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ABSTRACT 

 

PHYLOGEOGRAPHY AND GEOGRAPHICAL VARIATION OF BEHAVIORAL 

AND MORPHOLOGICAL CHARACTERISTICS IN 

PARUROCTONUS BOREUS 

 

Abraham Miller, PhD. 

 

The University of Texas at Arlington, 2008 

 

Supervising Professor:  Daniel Formanowicz 

 Specimens of Paruroctonus boreus were collected from twenty-four sites to assess the 

geographic variation in behavioral, morphological and molecular traits.  Statistical analyses 

support the observation that males are attracted towards females from the same population but 

not females from different populations, and that males avoided males from the same population.  

Pectine morphology was measured with SEM and demonstrated sexual dimorphism among and 

within populations.  This difference was most apparent in mature individuals.  Sequence data 

from mitochondrial 16S and COI genes suggest there is structure among the populations but this 

structure does not support a north and south clades or east and west clades. 
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CHAPTER 1 

GENERAL INTRODUCTION 

Scorpions are a moderately speciose group with approximately 1500 described species 

worldwide (Fet et al. 2000b).  Scorpion diversity is highest between 20-40º latitude and they are 

found on all continents except Antarctica (Polis 1990a).  Scorpion species have been recorded 

as far north as 55º latitude in the northern hemisphere (Polis 1990a).  They are conserved 

morphologically as demonstrated by the minimal change in body appearance since the middle 

Silurian and are most likely derived from the Eurypterida, which are the extinct water scorpions 

(Kjellesvig-Waering 1966).   

Extant scorpions are viviparous and the females demonstrate parental care for the 

young (Polis and Sissom 1990).  Once the first instars are born they climb up the mother’s legs 

onto her back where they stay until after their first molt (Polis and Sissom 1990).  All scorpion 

species are venomous.  In the United States, most species are found west of the Mississippi 

River and peak diversity is observed in the desert southwest (Polis 1990a, Fet et al. 2000a).  

Scorpions generally are nocturnal and active during the summer months once the ground has 

warmed up.  During the winter they stay in their burrow or underneath rocks in a scrape 

(Warburg and Polis 1990).  Until recently most species were seen infrequently as they rarely 

leave their burrow during the day.  Scorpions fluoresce underneath UV light, which has made 

collection of burrowing species more achievable (Stahnke 1972).   

Mating is highly ritualized in scorpions and appears to be conserved as the mating 

sequence is similar across taxa (Polis and Sissom 1990).  Typically, males search for the 

females and begin courtship behavior with juddering in the nearby vicinity (Alexander 1956, 

Polis and Farley 1979, Polis and Sissom 1990).  Juddering is rapid quivering movement by the 

male that creates vibrations in the substrate and functions as a sex or species recognition 
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behavior so the female is stimulated to cooperate in mating behavior (Polis and Sissom 1990).  

The male grasps the palps of the female and leads her through an elaborate mating dance 

(Polis and Farley 1979, Polis and Sissom 1990).  Once the female is subdued, the male locates 

a suitable place to deposit his spermatophore.  Once the spermatophore is cemented to the 

substrate, the male pulls the female over the spermatophore, which inserts into her genital 

operculum and releases his sperm (Polis and Farley 1979, Polis and Sissom 1990). 

Scorpions are predacious and employ a sit-and–wait strategy of foraging for prey 

(Shachak and Brand 1983, Polis 1990a).  They have low metabolic rates, high biomass within 

desert communities and have the ability to conserve water so they can persist in the desert 

environment (Hadley 1990, Polis 2001).  Their nocturnal and burrowing behavior helps them to 

conserve water. Scorpion activity is seasonal and only a small percent of adults are active on a 

given night (Tourtlotte 1974, Polis 1980a).  It is unknown if scorpions maintain home ranges or 

territory, but individuals are seldom found in close proximity to each other or at high densities 

(Tourtlotte 1974, Polis 1980a).  This is likely caused by the cannibalistic behavior of scorpions 

(Polis 1980b, Polis 1981, Polis and Sissom 1990).    

With the exception of some medically important species, little is known about the 

distributions of scorpion species.  Most studies have focused their research at one site and 

made little attempt to sample across the distribution of their study organism.  Few distribution 

maps exist for scorpion species and they are usually underrepresented by sites.  Museums 

have far fewer specimens of scorpions than they do insects or vertebrates (personal 

observation), so it is difficult to produce maps with many locations.  

Herein, I investigated the distribution of Paruroctonus boreus in the western US, and 

some associated variation in behavioral responses, morphology and mitochondrial DNA.  This 

species is one of the most widespread scorpion species in North America, it inhabits a 

geographically diverse region, and little is known about its biology.     
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CHAPTER 2 

DISTRIBUTION OF PARUROCTONUS BOREUS 

2.1 Introduction 

Biogeography is the study of spatial patterns of biodiversity past and present, and the 

related patterns of variation we see (Brown and Lomolino 1998b).  The widespread availability 

of molecular analysis has brought about a related field of study known as phylogeogarphy.  

Phylogeography deals with the phylogenetic components of spatial distributions of gene 

lineages, usually from closely related species or populations (Avise 2001).  Both 

biogeographers and phylogeographers attempt to explain the underlying processes and 

patterns of distribution in extant and extinct organisms.  Investigations can focus on the 

distribution of a particular genus of organism, such as the spider genus Homalonychus (Crews 

and Hedin 2006), or it may focus on the distribution of a single species, like the scorpion 

Paruroctonus mesaensis (Yamashita and Fet 2001).  Fundamental to all cases is establishing a 

range map for the species of interest (Brown and Lomolino 1998a).  These maps are useful for 

other scientists to carry out biogeographical studies.  These maps represent locations where the 

species has been collected and areas where they likely occur.  In theory, the areas where they 

are likely to occur but have not been collected represent the realized niche of the species albeit 

a rough representation of the organism’s niche.  In 1957 Hutchison defined realized niche as 

the multidimensional space of environmental variables that a species inhabits after its 

interactions with other species (Vandermeer 1972).  Map boundaries are thought to represent 

the areas where one or more factors are actively limiting the distribution of the species.  These 

factors may be abiotic, such as temperature, or biotic through predation or competition.  To 

date, there has not been a map created showing areas where Paruroctonus boreus is likely to 

occur.   
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Paruroctonus boreus Girard, 1854, has the most extensive latitudinal and elevational 

range of any North American species of scorpion, and yet, it is under-sampled across its range.  

Paruroctonus boreus is the most northerly occurring scorpion species in the western 

hemisphere with a distribution that extends from northern Arizona northward into southern 

Canada (Gertsch and Soleglad 1966, Tourtlotte 1974).  Museum records indicate that its 

distribution may be limited by the Sierra Nevada and Cascade mountains in the west and to the 

east, it extends into the lower valleys of the Rocky Mountains.  Paruroctonus boreus is unlikely 

distributed continuously throughout its range, since it does not occur at lower elevations in the 

southern extent of the range (personal observation).  This may have led to isolated populations 

likely to have diverged behaviorally, morphologically and/or molecularly from each other.  I 

hypothesize that the distribution of P. boreus is fragmented across its range and that southern 

populations are more isolated from each other by dispersal barriers. 

2.2 Materials and Methods 

Field collecting was done for approximately two hours each night, starting 

approximately one hour after sunset, to coincide with the peak abundance and activity of 

scorpions (Warburg and Polis 1990).  Collections were made between May and August of 2003-

2007.  An effort was made to sample the populations described in the literature (Fig. 2.1) and to 

locate new populations of Paruroctonus boreus.  Once collected, populations were 

georeferenced with a handheld GPS unit with a minimum accuracy of 10 meters. Twenty-four 

populations were sampled as shown in Figure 2.2.  These were populations with known 

longitude and latitude originally reported in degrees, minutes and seconds.  Each locality was 

then transformed into degree-decimal format so that they could be added to ArcMap.  Names 

were given to each locality reflecting a nearby, designated place. 

Map layers were obtained from www.worldclim.org to determine the altitude, annual 

precipitation and the extent of rain zone area of each site in the western US where the 

populations are found.  The ecoregions were obtained from www.nationalatlas.gov along with 
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annual temperatures.  The data were then added to ArcMap and spatially joined to each site 

using the spatial analyst tool within ArcMap.  

In order to model the geographic distribution of Paruroctonus boreus, I used the 

MaxEnt program for maximum entropy modeling species’ geographic distributions (Phillips et al. 

2006). This program requires at least 20 localities to be considered accurate, therefore it was 

appropriate for this analysis.  The generated map allows us to identify isolated populations and 

test hypotheses regarding the potential versus realized niche of the species.  All climate data 

were obtained from www.worldclim.org.  Environmental variables included in this analysis were 

annual mean temperature, mean diurnal temperature (Mean monthly Max-Min), max 

temperature in the warmest month, minimum temperature in the coldest month, annual 

precipitation, precipitation seasonality (coefficient of variation) and altitude.   

2.3 Results 

Individuals were collected from twenty-four populations across the range of 

Paruroctonus boreus (Fig. 2.2).  Sampling at lower elevations around these sites yielded no 

specimens of P. boreus, instead, other scorpion species like Vaejovis confusus were collected.  

Scorpions were not found at higher elevations than P. boreus across its distribution.  Four of the 

twenty-two populations were found in sympatry with other species.  The Mt. Charleston (5) and 

Wendover (22) populations were found in sympatry with Anuroctonus phaiodactylus and 

Vaejovis confusus.  The Flat Tire (3) and Bruneau Sands (6) populations were found in 

sympatry with Hadrurus spadix and V. confusus.  Vaejovis confusus is a similarly sized species 

within the family Vaejovidae and is known from Arizona, California, Idaho, Nevada and Utah 

(Sissom 2000).  Hadrurus spadix is a large (many times larger than the other species) species 

recorded from Arizona, California, Colorado, Idaho, Nevada, Oregon and Utah (Sissom and Fet 

2000). Anuroctonus phaiodactylus has very robust palps and is the second largest species 

found and is known from California, Nevada and Utah (Sissom and Fet 2000).  The latter two 

species were collected far less frequently than either P. boreus or V. confusus.     
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Approximately equal numbers of Paruroctonus boreus and Vaejovis confusus were 

collected at the Wendover, Flat Tire and Bruneau Sands populations.  However, the species’ 

apparent abundances varied greatly at the Mt. Charleston population.  Mt. Charleston is a fairly 

steep mountain that rises from the desert floor outside of Las Vegas, NV.  The desert floor has 

an approximate elevation of 500 m.  I collected along an elevational transect at this location and 

found P. boreus between 1925 - 2265 m elevation.  Paruroctonus boreus and A. phaiodactylus 

are found at the highest elevation with V. confusus never being found above 1965 meters in 

elevation.  Between 1925 - 1965 m in elevation, all three species occur in sympatry.  In the area 

with all three species P. boreus becomes less common and V. confusus becomes the dominant 

species as you move down in elevation until only V. confusus and A. phaiodactylus are found.   

The elevational distribution of Paruroctonus boreus is negatively correlated with latitude 

(p <0.001, Fig. 2.3) but not correlated with longitude (p > 0.1, Fig. 2.4).  Their distribution is not 

associated with eco regions (not shown) and temperatures are correlated with precipitation.   

The resulting map from the MaxEnt program is shown in Figure 2.5.  It suggests that 

Paruroctonus boreus should be very widespread and across its distribution with few dispersal 

barriers.  Annual precipitation and precipitation seasonality contributed 46% of the explained 

variation in the model.  Mean annual temperature contributed 36% of the variation and altitude 

contributed 10% of the variation in the model.  The other variables accounted for less than 5% 

of the variation combined.  The map does not give resolution at a fine enough scale that would 

be useful in identifying suitable habitats for populations like Mt. Charleston (5), which appear to 

have restricted distributions. 

  In ArcMap, I created a map showing areas that receive precipitation amounts of 10 - 

20 inches per year (Fig. 2.6).  This better represents the likely distribution of Paruroctonus 

boreus when including sampled localities, where P. boreus was not found.  This map shows 

areas of suitable habitat surrounded by areas with unsuitable habitat, suggesting they are 

isolated habitat patches that may contain equally isolated populations of P. boreus.  Figure 2.7 

shows an up close view of Mt. Charleston and the associated areas which receive 10 - 20 
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inches of precipitation a year.  In this location, P. boreus is only found in the areas that receive 

17.5 in/yr as determined by the elevational transect.  

 

Fig. 2.1. Map from Gertsch and Soleglad (1966) showing all known localities of Vejovis boreus 
(now Paruroctonus boreus) and Vejovis silvestrii (now Paruroctonus silvestrii). 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2. Map showing locations of new populations collected between 2003-2007 that were 
used in this investigation. 
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Elevation of Populations as a Function Latitude
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Fig. 2.3. Paruroctonus boreus altitudinal distribution is significantly correlated with latitude in the 
western United States (p < 0.01). 
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Fig. 2.4. Paruroctonus boreus altitudinal distribution is not significantly correlated with longitude 

in the western United States (p < 0.01). 
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Fig. 2.5.  Map showing the results of the maximum entropy modeling species’ geographic 
distributions (Phillips et al. 2006) for Paruroctonus boreus in the western US.  Areas in red 

represent areas with favorable habitat based on modeling climatic variables.  Squares represent 
localities used in building the model. 
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Fig. 2.6.  Map of the western US showing areas that receive between 10 - 20in of precipitation a 
year.  The red dots represent localities of Paruroctonus boreus.  This is an example of the 

output generated by GIS that can be used as a layer in building niche models. 
 
 

 
 

Fig. 2.7. Isolated population (5) of Paruroctonus boreus at Mt. Charleston, outside of Las 
Vegas, NV.  The population is to areas that receiving 17.5 in precipitation per year.  The 
surrounding areas at lower elevation receive less rainfall, acting a dispersal barrier.  This 

isolation is characteristic of southern populations of P. boreus. 
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2.4 Discussion 

Paruroctonus boreus inhabits patches of suitable habitat in the western US, which 

occur at lower elevations as latitude increases.  There is not a similar east to west pattern.  This 

elevational cline of P. boreus causes southern populations to be more isolated from each other 

than northern populations.  This is best demonstrated in Figure 2.7 by the Mt. Charleston (5) 

population, which is surrounded by what is presumed to be unfavorable habitat. The relatively 

small area in which P. boreus can be found at this location can promote divergence due to a 

lack of gene flow.  This population may also serve as an environmental indicator as human 

urban construction has increased in the area in the last five years.  Furthermore, scientists may 

be able to monitor the elevational distribution of this population to track climatic change over 

time.   

The map generated using the MaxEnt program, overestimates the distribution of 

Paruroctonus boreus by a large margin.  Perhaps biotic interactions are the most important 

factors defining and further restricting to the distribution of P. boreus.  However, it is just as 

likely that the program does not work as well at this scale in an area, like the western US, which 

is characterized by steep elevational changes.  These steep changes in elevation influence 

most other abiotic factors at a fine scale, but these are not reflected in a broad-scale analysis.  

Based on the sampled distribution of this species, the map showing areas that receive between 

10-20 in/yr of precipitation, likely represents areas of suitable habitat (Fig. 2.6).  Both maps 

suggest there are areas of unsuitable habitat in between sampled localities.  Areas of unsuitable 

habitat may act as dispersal barriers for P. boreus reducing gene low among populations.   
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CHAPTER 3 

BEHAVIORAL RESPONSE OF PARUROCTONUS BOREUS TO SYMPATRIC 
AND ALLOPATRIC CONSPECIFICS 

3.1 Introduction 

 
Much attention has been given to pheromone signaling in insects (Kaissling 1997, 

Wyatt 2003), however, fewer studies have addressed the possible importance of such signaling 

in arachnids (Sonenshine 1985, Gaskett 2007).  Among those studies, the majority have been 

with spiders and pheromones associated with the silk of conspecifics (Foelix 1982b, Gaskett 

2007).  It is thought that pheromones are responsible for directing movement and eliciting 

courtship behavior in spiders (Foelix 1982b, Roberts and Uetz 2004) and mites (Sonenshine 

1985).   

Species that demonstrate no postzygotic or morphological isolating mechanisms and 

only behavioral prezygotic isolating mechanisms, have been termed ethological species or 

simply “ethospecies” (Uetz and Denterlein 1979, Roberts and Uetz 2004).  These species may 

exhibit some morphological variation but not with regard to the genitalia and not enough to 

reproductively isolate the species.  Much of the arachnid behavioral research on reproductive 

isolation has used spiders, most often members of the family Lycosidae (Foelix 1982a, Ayyagari 

and Tietjen 1986, Persons et al. 2001).  However, scorpions differ from spiders, especially in 

their poor vision and lack of silk glands, and less is known about the behavioral mechanisms 

that may be involved with reproduction or reproductive isolation. 

The eyes of scorpions are sensitive to changes in light (Fleissner 1977, Fleissner and 

Fleissner 2001) but lack the visual acuity of many insects and spiders (Locket 2001).  

Consequently, scorpions must rely on tactile localization (Brownell 1977, Brownell and Farley 

1979) and possibly chemical cues to explore their environment (Gaffin and Brownell 1992).  

Subsequently, unlike many spiders, scorpions cannot visually communicate with potential mates 
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to signal their interest (Locket 2001).  Scorpions respond to vibrations in the substrate but 

usually only those within a meter (Brownell 1977, Brownell and Farley 1979).  Scorpions rarely 

reach population densities that would render vibrational cues useful (Polis 1990a) for attracting 

mates and it seems unlikely that males rely on random walks to find mates.  For this reason, 

this chapter will focus on the behavioral responses of male scorpions to chemical cues 

(pheromones) deposited by conspecifics on the substrate. 

The use of chemical communication by scorpions has only been investigated a few 

times (Gaffin and Brownell 1992, Gaffin and Brownell 2001, Melville et al. 2003, Steinmetz et al. 

2004) and the functional molecules have not been isolated.  Gaffin and Brownell (1992) and 

Mellville et al. (2007) found that males exhibited positive responses to areas that had been 

exposed to female conspecifics.  However, males did not demonstrate a preference in the third 

study, although the authors suggested that males changed their behavior in areas previously 

exposed to female conspecifics.  Additionally, (Melville et al. 2003) examined the response of 

males to conspecific males and found that they exhibited a non-significant preference for areas 

exposed to conspecific males over the control areas. 

 The pectines and their associated peg sensilla are thought to be responsible for 

sensing substrate-borne chemical cues, such as pheromones, in scorpions (Brownell 2001).  

Pairs of pectines are located on the ventral side of all scorpions and are actively moved across 

the substrate.  The pectines have multiple teeth at their distal ends, which usually are sexually 

dimorphic and species specific.  The tips of their teeth contain many peg sensilla, which are the 

functional chemosensory structures in scorpions (Gaffin and Brownell 1997, Gaffin and Brownell 

2001).  These structures have been suggested to be responsible for locating mates and prey 

(Krapf 1986, Gaffin and Brownell 2001), although the detection of prey remains less certain.  

Males actively sweep their pectines across the substrate when the substrate has been exposed 

to conspecific females (personal observation), (Gaffin and Brownell 2001) and usually exhibit an 

increase in sweeping during pre-mating behaviors (Polis and Sissom 1990, Gaffin and Brownell 

1992).  (Gaffin and Brownell 2001) demonstrated that experimental removal of the pectines 
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resulted in males that do not respond to the substrate exposed to conspecific females, 

supporting the idea that pectines are actively involved in substrate borne chemoreception.   

Investigations into pheromonal detection in scorpions are still in their infancy.  All 

previous studies have examined the pheromonal response to conspecifics from the same 

locality (population) and responses were not universal (Gaffin and Brownell 1992, Melville et al. 

2003, Steinmetz et al. 2004).  To date, these studies have only tested responses of three 

species of scorpions from North America; Paruroctonus mesaensis (family Vaejovidae), 

Hadrurus arizonensis (family Iuridae) and Centruroides vittatus (family Buthidae) (Gaffin and 

Brownell 1992, Melville et al. 2003, Steinmetz et al. 2004).  The former two species are more 

closely related to each other than the latter (Stockwell 1992) and demonstrate similar responses 

to female conspecifics.  This might suggest pheromonal response to conspecific females is a 

familial attribute.  However, more investigations need to be done to assess pheromonal 

response across different scorpion species and different scorpion families to assess if this is a 

familial attribute.  (Melville et al. 2003) is the only study to date to look at the pheromonal 

response of males to conspecific males.  There has not been a published investigation of 

variation in pheromonal responses among populations within a species of scorpion. 

The scorpion Paruroctonus boreus has a disjunct distribution (Chapter 2), which can be 

a precursor to local adaptation and speciation among populations.  Local adaptation to the 

environment might be expected and can be tested with various physiological and behavioral 

techniques (ref) but identifying speciation would require far more genetic research.  

Alternatively, I could test speciation by mating individuals from different populations, and 

assessing the viability or fertility of their offspring.  However, the behavior among populations in 

the field may actually preclude reproduction between populations that artificially reproduce in 

the lab (Uetz and Denterlein 1979).  This is the first study that investigated the response of male 

scorpions to same population and different population females.  I also investigated the response 

of male P. boreus to same population males, to determine if response to chemical cues was 

sex-specific.  I hypothesized; (1) males would positively respond to females from the same 
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population but not respond to females from other populations and, (2) males would not respond 

to other males from the same population. 

3.2 Materials and Methods 

3.2.1 General Collecting and Housing 

 Field collecting was done for approximately two hours each night, starting 

approximately one hour after sunset, to coincide with the peak abundance and activity of 

scorpions (Warburg and Polis 1990).  Collections were made between May and August of 2003 

- 2007 and localities are shown in Chapter 2 Figure 2.1.  Scorpions were contained in the field 

in small plastic vials within a cooler.  Scorpions were transferred to large plastic deli cups 

(diameter 110 mm, 60 mm depth) in the lab located in the basement at the University of Texas 

at Arlington.  Each container had 1 cm of sandy soil and scorpions were given water weekly and 

fed every 2 - 3 weeks.  Scorpions were housed at 20 - 25°C on a reverse light cycle (16 hrs 

light, 8 hrs dark) so behavior experiments could be carried out during the day.  

3.2.2 Behavioral Responses 

Collected animals were measured and sexed according to (Haradon 1985), and only 

animals judged to be adults of reproductive age were used in the behavioral experiments.  Four 

experimental Y-mazes were constructed based on (Melville et al. 2003).  The mazes consisted 

of a rectangular acclimation area that was divided from the stimulus and control arms by a 

removable plastic divider.  The Y-mazes (Fig. 3.1) measured 145 mm (base width), by 250 mm 

(base length), by 80 mm (arm width), by 250 mm (arm length) by 100 mm (depth).  The mazes 

were cleaned with a 20% bleach water solution between each trial and lined with new filter 

paper before each trial to remove any pheromonal traces from previous trials.  Sand substrate 

was not used because of the difficulty in cleaning the sand between trials.  The control arm of 

the Y-maze was lined with new filter paper and was left untreated.  The stimulus arm of the Y-

maze was lined with new filter paper, like the control side, and a stimulus animal was confined 

to that arm by a plastic divider.  Stimulus animals were the animals assigned to one of the arms 

as the treatment.  The selection of the arm to be used for the stimulus treatment was 



 

 17 

randomized at a 50% frequency between the two arms.  Test animals in this experiment were 

the individuals housed and confined to the acclimation area by a plastic divider, then allowed to 

move freely in the Y-maze during the experiment and for which data were gathered. Test and 

stimulus animals were placed in the mazes 24 hours before the experiments were run.  A black 

light was placed directly overhead to avoid shadows and was turned on when the white lights 

were turned off.  The experiments were started approximately 30 minutes thereafter.  Half the 

mazes were oriented in a westerly direction, half in an easterly direction in the basement at the 

University of Texas at Arlington Biology Department.  The stimulus animals were removed just 

prior to the start of the experiment, which was followed by the removal of the plastic dividers.  

The test subject was then allowed to move freely without interruption for two hours, to coincide 

with the peak activity of scorpions in the field (Hadley and Williams 1968, Polis 1980a, Warburg 

and Polis 1990).  The data collected were total time spent in each area (acclimation area, 

control arm and stimulus arm) of the Y-maze.   

All four experiments were run simultaneously and recorded in real time using a 

stopwatch.  Animals were randomly assigned to be stimulus or test animals.  Ten different 

populations were represented in the sympatric male-female response test, eight populations in 

the allopatric male-female response test, and five populations were represented in the 

sympatric male-male response test (Table 3.1).  Once they had been used as test animals, they 

were not used again as test animals for the same experiment.  Animals used in the experiments 

had carapace lengths greater than 4.3mm for males and greater than 4.5mm for females.  

These lengths were used to insure the animals were of reproductive size.  The data were not 

normally distributed so a Wilcoxon’s signed-ranks test, a nonparametric equivalent to the paired 

t-test, was performed (Sokal and Rohlf 1995).  A Wilcoxon’s signed-ranks test was applied on 

the total time spent in the control and stimulus arms, and the alpha value was set at 0.05. 
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3.3 Results 

Males spent significantly more time in the stimulus side of the Y-maze than the control 

side when the stimulus was a female from the same population (n = 28; p = 0.034; Fig. 3.2, 

Table 3.2).  Males on average spent 51 minutes in the treatment arm, 34 minutes in the control 

arm and 35 minutes in the acclimation area.  Some of the males were observed juddering and 

swaying, indicating a pre-mating behavioral response (Polis and Farley 1979, Polis and Sissom 

1990), in the stimulus arm during the trials with same population females, but never in the 

control arm.   Males did not demonstrate a significant preference for either arm of the Y-maze 

when the stimulus was an allopatric female (n = 20; p = 0.7; Fig. 3.2, Table 3.2).  Males 

demonstrated significant avoidance of areas exposed to other males from the same population 

(n = 12; p = 0.03; Fig. 3.3, Table 3.2).  On average 21 minutes were spent in the treatment arm, 

57 minutes in the control arm and 41 minutes in the acclimation area. 
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Table 3.1.  A list of the different populations of males and females used in the tests of male 
behavioral response to chemical cues from sympatric females, allopatric females and sympatric 

males.  Males in the left columns were the test animals and individuals in the right columns 
were the stimulus animals. 

 
Sympatric 

Male          Female 
Allopatric 

Male           Female 
Sympatric 

Male          Male 

Pop 1 Pop 1 Pop 1 Pop 4 Pop 4 Pop 4 

Pop 2 Pop 2 Pop 1 Pop 9 Pop 4 Pop 4 

Pop 3 Pop 3 Pop 2 Pop 4 Pop 4 Pop 4 

Pop 4 Pop 4 Pop 4 Pop 7 Pop 4 Pop 4 

Pop 4 Pop 4 Pop 4 Pop 5 Pop 4 Pop 4 

Pop 4 Pop 4 Pop 4 Pop 5 Pop 4 Pop 4 

Pop 4 Pop 4 Pop 4 Pop 6 Pop 6 Pop 6 

Pop 4 Pop 4 Pop 4 Pop 10 Pop 6 Pop 6 

Pop 4 Pop 4 Pop 4 Pop 1 Pop 10 Pop 10 

Pop 5 Pop 5 Pop 6 Pop 12 Pop 10 Pop 10 

Pop 6 Pop 6 Pop 6 Pop 1 Pop 12 Pop 12 

Pop 6 Pop 6 Pop 10 Pop 13 Pop 15 Pop 15 

Pop 6 Pop 6 Pop 10 Pop 2   

Pop 6 Pop 6 Pop 12 Pop 4   

Pop 7 Pop 7 Pop 12 Pop 6   

Pop 7 Pop 7 Pop 13 Pop 1   

Pop 10 Pop 10 Pop 13 Pop 12   

Pop 10 Pop 10 Pop 13 Pop 12   

Pop 10 Pop 10 Pop 13 Pop 2   

Pop 10 Pop 10 Pop 15 Pop 7   

Pop 10 Pop 10     

Pop 11 Pop 11     

Pop 11 Pop 11     

Pop 11 Pop 11     

Pop 12 Pop 12     

Pop 12 Pop 12     

Pop 12 Pop 12     

Pop 12 Pop 12     

  



 

       
20 

 

Fig. 3.1 Y-maze consisted of an acclimation area (AA) for the test subject, the left arm (LA) and 
the right arm(RA). The arrows indicate the dimensions of the arena and location of the plastic 

dividers. The height/depth of the maze was 100 mm. 
 
 
 
 

Table 3.2.  Male Paruroctonus boreus demonstrated positive responses to areas exposed to 
sympatric females, actively avoided areas exposed to sympatric males and demonstrated no 

responses when exposed to allopatric females.  Data reported are mean time spent in minutes 
(+/- standard error) in each arm of the Y-maze. 

Experiment Control  Stimulus P-value 

Male-Female 

Sympatric 

34.23 (4.3) 51.4 (4.3) P = 0.034 

Male-Female 

Allopatric 

39.75 (5.5) 39.1 (5.95) P = 0.526 

Male-Male 

Sympatric 

57.5 (8.43) 21.38 (7.88) P = 0.028 
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 Fig. 3.2. Mean (+/- s. e.) time spent in the arms of the Y-maze by males when the treatment 
arm was exposed to females from the same population and females from different, allopatric 

populations.  The asterisk indicates a significant difference between the time spent in the control 
and treatment arms (p = 0.03) and bars represent +/- 1 standard error. 
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 Fig. 3.3. Mean (+/- s. e.) male time spent in the arms of the Y-maze when the treatment arm 
was exposed to males from the same population.  The asterisk indicates a significant difference 

between the time spent in the control and treatment arms (p = 0.03) and bars represent +/- 1 
standard error. 
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3.4 Discussion 

 Mate recognition would be beneficial for non-communal animals such as scorpions, 

since they rarely occur within close proximity.  Males are usually the more vagile sex and are 

thought to actively search for females during the reproductive season (Polis and Farley 1979).  

The use of pheromones would likely increase the reproductive success of both sexes by 

increasing the number of encounters between the sexes.  This study provides evidence that 

males are attracted to the pheromones of females from the same population.  Considering 

males respond to female pheromones, and this likely increases their reproductive success, I 

expect strong selection pressure on the ability for males to recognize females.  Selection 

pressure over time could create populations that could not recognize mates from other 

populations by chemical cues alone.  These findings suggest that this has occurred in 

Paruroctonus boreus.  I did not investigate the mating success rates between individuals from 

different populations, so I cannot determine if populations have already become reproductively 

isolated.  However, I speculate that males and females from different populations maintain 

compatibility, as I have not observed any other isolating mechanisms but males would be less 

successful at locating and mating with females from other populations.  Consequently, isolated 

or geographically distant populations (Chapter 2, Fig. 2.1) of P. boreus may become 

reproductively isolated populations due to reduced gene flow. 

 Just as mate recognition is beneficial for reproduction, it may also be beneficial for 

survival and competition.  Outside of the reproductive season, male scorpions rely on a sit-and-

wait strategy to obtain food (Polis 1990b).  However, during the mating season, male 

Paruroctonus boreus can be found actively walking in the open (personal observation).  

Similarly, (Polis and Farley 1979) observed that male Paruroctonus mesaensis become more 

vagile during the mating season and suggested this was to search for mates. Males in this study 

positively responded to the pheromones of females, suggesting that they follow chemical trails 

in the field to find mates.  This would increase encounters with potential mates during the 
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breeding season, especially if densities are comparable to those of Paruroctonus utahensis, a 

closely related species estimated to have densities of 0.06 - 0.27 individuals per square meter 

(Polis 1990a).  An explanation for why males avoid areas exposed to conspecific males would 

be that they avoid the negative cost associated with an antagonistic interaction.  It is plausible 

that multiple males are following the same female trail, which would likely end in an aggressive 

encounter between the males.  Male-male encounters in P. boreus can be very aggressive 

(personal observation) and (Polis and Farley 1979) found that 9% of the diet of P. mesaensis 

were conspecifics.  Consequently, intraspecific encounters within this genus may be associated 

with a high cost.  An attribute that would allow males to increase the number of encounters with 

potential mates, while reducing the number of intrasexual encounters, would be favored.  I 

suggest male P. boreus actively avoid males from the same population to reduce the cost 

associated with male-male interaction.  Alternatively, males may avoid areas that have 

previously been exposed to males because females may be less likely to mate if they have 

previously been mated.  Future research will investigate the response of males to allopatric 

males.   
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CHAPTER 4 

MORPHOLOGICAL VARIATION IN STRUCTURES ASSOCIATED WITH THE 
REPRODUCTIVE ECOLOGY OF PARUROCTONUS BOREUS 

 
4.1 Introduction 

Investigations of morphological variation in scorpions has primarily focused on adult 

size and color variants across a given geographical area or the number of pectinal teeth (Brown 

1996, Myers 2001).  Few studies have looked at characteristics beyond this.  It has been 

suggested that observed variation is genetic on the basis of common rearing experiments 

between populations (Myers 2001).  However, except for systematic investigations, few have 

looked at intraspecific variability in scorpions. 

Systematic studies on scorpions have relied extensively on the chelicerae, 

trichobothria, coxosternal region, leg spination, telson and reproductive structures (Sissom 

1990).  In the family Vaejovidae, Stahnke (1973) primarily used cheliceral and trichobothrial 

patterns to differentiate genera.  However, these patterns can rarely be used alone to 

distinguish relationships at the species level (Sissom and Lourenco 1987) and should be used 

with caution to look at relationships (Francke 1981).  Some closely related, but distinctly 

different species, exhibit the same trichobothrial patterns (Francke 1981) and the number and 

location is often fixed within a species (Francke and Jones 1982).  For this reason, scorpion 

species are delimited by size ratios, coloration, or variability in internal and external characters, 

such as metasomal crenulation or reproductive structures (Gertsch and Soleglad 1966, 

Haradon 1984a, 1985, Sissom and Lourenco 1987, Sissom 1990).   

Few morphological studies have been done on Paruroctonus boreus, and those studies 

have admittedly been inexact and a bit random (Gertsch and Soleglad 1966).  Distinguishing 

characters tend to be qualitative and difficult to discern without large samples of specimens to 

examine.  In the key to Paruroctonus species, Gertsch and Soleglad (1966) distinguished P. 
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boreus from P. bantai by the amount of metasonal granulation.  They identified P. bantai as 

having distinct keels that are irregularly granulate and P. boreus as having essentially obselete 

or non-granulate keels.  This distinction is somewhat subjective and specimens were used from 

a restricted geographical area (Haradon 1985).  Haradon (1985) described the inter- and 

intrapopulation variability within P. boreus to be considerable and that some of the characteristic 

traits, such as fucous pattern, have been essentially lost in some populations.  To date, no 

further investigations of this variation have been done in P. boreus.   

In order to quantitatively investigate interpopulation and intersexual variability, novel 

characters were chosen that I believe experience strong selection pressure based on their 

function (Chapter 3).  The characters chosen were carapace length as an overall measure of 

size, 5
th
 metasomal length, pectine tooth tip length, pectine tooth tip width and associated peg 

sensilla density.  These characters have been associated with the reproductive and behavioral 

ecology of scorpions (Polis and Farley 1979, Gaffin and Brownell 1992, Gaffin and Brownell 

1997, Tallarovic et al. 2000, Gaffin and Brownell 2001), yet of those chosen for this study, only 

the 5
th
 metasomal segment and number of pectinal teeth have been used to investigate inter- 

and intraspecific variation in scorpions (Francke and Jones 1982, Sissom and Lourenco 1987, 

Brown 1996).  

The 5
th
 metasomal segment is the terminal, pre-anal segment, of the opisthosoma in 

scorpions (Hjelle 1990).  This segment demonstrates sexual dimorphism in multiple species, 

with males having longer segments (Francke and Jones 1982, Brown 1996).  During courtship, 

the male often grabs the female’s 5
th
 metasomal segment to subdue her and males use their 

metasoma to club the female during the courtship process (Polis and Sissom 1990, Tallarovic et 

al. 2000).  The 5
th
 metasomal segment may also be involved in male-male interaction as males 

will try to grab their opponents 5
th
 segment in a battle (Formanowicz personal communication).  

The pectines of scorpions are comblike structures located on the ventral side of the 

prosoma, which function as mechano- and chemoreceptors (Hjelle 1990, Gaffin and Brownell 
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1997, Gaffin and Brownell 2001).  Each pecten has multiple teeth, the number of which is fixed 

at birth and often species and sex specific (Francke and Jones 1982).  Males of the family 

Vaejovidae have a greater number of teeth than females and are used to distinguish the sexes 

(Gaffin and Brownell 2001).  Each tooth contains many peg sensilla, the functional 

chemosensory structures of the pectines (Gaffin and Brownell 1997, Gaffin and Brownell 2001).  

These structures are swept across the substrate during courtship and are important to 

scorpions in finding mates (Gaffin and Brownell 1992, Melville et al. 2003)  and identifying 

suitable substrate for spermatophore deposition (Hjelle 1990, Polis and Sissom 1990, Tallarovic 

et al. 2000).  Swoveland (1978) found a significant increase in the number of peg sensilla in 

Paruroctonus mesaensis males as they matured.  He also noted that males had a greater 

number of peg sensilla than females in chactoid species, which includes the family Vaejovidae.  

However, the area containing the peg sensilla, the density of peg sensilla, and the variation 

within a species have not been reported.  Consequently, to date, there has not been an 

investigation into the variation of pecten morphology among populations.   

I hypothesized that Paruroctonus boreus would demonstrate sexual dimorphism in the 

5
th
 metasomal segment, peg sensilla density, pecten tooth tip width and pecten tooth tip length.  

I also hypothesize that there will be interpopulation differences in these traits.   Due to the 

behavior of males searching for females, I would expect the tooth tip size of the pectines in 

males to be larger and that peg sensilla density would be greater than in females.
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4.2 Materials and Methods 

A total of ninety-nine individuals were measured for carapace length (Fig. 4.1), 5
th

 

metasoma length (Fig. 4.1), peg sensilla density (Fig. 4.3), tooth tip length (Fig. 4.2) and tooth 

tip width (Fig. 4.3).  The length of teeth #2, #3 and #4, as counted from the most distal tooth, 

were measured for each individual.  Additionally, the number of teeth on the pectines, were 

counted for each measured individual. A minimum of two individuals from each sex and 

population were measured using scanning electron microscopy, with the exception of population 

2, which only had one female measured and population 5 which only had one male measured.   

Peg sensilla density (Fig. 4.3) was measured from a minimum of three teeth per 

individual, one distal tooth, one proximal tooth and one in between.  A randomly sized polygon 

of known area was drawn over the peg sensilla on the tooth tip and the number of peg sensilla 

within the polygon, were counted.  This gave the number of peg sensilla per square micrometer 

for each area measured.  A minimum of two areas from each tooth, were measured and the 

mean density for each tooth was used for the analysis.  An ANOVA was performed to test 

whether peg sensilla densities varied based on tooth location.  Peg sensilla densities did not 

vary significantly with tooth location (p > 0.1) so all peg sensilla densities were analyzed 

together.  The data were tested for normality using a Kolmogorov-Smirnov test and tested for 

equal variance using Levene’s test of equality of variances and visually, using residual plots.  I 

could not reject the null hypotheses for normal distribution and homogeneity so parametric tests 

were used.   A Pearson correlation test was carried out to determine if carapace length, a 

measure of overall size, was correlated with peg sensilla density. There was a significant 

correlation between the two variables (p < 0.01, Fig. 4.4), so a two-way analysis of covariance 

was used to analyze peg sensilla density among populations and among the sexes, using 

carapace length as a covariate.  To test the difference between the sexes within a population 

and between populations within a sex, residuals obtained from regressing peg sensilla density 

on carapace length were used in an analysis of variance. 
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Tooth tip length and width (Fig. 4.2 & Fig. 4.3) were measured from a minimum of three 

teeth per individual, one distal tooth, one proximal tooth and one in between.  These 

measurements were taken from the same teeth as the peg sensilla densities.  Although there 

was little variability in measuring tooth tip length and width (< 5%), the lengths were measured 

three times and the mean of each tooth was used for the analysis.  The data were tested for 

normality using a Kolmogorov-Smirnov test and tested for equal variance using Levene’s test of 

equality of variances and visually, using residual plots.  The null hypothesis for normal 

distribution and equal variance was rejected so non-parametric tests were used on tooth tip 

length and width.  A Kruskal-Wallis Test was performed to test whether these measurements 

varied based on tooth location.  They did not significantly vary with location (p > 0.05) so all 

lengths were analyzed together.  Tooth tip length and width were plotted against carapace 

length to explore the relationship between the two variables (Fig. 4.5 & Fig. 4.6).  Both 

measurements have a positive relationship with carapace length, more so in males than 

females.  A non-parametric form of a two-way ANCOVA was performed.  The test appropriate 

for these data was the Scheirer-Ray-Hare test, an extension of the Kruskal Wallis test, with 

considerably lower power than a typical ANOVA (Dytham 2003).  

Teeth #2, #3 and #4 were measured three times each and the means were used in the 

analysis.  The data were tested for normality using a Kolmogorov-Smirnov test and tested for 

equal variance using Levene’s test of equality of variances and visually, using residual plots.  I 

could not reject the null hypothesis for normal distribution and equal variance, so parametric 

tests were used in this analysis.  A Pearson correlation test was used to determine if carapace 

length, a measure of overall size, was correlated with teeth length. There were significant 

correlations between all three measurements and carapace length (p < 0.01, Fig. 4.7), so a two-

way analysis of covariance was used to analyze tooth length among populations and among the 

sexes.   
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The 5
th
 metasomal segment was measured once for all ninety-nine individuals. The 

data were tested for normality using a Kolmogorov-Smirnov test and tested for equal variance 

using Levene’s test of equality of variances and visually, using residual plots.  The null 

hypothesis for normal distribution could not be rejected; however, equal variance was rejected 

and a non-parametric test was used to analyze the 5
th
 metasomal length between the sexes.  

Visual inspection of the data (Fig. 4.8) suggests a positive relationship with carapace length, so 

the 5
th
 metasomal lengths were regressed against carapace lengths and the residuals were 

used in a Mann-Whitney U test to investigate sexual dimorphism in this trait. 

 
4.3 Results 

 
4.3.1 Peg Sensilla Density 

 
The Pearson test for correlation revealed peg sensilla density exhibits a significant 

negative correlation with carapace length (p < 0.01, Fig. 4.4), with females having more peg 

sensilla on average per given area (Fig. 4.4).  The ANCOVA revealed there was a significant 

population, sex and interaction effect (p < 0.01).  The mean peg sensilla density for females 

was on average significantly higher than males.  Females had a mean density of 2.374 * 10
-2

 

(se 1 * 10
-4

) peg sensilla per square micrometer and males had a mean density of 1.978 * 10
-2

 

(se 1 * 10
-4

) peg sensilla per square micrometer.  There were significant among population 

differences for peg sensilla density (p < 0.01).  Mean peg sensilla densities for populations are 

given in table 4.1.  Due to the significant interaction between sex and population, a more 

meaningful result comes from looking at intrasexual differences within a population.  As shown 

in Figure 6, 64% of the populations demonstrated significant sexual dimorphism in the density of 

their peg sensilla (p < 0.025).  Populations that were sexually dimorphic were populations one, 

two, four, six, seven, eight, ten, twelve and fifteen (p < 0.025, Fig. 4.9, Table 4.1).  In order to 

compare between populations, I compared the mean peg sensilla density among populations 

for each sex.  There is more variability and more significant differences in peg sensilla densities 

among populations of females than there are of males (Tables 4.2 and 4.3).  Six populations of 
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males were significantly different from other populations (p < 0.025).  Of these populations, 

population four was significantly different from populations eight and nine, population five was 

significantly different from populations eight and nine, population seven was significantly 

different from population eight, population eight was significantly different from populations four, 

five, seven and fifteen, population nine was significantly different from populations four and five, 

and population fifteen was significantly different from populations eight and nine.  All 

populations of females demonstrated a significant difference from at least one other population.  

Of these populations, population one was significantly different from populations four, five, six, 

eight, nine, eleven and fourteen, population two was significantly different from populations 

eight, nine and eleven, population three was significantly different from populations nine and 

eleven, population four was significantly different from populations one and nine, population five 

was significantly different from populations one and nine, population six was significantly 

different from populations one and nine, population seven was significantly different from 

populations eight, nine and eleven, population eight was significantly different from populations 

one, two, seven, twelve, thirteen and fifteen, population nine was significantly different from 

populations one through seven, ten and twelve through fifteen, population ten was significantly 

different from population nine, population eleven was significantly different from populations 

one, two, three, seven, twelve, thirteen and fifteen, population twelve was significantly different 

from populations eight, nine and eleven, population thirteen was significantly different from 

populations eight, nine and eleven and population fifteen was significantly different from 

populations one, eight, nine and eleven. 

4.3.2 Tooth Tip Width 

 
There was no significant difference in tooth tip width among populations (p > 0.1), nor 

was there a significant interaction effect between population and sex (p > 0.1, Table 4.4).  

However, there was a significant difference between male and female tooth tip width, adjusting 

for carapace length (p < 0.001, Table 4.4).  Males across populations had a mean tooth tip 
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width of 51.5 µm (+/- s.e. 1), compared to females, which had a mean tip width of 29.7 µm (+/- 

s.e. 1).  Figure 4.6 shows this difference is most pronounced in individuals with larger carapace 

lengths.    

4.3.3 Tooth Tip Length 

 
There was no significant difference in tooth tip length among populations (p > 0.1), nor 

was there a significant interaction effect between population and sex (p > 0.1, Table 4.5).  Like 

tooth tip width, males had significantly longer tooth tip lengths than females (p < 0.001, Table 

4.5).  Mean tooth tip length for males across populations was 555.5 µm (+/- s.e. 11) and mean 

female tip length was 206.2 µm (+/- s.e. 11).  Figure 4.5 again shows that the sexual 

dimorphism is more pronounced between individuals with larger carapace lengths.  

4.3.4 Length of Teeth 

 
All three variables demonstrated a significant population effect (p < 0.001) and sex 

effect (p < 0.001) but none of them exhibited a significant interaction between sex and 

population (p > 0.1).  In all three measurements, males had significantly longer tooth lengths for 

teeth #2, #3 and #4 (p < 0.001, Table 4.6, Fig. 4.10).  Tooth #2 was the longest measured, 

followed by tooth #3, then tooth #4.  However, the difference between the teeth, were not 

significant (p > 0.1).  Mean tooth length for tooth #2 in males was 248.9 µm (+/- 4.4), compared 

to females who had a mean tooth length of 230.2 µm (+/- 4.4).  Mean tooth length for tooth #3 in 

males was 245.2 µm (+/- 4.2) and in females it was 221.1 µm (+/- 4.3).  Mean tooth length for 

tooth #4 in males was 240.2 µm (+/- 4.1), compared to females who had a mean length of 220.1 

µm (+/- 4.1). 

4.3.5 Metasomal Length 

 
Accounting for carapace length, males had on average, significantly longer 5

th
 

metasomal segments than females (p < 0.001, Fig. 4.8).  This difference is most pronounced in 

males with large carapace lengths. 
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Fig. 4.1.  Picture of Paruroctonus sp. showing the location of carapace length 
measurement, 5

th
 metasomal length and the location of the pectines. 
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Fig. 4.2.  Picture illustrating the measurements of tooth tip length taken from the pectines of 
Paruroctonus boreus, using scanning electron microscopy. 
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Fig. 4.3.  Picture illustrating the measurements of tooth tip width and peg sensilla density, taken 
from the pectines of Paruroctonus boreus, using scanning electron microscopy. 
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Table 4.1.  Comparison of sexually dimorphic marginal mean peg sensilla densities within 
populations of Paruroctonus boreus.  Densities represent the number of peg sensilla per square 

micrometer x 10
-2

 (+/- standard error x 10
-2

). 
 

Population Male Female P-value 

1 

 

1.95 (.1) 

 

2.97 (.1) 

 

P < 0.01 

2 2.11 (.1) 

 

2.96 (.2) 

 

P < 0.01 

3 

 

2.55 (.1) 

 

2.50 (.1) 

 

P = 0.75 

 

4 

 

2.08 (.1) 

 

2.47 (.1) 

 

P = 0.02 

5 

 

2.14 (.2) 

 

2.42 (.1) 

 

P = 0.40 

 

6 

 

1.72 (.1) 

 

2.35 (.1) 

 

P < 0.01 

7 

 

1.96 (.1) 

 

2.72 (.1) 

 

P < 0.01 

8 

 

1.71 (.1) 

 

2.02 (.1) 

 

P = 0.01 

9 

 

1.60 (.1) 

 

1.68 (.1) 

 

P = 0.27 

 

10 

 

1.86 (.1) 

 

2.48 (.2) 

 

P < 0.01 

11 

 

1.73 (.1) 1.94 (.1) 

 

P = 0.03 

 

12 

 

2.10 (.1) 

 

2.54 (.1) 

 

P = 0.01 

13 

 

2.11 (.1) 

 

2.65 (.1) 

 

P = 0.08 

 

15 

 

2.06 (.1) 

 

2.63 (.1) 

 

P < 0.01 
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Fig. 4.4.  Peg sensilla density (y-axis) is negatively correlated with carapace length (x-

axis) in male and female Paruroctonus boreus (p < 0.01). 
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Fig. 4.5.  Tooth tip length (y-axis) exhibits a positive relationship with carapace length (x-axis) in 
Paruroctonus boreus.  This relationship is more pronounced in mature males (carapace length 

> 4.3 mm), than in females. 
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Fig. 4.6.  Tooth tip width (y-axis) exhibits a positive relationship with carapace length (x-axis) in 
Paruroctonus boreus. Males show a steep increase in tooth tip width at the onset of maturity 

(carapace length > 4.3 mm) 
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Fig. 4.7.  Tooth length in Paruroctonus boreus increases with carapace length.  There is not a 
significant difference between the lengths of tooth #2, #3 and #4 (p > 0.1). 
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Fig. 4.8.  The 5
th
 metasomal segment in Paruroctonus boreus shows a positive relationship with 

carapace length.   There is significant sexual dimorphism in their 5
th
 metasomal segment (p < 

0.01), especially at maturity (carapace length > 4.3 mm). 
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Fig. 4.9.  Estimated marginal means of peg sensilla density in male and female Paruroctonus 
boreus across populations, using carapace length as a covariate.  Bars represent one standard 
error and asterisks indicate a significant difference between male and female densities within a 

population, adjusting for multiple comparisons  (p < 0.025). 
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Table 4.2.  Pairwise comparison of female peg sensilla densities of Paruroctonus boreus.  

Boxes marked with an (*) indicate a significant difference between the populations (p < 0.025). 

 

POP 

 

1 

 

2 

 

3 

 

4 

 

5 
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Table 4.3.  Pairwise comparison of male peg sensilla densities of Paruroctonus boreus.  Boxes 

marked with an (*) indicate a significant difference between the populations (p < 0.025). 
 

POP 

 

1 

 

2 

 

3 
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Table 4.4.  Results of the Scheirer-Ray-Hare Test for Tooth Tip Length in Paruroctonus boreus 

(r-squared value of 0.836) 

 

 SS SS/MStotal d.f. P-value 

CL 915843.77 15 1 < 0.001 

Pop 225360.46 3.7 13 0.99 

Sex 2110596.73 34.6 1 < 0.001 

Pop*Sex 309150.677 5.1 13 0.97 

     

 
 
 
 
 

Table 4.5.  Results of the Scheirer-Ray-Hare Test for Tooth Tip Width in Paruroctonus boreus 
(r-squared value of 0.782) 

 

 SS SS/MStotal d.f. P-value 

CL 1083745.9 17.8 1 < 0.001 

Pop 594406.4 9.7 13 0.71 

Sex 718430.9 11.8 1 < 0.001 

Pop*Sex 369919.5 6.1 13 0.94 
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Table 4.6.  Comparison of sexually dimorphic marginal means for the length of teeth #2, #3 & 
#4 within populations of Paruroctonus boreus. Measurements are given in micrometers (+/- se).  

Asterisks indicates a significant difference between the sexes. 

 

Population Tooth # Male Female 
1 

 

2 

3 

4 

236.5 (13.3) 

226.9 (12.8) 

221.6 (12.5) 

211.6 (15.7) 

192.7 (15.2) 

186.2 (14.7) 

2 

 

2 

3 

4 

228.1 (10.1) 

223.7 (9.8) 

215.9 (9.5) 

246.6 (27) 

242.5 (26.2) 

211.1 (25.3) 

3 

 

2 

3 

4 

225.6 (15.8) 

222.6 (15.3) 

224.1 (14.9) 

197.4 (15.6) 

200.9 (15.1) 

201.3 (14.6) 

4 

 

2 

3 

4 

237.3 (15.6) 

238.0 (15.1) 

235.9 (14.6) 

247.5 (13.5) 

239.1 (13) 

237.3 (12.6) 

5 

 

2 

3 

4 

243.4 (27.9) 

256.2 (27) 

248.2 (26.1) 

229.5 (11.9) 

221.9 (11.5) 

224.0 (11.2) 

6 

 

2 

3 

4 

277.3 (15.4) 

264.9 (14.9) 

276.1 (14.4) 

219.3 (15.4) 

206.7 (14.9) 

216.8 (14.4) 

7 

 

2 

3 

4 

241.4 (11.3) 

229.5 (10.9) 

234.2 (10.6) 

232.9 (13.3) 

227.3 (12.9) 

235.1 (12.5) 

8 

 

2 

3 

4 

300.4 (18.8) 

292.3 (18.2) 

280.5 (17.6) 

242.2 (15.4) 

210.1 (14.9) 

234.4 (14.4) 

9 

 

2 

3 

4 

212.0 (10.2) 

202.6 (9.9) 

195.4 (9.5) 

188.0 (13.8) 

169.1 (13.4) 

163.2 (12.9) 

10 

 

2 

3 

4 

239.8 (15.4) 

234.6 (14.9) 

226.7 (14.4) 

238.4 (19) 

230.8 (18.4) 

227.5 (17.8) 

11 

 

2 

3 

4 

287.1 (18.8) 

305.9 (18.2) 

276.0 (17.6) 

251.7 (15.4) 

250.7 (14.9) 

248.9 (14.4) 

12 

 

2 

3 

4 

253.4 (15.4) 

250.3 (14.9) 

246.1 (14.4) 

256.9 (15.7) 

256.6 (15.2) 

256.4 (14.8) 

13 

 

2 

3 

4 

284.9 (13.6) 

276.8 (13.2) 

275.8 (12.7) 

250.6 (15.4) 

246.6 (14.9) 

238.7 (14.4) 

15 

 

2 

3 

4 

218.2 (15.2) 

208.1 (14.9) 

206.4 (14.4) 

209.8 (11.4) 

200.9 (11) 

200.5 (10.7) 

Mean 2* 

3* 

4* 

248.9 (4.4) 

245. 2 (4.2) 

240.2 (4.1) 

230.2 (4.4) 

221.1 (4.3) 

220.1 (4.1) 
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Fig. 4.10.  Paruroctonus boreus exhibits significant sexual dimorphism in pectinal tooth lengths 
for tooth #2, #3 & #4 in all populations (p < 0.001).  Numbers represent mean tooth length and 

the bars represent +/- one standard error. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 48 

Table 4.7.  Comparison of sexual dimorphism of scorpion pectines among and within families, 
including data from Paruroctonus boreus.  This table is adapted from (Gaffin and Brownell 

2001) and new data are in bold. 

 

Family Species Sex No. 

Teeth/ 

2 pectines 

No. 

Pegs/ 

Tooth 

Total no. 

Pegs 

No. 

Pegs  
QuickTime™ and a

TIFF (LZW) decompressor
are needed to see this picture.

 ⁄ 
QuickTime™ and a

TIFF (LZW) decompressor
are needed to see this picture.

 

Vaejovidae Anuroctonus 

phaiodactylus 

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

 
QuickTime™ and a

TIFF (LZW) decompressor
are needed to see this picture.

 

19 

13 

201 

115 

3,819 

1,495 

2.55 

 Nullibrotheas 

allenii 

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

 
QuickTime™ and a

TIFF (LZW) decompressor
are needed to see this picture.

 

24 

17 

160 

82 

3,840 

1,394 

2.75 

 Paruroctonus 

mesaensis 

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

 
QuickTime™ and a

TIFF (LZW) decompressor
are needed to see this picture.

 

75 

48 

1,600 

180 

120,000 

8,640 

13.89 

 Uroctonus 

mordax 

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

 
QuickTime™ and a

TIFF (LZW) decompressor
are needed to see this picture.

 

27 

20 

1,100 

153 

29,700 

3,060 

9.71 

 Vaejovis 

confusus 

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

 
QuickTime™ and a

TIFF (LZW) decompressor
are needed to see this picture.

 

34 

27 

1,000 

292 

34,000 

7,884 

4.31 

 Vaejovis 

spinigerus 

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

 
QuickTime™ and a

TIFF (LZW) decompressor
are needed to see this picture.

 

46 

37 

1,000 

310 

46,000 

11,470 

4.01 

 Paruroctonus 

boreus 

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

 
QuickTime™ and a

TIFF (LZW) decompressor
are needed to see this picture.

 

56 

38 

566 

149 

31,696 

5,662 

5.60 

Buthidae Centruroides 

exilicauda 

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

 
QuickTime™ and a

TIFF (LZW) decompressor
are needed to see this picture.

 

50 

44 

800 

490 

40,000 

21,560 

1.86 

 Parabuthus 

pallidus 

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

 
QuickTime™ and a

TIFF (LZW) decompressor
are needed to see this picture.

 

72 

62 

1,650 

1,050 

118,800 

65,100 

1.82 

Chactidae Superstitionia 

donensis 

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

 
QuickTime™ and a

TIFF (LZW) decompressor
are needed to see this picture.

 

12 

12 

800 

490 

9,600 

5,880 

1.63 

Diplocentridae Didymocentrus 

comondae 

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

 
QuickTime™ and a

TIFF (LZW) decompressor
are needed to see this picture.

 

17 

15 

1,050 

152 

17,850 

2,280 

7.83 

Scorpionidae Pandinus 

gregoryi 

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

 
QuickTime™ and a

TIFF (LZW) decompressor
are needed to see this picture.

 

36 

34 

1,400 

900 

50,400 

30,600 

1.65 

 



 

 49 

4.4 Discussion 

Paruroctonus boreus demonstrates significant differences in peg sensilla density 

between populations, between sexes, and in their interaction.  I reject the null hypothesis, that 

males would have a greater peg sensilla density than females. Females have a greater peg 

sensilla density on average.  There are interpopulation differences, likely due to their isolation 

from each other.  The more interesting result came from the interaction of population and sex.  It 

suggests that populations are adapting or evolving independently of each other in response to 

localized selection or genetic drift.  This is indicated by the presence of sexual dimorphism in 

some populations and not others.  While there is definitely something influencing this change in 

peg sensilla density, between the populations, I cannot say what the mechanism is.  There is no 

obvious pattern to the differences in peg sensilla density among populations.  Peg sensilla 

density is not correlated with latitude, longitude, elevation or sympatry.  However, I hypothesize 

the following.  Populations seem to occupy habitats with similar abiotic factors (Chapter 2) but 

this analysis did not include soil type.  Scorpions are usually habitat specialists and uniquely 

adapted to the substrate in which they live (Polis 1990a).  However, Brownell (2001) showed 

that the spatial frequency of sand grains in the soil had a stronger relationship with pectine teeth 

than it did with peg sensilla, and suggested that the peg sensilla are better adapted for detecting 

substrate structure or detecting chemical cues, such as pheromones.  The latter of the two may 

best explain the variation among the populations given their behavioral response to sympatric 

conspecifics and not their allopatric counterparts (Chapter 3).  Therefore, male peg sensilla 

density change is driven by the pheromones of their conspecifics.  Assuming that males 

experience strong selection on their ability to detect substrate borne chemical cues, we would 

expect less variation in peg sensilla density among populations than females.  This is a likely 

scenario illustrated by greater among population variation in females than in males (Table 4.2, 

Table 4.3 & Fig. 4.9).  Females are likely to experience less selection pressure on their peg 

sensilla density, since they do not actively search for males, and therefore, demonstrate more 
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variability among populations than males.  The negative correlation between peg sensilla 

density and carapace length may be explained by the size of the pegs themselves.  There are 

no data on the absolute size, but smaller individuals may have smaller peg sensilla diameter, 

therefore, a greater density per square area.  Hjelle (1990) noted there were differences in the 

structures of the peg sensilla between the sexes in some scorpion families but did not indicate 

any size differences. As a result, differences in diameter of the peg sensilla may also explain 

sexual dimorphism in Paruroctonus boreus.  Future studies could look at the size of the peg 

sensilla and the space between them to help explain the differences seen. 

Males had on average significantly larger teeth as indicated by tooth tip width, tooth tip 

length and length of teeth #2, #3 and #4.  The only measure of pectinal tooth size that 

demonstrated a difference between populations was tooth length.  Similar to what Hjelle (1990) 

found in Paruroctonus mesaensis, Paruroctonus boreus males demonstrated a steep increase 

in the area of the teeth which contain peg sensilla at maturity.  This sexual dimorphism, 

pronounced at maturity, supports the idea that the pectines are important to the reproductive 

biology of P. boreus.   

The 5
th
 metasomal segment has been implicated in courtship behavior and noted to be 

sexually dimorphic in other scorpion species (Francke and Jones 1982, Polis and Sissom 1990, 

Tallarovic et al. 2000).  My results demonstrate that Paruroctonus boreus also exhibits sexual 

dimorphism in this trait, specifically at maturity.  Perhaps a longer 5
th
 metasomal segment 

facilitates the courtship process or indicates their size to potential mates or enemies.  Future 

behavioral studies are needed to address the function and importance of this trait.   

In conclusion, traits thought to be associated with the reproductive ecology in 

Paruroctonus boreus are all sexually dimorphic, with exceptions in a few populations that did 

not demonstrate sexual dimorphism in peg sensilla density.  The degree of sexual dimorphism 

is greatest in mature individuals.  Males did not demonstrate a dramatic change in their peg 

sensilla density at maturity, like the other traits did.  However, the total number of peg sensilla is 
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higher in males and increases dramatically at maturity because of the increase in tooth tip width 

and tooth tip area.  The tooth length of both sexes increased with size, with males having longer 

teeth in all size classes.  Males have more teeth than females (Haradon 1985) and this did not 

vary with population.  I was unable to accurately count all the peg sensilla on each tooth, but it 

is possible to obtain an estimate of the total number of peg sensilla per tooth, by multiplying the 

tooth tip width, tooth tip length and peg sensilla density.  This provides an estimate of 566 peg 

sensilla per tooth in males and 150 peg sensilla per tooth in females and is within the range of 

other species in the family Vaejovidae (Table 4.7). 
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CHAPTER 5 

PHYLOGEOGRAPHY OF PARUROCTONUS BOREUS IN THE WESTERN US 

5.1 Introduction 

The scorpion genus Paruroctonus Werner, 1934, currently contains 29 species, and is 

widely distributed in the Western US and Mexico.  California has the most species with up to 16, 

primarily found west of the Sierra Nevada Mountains and south into desert regions (Sissom 

2000).  Many of these species are limited to sand dunes and isolated mountain ranges (Polis 

1990a, Sissom 2000).  Haradon (1983, 1984a, b, 1985) partitioned Paruroctonus into several 

small groups he believed to be monophyletic based on morphological characters.  Paruroctonus 

boreus, the most wide-ranging species, was assigned to the boreus infragroup and smaller 

boreus microgroup. Haradon (1985) grouped P. silvestrii and P. bantai with P. boreus into the 

boreus microgroup, using morphometrics primarily associated with the chelicerae.  It has been 

common practice for systematists to use these characters as well as trichobothria and setae 

patterns to identify scorpion species (Sissom and Francke 1981, Sissom 1990).  However, 

molecular evidence suggests P. boreus and P. utahensis group sister to each other (personal, 

unpublished data).  These species belong to different “monophyletic groups” as assigned by 

Haradon (1985), which suggests that the fundamental characters traditionally used in scorpion 

systematics may not resolve the true relationship at the specific or subspecific level. 

Paruroctonus boreus appears to exhibit variation in size, color and setae patterns 

(Tourtlotte 1974, personal observations).  This suggests populations are under different 

selection pressures or that they represent multiple species within P. boreus.  Although this 

variation has been noted (Gertsch and Soleglad 1966), there have been no previous 

investigations of among population variation in morphological or molecular characters in this 

geographically widespread species.   
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Scorpions have a conservative body plan that has changed little since the Devonian 

period (Polis 1990), and using morphological characters in scorpion systematics may not reveal 

lineages that have diverged recently.  Investigators have begun to use gene sequence 

information to infer evolutionary relationships of scorpions (Gantenbein et al. 1999, Yamashita 

and Fet 2001, Fet et al. 2003).  The most commonly sequenced genes are the nuclear 18s and 

mitochondrial 16s, ribosomal genes, which have been valuable in revealing relationships at the 

genus level and above but are less informative at the species level, yielding weak support for 

relationships (personal observation).  More recently, investigators have sequenced multiple 

genes or gene fragments to analyze phylogeography or intraspecific variability in scorpions 

(Gantenbein et al. 2003, Parmakelis et al. 2006).  These two studies of Eurasian taxa are the 

first to use multiple genes to assess the biogeography or phylogeography of a species or 

species group in scorpions.  To date, there has not been a similar study in a North American 

species.  I used data from mitochondrial 16s and CoxI fragments to assess the phylogeography 

of Paruroctonus boreus in the Western US.  Fundamental to this research is identifying any 

cryptic species.  Is P. boreus one species and if so, do populations demonstrate variability 

among sites that exhibit geographical affinities, which can give insight into current distribution of 

the species.   

5.2 Materials and Methods 

Individuals from 15 populations were euthanized by freezing at - 20ºC for 1 hour and 

then immediately preserved in 95% ethanol.  These populations serve as a representative 

sample of the populations on a north-south and east-west gradient.  The left pedipalp was 

removed and genomic DNA was extracted within 48 hours of preserving.  Specimens 

representing the populations are shown in Table 5.1 and Chapter 2, in this manuscript.   

DNA was extracted above using DNeasyTissue Kit (250) Cat. No. 69506.  Two 

mitochondrial genes, 16S rRNA (~ 290 bp) and cytochrome oxidase subunit I (~ 944 bp), were 

amplified from 51 specimens by polymerase chain reaction (PCR) in a PTC-100 Thermal 
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Cycler (MJ Research).  For the 16S fragment, a pair of scorpion specific primers were used as 

reported in (Gantenbein et al. 1999) and for the amplification of the COI gene, primers were 

used as described in (Vink et al. 2005).  A negative control was used and the PCR product was 

run out on 1% agarose gel to visually inspect.  Sequencing reactions were performed using 

standard ABI protocols and sequenced using an ABI 3130 XL Sequencer.     

I used maximum likelihood (ML) in PAUP*4.0b10 (Swofford 1999) and Garli 0.951 

(Zwickl 2006) and a Bayesian analysis in Mr.Bayes 3.1.2 (Huelsenbeck and Ronquist 2001, 

Ronquist and Huelsenbeck 2003) to infer the phylogeny for each dataset (16S, COI, combined 

data) separately.  The model of evolution for all analyses was chosen using the Akaike 

Information Criterion (AIC) in ModelTest 3.04 (Posada and Crandall 1998) by means of 

successive iterations.  ML analyses were conducted using a heuristic search with the chosen 

model, TBR branch swapping, 10 random-addition replicates, and a neighbor-joining starting 

tree.  Bootstrap support was calculated in Garli with default options using 100 replicates.  The 

best ML tree was then used in MrModeltest 2.2 (Nylander 2004) to determine the parameters 

for a Bayesian analysis according to the AIC.  These parameters were input into MrBayes 3.1.2 

for 5,000,000-10,000,000 generations with four chains, two repetitions, and sampling every 

1,000 generations.  Sampling was stopped after the standard deviation of split frequencies was 

<0.01.  The first 2,000,000-5,000,000 generations were discarded as burnin.  Outgroup taxa 

used to root the tree were Vaejovis confusus (family Vaejovidae) and Mesobuthus gibbosus 

(family Buthidae).  Pairwise distances were obtained from PAUP* for COI sequence information 

using the Hukes-Cantor model of substitution. 
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5.3 Results 
 

Sequences were obtained from fifty-one (14 populations) and fifty-five (15 populations) 

specimens for 16S and COI respectively.  Sequence lengths for the 16S gene averaged 290 bp 

and 944 bp for COI for a combined analysis of 1234 bp.  The total combined analysis yielded a 

4 equally likely trees, from which a consensus tree was generated.  The chosen model of 

evolution for both datasets was the GTR + I + G model.  For ML analyses in PAUP*, I set all 

parameters to the values estimated by MrModeltest.  For analyses conducted in Garli and 

MrBayes, the program estimated the parameters based on the general model derived from 

MrModeltest.  

The analysis showed strong support for a clade consisting of individuals from 

population 3 grouping sister and basal to all other individuals (Fig. 5.1).  However, two 

individuals (C 30 and C 4) from population 3 grouped within other populations.  Working up the 

tree, all individuals from population 9 grouped together, sister to the other populations.  The 

sister clade was supported by the Bayesian analysis but not the bootstrap analysis.  Within this 

clade, there is strong support for a clade containing populations 5, 10, 11, 12 and 15.  All 

individuals from population 5 grouped together with one individual from population 12 with 

strong support.  Nested within this clade is a grouping supported by the Bayesian analysis but 

not the bootstrap analysis.  The Bayesian analysis supports a clade containing all individuals 

from population 2 with one individual from population 11 and 14 as basal to a large polytomy.  

Within the polytomy, all individuals from population 1 group together with strong support.          

Despite the broad geographic sampling (Chapter 2), there was little phylogenetic 

structure reflecting the geographical locations among the populations.  Branch lengths were 

small within clades and individuals from multiple populations group together.  Pairwise 

distances (Table 5.2) demonstrate population 3 is the most divergent, being on average 7% 

divergent from other populations based on the COI data.  Populations of Paruroctonus boreus 

averaged 4% divergence from each other (range 0 – 8%).  Eight of the fifteen populations 
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exhibited multiple haplotypes.  The outgroup species Vaejovis confusus and Mesobuthus 

gibbosus demonstrated 15% and 28% divergence respectively.   

 
 

Table 5.1.  Specimens of Paruroctonus boreus sequenced for 16S and COI gene fragments.  
The population number corresponds to the Figures in Chapter 2, the letters correspond to the 
labeling of specimens on the tree and the coordinates of each population are given in degrees 

decimal. 

Pop. Map # Pop. Letter Specimens Pop. GPS 

Coordinates 

1 A A10,A16,A18,A19,A28,A3 N 38.05445 

W 119.12532 

2 B B1, B16, B2, B36, B4, B9 N 40.46 

W 120.57 

3 C C1, C14, C15, C16, C23, C30 N 40.601367 

W 117.91349 

4 D D16, D20, D22, D3, D30, 

D33 

N 39.393925 

W 119.83883 

5 E & H E1, E15, E2, E33 

H11, H15, H21, H4 

N 36.3688 

W 115.6287 

6 K K16, K18, K301, K36 N 42.902839 

W 115.6927 

7 L L2, L3, L301, L5, L6 N 44.1312833 

W 121.33235 

8 M MJF1, M4, M8 N 46.2 

W 111.95 

9  N N24, N202, N209, N16, N13 N 38.226869 

W 109.4582 

10 O O11, O16, O18, O33, O9 N 37.19 

W 112.66 

11 P P1, P13, P16, P201, P21 N 39.33516667 

W 108.203 

12 Q Q11, Q6, Q9 N 40.82 

W 115.73 

13 R R10, R2, R3, R4, R9 N 39.4455 

W 116.7561 

15 S S1, S501 N 37.5611 

W 110.0087 

14 T T201 N 41.6726667 

W121.94618 



 

 57 

 
 

Fig. 5.1.  The single most likely tree for Paruroctonus boreus inferred from the total combined 
sequence evidence information of the genes 16S and COI.  Significantly supported branches 

are indicated by their bootstrap/posterior probabilities displayed above the branches.  Outgroup 
branch lengths have been adjusted in order to display the tree in this manuscript. 
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 pop1 pop2 pop3 pop4 pop5 pop6 pop7 pop8 pop9 pop10 pop11 pop12 pop13 pop14 pop15 

pop1                

pop2 0.023               

pop3 0.076 0.064              

pop4 0.065 0.065 0.065             

pop5 0.054 0.038 0.077 0.05            

pop6 0.015 0.027 0.075 0.042 0.054           

pop7 0.019 0.027 0.081 0.032 0.058 0.023          

pop8 0.031 0.023 0.081 0.042 0.054 0.035 0.035         

pop9 0.038 0.031 0.067 0.042 0.035 0.035 0.042 0.046        

pop10 0.044 0.028 0.069 0.032 0.03 0.045 0.042 0.044 0.037       

pop11 0.039 0.022 0.039 0.034 0.028 0.036 0.04 0.044 0.035 0.029      

pop12 0.037 0.025 0.075 0.035 0.037 0.041 0.037 0.039 0.037 0.036 0.033     

pop13 0.021 0.019 0.078 0.041 0.05 0.03 0.03 0.027 0.034 0.042 0.037 0.03    

pop14 0.023 0 0.064 0.024 0.038 0.027 0.027 0.023 0.031 0.028 0.022 0.025 0.019   

pop15 0.052 0.036 0.07 0.046 0.015 0.052 0.056 0.052 0.04 0.024 0.028 0.04 0.048 0.036  

Table 5.2.  Pairwise distances among populations of Paruroctonus boreus inferred 
from the COI gene using the model of substitution JC69.  
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5.4 Discussion 
 

The analyses show there is some structure among the populations.  Most populations 

are grouping together as expected with the exception of populations 10, 11 and 12.  These 

populations group within multiple clades with strong support.  Population 10 and 11 are located 

near the southern and eastern extent of the range of Paruroctonus boreus but population 12 is 

centrally located within the distribution.  This analysis suggests population 3 groups basal to the 

other populations.  However, two individuals from this population grouped within other clades.  

This population is located in central Nevada, centrally located within the distribution of 

Paruroctonus boreus.  The specimens that formed the basal clade may represent a primitive 

haplotype and specimens that grouped with other populations represent more recent 

haplotypes.  Population 9, located in eastern Utah was strongly supported as basal to all 

populations except population 3.   

Paruroctonus boreus was determined to be one species in this study for the following 

reasons.  Genetic distances among the populations are consistent with the exception of 

population 3, which had large distances, but two individuals from this population grouped with 

other populations.  On average, populations were only 4% divergent from each other and 15% 

divergent from the familial outgroup.  The morphological differences among populations were 

minimal (Chapter 4).  Although, there is some genetic structure among populations elevating 

any of them to species would be unjustified at this time.    

Without molecular clock or fossil dating, I cannot assign a timeline to when 

Paruroctonus boreus may have evolved.  I presume the family Vaejovidae evolved between the 

Jurassic period and the last ice age because the sister family Chactidae occurs in South 

America.  Historical events likely to have affected the distribution of P. boreus would include the 

inundation of the Great Basin Region by salton seas, Lake Bonneville and Lake Lahontan.  

These lakes occupied a large area in western Utah and western Nevada.  At the same time 

lower temperatures and glaciers may have excluded Paruroctonus boreus from the northern 
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part of their current range and the mountains that they currently inhabit in the southern part of 

their range.  This scenario would support the origin of P. boreus in central Nevada.  This 

corresponds to population 3, which groups basal to and within other clades.   

Range expansion could have progressed rapidly as the seas dried up and the glaciers 

retreated, allowing population 3 to expand in all directions.  As temperatures warmed, 

populations would have been forced northward or up in elevation.  Multiple populations of 

Paruroctonus boreus in the south are restricted to isolated mountain habitats surrounded by 

unsuitable habitat.  It is doubtful that these populations are part of a large panmictic population 

across the western US.  I suggest populations are isolated and the lack of phylogenetic 

structure among populations can be explained by incomplete lineage sorting that occurred 

during rapid range expansion and secondary isolation.  Riddle and Honeycutt (1990) found 

similar results among populations of grasshopper mice in the western US and suggested either 

post-isolation dispersal or recent isolating events caused the phylogenies to be unresolved.  

Their first explanation can almost certainly be ruled out for P. boreus as they have not been 

observed traveling long distances.    
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