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ABSTRACT 

 

HIGH PERFORMANCE CLUSTER AND  

GRID COMPUTING SOLUTIONS  

FOR SCIENCE 

 

Umeshkumar Keswani, M.S. 

 

The University of Texas at Arlington, 2008 

 

Supervising Faculty: David Levine  

 Computing for science has very peculiar requirements. There is an enormous 

amount of data to analyze to get useful information. This requires greater computing 

power, huge data storage and high-capacity network. High Performance Computing 

(HPC) is the perfect solution that satisfies these requirements. Here, we look at two high 

performance implementations that provide useful solutions to computing problems in 

science, making possible scientific experiments and discoveries that otherwise would 

not have been possible.  
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CHAPTER 1 

INTRODUCTION 

Physical sciences are about understanding nature. Typically, this process 

involves gathering data and analyzing it to get some useful scientific information. 

Scientists are always looking for tools that help them achieve this goal. Computer 

science, which is an applied science, has provided and continues to provide many such 

tools. It has helped automate many a manual process. Reducing the time spent in 

gathering and analyzing data from months to weeks and in some cases to days. The 

collaboration between physical sciences and computer science has been beneficial for 

computer science as well. The hunger of scientists for new discoveries is driving 

computer science professionals to come up with better tools that can assist in this 

endeavor. 

Improvements in technology have made possible scientific experiments that 

were earlier unthinkable. These experiments have generated an enormous amount of 

data at a shockingly brisk pace. Without the help of faster and better computing tools 

analyzing this data might take scientists several lifetimes. Computing tools can be made 

faster by employing more computing power. This additional computing power can be 

garnered in multiple ways. One of the methods is to put more transistors on a single 

chip making processors execute applications faster. However, this approach alone is not 

sustainable since it leads to more heat dissipation hence, more power consumption. 
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 A better approach is to put multiple processors on multiple chips inside the 

same machine. This approach requires that the task performed by a computing tool to be 

divided into multiple sub-tasks that can be executed simultaneously on separate 

processors. However, there is a practical limit to the number of processors that can be 

placed in a single machine. All the processors in the machine have to contend for 

resources such as access to the memory bus. Hence, after a certain limit adding more 

processor does not enhance the computer performance. To overcome this limitation, in 

addition to employing multiple processors in a single machine, multiple machines can 

be employed. This approach is known as High Performance Computing (HPC).   

1.1 Cluster Computing 

A cluster is group of similar computers connected using a high speed network 

usually running the same operating system and same software toolset, and more 

significantly under one administrative domain. It can be loosely defined as a group of 

computers that work together in a unified manner, such that in many aspects, they 

appear similar to a single computer. Utilizing such clusters to provide or execute 

computing solutions is known as cluster computing [1].  

Clusters can be classified into three main types: high performance clusters, load 

balancing clusters and high-availability clusters. High-availability clusters are mainly 

used for improving the availability of services that the cluster provides. They operate by 

having additional nodes (computers) to provide service when some of the system 

components fail. Load balancing clusters operate by accepting all incoming workloads 

through one or two front-end computers and then distributing the tasks amongst a 
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collection of back end machines. These types of clusters are generally used as server 

farms. High performance clusters are implemented to provide increased performance by 

splitting a task into several sub tasks, which are then executed on different nodes in the 

cluster.  

1.2 Grid Computing 

Grid computing [2] can be defined as a group of clusters loosely connected 

together via the internet. The Grid is the next generation in distributed computing. It is a 

conglomeration of hardware and software resources pooled together to provide huge 

computing power and storage capabilities.  

The key distinction between clusters and grids is mainly in the way resources 

are managed. In the case of clusters, a centralized resource manager performs the 

resource allocation and all nodes cooperatively work together as a single unified 

resource. Whereas, grids are a collection of different clusters hence, resource 

management is de-centralized. In addition, grids do not aim at providing a single system 

view. 

1.3 Goal of this thesis 

A new era has dawned with the advent of HPC. Scientists have exploited HPC 

to its benefit like no other group. Here, we look at two such implementations of HPC 

that have broken new ground. 

First, a high performance cluster computing implementation for genome biology 

known as REPCLASS [3]. REPCLASS is an automated software tool that classifies 

Transposable Elements (TEs) [4] (repetitive DNA) in eukaryotic genomes [5]. There are 
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software tools that help with de novo identification of repeats in the genome but 

REPCLASS is the first tool that helps to classify these repeats. Classifying TEs in 

different genomes not only helps biologists study the TE composition of different 

genomes but also brings them a step closer to a complete understanding of the genome. 

In this document, we take a detailed look at the improvements that not only make 

REPCLASS workflow quicker but also help it weed out non-pertinent artifacts and 

provide better biological information. 

The second high performance implementation we consider is a grid computing 

solution for High Energy Physics (HEP). Panda [6] is a massive grid computing 

middleware designed to handle enormous amounts of data generated by the particle 

physics experiment ATLAS [7] located at CERN near Geneva, Switzerland. In 

particular, we talk about a problem with the centralized approach of Panda to the 

distribution of pilots to different types of clusters and we present an implementation that 

alleviates this problem for clusters running Portable Batch System (PBS) [8] by 

modifying the existing solution to employ a de-centralized approach. 
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CHAPTER 2 

CLUSTER COMPUTING SOLUTION FOR GENOME BIOLOGY 

2.1 Background 

2.1.1 Genome Biology 

All living organisms can be classified in two broad categories, prokaryotes and 

eukaryotes. Prokaryotes (e.g. bacteria) are a group of organisms that lack a membrane-

bound structure called nucleus in their cell, the fundamental working unit of every 

organism. Most prokaryotes are unicellular organisms, but some are multicellular. 

Eukaryotes (e.g. humans) on the other hand have cells with a well-defined nucleus. The 

nucleus provides better regulation of bodily functions. It is surrounded by cytoplasm, 

which mainly consists of water. All the bodily functions are performed by means of 

proteins that are produced in the cytoplasm. The type of proteins produced in a cell 

depend on the proteins encoded in the DNA [9] contained within the nucleus of that cell 

which in turn depend on the genes that are turned on in the DNA which finally depend 

on the organ that cell belongs e.g. liver cells produce different proteins than that 

produced by brain cells. DNA, which stands for Deoxyribose Nucleic Acid, is 

fundamentally made up of a chemical compound known as nucleotide. A nucleotide 

consists of a molecule of sugar, a molecule of phosphoric acid and a base. This base can 

be A (Adenine), T (Thymine), C (Cytosine), or G (Guanine). Every nucleotide has a 5’ 

(5 prime) and 3’ (3 prime) end.  
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(Image Credit: U.S. Department of Energy Human Genome Program, 

http://www.ornl.gov/hgmis) 

Figure 2.1: Structure and composition of nucleic acid 

 

A number of nucleotides are linked together to form a nucleotide chain or 

sequence (e.g. ACCGTCGA) with 5’ end of one nucleotide attached to 3’ end of 

another. Further, a ladder like structure is formed by combining two nucleotide chains 

with the hydrogen bonding (pairing) between the bases of respective nucleotides 

forming the steps (figure 2.1). A binds with T and C binds with G on the opposite 

strand.  A single such pairing of bases is known as a base pair (bp).  This ladder like 
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structure is then coiled to form a double helix, which is further coiled to get 

chromosomes (figure 2.2). Two strands, which form the double helix coil, are referred 

to as a forward strand and a reverse complement strand going from left to right and right 

to left in a positive direction. In the positive orientation the start of the strand is called 

5’ and the end is 3’.  

 
(Image Credit: U.S. Department of Energy Human Genome Program, 

http://www.ornl.gov/hgmis) 

Figure 2.2: Cell, chromosomes and DNA structure 

 

 The complete set of DNA of any organism is collectively known as the 

genome. Genome of any organism contains both genes and repetitive DNA. Genes are 

fundamental hereditary subunits. They encode proteins that are synthesized in the 

cytoplasm to perform bodily functions. Majority of the genome is repetitive DNA with 

genes forming a very important minority.  
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The nucleus also contains other molecules of proteins and RNA (Ribonucleic 

Acid). The function of some RNA is to copy genetic information from DNA and export 

this information into the cytoplasm where it is translated into proteins. RNA is single 

stranded whereas DNA double stranded, and RNA contains uracil instead of thymine as 

one of the possible bases.  

There are two general types of genes: non-coding genes and protein coding 

genes. Non-coding genes encode various functional RNA molecules. Coding genes 

serve as a template for encoding proteins through a two-step process where the gene is 

first transcribed into RNA and then translated into amino acid chains. The boundaries of 

a protein-encoding gene are defined as the points at which transcription begins and 

ends. The core of a protein coding gene is the coding region, which contains the 

nucleotide sequence that is eventually translated into an amino acid (and eventually a 

protein) sequence. The genes are composed of two primary alternating structural 

components called exons and introns (figure 2.3). The exons carry the information 

required for protein synthesis and they are translated into the corresponding proteins. 

The noncoding parts of the gene are called introns. 

 
Figure 2.3: Gene, exons and introns representation [3] 
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The genome size varies for each organism. Table 2.1 shows the genome sizes of 

some eukaryotic organisms along with the estimated number of genes [10] and 

percentage content of repetitive DNA. The table illustrates that the variations in genome 

size cannot be explained by the variation in gene numbers, but that it correlates 

relatively well to the amount of repetitive DNA. Larger eukaryotic genomes, such as 

those of some plants or those of mammals contain larger amount of repetitive DNA than 

the smaller genomes of nematode or yeast, for example. 

Table 2.1: Genome size and number of genes [10, 11, 12] 

Organism Genome Size 

(bases) 

Estimated 

Genes 

% repetitive 

DNA 

Human (Homo sapiens) ~3 billion ~30,000 44.4 

Lab mouse (M. musculus) ~2.6 billion ~30,000 39 

Fruit Fly (D. melanogaster) ~137 million ~13,000 22 

Roundworm (C. elegans) ~97 million ~19,000 6 

 

2.1.2 Repetitive DNA 

Repetitive DNA was earlier considered junk but, recent studies have revealed 

that TEs might be involved in various important basic biological processes like gene 

silencing, gene regulation and the evolution of genes and proteins [13-16]. In most 

eukaryotic genomes, the largest fraction of repetitive DNA is made of interspersed 

repeats. The human genome (figure 2.4) contains 44.4% [12] of interspersed repeats, 

3% coding regions (excluding those of TEs) and 2% of satellites and micro-satellites 

(small repeated sequences at least 10 bp long). The remaining are non-coding regions of 

unknown origins. 
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Figure 2.4: Human genome composition [3] 

 

Repetitive DNA in the genome can be classified as either tandem repeats or 

interspersed repeats. Tandem repeats are sequences that contain multiple continuous 

repetitions of the same sequence motifs. Interspersed repeats are copies of long 

nucleotide sequences dispersed at multiple locations throughout the genome. 

Interspersed repeats are usually much longer than tandem repeats. Almost all the 

interspersed repeats are generated by a method called transposition and therefore are 

referred to as Transposable Elements (TEs) or transposons. Transposition is a reaction 

that facilitates the movement of discrete DNA segments between many chromosomal 

sites.  

Tandem repeats are typically excluded from genome sequence projects because 

of inherent difficulty in cloning tandem repeats. However, tandem repeats are easily 

identified and classified based on the pattern or sequence, unit length of the sequence 

and the number of units. Microsatellites are typically shorter than 1000 bp and 

composed of tandem repeat units 2bp to 10bp long. Minisatellites are composed of 

tandem repeat units longer than microsatellites, from a few bp to 100bp. Minisatellites 
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span from 1 kbp to 100 kbp. Satellites are generally made of larger units (>100bp) and 

occur in arrays of 100-1000 tandem repeat units and are predominantly located in the 

well-defined chromosomal regions, such as centromeres. In contrast, interspersed 

repeats are derived from a very diverse range of TEs for which a much more complex 

classification is required. They have different structural properties and different 

methods of transposition, by which they replicate. More details on their classification 

and characteristics are provided in the following sections. 

2.1.3 Transposable Elements 

Transposable elements are generally 100 to 20,000 bp long. They make up a 

large part of interspersed repeats in the genome of any eukaryotic organism and have 

huge diversity. They have different structural properties and different methods of 

transposition, by which they replicate. TEs transpose themselves to another part of the 

genome using either the "copy-paste" or the "cut-paste" method. In the cut-paste 

mechanism, a TE is excised from one site (a position in the DNA sequence) and 

inserted at another site on either the same or a different chromosome. In the copy-paste 

mechanism, a TE creates a RNA copy of itself, which is reverse transcribed into a DNA 

molecule that is subsequently reinserted in the genome (figure 2.5). There are two main 

classes of TEs based on whether or not they have an intermediate involved during 

transposition or not, (1) transposition with an RNA intermediate (copy-paste) and (2) 

direct DNA transposition (cut-paste).  
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 2.1.3.1 Transposition with a RNA intermediate 

This class of transposable elements (CLASS I) follow a mechanism of 

transposition which involves an RNA intermediate. This RNA copy is converted to 

DNA copy using an enzyme called as reverse transcriptase. Transposition mechanism of 

these TEs is similar to retrovirus replication hence they are also known as 

retrotransposons. Some of these TEs have long direct repeats on either ends. These 

repeats are known as long terminal repeats (LTR). This result in two subclasses: LTR 

retrotransposons and Non-LTR retrotransposons. 

 
Figure 2.5: Transposition of Transposable Elements (TE) [3] 

  



13 

 

2.1.3.2 Direct DNA Transposition 

Class II elements transpose directly from the DNA and do not form intermediate 

sequences. This class is subdivided into two major subclasses, DNA transposons and 

Helitrons. DNA transposons are elements bounded by terminal inverted repeats (TIR) 

on either end. The DNA transposition [17] creates short gaps on either side of the 

inserted sequence on the target location. The host site repairs these gaps, creating target 

site duplications (TSD) (figure 2.5), which is the characteristic of most transposons. The 

other subclass of elements, Helitrons, transposes in a similar way but they do not form 

target site duplications. These elements insert between A on the 5’ end and T on the 3’ 

end. They also have different structural properties when compared to DNA transposons.  

 

2.1.3.3 TE Classification 

The levels of TE classification are based on certain properties of the TEs, which 

distinguish them. Class distinctions are created based on the transposition intermediate 

and mode of transposition. In the next level, subclass is distinguished based on 

structural properties, integration mechanism and the coding capacity. The structural 

properties are terminal inverted repeats (TIRs), long terminal repeats (LTRs), and 

terminal simple sequence repeats (SSRs). The integration mechanism is reflected by the 

target site duplications (TSD), which the TEs create in the flanking host DNA upon 

insertion on the target side. 
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The next level of classification is superfamilies, which are distinguished by 

integration mechanism (e.g. size and sequence of the TSD) as well as phylogenetic 

analysis of the element-encoded proteins (if present). The classification chart [3] (figure 

2.6) provides detailed information about the classification of TEs for eukaryotic 

genomes, along with the classification criteria. 

2.1.4 TE Characteristics 

Different types of TEs exhibit different peculiar characteristics. Knowledge of 

presence or absence of these characteristics can be exploited to classify the TEs. We 

look in detail at some of these characteristics. For a recent review of the classification of 

TEs, see Wicker et al. (2008) (Nature Reviews Genetics) [43]. 

2.1.4.1 Homology 

Different elements code for different enzymes, which helps us distinguish them. 

Each group of TEs further consists of autonomous and non-autonomous elements. 

Autonomous elements encode their own protein-coding domains (transposase, gag, pol, 

EN, RT, etc), as shown in the figure below while non-autonomous elements do not have 

protein-coding domains. Non-autonomous elements may nevertheless still propagate by 

using the enzymes encoded by the autonomous elements. We can classify autonomous 

elements by identifying the proteins they encode. Sometimes elements can be classified 

till the depth of superfamilies. Since, non-autonomous elements do not code for 

proteins, we exploit other structural properties to classify these elements 
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Most of these families of TEs occur in large copy numbers within a genome. 

These copy numbers vary depending on the element. The Alu family and all its 

subfamilies are the most abundant in the human genome, with at least a million copies. 

Figure 2.7 shows the different classes and some subclasses with their structure. For 

example, the cut-and-paste DNA transposons are flanked by terminal inverted repeats, 

while the LTR retrotransposons by direct long terminal repeats. The non-LTR 

retrotransposons do not have structural motifs, but instead feature simple sequence 

repeats at their 3’ end (see definition below) 

 
(Image Credit: Dr. Cedric Feschotte) 

 Figure 2.7: Structure of some TE subclasses 

 

2.1.4.2 Target Site Duplications (TSD) 

TSDs are formed during the insertion of a TE into a target site, which is 

typically associated with a staggered DNA double strand breaks. This double stranded 

gap is then repaired by the host genome to form target site duplications. The formation 

of a TSD is shown in figure 2.5. It has been found that these TSDs are sometimes 
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conserved in length and in certain cases, a clear sequence preference for the TSD may 

be observed. 

However, not all TEs create TSDs upon insertion. Using TSD information, we can 

classify most TEs to the depth of superfamilies. Following are some of the examples: 

• 4-6bp TSDs for most LTR retrotransposons 

• ‘TA’ TSD sequence for the Tc1/mariner Superfamily (DNA Transposons) 

• TSDs 8bp long for the hAT Superfamily (DNA Transposons) 

 

2.1.4.3 Terminal Inverted Repeats (TIR) 

 
Figure 2.8: Terminal Inverted Repeats (TIR) 

 

An inverted repeat is one where two different segments of the double helix read 

the same but in the opposite directions. Terminal inverted repeats are the inverted 

repeats that occur at the ends of a transposable element. This structure is common in all 

DNA transposons. The length of the TIRs varies from 10bp-500bp. 

 

2.1.4.4 Long Terminal Repeats (LTR) 

 
Figure 2.9: Long Terminal Repeats (LTR) 

 

Long terminal repeats are long direct repeating sequences of DNA that occur on 

either end of the TE. LTRs are a structural feature of LTR retrotransposons. LTRs vary 
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in length from 100bp to several kbp. For illustration, only a short stretch of an LTR is 

shown, in direct orientation, figure 2.9. 

 

2.1.4.5 Simple Sequence Repeats (SSR) 

SSRs are small sequences of 2bp-10bp length, which repeat in constant 

intervals. They are mainly characteristic of satellites, SINEs (Short Interspersed 

Nucleotide Elements) and LINEs (Long Interspersed Nucleotide Elements). They occur 

in the flanking regions or within the element, but exist either on the 3’ or 5’ end, but not 

on both ends. 

 
Figure 2.10: Simple Sequence Repeats (SSR) 

 

2.1.5 Genome Sequence Analysis 

Whole genomes for new species are being sequenced at an ever-increasing pace. 

There are currently around 4000 active genome project, out of which around 1000 are 

eukaryotic genomes [44]. These generate enormous amounts of raw sequence. Thus, 

there is an urgent need to annotate and analyze the content of these sequenced genomes 

in order to get useful biological information. Scientists hope that comparative analysis 

of these genomes will help understand how the genome works and evolves as a whole, 

and how the genes work to regulate the growth, development and maintenance of an 

organism.  Genes, which form only a minority of most eukaryotic genomes, have been 

studied and continue to be studied extensively. However, repetitive DNA, which is 
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mainly comprised of diverse set of TEs, forms a major part of the eukaryotic genome, 

has not been explored as thoroughly. TEs are the fastest evolving fraction of the 

genome and one that closely co-relates to the genome size. Once considered as ‘junk 

DNA’, it has now been established that TEs play a significant role in gene regulation 

and genome evolution. Hence, TEs need to be studied much more closely to clearly 

understand their role in genome structure and function. There are various tools available 

for analyzing genes but comparatively, there are very few tools that can help in 

analyzing repetitive DNA. One tool that goes a long way in helping with the analysis of 

TEs is REPCLASS. 

2.2 REPCLASS 

REPCLASS [3] attempts to classify newly identified TEs taking into account 

various characteristics, which characterize a repetitive element. REPCLASS has been 

predominantly developed for the classification of repeats identified in complete genome 

sequences and grouped into families by de novo identification programs like RECON 

[18] or RepeatScout [19]. Even though REPCLASS will accept any sequence as input, 

it is essential that the input is a consensus of the intact and ancestral (pre-mutated) 

sequence of an active repeat element, containing structural and sequence information 

necessary for the classification. In an ideal case de novo identification is performed on a 

new genome and the complete repeat library consisting of the consensus sequences of 

the repeat elements is provided as input to REPCLASS.  
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Figure 2.11: REPCLASS overview 

 

2.2.1 De novo Identification of Repeat Families 

Identifying families of repetitive elements is a vast and complex algorithmic 

problem. There are only a few algorithms and programs performing de novo 

identification of repeat families in whole genome sequences, and packaged as software 

tools such as RECON, RepeatScout, ReAS [20] and Piler [21]. In order to generate the 

input the consensus library from complete genomes REPCLASS uses RepeatScout, this 

is one of the methods to identify repeat families de novo. In this study, we used 

RepeatScout (RS) to produce de novo repeat library. RS has been shown to provide the 

best compromise between quantity and quality among de novo repeat finder programs 

[45]. However, any other program can be used to generate an initial list of TE sequence 

consensuses for a given genome to be analyzed by REPCLASS.  
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The complete genome sequence is the input to RepeatScout, which outputs a 

fasta [22] format file of the consensuses of the identified repetitive elements. 

RepeatScout reports all kinds of repetitive elements, including tandem repeats, 

satellites, micro-satellites and TEs. Since, they clash with the use of SSRs to classify 

non-LTR elements, all repeats predominantly or entirely composed of tandem repeats, 

SSR and other low-complexity repeats need to be filtered out. REPCLASS use Tandem 

Repeat Finder (TRF) [23] and nseg [24] programs to filter out these elements 

2.2.2 Automated REPCLASS workflow 

There is no one method that can be used to classify all the TEs with all its 

diversity. Hence, REPCLASS uses three different methods to classify TEs. REPCLASS 

workflow consists of four main parts 

• Homology based classification 

• TSD based classification 

• Structural based classification 

• Validation and grouping of results 

A fasta format file is an input to the workflow and is passed on to each of the 

three methods. These methods are executed in parallel to exploit the inherent 

parallelism of the solution and helps achieve better computing performance. Finally, 

results from all these methods are grouped together and outputs a tentative classification 

for the TEs. 
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Figure 2.12: REPCLASS classification workflow [3] 
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2.2.3 Homology Search 

 
Figure 2.13: Homology Based Classification 

 

The homology search uses tblastx to compare proteins encoded by the input TE 

families (query) to proteins encoded by known TE families (database). The tblastx 

script, which is part of the WU-BLAST [46] package, performs a heuristic search for 

local alignments of the protein sequences and detects regions of similarity between the 

query and the sequences in its database. We get information about known TE families 

from a database known as Repbase Update [47]. Repbase is a manually curated 

database of repeats (interspersed and tandem) found in eukaryotic genomes. The 

Repbase database is the most authoritative repository of known TE classifications and 

sequences.  

2.2.4 TSD Search 

Target site duplication is the process of creating duplicate sequences of a 

portion of the host genome at the ends of the transposable element when they are 
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inserted into new locations within the genome. This process creates the same sequence 

on both ends of the transposable element (for example, CGTTA<TE sequence>CGTTA, 

also see figure 2.5). Different families of TEs form different TSDs during insertion and 

this helps distinguish the TE family. This step is a computationally and memory 

intensive task as the entire genome needs to be searched for the various copies of the 

input TE sequence. 

 
Figure2.14: TSD Search 

2.2.5 Structural Classification 

The final method is the structural search, which is designed to identify the 

structural characteristics of TE subclasses and superfamilies. This is also a 

computationally intensive search since all the possibilities for such structures need to be 

searched. 
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2.2.5.1 Helitron Search 

Figure 2.15: Helitron Structure 

 

The Helitron [25, 26] subclass exhibits some unique structural properties that 

distinguish it from other repeated elements. All elements belonging to this class have 

conserved 5’-TC and CTRR-3’ (R = A or G) ends which do not have terminal inverted 

repeats. They contain 16-20bp long palindromes separated by 10-12bp from the 3’ end 

and transpose precisely between the 5’-A and T-3’, with no modifications at the AT 

target sites and the palindrome is rich in GC content.  

2.2.5.2 LTR Search 

Long Terminal Repeats (LTR) or direct repeats are a set of sequences that 

repeat in the same direction at both the 5’ and 3’ ends. LTRs vary in size from 100bp 

to several thousand bp. REPCLASS uses the sliding window algorithm to look for 

these repeats. It starts with 50 bp long windows on either sides of the sequence and 

allows a mismatch of 1bp every 10 bps. 

2.2.5.3 TIR Search 

Terminal inverted repeats (TIRs) are characteristic of DNA transposons. They 

are inverted repeats ranging for 10bp to 500bp, on either ends of the transposable 

element sequence. The presence of a terminal inverted repeat confirms that the 
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corresponding TE belongs to the DNA transposon subclass of class II. REPCLASS 

TIR search uses a third party einverted script, which is a part of the Emboss [27] suite 

to find all the inverted repeats. These inverted repeats are not necessarily terminal 

inverted repeats. Hence, TIR search parses through the einverted output to find 

inverted repeats that appear within 30bp on either end of the sequence. 

2.2.5.4 SSR Search 

Simple Sequence Repeats (SSRs) are formed by multiple repetitions of the 

same basic sequence motif. SSRs are characterized by their base sequence, the length 

of the sequence and the number of units. These parameters vary significantly, with 

SSRs from 1bp to 10 bp long. Repeats with more than 10bp sequence are considered 

as tandem repeats, satellites or micro-satellites. REPCLASS is only interested in 

SSRs that occur only at one end of the input sequence. REPCLASS SSR search is a 

two-step process. It looks for poly A tail and simple sequences repeats. 

2.2.5.4.1 Poly A Tail Search 

 
Figure 2.16: Poly A Tail 

 

The SSR search scans for Poly A tails at the 3’ end of the sequence allowing for 

a lapse of 10bp from the end and searching the 3’ end flanking. This is done considering 

that the RepeatScout might not have defined the ends properly. 
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2.2.5.4.2 Simple Sequence Search 

This search is based on a sliding window algorithm, where the window size is 

set from 1 to 5. This search is performed on only hundred base pairs towards the end 

along with 50bp of flanking. 

2.2.6 Validation and Grouping of Results 

The final process in the workflow is the grouping of the results obtained by the 

three methods of classification. The classification results from all the methods 

(Homology, TSD, and Structural) are combined together to provide a tentative 

classification. During the combination, some elements may be classified by more than 

one method. These elements are further checked to verify that they provide the same 

classification in all the methods. Some of the ambiguities are cleared based on the 

accuracy of the information gathered by the respective method. In cases where this 

cannot be resolved, the result of the individual method is shown to the user who can 

decide on the classification. The final classification for each element contains complete 

details about the element, such as the target site duplication length and consensus, TIRs, 

LTRs and SSRs.  

2.3 Results Obtained using REPCLASS 

2.3.1 Classification of TEs Annotated in Repbase 

The  classification  of  previously  annotated  TEs  in  Repbase acts  as  a  

control  for  the  efficiency  and  accuracy  of REPCLASS.  We ran these control 
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experiments for two genomes, Caenorhabditis elegans and Drosophila melanogaster 

for the following reasons, 

• C. elegans and D. melanogaster are the most extensively studied species for 

repeats. The staff at Repbase, a manually curated database for repeats, has over 

the last decade compiled a comprehensive list of repeats and carefully annotated 

them. . 

• The genome of these two species consists of an assortment of TEs.  This 

provides an understanding of the performance of REPCLASS on a wide variety 

of TEs. 

Before  running  REPCLASS, we  performed  the  following  steps  to  generate  

a  dataset  of consensus sequences from  the manually  classified TEs of  these genomes. 

• Since, Repbase has a list of all kinds of repeats even those that are not TEs, all 

the simple repeats, tandem repeats, satellites and micro-satellites were removed 

from the Repbase database for both the genomes. 

• Since, both these genomes have already been manually annotated in Repbase, all 

the information about these genomes was removed from Repbase. This was 

done to prevent all the TEs being classified by REPLASS based on homology. 

2.3.1.1 Caenorhabditis elegans 

• Number of repeats in Repbase: 174 

• Number of repeats after removing unclassified repeats: 116 

• Number of repeats classified by REPCLASS: 107 

• Percentage classified: 92% 
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• Accuracy of classification: 96% 

The accuracy of classification is measured by matching the superfamily of 

classification provided by REPCLASS to the superfamily of classification detail in 

Repbase. From the above numbers we can conclude that REPCLASS could not classify 

nine repeats that are already annotated in Repbase. REPCLASS failed to classify one 

LTR retrotransposon, two Helitrons, five DNA transposons and a Non-LTR 

retrotransposon. The table below shows the distribution of the number and percentage 

of repeats classified by each method. 

Table 2.2: Split of classification by different methods for C. elegans 

Classified by No. of repeats 

classified 

% of total 

classified 

TSD + Structural 28 26.17% 

Structural 25 23.36% 

Homology 21 19.63% 

TSD 12 11.21% 

TSD + Structural + Homology 10 9.35% 

Homology + TSD 6 5.61% 

Homology + Structural 5 4.67% 

 

In table 2.2, we can observe that, Structural classified most repeat families at 

63.55%, followed by TSD (52.34%) and least by Homology (39.26%). This validates 

the fact that, the C. elegans genome contains significantly more non-autonomous TEs as 

compared to the autonomous TEs (section 2.1.4.1).  

2.3.1.2 Drosophila melanogaster 

• Number of repeats in Repbase: 225 

• Number of repeats after removing unclassified repeats: 144 
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• Number of repeats classified by REPCLASS: 140 

• Percentage Classified: 97% 

• Accuracy of classification: 96% 

In the D. melanogaster genome, REPCLASS was not able to classify a couple 

of LTR retrotransposons, a DNA transposons and a Non-LTR retrotransposon. The 

table below shows the distribution of the number and percentage of repeats classified by 

each method. 

Above results, clearly show that given well-defined repeat consensus sequences 

REPCLASS was accurately able to classify more than 90% of the repeat sequences. 

Since, REPCLASS relies heavily on structural properties to classify the TEs, it is very 

important to have reasonably well defined ends for the input consensus sequences. 

Table 2.3: Split of classification by different methods for D. melanogaster 

Classified by No. of repeats 

classified 

% of total 

classified 

Homology 79 56.43% 

Homology + Structural 45 32.14% 

Homology + Structural + TSD 9 6.43% 

Homology + TSD 3 2.14% 

Structural + TSD 3 2.14% 

TSD 1 0.72% 

Structural 0 0.00% 

 

In table 2.3, we can observe that, most repeat families (97.14%) were classified 

using Homology, followed by Structural (38.57%) and then TSD (11.43%). This 

validates the fact that, the D. melanogaster genome contains significantly more 

autonomous TEs as compared to the non-autonomous TEs (section 2.1.4.1). 
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2.3.2 De novo Classification of TE Repeats 

In this step we compare the repeats identified de novo by RepeatScout in the C. 

elegans and D. melanogaster genomes and classified by REPCLASS with the repeats 

compiled and classified by Repbase. This provides an estimation of the performance of 

RepeatScout and REPCLASS combined and might lead to the discovery and 

classification of new TE families. 

2.3.2.1 C. elegans: 

• Number of repeats identified by RepeatScout:  1721 (after TR and nseg filtering) 

• Number of repeats classified by REPCLASS:  301 

• Percentage Classified:  17% 

2.3.2.2 D. melanogaster: 

• Number of repeats identified by RepeatScout:  1812 (after TR and nseg filtering) 

• Number of repeats classified by REPCLASS:  823 

• Percentage Classified:  45% 

 We can notice that in the aforementioned cases only 116 and 148 TE families 

have been annotated for C. elegans and D. melanogaster in Repbase whereas 

RepeatScout identified 1721 and 1812 repeat families respectively. Thus, there is a big 

difference in the input libraries in the earlier control experiments and those generated de 

novo using RepeatScout. This is the case, because the input library generated contains 

non-TE artifacts such as segmental duplications, gene families. In addition, single TE 

consensus sequences might have been fragmented into multiple sequences. More 
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interestingly, there might be some TE families that have not annotated by Repbase.  

This excessive number of repeat families in the de novo input library leads to two 

problems. First, it leads to some false classifications. Second, it takes much more 

computation time to process and classify these repeat families. 

2.4 REPCLASS Revised 

 

Figure 2.17: REPCLASS 2.0 Overview 

 To solve the problems mentioned above we decided to filter the RepeatScout 

output before feeding it into the REPCLASS workflow. We filter the RepeatScout 

output based on the information about TEs from the literature and empirical 

observations. The filtering criteria we use are the repeat length of the consensus repeat 
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families and the number of copies per repeat family in the genome. Figure 2.17 shows 

the revised overview of this new REPCLASS version, REPCLASS 2.0. 

2.4.1 Filtering Based on Repeatlength 

We calculate the repeatlength by counting the number of nucleotides that form 

the consensus sequence. Figures show the repeatlength distribution for C. elegans.  

 

 
Figure 2.18: C. elegans repeatlength distribution 

 

From the literature, we know that most TEs are more than 100 bp long. Also, we 

observed that all of the TEs annotated in Repbase for C. elegans (10 TEs less than 200 

bp) and D. melanogaster (2 TEs less than 200 bp) are also more than 100 bp long. 

Hence, we decided to remove all those repeat families identified de novo by 

RepeatScout that have repeatlength less than or equal to 100 bp. We consider this 100 
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bp threshold to be the minimum threshold that should be applied to all genome 

irrespective of the genome size and number of consensus repeats. However, it is 

possible that a higher threshold might perform better for some other genomes. Hence, 

we decided to provide a repeatlength distribution as part of the output, for every 

genome analyzed. This would help the user to adjust the minimum length threshold to 

better suit the genomic landscape being analyzed. 

2.4.2 Filtering Based on Copynumber 

 
Figure 2.19: Caenorhabditis elegans copynumber distribution 

 

Calculating the copynumber of repeat families is not an easy task. We use the 

blastn script (part of the WU-BLAST package) to BLAST the query consensus library 

against the targeted genome. We count all those hits has valid copies that are 85% 

similar to at the least half of the query sequence. We then draw the distribution graph of 
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both repeatlength and copynumber for the consensus library. Figures show copynumber 

distribution for C. elegans. 

2.5 Results Obtained using REPCLASS 2.0 

2.5.1 De novo Classification of TE Repeats 

2.5.1.1 C. elegans 

RepeatScout identified a total of 1851 consensus sequences. Out of these, 130 

were filtered out using tandem repeat filter and removing satellites and micro-satellites 

using nseg. We then plotted the repeat length distribution for the remaining 1721 

repeats. After discarding consensus sequences that were less than or equal to 100 bp 

long and after removing all the repeat families that had less than or equal to 10 copies, 

we were left with a library of 428 repeat families. 

 
Figure 2.20: Classification distribution for C. elegans repeats identified de novo using 

RepeatScout 

 

139  repeats  (32.5%)  of  the  filtered RepeatScout  output  was classified  by  

REPCLASS. Out of the 428 repeat consensuses, 79 repeats matched Repbase and 50 of 



36 

 

these were classified by REPCLASS. Given the high efficiency of REPCLASS on the 

C. elegans Repbase library (see section 2.3.2.1), we attribute the failure of REPCLASS 

to classify 29 repeats to incomplete or inaccurate definition of the corresponding 

consensus sequences by RepeatScout. In addition, 39 repeats are catalogued in Repbase 

but were not identified by RepeatScout. Finally and most interestingly, 89 of the 

identified repeats identified by RepeatScout and classified by REPCLASS do not show 

any significant similarity with repeats in Repbase. Thus, these 89 repeats potentially 

represent new families or subfamilies.  Out of these 89 repeats, 50 were chosen 

randomly for closer, semi-manual inspection and 43 could be validated as new families 

and subfamilies correctly classified by REPCLASS [50]. The remaining 289 repeats 

identified by RepeatScout do not match any sequences deposited in Repbase could not 

be classified by REPCLASS (figure 2.20). These families might not represent 

segmental duplications, gene families or other types of interspersed repeats and TEs 

currently not classifiable by the modules implemented in REPCLASS.  

2.5.1.2 D. melanogaster 

After running the D. melanogaster genome through RepeatScout, we obtained 

1844 repeat consensus sequences. After removing tandem repeats, satellites, 

consensuses with less than 100 nucleotides in length and less than 10 copies in the 

genome, we were left with 538 repeat families. Figures 2.22 and 2.23 show the 

repeatlength and copynumber distribution respectively for the D. melanogaster genome. 



37 

 

 
Figure 2.21: D. melanogaster repeatlength distribution 

 

 

 
Figure 2.22: D. melanogaster copynumber distribution 
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191 repeats (35.50%) were classified by REPCLASS.  Out of the 538 repeats 

consensuses identified, 92 matched those annotated in Repbase. Out of these 92 repeats, 

86 were classified by REPCLASS. 56 repeats that are part of Repbase were not 

identified by the de novo method. 105  of  the  identified  repeats  were  classified  by  

REPCLASS but  do  not  show  any  significant  similarity  with  repeats  in Repbase. 

These 105 repeats potentially represent new families or subfamilies. 341 repeats remain 

unclassified (figure 2.23).  

 
Figure 2.23: Classification distribution for D. melanogaster repeats identified de novo 

using RepeatScout 

 

Above results shows that REPCLASS combined with RepeatScout can be used 

as a powerful tool for the discovery of new repeat families. De novo classification for 

C.elegans lasted for about 63 minutes. 28 minutes for filtering and just more than 35 

minutes for TE classification.  TE classification for D.melanogaster required 2 hours 

and 10 minutes with additional 38 minutes for filtering before the classification. 
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2.5.2 Genome exploration with REPCLASS 2.0 

In this section, we apply the RepeatScout/REPCLASS suite for the analysis of 

Caenorhabditis brenneri and Drosophila pseudoobscura genomes for the following 

reasons: 

• These genomes have never been mined for TEs and annotated 

thoroughly before. Hence, it provides us with an opportunity to assess 

how REPCLASS performs on a newly explored genome with lower 

quality sequence and assembly. 

• These species are genetically related to C. elegans and D. melanogaster, 

but sufficiently divergent to expect virtually no overlap in sequence 

between their respective TE populations Also we wondered to what 

extent the overall TE content and composition would be evolutionarily 

conserved within the Caenorhabditis and Drosophila lineages. 

2.5.2.1 Caenorhabditis brenneri 

RepeatScout identified 8980 repeat families for C. brenneri. After removing 

tandem repeats and satellites using TRF and nseg we were left with 8802 repeat 

families. Filtering on repeatlength we removed 2506 consensus sequences form the 

library that were less than or equal to 100 bp long. An additional 2904 repeat families 

were discarded when we filtered out sequences with less than or equal to five copies in 

the genome. Figure 2.24 and 2.25 show the repeatlength and copynumber distribution 

for C. brenneri respectively. 
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Figure 2.24: C. brenneri repeatlength distribution 

 

 
Figure 2.25: C. brenneri copynumber distribution 
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 Out of the 3392 repeat families identified de novo by RepeatScout left in the 

consensus library after various filtering steps, 515 (15.2%) repeat families were 

classified by REPCLASS. Therefore, we were able to annotate more than 500 different 

TEs in a genome that had never been studied before. Moreover, we were able to do this 

extremely quickly, within a couple of hours. 

2.5.2.2 C. elegans and C. brenneri TE Profile Comparison 

 

 
Figure 2.26: Comparison of number of repeat families classified by REPCLASS for C. 

elegans to C. brenneri 

 

One of the most useful applications of REPCLASS is that it rapidly an accurate 

profile of TE diversity for a given genome defined by the relative amount and 

contribution of four major sub-classes of eukaryotic TEs: LTR retrotransposons, Non-

LTR retrotransposons, DNA transposons and Helitrons. Figure 2.26 displays the 
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comparison of the number of  repeat families classified by REPCLASS for C. elegans 

and C. brenneri for each of these four categories. These classification numbers are for 

consensus libraries obtained using RS and after removing tandem repeats and low 

complexity repeats.  

It is apparent from figure 2.26, that there is a significantly larger number of 

repeat families in all the 4 subclasses for C. brenneri than for C. elegans. Overall there 

was a 3.7 fold increase in the number of TE families classified by REPCLASS (139 

families vs. 508 families). The increase affects all TE subclasses, ranging from a 2.28 

fold increase in the number of Helitron families to a 5.19 fold increase in the number of 

LTR retrotransposon families. These data are indicative of an overall increase of TE 

diversity in C. brenneri. This difference is also apparent prior to REPCLASS 

classification at the level of the raw RS output, both before and after the filtering steps 

(428 consensus in C. elegans vs. 3392 in C. brenneri, after filtering). These results were 

unepxected because the total genome size of the two nematodes is not dramatically 

different (give total size of input sequence for both species), around 100 Mbp for C. 

elegans and close to 170 Mbp for C. brenneri. The average copynumber per repeat 

families is 115 for C. elegans and just 69 for C. brenneri (detailed view, table 2.4 ). 

Hence, we can conclude that an increase in TE diversity is not accompanied by an 

increase in total number of TEs in the C. brenneri genome.  

We wondered whether the vast difference in the number of repeat families 

detected by RS and classified by RC in the two species could be an artifact introduced 

by the disparity in quality of genome sequences used as input. For C. brenneri, we used 
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as input a 9.5-X whole genome shotgun assembly (WSGA) [49], while for C. elegans 

we input a high quality sequenced genome fully assembled into chromosomes. 

Intuitively RS might be expected to retrieve more fragmented repeats in a low-coverage 

whole genome shotgun assembly than in a high-quality genome sequence assembled 

into few chromosomes (6 chromosomes for C. elegans). Increased fragmentation would 

result in an inflated number of families accompanied by an overall shortening of 

consensus sequences. To test this possibility, we compared the average length of  the 

consensus sequences classified by RC for each TE subclasses in C. brenneri and C. 

elegans.  

Based on this data, it is clear that differential fragmentation and the discrepancy 

in quality of genome sequences cannot fully account for the increased number of TE 

families found in C. brenneri. Thus, we conclude that the results reflects a real 

biological difference in the TE landscape of these two nematode species [50].   

Table 2.4: Average length comparison of C. elegans and C. brenneri repeat families 

Subclass C. elegans C. brenneri 

DNA 649 558 

LTR 1403 1073 

NON-LTR 707 478 

HELITRON 891 1038 

 

Regardless of the amount of families recovered, we observe that the relative 

proportion of each of the TE subclasses is very similar in the two genomes  (figure 

2.27) Thus, there is a strong consevration of the overall TE profile in these two distant 

nematode species despite substantial differences in the number of TE copies and 
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families. These data support the hypothesis that the TE profile of a species is not the 

result of random and stochastic bursts of activity of different type of TEs, but rather that 

some forces are acting to shape and maintain TE composition for long period of 

evolutionary time [50]. 

 

 
Figure 2.27: Comparison of C. elegans and C. brenneri TE profiles 

 

 

2.5.2.3 Drosophila pseudoobscura 

RepeatScout generated a consensus library of 4363 de novo repeat families. 

TRF and nseg discarded 75 sequences. After removing all those consensus sequences 

that were less then equal to or less than 100 bp long (figure 2.28) and filtering 

sequences with less than or equal to 10 copies (figure 2.29) in the genome, we were left 

with 1673 consensus sequences. REPCLASS classified 877 repeat families, more than 

50% of the sequences identified by RepeatScout. 
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Figure 2.28: D. pseudoobscura repeatlength distribution 

 

 
Figure 2.29: D. pseudoobscura copynumber distribution 
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2.5.2.4 D. melanogaster and D. pseudoobscura TE Profile Comparison 

As earlier, here, we compared the number of repeat families classified by 

REPCLASS and the TE profile for the D. melanogaster and D. pseudoobscura 

genomes. Similar to the C. elegans and C. brenneri comparison graph, in the figure 

2.28, we see that there is a significant increase in the number of repeat families 

classified for D. pseudoobscura than for D. melanogaster.  Overall there was a two fold 

increase in the number of TE families classified by REPCLASS (815 families vs. 1671 

families). The genome size of both these species is nearly the same, ~120 mbp for D. 

melanogaster and ~140 mbp for D. pseudoobscura.  
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Figure 2.30: Comparison of number of repeat families classified by REPCLASS for D. 

melanogaster to D. pseudoobscura 
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To further understand this difference, we compared the average length of the 

consensus sequences classified by REPCLASS for each TE subclasses in D. 

melanogaster and D. pseudoobscura. We observe that, average length for LTRs and 

non-LTRs in D. pseudoobscura is nearly half of that for D. melanogaster (detailed 

view, see table 2.5). There are clear indications of fragmentation in the consensus 

sequences obtained by RepeatScout for the D. pseudoobscura genome [50].  

Table 2.5: Average length comparison of D. melanogaster and D. pseudoobscura repeat 

families 

Subclass D. melanogaster D. pseudoobscura 

DNA 508 330 

LTR 1411 766 

NON-LTR 906 519 

HELITRON 433 444 
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Figure 2.31: Comparison of D.melanogaster and D.pseudoobscura TE profiles 
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However, the overall TE profile of both the genomes is very similar, as 

confirmed by the comparative graph in figure 2.31.  Hence, this data also supports the 

hypothesis that the TE profile of a species is not the result of random and stochastic 

bursts of activity of different type of TEs, but rather that some forces are acting to shape 

and maintain TE composition for long period of evolutionary time. 

 

  2.5.2.5 Classification of Repeats in Fungi 

Increasingly in considering the genomes for TE classification, we have selected 

those genomes that serve less towards verification of already documented information 

hence the REPCLASS accuracy and more towards new and interesting discoveries. First 

we classified well-documented C.elegans and D.melanogaster libraries from Repbase. 

This was purely a control/verification measure. Then we moved on to de novo 

classification of C.elegans and D.melanogaster genome using consensus libraries 

obtained from RepeatScout. This was part a control measure and part new biology. We 

verified the RepeatScout/REPCLASS combined performance by showing that for both 

the genomes we could classify more than half the repeat families annotated in Repbase. 

We also made some new discoveries by classifying new TE families in genomes that 

have been extensively studied for decades. Following that, we classified the C.brenneri 

and D.pseudoobscura genomes. TEs in both these genomes have never been annotated 

before. We also selected these genomes because they are not too distantly related to 

genomes that we had already successfully classified. Hence, this step also helped as in 

validating the REPCLASS performance. Finally, continuing the same approach in this 
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final result sub-section, we not only are considering genomes that have never been 

annotated in terms of TEs and but also are not related to any of the genomes that we 

have already considered.  
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Figure 2.32: Comparing number of repeat families classified by REPCLASS among 

fungi 

 

Here, we consider four fungi genomes namely Lodderomyces elongisporus, 

Chaetomium globosum, Fusarium oxysporum and Puccinia graminis. Fungi genomes 

we have considered have gradually increasing genome sizes (measured in terms of base 

pairs) and thus might be expected to containing proportionally increasing amount of 

TEs. Application of the RepeatScout/REPCLASS suite should allow us to test directly 

this hypothesis and also to determine whether such an increase is associated with an 

overall increase of TE diversity (i.e. increase in the number of TE families) or with an 

increase in copy numbers of only a few families. Finally, REPCLASS will provide an 
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overview of the TE profile of each species and allow us to determine whether all 

subclasses are equally involved in changes in repeat content associated with genome 

size variation among fungi. L. elongisporus, a member of the saccharomycetale class of 

yeasts, has the smallest genome size (16 Mbp). C. globosum (class Sordariomycetes) is 

next at 35 Mbp followed by F. oxysporum (class Sordariomycetes) at 61 Mbp and 

finally P. graminis (class Uredinales) the biggest at 89 Mbp. One important fact to note 

is that all the fungi considered have evolved separately for more than 1000 million years 

[48]. In the figure 2.32 that shows graphs comparing the number of repeat families 

classified by REPCLASS for each of the fungi genomes, we can observe that as the size 

of the genome increases from L. elongisporus to P. graminis the number of repeat 

families classified also increases. This is in line with the earlier mentioned fact that size 

of the genomes co-relates to the number of TEs in the genomes. 
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Figure 2.33: TE profile comparison for fungi 
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Figure 2.33 shows a comparative view of the TE profile of fungi genomes. We 

can observe that as the size of the genome increases the percentage of ltr 

retrotransposons in the genome decreases whereas the percentage of DNA transposons 

in the genome increases. 

2.6 Conclusion  

• REPCLASS can be used to quickly and accurately classify TEs for any 

eukaryotic species. 

• REPCLASS is a tool that can discover new TE families and super-families, even 

in genomes that have been extensively studied. 

• REPCLASS is able to capture accurately the very different TE profiles of 

Caenorhabditis, Drosophila and humans. Hence, we can conclude that 

RepeatScout/REPCLASS suite would work well for any eukaryotic species. 

• Analysis of distantly related species of worm (C. elegans and C. brenneri) and 

flies (D. melanogaster and D. pseudoobscura) reveals that their TE profiles are 

conserved over a large evolutionary distance (more than 30 million years for 

both comparisons), despite the lack of nucleotide sequence conservation in the 

repeats identified. 

• RepeatScout/REPCLASS comparative analysis of very divergent ( more than 

1000 million years apart) fungal genomes having varied genome sizes reveal the 

following: 

o TE diversity and number of TEs increase with genome size 
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o Across wider evolutionary distance, we observe more dramatic changes 

in the TE composition of species 

• After running all these experiments, we are now in a good position to analyze 

hundreds of genomes available and thousands that will be released soon. 
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CHAPTER 3 

GRID COMPUTING SOLUTION FOR HIGH ENERGY PHYSICS 

3.1 Background 

3.1.1 High Energy Physics 

High Energy Physics (HEP) also known as particle physics is the branch of 

physics that studies the fundamental constituents of matter e.g. sub-atomic particles. 

These fundamental particles are not observed under normal circumstances in nature. 

They are created and detected during highly accelerated collisions of other larger 

particles. These high-energy collisions take place in huge particle accelerators. The 

biggest particle accelerator in the world today is the Large Hadron Collider (LHC) [28].  

3.1.2 LHC 

LHC is located near Geneva, where it spans the border between Switzerland and 

France about 100 m underground. The European Organization for Nuclear Research 

(CERN laboratory), a European joint venture of 20 member states build it. LHC is an 

underground ring of 27km in circumference. Two beams of subatomic particles called 

'hadrons' – either protons or lead ions – will travel in opposite directions inside the 

circular accelerator, gaining energy with every lap and finally colliding head-on at very 

high energy. Physicists from around the world will analyze the particles created in the 

collisions using special detectors in a number of experiments. 
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There are six experiments at the LHC. All of the experiments are run by 

collaborations of scientists from all over the world. Each experiment is distinct, 

characterized by its unique particle detector. The two large experiments, ATLAS and 

CMS [29], are based on general-purpose detectors to analyze the myriad of particles 

produced by the collisions in the accelerator. They are designed to investigate the 

largest range of physics possible. Having two independently designed detectors is vital 

for cross-confirmation of any new discoveries made. Two medium-size experiments, 

ALICE [30] and LHCb [31], have specialized detectors for analyzing the LHC 

collisions in relation to specific phenomena. Two experiments, TOTEM [32] and LHCf 

[33], are much smaller. They are designed to focus on ‘forward particles’ (protons or 

heavy ions). These are particles that just brush past each other as the beams collide, 

rather than meeting head-on. Here, we would talk about the ATLAS in detail. 

3.1.3 ATLAS 

ATLAS is one of the largest collaborative efforts ever attempted in physics. 

Currently, there are about 2100 physicists participating from more than 167 universities 

and laboratories in 37 countries. Starting later this year, the ATLAS experiment will 

start generating data, searching for new discoveries in the head-on collisions of protons 

traveling at extraordinarily high speed. Discovering new fundamental particles and 

fields and analyzing their properties is possible through statistical analysis of the 

massive amounts of data gathered by the ATLAS detector inside the LHC and its 
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detailed comparison with compute-intensive theoretical simulations. Figure 3.1 shows a 

detailed computer-generated image of the ATLAS detector. 

The ATLAS detector will collect an enormous amount of data, about 100 

kilobytes every 12 nanoseconds. To help digest this data the ATLAS experiment 

operates the trigger system which selects 100 interesting events per second out of the 

almost 100 million collected, the data acquisition system channels the data from the 

detector to the storage and the computing system analyzes more than 1000 million 

events recorded every year.  

Figure 3.1: A detailed computer-generated image showing a part of LHC and the 

ATLAS detector [7]. 

 

Traditionally, for an experiment such as ATLAS that has gigantic computing 

and storage requirements a centralized model may be selected. However, in the case of 

ATLAS, a globally distributed model for data storage and analysis is preferred. A 
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computing and data grid, a model that would provide the ability to perform high 

throughput computing and distributed data storage by taking advantage of many 

networked computers and storage devices around the world. One of the motivating 

factors for adopting a distributed model was the huge cost of maintaining and upgrading 

the necessary resources for such a computing challenge. These costs could be better 

managed when contributed to by participating universities and research institutes by 

funding local resources while still helping achieve the global goal. In addition, there are 

other advantages to having a computing and data grid; having distributed computing 

resources leads to better load balancing, efficient use of available resources, avoids 

bottlenecks and leads to data security by replicating the data at multiple independent 

geographical locations.  

The data generated by the ATLAS experiment will be distributed around the 

globe, according to a four-tiered model. A primary backup will be recorded on tape at 

CERN, the highest (tier-0) centre. After initial processing, this data will be distributed 

to a number of Tier-1 centers, large computer centers with sufficient storage capacity 

and huge computing power geographically spread across the world. The Tier-1 centers 

will make data available to Tier-2 centers, each consisting of one or several 

collaborating computing facilities, which can store sufficient data and provide adequate 

computing power for specific analysis tasks. Individual scientists will access these 

facilities through Tier-3 computing resources, which can consist of local clusters in a 
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university department or even individual PCs, which may be allocated for ATLAS data 

storage and analysis on a regular basis. 

The Brookhaven National Laboratory (BNL) in New York, an ATLAS Tier-1 

centre and all the associated Tier-2 and Tier-3 centers located across the US are known 

as US ATLAS. To meet the challenging ATLAS computing requirements, US ATLAS 

developed a production (running simulations, processing data to make it analyzable) 

and distributed analysis system called Panda. Panda runs independent of any grid 

middleware. It generally runs on the Open Science Grid (OSG) [34], a consortium of 

software and resource provider universities and research institutes across the US. Panda 

is also capable of running on the LHC Computing Grid (LCG) [35], TeraGrid [36] and 

other similar grid initiatives.  

3.1.4 PANDA 

Panda submits jobs to computing nodes all across US. These nodes are part of 

different clusters (sites) and sometimes part of different grids. These clusters run 

different batch systems like Condor [37], Portable Batch System (PBS), and other batch 

systems. Batch system is software that allocates jobs or tasks to be executed to all the 

computers in a cluster. In order to be a successful grid computing middleware, it is 

important that Panda is able to communicate with all the batch systems effectively using 

a common protocol. Panda achieves this by using Condor-G [38] and the Globus 

Toolkit [39], with GRAM [40] being the common communication protocol. Condor-G 

is the grid ready version of Condor and is able to communicate with Globus using 
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GRAM. Condor is a specialized workload management system for compute-intensive 

jobs whereas Globus is an open source software toolkit used for building grids. Every 

site in the grid has a Globus process running on the gatekeeper or the head node. 

Gatekeeper or head node in a cluster is a machine that is enabled for outside access. 

Every time Panda submit a job to a site remotely, it is delivered to the site by Condor-G. 

Condor-G communicates this job definition to the Globus process running on the head 

node via GRAM. Globus in turn spawns a new job-manager process that converts this 

job definition to the format required by the native batch system. The native batch 

system then schedules and executes the job. 

3.2 AutoPilot 

Panda was designed for handling jobs for the ATLAS experiment and hence 

some of the modules had experiment specific content. In September 2006, a new effort 

began in collaboration with the OSG to generalize Panda into a generic high-level 

workload manager usable by anyone in the OSG or the wider grid community. An 

important part of this new effort is AutoPilot [41]. AutoPilot is a simple and generic 

implementation of Panda pilot and pilot-scheduler for use in more varied environments 

than currently in use within Panda. Panda pilot is a lightweight execution environment 

used to prepare the computing resources for job execution, request the actual payload (a 

production or user analysis job) from the Panda server, execute it, and clean up when 

the job is done. These pilots are broadcasted from the pilot-scheduler to all the grid 

sites. 
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Figure 3.2: Simplistic representation of PANDA workflow 

 

AutoPilot’s pilot-scheduler implementation although generic continues the same 

Panda methodology. A centrally operated pilot-scheduler sending pilots to all the 

participating sites across the grid. However, this approach has encountered scaling 

limitations in sending pilots to a site. With the increase in the number of production and 

user jobs being executed, more pilots are submitted to service and prepare these jobs. 

This in turn has lead to very heavy GRAM traffic. In addition, each running pilot job on 

the site requires a job-manager process on the head node of the site. As a result, more 

number of pilot jobs leads to large memory consumption in addition to the excessive 

computing power required on the head node. 

To solve the above-mentioned problem we have to develop a process that 

submits pilots in a manner that reduces or, better yet, circumvents GRAM 
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communication. One implement able solution is to delegate the pilot submission activity 

to one of the nodes within the site i.e. local submission of pilots within the cluster. This 

node will disseminate pilots locally to other worker nodes generating no GRAM traffic. 

This way, the excess computing and data storage demands on the head node will be 

eliminated. Pilot submission by this approach would require surrendering the job 

control over to the local sites, rendering it difficult for others to access the pilot output 

and the generated log files. This problem is solved by allowing access to the pilot output 

and log files through an external link such as HTTPS.  

 
Figure 3.3: Detailed AutoPilot workflow. 

 

A move from remote pilot submission to local pilot submission mechanism 

would not be a problem for sites running the Condor batch system. AutoPilot currently 
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submits pilots using Condor-G commands, and these would work fine, even with 

Condor. However, it would not work for sites running any other batch system. Hence, 

the goal of this work is to enhance AutoPilot so that it is able submit pilots locally to 

sites running PBS. 

3.3 PBS-Capable AutoPilot 

PBS is an extensible batch queuing and job management system for the UNIX 

operating system. It is portable, very flexible and provides a graphical user interface. 

PBS consists of four major components. These are PBS commands, job Server, job 

executor, and job Scheduler. PBS commands are used to submit, monitor, modify, and 

delete jobs. These are classified into three categories, user commands (qsub, qstat, etc), 

operator commands (qenable, qdisable, etc) and administrator commands (qmgr, 

pbsnodes, etc). Operator and administrator commands require different access 

privileges than user commands.  

PBS user commands qsub and qstat are the most important and most used. Qsub 

command submits a job. Job script to be executed is passed as an argument. It returns 

the job id, if the job is successfully submitted. It also has several user-options like ‘–q’ 

to specify the destination queue you want the job to be submitted or ‘-I’ which used if 

you want the job to run interactively and many others. The command ‘qstat’ gets the 

status of a running batch job. Job id of the job being enquired for is passed as an 

argument. Job has to be in the running state for this command to be successful. 
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In the AutoPilot architecture, pilotScheduler is the central process that both 

submits and monitors pilots. It interacts with a number of tables that store information 

about the sites known to AutoPilot, different scripts to be executed in order to submit 

pilots on different batch systems and other similar data. The pilotController process 

populates most of these tables. The pilotScheduler also writes to the database but that is 

only when it is monitoring pilots. It collects the monitoring data using Condor-G 

commands and keeps the database updated. pilotScheduler also writes out the pilot 

outputs and log files in a designated area on a local machine so that it can be accessed 

by anyone interested. Figure is a detailed look at the AutoPilot architecture. 

To make AutoPilot capable of submitting pilots locally to sites running PBS 

with minimal changes we worked with the existing pilot scheduler framework provided 

by AutoPilot. Since, in addition to the submission capabilities AutoPilot architecture 

also provides for monitoring the submitted pilots, we had to make sure that not only the 

pilots were successfully submitted locally but also they were properly monitored and 

the monitoring data collected, was correctly communicated to the database so that it can 

be displayed on the central Panda AutoPilot Monitor [42]. 

To enable local PBS job submissions we introduce the PBS job submission 

command ‘qsub’ to AutoPilot and since, most sites have a dedicated queue for ATLAS 

jobs, we use the ‘–q’ option to specify the destination queue. To monitor the state of the 

job ‘qstat’ PBS command is used. The nature of the job status data communicated by 

PBS is different than Condor-G. Hence, we have to parse the PBS job status 
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information separately and had to convert it to the format understood by the AutoPilot 

database. Once the job status information is entered in the database, it is picked by the 

AutoPilot monitoring mechanism and displayed on the Panda AutoPilot Monitor. 
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