for the resistance 

from the environment against motion of the mass. Vector ir&
r

 represents the velocity vector iv
r

 

(or first derivative of position vector with respect to time) and ir&&
r

 represents the acceleration 

vector ia
r

 (or second derivative of position vector) of im .   

Modeling the springs as linear and considering linear damping resistance for the 

relative motion between mass i and j, we have 
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where ijL  is the rest length of the spring between mass i and j, ijk  is the Hooke's constant of 

the spring, ijλ is the damping coefficient for the resistance against relative motion between 

mass particles i and j, which is used to model the internal (frictional) energy loss during 

deformation of the continuum object. 

From (3.1) and (3.2), we can have 
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Thus for a system with N mass particles, the equation of motion can be written as: 

( ) eARRKRDR
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=++      ….. (3.4) 

where D and )(RK
r

 are the 3N x 3N damping matrix and stiffness matrix respectively, R
r

 is a 

column vector of the positions of the N masses, eA
r

 is a column vector of the acceleration of the 

N masses due to external forces.  D and )(RK
r

are symmetric matrices.  
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The system described by Eq. (3.4) is a nonlinear system since )(RK
r

is a function of R
r

.  

The second-order equation system above can be converted to a first-order equation system for 

the convenience of analysis or integration:  
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The above differential equation system is numerically solved using discrete time steps 

to approximate the continuous integration solution. That is, the acceleration, velocity and 

position of each mass particle are only updated at discrete time points spaced by certain time 

step. Many discrete numerical integration methods exist which can be used to solve the 

differential equation system above numerically, among which, the Euler's method is the simplest 

and which has been implemented in this work. An explanation of Euler’s method is given in 

Appendix C. 

Using the Euler's method and a time step of T, we have  
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rrr
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Advantages of MSD model: 

• It is simple with easily understood dynamics 

•  It has a small computation burden 

• It is very suitable for real-time applications with limited computing resources 

• Since the MSD model has a simple discrete structure, all kinds of operations including 

cut and suture in the surgery can be handled easily.   
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The MSD model has been used to simulate facial animation (both static and dynamic, 

two dimensional and simplified three dimensional models [46-48]), animating fire, clouds and 

water [49], animation of animals [50, 51], cloth draping [52, 53], and recently in surgical 

simulation [54, 55]. 

Much research has been carried out to improve the MSD model.  Research directed at 

improving the accuracy of the simulation involved refining the model adaptively [56] and 

updating Hooke's constants after refinement, controlling the isotropy or anisotropy of the 

material [57] etc. Many research efforts have also been directed towards improving the speed of 

simulation [54, 58, 59], eliminating the super elasticity phenomena [42], and handling post-

buckling instability for stable but responsive simulation [60]. 

The two major drawbacks of the MSD model are: 

• Exact deformation of real organs is not possible using the MSD model. That is, it is 

difficult to specify the correct values of parameters for the model. 

• It is difficult to achieve fast and stable simulation. In fact, use of discrete integration 

schemes lead to numerical instability if a small enough value of time constant is not 

specified.  

In the MSD model, continuous material is modeled by discrete lumps of mass and discrete 

springs are used to model the distributed interactions between them. Thus, it is the simplest and 

easiest physically based deformable model to implement, and it can handle many user 

interactions. However, it is not very accurate and it is difficult to transform the constraints for the 

continuous system to those for the corresponding discrete system. 

3.1.2 Finite Element Method 
 

FEM [34] is the most accurate method devised for modeling physically based 

deformation subject to certain boundary conditions. The object being modeled is decomposed 

into small polygonal or polyhedral meshes. The deformation field for each mesh is expressed 

separately by a polynomial interpolated by the displacements of the vertices of the mesh [25]. 
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Thus a set of equations, applying the principles of continuum mechanics is obtained for each 

mesh with displacements and external forces set as unknowns. The resultant matrix equation is 

condensed to solve for the unknowns to reduce computation [33]. The integration over the mesh 

is calculated using Gauss product rules. Since the interpolation functions (shape functions) are 

polynomials, even a small number of integration points result in accurate integration. Usually, 

the integration is reduced to a small number of multiplications and additions [25]. The accuracy 

of FEM depends on the type and size of polygon or polyhedron and the number of interpolation 

points used. The number of interpolation points is not necessarily the number of vertices. 

Methods to increase the accuracy include increasing the number of meshes (h-refinement) 

and/or the number of interpolation points of each mesh (p-refinement). Triangular meshes are 

used most frequently in two dimensions (2D) and tetrahedral meshes in three dimensions (3D) 

and for accurate computation of deformation, usually several thousand meshes are necessary 

for an uncomplicated object under a simple boundary condition. As a result, the computation 

burden associated with FEM is too high to achieve accurate deformations in real-time. Hence, 

FEM is generally not used for real-time applications although in recent times some researchers 

have attempted to dilute the rigorous FEM approach to get it close to real time speeds. 

3.1.3 Method of Finite Spheres 

The method of finite spheres (MFS) [31, 32] was developed by S. De and K. J. Bathe to 

overcome the meshing burden for methods like FEM. It is a meshless method and uses a set of 

points instead of meshes to solve the governing equations. The main approach is to add some 

local points around the point of deformation, for example, where a surgical tool tip touches a 

tissue and at each of these local points a finite radius sphere is located for calculating the force 

deformations. Shape functions [34], similar to FEM, are used to approximate deformation fields. 

However, the functions chosen have to be rational, instead of polynomial. Rational functions, 

even if chosen carefully to minimize the computation burden, require more interpolation points 

than polynomial functions and hence result in higher computational load in the integration part. 
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For real-time application, the computation needs to be further reduced and capability for 

handling interactions other than point interactions needs to be introduced. 

3.1.4 Tensor Mass Model 
 
In the tensor-mass model [35] organs are meshed with conformal tetrahedrons. The mass of the 

object is discretized to lumped mass on the mesh points ( )NiPi ,,2,1 K=  similar to MSD 

model. The governing equation for the motion of the mesh points is also based on the 

Newtonian Law: 
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rr
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  ….. (3.9) 

However, unlike the MSD model, here iF
r

 is obtained through the energy-based finite 

element method. The computation of this linear elastic force can be decomposed into four steps 

[25] stated below: 

1. The interpolation equation (shape functions) that gives the displacement vector at 

any point inside a tetrahedron Tk is defined as a function of the four displacement 

vectors at each vertex. 

2. The elastic energy of a tetrahedron is expressed as a function of these four 

displacement vectors 

3. The elastic force produced by tetrahedron Tk is computed and applied to vertex iP   

4. The forces 
kiTF

r

 produced by all the tetrahedrons connected to vertex iP  are 

added together to obtain iF
r

. 

iF
r

is computed locally, since it is only related to the tetrahedrons connected to vertex 

iP and hence this method can handle cut operation and suture operation with ease, just like the 

MSD model. However, the tensor-mass model computes force by continuum mechanics and 
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therefore is independent of the mesh topology whereas the MSD model is sensitive to the mesh 

topology). When there is cut operation or suture operation, the tensor-mass model can provide 

more realistic interactions. But the major drawback of the tensor-mass method is that it is only 

accurate for small displacements. Because the iF
r

’s are computed locally they won't be zero 

under pure rigid transformation without deformation, giving incorrect behavior in such cases.  

 As has been already mentioned, due to spatial discretization, the MSD model can only 

be made to approximate any continuum object in some aspects. In fact, A.V. Gelder [38] had 

demonstrated that an exact simulation using the MSD model is impossible after comparing the 

MSD model with finite element method.  Although it is not possible to use the MSD model to 

realize an exact simulation, the simulation can definitely be improved by optimizing the 

parameter set of the given model and simulation under consideration. However, the criterion for 

better simulation appears ambiguous and hard to define, and realistic visual effects play an 

important role. One approach is to choose the parameter values on a trial and error basis, but it 

becomes very tedious and time-consuming. Especially for very large models (or mesh), it would 

become almost impossible to find optimum parameters based on a trial and error procedure. In 

such cases, it is necessary to follow an algorithmic approach. 

3.2 Past Work 

A lot of past work has been directed at estimating the parameter set from outer 

appearances of the MSD model. In [41], Jojic and Huang proposed to estimate cloth draping 

parameters from range data for cloth animation. In this work, the best fit for the cloth model was 

determined by comparing the drape of the model with the range data. In [39], Bhat et al 

proposed to estimate the parameters for cloth animation from a video based on matching 

between folds. Though this approach can be made to work for soft cloth by careful 

experimentation, it fails for linen cloth, which is more rigid, and for which the estimated 

parameter values turn out to be sensitive to the size of the cloth, an undesirable property.  
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Some work has also been directed at methods to calculate parameters for the MSD 

model based on the material properties of the real object. In [38], Gelder derived an 

approximate formula to calculate the spring constants based on the constant strain assumption 

in the triangular/tetrahedral mesh. In [40], Maciel et al devised a method of calculation of the 

spring constants based on the Hooke's law, in which the main drawback is that the simulated 

system obtained can pass the tensile force test in a certain direction only, but fails in other 

directions and other tests, like the shear test. 

Most research on the MSD model parameter optimization focuses on the application of 

the 2D model to cloth simulation. In [42], Provot proposed a procedure to reduce the elongation 

of "super-elongated" springs to overcome the super-elasticity phenomenon. This method limits 

the deformation rate to a critical value by applying a dynamic inverse procedure to the two ends 

of the spring when the deformation rate becomes greater than the critical rate, thus restricting 

the deformation to the critical rate. Vassilev et al developed further on this method by applying a 

velocity directional modification approach to eliminate the super-elasticity phenomenon [43]. In 

[44], Bridson et al proposed a method of calculating the bending resistance according to the 

bending mode motion instead of using bending springs in order to model the folds and wrinkles 

in clothing simulation. In [45], Grinspun et al proposed modeling the bending energy as the 

function of the difference of the dihedral angle between adjacent triangle meshes before and 

after deformation in order to model curved undeformed configurations such as hats, leaves and 

aluminum cans. The resistant force calculation becomes complicated and the computation 

burden is much heavier than the pure MSD model. 

Recently, Wang and Devarajan [30] have proven that triangular meshes are better for 

mass-spring model than rectangular meshes since the triangular mesh gives a better response 

in the case where there is bending force. They have showed that the results with preload are 

much better than the one without preloaded springs. 
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3.3 Three Dimensional Mass Spring Damper Model for Structured and Unstructured Mesh 

Generally, for the structured case rectangular meshes are adopted for the 2D model 

and hexahedral meshes for the 3D model. For such cases, most of the parameters of the 

structured MSD model can be calculated according to the material properties, except Hooke’s 

constant of the shear spring (needed for modeling the shearing resistance), and the flexion 

spring which is needed for the modeling of bending resistance in the 2D MSD model [61]. 

Parameter assignment for the structured MSD model has been somewhat investigated 

and solved to some extent [40, 61]. However, in order to model a deformable object with an 

irregular boundary, an unstructured MSD model is required. Parameter assignment for the 

unstructured MSD model is an unsolved problem. The tetrahedron is the most common 3D 

unstructured mesh. A new method to optimize the parameters of the 3D MSD model with 

tetrahedral meshes based on continuum mechanics theory has been proposed by Wang and 

Devarajan [1]. They have also shown that with a minor modification, the proposed method can 

be applied to the 3D structured MSD model to obtain the parameters of the model in an explicit 

form in terms of material properties and mesh geometry, giving a more complete solution than 

existing approaches [40, 61].  

In this work, the original proposed method for regular symmetric and isotropic objects 

has been applied to unstructured tetrahedral mesh for a deformable model of a human organ, 

which is highly irregular in shape, and has a much larger number of mesh elements. The 

deformation response for such a model has been successfully simulated in a real time virtual 

environment. The following section describes the optimization procedure presented in [1]. 

3.4 Optimizing the 3D Unstructured MSD Model based on Continuum Mechanics [1] 

Figure 3.2 shows the tetrahedral meshes of a circular shaft, which necessitates the use of 

unstructured meshes for efficient geometric representation. The 3D unstructured MSD model of 

the object is constructed on its tetrahedral meshes by assigning masses to all the vertices 

(nodes) and applying springs for all the edges of the tetrahedra. 
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Figure 3.2 The 3D MSD model with tetrahedral meshes of a circular shaft [1] 

 
 

Let mie
r

 be the unit vector emanating from node m along its i
th
 incident spring. Let the 

angle between vector mie
r

 and the z-axis be miα , and the angle between the projection of 

vector mie
r

 on the x-y plane and the x-axis be miβ . Then mie
r

 can be expressed as: 

( )mimimimimimie αβαβα cos,sinsin,cossin=
r

 

It is assumed that the ith spring incident to node m is at rest when the model is in its 

natural rest state. Let its Hooke’s constant be kmi, its rest length be Umi, and its displacement be 

umi when the model deforms. Then the energy function of the spring is 

( ) 2

2

1
mimimimi ukuE =    …. (3.10) 

A physically accurate MSD model should allow stretching in the same way as the object 

in arbitrary directions. The model is assumed to be evenly stretched by strain,ε , in the direction 

of vector n
r

. It should contract transversely to minimize the potential energy. It is assumed that 

the material of the real object is isotropic and this transversal strain is µ , which should be a 

function of the tensile strain,ε . To have regular Poisson effects, µ should be small when ε is 

small. Then it can be assumed: 

( ) ( )22

21 εελελεµ og ++==   … (3.11) 



 

 40

 

Let  ( )αβαβα cos,sinsin,cossin=n
r

, whereα is the angle between vector n
r

 and 

the z-axis, and β is the angle between the projection of this vector in the x-y plane and the x-

axis. Let the angle between vector mie
r

 and vector n
r

 be miφ .Then, 

mimimimimimi βαβαβαβαααφ sinsinsinsincossincossincoscoscos ++=   (3.12) 

( ) ( ) mimimimimi UUu −+++= φµφε 2222
sin1cos1            ….(3.13) 

Each spring of the MSD model is shared by two nodes. Thus, the energy increment of 

the model associated with node m under stretching is 

( ) ( )∑
=

=
mN

i

mimim uEW
12

1
,,, µεβα             …. (3.14) 

The transversal strain minimizes the potential energy, i.e.,  

( )
0

,,, =∂
∂

µ
µεβαmW

 

Thus, from Eqs. (3.10), (3.11) (3.13) and (3.14), we obtain 

( ) ( )[ ] 0cos1cos21
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4
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11 =−+−+∑
=

mN

i

mimimiE φλφλλ    … (3.15) 

According to Eq. (3.12), Eq. (3.15) can be expressed by Fourier series ofα and β . To 

ensure that Eq. (3.15) holds for any α and β , we obtain 4/11 −=λ , which means the only 

value of the Poisson constant can be achieved is -1/4. Besides, fifteen other independent 

constraints on the Hooke’s constants of the springs incident to node m can be obtained. 

From Eqs. (3.10), (3.11), (3.13) and (3.14), we obtain 

( ) ( ) ( )∑
=
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m oE
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 41

Let ( )∑
=

+=∆
mN

i

mimimim E
1

22

1

2 sincos φλφ , which can also be expressed as a 

Fourier series of α and β . Since the MSD model should have the same stiffness in different 

directions, m∆  should be the same for any α and β , which leads to two additional independent 

constraints. 

 Further, if all those constraints are satisfied, the stretching resistance of the MSD model 

associated with node m can be obtained as: 

( ) ( )∑
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16

1,,,
εε

ε
µεβα

                         …..(3.17) 

For the MSD model to be physically accurate, the stiffness of the MSD model at each 

node should be the same as the stiffness of the real object in the corresponding influence 

volume of the node, from which another independent constraint can be obtained. Thus, at each 

node, eighteen independent equality constraints on the Hooke’s constants of the incident 

springs can be obtained. The equality constraints have been outlined in Appendix B. For a MSD 

system with N nodes, 18N constraints are obtained, which usually outnumber the springs. 

Under those constraints, together with the nonnegativity constraint for the stability of the model, 

the Hooke’s constants of the springs can be solved by the constrained linear least square 

optimization method.  

We have applied the above described optimization process to an unstructured 3D 

tetrahedral mesh model of a human organ using MSD model of deformation. The 

implementation details and results have been presented in Chapter 4.  
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CHAPTER 4 

IMPLEMENTATION AND RESULTS OBTAINED 
 

4.1 Mesh Generation 

We used a triangular surface model of a human organ (kidney) (courtesy Dr. Yunhe 

Shen of Virtual Environment Laboratory) to generate the tetrahedral mesh. First, we converted 

the file to a .stl (Certificate Trust List) format by using 3D Studio Max (a 3D graphics application 

software developed by Autodesk Media and Entertainment). Then we gave this file as an input 

to GMSH [62] (an automatic 3D finite element mesh generator, primarily Delaunay with built-in 

CAD and post-processing facilities), and programmed it to generate the tetrahedral mesh from 

the existing triangular mesh by extruding the surface triangles inwards. The algorithm chosen 

for the 3D meshing was Netgen for some cases and a combination of TetGen and Delauney for 

other cases.  

• NETGEN: NETGEN is an automatic 3D tetrahedral mesh generator. It accepts input 

from constructive solid geometry (CSG) or boundary representation (B-Rep) from the 

STL file format. NETGEN contains modules for mesh optimization and hierarchical 

mesh refinement. It is open source based on the LGPL license and available for 

Unix/Linux and Windows.  

• TETGEN: TetGen generates the Delaunay tetrahedralization, Voronoi diagram, and 

convex hull for three-dimensional point sets, generates the constrained Delaunay 

tetrahedralizations and quality tetrahedral meshes for three-dimensional domains with a  

piecewise linear boundary. 

After generation, we stored the mesh information in .mesh format, which had information 

regarding vertices, triangles and tetrahedra. The triangles were part of the surface mesh and 

were extruded to form the tetrahedral elements. We used this file as the main input to our 
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simulation to enable rendering of the organ mesh and build a deformation model based on MSD 

principles. We implemented our simulation in Microsoft Visual Studio .NET 2003 using primarily 

VC++, and MFC (Microsoft Foundation Classes) with OpenGL (freely available standard 

application programming interfaces or APIs for developing 2D and 3D computer graphics).  

4.2 Object Oriented Design Framework 

We designed several (C++) classes to set up the tetrahedral mesh MSD framework. For 

setting up a complete stand-alone framework using tetrahedral mesh and Mass-Spring-Damper 

model we followed an object oriented approach. 

4.2.1 Mesh Formation and Processing 

For implementing a mesh structure, we designed the following classes and created their 

objects. In building the mesh framework, we followed the approach illustrated in [63] to some 

extent, especially in the nomenclature of members.  We now describe each of the classes, their 

contents and as well as functionalities in the following paragraphs: 

CVertex3D:  

This class implements the basic Vertex primitive of the tetrahedral mesh to be 

rendered.  It consists of the 3D coordinate information representing the vertex in the right-

handed coordinate system used for rendering, a 3D vector member m_normal which is later 

used to store the normal per vertex and neighbor information. Neighbor information is stored for 

not only other vertices it is connected to by the tetrahedron network, but also for the neighboring 

faces. It also has array fields to store the lengths of the springs incident on it, array of numbers 

identifying each such spring, and the angles alpha and beta for every such spring (which are 

needed to optimize parameters for the model later on). Each vertex object also has fields to 

store the current 3D velocity of the point mass which it represents in the mass spring damper 

model, as well as the current 3D force acting on it due to virtual interactions and deformable 

modeling.  It also has a field storing the influence volume of each vertex (that is, each mass 

particle in the deformable MSD model). Also, it has member functions to access, modify and do 
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other required operations (like creating arrays based on a standard template) on these data 

members. 

CFace3D: 

This class is used to implement the Triangle (or Face) primitive of the tetrahedral mesh. 

It consists of data members such as an array of the CVertex3D class objects (which are its 

constituent vertices), an array of neighboring faces (array of CFace3D class objects), a 3D 

normal vector calculated for shading and lighting purposes, as well as member functions to 

access, modify and create these members.  

CTetrehedra3D: 

This class represents each constituent tetrahedral element forming the mesh.  It 

consists of data members like an array of CVertex3D class objects representing the constituent 

vertices making up the tetrahedron, the barycenter of the tetrahedron, the volume etc. It also 

has member functions for creating, accessing and modifying these members. 

CSpring3D: 

This class models each spring element in the MSD model. The springs are considered 

to be linear and have associated spring constants (Hooke’s constant). The Hooke’s constant for 

each spring is determined by the parameter optimization method (ref: Chapter 3) and 

correspondingly assigned to the spring. Each spring is uniquely identified by a number in a list 

and has associated alpha and beta values. The damping parameter γ (gamma) is considered 

the same for all springs. 

CMesh3D: 

This class implements the complete mesh. It contains arrays of the vertices 

(CVertex3D), faces (CFace3D), tetrahedra (CTetrahedra3D) and springs (CSpring3D). Since 

each primitive array is actually implemented as an array of pointers to the storage allocated for 

the realization of each primitive, not much extra space is needed for implementing the 

CMesh3D class object (which becomes the main mesh object for rendering and modeling in our 
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program).  It has member functions for creating, accessing and modifying each such array of 

primitives, and also functions to calculate normals per face and per vertex for shading and 

texture mapping purposes.  

CVector3D: 

This class implements any three dimensional vector quantities. It has data members 

corresponding to the three vector coordinates and member functions to create, access and 

modify their values. Since it implements a vector, it has member functions providing such 

functionalities as calculating the Inner Product and Outer Product with another vector (another 

object of CVector3D class), L2 norm of the vector (magnitude squared) and normalizing the 

vector.  

4.2.2 Creation of the Mesh Structure and Springs 

In the following paragraphs we explain the program flow for creating the mesh structure 

in the simulation. 

The mesh file in .mesh format (which is basically in plain text format) is read in by our 

implementation program. Every new vertex read is added to the increasing vertex array for the 

mesh. The vertex positions are normalized to the range [-1,1]. After that the triangle information 

is read and the corresponding face array is created.  At the time of reading in the ‘face’ 

information, an array of face neighbors for each corresponding vertex (forming the triangle) is 

also created.  This information is required later in calculation of normals per vertex (to 

implement shading and texture mapping).  After this, the tetrahedra information is read in and 

corresponding tetrahedral array is built incrementally. Along with that, for every constituent 

vertex of each tetrahedron, the other three constituent vertices are added to the vertex neighbor 

array of the former. This vertex neighbor information is necessary for the spring addition, as a 

spring object needs to be added between every vertex pair of each tetrahedron. So, for every 

new vertex neighbor added for a given vertex, a new spring object is  added, its rest length is 

computed as the Euclidean distance between the two vertices involved in their rest position, the 
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corresponding alpha and beta angles are calculated from the length vector of the new spring 

and the x, y and z axes vectors. This information is required later in the optimization of the 

spring constants.  

Once the original mesh information is read in from the file and storage has been 

allocated for it, it is simplified by the mesh simplification algorithm and a new simplified mesh is 

generated. Once it has been simplified, the influence volume is calculated for each node in the 

new simplified mesh.  

4.2.3 Mesh Simplification 

We have already explained the algorithm implemented in this part in detail in Chapter 2. Only 

the details of quality evaluation and tetrahedral deletion procedures are elaborated here. 

4.2.3.1 Solid Angle of Tetrahedon 

Let OABC be the vertices of a tetrahedron (Figure 4.1) with an origin at O subtended by 

the triangular face ABC where cba
rrr

,, are the vector positions of the vertices A, B and C. The 

vertex angle aθ is defined to be the angle BOC and bθ and cθ are defined correspondingly. Let 

abφ be the dihedral angle between the planes that contain the tetrahedral faces OAC and OBC 

and bcφ and acφ correspondingly. 

 

Figure 4.1 Tetrahedron with vertices OABC 
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[In geometry, the angle between two planes is called their dihedral or torsion angle. The 

dihedral angle of two planes can be seen by looking at the planes "edge on", i.e., along their 

line of intersection. The dihedral angle φAB between two planes denoted A and B is the angle 

between their two normal unit vectors An
r

and Bn
r

: 

BAAB nn
rr

•=φcos   … (4.1)] 

 The solid angle at O subtended by the triangular surface ABC is given by 

πφφφ −++=Ω acbcab  …..  (4.2) 

For calculating the solid angle of a tetrahedron from the tetrahedral mesh, the following 

is done: 

First, the normal for every face of the tetrahedron whose quality is being evaluated is calculated. 

Then, the dihedral angle for every pair of faces in the tetrahedron (6 such pairs) is calculated 

according to Eq. (4.1). This is done by calculating the dot product of the normal pair, dividing it 

by the product of the magnitudes of the normal vectors, and evaluating the arccosine of the 

result. The dihedral angles are then used to calculate the four solid angle values according to 

Eq. (4.2) (the three dihedral angles for calculating each solid angle value are chosen according 

to the orientation of the faces they are calculated from, as defined by the solid angle and 

dihedral angle illustrated above).  After all four solid angles have been evaluated, the minimum 

among them is determined, and its magnitude divided by 0.55 is assigned to q1. 0.55 steradians 

is the ideal solid angle value since it is the solid angle in a regular tetrahedron.  

4.2.3.2 Length of Edges 

The lengths of all six edges of the tetrahedron are calculated. The longest and the 

shortest among them are determined. The ratio of the shortest to the longest edge is then 

assigned to q2.  
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4.2.3.3 Volume of Tetrahedron 

The volume of the tetrahedron being evaluated is determined. The entire volume of the 

mesh is calculated and divided by the total number of tetrahedron present to determine the ideal 

volume per tetrahedron. The ratio of the actual volume to the ideal volume is assigned to q3.  

4.2.3.4 Quality Factor 

Finally the quality factor of a tetrahedron is calculated as the geometric mean of q1, q2 

and q3. That is, the cube root of the product of q1, q2 and q3 is taken as the value of the quality 

factor for the given tetrahedron. 

4.2.3.5 Tetrahedral Deletion Procedure 

The barycenter of the tetrahedron marked for deletion is calculated. A new vertex (data 

structure) is created with the barycentric coordinates and storage is allocated for it.  After this all 

the vertices in the tetrahedron marked for deletion are labeled as ‘invalid’ and the tetrahedron 

itself is labeled as ‘deleted’. At the same time the counter for deleted tetrehedra is incremented.  

Then all the neighbors of the deleted tetrahedron are checked for the number of vertices they 

share with the latter. If they were sharing only one vertex, then this affected vertex is replaced 

by the new vertex created at the barycenter of the deleted tetrahedron.  If the number of 

vertices shared was more than one, then again these degenerate tetrahedra are marked as 

‘deleted’ and the counter of deleted tetrahedra is incremented. However, the vertices of this 

degenerate tetrahedra are not marked as ‘invalid’. Again, those tetrahedra among the neighbors 

of the currently degenerate one, which have one vertex ‘invalid’, have their invalid vertex 

replaced by newly created vertex at the barycenter of the originally deleted tetrahedron.  

In order to be marked for deletion, a tetrahedron first has to pass the following tests: 

1) Not a Boundary tetrahedron: This is checked by ensuring that none of the vertices 

forming the tetrahedron are part of the face or surface triangle mesh, that is, for all of 

them, the number of face neighbors is zero.  



 

 49

2) Not the Neighbor of a Boundary tetrahedron: This is checked by running the above 

check on all the neighboring tetrahedra of the tetrahedron under consideration.  

3) Neighbors will not be diminished in quality beyond a certain measure: This is 

considered for only those neighbors who share one vertex with the tetrahedron to be 

deleted. The quality factor of such neighbors is determined before and after deletion (if 

deletion will occur). Their ratios are evaluated and compared against the metric of 1/100 

times the former quality factor.  

4) Flipping does not occur: The normal to the base triangle of a neighbor tetrahedron 

sharing only one vertex with the tetrahedron being considered is calculated. Its inner 

product with the base vector Rb1 (vector from the base triangle to the affected vertex) is 

taken. Again, the inner product of Rb2 (vector from the base triangle to the newly 

created vertex at barycenter) is determined with the face normal. If their product is 

negative, flipping will occur, and hence the tetrahedron being considered for deletion is 

rejected.  

4.2.4 Setting the Influence Volume for Each Node: 

For implementing the parameter optimization process outlined above, we need to 

determine the influence volume of each node. It is calculated as ¼ of the sum of the volumes of 

all tetrahedra incident on a node (that is, all the tetrahedra of which the vertex is a part). Since 

we are dealing with irregular tetrahedra, the volume calculation is done by the following formula: 

Specifying the tetrahedron by the three polyhedron edge vectors a
r

, b
r

and c
r

from a 

given polyhedron vertex, the volume is:  

( )cbaV
rrr

×⋅=
!3

1
                                      …. (4.3) 
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Thus, for each node or vertex, of each of the incident tetrahedron, the three incident 

edge vectors are calculated, and the corresponding volume determined by the inner and outer 

products as specified above. 

4.2.5 Calculation of Spring Constants 

We calculate the spring constants for each spring by the parameter optimization 

process outlined above. This is an offline process.  

For the tetrahedral mesh used in the implementation of our simulation, the number of 

vertices was originally 1503 and after mesh simplification 1242, and the number of springs was 

initially around 9998, and after simplification 7959.  For such a mesh size, the matrix sizes to be 

used in the simplification function would be 1242 X 7959 per constraint and there are 18 such 

constraints. For constrained least squares simplification, we wrote a MATLAB .m file using the 

built-in function lsqlin(), and another built-in function optimset() was used to set the conditions of 

solution, that is, the maximum number of iterations allowed for the constrained solution and the 

tolerance level for error.  

We set the maximum number of iterations at 100,000,000 and the tolerance level at 

1.0e-300. The processing was done using the High Performance Computing System (HPC) 

available as a computing resource in UT Arlington. 

[HPC: UTA's High Performance Computing environment combines multiple independent 

systems connected via a private high-speed network to solve complex problems in numerous 

disciplines. The servers, collectively "the system", operate with Intel IA64 and Intel EM64T 

processor architectures and use Red Hat Enterprise Linux as their operating environments.  

The system is based on a Client/Server model architecture where users on a client (the root 

nodes) request that jobs be performed on a server (the compute nodes). ] 

The parameter optimization calculation is done on HPC and the end results are stored 

in a text file, which is read in during the actual execution of the program (carried out in an Intel 

Core Due Processor T2300@1.66Ghz and 1GB RAM) before starting the rendering and 



 

 51

execution in real time mode. This essentially means reading and associating optimized spring 

constants with the correct spring objects in the MSD tetrahedral mesh, identifying every spring 

by a unique number and associated alpha and beta angles.  

4.2.6 Calculation of Volume and Center 

The volume of the entire mesh is calculated as the sum of the volumes all the 

tetrahedra forming the mesh. The geometric center is calculated as the average of the 

barycenters of all the tetrahedra forming the mesh. Both of these measurements are associated 

with the mesh and used later in realizing stability in the implementation of the mass-spring-

damper model.  

4.2.7 Scene Set-up 

The OpenGL context is created and the pixel format is set up. The initial geometry 

settings are also specified along with the view angle and viewing coordinates. These are 

preliminary steps to make rendering possible and for the organ to be visible at a certain desired 

angle. The lighting and shading parameters are also set up.  All three lighting, namely, ambient, 

diffuse and specular lighting conditions are specified.  

4.2.8 Rendering Details 

The rendering is done in the OnPaint() function, which is called by the Windows 

message WM_PAINT generated whenever the rendering area/window is invalidated (that is, 

refreshed and drawn again). Two Timer threads are set up to control the rate of updating and 

rendering of the vertices. The Timer thread INTEGRATE_CHANGE is set up to run at intervals 

of 5 ms and it controls the rate of updating the positions and velocities of the vertices due to 

forces applied (according to MSD model and discrete integration scheme used). The Timer 

thread FIG_CHANGE is set up to run at intervals of 20 ms and it controls the rate of refreshing 

the screen and rendering the organ with the currently updated vertex positions. This ensures 

that the frame rate is more than the required rate of 33 Hz (for real time visual rendering).  
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For rendering the surface triangle mesh is used to make it faster (since the number of 

triangles to be rendered is much less than the number of tetrahedra). However, for 

implementing the MSD system and the discrete integration schemes the original tetrahedral 

mesh is used. Since the vertices have been stored as pointers in the array referred to by both 

the triangle surface mesh as well as the tetrahedral 3D volume mesh, the rendering by either 

mesh will represent the currently updated vertex position and hence the current organ position 

and form. So, we choose the triangular mesh for rendering because of the lesser number of 

primitives to be rendered and hence at a higher frame rate.  

We have used the Open GL numeric constant GL_TRIANGLE_STRIP for rendering the 

list of triangles which makes it faster and more efficient than a triangle by traingle rendering 

(that is, rendering each triangle separately using GL_TRIANGLES).  Before rendering, the 

current normals per face and per vertex are calculated and updated, and used for texture 

mapping coupled with lighting and shading properties.  

For texture mapping, we chose a  32x32 .bmp image. We used a linear filtering method 

for both magnification and minification filtering, and implemented 2D texture mapping by 

wrapping across both S and T dimensions. The shading model chosen is smooth and back face 

culling is enabled to increase efficiency of rendering. Modulation of texture with given lighting 

conditions is also enabled along with normal mapping, so as to make the curves and 

deformations more clearly visible.  The image for texture mapping was obtained from the 

database of VRBase simulator, designed by Dr. Yunhe Shen et al of the Virtual Environment 

Laboratory at UT Arlington.  

The shading model implemented is Gouraud Shading, as the normals used for 

calculation of lighting effects are calculated per vertex, by averaging the normals of all incident 

faces (which had been calculated per face).  
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4.2.9 Discrete Integration Scheme 

Euler’s method is used to implement the numerical integration scheme for simulating 

the MSD model. The integration and numerical update for all the vertices in the system takes 

place every time the Timer event INTEGRATE_CHANGE takes place (that is, every 5 ms).    

First, the force is calculated by processing every spring. For every spring in the data 

structure, the two end vertices are retrieved.  The force on either of them (same magnitude but 

oppositely directed) due to the current condition of the spring is calculated from the definition of 

the mass spring damper model. The spring constant values are obtained by the parameter 

optimization method, and the spring damping constant, gamma, is set equal to 500.0. This 

value has been obtained by trial and error for a stable realization of the MSD model in the given 

context.  

Secondly, for every vertex, force due to kinetic friction damping (inversely proportional 

to the current velocity) is calculated. The damping coefficient for this case has been set equal to 

kd = 800. The mass per vertex is set at a value of unity.  

Thirdly, elastic force acting on each vertex is calculated based on the change in volume 

in the current state from the original volume and the shift in the position of current barycenter 

from the original one. The new volume is determined and the difference in volume from the 

original volume is calculated. The current barycenter or center of mass for the entire organ is 

also calculated. Then, on each vertex, a force of magnitude m_kv * vol_diff acts in the direction 

opposite to the direction of a vector from vertex to the current barycenter, where m_kv is a 

constant, whose value has been set equal to 100.0 (again chosen by a trial and error procedure 

for a stable realization of the current model and the given context), and vol_diff is set equal to 

the value of the volume difference.  

After determining the total force acting on each vertex at the current time instant, by the 

above procedures, the current velocity and position for every vertex is updated. The velocity for 

the i
th
 vertex is updated according to the Euler method as follows: 
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masstimedeltaforcevelocityvelocity ioldinewi /___ •+=       …. (4.4) 

where, the delta_time is the time constant used for the Euler method of numeric integration.  

Since the Euler method tends to become unstable because of the crude linear 

approximation for future value estimation, we have used a very small value for the time constant 

delta_time = 0.3ms.  We have also restricted the maximum allowable magnitude of velocity to 

20 by normalizing the resultant velocity accordingly.  This is to ensure stability of the model so 

that the floating point errors and errors which build up due to the numerical approximation of 

integration do not cause the model to become unstable. 

After the velocity has been updated, the current position is updated for each vertex 

again in accordance with the Euler method as follows:  

timedeltavelocitypositionposition newioldinewi ____ •+=      …. (4.5) 

As can be seen from Eq. (4.5) the new estimated velocity is used in the integration, in 

accordance with the Implicit Solution method of Differential Equations [24]. The position, 

velocity and force for each vertex are represented as 3D vectors, having x, y and z fields.  

The values of different parameters that we have used in our simulation have been listed 

in Table 4.1. These values have been either obtained algorithmically or after extensive trial-error 

experimentation. 

Table 4.1 Values of Parameters Used in Simulation 

Parameters for 
Stable Simulation 

Values (Obtained Algorithmically 
or on a trial-error basis) 

Mass per Vertex 1.0 

Spring Constant (Hooke’s) ks 100.0 

Spring Damping Constant γ 500.0 

Per Vertex Motion Friction Damping Constant kd 800.0 

Constant for Elastic Force Calculation m_kv 100.0 

Value of Time Constant for Numeric Integration δt 0.3 ms 

Updating rate of v and r 5ms 

Screen Refresh rate (rate of rendering) 20ms 
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4.3 Results for Mesh Simplification Algorithm 

   Our algorithm has been tested on both regular geometric figures as well as irregular 

ones. We have compared the quality of resultant tetrahedral mesh as opposed to the quality of 

tetrahedra simplified by TetFusion for same number of tetrahedral reduction.  

In Figure 4.2 and 4.3, we present the results obtained by the application of our algorithm on 

an irregular model (kidney mesh referred to earlier) having a large number of primitives, since 

the results obtained for such cases are more relevant than those obtained for meshes with 

small number of elements. After running our simplification algorithm as well as Tetfusion [1] on 

the given dataset or mesh, we generated new meshes with reduced number of elements as 

obtained in either case. Then we did a quality check on these resultant new meshes, that is, we 

determined the quality factor for every tetrahedron in each of the two new meshes, according to 

the definition of quality given in [3]. We plotted the histogram of the tetrahedra against the valid 

range of quality factor [0, 1.0], using the built-in MATLAB function hist(). The horizontal axis 

contains the range of allowed quality factor values, divided into 10 sections, and the vertical axis 

lists the number of tetrahedra belonging to each of these 10 buckets or sections of quality factor 

values. Figures 4.2 and 4.3 show that the quality factor of tetrahedra resulting from the 

application of our algorithm tends to be higher than that obtained for sequential tetrahedral 

fusion. The percentage of tetrahedra having quality factors higher than 0.6 is much higher in our 

algorithm than with the sequential approach. (It is desirable that the quality factor should be 

close to 1 for most tetrahedra in the mesh). Using Tetfusion alone results in 45.71% of 

tetrahedra having quality factor higher than 0.5, while using our approach results in 63.33% of 

such tetrahedra. Thus our proposed systematic algorithm clearly results in a better quality of 

mesh for the same degree of simplification. We have also presented a wire frame rendering of 

the simplified tetrahedral mesh structure (Figure 4.5) along with a wire frame rendering of the 

original mesh for comparison (Figure 4.4). It can be seen from Figure 4.4 and 4.5 4.6 that the 
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overall contour and mesh structure of the resultant simplified mesh after the application of our 

algorithm are well preserved compared to the original mesh. 

Figure 4.2 Histogram with our algorithm: Percentage of tetrahedra having a quality factor 
more than 0.5 is 63.33% 

 
Figure 4.3: Histogram with sequential tetrahedra deletion. Percentage of tetrahedra having 

a quality factor more than 0.5 is 45.71%. 
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Figure 4.4 Original mesh of Kidney 3D model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5 Mesh of the Kidney 3D model Simplified by Proposed Algorithm 

 

4.3.1 Conclusion and Future Work for Mesh Simplification 

We present a robust and systematic algorithm which can be applied for tetrahedral 

mesh simplification and quality improvement. It is quite general in its approach towards quality 

measurement and quite rapid and efficient in its implementation. The approach is very 

systematic and hence overcomes some of the shortcomings of previous approaches. It tries to 

achieve an optimal solution and works for both structured and unstructured meshes.  

Our algorithm tries to approximate the most optimal solution, but the solution obtained is not the 

absolute globally optimum one.  Future studies can be directed at further improving the 

optimality with minimal computation overhead. Also our algorithm does not simplify the 

boundary tetrahedra, where other primitive and time consuming operations like edge collapse or 
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vertex unification may be necessary in order to reduce the number of elements. Future work 

can be directed at this direction as well.  

4.4 Results for Simulation of Deformation using Parameter Optimized MSD model 

The deformations are realized by arbitrarily displacing some vertices from their original 

position in the tetrahedral mesh mass-spring-damper model.  The force application (or vertex 

displacements) has been done in the form of palpation by instrument to simulate something 

close to a virtual medical environment.  We have presented the screen shots of the organ 

before and after deformation, and at various stages of intermediate deformations till it returns to 

the original stable state below.  As can be seen from Figures 4.6-4.14, we have been successful 

in determining the parameter optimized spring constants (following the approach in [1]) and the 

other necessary parameters for mass spring damper model correctly enough to give a visually 

realistic and stable deformation response.   

A video of the entire deformation process has also been created and some of its screen 

shots have been provided in Figures 4.15-4.17. The video has been generated using the 

classes CGLMovie and CAviFile obtained from [64]. The video is filmed at 10 fps and has not 

been compressed with any codec.  

The results as obtained in the simulation environment have been presented below: 

 

 

Figure 4.6 Undeformed Organ 
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Figure 4.7 After Displacing Vertices (application of force) 

 

 

Figure 4.8 Response to Deformation Applied 

 

 

Figure 4.9 Regaining Original State 
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Figure 4.10 Second Deformation Applied 

 

 

Fig 4.11 Response to Second Deformation Applied 

 

 

Figure 4.12 Response (contd.) 
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Figure 4.13 Coming Back to Original Form 

 

 

Figure 4.14 Back to Original Undeformed Condition 
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Screen shots of the video created from the simulation: 

 
Figure 4.15 Screenshot 1 

 
Figure 4.18 Screenshot 2 
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Figure 4.17 Screenshot 3 

 
4.4.1 Conclusion and Future Work on Parameter Optimization 

This work can be further exploited by using the optimized parameters in an haptic 

simulation such as the one at the Virtual Environment Lab at UTA. The elastic and mechanical 

properties of the human organs and tissues will need to be considered in order to calculate a 

realistic force feedback for haptic purposes from the virtual organ on deformation.  
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TRIANGULAR AND TETRAHEDRAL MESH GENERATION 
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Triangulation of a Point Set 

Many tetrahedral mesh generators such as advancing front method [18], require a 

surface mesh of triangles to be generated first. Furthermore, providing a refined, coarsened, or 

smoothened surface triangulation will prove efficient prior to the generation of the volume mesh 

[17]. The most common method of triangulation used is Delaunay triangulation. The three-

dimensional Delaunay triangulation is a special type of tetrahedralization. For a given point set 

with n points, the number of triangles in any triangulation grows with O(n), but the number of 

Delaunay tetrahedra in a tetrahedralization can grow with O(n
2
) [17]. Thus, generally tetrahedral 

mesh for the same solid will have many more elements than a triangle surface mesh for the 

same solid.  

Delaunay Triangulation 

Delaunay triangulation for a set P of points in the plane is a triangulation DT(P) such 

that no point in P is inside the circumcircle of any triangle in DT(P). Figure A.1 illustrates the 

Delaunay triangulation of a given point set. Delaunay triangulations maximize the minimum 

angle of all the angles of the triangles in the triangulation, and hence try to avoid generation of 

"sliver" triangles. The triangulation was invented by Boris Delaunay in 1934. 

 

Figure A.1 An example of Delaunay triangulation in the plane with circumcircles shown 
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  Based on Delaunay's definition, the circumcircle of a triangle formed by three points 

from the original point set is empty if it does not contain vertices other than the three that define 

it (other points are permitted only on the very perimeter, not inside). The Delaunay condition for 

bi-dimensional spaces states that a triangle net is a Delaunay triangulation if the circumcircles 

of all the triangles in the net are empty. It is possible to use it in tridimensional spaces by using 

a circumscribed sphere in place of the circumcircle. 

Generalizations are possible to metrics other than Euclidean. However, in these cases 

a Delaunay triangulation is not guaranteed to exist or be unique. 

The Delaunay triangulation of a discrete point set P corresponds to the dual graph of 

the Voronoi tessellation for P. 

N – Dimensional Delaunay 

For a set P of points in the (N-dimensional) Euclidean space, a Delaunay triangulation 

is a triangulation DT(P) such that no point in P is inside the circum-hypersphere of any simplex 

in DT(P). 

It is known that there exists a unique Delaunay triangulation for P, if P is a set of points 

in general position; that is, no three points are on the same line and no four are on the same 

circle, for a two dimensional set of points, or no (n + 1) points are on the same hyperplane and 

no (n + 2) points are on the same hypersphere, for an n-dimensional set of points.  

Tetrahedralization of Point Set 

A polyhedron is a solid that is bounded by a set of polygons. The b-rep of a simple 

polyhedron satisfies Euler’s formula [18, 19, 20]: 

SFEV =+−                                        …..(A.1) 

where V is the number of vertices, E is the number of edges, F is the number of faces and S 

refers to the number of solids including infinite ‘solid’ outside the polyhedron. For the case of a 

single polyhedron, S = 2. Figure A.2 illustrates the application of Eq. (A.1) for some common 

solids. 
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Figure A.2 Euler’s formula illustrated for some simple polyhedra 

 

 Euler’s formula gives a necessary but not sufficient condition for an object to be a 

simple polyhedron. In order to guarantee that the object is solid additional constraints need to 

be satisfied: each edge must connect two vertices and must be shared by exactly two faces, at 

least three edges must meet at a vertex and faces must not interpenetrate [19].  

For a general tetrahedralization, Euler's formula can be written as  

1=−+− TtEV                                   …...(A.2) 

                
where t is the number of triangles and T is the number of tetrahedra. Based on this equation 

simple bounds on the number of tetrahedra can be deduced [17] 

2
2

1
3 +−







 −
≤≤− hulln

V
TV          …..(A.3)               

where hulln  is the number of points on the convex hull.  

 
 
 
 
 
 
 
 
 

V = 8 
E = 12 
F = 6 

V = 5 
E = 8 
F = 5 
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APPENDIX B 
 
 

LIST OF CONSTRAINTS OPTIMIZED FOR PARAMETER OPTIMIZATION [1] 
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Euler’s Method [23] 

In calculating numerical solutions discrete time steps are taken starting with the initial 

value ( )0tx . An approximate change in x , x∆ , over a time interval t∆ is calculated from using 

the derivative function f (or x& ) and then x is incremented by x∆  to obtain the new value.  

In a numerical integral solution method, one or more derivative evaluations are 

performed at each time step. The simplest numerical method is called Euler’s method. Let the 

initial value for x be denoted by )( 00 txx = and the estimate of x  at a later time ht +0  by 

)( 0 htx + where h is a stepsize parameter. Euler’s method evaluates )( 0 htx + by the following 

formula: 

( )000 )( txhxhtx &+=+ …. (C.1) 

 Thus Euler’s method will give accurate solution for functions having a constant 

derivative. However, for any arbitrary function, with variable derivative it is not very accurate. 

Figure C.1 shows the example of a 2D function f whose integral curves are concentric circles for 

which Euler’s method fails. Moreover, Euler’s method can be unstable. For sufficiently small 

step sizes it gives reasonable behavior. Assuming the function ( )tx is smooth, it can be 

represented by Taylor’s series,  
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Thus the error is O(h
2
). 
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Figure C.1 Pictorial Representation of Error in Euler’s Method [23] 
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