

IMPLEMENTATION AND EVALUATION OF

RESIDUAL COLOR TRANSFORM FOR

4:4:4 LOSSLESS RGB CODING

by

POOJA VASANT AGAWANE

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2008

Copyright © by Pooja Vasant Agawane 2008

All Rights Reserved

iii

ACKNOWLEDGEMENTS

 I would like to express my heartfelt gratitude to my professor, Dr. K. R. Rao.

This work would not have been possible without his erudite vision. He has been a

constant source of inspiration all throughout this work. His extremely responsive and

attentive approach has helped me improve my work on a regular basis. I thank him for

helping me lay my foundation in the world of multimedia processing. It is an honor for

me to be a part of his research group.

 I would like thank Dr. Davis and Dr. Alavi for taking interest in my work and

accepting to be a part of my thesis defense committee. I would like to thank Att,

Radhika and Vineeth, my lab mates and the visiting professors in the multimedia

processing laboratory for all their help and encouragement. I would like to thank my

manager and my team at Intel Corporation, Chandler, Arizona. It is in their company

that I gained my first real-world industry exposure.

 I dedicate this work to my dad, my mom, my brother and my friend, Jayesh. I

thank them for standing by me all throughout my life. This work would not have been

possible without them. I take this moment to thank all my friends for being with me

through all the times of struggle and celebration.

 July 16, 2008

iv

ABSTRACT

IMPLEMENTATION AND EVALUATION OF

RESIDUAL COLOR TRANSFORM FOR

4:4:4 LOSSLESS RGB CODING

Pooja Vasant Agawane, M.S.

The University of Texas at Arlington, 2008

Supervising Professor: Dr. K. R. Rao

 The 4:4:4 video sampling format promises an excellent quality video. It is

gaining a lot of attention due to its significance in the professional applications of

multimedia processing. The use of the RGB color space for video processing is

attracting both the industry and the academia. Extensive research is being undertaken to

achieve better compression efficiency and high coding gain in the RGB (red, green,

blue) color space. In contrast to typical consumer applications, high quality video is

required in areas such as professional digital video recording, video post production and

digital cinema. These latter applications require all three color components to be

represented with identical spatial resolution. Some of these applications require that

v

each color component of the video signal be captured and displayed with a precision of

more than 8 bits per sample.

Most of the time, a video signal is captured and displayed in the RGB color

space. During the transition phase between the capture and the display of video,

encoding and transmission take place. RGB color space is not an optimum choice for

coding and achieving compression. This is because of the significant amount of

statistical dependencies between the red, green and blue components of the given video

signal. In order to take advantage of these statistical properties, a decorrelating

transformation from the RGB color space to some other suitable color space is applied.

The various standardization bodies, for example, ITU or SMPTE have defined several

color transforms for video coding purposes. One of the color spaces is denoted by

YCbCr. This color space includes one luminance component (Y) and two chrominance

or color difference components (Cb and Cr). The captured video signal is transformed

from the RGB space to YCbCr space. However, this conversion has its limitations. This

conversion includes the use of decimal coefficients. Since the samples of a video signal

are represented using integers, rounding errors are introduced. Also, in order to achieve

high coding efficiency, the complexity of the transform is also increased. To overcome

these limitations, the Fidelity Range Extensions (FRExts) amendment of H.264 supports

a new color space. This is the YCgCo color space where Y stands for luminance, Cg

stands for green chroma and Co stands for orange chroma. The principle of the residual

color transform is also introduced in the FRExts. It exploits the redundancy among the

residual data of each RGB component after intra/inter prediction.

vi

As a part of this research, the RGB to YCgCo color space transform is applied to

the residual data. This thesis aims at the implementation and the evaluation of the

residual color transform. This transform is applied to high definition sequences, with the

resolution of 1920x1080. The YCgCo color space has improved coding gain relative to

both RGB and YCbCr.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS…………………………………………………. iii

ABSTRACT…………………………………………………………………. iv

LIST OF ILLUSTRATIONS……………………………………………….. x

LIST OF TABLES…………………………………………………………... xii

ACRONYMS AND ABBREVIATIONS..…………………………………. xiv

Chapter Page

 1. INTRODUCTION………….…………………………………… 1

 1.1 Introduction……………………………………………… 1

 1.2 Thesis outline…………………………………………… 3

 2. OVERVIEW OF H.264…………………………………………. 5

 2.1 Introduction……………………..………………………. 5

 2.2 Profiles and levels of H.264…...………………………… 7

 2.3 H.264 encoder..………………..………………………… 9

 2.3.1 Intra prediction………………………………… 11

 2.3.2 Inter prediction………………………………… 13

 2.3.3 Transform coding……………………………… 14

 2.3.4 Deblocking filter………………………………. 16

 2.3.5 Entropy coding………………………………… 17

viii

 2.3.6 B-slices and adaptive weighted prediction…… 18

 2.4 H.264 decoder..………………..………………………… 19

2.5 Comparison of H.264 with WMV9 and AVS China…… 20

 2.6 Summary………………………………………………… 22

 3. FIDELITY RANGE EXTENSIONS AND RESIDUAL

 COLOR TRANSFORM…………………………………………. 24

 3.1 Introduction……………………………………………… 24

 3.2 Coding tools……………………………….………….…. 24

 3.2.1 8x8 Intra spatial prediction……………………. 24

 3.2.2 8x8 Transform…………………………….…… 26

 3.2.3 More coding tools…………….………………… 29

 3.3 High profiles……………………………………………… 30

 3.4 YCgCo color space….……..……………………………... 32

3.5 Principle of residual color transform……………………. 35

 3.6 Summary…………………..…………………………….. 36

 4. LOSSLESS CODING…………..………………………………… 37

 4.1 Introduction……………………………………………… 37

 4.2 Arithmetic coding……………………………………….. 38

 4.3 Lossless coding standards………………………………. 39

4.3.1 Lossless JPEG standard.……………………… 39

 4.3.2 JPEG-2000 standard..…………………………. 40

 4.3.3 JPEG-LS standard……. ……………………… 42

 4.4 Summary………………………………………………… 42

ix

5. IMPLEMENTATION AND RESULTS………………………… 43

 5.1 Proposed algorithm and results…………………………. 43

 5.2 Results of JM software simulation……………………… 48

 5.3 Results from JPEG software simulations……………….. 52

 5.3.1 Independent JPEG…………………………….. 52

 5.3.2 JPEG-2000……………………………………. 54

 5.3.3 JPEG-LS………………………………………. 57

 5.4 Summary………………………………………………… 59

 6. CONCLUSIONS AND FUTURE WORK.……………………… 61

 6.1 Conclusions..……………………………………………… 61

 6.3 Future work……………………………………………….. 61

APPENDIX

 A. MATLAB SOURCE CODE…………………………………….. 62

 B. STEPS TO DOWNLOAD HIGH DEFINITION SEQUENCES. . 70

 C. ENCODER CONFIGURATION FILE USED FOR JM

 SOFTWARE SIMULATIONS………………………………….. 72

 D. KEY TECHNICAL AREA (KTA) SOFTWARE………………. 76

REFERENCES……………………………………………………………… 83

BIOGRAPHICAL INFORMATION……………………………………….. 89

x

LIST OF ILLUSTRATIONS

Figure Page

 1.1 YUV 4:4:4 sampling ... 1

 1.2 Chroma subsampling types ... 2

 2.1 Profile structure of H.264.. 7

 2.2 Block diagram of H.264 encoder .. 10

 2.3 Nine prediction modes for intra-prediction... 12

 2.4 Partitioning of a macroblock and a sub-macroblock for inter prediction 13

 2.5 Motion compensated prediction with multiple reference images 14

 2.6 Matrices H1, H2 and H3 of the three transforms applied in H.264 15

 2.7 Boundaries in a macroblock to be filtered (luma boundaries

 shown with solid lines and chroma boundaries shown with dotted lines 16

 2.8 Schematic block diagram of CABAC ... 17

 2.9 H.264 decoder block diagram ... 19

 3.1 Nine prediction modes for 8x8 spatial luma prediction 25

 3.2 Zig-zag frame scan for 8x8 block ... 28

 3.3 Field scan for 8x8 block .. 28

 3.4 Zig-zag scan for 4x4 block.. 28

 3.5 Alternate scan for 4x4 block ... 29

 3.6 High profiles introduced in FRExt amendment .. 30

 3.7 Schematic of residual color transform .. 35

xi

 4.1 Basic block diagram of JPEG-LS.. 42

 5.1 Schematic of proposed algorithm – lossless coding 43

 5.2 Flowchart for encoding process in proposed algorithm.................................. 44

 5.3 Flowchart for decoding process in proposed algorithm.................................. 45

 5.4 Change in the color spaces during encoding... 46

 5.5 Original frame – waves.yuv .. 47

 5.6 Decoded frame – waves.yuv ... 47

 5.7 Original frame – freeway.yuv ... 47

 5.8 Decoded frame – freeway.yuv .. 47

 5.9 Original frame – waves.yuv .. 49

 5.10 Decoded frame – waves.yuv ... 49

 5.11 Original frame – night.yuv .. 49

 5.12 Decoded frame – night.yuv ... 49

 5.13 Original frame – freeway.yuv ... 49

 5.14 Decoded frame – freeway.yuv .. 49

xii

LIST OF TABLES

Table Page

 2.1 Levels defined in H.264 .. 9

 2.2 Comparison of H.264/MPEG4 part 10 with WMV-9 and AVS 20

 3.1 Comparison of the high profiles of the FRExts……....................................... 31

 3.2 Compressed bit rate multiplier for FRExts profiles .. 31

 5.1 List of YUV test sequences... 47

 5.2 PSNR values in dB for the various input sequences 48

 5.3 Original file size, compressed file size and compression ratio

 for various input test sequences…….. .. 48

 5.4 SNR values in dB for the 9 frames of sequence waves.yuv............................ 50

 5.5 SNR values in dB for the 9 frames of sequence staples.yuv........................... 50

 5.6 SNR values in dB for the 9 frames of sequence night.yuv 50

 5.7 SNR values in dB for the 9 frames of sequence freeway.yuv......................... 51

 5.8 SNR values in dB for the 9 frames of sequence capitol.yuv........................... 51

 5.9 Original file size, compressed file size and compression ratio

 from JM software simulations... 51

 5.10 Compression ratio and PSNR for waves.yuv for independent

 JPEG simulation.. 52

 5.11 Compression ratio and PSNR for freeway.yuv for independent

 JPEG simulation.. 53

 5.12 Compression ratio and PSNR for night.yuv for independent

xiii

 JPEG simulation.. 53

 5.13 Compression ratio and PSNR for capitol.yuv for independent

 JPEG simulation.. 54

 5.14 Compression ratio and PSNR value for staples.yuv for independent

 JPEG simulation.. 54

 5.15 Compression ratio and PSNR values for waves.yuv for JPEG-2000

 simulation.. 55

 5.16 Compression ratio and PSNR values for freeway.yuv for JPEG-2000

 simulation.. 55

 5.17 Compression ratio and PSNR values for capitol.yuv for JPEG-2000

 simulation.. 56

 5.18 Compression ratio and PSNR value for night.yuv for JPEG-2000

 simulation.. 56

 5.19 Compression ratio and PSNR value for staples.yuv for JPEG-2000

 simulation.. 57

 5.20 Compression ratio and PSNR value for waves.yuv for JPEG-LS

 simulation.. 57

 5.21 Compression ratio and PSNR value for freeway.yuv for JPEG-LS

 simulation.. 58

 5.22 Compression ratio and PSNR value for night.yuv for JPEG-LS

 simulation.. 58

 5.23 Compression ratio and PSNR value for capitol.yuv for JPEG-LS

 simulation.. 59

 5.24 Compression ratio and PSNR value for staples.yuv for JPEG-LS

 simulation.. 59

xiv

ACRONYMS AND ABBREVIATIONS

AVC: Advanced video coding

AVS: Audio Video Standard

CAVLC: Context adaptive variable length coding

CABAC: Context adaptive binary arithmetic coding

CDF: Cumulative distribution function

DCT: Discrete cosine transform

DVD: Digital video disc or Digital versatile disc

FRExt: Fidelity Range Extensions

HD: High definition

HVS: Human visual system

IEC: International Electrotechnical Commission

ITU-T: International Telecommunication Union – Telecommunication sector

IRCT: Inverse residual color transform

ISO: International Organisation for Standardization

JM: Joint model

JVT: Joint video team

MB: Macroblock

MBAFF: Macroblock adaptive frame/field coding

MC: Motion compensation

xv

ME: Motion estimation

MPEG: Moving picture experts group

MSE: Mean square error

PSNR: Peak signal to noise ratio

RCT: Residual color transform

RGB: Red Green Blue

SEI: Supplemental enhancement information

SMPTE: Society of motion picture and television engineers

TV: Television

VCEG: Video coding experts group

VLC: Variable length coding

WMV: Windows Media Video

YUV: Luminance and chrominance components

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

 Various color spaces are defined to represent a video signal in the digital

domain. Some of the most widely used color spaces are YUV and the YCbCr. The

YUV color space mainly applies in the analog domain while the YCbCr color space

applies to the digital domain. The YCbCr color space consists of one luminance

component and two color difference or chrominance components. When all three

components are represented at equal resolution, it is termed YUV 4:4:4 sampling [20].

This sampling format is illustrated in Fig. 1.1

Fig. 1.1 YUV 4:4:4 sampling

The human visual system (HVS) is more sensitive to luminance components

than to the chrominance components in a video signal. Hence, the chrominance

components can be represented at a lower resolution than the luminance components,

2

without introducing any significant distortion in the video signal. This is called chroma

subsampling [36]. Three types of chroma subsampling are illustrated in the Fig. 1.2.

Fig. 1.2 Chroma subsampling types

As shown in Fig. 1.2, for YUV 4:2:2, the chrominance samples are present for

every alternate column and for every row, of the luminance sample. Similarly, for YUV

4:2:0, the chrominance samples are present for every alternate row and every alternate

column of the luminance samples. For YUV 4:1:1, the chrominance samples are present

for every row and every fourth column of the luminance sample. The chroma

subsampling helps to achieve a very high compression in the video processing.

Even though chroma subsampling does not introduce any significant perceptual

distortion in the output video signal, for high-quality video applications this is not

acceptable. These applications demand all three color components to be present with

identical spatial resolution. Hence, processing a video signal in the 4:4:4 color space is

inevitable in today’s world.

Generally, the video is captured and displayed in the RGB domain. However,

RGB color space is not an optimum choice for processing the video signal to achieve

compression. This is because of the significant amount of statistical dependencies

3

between the red, green and blue components of the given video signal [8]. In order to

take advantage of these statistical properties, the captured video signal is transformed

from the RGB space to YCbCr space. However, this conversion includes the use of

decimal coefficients. For 8 bits per pixel, the conversion from RGB to YCbCr color

space and the reverse transform are achieved using equations 1.1 and 1.2 [24]

































−−

−−+

















=

















B

G

R

Cr

Cb

Y

214.18786.93000.112

000.112203.74797.37

966.24553.128481.65

128

128

16

 (1.1)

















−

−

−

















−

−−=

















128

128

16

017.20164.1

392.0813.0164.1

0596.1164.1

Cb

Cr

Y

B

G

R

 (1.2)

Since the samples of a video signal are represented using integers, rounding

errors are introduced. Also, in order to achieve high coding efficiency, the complexity

of the transform is also increased. To overcome these limitations, the Fidelity Range

Extensions (FRExts) [4] amendment of H.264 supports a new color space. This is the

YCgCo color space where Y stands for luminance, Cg stands for green chroma and Co

stands for orange chroma. The principle of residual color transform [9] is also

introduced in the FRExts. It exploits the redundancy among the residual data of each

RGB component after intra/inter prediction.

1.2 Thesis outline

 The thesis is organized as follows. Chapter 2 describes the overview of the

H.264 video coding standard. It explains the various coding tools introduced in H.264.

It also explains the encoding and decoding processes in the H.264/AVC standard.

4

 Chapter 3 introduces the fidelity range extensions amendment of the H.264. It

describes the motivation for the introduction of the FRExts and explains the new tools

of the FRExts. This chapter then explains in detail the YCgCo color space and the

principle of residual color transform.

 Chapter 4 explains the significance of the lossless coding. It then describes the

concept of arithmetic coding. The chapter further explains the lossless coding standards

of JPEG-LS and JPEG 2000.

 Chapter 5 explains the encoding and the decoding processes in the proposed

algorithm. It describes the results obtained using the proposed method. It also gives the

results obtained from JM software, independent JPEG, JPEG-2000 and JPEG-LS

simulations.

 Chapter 6 outlines the conclusions of this research. Future work for this research

is suggested.

5

CHAPTER 2

OVERVIEW OF H.264

2.1 Introduction

H.264/MPEG4-Part 10 advanced video coding (AVC) is one of the latest video

coding standards introduced in the world of video compression [1]. The H.264 standard

was developed by the Joint Video Team (JVT), consisting of VCEG (Video Coding

Experts Group) of ITU-T (International Telecommunication Union –

Telecommunication standardization sector), and MPEG (Moving Picture Experts

Group) of ISO/IEC [1].

This new coding standard is noted for enhanced compression efficiency. It can

support the various interactive (video telephony) and non-interactive applications

(broadcast, streaming, storage, video on demand) since it facilitates a network friendly

video representation [2]. The previous coding standards, MPEG-1, MPEG-2, MPEG-4

part 2, H.261, H.262 and H.263 [1] [37] are the basis on which the H.264 is developed.

It uses the following basic principles of video compression:

• Transform for reduction of spatial correlation

• Quantization for control of bitrate

• Motion compensated prediction for reduction of temporal correlation

• Entropy coding for reduction in statistical correlation.

6

H.264 has improved coding efficiency as the functional elements of encoder and

decoder are modified to include additional coding tools. These new features added to

the H.264 standard are listed as follows:

• Adaptive intra-picture prediction

• Small block size transform with integer precision

• Multiple reference pictures and generalized B-frames

• Variable block sizes

• Quarter pel precision for motion compensation

• Content adaptive in-loop deblocking filter and

• Improved entropy coding by introduction of CABAC (context adaptive binary

arithmetic coding) and CAVLC (context adaptive variable length coding)

The increase in the coding efficiency and increase in the compression ratio results to

a greater complexity of the encoder and the decoder algorithms of H.264, as compared

to previous coding standards. In order to develop error resilience for transmission of

information over the network, H.264 supports the following techniques:

• Flexible macroblock ordering

• Switched slice

• Arbitrary slice order

• Redundant slice

• Data partitioning

• Parameter setting

7

2.2 Profiles and levels of H.264

The H.264/AVC standard is composed of a wide range of coding tools. Also,

the standard addresses a large range of bit rates, resolutions, qualities, applications and

services. Not all the tools and all the bitrates are required for any given application at a

given point of time. All the various tools of H.264 are grouped in profiles. Profiles are

defined as a subset of coding tools. They help to maximize the interoperability while

limiting the complexity [5]. Also, the various levels define the various parameters like

size of decoded pictures, bit rate, etc.

The profiles defined for H.264 can be listed as follows:

1. Baseline profile

2. Extended profile

3. Main profile

Fig. 2.1 illustrates the coding tools for the various profiles of H.264.

Fig. 2.1: Profile structure of H.264 [5]

Baseline profile: The list of tools included in the baseline profile are I (intra

coded) and P (predictive coded) slice coding, enhanced error resilience tools of flexible

macroblock ordering, arbitary slices and redundant slices. It also supports CAVLC

(context-based adaptive variable length coding). The baseline profile is intended to be

8

used in low delay applications, applications demanding low processing power, and in

high packet loss environments. This profile has the least coding efficiency among all the

three profiles.

Main profile: The coding tools included in the main profile are I, P, and B

(bidirectionally prediction coded) slices, interlace coding, CAVLC and CABAC

(context-based adaptive binary arithmetic coding). The tools not supported by main

profile are error resilience tools, data partitioning and SI (switched intra coded) and SP

(switched predictive coded) slices. This profile is aimed to achieve highest possible

coding efficiency.

Extended profile: This profile has all the tools included in the baseline profile.

As illustrated in the Fig. 2.1, this profile also includes B, SP and SI slices, data

partitioning, interlace frame and field coding, picture adaptive frame/field coding and

MB adaptive frame/field coding. This profile provides better coding efficiency than

baseline profile. The additional tools result in increased complexity.

In H.264 /AVC, 16 levels are specified. Each level defines upper bounds for the

bit stream or lower bounds for the decoder capabilities. A profile and level can be

combined to define the conformance points. These points signify the point of inter-

operability for applications with similar functional requirements [6]. The levels defined

in H.264 are listed in Table 2.1. The level ‘1b’ was added in the FRExts amendment.

9

Table 2.1 Levels defined in H.264 [7]

2.3 H.264 encoder

Fig. 2.2 illustrates the schematic of the H.264 encoder. The operation of the

H.264 encoder is briefly explained as follows. A given image is split into blocks which

can be varied. The encoder may perform intra-coding or inter-coding for the

macroblocks of a given picture. Intra coded frames are encoded and decoded

independently. They do not need any reference frames. Hence they provide access

points to the coded sequence where decoding can start. It employs nine spatial

prediction modes which reduce spatial redundancy in the source signal of the picture.

These prediction modes are explained in section 2.3.1. Inter-coding uses inter-

prediction of a given block from some previously decoded pictures. It uses motion

vectors for block-based inter-prediction and results in reduction of temporal redundancy

10

among different pictures. The prediction residual signals then undergo transformation to

remove spatial correlation in the block. The transformed coefficients, thus obtained,

undergo quantization.

Fig. 2.2: Block diagram of H.264 encoder [1]

The motion vectors, obtained from inter-prediction or intra-prediction modes are

combined with the quantized transform coefficient information. They are then encoded

using entropy code such as context-based adaptive variable length coding (CAVLC) or

context-based adaptive binary arithmetic coding (CABAC) [1]. There is a local decoder

within the H.264 encoder. This local decoder performs the operations of inverse

quantization and inverse transform to obtain the residual signal in the spatial domain.

11

The prediction signal is added to the residual signal to reconstruct the input frame. This

input frame is fed in the deblocking filter to remove blocking artifacts at the block

boundaries. The output of the deblocking filter is then fed to inter/intra prediction

blocks to generate prediction signals.

The various coding tools used in the H.264 encoder are explained below.

2.3.1. Intra prediction

In intra prediction, the samples of the macroblock are predicted using the

macroblock of the same image. For the luminance component, there are two types of

prediction schemes implemented. These two schemes can be referred as INTRA_4x4

and INTRA_16x16 [6]. In INTRA_4x4, a macroblock of size 16x16 samples is divided

into 16 4x4 subblocks. Intra prediction scheme is applied individually to these 4x4

subblocks. There are nine different prediction modes supported (Fig. 2.3).

In mode 0, the samples of the macroblock are predicted from the neighboring

samples on the top. In mode 1, the samples of the macroblock are predicted from the

neighboring samples from the left. In mode 2, the mean of all the neighboring samples

is used for prediction. Mode 3 is in diagonally down-left direction. Mode 4 is in

diagonal down-right direction. Mode 5 is in vertical-right direction. Mode 6 is in

horizontal-down direction. Mode 7 is in vertical-left direction. Mode 8 is in horizontal-

up direction. The predicted samples are calculated from a weighted average of the

prediction samples A to M.

12

Fig. 2.3 Nine prediction modes for intra-prediction [32]

For prediction of 16x16 intra prediction of luminance components, four modes

are used. The three modes of mode 0 (vertical), mode 1 (horizontal) and mode 2 (DC)

are similar to the prediction modes for 4x4 block. In the fourth mode, the linear plane

function is fitted in the neighboring samples. The chroma macroblock is predicted from

neighboring chroma samples. The four prediction modes used for the chroma blocks are

similar to 16x16 luma prediction modes. The number in which the prediction modes are

ordered is different for chroma macroblock: mode 0 is DC, mode 1 is horizontal, mode

2 is vertical and mode 3 is plane. The block sizes for the chroma prediction depend on

13

the sampling format. For 4:2:0 format, 8x8 size of chroma block is selected. For 4:2:2

format, 8x16 size of chroma block is selected. For 4:4:4 format, 16x16 size of chroma

block is selected [1].

2.3.2 Inter prediction

There exists temporal correlation among the images in a video sequence. This

correlation is reduced by inter prediction through the use of motion estimation and

compensation algorithms [1]. The current image is partitioned into macroblocks or

smaller blocks. A 16x16 macroblock can be partitioned in 16x16, 16x8, 8x16, 8x8 sized

blocks. A 8x8 sub-macroblock can be further partitioned in 8x4, 4x8, 4x4 sized blocks.

Fig. 2.4 illustrates the partitioning of a macroblock and a sub-macroblock [6]. The input

video characteristics govern the block size. The smaller the size of the block, the larger

the number of bits required to encode the motion vectors. The extra data needs to be

sent for the type of partition. However, the motion compensation residual data is

reduced.

Fig. 2.4 Partitioning of macroblock and sub-macroblock for inter prediction [6]

14

The reference pictures used for inter prediction are previously decoded frames

and are stored in the picture buffer. H.264 supports the use of multiple frames as

reference frames. This is implemented by the use of an additional picture reference

parameter which is transmitted along with the motion vector. The parameters td in Fig.

2.5 are the image reference parameters.

Fig. 2.5 Motion compensated prediction with multiple reference images [6]

2.3.3 Transform coding

There is high spatial redundancy among the prediction error signals. H.264

implements a block-based transform to reduce this spatial redundancy [1]. The former

standards of MPEG-1 and MPEG-2 employed a two dimensional discrete cosine

transform (DCT) [23] for the purpose of transform coding of the size 8x8 [6]. H.264

uses integer transforms instead of the DCT. The size of these transforms is 4x4 [6].

The advantages of using a smaller block size in H.264 are stated as follows:

15

• The reduction in the transform size enables the encoder to better adapt the

prediction error coding to the boundaries of the moving objects and to match the

transform block size with the smallest block size of motion compensation.

• The smaller block size of the transform leads to a significant reduction in the

ringing artifacts.

• The 4x4 transform has benefit for removing the need for multiplications.

H.264 employs a hierarchical transform structure, in which the DC coefficients of

neighboring 4x4 transforms for luma signals are grouped into 4x4 blocks and

transformed again by the Hadamard transform. As shown in Fig. 2.6, the first transform

(matrix H1) is applied to all samples of all prediction error blocks of the luminance

component (Y) and for all blocks of chrominance components (Cb and Cr). For blocks

with mostly flat pixel values, there is significant correlation among transform DC

coefficients of neighboring blocks. Hence, the standard specifies the 4x4 Hadamard

transform (matrix H2 in Fig. 2.6) for luma DC coefficients for 16x16 intra-mode only,

and 2x2 Hadamard transform (matrix H3 in Fig. 2.6) for chroma DC coefficients.

Fig. 2.6 Matrices H1, H2 and H3 of the three transforms applied in H.264 [6]

16

2.3.4 Deblocking filter

H.264 employs a block-based transform in intra-prediction and inter-prediction

coding. The transform coefficients then undergo quantization. These two steps result in

blocking artifacts. These artifacts are reduced by the in-loop deblocking filter of H.264.

It reduces the artifacts at the block boundaries and prevents the propagation of the

accumulated noise. However, the implementation of this filter results to an increase in

the implementation complexity. Fig. 2.7 illustrates a macroblock with sixteen 4x4 sub-

blocks along with their boundaries.

Fig. 2.7: Boundaries in a macroblock to be filtered (luma boundaries shown

with solid lines and chroma boundaries shown with dotted lines) [1]

As shown in the Fig. 2.7 the luma deblocking filter process is performed on the

16 sample edges – shown by solid lines. The chroma deblocking filter process is

performed on 8 sample edges – shown in dotted lines.

H.264 employs deblocking process adaptively at the following three levels:

• At slice level – global filtering strength is adjusted to the individual

characteristics of the video sequence

17

• At block-edge level – deblocking filter decision is based on inter or intra

prediction of the block, motion differences and presence of coded residuals in

the two participating blocks.

• At sample level – it is important to distinguish between the blocking artifact and

the true edges of the image. True edges should not be deblocked. Hence

decision for deblocking at an sample level becomes important.

2.3.5 Entropy coding

H.264 uses variable length coding to match a symbol to a code based on the

context characteristics. All the syntax elements except for the residual data are encoded

by the Exp-Golomb codes [1]. The residual data is encoded using CAVLC. The main

and the high profiles of H.264 use CABAC.

• Context-based adaptive variable length coding (CAVLC):

After undergoing transform and quantization the probability that the level of

coefficients is zero or +1 is very high [1]. CAVLC handles these values differently. It

codes the number of zeroes and +1. For other values, their values are coded.

• Context-based adaptive binary arithmetic coding (CABAC):

This technique utilizes the arithmetic encoding [32] to achieve good

compression. The schematic for CABAC is shown in Fig.. 2.8.

Fig. 2.8 Schematic block diagram of CABAC [1]

18

CABAC consists of three steps:

Step 1: Binarization: A non-binary value is uniquely mapped to a binary sequence

Step 2: Context modeling: A context model is a probability model for one or more

elements of binarized symbol. The probability model is selected such that

corresponding choice may depend on previously encoded syntax elements.

Step 3: Binary arithmetic coding: An arithmetic encoder encodes each element

according to the selected probability model.

2.3.6 B-slices and adaptive weighted prediction

Temporal correlation can be efficiently reduced by bidirectional prediction. It

uses multiple reference pictures. The standards, before H.264, with B pictures use the

bidirectional mode, with limitation that it allows the combination of a previous and

subsequent prediction signals. In the previous standards, one prediction signal is derived

from subsequent inter-picture, another from a previous picture, the other from a linear

averaged signal of two motion compensated prediction signals. H.264 supports

forward/backward prediction pair and also supports forward/forward and

backward/backward prediction pair [1]. Considering two forward references for

prediction is beneficial for motion compensated prediction of a region just before scene

change. Considering two backward reference frames is beneficial for frames just after

scene change. H.264 also allows bi-directionally predictive-coded slice may also be

used as references for inter-coding of other pictures. Except H.264, all the existing

standards consider equal weights for reference pictures. Equal weights of reference

signals are averaged and the prediction signal is obtained. H.264 uses weighted

19

prediction [1]. It can be used for a macroblock of P slice or B slice. Different weights

are assigned can be assigned to two different reference signals and the prediction signal

is calculated as follows:

2*21*1 rwrwp += (2.1)

where p is the prediction signal, r1 and r2 are the reference signals and w1 and w2 are

the prediction weights.

2.4 H.264 decoder

Fig. 2.9: H.264 decoder block diagram [5]

The H.264 decoder works similar in operation to the local decoder of H.264

encoder. An encoded bit stream is the input to the decoder. Entropy decoding (CABAC

or CAVLC) takes place on the bit stream to obtain the transform coefficients. These

coefficients are then inverse scanned and inverse quantized. This gives residual block

data in the transform domain. Inverse transform is performed to obtain the data in the

20

pixel domain. The resulting output is 4x4 blocks of residual signal. Depending on inter-

predicted or intra-predicted, an appropriate prediction signal is added to the residual

signal. For an inter-coded block, a prediction block is constructed depending on the

motion vectors, reference frames and previously decoded pictures. This prediction block

is added to the residual block to reconstruct the video frames. These reconstructed

frames then undergo deblocking before they are stored for future use for prediction or

being displayed.

2.5 Comparison of H.264 with WMV9 and AVS China [1]

Table 2.2 Comparison of H.264/MPEG4 part 10 with WMV-9 and AVS [1]

The standards of WMV-9 [25] and AVS China [26] have developed encoder and

decoder algorithms similar to H.264. WMV-9 is adopted by SMPTE as VC1 [32].

WMV-9 implements adaptive block size transform. It allows 8x8 blocks to be encoded

using either one 8x8 transform, two horizontally stacked 8x4 transforms, two vertically

21

stacked 4x8 transforms or four 4x4 transforms. It also uses integer transforms, but the

transform matrices vary from the ones used in H.264. The 8x8 matrix for inverse

transform is shown as follows [1]:

































−−−−

−−−−

−−−

−−−−

−−−−

−−−−

−−−−

491516161594

616166616166

916415154169

1212121212121212

154169916415

166616166616

161594491516

1212121212121212

Also, a 4x4 inverse transform is shown as follows [1]:



















−−

−−

−−

10222210

17171717

22101022

17171717

It uses simple variable length codes for entropy coding, but allows the use of multiple

code tables.

The main application of AVS is for broadcast TV, HD-DVD and broadband

video networking and mobile networks. The transform size used in AVS is only 8x8. it

uses one of the 5 modes for intra prediction. The five prediction modes supported by

AVS are mode 0 – vertical, mode 1 – horizontal, mode 2 – DC, mode 3 – diagonal

down left and mode 4 – diagonal down right. The DC is obtained after lowpass filtering.

AVS implements separable, inter-precise, 8x8 DCT and asymmetric transform in which

both post-scaling and pre-scaling are involved in the encoder side. A linear scalar

22

quantizer is used for quantization. All the syntax elements, including the transform

coefficients are encoded using Exp-Golomb codes [21]. The matrix for 8x8 inverse

transform is shown as follows [1]:

































−−−−

−−−

−−−−−

−−−−

−−−−

−−−

−−−−−

2468910108

6101082498

9102810468

1049861028

1049861028

9102810468

6101082498

2468910108

The three coding standards of H.264, WMV-9 and AVS have similar

functionalities with some changes in the adaptive/non-adaptive transform sizes, entropy

coding, directional prediction, deblocking filter, etc.

2.6 Summary

 This chapter gives an overview of the H.264/MPEG4-Part 10 AVC standard.

This is the latest coding standard in the field of multimedia processing and has a wide

range of applications, in various areas. The basic algorithm for encoding and decoding

video signals in the H.264 format is based on the previous standards such as MPEG-1,

MPEG-2, H.261, etc. H.264 standard brings with it numerous new and advanced coding

tools like in-loop deblocking filter, integer transform, multiple reference frames, etc.

This chapter explains the various coding tools, which are a part of H.264 standard. The

chapter also briefly compares H.264 with other coding standards of WMV-9 and AVS.

23

 The next chapter introduces the fidelity range extensions amendment to H.264.

This amendment was aimed at gaining better coding efficiency for high quality video

applications. Various new coding tools were introduced as a part of FRExts. The

chapter explains the YCgCo color space in detail and the concept of residual color

transform.

24

CHAPTER 3

FIDELITY RANGE EXTENSIONS AND RESIDUAL COLOR TRANSFORM

3.1 Introduction

The first amendment of H.264/MPEG-4 AVC video coding standard was

completed in July 2004 and the corresponding final draft amendment text was released

in September 2004 [4]. A new set of coding tools were introduced as a part of this

amendment. These are termed as “Fidelity Range Extensions” (FRExts). They are

aimed at achieving significant improvements in the coding efficiency for higher fidelity

video material. The application areas for the FRExt tools are professional film

production, video post production and high-definition TV/DVD.

3.2 Coding tools

Various tools are introduced in the so called Fidelity Range Extensions but the

main difference between FRExt and non-FRExt H.264 codec is the use of 8x8 transform

in addition to 4x4 transforms. The various tools are explained below:

3.2.1 8x8 Intra spatial prediction

H.264 implements block based intra prediction where spatially neighboring

samples of a block are used for the prediction of the current block. The two types of

prediction introduced in H.264 for luma samples are INTRA_16x16 – prediction for the

entire macroblock and INTRA_4x4 – prediction for sixteen 4x4 blocks within a

macroblock. Based on 4x4 prediction, an intermediate prediction block size of 8x8 was

25

introduced for spatial luma prediction in the FRExts. Fig. 3.1 (a to i) illustrate the 8x8

block of the luma samples and its neighboring samples, along with the 9 modes of

prediction.

Mode 0: Vertical

Mode 1: Horizontal

Mode 2: DC

Mode3: Diagonal down-left

Mode 4: Diagonal down-right

Mode 5: Vertical-right

Mode 6: Horizontal-down

Mode 7: Vertical-left

Mode8: Horizontal up

Fig. 3.1 Nine prediction modes used for 8x8 spatial luma prediction

26

The encoder selects the size of the prediction block – 4x4 or 8x8 or 16x16, depending

on the application.

3.2.2 8x8 Transform

The first version of H.264/MPEG4 AVC uses two different 4x4 transforms for

the coding of the luma prediction error signal [4]. The use of small block-size

transforms in H.264 significantly reduces ringing artifacts, in addition to reducing the

computational complexity. High-fidelity video demands preservation of fine details and

textures. This requires large basis functions. As a tradeoff between the reduction of

ringing artifacts and preservation of fine details, an intermediate transform of 8x8 size is

introduced in FRExts. FRExts allow the encoder to choose adaptively between the 4x4

and 8x8 transform for luma samples on a macroblock level. The two-dimensional 8x8

transform in the FRExts is specified in a separable way as a one-dimensional horizontal

transform followed by a one-dimensional vertical transform. The corresponding one-

dimensional transform is given by the (non-normalized) transformation matrix 8x8,

stated as follows [4]:

27

As mentioned, the encoder adaptively chooses between 4x4 and 8x8 transforms.

The transform size selection process is limited by the following condition:

• If an inter-coded macroblock has a sub-partition smaller than 8x8 (i.e. 4x8, 8x4

or 4x4), then 4x4 transform has to be used.

• If an intra-coded macroblock is predicted using 8x8 luma spatial prediction, only

then 8x8 transform is used.

FRExts suggest default perceptual weighting matrices for 4x4 and 8x8 integer DCT

coefficients. Scaling matrix reflecting visual perception is simply a multiplier applied

during the inverse quantization. Perceptual scaling matrices can be designed and

customized at the encoder. Hence, as they are not default HVS matrices, these matrices

need to be transmitted to the decoder at the sequence or picture level. The default

scaling matrix for 8x8 integer DCT is shown below [1].

































4240383633312927

4038363331292725

3836333129272523

3633312927252318

3331292725231816

3129272523181613

2927252318161110

272523181613106

In FRExts two scans similar to 4x4 transform switched for frame/field coding

are shown. Coefficient scanning is based on the decreasing variances and to maximize

number of zero-valued coefficients along the scan.

28

Fig. 3.2 Zig-zag frame scan for 8x8 block [1]

Fig. 3.3 Field scan for 8x8 block [1]

Scanning order of quantized 4x4 integer DCT coefficients is shown in Fig. 3.4 and Fig.

3.5.

Fig. 3.4 Zig-zag scan for 4x4 block [1]

29

Fig. 3.5 Alternate scan for 4x4 block [1]

3.2.3 More coding tools

The FRExt amendment supports extended sample bit depth as well as 4:2:2 and

4:4:4 chroma formats (Fig. 1.1 and Fig. 1.2). For this, the following coding tools are

introduced:

• Encoder-specified perceptual-based quantization scaling matrices.

The encoder can specify a matrix for scaling factor according to the specific

frequency associated with the transform coefficient for use in inverse quantization

scaling by the decoder. This allows optimization of the subjective quality according

to the sensitivity of the human visual system, less sensitive to the coded error in

high frequency transform coefficients [1].

• A residual color transform consisting of a reversible integer-based color

conversion from (4:4:4) RGB to YCgCo color space applied to residual data

only.

• An efficient lossless representation of the video with a simple bypass of

transform and quantization.

30

• New supplemental enhancement information (SEI) messages for enabling

enhancements of decoded video

3.3 High profiles

 The FRExt amendment has introduced four new profiles to H.264 suite of

profiles. These are called as High profiles. These profiles are illustrated in the Fig. 3.6

Fig. 3.6: High profiles introduced in FRExt amendment [4]

These four high profiles are briefly explained below:

• High profile – supports 8-bit video with 4:2:0 sampling. This profile is aimed at

high-end consumer use and applications using high resolution but not needing

the extended chroma formats or extended sample accuracy.

• High 10 profile – supports 4:2:0 with up to 10 bits of representation accuracy

per sample

• High 4:2:2 profile – supports up to 4:2:2 chroma sampling along with up to 10

bits representation per sample.

31

• High 4:4:4 profile - supports up to 4:4:4 chroma sampling and up to 12 bits per

sample. It supports the efficient lossless region coding and integer residual color

transform. The integer residual color transform is used for RCT coding while

avoiding color-space transformation error.

Table 3.1 Comparison of the high profiles of the FRExts [7]

Coding Tools High High 10
High

4:2:2

High

4:4:4

Main Profile Tools X X X X

4:2:0 Chroma Format X X X X

8 Bit Sample Bit Depth X X X X

8x8 vs. 4x4 Transform

Adaptivity
X X X X

Quantization Scaling Matrices X X X X

Separate Cb and Cr QP control X X X X

Monochrome video format X X X X

9 and 10 Bit Sample Bit Depth X X X

4:2:2 Chroma Format X X

11 and 12 Bit Sample Bit Depth X

4:4:4 Chroma Format X

Residual Color Transform X

Predictive Lossless Coding X

The main application of the FRExts profiles is for more demanding high-fidelity

applications. Hence the bit rate capabilities are increased for the FRExt profiles. Table

3.2 specifies the bit rate multiplier for the high profiles (the fourth column of table 2.1).

Table 3.2 Compressed bit rate multiplier for FRExts profiles [7]

FRExt Profile Bit rate multiplier

High 1.25

High 10 3

High 4:2:2 4

High 4:4:4 4

32

3.4 YCgCo color space

Typically, a video is captured and displayed using the RGB (Red, Green and

Blue) color space. The disadvantages of encoding the video in RGB domain are:

• Color components in the RGB domain are highly correlated.

• The response of the human visual system (HVS) is better matched to the

luminance and chrominance components, rather than RGB. The HVS is very

sensitive to the luminance information in the image. It is less sensitive to the

chrominance components.

The YUV color space represents this luminance and chrominance information in a

given RGB image. Hence the color conversion from the RGB domain to the YUV

domain for encoding is performed. This conversion can be performed as follows [20]:

Y = 0.299R + 0.587G + 0.114B

U = − 0.147R − 0.289G + 0.436B (3.1)

V = 0.615R − 0.515G − 0.100B

This can be expressed in the matrix form as follows:

















V

U

Y

 =

















−−

−−

1.0515.0615.0

436.0289.0147.0

114.0587.0299.0

















B

G

R

 (3.2)

In the YUV domain, the chrominance samples can be subsampled. This leads to

compression. Then the inverse transform is performed from the YUV to RGB for

display. YCbCr is a family of color spaces. Y stands for Luminance, Cb represents the

33

blue chroma and Cr represents the red chroma. The conversion from RGB to YCbCr

can be performed as follows [7]:

Y = KR * R + (1 – KR – KB) * G + KB * B (3.3)

Cb = ½ 








−
−

BK

YB

1
 (3.4)

Cr = ½ 








−
−

RK

YR

1
 (3.5)

with, e.g., KR = 0.2126, KB = 0.0722.

There are two problems with this approach:

• The samples are actually represented using integers. The rounding error is

introduced in both the forward and inverse color transformations.

• The above transformation was not originally designed for digital video

compression. It uses a sub-optimal trade-off between the complexity of the

transformation (with difficult-to-implement coefficient values such as 0.2126

and 0.0722) and coding efficiency.

Considering the second problem, a new color space called YCgCo (where the "Cg"

stands for green chroma and the "Co" stands for orange chroma) has been introduced.

This is much simpler and typically has equal or better coding efficiency. The conversion

from the RGB to the YCgCo color space can be performed as follows [7]:

Y = ½ 














 +
+

2

BR
G (3.6)

Cg = ½ 














 +
−

2

BR
G (3.7)

34

Co =
()

2

BR −
 (3.8)

This conversion reduces the complexity of conversion from the RGB domain to

YCbCr and also increases the coding efficiency. The characteristics of the YCgCo color

space can be explained as follows [8]:

• This color transform has been shown to be capable of achieving a decorrelation

that is much better than that obtained by various RGB-to-YCbCr transforms and

which, in fact, is very close to that of the Karhunen-Loeve transform [23].

• The transform is reversible in the sense that each original RGB triple can be

exactly recovered from the corresponding YCgCo triple if the color difference

components Co and Cg are represented with one additional bit accuracy relative

to the bit depth used for representing RGB, and if furthermore, no information

loss in any subsequent coding step is assumed.

• Both the forward and inverse RGB-to-YCgCo transforms require only a few

shift and add operations per triple which, in addition, can be performed without

the need of some extra memory apart from one single auxiliary register:

To obtain YCgCo components from RGB components, equations (3.9) are used.

()

)1(

1

>>+=

−=

>>+=

−=

CgtY

tGCg

CoBt

BRCo

 (3.9)

To reconstruct the RGB components from the YCgCo components, equations (3.10) are

used.

35

()

()
CoBR

CotB

tCgG

CgYt

+=

>>−=

+=

>>−=

1

1

 (3.10)

The “>>”-operator denotes the bitwise right shift operator.

3.5 Principle of residual color transform

FRExts introduced residual color transform for 4:4:4 video. The input, output

and the stored reference frames are retained in the RGB domain. The residual data is

obtained after intra or inter prediction. This data is processed by the forward and inverse

color transformations inside the encoder and decoder. This technique is called the

residual color transform [7]. It eliminates the color space conversion error without

significantly increasing the overall complexity of the system. The limitation of the RCT

is that it can be applied only to 4:4:4 video. Its operation depends on the presence of

luma and chroma components at all sample locations [7].

The residual color transform exploits the redundancy among the residual data of

each RGB component after intra or inter prediction [9]. Even after performing

inter/inter prediction, there is some correlation among the color components. To

decorrelate this redundancy, the RGB components are transformed to YCgCo color

space. The schematic of residual color transform can be shown in Fig. 3.7

Fig. 3.7 Schematic of residual color transform [9]

RGB Intra/inter

prediction

Residual color

transform

Transform/

Quantization

Entropy

coding

36

3.6 Summary

This chapter gives the introduction to the fidelity range extension amendment of

H.264. It also provides insight to the YCgCo color space and the residual color

transform.

 The following chapter explains the significance of lossless coding. It briefly

explains the principle of arithmetic coding, followed by lossless coding implemented in

the standards of JPEG-LS [30] and JPEG 2000 – lossless mode [29].

37

CHAPTER 4

LOSSLESS CODING

4.1 Introduction

Lossless image compression is aimed at representing an image signal with

smallest possible number of bits without loss of any information. The lossy

compression algorithms aim at achieving best possible fidelity within the available

constraints of storage capacity or to represent an image in minimum possible number of

bits to allow some possible loss of information. Lossless compression takes advantage

of the redundancy present in the image signals, which is proportional to the amount of

correlation among the image data samples [32]. Lossless coding demands that the

decoded image should be identical both quantitatively and qualitatively to the original

image. This requirement guarantees highest quality reconstructed output, but the

compression achieved is less as compared to lossy coding. There are number of

applications that demand high quality video. These applications led to the development

of various lossless coding algorithms and lossless coding standards.

The following sections in this chapter explain the arithmetic coding algorithm.

Due to it numerous advantages, this algorithm is selected in the proposed

implementation. This chapter also briefly explains the lossless coding standards of

JPEG 2000 [29] and JPEG-LS [30].

38

4.2 Arithmetic coding

Arithmetic coding is a very popular method of generating variable length codes

[21]. This technique assigns codewords to particular sequences without having to

generate codes for all sequences of that length. In order to understand this algorithm, the

encoding process can be explained in following two parts. In first part, a unique

identifier is generated for the sequence to be encoded. In the second part, a binary code

is given to the tag. Hence, without generating codewords for all sequences, a sequence

of length m can be encoded uniquely using arithmetic coding algorithm [21].

Arithmetic coding is generally suitable for encoding sequences with highly skewed

probabilities. Use of Huffman coding [21] for encoding such sequences results in huge

redundancy. The average code length exceeds entropy by a significant amount.

Arithmetic coding overcomes this limitation of Huffman coding.

The implementation of arithmetic coding can be explained as follows. As

explained, a unique identifier needs to be generated for a given sequence of symbols.

The number of numbers in the unit interval, [0,1) is infinite. Hence it is possible to

generate a distinct tag for a given sequence. The cumulative distribution function (cdf)

[21] of a random variable will map the random variables in unit interval. If X is a

random variable which has i number of symbols { a1, a2, a3, … , ai }, then probability

density function of the random variable X is given as,

() ()iaPiXP == (4.1)

The cumulative distribution function of the random variable X is given as,

39

() ()∑
=

==
i

k

X kXPiF
1

 (4.2)

The minimum value of cdf is 0 and the maximum value of cdf is 1. The unit

interval is divided into subintervals of the form () () miiFiF XX ,...,1),,1[=− . The interval

() ()),1[iFiF XX − is associated with symbol ai. The first symbol in the sequence restricts

the interval containing the tags to one of these subintervals [21]. Let the first symbol in

the sequence be ak. Hence, the interval containing the tag value is the subinterval

() ()),1[kFkF XX − . This subinterval is then partitioned in the same proportions as the

original interval. Each succeeding symbol causes the tag to be restricted to a subinterval

and this subinterval is then partitioned in the same proportions. The lower and the upper

limits of the subinterval obtained after the last symbol are determined. The average of

these limits is calculated and this average value is the tag of the given sequence. This

tag is then converted to binary and transmitted over the network. There is variation of

arithmetic coding where tags can be generated with scaling [21].

4.3 Lossless coding standards

 4.3.1 Lossless JPEG standard

ITU and ISO/IEC jointly developed the JPEG standard for lossy and lossless

compression of continuous tone, color or gray-scale, still images [32]. The following

section briefly describes the lossless mode of the JPEG standard; it is also referred as

lossless JPEG. The general coding structure of lossless JPEG can be explained in the

following steps [32]:

40

• Prediction residuals are obtained by linear prediction/differential coding

(DPCM). The entropy of these residuals is less than that of the original image.

This leads to obtaining compression of the input image.

• The prediction is mapped to a symbol pair (category, magnitude). The symbol

category signifies the number of bits required to encode the symbol magnitude.

• Huffman coding [21] is used to encode the category among pair of symbols

(category, magnitude). The symbol magnitude is encoded using binary

codeword whose length is given by symbol category. Arithmetic coding can be

used instead of Huffman coding.

4.3.2 JPEG2000 standard

JPEG2000 is the latest standard for coding still images [32]. It was developed by

Joint Photographic Experts Group (JPEG). It supports a number of new features over

the JPEG standard. Some of the features are listed as follows [32]:

• Highly scalable code-streams with different progression orders (quality,

resolution, spatial location and component)

• Lossy and lossless representations embedded with the same code-stream

• Region-of-interest (ROI) coding

• Support for continuous-tone, bi-level and compound image coding

JPEG2000 is divided into 12 different parts to address different application areas

[32]. JPEG2000 Part 1 is the baseline standard. It describes the minimal code stream

syntax to be followed for the compliance with the standard. All the other parts include

the features supported by the baseline coding structure.

41

JPEG2000 implements wavelet-based bitplane coding [32]. If needed, the original

image is divided into tiles, which are then coded independently. In order to decorrelate

color images, two optional color transforms are defined in the standard. These

transforms are irreversible color transform (ICT) and reversible color transform. These

transform help increase compression efficiency. For lossless compression, reversible

color transform is implemented. This transform can be implemented using finite

precision arithmetic and is perfectly invertible [32]. The color image components are

first divided into tiles and are coded separately. For each tile, if the image samples are

unsigned pixel values, then the samples are first shifted in level so that they form a

symmetric distribution of the discrete wavelet transform coefficients for low-low sub-

band [32]. Two types of wavelet transforms are supported:

1. irreversible floating point 9/7 DWT [32]

2. reversible integer 5/3 DWT [34]

For lossless compression, the 5/3 DWT is used [32]. The transformed coefficients

are quantized using a deadzone scalar quantizer for lossy coding scheme [35]. For

lossless compression, quantization stage is bypassed. The coefficients in each subband

are divided into coding blocks, usually of the size 64x64 or 32x32 [32]. Each of these

blocks is independently bitplane coded from the most significant bit (MSB) to the least

significant bit (LSB). The embedded block coding with optimal truncation (EBCOT)

algorithm is used [32].

42

4.3.3 JPEG-LS standard

 JPEG-LS standard is based on the LOw COmplexity LOssless COmpression for

Images (LOCO-I) algorithm [30]. This standard is used to obtain lossless and near-

lossless compression for continuous tone images. The block diagram of the JPEG-LS is

shown in Fig. 4.1.

Fig. 4.1 Basic block diagram of JPEG-LS [30]

4.4 Summary

This chapter briefly describes the algorithm of arithmetic coding. It also explains

the standards of lossless JPEG, JPEG2000 and JPEG-LS.

The next chapter explains the implementation of proposed algorithm and gives

the results obtained from the proposed method and the JM software simulations.

43

CHAPTER 5

IMPLEMENTATION AND RESULTS

5.1 Proposed algorithm and results

Fig. 5.1 Schematic of proposed algorithm – lossless coding

As the proposed algorithm is for lossless coding, the stage of transform and

quantization is bypassed. The encoding and the decoding process in the proposed

algorithm are illustrated in Fig. 5.2 and Fig. 5.3. Fig. 5.4 illustrates the transformation

of the input sequence through the various color spaces.

 The input to the algorithm is a video sequence in the 4:4:4 format. The previous

frame in the sequence is considered as a reference frame for inter-prediction. The first

frame in the sequence does not undergo any prediction. It is converted from RGB

domain to YCgCo domain. The YCgCo coefficients are then encoded using arithmetic

coding. Thus, the bitstream is obtained for the first frame. In the sequence, from the

second frame onwards, the previous frame is the reference frame and the current frame

is the frame to be predicted. Inter prediction is performed by subtracting the current

frame from the previous frame (no motion compensation). The residual frame is

obtained. This residual frame is in the 4:4:4 RGB domain. The residual frame is then

transformed from RGB to YCgCo domain. These coefficients are then encoded using

arithmetic coding.

RGB Inter

prediction

Residual

transform

Transform /

quantization

Entropy

coding

44

Fig. 5.2 Flowchart for encoding process in proposed algorithm

45

Fig. 5.3 Flowchart for the decoding process in proposed algorithm

46

Fig. 5.4: Change in the color spaces during encoding (Refer to appendix B for details)

The size of all bit streams is aggregated and the size of the compressed file is

obtained. This can be represented as using the following equation:

reconstructed_size = bitcount_Y + bitcount_Cg + bitcount_Co (5.1)

The size of the original sequence is obtained by using the following formula:

original_size = row*column*3*8*number_of_frame (bits) (5.2)

Hence, the compression ratio is calculated using the following formula:

sizetedreconstruc

sizeoriginal
rationcompressio

_

_
_ = (5.3)

The output sequence is then reconstructed from the YCgCo residuals and the reference

frame.

The quality of the reconstructed image is the measured by computing the mean square

error and the peak-signal-to-noise rate as follows:

[]

3**

),,(_),,(_
3

1 1 1

2

columnsrows

pmnimagetedreconstrucpmnimageoriginal

MSE
p

columns

m

rows

n

∑ ∑ ∑
= = =

−

= (5.4)









=

MSE
dBPSNR

255
log*20)(10 (5.5)

YCbCr

(4:4:4)

RGB

(4:4:4)

YCgCo

(4:4:4)

YUV

(4:4:4)

Matlab fread Conversion matrix Conversion matrix

DPX2YUV

converter

DPX

format

47

Table 5.1 List of YUV test sequences

YUV Sequence Resolution Format

Number of

frames

Waves.yuv 1920x1080 YUV 4:4:4 9

Night.yuv 1920x1080 YUV 4:4:4 9

Capitol.yuv 1920x1080 YUV 4:4:4 9

Freeway.yuv 1920x1080 YUV 4:4:4 9

Staples.yuv 1920x1080 YUV 4:4:4 9

Fig. 5.5 illustrates the original frame for the waves.yuv sequence. Fig. 5.6

illustrates the reconstructed frame for the waves.yuv sequence. Similarly, Fig. 5.7 and

5.8 illustrate the original frame and reconstructed frame for the sequence, freeway.yuv.

Fig. 5.5 Original frame – waves.yuv

Fig. 5.6 Decoded frame - waves.yuv

Fig. 5.7 Original frame – freeway.yuv

Fig. 5.8 Decoded frame – freeway.yuv

48

Table 5.2: PSNR (dB) and MSE values for the various input sequences

Frame no. waves.yuv freeway.yuv night.yuv capitol.yuv staples.yuv

1 328.9788 327.4766 342.9191 343.6534 342.5166

2 328.9602 327.4241 341.1691 341.7986 341.341

3 328.9398 327.3795 339.6881 340.2823 340.4543

4 328.9058 327.3333 338.5713 339.2134 339.7178

5 328.9058 327.2881 337.6628 338.278 339.2549

6 328.8922 327.2386 336.9104 337.5767 338.8337

MSE (in

range of)
8.23E-29 1.16E-28 3.32E-30 2.80E-30 3.64E-30

Table 5.3: Original file size, compressed file size and compression ratio for various

input test sequences

YUV Sequence

Original file

size

Compressed bit

stream file size

Compression

ratio

Waves.yuv 298598400 138865894 2.1503

Night.yuv 298598400 85208503 3.5043

Capitol.yuv 298598400 86759986 3.4417

Freeway.yuv 298598400 130235548 2.2928

Staples.yuv 298598400 124387423 2.4006

5.2 Results from JM software simulation

The input sequences were encoded in H.264 using the latest version of the JM

reference software 14.0 [14]. The encoder configurations selected for encoding the

YUV 4:4:4 high definition sequences is explained as follows. The source width and

height are set to 1920 and 1080, respectively. Nine frames of the video sequence are

encoded. The profile selected for encoding YUV 4:4:4 frames in the JM reference

software is High 4:4:4 profile defined in the FRExts. The level is set to 40. The level 40

corresponds to level 4 (see table 2.1 for details). This level supports high definition

format at a frame rate of 60p/30i. The maximum compressed bit rate in non-FRExts

49

profiles, supported is 20Mbps. Maximum number of reference frames for typical picture

size is 4. The entropy coding used is CABAC. Number of B frames to be encoded is set

to zero. Lossless coding is achieved by setting the QPPrimeYZeroTransformBypassFlag

to 1.

Figs. 5.9 through 5.14 illustrates the input original frames and the decoded

output frames from the JM reference software for the sequences, waves.yuv, night.yuv

and freeway.yuv.

Fig. 5.9 Original frame – waves.yuv

Fig. 5.10 Decoded frame – waves.yuv

Fig. 5.11 Original frame – night.yuv

Fig. 5.12 Decoded frame – night.yuv

Fig. 5.13 Original frame – freeway.yuv

Fig. 5.14 Decoded frame – freeway.yuv

50

Tables 5.4 through 5.8 list the SNR values, in dB, for every frame, obtained

from the JM software simulations for the various input sequences.

Table 5.4 SNR values in dB for the 9 frames of sequence waves.yuv

Frame Type SNRY (dB) SNRU (dB) SNRV (dB)

1 IDR 70.065 69.277 69.214

2 P 69.589 68.942 68.853

3 P 69.992 69.231 69.197

4 P 69.914 69.217 69.145

5 P 69.913 69.174 69.119

6 P 69.930 69.155 69.162

7 P 69.919 69.236 69.125

8 P 69.905 69.172 69.086

9 P 69.957 69.182 69.141

Table 5.5 SNR values in dB for the 9 frames of sequence staples.yuv

Frame Type SNRY (dB) SNRU (dB) SNRV (dB)

1 IDR 72.377 72.879 72.340

2 P 71.787 72.261 71.730

3 P 71.699 72.304 71.847

4 P 71.776 72.315 71.995

5 P 71.729 72.287 71.880

6 P 71.868 72.397 71.943

7 P 71.757 72.248 71.814

8 P 71.809 72.390 71.932

9 P 71.774 72.289 71.820

Table 5.6 SNR values in dB for the 9 frames of sequence night.yuv

Frame Type SNRY (dB) SNRU (dB) SNRV (dB)

1 IDR 72.280 71.437 71.610

2 P 71.743 70.846 70.708

3 P 71.875 71.076 71.134

4 P 71.890 71.174 71.288

5 P 72.148 71.342 71.436

6 P 72.012 71.324 71.387

7 P 71.997 71.341 71.422

8 P 72.084 71.382 71.569

9 P 71.918 71.315 71.422

51

Table 5.7 SNR values in dB for the 9 frames of the sequence freeway.yuv

Frame Type SNRY (dB) SNRU (dB) SNRV (dB)

1 IDR 70.942 70.323 71.070

2 P 66.868 66.845 67.081

3 P 67.083 67.077 67.376

4 P 67.132 67.037 67.375

5 P 67.195 67.083 67.324

6 P 67.087 67.081 67.354

7 P 67.131 67.086 67.358

8 P 67.172 61.106 67.393

9 P 67.167 67.064 67.304

Table 5.8 SNR values in dB for the 9 frames of the sequence capitol.yuv

Frame Type SNRY (dB) SNRU (dB) SNRV (dB)

1 IDR 72.587 71.641 71.773

2 P 71.809 70.814 70.584

3 P 72.023 71.258 71.349

4 P 72.322 71.479 71.514

5 P 72.219 71.475 71.504

6 P 72.299 71.498 71.557

7 P 72.162 71.508 71.644

8 P 72.150 71.514 71.652

9 P 72.393 71.759 71.929

Table 5.9 Original file size, compressed file size and compression ratio from JM

software simulations

YUV Sequence

Original file

size (bytes)

Compressed

file size (bytes)

Compression

ratio

Waves.yuv 55,987,200 18,606,996 3.009

Night.yuv 55,987,200 11,109,828 5.039

Capitol.yuv 55,987,200 11,558,912 4.844

Freeway.yuv 55,987,200 19,997,793 2.799

Staples.yuv 55,987,200 19,776,431 2.831

52

5.3 Results from JPEG software simulations

5.3.1: Independent JPEG:

 The test sequences were encoded using the independent JPEG group’s JPEG

software [28]. This software does not give lossless compression. This accounts for the

reasonable PSNR values. Fairly high compression ratios have been obtained for nearly

lossless compression.

 As JPEG compression standard is for coding of still images, the yuv video

sequence is processed on a frame-by-frame basis. A Matlab code (see appendix A) have

been written to obtain portable pixel map (.ppm) images from the YUV video sequence.

Tables 5.10 through 5.14 list out the compression ratios obtained and the PSNR values

from the JPEG software simulations for the five test sequences. The file size is

measured in bytes.

Table 5.10: Compression ratio and PSNR for waves.yuv for independent JPEG

simulation

Frame

no.

Original file

size

Compressed

file size

Reconstructed

file size

Compression

ratio

PSNR

value (dB)

1 6220817 1217332 6220817 5.110205761 46.2812

2 6220817 1222474 6220817 5.088711089 46.2323

3 6220817 1224968 6220817 5.078350618 46.2334

4 6220817 1228699 6220817 5.062929977 46.2064

5 6220817 1221448 6220817 5.092985538 46.316

6 6220817 1216739 6220817 5.112696314 46.3789

7 6220817 1225256 6220817 5.077156937 46.2861

8 6220817 1226592 6220817 5.071626914 46.291

9 6220817 1223653 6220817 5.083808073 46.3259

 AVERAGE 5.086496802 46.2835

53

Table 5.11 Compression ratio and PSNR for freeway.yuv for independent JPEG

simulation

Frame

no.

Original file

size

Compressed

file size

Reconstructed

file size

Compression

ratio

PSNR

value (dB)

1 6220817 1579519 6220817 3.938424926 40.4234

2 6220817 1580305 6220817 3.936466062 40.411

3 6220817 1580485 6220817 3.936017741 40.417

4 6220817 1580410 6220817 3.936204529 40.4354

5 6220817 1581235 6220817 3.934150838 40.4385

6 6220817 1582170 6220817 3.93182591 40.4475

7 6220817 1582152 6220817 3.931870642 40.4513

8 6220817 1581309 6220817 3.933966733 40.4889

9 6220817 1581646 6220817 3.933128526 40.4947

 AVERAGE 3.934672878 40.4453

Table 5.12 Compression ratio and PSNR for night.yuv for independent JPEG simulation

Frame

no.

Original file

size

Compressed

file size

Reconstructed

file size

Compression

ratio

PSNR

value (dB)

1 6220817 761530 6220817 8.168840361 44.1449

2 6220817 765053 6220817 8.131223588 44.1817

3 6220817 757918 6220817 8.207770498 44.1978

4 6220817 761249 6220817 8.171855727 44.1802

5 6220817 755276 6220817 8.236481763 44.282

6 6220817 763999 6220817 8.142441286 44.3092

7 6220817 762017 6220817 8.163619709 44.5696

8 6220817 752031 6220817 8.272022031 44.6579

9 6220817 759138 6220817 8.194579905 44.4279

 AVERAGE 8.187648319 44.3279

54

Table 5.13 Compression ratio and PSNR for capitol.yuv for independent JPEG

simulation

Frame

no.

Original file

size

Compressed file

size

Reconstructed

file size

Compression

ratio

PSNR

value (dB)

1 6220817 803954 6220817 7.737777286 43.8418

2 6220817 803769 6220817 7.739558256 43.676

3 6220817 807070 6220817 7.70790266 43.636

4 6220817 806804 6220817 7.710443924 43.6119

5 6220817 810879 6220817 7.671695777 43.651

6 6220817 813992 6220817 7.642356436 43.5799

7 6220817 814246 6220817 7.639972441 43.5621

8 6220817 824330 6220817 7.546512926 43.4759

9 6220817 814630 6220817 7.636371113 43.5209

 AVERAGE 7.670287869 43.6173

Table 5.14 Compression ratio and PSNR value for staples.yuv for independent JPEG

simulation

Frame

no.

Original file

size

Compressed file

size

Reconstructed

file size

Compression

ratio

PSNR

value (dB)

1 6220817 1288837 6220817 4.826690264 41.0765

2 6220817 1289465 6220817 4.824339552 41.1195

3 6220817 1291584 6220817 4.816424638 41.2066

4 6220817 1296960 6220817 4.796460184 41.1756

5 6220817 1299409 6220817 4.787420281 41.0731

6 6220817 1294205 6220817 4.806670504 41.1459

7 6220817 1292626 6220817 4.812542066 41.0565

8 6220817 1294032 6220817 4.807313111 41.1587

9 6220817 1297150 6220817 4.795757622 41.0692

 AVERAGE 4.808179803 41.1202

5.3.2: JPEG-2000

 The test sequences were encoded in the JPEG-2000 format using the JasPer

software [29]. The test sequences were processed on a frame-by-frame basis. The YUV

frames were converted to portable pixel map using the Matlab code (see appendix A).

55

Tables 5.15 through 5.19 list the compression ratio and the PSNR values for the five

test sequences. The JPEG 2000 ensures lossless coding. Hence, the PSNR values for

most of the frames was infinity (Inf.). Some of the frames had very high PSNR values

in the range of 106 dB and above. The file size is measured in bytes.

Table 5.15 Compression ratio and PSNR values for waves.yuv for JPEG-2000

simulation

Frame

no.

Original file

size

Compressed

file size

Reconstructed

file size

Compression

ratio

PSNR

value (dB)

1 6220817 2297096 6220817 2.708122342 108.2878

2 6220817 2302603 6220817 2.701645486 113.059

3 6220817 2306894 6220817 2.696620217 111.2981

4 6220817 2311097 6220817 2.691716098 107.6183

5 6220817 2301455 6220817 2.702993107 98.9936

6 6220817 2295800 6220817 2.709651102 102.0899

7 6220817 2305857 6220817 2.697832953 99.6347

8 6220817 2307869 6220817 2.695480983 111.2981

9 6220817 2302151 6220817 2.702175922 104.3084

 AVERAGE 2.700693134 106.2875

Table 5.16 Compression ratio and PSNR values for freeway.yuv for JPEG-2000

simulation

Frame

no.

Original file

size

Compressed

file size

Reconstructed

file size

Compression

ratio

PSNR

value (dB)

1 6220817 2855874 6220817 2.178253312 Inf.

2 6220817 2856672 6220817 2.177644826 Inf.

3 6220817 2856476 6220817 2.177794247 Inf.

4 6220817 2856570 6220817 2.177722583 113.059

5 6220817 2857496 6220817 2.177016871 113.059

6 6220817 2858373 6220817 2.176348923 Inf

7 6220817 2858525 6220817 2.176233197 116.0693

8 6220817 2857401 6220817 2.17708925 Inf

9 6220817 2858611 6220817 2.176167726 111.2981

 AVERAGE 2.177141215 Inf.

56

Table 5.17 Compression ratio and PSNR values for capitol.yuv for JPEG-2000

simulation

Frame

no.

Original file

size

Compressed

file size

Reconstructed

file size

Compression

ratio

PSNR

value (dB)

1 6220817 1500885 6220817 4.144765921 Inf.

2 6220817 1504415 6220817 4.135040531 Inf.

3 6220817 1510920 6220817 4.117237842 Inf.

4 6220817 1507483 6220817 4.126624977 Inf.

5 6220817 1517502 6220817 4.09937977 108.2878

6 6220817 1523747 6220817 4.08257867 107.6183

7 6220817 1516769 6220817 4.101360853 Inf.

8 6220817 1537929 6220817 4.044931203 111.2981

9 6220817 1524849 6220817 4.079628212 Inf.

 AVERAGE 4.103505331 Inf.

Table 5.18 Compression ratio and PSNR value for night.yuv for JPEG-2000 simulation

Frame

no.

Original file

size

Compressed

file size

Reconstructed

file size

Compression

ratio

PSNR

value (dB)

1 6220817 1459461 6220817 4.262407149 Inf.

2 6220817 1460037 6220817 4.260725584 107.6183

3 6220817 1445637 6220817 4.303166701 108.2878

4 6220817 1457822 6220817 4.267199288 113.059

5 6220817 1442337 6220817 4.313012146 113.059

6 6220817 1458285 6220817 4.265844468 110.0487

7 6220817 1458041 6220817 4.266558348 101.4453

8 6220817 1439630 6220817 4.321122094 104.0281

9 6220817 1452053 6220817 4.284152851 Inf.

 AVERAGE 4.282687625 Inf.

57

Table 5.19 Compression ratio and PSNR value for staples.yuv for JPEG-2000

simulation

Frame

no.

Original file

size

Compressed

file size

Reconstructed

file size

Compression

ratio

PSNR

value (dB)

1 6220817 2465999 6220817 2.522635654 Inf.

2 6220817 2469080 6220817 2.519487825 96.5268

3 6220817 2474521 6220817 2.513947952 110.0487

4 6220817 2480883 6220817 2.50750116 100.3872

5 6220817 2483778 6220817 2.504578509 93.1467

6 6220817 2474879 6220817 2.5135843 97.0384

7 6220817 2472470 6220817 2.516033359 100.8841

8 6220817 2478057 6220817 2.510360738 98.2878

9 6220817 2479503 6220817 2.508896743 97.4959

 AVERAGE 2.513002916 Inf.

5.3.3 JPEG-LS

 The test sequences were encoded in the JPEG-LS standard using the JPEG-LS

software obtained from [50]. The compression ratio and the PSNR value obtained from

encoding the test sequences in the JPEG-LS format is listed in tables 5.20 through 5.24.

The file size is measured in bytes.

Table 5.20 Compression ratio and PSNR value for waves.yuv for JPEG-LS simulation

Frame

no.

Original file

size

Compressed

file size

Reconstructed

file size

Compression

ratio

PSNR

value (dB)

1 6220817 2168526 6220817 2.868684535 46.2812

2 6220817 2175180 6220817 2.859909065 46.2323

3 6220817 2177683 6220817 2.856621923 46.2334

4 6220817 2183197 6220817 2.849407085 46.2064

5 6220817 2173942 6220817 2.861537704 46.316

6 6220817 2165538 6220817 2.872642734 46.3789

7 6220817 2178405 6220817 2.855675138 46.2861

8 6220817 2180395 6220817 2.853068825 46.291

9 6220817 2172201 6220817 2.863831202 46.3259

 AVERAGE 2.860153135 46.2835

58

Table 5.21 Compression ratio and PSNR value for freeway.yuv for JPEG-LS simulation

Frame

no.

Original file

size

Compressed

file size

Reconstructed

file size

Compression

ratio

PSNR

value (dB)

1 6220817 2749607 6220817 2.262438596 40.4234

2 6220817 2750733 6220817 2.261512477 40.411

3 6220817 2750604 6220817 2.261618539 40.417

4 6220817 2750618 6220817 2.261607028 40.4354

5 6220817 2751834 6220817 2.260607653 40.4385

6 6220817 2752311 6220817 2.26021587 40.4475

7 6220817 2751483 6220817 2.260896033 40.4513

8 6220817 2751488 6220817 2.260891925 40.4889

9 6220817 2751852 6220817 2.260592866 40.4947

 AVERAGE 2.261153443 40.4453

Table 5.22 Compression ratio and PSNR value for night.yuv for JPEG-LS simulation

Frame

no.

Original file

size

Compressed

file size

Reconstructed

file size

Compression

ratio

PSNR

value (dB)

1 6220817 1155525 6220817 5.38354168 44.1449

2 6220817 1159045 6220817 5.367191955 44.1817

3 6220817 1148139 6220817 5.418174106 44.1978

4 6220817 1158830 6220817 5.368187741 44.1802

5 6220817 1140529 6220817 5.454326019 44.282

6 6220817 1155927 6220817 5.381669431 44.3092

7 6220817 1155656 6220817 5.382931426 44.5696

8 6220817 1138416 6220817 5.464449727 44.6579

9 6220817 1149187 6220817 5.413233007 44.4279

 AVERAGE 5.40374501 44.3279

59

Table 5.23 Compression ratio and PSNR value for capitol.yuv for JPEG-LS simulation

Frame

no.

Original file

size

Compressed

file size

Reconstructed

file size

Compression

ratio

PSNR

value (dB)

1 6220817 1201526 6220817 5.177430201 43.8418

2 6220817 1204825 6220817 5.163253585 43.676

3 6220817 1211200 6220817 5.136077444 43.636

4 6220817 1207140 6220817 5.153351724 43.6119

5 6220817 1217167 6220817 5.110898504 43.651

6 6220817 1221234 6220817 5.093877996 43.5799

7 6220817 1217629 6220817 5.108959297 43.5621

8 6220817 1235230 6220817 5.036160877 43.4759

9 6220817 1222902 6220817 5.086930106 43.5209

 AVERAGE 5.118548859 43.6173

Table 5.24 Compression ratio and PSNR value for staples.yuv for JPEG-LS simulation

Frame

no.

Original file

size

Compressed

file size

Reconstructed

file size

Compression

ratio

PSNR

value (dB)

1 6220817 2083801 6220817 2.985322015 41.0765

2 6220817 2089288 6220817 2.977481802 41.1195

3 6220817 2091208 6220817 2.974748088 41.2066

4 6220817 2097758 6220817 2.965459791 41.1756

5 6220817 2101665 6220817 2.959946994 41.0731

6 6220817 2092690 6220817 2.972641433 41.1459

7 6220817 2088560 6220817 2.97851965 41.0565

8 6220817 2094360 6220817 2.970271109 41.1587

9 6220817 2096235 6220817 2.967614318 41.0692

 AVERAGE 2.972445022 41.1202

5.4 Summary

 This chapter explains the implementation of the proposed algorithm. It also

describes the results obtained and the input and output images obtained from the

proposed method. This chapter further explains the results, input and output images

obtained by encoding and decoding the test sequences using the JM reference software.

60

 The following chapter explains the conclusions of this research and suggests

possible future work.

61

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

The proposed algorithm, implementing the concepts of YCgCo color space and

residual color transform to achieve lossless coding, was successfully implemented to

obtain lossless compression for high definition YUV sequences. The sampling format of

these sequences is 4:4:4. The reconstructed image at the output was of high quality as

demonstrated by the high PSNR value. The test sequences are successfully encoded in

H.264/MPEG-4 AVC standard using the JM reference software.

6.2 Future work

The coding efficiency of the proposed algorithm can be further improved by

implementing block-based coding. This would reduce the time taken for encoding the

YUV sequences and will make the code more memory efficient. The YUV frames do

not have any header information. By implementing some header information, this

algorithm can be used to implement presentation time stamps. This can be used for

achieving audio-video synchronization.

62

APPENDIX A

MATLAB SOURCE CODE

63

The following source code implements the proposed algorithm in the MATLAB

platform. The input to this code is a 4:4:4 YUV sequence. The YUV frames are

converted in RGB domain for encoding. Inter prediction is performed by considering

the previous frame as a reference frame. The residual frame is converted into YCgCo

domain. These YCgCo coefficients are coded using arithmetic coding. The size of the

bitstream is calculated. Compression ratio is calculated by comparing the original size

of the raw image and the compressed bit stream.

File 1: residual_ycgco_4.m

close all; clear all; clc;

%read the input file

%inputsequence='plane.yuv';

inputsequence=input('Enter the file name to be processed = ', 's');

%enter the number of frames

totalFrames = input('Enter the number of frames to be processed in the sequence = ');

%display the value entered

disp('The input file is = ')

disp(inputsequence)

disp('The number of frames to be processed = ')

disp(totalFrames)

%initialize the values

samplingFormat=[1920 1080];

fid=fopen(inputsequence,'rb');

%read the YCbCr values from the input sequence.

for i=1:1:totalFrames

 [y] = fread(fid, [1920 1080], 'uint8');

 y = y';

 Y(:,:,i) = y;

64

 [cb] = fread(fid, [1920 1080], 'uint8');

 cb = cb';

 CB(:,:,i) = cb;

 [cr] = fread(fid, [1920 1080], 'uint8');

 cr = cr';

 CR(:,:,i) = cr;

end

fclose(fid);

clear samplingFormat;

clear y;

clear cb;

clear cr;

clear inputsequence;

%clear fid;

%convert the YCbCr to RGB sequence and display the original frames

for i=1:1:totalFrames

 red(:,:) = 1.164*(Y(:,:,i)-16) + 1.596*(CR(:,:,i)-128);

 green(:,:) = 1.164 * (Y(:,:,i)-16) - 0.813*(CR(:,:,i)-128) - 0.392*(CB(:,:,i)-128);

 blue(:,:) = 1.164 * (Y(:,:,i)-16) + 2.017*(CB(:,:,i)-128);

 image_rgb(:,:,1) = red(:,:);

 image_rgb(:,:,2) = green(:,:);

 image_rgb(:,:,3) = blue(:,:);

 rgb_sequence(:,:,:,i) = image_rgb(:,:,:);

 clear image_rgb;

 clear red;

 clear green;

 clear blue;

end

clear Y;

65

clear CB;

clear CR;

bitcount_Y = 0;

bitcount_Cg = 0;

bitcount_Co = 0;

%encode the first frame

first_frame_RGB (:,:,:) = rgb_sequence(:,:,:,1);

first_frame_YCGCO(:,:,:) = rgb2ycgco (first_frame_RGB (:,:,:));

bitcount_Y = arcoder(first_frame_YCGCO (:,:,1));

bitcount_Cg = arcoder(first_frame_YCGCO (:,:,2));

bitcount_Co = arcoder (first_frame_YCGCO (:,:,3));

%clear first_frame_RGB;

%decode the first frame

recon_referenceRGB(:,:,:) = ycgco2rgb(first_frame_YCGCO (:,:,:));

psnrfirstframe = metcaldouble(first_frame_RGB, recon_referenceRGB)

%encode the second frames onwards

for i=1:1:(totalFrames-1)

 reference_frame_RGB = rgb_sequence(:,:,:,i);

 j=i+1;

 current_frame_RGB = rgb_sequence(:,:,:,j);

 residual_frame_RGB = current_frame_RGB - reference_frame_RGB;

 figure

 imshow(uint8(current_frame_RGB(:,:,:)))

 title(['Original Frame RGB Number = ', num2str(j)])

 figure

 imshow(uint8(residual_frame_RGB(:,:,:)))

 title(['Residual Frame RGB Number = ', num2str(j)])

 residual_frame_YCGCO(:,:,:) = rgb2ycgco (residual_frame_RGB(:,:,:));

% figure

66

% imshow(uint8(residual_frame_YCGCO(:,:,:)))

% title(['Residual Frame YCGCO Number = ', num2str(j)])

 bitcount_Y = bitcount_Y + arcoder (residual_frame_YCGCO (:,:,1));

 bitcount_Cg = bitcount_Cg + arcoder (residual_frame_YCGCO (:,:,2));

 bitcount_Co = bitcount_Co + arcoder (residual_frame_YCGCO (:,:,3));

 % decode the sequence

 recon_residual_frameRGB(:,:,:) = ycgco2rgb(residual_frame_YCGCO (:,:,:));

 recon_current_frameRGB (:,:,:) = recon_referenceRGB(:,:,:) +

recon_residual_frameRGB(:,:,:);

 recon_referenceRGB(:,:,:) = recon_current_frameRGB(:,:,:);

 figure

 imshow(uint8(recon_referenceRGB(:,:,:)));

 title(['Reconstructed Frame. Number = ',num2str(j)])

 errorRGBFrame(:,:,:) = 2*(current_frame_RGB(:,:,:) - recon_referenceRGB(:,:,:)) +

128;

 figure

 imshow(uint8(errorRGBFrame(:,:,:)))

 title(['Error Frame Number = ', num2str(j)])

 %calculate the MSE and the PSNR values

 psnr_frame = metcal(current_frame_RGB,recon_current_frameRGB)

end

compressed_file_size = bitcount_Y + bitcount_Cg + bitcount_Co

original_file_size = 1920*1080*3*8*totalFrames

compression_ratio = original_file_size/compressed_file_size

File 2: rgb2ycgco.m

function [outputSequence] = rgb2ycgco(inputSequence)

%this function converts the input RGB sequence to YCGCO sequence

%calculate the RGB components of the residual frame

67

redResidual(:,:) = inputSequence(:,:,1);

greenResidual(:,:) = inputSequence(:,:,2);

blueResidual(:,:) = inputSequence(:,:,3);

clear inputSequence;

%convert the residuals from RGB to YCgCo

Y1new(:,:) = (greenResidual + (redResidual(:,:) + blueResidual(:,:))/2)/2;

Cgnew(:,:) = (greenResidual - (redResidual(:,:) + blueResidual(:,:))/2)/2;

Conew(:,:) = (redResidual(:,:) - blueResidual(:,:))/2;

clear redResidual;

clear blueResidual;

clear greenResidual;

clear t;

outputSequence(:,:,1) = Y1new(:,:);

outputSequence(:,:,2) = Cgnew(:,:);

outputSequence(:,:,3) = Conew(:,:);

File 3: ycgco2rgb.m

function [RGBOutputSequence] = ycgco2rgb (YCGCOInputSequence)

%this function converts YCGCO to RGB

Y1(:,:) = YCGCOInputSequence (:,:,1);

Cg(:,:) = YCGCOInputSequence (:,:,2);

Co(:,:) = YCGCOInputSequence (:,:,3);

red_recon = Y1 + Co - Cg;

green_recon = Y1 + Cg;

blue_recon = Y1 - Co - Cg;

RGBOutputSequence(:,:,1) = red_recon(:,:);

RGBOutputSequence(:,:,2) = green_recon(:,:);

RGBOutputSequence(:,:,3) = blue_recon(:,:);

68

File 4: arcoder.m

function code_length = arcoder (seq)

%input to this function is the sequence to be encoded

seq = round(seq);

seq_vector = seq(:)';

symb = [min(seq_vector):max(seq_vector)];

ncount=histc(seq_vector,symb);

a = ncount(ncount~=0);

b = symb(ncount~=0);

seq_tmp = seq_vector;

for j=1:length(b)

 seq_tmp(seq_vector == b(j)) = j;

end

code_length = length(arithenco(seq_tmp,a));

File 5: metcaldouble.m

function psnr = metcaldouble (originalimage, reconstructedimage)

%this function takes the original_image, reconstructed_image and returns

%the values of PSNR

[img_size] = size(originalimage);

row = img_size(1);

column = img_size(2);

MSE = 0;

temp = 0;

for p=1:1:3

 for i=1:1:row

 for j=1:1:column

 temp = double((originalimage(i,j,p) - reconstructedimage(i,j,p)));

 temp2 = temp^2;

69

 MSE = MSE + temp2;

 end

 end

end

MSE = MSE / (3*row*column)

max_pel = 255;

temp = 0;

temp = max_pel/sqrt(MSE);

psnr = 20 * log10(temp);

70

APPENDIX B

STEPS TO DOWNLOAD HIGH DEFINITION SEQUENCES

71

The 4:4:4 HD test sequences are available on the server - ftp.tnt.uni-

hannover.de. To get these sequences, following steps can be implemented:

 Step 1: Download ftp client from internet.

 Step 2: Log in to the ftp.tnt.uni-hannover.de. Username and password is required.

 Step 3: The test sequences are in the path: testsequences/Viper_testset_FastVDO.

Step 4: The test sequences are in dpx format. To convert them to YUV 4:4:4 format,

download dpx2yuv converter from FastVDO website at -

http://www.fastvdo.com/DPX2YUV.html.

The resolution of the video frame is 1920*1080 and the YUV format is 4:4:4.

72

APPENDIX C

ENCODER CONFIGURATION FILE USED FOR JM SOFTWARE SIMULATIONS

73

The encoder in the JM reference software is configured using the following

configuration file to obtain lossless coding.

New Input File Format is as follows

<ParameterName> = <ParameterValue> # Comment

See configfile.h for a list of supported ParameterNames

For bug reporting and known issues see:

https://ipbt.hhi.de

Files

InputFile = "capitol9Frames.yuv" # Input sequence

InputHeaderLength = 0 # If the inputfile has a header, state

it's length in byte here

StartFrame = 0 # Start frame for encoding. (0-N)

FramesToBeEncoded = 9 # Number of frames to be coded

FrameRate = 30.0 # Frame Rate per second (0.1-100.0)

SourceWidth = 1920 # Source frame width

SourceHeight = 1080 # Source frame height

SourceResize = 0 # Resize source size for output

OutputWidth = 1920 # Output frame width

OutputHeight = 1080 # Output frame height

TraceFile = "capitoltrace_enc2.txt" # Trace file

ReconFile = "capitoltest_rec2.yuv" # Recontruction

YUV file

OutputFile = "capitoltest2.264" # Bitstream

StatsFile = "capitolstats2.dat" # Coding

statistics file

Encoder Control

ProfileIDC = 244 # Profile IDC (66=baseline, 77=main,

88=extended; FREXT Profiles: 100=High, 110=High 10, 122=High 4:2:2,

244=High 4:4:4, 44=CAVLC 4:4:4 Intra)

IntraProfile = 0 # Activate Intra Profile for FRExt (0:

false, 1: true)

 # (e.g. ProfileIDC=110, IntraProfile=1 =>

High 10 Intra Profile)

LevelIDC = 42 # Level IDC (e.g. 20 = level 2.0)

IntraPeriod = 0 # Period of I-pictures (0=only first)

IDRPeriod = 0 # Period of IDR pictures (0=only first)

AdaptiveIntraPeriod = 1 # Adaptive intra period

AdaptiveIDRPeriod = 1 # Adaptive IDR period

IntraDelay = 0 # Intra (IDR) picture delay (i.e. coding

structure of PPIPPP...)

74

EnableIDRGOP = 0 # Support for IDR closed GOPs (0:

disabled, 1: enabled)

EnableOpenGOP = 0 # Support for open GOPs (0: disabled, 1:

enabled)

QPISlice = 1 # Quant. param for I Slices (0-51)

QPPSlice = 1 # Quant. param for P Slices (0-51)

FrameSkip = 0 # Number of frames to be skipped in input

(e.g 2 will code every third frame)

ChromaQPOffset = 0 # Chroma QP offset (-51..51)

DisableSubpelME = 0 # Disable Subpixel Motion Estimation

(0=off/default, 1=on)

SearchRange = 32 # Max search range

NumberReferenceFrames = 1 # Number of previous frames used for inter

motion search (0-16)

B Slices

NumberBFrames = 0 # Number of B coded frames inserted (0=not

used)

#FREXT stuff

YUVFormat = 3 # YUV format (0=4:0:0, 1=4:2:0,

2=4:2:2, 3=4:4:4)

RGBInput = 0 # 1=RGB input, 0=GBR or YUV input

SeparateColourPlane = 0 # 4:4:4 coding: 0=Common mode,

1=Independent mode

SourceBitDepthLuma = 8 # Source Bit Depth for Luma color

component (8...14 bits)

SourceBitDepthChroma = 8 # Source Bit Depth for Chroma color

components (8...14 bits)

SourceBitDepthRescale = 0 # Rescale bit depth of source for

output (0: Disable 1: Enable)

OutputBitDepthLuma = 8 # Output Bit Depth for Luma color

component (8...14 bits)

OutputBitDepthChroma = 8 # Output Bit Depth for Chroma color

components (8...14 bits)

CbQPOffset = 0 # Chroma QP offset for Cb-part (-

51..51)

CrQPOffset = 0 # Chroma QP offset for Cr-part (-

51..51)

Transform8x8Mode = 1 # (0: only 4x4 transform, 1: allow

using 8x8 transform additionally, 2: only 8x8 transform)

ReportFrameStats = 0 # (0:Disable Frame Statistics 1:

Enable)

75

DisplayEncParams = 0 # (0:Disable Display of Encoder Params

1: Enable)

Verbose = 1 # level of display verboseness

(0:short, 1:normal, 2:detailed)

#Lossless Coding (FREXT)

QPPrimeYZeroTransformBypassFlag = 1 # Enable lossless coding when

qpprime_y is zero (0 Disabled, 1 Enabled)

76

APPENDIX D

KEY TECHNICAL AREA (KTA) SOFTWARE

77

1 Introduction

In July 2005, Video Coding Experts Group (VCEG) decoded to establish the

KTA software, at the Busan meeting [39]. This effort was to gather various coding

efficiency tools to continue progress ahead of H.264/MPEG-4 AVC standard. These

coding tools are implemented in the KTA software. The latest version of the KTA

software is available at [40]. This version is based on JM reference software version 11.

2 Residual color transform in KTA

The concept of residual color transform is implemented in the KTA software, as

of version 1.9 [40]. The flag ResidueTransformFlag is a part of the encoder

configuration file of the KTA software. The residual color transform can be applied to

encode a YUV sequence by using this flag as follows:

ResidueTransformFlag = 1

(0: no residue color transform 1: apply residue color transform)

3 Coding tools incorporated in KTA software

As of the version 1.2, the coding tools incorporated in the KTA software are listed

as below [42]:

• Adaptive interpolation filter

• Motion compensated prediction with 1/8-pel motion vector resolution

• Motion vector competition

• Adaptive prediction error coding in spatial and frequency domain

• Adaptive quantization matrix selection

78

3.1. Adaptive interpolation filters:

The coding standards developed by the ISO and ITU apply hybrid video coding

with motion-compensated prediction. It is combined with transform coding of

prediction error [43]. First, the motion-compensated prediction is performed to reduce

the temporal redundancy i.e. correlation between the previous and the current frames.

After this, the prediction signal is transform coded to reduce the spatial redundancy.

While performing motion-compensated prediction, the current image is divided into

blocks. A displacement vector is estimated for each block. H.264/AVC is based on ¼

pel displacement resolution [43]. The reference image needs to be interpolated on sub-

pel position for the estimation and compensation of fractional-pel displacement vectors.

H.264/AVC uses a 6-tap Wiener interpolation filter [43]. The filter coefficients to

interpolate the luma values at half-pel sample position are ()1,5,20,20,5,1 −− . Fig. 1

illustrates the integer pel positions and fractional pel positions obtained by interpolation.

First, half-pel positions of jjiihhbbbaa ,,,,, and ggffeehddcc ,,,,, are estimated using

a horizontal or vertical 6-tap Wiener filter, respectively [43]. Then, the sub-pel position

j is calculated using the same Weiner filter at positions jjiihhbbbaa ,,,,, . Then using a

bilinear filter, the residual quarter-pel positions are calculated.

79

Fig. 1: Integer pel positions (shaded blocks) and fractional pel positions (white blocks)

In the context of prediction with fractional-pel motion vector resolution, the

aliasing components contained in image signal limit the prediction accuracy obtained by

motion compensation [43]. In order to consider aliasing, quantization and motion

estimation errors, blurring effects, camera noise, etc., a two-dimensional (2D) non-

separable interpolation filter, which is calculated for each P- or B- frame independently

by minimizing the prediction error energy, is developed. For every fractional-pel

position to be interpolated, an individual set of 2D filter coefficients is determined.

3.2. Motion compensated prediction with 1/8-pel motion vector resolution:

An image signal is interpolated on sub-pel positions using interpolation filters.

H.264/AVC supports up to quarter-pel resolution for motion compensation. KTA

software, as of version 1.2, supports 8
1 pel resolution for motion vector. Fig. 2

illustrates interpolation process to obtain 8
1 pel resolution.

80

Filter 1 Filter 2 Filter 3

1:1 2:1 4:1 8:1

resolution

frame

Fig. 2: Interpolation process to obtain 8

1 pel resolution [44]

The interpolation process is equivalent to upsampling process. Filter 1 upsamples the

given image to give 2:1 resolution. Filter 2 produces 4:1 resolution and filter 3 produces

8:1 resolution image. Several filter combinations can be used to perform this

interpolation.

3.3. Motion vector competition:

H.264/AVC standard successfully achieves higher compression than its preceding

standards. However, lots of bits in a H.264 stream are dedicated to motion information.

Motion vector competition helps to reduce motion information [46]. A competition

between spatial and temporal predictors for the motion vectors of both Inter and Skip

mode is implemented. Several basic predictors are available at the encoder and at the

decoder. The best predictor is selected based on the RD criterion. The index of the

predictors is sent in the bitstream, if the values of the predictors are not all identical.

The scheme is applied to P and B slices, which can support different set of predictors.

1.3.4. Adaptive prediction error coding in frequency and spatial domains:

H.264/AVC uses hybrid video coding where motion compensated prediction is

followed by transform coding. Transform coding is efficient if the prediction error is

81

correlated. If the prediction error is marginally correlated then transform becomes

inefficient [47]. Therefore, the prediction error is adaptively coded in the spatial or

frequency domain.

Fig. 3: Adaptive prediction error coding in spatial and frequency domains [47]

 The algorithm with lower rate-distortion costs is chosen.

3.5. Adaptive quantization matrix selection (AQMS):

This tool optimizes the quantization matrix at a macroblock level. Rate distortion

optimization (RDO) criterion is used to select the best quantization matrix index for a

given macroblock. This index is transmitted to the decoder to perform inverse

quantization using identical matrix as the encoder. The encoder and decoder block

diagrams are shown in Fig. 4.

82

Input

MB image

Prediction T/Q IQ/IT
Select

QM idx

Set

QM idx

Entropy

coding

Encoder

Decoder

Parsing Prediction
Input

MB data

Reconstruct

Image

Set

QM idx
IQ/IT

Input

MB image

Prediction T/Q IQ/IT
Select

QM idx

Set

QM idx

Entropy

coding

Encoder

Decoder

Parsing Prediction
Input

MB data

Reconstruct

Image

Set

QM idx
IQ/IT

Fig. 4. Encoder and decoder block diagram for implementation of AQMS [48]

83

REFERENCES

[1] Soon-kak Kwon, A. Tamhankar and K.R. Rao, ”Overview of H.264 / MPEG-4

Part 10”, J. Visual Communication and Image Representation, vol. 17, pp.183-

216, April 2006.

[2] T. Wiegand and G. J. Sullivan, “The H.264 video coding standard”, IEEE

Signal Processing Magazine, vol. 24, pp. 148-153, March 2007.

[3] D. Marpe, T. Wiegand and G. J. Sullivan, “The H.264/MPEG-4 AVC

Standard and its applications”, IEEE Communications Magazine, vol. 44, pp.

134-143, Aug. 2006.

[4] D. Marpe and T. Wiegand, “H.264/MPEG4-AVC Fidelity Range Extensions:

Tools, Profiles, Performance, and Application Areas”, Proc. IEEE

International Conference on Image Processing 2005, vol. 1, pp. I - 596, 11-14

Sept. 2005.

[5] A. Puri et al, “Video Coding using the H.264/ MPEG-4 AVC compression

standard”, Signal Processing: Image Communication, vol. 19, pp: 793 – 849,

Oct. 2004.

[6] J. Ostermann et al, “Video coding with H.264/AVC: Tools, Performance, and

Complexity”, IEEE Circuits and Systems Magazine, vol. 4, Issue 1, pp. 7 – 28,

First Quarter 2004.

84

[7] G. Sullivan, P. Topiwala and A. Luthra, “The H.264/AVC Advanced Video

Coding Standard: Overview and Introduction to the Fidelity Range

Extensions”, SPIE conference on Applications of Digital Image Processing

XXVII, vol. 5558, pp. 53-74, Aug. 2004.

[8] D. Marpe et al, “Macroblock-adaptive residual color space transforms for

4:4:4 video coding”, Proc. IEEE International Conference on Image Processing

(ICIP 2006), pp. 3157-3160, Atlanta, GA, USA, Oct. 8-11, 2006.

[9] W. S. Kim: Residue color transform, JVT-L025, 12th meeting: Redmond,

WA, USA, 17-23 July, 2004.

http://ftp3.itu.int/av-arch/jvt-site/2004_07_Redmond/JVT-L025.doc

[10] W. S. Kim: Adaptive residue transform and sampling, JVT-K018, 11th

meeting: Munich, Germany, 15-19 March, 2004.

http://ftp3.itu.ch/av-arch/jvt-site/2004_03_Munich/JVT-K018.doc

[11] Y. L. Lee: Lossless intra coding for improved 4:4:4 coding in H.264/MPEG-

4 AVC, JVT-P016, 16th meeting: Poznan, Poland, 24-29 July, 2005,

http://ftp3.itu.ch/av-arch/jvt-site/2005_07_Poznan/JVT-P016.doc

[12] Y. L. Lee: Lossless coding for professional extensions, JVT-L017, 12th

meeting: Redmond, WA, USA, 17-23 July, 2004.

http://ftp3.itu.int/av-arch/jvt-site/2004_07_Redmond/JVT-L017.doc

[13] W. S. Kim: Advanced residual color transform, JVT-Q059, 17th meeting:

Nice, France, 14-21 October, 2005.

http://ftp3.itu.ch/av-arch/jvt-site/2005_10_Nice/JVT-Q059-L.doc

85

[14] JM reference software manual and software - http://iphome.hhi.de/suehring/tml/

[15] Overview of H.264, http://en.wikipedia.org/wiki/H.264

[16] YUV formats, http://www.fourcc.org/

[17] Presentation on “YCgCo Residual Color Transform”, http://www-

ee.uta.edu/dip/

[18] DPX to YUV converter - http://www.fastvdo.com/DPX2YUV.html

[19] High definition sequences - ftp.tnt.uni-hannover.de

[20] YUV color space – www.wikipedia.org

[21] K. Sayood, “Introduction to Data compression”, III edition, Morgan

Kauffmann publishers, 2006.

[22] I. E.G. Richardson, “H.264 and MPEG-4 video compression: video coding

for next-generation multimedia”, Wiley, 2003.

[23] K. R. Rao and P. C. Yip, “The transform and data compression handbook”,

Boca Raton, FL: CRC press, 2001.

[24] R. C. Gonzalez, R. E. Woods, S. L. Eddins, “Digital Image Processing Using

MATLAB”, Pearson Prentice Hall, 2003

[25] S. Srinivasan et al., Windows media video 9: overview and applications,

Signal Processing: Image Communication, volume 19, issue 9, pp. 851–875,

October 2004

[26] W. Gao et al., AVS - The Chinese next-generation video coding standard,

NAB 2004, Las Vegas, 2004.

86

[27] H. Malvar and G. Sullivan, YCoCg-R: A Color Space with RGB Reversibility

and Low Dynamic Range, Document: JVT-I014r3, JVT PExt Ad Hoc Group

Meeting: 22-24 July 2003, Trondheim, Norway.

[28] JPEG reference software:

ftp://ftp.simtel.net/pub/simtelnet/msdos/graphics/jpegsr6.zip

[29] JPEG2000 reference software, Jasper software, Version 1.900.0:

http://www.ece.ubc.ca/mdadams/jasper

[30] M.J. Weinberger, G. Seroussi and G. Sapiro, The LOCO-I lossless image

compression algorithm: principles and standardization into JPEG-LS, IEEE

Trans. Image Processing, vol. 9, pp. 1309-1324, Aug.2000.

http://www.hpl.hp.com/loco/

[31] T. Wiegand et. al, Overview of the H.264/AVC Video Coding Standard,

IEEE Trans. CSVT, Vol. 13, pp. 560-576, July 2003.

[32] A. Bovik, Handbook of Image and Video Processing, second edition, Elsevier

Academic Press, 2005.

[33] J. Billings, SMPTE VC1, The IEE 2-Day Seminar on IT to HD: Visions of

Broadcasting in the 21st Century, pp. 101 – 110, 30 Nov.-1 Dec. 2004

[34] R. Calderbank et al, Wavelet transforms that map integers to integers,

Applied Computational Harmonics Analysis, 5, no. 3, pp. 332-369, 1998.

[35] D. S. Taubman and M. W. Marcellin, JPEG2000: Image Compression

Fundamentals, Standards, and Practice, Boston, MAL Kluwer Academic

Publishers, 2002.

87

[36] Chroma subsampling website:

http://en.wikipedia.org/wiki/Chroma_subsampling

[37] K. R. Rao and J. J. Hwang, Techniques and standards for image, video and

audio coding, Prentice Hall, 1996.

[38] Mathworks technical notes:

3http://www.mathworks.com/support/tech-notes/1100/1107.html

[39] J. Jung, Performance evaluation of the KTA 1.2 software, VCEG-AE09, ITU

- Telecommunications Standardization Sector, STUDY GROUP 16 Question 6,

Video Coding Experts Group (VCEG), 31st Meeting: Marrakech, MA, 15-16

January, 2007

[40] KTA software download: http://iphome.hhi.de/suehring/tml/download/KTA/

[41] VCEG document: http://ftp3.itu.ch/av-arch/video-site/0801_Ant/

[42] J. Jung, KTA 1.2 software manual, VCEG-AE08, ITU - Telecommunications

Standardization Sector, STUDY GROUP 16 Question 6, Video Coding Experts

Group (VCEG), 31st Meeting: Marrakech, MA, 15-16 January, 2007

[43] Y. Vatis et al, Coding of coefficients of two-dimensional non-separable

adaptive Wiener interpolation filter, Visual Communications and Image

Processing, Proceedings of the SPIE, Volume 5960, pp. 623-631, 2005

[44] T. Wedi, 1/8-pel motion vector resolution for H.26L, ITU-T Q.15/SG16, doc.

Q15-K-21, Portland, Oregon USA, August 2000

[45] J. Jung, G. Laroche, Competition-Based Scheme for Motion Vector Selection

and Coding, VCEG Contribution VCEG-AC06, Klagenfurt, July 2006

88

[46] J. Jung et al, A spatio-temporal competing scheme for the rate-distortion

optimized selection and coding of motion vectors, EUSIPCO'06, Firenza,

Italy, September 2006

[47] M. Narroschke, H.G. Musmann, Adaptive prediction error coding in spatial

and frequency domain with a fixed scan in the spatial domain, ITU-T

Q.6/SG16, doc. VCEG-AD07, Hangzhou, China, October 2006

[48] A. Tanizawa, T. Chujoh, Simulation results of AQMS on KTA software, ITU-

T SG16/Q.6 Doc. VCEG-AC07, Klagenfurt, July 2006

[49] H. Malvar and G. Sullivan, Transform, Scaling & Color Space Impact of

Professional Extensions, JVT-H031r2, Geneva, Switzerland, 23-27 May, 2003

[50] JPEG-LS reference software: http://www.hpl.hp.com/loco/

[51] JPEG References: http://www-ee.uta.edu/dip/

89

BIOGRAPHICAL INFORMATION

Pooja Vasant Agawane has completed Bachelors in Electronics Engineering

from V.J.T.I., Mumbai University, India in June 2006. She is currently pursuing a

master’s degree in the electrical engineering department at the University of Texas at

Arlington. Pooja is a member of the multimedia processing research group under the

guidance of Dr. K. R. Rao. She was an intern and is currently employed by the Digital

Home Group, Intel Corporation, Chandler, Arizona. Her research interests include audio

and video processing and digital signal processing.

