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ABSTRACT

ENHANCED BIOINFORMATICS DATA MODELING CONCEPTS

AND THEIR USE IN QUERYING AND INTEGRATION

FENG JI, Ph.D.

The University of Texas at Arlington, 2008

Supervising Professor: Ramez Elmasri

In bioinformatics research, scientists usually face the problems of modeling

complex data types and integrating diverse resources. Traditional data models such

as EER lack the expressing power to capture many characteristics that are common

in bioinformatics data. We first propose extensions to the ER model that allow accu-

rate representation of many of these characteristics. We then utilize these concepts

in an integrative system to provide an easy-to-use interface for biologists to construct

queries. Our research utilizes the enhanced conceptual modeling concepts to create

a prototype mediator for querying multiple data sources. The various relationships

between different biological entities are all semantically represented as domain on-

tologies stored in the mediator for experts to analyze and correlate the integrated

query results. The following research has been conducted: (1) We first propose new

EER schema notation to represent the common occurring biological concepts: the

ordering properties of the DNA sequences, the 3D structure of proteins and the func-

tional processes of metabolic pathways. (2) Then, we utilize these new relationships

v



in the development of the mediated domain ontology, which helps the interface design

and query processor implementation of our mediator system.

Our mediated schema features are based on a hybrid of taxonomy ontologies

(core concepts and external classification/annotation concepts) for interpretation of

raw data sets (protein and gene sequences) in the context of molecular interactions,

biochemical pathways and biological processes. We adopt the RDF data model

to implement the mediation data. Our mediator mainly takes a browsing-based

approach to integrate different data sources. Extra data can be dynamically retrieved

through the web service. By browsing the ontology tree in the query interface, users

can select concepts of interest and associated attributes to formulate queries based on

their domain knowledge. The query result is a set of various database entry accessions

with associated attribute values. Users can click each link of the accessions to see

the detailed reports, or cross-compare attributes of these data instances. Query

usability and performance experiments are tested for real data sets from UniProt

[30], ENZYME [8], CATH [23], and GO [29].
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CHAPTER 1

INTRODUCTION

A computer system, and a biological system, which one is more complex?

Probably, most people would consider the biology system to be more complex. But

before drawing a definite a conclusion, we must face the problems of effectively

querying and integrating the huge amount of bioinformatics data in the post-genomic

era [67]. So, what is this bioinformatics data? The core (raw) bioinformatics data

should include these data sources: nucleotide sequences, protein sequences, and 3D

chemical structures of these micro-molecules. All these data sets are at the molecular

level, that is, their existences can be verified, and their properties can be determined

experimentally. There are many levels of data beyond this core data set, such as the

structure features of genomic DNA sequences, the various functions of proteins, gene

expression patterns, and pathway models. These types of data sets can be roughly

considered as describing various functions and processes of the core data set (see

Table 1.1).

Data generated from life science domain are inherently complicated, highly

heterogenous, and updated very frequently. Their representations are syntactically

Table 1.1. Bioinformatics data sets

Core data Examples of high level of functions/processes
nucleotide sequence gene expressions, chromosome, genome organization
protein sequence protein families and interactions, pathway models
3D structure domain (tertiary structure), complex (quaternary structure)

1
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different, semantically diverse, and involve deep understanding of domain concepts

and relationships [19].

Currently, the publically available databases holding the above data sets amount

to more than 1,000 [59]. Not only does the total number increase each year, but also

the categories of these databases increases, not mentioning the amount and the com-

plexity of the above data sets stored there. This phenomena definitely brings us the

problems of how these data can be accurately modeled, efficiently organized, and

effectively queried.

1.1 Motivation

To date, most biological databases adopt the (object-)relational database sys-

tem. Major data repositories (EMBL [43], GenBank [13], and UniProt [30]) can

provide their database entries in many forms from legacy flat-file to more advanced

XML/RDF. The XML data exchange format offers a way to mix plenty of ”meta-

data” with the raw data represented in a document tree structure. Clients can apply

various processing tools to extract what they want. But all these endeavors can

not solve the problem of interoperation permanently under a distributed computing

environment. Different systems are installed with different Database Management

System (DBMS) to store different types of data. Most importantly, each schema

designer has different focus and view, even for the same set of data. For example,

to store the nucleotide sequence related to the gene concept, some people use entity

type Open Reading Frame (ORF), meaning the coding part of DNA sequence, while

others use Transcript, meaning the transcribed part of DNA sequence. So, good data

modeling, querying, and integration methodologies are desperately needed to make

this data-rich research area progress more rapidly.
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In this dissertation, we propose solutions to some of the problems related to

modeling and integrating bioinformatics data. The next two sections discuss model-

ing and integration problems.

1.1.1 Bioinformatics Data Modeling Concepts

Many scientists build their biological databases to store their experimental data

using relational database systems such as MySQLTMor PostgresTM. But concerning

the complexity of the data, traditional conceptual data modeling techniques lack the

intuitive expressing power to accurately represent them. Some work has been done

on their conceptual enhancement [16].

In modeling biological data we consider three frequently occurring concepts: se-

quence ordering, input/output processes, and molecular spatial structure. Sequence

data, such as nucleotides in DNA/RNA and amino acids in proteins, have this order

property in their physical constructs. Important biological processes such as gene ex-

pression, metabolism, cell signaling and bio-chemical pathway regulation all involve

ordered events and input/output processes. The biological functionality of these

entities are totally determined by their internal molecular structures and various

external interactions.

Because of the importance of these relationships, there is a need to model

them. Database conceptual models, such as the widely-used Entity-Relationship

(ER) model and Enhanced-ER (EER) model do not easily represent these com-

monly occurring concepts from the bioinformatics domain. This is because tradi-

tional database applications do not require these concepts. Although ordering can

be incorporated into relationships by adding one or more relationship attributes, this

would complicate the schema and would make it difficult to identify the ordered rela-



4

tionship. It is preferable to have explicit and clear representation of such important

and frequently occurring concepts.

A major part of this research is to extend ER and EER modeling to represent

bioinformatics data more accurately.

1.1.2 Querying and Integration Problems

Data integration in the domain of life science research means to obtain data

from diverse resources to test and validate a researcher’s point of view. So, it is a

hypothesis-driven process of data analysis.

A typical example is to characterize an unknown protein’s biological functions.

The starting point is the newly determined protein sequence. The initial result is

a list of similar proteins (or homologs) predicted by similarity search tools such as

BLAST. These proteins already have determined molecular structures or annotated

functions in various biological reactions, pathways or processes. Then, various in-

formation must be gathered from multiple online databases such as PubMed [46],

GenBank [13], UniPort [30], PDB [68], BIND [42], and KEGG [50]. The researcher

has to interpret many types of data from these variety of sources: literature review,

sequence alignment results, gene expression profiles, protein interactions and fam-

ilies, 3D domain structure, putative metabolic pathway models, and many others.

Unfortunately, each type of data is not easily identified and accessed because of

the variety of semantics, interfaces, and data formats used by the underlying data

sources. Based on collected relevant data sets, further experimental characterization

of this unknown protein can be carried out.

One problem closely associated with the data integration is data querying.

Consider this query example [92]:

"A corpus of micro-array experiments has revealed certain chemicals
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to increase the expressivity. We wish to limit those involved in the

"apoptosis" pathway. We further restrict to those chemicals which

affect proteins either very much or very little. Given that set of

chemicals, we look for chemicals with similar side-chains that have

a minimum toxicity in mice."

Even though each data source can provide a sophisticated query form in its

web interface, no individual data source can answer the above query directly due

to limited query capabilities of the data sources [88]. If these data sources can

provide interfaces to directly access their data without restriction, it is also hard for

the biologist to get familiar with so many different interfaces, and to specify a query

from his point of view. Different integrated views can be returned with different

queries against the same raw data set. So the integration system should provide an

easy-to-use query interface for scientists to design the meaningful queries that fully

utilize their domain knowledge.

Another major part of this research is to provide an easy-to-use but powerful

querying interface to diverse bioinformatics data sources.

1.2 Contributions

In this thesis, we advocate EER diagrammatic enhancement in modeling bioin-

formatics core data. We proposed new schema constructs to represent the commonly

occurring biological concepts, and utilize these new constructs in the formalization

and construction of our mediated domain ontology, and the development of the me-

diator system. Based on this mediated ontology, a powerful and easy-to-use query

interface is developed to access data from multiple diverse sources.
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1.2.1 EER Data Model Enhancements

In order to accommodate the special features of DNA sequences, protein struc-

tures, and metabolic pathways, we suggest significant yet minimal changes to the

EER model by introducing three special types of relationships: the ordered relation-

ship, the process relationship, and the molecular spatial relationship. In addition,

many relationships in bioinformatics require duplication of instances in ordered rela-

tionships, so we also propose extensions to allow multisets (or bags) of relationship

instances, where needed. Although the notational changes are minimal, they enhance

the modeling power to directly capture these concepts. We also give the formal defi-

nitions for these constructs. We show how these EER extensions can be mapped into

relations for implementation in relational databases such as ORACLETMor MySQL

TM. Also these extensions have been used to facilitate work on the development of

ontology and mediator systems as well as data mining and processing tools.

1.2.2 Mediated Domain Ontology

We proposed the Mediated Domain Ontology (MDO) for the purpose of bioin-

formatics data query and integration. The MDO consists of two sets of concepts:

the core, instance-supported domain concepts, and external, instance-associated an-

notation/classification concepts. The domain concepts in our proposed MDO can be

roughly classified into 3 types: entity concepts, attribute concepts, and relationship

concepts. Core entity concepts such as Protein, Nucleotide, Structure, Interaction,

Reaction, Pathway, Process, BioScource and DataScource, are manually set up by

the analysis of various molecular database entries. Attribute concepts include the

common attributes of the above entity concept instances, and standard annotation

concepts. External annotation concepts such as in Gene Ontology (GO) [29] and

Chemical Entities of Biological Interest (ChEBI) [31] can be queried and down-
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loaded automatically through the web service provider based on the user needs. The

MDO are a hybrid of several taxonomy ontologies. We apply the Resource Descrip-

tion Framework (RDF) data model in the design of mediator schema. Our mediated

schema features are based on a hybrid of taxonomy ontologies for integration of

protein and gene instance data in the context of interaction, pathway and process.

1.2.3 BioMediator Querying System and Browsing Interface

To test the efficacy of our conceptual modeling extension and explore its use-

fulness to the construction of mediated ontology for diverse domains, a prototype

BioMediator system has been built for biologists to navigate the domain concepts

and make queries. The system pre-stores the domain concepts about bioinformat-

ics data sources and their database entries. The users can formulate the queries

by browsing the concept tree and selecting the specific concept of interest and its

attributes and related concepts. After submitting a query, the system will return a

list of accession numbers from the different data sources. Users can click the link to

check the detailed report of that data entry. Extra attribute data will be retrieved

by the web service.

1.3 Thesis Organization

The remainder of the thesis is organized as follows. In chapter 2, we first

discuss the characteristics of bioinformatics data. Then, we provide several examples

of biological concepts, and motivate the data modeling needs for these new concepts.

We also discuss some issues concerning conceptual data modeling, limited query

capacity of web interface, and some related work on integrative systems in bioscience

domain. Chapter 3 describes the details of our proposed schema extensions to the

EER data model. It includes the formalization, applications on molecular biology
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system, and EER-to-relational mappings. In chapter 4, we first introduce some

representative bioinformatics ontological concepts, and discuss how they can be used

to help querying and integrating the data resources. Then, we give the details of the

mediated domain ontology we proposed. It includes the formal definitions, ontology

construction, and customized view of domain concepts. Chapter 5 gives the details

of BioMediator system architecture. It includes the domain ontology server, user

interface for browsing and querying, and query processor. The functionalities of

each component are explained. We give an example to show how the user query with

specified relationships can be mapped to internal SQL queries, and extra data can

be retrieved via external web service provider. Chapter 6 shows how to use ontology

browser query interface to formulate queries. We illustrate 2 types of queries with

biological examples. Finally, we conclude this thesis with future research directions

in chapter 7.



CHAPTER 2

BACKGROUND

This chapter gives the background of bioinformatics data management. Sec-

tion 2.1 gives an overview of biological data sources, various data types, and their

characteristics. Section 2.2 surveys some work related to our research.

2.1 Overview of Biological Data Sources

This section gives the overview of biological data sources, what kinds of data

they store, and some basic molecular biology concepts necessary to understand and

use these resources. We first classify the bioinformatics data based on biological

concepts, then discuss their unique characteristics when modeling them in the appli-

cation of data management.

2.1.1 Data Types and Databases

Each year, the journal Nucleic Acids Research has a special issue, which gives

a list of molecular biology databases freely available to the public. The 2008 update

[59] includes 1078 databases, which contain data covering various aspects of research

projects in life science throughout the world. Even though these data sources are

diverse, we still can tell them apart by their stored data types. Below, we give an

overview of some these data sources.

Sequences. At the molecular level, there are 2 major types of data sources:

polypeptide and nucleic acid. Because they are molecules of biopolymers, the major

data type stored in archives are sequences. Protein sequences (protein are larger

9
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or fully functional forms of polypeptides) are strings of 20 amino acid letters, while

nucleic acid sequences are strings of 5 nucleotide letters. The major repositories of

DNA and RNA sequences are GenBank of NCBI (National Center for Biotechnology

Information) [13], Nucleotide Sequence Database of EMBL (European Molecular

Biology Laboratory) [43], and DDBJ (DNA Data Bank of Japan) [101]. The major

repository of protein sequences is UniProt [30], which is union of protein sequences in

Swiss-Prot [5], and TrEMBL (Translated EMBL) [6], and PIR (Protein Information

Resource) [24].

Structures. The major database for biological macromolecular structures is

the PDB (Protein Data Bank) [68]. It contains 3D structures of proteins, nucleic

acids, and a few carbohydrates. The main contents of PDB protein structure data

file include the atomic coordinates, the amino acid sequence, the secondary structure

feature, experimental conditions, etc. We discuss the details of protein 3D structure

model in chapter 3.4.2. The sequence and structure data are so fundamental that

they constitute the major part of raw (core) data sets of bioinformatics. These

core data are further interpreted into different higher levels of data in the form of

annotations.

Interactions. Molecules can interact with each others. These interactions

can be the protein-protein or the DNA-protein interactions. There are many other

forms of interactions such as binding, docking, protein modification, and chemical

crosslinking. These interactions are important for many biological functions. For

example, the process of signal transduction involves the binding of extracellular sig-

naling molecules to cell-surface receptors to trigger ordered sequences of biochemical

reactions inside the cell [44]. BIND (Biomolecular Interaction Network Database)

[42], DIP (Database of Interacting Proteins) [81], and IntAct [56] are major databases
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for the interaction data. The main contents include identifiers of two interactors,

their types, the interaction type and the detection method.

Reactions. Biomolecules can participate in various enzymatic reactions. The

contents of the reaction data includes participating molecules (reactants or sub-

strates, products, catalysts, cofactors), the equation, the reaction type, reaction

kinetics, and associating pathways. Their representation are more intuitive in a

graphic form. KEGG (Kyoto Encyclopedia of Genes and Genomes) Reaction [50],

BRENDA [70] and Reactome [47] contain the various reaction data.

Pathways/Processes. Pathways are networks of molecular reactions. In

general, they illustrate the functional relations between molecules. All pathway

databases such as KEGG Pathway, MetaCyc (encyclopedia of metabolic pathways)

[53], and Reactome [47] also include the reaction data. So, the pathway data content

is more comprehensive and complicated than the above data types, and the best way

to present it is also in a graphic form.

Genomes. Genomic-scale data is about the complete genomes of various or-

ganisms. The genome data includes characterization of repeats, structural assign-

ments of genes (chromosomal position of genes), associated phenotype or diseases.

The major data sources are NCBI Genome DataBase and Ensembl [51]. Some tools

are developed for the exploration of these data at different levels. Ensembl Human

Genome Browser, UCSC Genome Browser [45], and NCBI Genomic maps are good

examples.

Expressions. Molecular biology central dogma says: DNA makes RNA, and

RNA makes protein. Most bioinformatics data is generated during this biological

process. Nucleotide and protein sequences are the input and the output data of this

biological ”pipeline” respectively, while gene expression data (transcriptomics and

proteomics) are the data generated in the intermediate steps. ArrayExpress [49],



12

GEO (Gene Expression Omnibus) [11], SMD (Stanford Microarray Database) [84],

and PRIDE (PRoteomics IDEntifications database) [74] are all good sources of these

data. The main contents include genes, proteins, species, cell types, experiment

types and protocols.

Annotations. The annotation is defined as semantically rich meta-data appli-

cable to a particular data item. Usually, these data items are protein and nucleotide

sequences or genes. Thus, the annotations include the descriptions of various struc-

tural features of sequences and functions of genes and proteins in the cells/tissues

of the organism. Currently, annotations contribute to the development of different

biological ontologies. Representative databases are ChEBI (Chemical Entities of Bi-

ological Interest) [31], SO (Sequence Ontology) [34] and GO (Gene Ontology) [29].

They are widely used as public repositories of biological knowledge.

References. Another type of data of great importance is literature references.

The contents include titles, authors, journal names, publication dates, and so on.

PubMed [46] is such a bibliographic database that offers free abstracts of scientific

articles.

Different types of data can be combined into specialized databases such as

organism-specific databases and organelle databases, but each one has a different

focus and research interest. Actually, major data repositories such as NCBI and

EMBL are so comprehensive, containing all types of data. Table 2.1 is a summary

of the above mentioned bioinformatics resources. In chapter 3, we will discuss our

work on conceptual modeling of the gene sequence, the protein structure, and the

biological pathway/process data.
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Table 2.1. Bioinformatics resources

Data Type Data Source
Sequence GenBank, EMBL Nucleotide, UniProt, DDBJ
Protein UniProt, SwissProt, NCBI Proein
Structure PDB, Entrez MMDB [46], EBI MSD [43]
Interaction BIND, IntAct, DIP
Reaction KEGG Reaction, BRENDA
Pathway KEGG, aMAZE [71]
Expression ArrayExpress, GEO, SMD, PRIDE
Annotation ChEBI, ENZYME, SO, GO, CATH, SCOP [7]
Reference PubMed

2.1.2 Data Characteristics

Life science data differs greatly from traditional business data in many di-

mensions (see Table 2.2). First, the bioinformatics data come from many different

domains such as chemistry, biological, biomedical and clinical areas. The structure

of data semantics is very complex and fast evolving. The data often bares temporal

and spatial properties, which are governed by underlying physical or chemical prin-

ciples. The data sets produced by various research areas are often incomplete and

the values can be imprecise. For example, even though the human genome has been

sequenced out, the exact number of genes is still unclear.

Second, the bioinformatics data sets are a mixture of experimental facts and

domain concepts. Some data are raw data types, which come directly from the

experiments, such as the DNA sequences or the protein structures. Other data are

annotation types (domain expert curations), which contains various domain concepts,

such as functions of the specific gene or protein.

Third, many-to-many relationships between bio-entities are very common in

the genomic and clinical domains. For example, a gene instance can encode sev-

eral protein instances, and a protein instance can also be encoded by several gene
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Table 2.2. Characteristics of bioinformatics data compared to business data

Life science data Commercial data
Complex data semantic Easy-to-understand data semantic
Span over diverse domains
Mixture of instances and concepts Clear border between

data and meta-data
M:N relationships 1:N relationships
between entities between entities
Many potential relationships Clear relationships
between data instances among objects
Incomplete and/or imprecise data Complete and/or precise data

instances. Many of these m:n relationships come from self-referencing of the same

entity type. For example, the protein-protein and gene-gene interactions are the

most important relations. The cardinality problem of 1:n or m:n depends on the

abstraction level of the involved instances. For example, if we model the molecular

reactions as 2 entity types: REACTION and MOLECULE. There are 2 types of

relationships between them, Reactant and Product. The cardinality of Reactant (or

Product) can be m:n or 1:n. If the instances of REACTION and MOLECULE are

both individual reactions and molecules, then the cardinality is m:n. If the instances

of REACTION are at the level of the reaction class, such as the redox or nuclear

transfer reaction, and the instances of MOLECULE are still individual molecules,

then the cardinality is 1:n. An individual molecule with its unique property can only

participate in one specific class of reactions.

Finally, if we model two protein instances at the same abstraction level, there

could be many potential relations of different types between these two protein in-

stances, such as different types of domain binding interactions. In the business data,

the relationship between data instances is already captured at the schema level.
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The above characteristics should be considered as a critical requirement for

conceptual modeling for the data management of life science research. The existing

data models do not fully support these requirements. We should enhance the current

conceptual data models by making their semantic notation more explicitly powerful.

2.2 Related Works

This section reviews some work related to our research. Section 2.2.1 focuses

on the conceptual data modeling of the above mentioned data types. In section 2.2.2,

we first discuss the database entry mapping problem of integrating bioinformatics

resources. Then, we review some relevant work. Finally, we discuss some querying

problems associated with data integration. In section 2.2.3, we overview several

integration approaches, and discuss some representative integrative systems that

employed these approaches.

2.2.1 Conceptual Data Modeling

Developing a successful biological database needs a clear understanding of the

nature of the available data. The questions such as: ”What different types of data

will be stored? What are the available properties for each data type? What are the

obvious and potential relationships between these data types?” must be answered

before the real implementation. Conceptual data modeling can provide a scientific

way to capture the principal structural properties of data. Of course, the designers

of the above mentioned databases already have done extensive works on conceptual

modeling of their data. We will give several examples of this research using data

models such as Entity-Relationship (ER), Unified Modeling Language (UML), Ex-

tensible Markup Language (XML) and Resource Description Framework (RDF) in

the application of bioscience data management.



16

Chen et al. [26] present a genomic schema element data model to represent

basic biological notion Sequence and sequence features. It includes how to model a

sequence (a single entity), a gene (a linked list of splicing units), a chromosome (a

linked list of contig sequences), and a pairwise sequence comparison (a graph with

each sequence in comparison as a node and each similarity hit as an edge). They also

present a genomic schema fragment data model to represent only one genomic topic

area. It includes how to manage sequence similarity search, sequence clustering, etc.

Paton et al. [91] present a collection of conceptual models for genomic se-

quence data and genome organization. The models are described using the class

diagram notation of UML (objected-based model), which can fully model the gen-

eralization/specializaton relationships existing in the genome data. For example,

Centromere and Telomere are both subclass of Chromosome Fragment.

Macromolecular structure data (include its associated experimental data) has

its own standard archive format for data deposition, i.e. mmCIF (macromolecular

Crystallographic Information File) [105]. The original PDB format like other se-

quence database entry format, is a structural flat file with fixed field length. This

format cannot be treated as a data model, and creates problems when being queried

and updated. So, mmCIF is a true, proprietary data model for structure data. But

with the popularity of XML data exchange format, the content of the mmCIF dic-

tionary has been translated into XML schema, and mmCIF data files into XML

[17].

Helden et al. [71] present a general model for the physical and functional inter-

actions between genes and proteins as forming a large complex network, and this data

model has been implemented in aMAZE database. The model is based on ER, and

uses an Object-Oriented (OO) representation. Several main classes: Biochemical-

Entity, Interaction, and Location are defined. Subclasses such as Compound, Gene,
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Protein, Tissue, Cell, Organ, Transformation (Reaction, Expression, Translocation,

etc), and Control (Catalysis, Transcriptional-Regulation, Activation/Inhibition, etc)

are also defined to describe biological pathway knowledge at all levels.

Keet [77] discusses the characteristics of biological data and its effect on ER,

OO and Object Role Modeling (ORM) methodologies. General features of ER,

OO and ORM are discussed, emphasizing differences in graphical representation,

understandability and inclusiveness of types and attributes in the model.

Scientific domain data models such as Object Protocol Model (OPM) are also

proposed for some specific applications [25]. The ONION framework incorporates

sequences in RDF methodology [89].

Even though much work has focused on applying the various modeling tech-

niques, little work has been done on conceptual data modeling enhancement. Ram et

al. [93] propose a semantic model for 3D protein structures by adding spatial seman-

tics and constructs to represent the contributing forces such as hydrogen bonds and

high-level structures such as protein secondary structures. But their enhancements

require many additional constructs and notation. The EER model still lacks the

expressive power to explicitly represent the biological concepts inherent in the se-

quence, the structure, and the pathway/process data. The next chapter will present

our solutions to this problem.

2.2.2 Querying and Integration Issues

Scientists in life science often need to retrieve different types of data from

diverse biological data sources to solve their research problems. As we discussed in

the previous sections, most data sources have different goals for selecting the data to

store. They vary in the type of the stored data, the archiving data file format, and

access methods. Even for the same set of data, different data modelers have different
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focus and views. In addition, there is a terminology discrepancy at the data level

and at the schema level [72]. Data integration is an old problem in the computer

science domain [83, 65]. In bioinformatics domain, there is one unique problem:

databases entry redundancy and inconsistency for the same biological entity among

multiple databases. This becomes an obstacle to further instance level integration.

Many work seek a universal agreement on identification of these biological entities

(proteins, genes, mRNAs, etc.). Many efforts have been done to achieve this goal.

The IPI (International Protein Index) has been developed to address the prob-

lem of protein redundancy in different databases [78]. IPI effectively maintains a

database of cross references between the primary data sources such as Swiss-Prot,

TrEMBL and Ensemble. IPI is created by using sequence comparison to identify

entries from the source databases that represent the same protein.

Another work is the proposal of Life Science Identifier (LSID) for uniquely

naming biologically significant resources including species names, genes or proteins

[4]. Similar to a URL, LSID uses a uniform resource name (URN) to locate data.

An example is:

urn:lsid:ncbi.nlm.nih.gov.GenBank:G54036:2. The last number denotes the

version number of that object. So, given the LSID, one can get some meta-data

for that gene. This could be useful in the application of semantic web technology.

Much work focuses on the mapping or the cross-referencing between differ-

ent database entries for the known proteins and genes [32, 22, 20]. Draphici et al.

discussed the problems of name space inconsistences between existing annotation

databases, and developed a tool to map biological entity IDs from one database

to another [33]. To accomplish the mapping, they also defined the authoritative

database sources for different types of biological entities. For example, UniProt for

proteins, PDB for protein structures, GenBank for nucleotide sequences, UniGene
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for nucleotide sequence clusters, Entrez Gene for genes, KEGG for pathways, and

OMIM [46] for diseases. Martin et al. presented a work on mapping between UniProt

entries and PDB entries at the chain or residue level [85].

The querying problem is closely associated with data integration. Some bio-

logical queries are very complex. Consider this query example: ”Find all genes in

the human genome that expressed in the liver, and have a TTGGACAGGGGAA

followed by GCCGCC within 40 symbols in a 4000 symbol stretch upstream of the

gene” [100]. The query involves a similarity search, an important operation that is

heavily used for both protein and nucleotide databases. Currently, no commercial

database system directly supports this kind of query. There are other similar types

of searches often used in the bioscience research, such as chemical structure search

[106].

Also, this query involves many data types: the sequence, the sequence struc-

ture, the gene, the expression, and the genome. There are many relationships be-

tween these data types. For example, a gene is part of a DNA sequence, a gene

express in a cell, and so on. These all must be clearly defined in the underlying

database schema, and presented in a form-based search interface. This query form

will become very complicated with all the available data types and their attributes.

But this issue will become worse if the biologist faces many different query forms and

to specify a query from his point of view. Different integrated data results can be

returned with different queries against the same raw data set. If a high-throughput

experiment needs a batch of similar queries, the process of data retrieval requires ex-

tensive human interactions with multiple data sources, which calls for for automating

query and analysis tools [21, 95].

More recently, web service technology has become a new trend for gathering

information. Many bioinformatics data resources and analysis tools can be program-
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matically accessed through various web services, such as NCBI Entrez Utilities [3]

and EBI Web Service [82]. However, it is not easy to integrate and obtain a concise

and complete query result among hundreds of overlapping web operations [35]. An

integrative system based on web service can offer a framework for automating the

process of data analysis [62]. But this requires an easy-to-use query interface and

a ”global” integrated data schema. Thus, the scientists can design the meaningful

queries that fully utilize their domain knowledge.

2.2.3 Integrative Systems

In the past decade, several commercial and non-commercial integration sys-

tems for life science resources have been proposed and developed [61, 57]. Generally

speaking, the architecture of these systems can be classified into 2 types: the data

warehouse and the mediator-wrapper. Semantic integration using ontologies are in-

filtrating into both structures, which focuses on the sharing of controlled terms or

domain concepts. Each architecture has its advantages and disadvantages. The data

warehouse approach is good at intensive data analysis in some specific domain while

the mediation approach can provide fresh data with little maintenance.

COLUMBA [103] data warehouse is a database of annotated protein structures.

It integrates twelve different databases, including PDB, KEGG, Swiss-Prot, CATH,

SCOP, GO, and ENZYME. It addressed the problem of integrating protein structures

(in PDB) and protein structure annotations (in CATH, SCOP, GO, and ENZYME).

The database can be searched using either keyword search or data source-specific web

forms. The results of queries are PDB entries with the corresponding GO annotations

and CATH architecture.

TAMBIS [61] is a database federation that is based on a mediator-wrapper ar-

chitecture. It has a domain ontology and a reasoning system over this ontology. The
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biological ontology is built using Description Logic (DL), a knowledge representa-

tion languages. TAMBIS provides a user interface for browsing the ontology and for

constructing queries. The ontology and the associated reasoning component guide

the construction of the query, ensuring that only a query that is logically meaningful

can be formulated. BACIIS [12] also uses mediator-wrapper approach to support

semantic integration of life science databases through their web interfaces.

In recent years, applying semantic web technology is a relatively new way to

integrate the bioinformatics data [96]. YeastHub [27] is such a system. It features

the construction of a RDF-based data warehouse for integrating a variety of yeast

genome data. Multiple data sets need to be registered first before RDF queries can

be composed to retrieve related data across different data sets.

NCBI Entrez [86] takes the link-driven approach to integrate its internal sub-

databases and various external databases. The data sets distributed in these databases

can be browsed on the web from different access points: the genome-centric view,

the gene-centric view, or the specie-centric view.



CHAPTER 3

DATA MODEL EXTENSION

This chapter gives the details of our works on data model enhancement to meet

the needs of conceptual data modeling in bioinformatics domain. The whole chapter

is organized as follows. In section 3.1, we provide several examples of sequence

ordering, input/output processes and molecular spatial structure and we motivate

the data modeling needs for these new concepts. In section 3.2, we give formal

definitions for ordered, process and molecular spatial relationships to enhance the

modeling features of the ER/EER models. Section 3.3 summarizes the new EER

notations for these relationships. Section 3.4 gives the details of the EER conceptual

schema for the molecular biological system that utilize these new constructs. Section

3.5 describes mapping techniques that can be used for the implementations of our

new EER constructs using relational databases. Section 3.6 summarizes the chapter.

3.1 Examples of Biological Concepts

In this thesis we focuses on the biomolecular subset of bioinformatics data.

Closed related to these are the familiar concepts of sequence ordering, multisets,

input/output processes, and molecular spatial structure. In the subsequent sections,

we will give 3 motivating examples of modeling biological data at the conceptual

level, and illustrate the data modeling need for these new concepts.

22
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DNAseq GeneM NIdM NameHasOBNon-Gene NHasOB LengthId
BaseMade-ofOB MN Type

ATG...TGA ATG...TGA ATG...TGA ATG...TGA(a) 
(b) 

Figure 3.1. (a) A DNA sequence (b) EER model of DNA, gene and base.

3.1.1 Sequence Ordering Concept

Molecular structural data includes linear nucleotide sequences of DNA (genes,

intergenic and regulatory regions), and the linear amino acid sequences (proteins)

resulting from gene expression. They are internal properties of biological entities (in

contrast to external properties such as environment), and although both genetic and

protein sequences can change slightly (the basis of evolution), for modeling purposes

it is reasonable to treat them as static.

EXAMPLE 1. Figure 3.1 shows the biological data of DNA sequence, genes

and their EER conceptual modeling. A DNA is an ordered sequence of bases A, T,
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C, and G. A gene is one segment of a DNA sequence. Different genes may or may

not concatenate to each others. Some genes can be repeated in a DNA sequence;

hence, both order and repetition are needed to model this. We model DNA-Base and

DNA-Gene as an ordered bag (multiset) relationship.

First, the ordering of elements in these sequences is their most important fea-

ture because changes to that order are likely to impact higher levels of structure

and therefore also function. In EXAMPLE 1, protein-coding genes are segments

in a DNA sequence, as shown in Figure 3.1(a). Boxes and lines denote genes and

intergenic regions, respectively. Each triplet of the bases A, T, C and G in these

genes, determines one amino acid in the proteins they encode, a single change to one

base can dramatically impact protein function, the classic example of this is sickle

cell anemia. Obviously, in order to capture the ordering relation between DNA and

genes, we need a special relationship for ordering features (symbol O denotes Order-

ing) in EER models. In addition to the ordering of base pairs, ordering of sequence

subsets (genes and intergenic regions) relative to one another is also important to

model. Figure 3.1(b) is the EER schema for DNA, gene and intergenic entities in

our extended notation. We represent their relationships as binary relationship type.

A second important characteristic of modeling molecular data is that sequences

may be a bag (or multi-set) rather than a set of relationship instances, since the

same gene (or intergenic sequence) may appear multiple times within the same DNA

sequence such as in gene homologs or tandem repeated DNA sequence blocks. We

use the letter B in OB to denote that the relationship is an ordered bag that allows

repetition. 1 Thirdly, we have to specify the direction of ordering, which applies to

all entities of one type related to a single entity (out of many) of another type. The

1In the traditional ER model, repetition is not allowed for relationship instances.
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solid dot at one end of the relationship in Figure 3.1(b) indicates that related entities

on this side are ordered. 2

3.1.2 Input/output Functional Process Concept

EXAMPLE 2. Figure 3.2 shows the biological concept of a gene expression pro-

cess and its EER conceptual modeling. A process such as transcription or translation

in Figure 3.2(a) relates the data of genes, mRNA sequence or protein sequence in a

directed way. The entities in a process can have three main participating roles. The

roles are input (i in Figure 3.2(b)), output (o in Figure 3.2(b)), or catalyst (c in

Figure 3.2(b)). We model transcription or translation as a process relationship.

Molecular interaction is the key to the dynamics of biological processes such as

gene expression, protein folding, metabolic pathways and cell signaling. In EXAM-

PLE 2, a protein is created from its gene through a series of interactions known as

transcription and translation, shown in Figure 3.2(a). Some entities act as inputs,

some as outputs (products) and others (typically enzymes) as catalysts to steer the

process in a certain direction. These three roles in the system of a biochemical inter-

action are fundamental to molecular biology and important to any modeling scheme.

It is also important to reflect hierarchy and subsets in such reactions since a com-

plex process is made up of a sequence of unit processes resembling the workflows of

assembly lines.

Pathway data has these kind of attributes. A pathway is a linked set of bio-

chemical reactions. The product of one reaction is a reactant of, or an enzyme that

catalyzes, a subsequent reaction. Figure 3.2(b) is the EER schema for the gene

expression process. In this modified EER model we can represent the dynamic be-

2We note that other data models also have ordered and multi-set relationships, such as the list

and bag constructors in the ODMG object model.
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havior of different agents. For example, mRNA is the output of the transcription

process and an input of the translation process as well. Our extension of the EER

model enables us to incorporate this important input/output process concept. In

the notation shown in Figure 3.2(b), the p in the relationship indicates a process

relationship, the edges marked i represent input entities to the process relationship.

Edges marks o and c represent output entities and catalyst entities, respectively.

The arrow directions also indicate the type of the role of each entity in the process

relationship.

3.1.3 Molecular Spatial Structure Concept

EXAMPLE 3. Figure 3.3 shows the 3D chemical structure of amino acid ala-

nine and its EER conceptual modeling. Each amino acid (residue) is composed of

various types of atoms. Some atoms form chemical bonds in 3D space between each

other. We model atoms and residues as molecular spatial relationships.

The function of a molecule is partly determined by its three dimensional spatial

structure, for example the structure of DNA affects which regions can be read to

make proteins, and the function of enzymes is often altered by minor influences on

their structure due to changes in temperature, or salt concentration. These spatial

structures are experimentally determined by X-ray crystallography or NMR [104]

which generate topographical measurement data such as bond angles or distances as

well as image data. As previously mentioned, a protein is a variable length chain

composed from a mix of up to 20 different possible amino acids, or residues. Each

residue is itself structurally composed of various types of atoms such as C, H, O,

N, shown in Figure 3.3(a). Each atom can be treated as a point and its position is

thus represented by x, y, z coordinates in space. How those atoms are positioned

can affect their fundamental chemical interactions, because of charge repulsion, and
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proximity needed for breaking and forming new chemical bonds between the atoms.

This type of information is particularly important to biochemistry research, and is

applied to pharmaceutical design since drug interactions are often adjusted at this

level of structure and shape modifying function. Figure 3.3(b) is the EER schema

for the 3D structure of residues. We use the letter Sp to represent the molecular

spatial relationship between residues and atoms.

3.2 Formal Definitions for EER Model Extensions

We now give a formal definition for our extensions to the relationship concept

in the ER/EER models. The main concepts in these models are entities and entity

types, relationships and relationship types, attributes, and class/subclass inheritance

[40]. Entities represent objects and relationships represent interactions or associa-

tions among objects. Attributes describe properties of entities or relationships.

A relation type R among n entity types E1, E2, . . . , En defines a set of associ-

ations among the participating entities. Mathematically, R is a set of relationship

instances ri, where each ri associates n entities (e1, e2, . . . , en) and each entity ej in

ri is a member of entity type Ej, 1 ≤ j ≤ n. A relationship type can be defined as

a subset of the Cartesian product E1 × E2 × . . . × En. A basic binary relationship

in the EER model is a set of the relationship instances, where each pair (ei, ej) has

the properties that ei ∈ E1, ej ∈ E2 and R ⊂ E1 × E2. The next three subsections

describe formally the proposed new relationships for enhancing the existing EER

model to represent biological data.

3.2.1 Ordered Relationships

To model ordering, we must extend the relationship concept in two directions:1)

Allow related entities to be ordered, and 2) allow repetitions of the relationship
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instances. This means that the relationship set must be extended to allow duplicates.

Before giving formal definitions of the extensions to the relationship concept, we show

how we propose to extend the revised diagrammatic notation in order to minimize

the changes to the ER/EER. We propose 4 types of relationships:

• The original ER model relationship, which is an unordered set of relationship

instances.

• An ordered set relationship, where each relationship instance is unique (no

duplicate instances are allowed).

• An unordered bag relationship, which allows duplicate relationship instances.

• An ordered bag relationship, which allows duplicates with ordering, and can

be used to model the situations discussed earlier.

The notation for these 4 relationships is shown in Figure 3.4. The letters O,

B, and OB stand for Ordered, Bag (or multiset), and Ordered Bag, respectively. An

edge with the filled circle (or solid dot) indicates that the attached entity type is the

one whose elements are ordered by the relationship instances that are related to a

specific entity from the other entity type.

We now formalize these four types of relationships. We first define the concepts

of unordered set, ordered set, unordered bag and ordered bag, and then give the formal

definitions of the relationships.

Let E be a set.

Let E × E × . . .× E︸ ︷︷ ︸
n

be the set of all ordered n-tuples (e1, e2, . . . , en) where e1, e2,

. . ., en ∈ E.

Let E ⊗ E ⊗ . . .⊗ E︸ ︷︷ ︸
n

be the set of all unordered n-tuples [e1, e2, . . . , en] where e1, e2,

. . ., en ∈ E. For convenience, we denote E × E × . . .× E︸ ︷︷ ︸
n

by En and E ⊗ E ⊗ . . .⊗ E︸ ︷︷ ︸
n

by ⊗En.
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Definition 1. Unordered set

We say that F is an unordered set on a set E if 3

F ⊆
⋃

n∈N

Fn

where

Fn = {[e1, e2, . . . , en] ∈ ⊗En|ei 6= ej , ∀i 6= j}

Definition 2. Ordered set

We say that F is an ordered set on a set E if

F ⊆
⋃

n∈N

Fn

where

Fn = {(e1, e2, . . . , en) ∈ En|ei 6= ej , ∀i 6= j}

Definition 3. Unordered bag

We say that F is an unordered bag on a set E if

F ⊆
⋃

n∈N

⊗En

Definition 4. Ordered bag

We say that F is an ordered bag on a set E if

F ⊆
⋃

n∈N

En

Definition 5. Unordered set relationship

We say that R is an unordered set relationship between E1 and E2 if R ⊆ E1 × E2.

3N is the set of natural numbers.
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Definition 6. Ordered set relationship

We say that R is an ordered set relationship between E1 and E2 if R ⊆ E1×E2 and

for each e ∈ E1, {ej|(e, ej) ∈ R} is an ordered set on E2.

Definition 7. Unordered bag relationship

We say that R is an unordered bag relationship between E1 and E2 if R is a multiset

of (ei, ej) elements, and for each e ∈ E1, {ej|(e, ej) ∈ R} is an unordered bag on E2.

Definition 8. Ordered bag relationship

We say that R is an ordered bag relationship between E1 and E2 if R is a multiset

of (ei, ej) elements, and for each e ∈ E1, {ej|(e, ej) ∈ R} is an ordered bag on E2.

When ordered relationship of definitions 6 and 8 are represented diagramatically,

the dot is on the side of E2. For example, suppose that a DNA sequence entity with

identifier X is:

. . . A . . . A︸ ︷︷ ︸
gene

C . . . C︸ ︷︷ ︸
nongene

A . . . A︸ ︷︷ ︸
gene

G . . .G︸ ︷︷ ︸
nongene

T . . . T︸ ︷︷ ︸
gene

. . .

Suppose that A . . . A, A . . . A, T . . . T are genes in the sequence, whereas C . . . C,

and G . . . G are non-gene sequences. Then, the relationship instances including genes

in sequence X will be the ordered list:

(. . . , (X, A . . . A), (X, A . . . A), (X, T . . . T ), . . .)

3.2.2 Process Relationships

There are 3 basic roles in a process relationship:

• Input(s): entities consumed by the process, for example by being transformed

to some other entities.

• Output(s): entities produced by the process.
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• Catalyst(s): entities that are needed for the process to work.

In Figure 3.5(a), E1 represents the input entity, E2 represents the output en-

tity, and E3 represents the catalyst entity. Symbol i stands for input, o stands for

output and c stands for catalyst. We use e1 to represent entities in E1; e2 to represent

entities in E2 and e3 to represent entities in E3.

Definition 9. Process relationship (basic type)

A basic process relationship is defined as a set of relationship instances (e1, e2, e3),

where e1 ∈ E1 represents the input entity, e2 ∈ E2 represents the output entity,

and e3 ∈ E3 represents the catalyst entity. The relationship instance can also be

represented as:

{e1

−−→{e3}e2}

where catalyst is optional and the input, output, and catalyst entity types do not

have to be distinct.

Definition 10. Process relationship (general type)

In general, a process can have multiple inputs, outputs, and catalysts. In Fig-

ure 3.5(b), Ei1 . . .Eij represent the input entities. Eo1 . . .Eol represent the output

entities. Ec1 . . .Eck represent the catalyst entities. The process relationship is a set

of relationship instances:

(ei1, . . . , eij, eo1, . . . , eol, ec1, . . . , eck)

where

eim ∈ Eim(1 ≤ m ≤ j), eom ∈ Eom(1 ≤ m ≤ l),

ecm ∈ Ecm(1 ≤ m ≤ k)
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3.2.3 Molecular Spatial Relationships

Definition 11. Molecular spatial relationship

A molecular spatial relationship is defined to describe the spatial relationships among

a set of atoms in 3D space. Let A be a set of atoms, and let M be a set of molecules,

as shown in Figure 3.6. The molecular spatial relationship instance is a 3-tuple:

〈(〈a1, x1, y1, z1〉, 〈a2, x2, y2, z2〉, . . . ,

〈ani , xni , yni , zni〉), formula,mi〉

where (a1, a2, . . . , ani
) is a group of associated atoms forming a molecule, formula

denotes the formula of the molecule and mi ∈ M . The xni
, yni

, zni
associated with

each atom ani
describe the 3-dimensional atom location in the spatial structure. The

molecular spatial relationship bares some characteristics of aggregation (reverse is

Part-Of) relationship in which atom entities are part-of a molecule entity. But it

has its own property that these atom entities are connected by some forces (bonding)

that need explicit modeling.

3.3 Summary of New EER Notations

Table 3.1 summarizes the notations of the proposed new relationships. Notice

that we have added considerable modeling and representation power to the basic

relationship concept in ER models. However, the notation to display all these new

complex concept is not overly complex and hence should be easy to utilize.

3.4 Applications on Molecular Biology System

In this section, we will give the details of the EER conceptual schema of our

molecular biological system that utilize the new EER constructs for the new types of
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Table 3.1. New EER relationships and their usage

EER relationship Comments
Unordered set General relationship, unique instance.
Ordered set Associates entities with ordering features. The relation-

ship instances are unique.
Unordered bag Associates entities without ordering features. The rela-

tionship instances can be duplicated.
Ordered bag Associates entities with ordering features. The relation-

ship instances can be duplicated.
Process Associates different entities by the roles they have in a

process. The roles are input, output, and catalyst.
Molecular spatial Associates atom entities with molecule entities in 3D

space.

relationships we defined in above sections. The conceptual schema is roughly divided

into several parts: the DNA/gene sequence, the protein structure, the molecular

pathway, and the aging process.

3.4.1 The DNA/Gene Model

As we know, a DNA sequence is made up of 4 nucleotide base in a specific order.

A gene is one segment of a DNA sequence with a specific function. Usually, DNA

sequences come from different sources of organisms, which have well-established phy-

logenetic classification schema, such as common name, genus and species. Figure 3.7

shows the details of an EER conceptual schema for DNA/gene sequence that utilizes

the order and bag (multiset) relationship. Note that we use binary relationship type

to represent the order relationship between the DNA, gene, etc. Practically, we can

have several options to model this relationship. Figure 3.8(a) shows their relations

using binary relationship type. Gene and Non-Gene each has a m:n binary relation

with DNAseq. Figure 3.8(b) shows the EER modeling option that DNA sequence,

gene, and non-gene forms a ternary relation whenever a relationship instance (dna,
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gene, non-gene) exists. Figure 3.8(c) shows a new entity type Segment that is cre-

ated to include all entities of both Gene and Non-Gene and this Segment has an

order relationship with DNAseq. In Figure 3.8(d) we have a general approach to

represent the relationship between biological sequence entities. This model is easy

to modify and extend depending on various situations. Because some instances in

DNAseq are Gene type, some are Non-Gene type and some are other type, we

could create a union of these types and thus make DNAseq to be subclass of it. A

recursive ordered relationship Has exists between DNA sequences themselves. One

(long) sequence participates in the super-sequence role and the other (shorter) se-

quence in the sub-sequence role. In section 3.5.1 we will discuss the different models

in the ER-to-Relational mapping process.

3.4.2 The Protein 3D Structure Model

Usually, a structure-determined protein contains one or more chains of residues.

These originally spatial-free linear chains are constrained by various physical or chem-

ical forces to form higher levels of 3D structure. They are secondary, tertiary and

quaternary structure of the protein.

• Primary structure is a linear polypeptide chain of residues with specific order.

• Secondary structure refers to the general three-dimensional form of local regions

(segments of chains) or overall shape of polypeptide chain. Helix, sheet, and

turn are characteristic structural components. An alpha-helix is a tight helix

formed out of the polypeptide chain. The polypeptide main chain makes up

the central structure, and the side chains extend out and away from the helix.

The CO group of one amino acid (n) is hydrogen bonded to the NH group of

the amino acid four residues away (n +4). In this way every CO and NH group

of the backbone is hydrogen bonded. They are formed by hydrogen bonding.
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Multiple hydrogen bonds make a segment of amino acid chains fold in specific

ways.

• Tertiary structure is the full three-dimensional folded structure of the polypep-

tide chain. It assembles the different secondary structure elements in a partic-

ular arrangement. As helices and sheets are units of secondary structure, so

the domain is the unit of tertiary structure. In multi-domain proteins, tertiary

structure includes the arrangement of domains relative to each other as well as

that of the chain within each domain [63].

• Quaternary structure is a protein complex assembled by multiple-subunit pro-

teins. Examples of proteins with quaternary structure include hemoglobin,

DNA polymerase, and ion channels. Quartenary structures are stabilized

mainly by non-covalent interactions; all types of non-covalent interactions: hy-

drogen bonding, van der Walls interactions and ionic bonding, are involved in

the interactions between subunits. In rare instances, disulfide bonds between

cysteine residues in different polypeptide chains are involved in stabilizing this

level of structure.

Figure 3.9 shows the EER conceptual schema of protein 3D structure that

utilize the new types of relationships. We go through these entities and relationship

from the bottom to the top level.

Atom. This entity type represents the chemical atoms such as C, H, O, N and

S in the molecular structure. They can be identified uniquely by their atom serial

number and spatial position. Cartesian coordinates (x,y,z) is one of such coordinate

models.

SSBond and HBond. These are typical examples of molecular spatial rela-

tionship types denoting the chemical bonding formed among atoms. It (spatial bond



36

relationship) can be identified uniquely by its bond type, bond length and atoms

that participate in.

Residue. This entity type represents the amino acids connecting to each

other in the chains of protein primary sequence. Each residue is a molecule (exists

dependently) composed of atoms via Molecule-Structure spatial relationship.

Molecule-Structure. This type of molecular spatial relationship is defined

to describe the spatial relationship between a set of atoms within a molecule.

Made-of. This is the ordered bag relationship type. It denotes that a sequence

of residues (some residues can be duplicated) forms a specific chain of protein primary

sequence. The solid dot at one end of the relationship indicates that related entities

of Residue are ordered with respect to a single entity (out of many) of Chain.

Thus there exists inherent attributes of Made-of ordered relationship, such as the

length of chain in terms of residue count and the order number of each residue in

this chain.

Chain. This entity type models the one-dimensional structure of protein se-

quence. It is a line of residues without constraint. A single chain can be partitioned

into one or more segments. These segments make up the central structure of sec-

ondary components. They can form α-helix, β-pleated sheet, or turn.

Helix. This entity type models one type of the secondary structural com-

ponent, α-helix. It is formed by every five consecutive residues via the Helix-

Structure spatial relationship. Its cardinality constrain is 1:5 between entity type

Helix and Residue.

Sheet. This entity type models another type of the secondary structural com-

ponent, α-pleated sheet. It is two-dimensional structure. It can be modeled as a

sequence of 1D structure of Strand via the Made-of ordered relationship. There

are several types of sheets, such as circle, bi-fork, etc. One instance of strand can be
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shared by several different sheets. So the cardinality constraint between Strand and

Sheet is m:n. Strand is also one segment of a polypeptide chain, which is formed

by consecutive residues via the Strand-Structure spatial relationship without car-

dinality constraints.

Turn. This entity type models one of the secondary structural component,

turn. There are three type of turns: 3-turn, 4-turn and 5-turn [75].

Assemble. This molecular spatial relationship denotes that two or more pro-

tein components can be assembled into a protein complex, thus forming dimers,

trimers, tetramers, and etc. The Type attribute of the relationship denotes that the

type of assembly whether it is composed of the same type of protein units (homo-

multimer) or different types (hetero-multimer).

Motif/Domain. Usually, a motif consists of a small number of secondary

elements (helices, sheets and turn), combined in local specific geometric arrange-

ments. These motifs then coalesce to form domains. To simplify modeling, we do

not distinguish between motifs and domains. Note that Motif/Domain-Structure

spatial relationship relates the entity Motif/Domain and SecondaryStructure.

Many proteins can share the same type of domains, so the cardinality ratio between

Protein and Motif/Domain is m:n.

3.4.3 The Molecular Interaction and Pathway Model

Figure 3.10 shows the EER conceptual schema of the molecular interaction and

biological pathway. In our conceptual model, the entity Bioentity is the high level

class of biological objects that are physical entities with attributes pertaining to their

internal properties (e.g. the nucleotide base sequence of a gene, the molecular weight

of a protein). So it is the union of all types of biological entities, such as genes,

proteins, cofactors (metal ions or small organic molecules), etc. Another important
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entity is the Interaction that relates any pair of biological entities. These interac-

tions include gene-gene and protein-protein interactions. Some complex formed by

molecular interactions like DNA-protein binding can also be an instance of interac-

tions. There exists three relationships between Bioentity and Interaction in our

design. The Input and Output relationships are for any two pairs of interacting

entities, and the Catalyst relationship is for other helping entities if they exists

in the interaction. Here we name these three relationships using ”input”, ”output”

and ”catalyst” for the purpose of process relationship mapping (discussed in section

3.5.2). Note that this design can also model the reaction concept with reactant (in-

put), product (output) and catalyst roles. By definition, a pathway is a linked set

of biochemical interactions (reactions). If we ignore the branch case of the pathway,

it can be treated as a sequence of unique interactions. So we use the Participate

ordered set relationship to denote the relation between Interaction and Pathway.

3.5 EER-to-Relational Mappings

In this section, we describe the implementation of the above new EER con-

structs to relational database. We show how to map the ordered relationship, the

process relationship and the molecular spatial relationship to relational models. This

allows us to implement a conceptual design on a relational database system, such as

ORACLETMor MySQLTM.

3.5.1 Ordered Relationship Mapping

In section 3.2.1 we defined four types of the ordered relationships shown in

Figure 3.4. The mapping of unordered set relationship is a standard procedure [40].

For the ordered set relationship mapping, we create a new relation R, including

the primary keys of E1 and E2 as foreign keys in R and rename them as E1Id



39

Table 3.2. Mapping ordered set relationship

R E1Id E2Id OrderNo
v1 v2 1
v1 v3 4
v1 v5 2
v1 v7 3
. . .

Table 3.3. Mapping unordered bag relationship

R E1Id E2Id BagDiscriminator

v1 v2 1
v1 v5 1
v1 v2 2
v1 v3 1
v1 v2 3
. . .

and E2Id, respectively. The primary key of this relation is the combination of the

attributes E1Id and E2Id. We also include additional OrderNo attribute to indicate

the ordering of E2Ids related to the same E1Id value. The following constraint will

hold on the OrderNo attribute: for all tuples with the same value for E1Id, the values

of OrderNo will be distinct and numbered 1, 2, 3, . . . (see Table 3.2).

For the unordered bag relationship mapping, the relation R includes the pri-

mary key of E1 as E1Id, the primary key of E2 as E2Id, and attribute BagDiscrimi-

nator. The BagDiscriminator is to discriminate the tuples if the value of (E1Id,E2Id)

are the same in the bag relationship, because the elements in the bag can be dupli-

cate. The primary key of this relation is the combination of the foreign key attributes

E1Id, E2Id, and BagDiscriminator. The following constraint will hold on the BagDis-

criminator attribute: for all tuples with the same (E1Id,E2Id) combination of values,
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Table 3.4. Mapping ordered bag relationship

R E1Id E2Id OrderNo
v1 v2 1
v1 v2 8
v1 v2 2
v1 v3 7
v1 v3 4
v1 v4 3
v1 v4 5
v1 v4 6
. . .

the values of BagDiscriminator will be distinct (they can be ordered 1, 2, 3, . . . ).

Table 3.3 shows one example of the mapping in relation table.

For the ordered bag relationship mapping, the relation R includes the pri-

mary key of E1, the primary key of E2, and attribute OrderNo. Like the attributes

of the above relations, the OrderNo is to both discriminate and order the tuples

with the same E1Id value. The same constraint on OrderNo for ordered set applies

here. The primary key of this relation is (E1Id, E2Id, OrderNo). Table 3.4 shows

one example of the mapping in relation table.

3.5.2 Process Relationship Mapping

As defined in section 3.2.2 (Figure 3.5), the entities associated with the process

relationship have three distinct types: i (input), o (output) and c (catalyst). For

each process relationship R, we can have a new relation R with three attributes (i,

o, c) whose values are the primary keys of each participating entities as shown in

Table 3.5. Each such tables holds the relationship instances for one of the process

relationships. Another relation called ProcessRelationDesc is needed to describe

the participating entities for all process relationships. Its attributes include Relation,
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Table 3.5. Mapping process relationship (basic)

R1 Input Output Catalyst

v1 v2 v3
v4 v8 v6
. . .

R2 Input Output Catalyst

v7 v2 v13
v6 v9 v5
. . .

Entity and Role. Relation records the names of the process relationship. Entity

records the names of the entity type that participate in a process relationship while

Role specifies their acting roles. Table 3.6 shows an example of the mapping results

in relation table.

The above mapping works for process relationship that have one input, one

output, and one catalyst only. If we want to map the general case, where there can

be multiple inputs, outputs, or catalysts, we can name the input attributes i1, i2,

. . . , the outputs o1, o2, . . . , and the catalysts c1, c2, . . . . An example is given in

Table 3.7.

3.5.3 Molecular Spatial Relationship Mapping

As defined in section 3.2.3 (EER notation shown in Figure 3.6), the molecu-

lar spatial relationship R associates a group of atoms (component objects) spatially

with a molecule entity (a composite object) with specific connectivity among atoms.

For the mapping, we can have a new relation called MolStructure with attributes

(MoleculeId, Atom, Discriminator, X, Y, Z, AtomOId). MoleculeId refers to the pri-

mary key of Molecule relation in Table 3.8. As described in the ordered relationship
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Table 3.6. Mapping process relationship (process description)

ProcessRelationDesc Relation Entity Role

R1 E1 i
R1 E2 o
R1 E3 c
R2 E4 i
R2 E5 o
R2 E6 c
R3 E7 i1
R3 E8 i2
R3 E9 o1
R3 E10 o2
R3 E11 o3
R3 E12 c1
R3 E13 c2
. . .

Table 3.7. Mapping process relationship (general)

R3 i1 i2 o1 o2 o3 c1 c2
v1 v1 v3 v4 v2 v2 v7
v2 v8 v6 v6 v8 v9 v12
. . .

mapping, the attribute Discriminator distinguish the atoms of the same type in a

molecule. X, Y and Z attributes are the cartesian coordinates of atoms. AtomOId is

a system-generated unique object id for each instance in this relation. The primary

key of this relation is AtomOId. The alternative keys can be (MoleculeId, X, Y, Z

) or (MoleculeId, Atom, Discriminator). Table 3.9 shows the mapping example of

water and alanine molecules. For the simplicity, H atoms are deliberately omitted.

To record the bond information, we should have associated connection relation

called Bond with attributes (AtomOId1, AtomOId2 ). AtomOId1 and AtomOId2

refers to the primary key AtomOId of relation MolStructure in Table 3.9. We can
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Table 3.8. Mapping molecular spatial relationship (molecule)

Molecule MoleculeId Name Formula Isomer
1 water H2O 0
2 alanine C3H7O2N 21
. . .

Table 3.9. Mapping molecular spatial relationship (structure)

MolStructure MoleculeId Atom Discriminator X Y Z AtomOId
1 H 1 -1.4 1.3 0.0 1
1 H 2 1.4 1.3 0.0 2
1 O 1 0.0 0.0 0.0 3
2 N 1 1.6 1.5 0.0 4
2 C 1 0.0 0.6 0.0 5
2 C 2 -1.3 1.4 0.0 6
2 C 3 0.0 -0.6 0.0 7
2 O 1 1.7 -1.6 0.0 8
2 O 2 -1.7 -1.6 0.0 9
. . .

enforce a constraint that the value of AtomOId1 is always less than the value of

AtomOId2 because the connectivity between atoms (nodes) is un-directional.

3.6 Summary

In this chapter, we introduced three new types of relationships into the EER

model: ordered relationship, process relationship and molecular spatial relationship.

We also extended the relationships to allow bags (or multi-sets) of relationship in-

stances, since many relationships in molecular biology fall into this category. We

illustrated the need for these relationships in modeling biological data and we pro-

posed some special diagrammatic notation. By introducing these extensions we an-

ticipate that biological data having these properties will be made explicit to the
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Table 3.10. Mapping of molecular spatial relationship (connection)

Bond AtomOId1 AtomOId2
1 2
2 3
4 5
5 6
5 7
7 8
7 9
. . .

data modeler, which would help direct future biological database implementation.

In particular, our unordered bag relationship can be used for various reaction data,

and our ordered bag should be useful for sequence and genetic features. Our pro-

cess relationship would be useful for reaction, interaction and pathway data. These

changes do not add much complexity to the existing EER model, thus making them

easier for integration. We also give the formal definitions for these new concepts

and summarized their notation and usage. We also showed how these additional

concepts can be mapped into relations for implementation in relational databases

such as ORACLETMor MySQLTM.

In the next chapter, we will show how these relationships can be used in the

construction of domain ontology of our mediator query system.
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(a) 

(b) 
Figure 3.2. (a) Gene expression process (b) EER model of gene expression.
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(a) 
(b) AtomSerialNumber Type ResidueTypeMolecule-StructureSp NM
CC- O ON+HHC HHHHH

Figure 3.3. (a) 3D structure of alanine (b) EER model for atoms and residues.RO RB ROBR
Figure 3.4. EER notation for unordered set, ordered set, unordered bag and ordered
bag relationships (from left to right).
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Figure 3.5. EER notation for process relationships (a) basic (b) general.
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Figure 3.6. EER notation for molecular spatial relationship.

Organism
Base

DNAseq
Type

Source
Made-ofOBMN

N1MNon-Gene NHasOBId GeneM IdHasOB N
Taxon

Name
Species Genus CommonNameLineage

Id Name MolType Topology LengthChomosomeDescription
Figure 3.7. EER schema of DNA sequence.
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(b) DNAseq SegmentM NId SegmentIdHasOB Non-Gene

Length Name UGene(c) DNAseq(1,1) (0,N)HasO Non-GeneId Name UGenesubsequencesupersequence
(d) 

Figure 3.8. EER model options for DNA sequence (a) binary type (b) ternary type
(c) union type (d) general type .
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Protein
SheetChain1N

Made-ofOB
AtomMolecule-StructureSpNResidueM
MN

Number Type CoordinatesSSBondSp11
Helix-StructureSpNMType HelixSegment1NTurn-StructureSpNMType TurnSegment1N StrandSegmentN 1Strand-StructureSpM DirectionN

N HBondSp11 N

Made-ofOBM NSheet-StructureSpM N Type
AssembleSpMNProteinComplex

SecondStuctureU Motif/Dmain-StructureSpM NMotif/DomainM N

Figure 3.9. EER schema of the protein 3D structure .
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Interaction
BioentityBioentityId ProteinUGene Cofactor

MInput CatalystOutputN MNNM ParticipateOBInteractionIdTypeNameReversible PathwayDescription MetaboliteMNPathwayId

Figure 3.10. EER schema of the molecular interaction and the pathway .



CHAPTER 4

MEDIATED DOMAIN ONTOLOGY

In the previous chapters, we discussed the data modeling problems in bioinfor-

matics data management. We advocated the enhancement of EER model to accom-

modate the bioinformatics data features. But these data are only raw data (produced

by experiments), at the instance level, such as gene sequences or protein structures.

Many other data, at the conceptual level, such as protein or gene annotations (pro-

duced by curators) are not easily modeled using traditional methods, such as the

schema-based approach. They are captured and transmitted as domain knowledge,

control vocabularies, and ontological concepts. In this chapter, we discuss how these

domain concepts can be organized into a mediated domain ontology, i.e. a ”global”

data schema. Users can pose queries against this schema, thus support integrated

access to multiple bioinformatics data sources. Section 4.1 introduces different types

of concepts. Section 4.2 discusses the structure and characteristics of our mediated

ontology. Section 4.3 gives its formal definitions. Section 4.4 shows how our mediated

ontology can be used in querying. Section 4.5 summarizes this chapter.

4.1 Ontology Concepts

In this section, we discuss different types of concepts in mediated domain on-

tology, the data sources of these concepts, and how they are used for querying and

integration purposes.

52
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4.1.1 Entity Concepts and Instances

Generally speaking, there are 2 types of concepts. One type of concepts such as

Protein, has many instances, uniprot:P07327 is one of them. The other is the annota-

tion type, such as ”alcohol dehydrogenase activity” (GO:0004024), which annotates

this protein instance functionality. So, the ontological concepts (or vocabulary terms)

can be roughly classified into 2 types. One is the basic concept, and the other is the

annotation concept, or strictly speaking, the description of other concepts. The in-

stances of the first type are stored in various databases as database entries. Basic

concepts are shared among different ontologies.

All concepts in the ontology derive from the root concept. For the purpose

of mapping between the ontology graph data model and Entity-Relationship (ER)

data model [40], we classify concepts into three top classes: the entity-like, the

relationship-like, and the attribute-like concepts.

An instance of the entity-like concept is an individual object defined by a set of

attribute-like concepts. The instance of the attribute-like concept is a value. For ex-

ample, Molecule is an entity concept defined by attribute-like concepts: Name, CAS

number (Chemical Abstracts Service registry number), Formula, Molecular weight,

etc. So one instance example is a 4-tuple: (water, cas:7732-18-5, H2O, 18). Every

concept has at least one attribute: Name, which is a label to the concept (abstract

concept entity may have synonyms). The entity-like concept includes cellular com-

ponents, tissues, organs, etc. But these entity concepts do not have many instances.

Currently, they are not part of our supported data set.

A relationship-like concept represents a binary relationship between any two

concepts. It includes the interaction type concepts such as atom bonding, molecular

binding and the process type concepts such as transcription and translation. Several



54

more specific classes can be derived from these 3 classes via isa relationships. They

are: Structure, Interaction, Role, Reaction, Pathway, Process, State, and Source.

The structure-like concept includes various types of molecular structure con-

cepts that are already existing or experiment verified such as 1D structure (protein

and DNA sequence), 2D structure (turn, helix, sheet), 3D structure (protein domain,

2-layer lipid membrane structure, ribosome structure), etc. Please see chapter 3 for

examples.

The interaction-like concepts includes various kinds of molecular interactions,

such as the protein-protein, the DNA-protein, the gene-gene, etc. The Role concept

includes these kinds of concepts: Input, Output, Catalyst, Donor, Receptor, Inhibitor,

Enhancer, etc. It denotes different roles of the object involved in various kinds of

interactions. The Reaction concept includes various kinds of biochemical reactions.

The Pathway concept includes various kinds of biological pathways. The Process

concept includes various kinds of biological processes. Because many instance data

existed for Structure, Interaction, Reaction and Pathway, they are practically treated

as entity-like concepts.

The State concept includes these kinds of concepts that describe the status

or state of molecules in the interaction/reaction/process. These concepts include

ionic/molecular, oxi/red, active/inactive states, etc. The state-like concept can also

be extended to describe the various kinds of diseases.

The concept Source can describe either the biological sources of the protein se-

quence or the stored locations. We further classify it into BioSource and DataSource.

BioSource includes organisms, organs, tissues, cells, clinic samples, etc. DataSource

includes GenBank, UniProt, PDB, etc.

According to the classification of ontology concepts, the data instances from

these sources can also be classified into different types: protein, enzyme, gene, struc-
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ture, interaction, reaction, pathway, process, and disease (currently supported data

set). Each type represents a different level of complexity of the instance object. So

an instance object’s potential properties include all the attributes of its class concept

and the directly related concepts. Like the Objected-Oriented (OO) model, the child

concept can inherit all the properties of its parent concept, and add extra properties

by the specialization of the abstract concept.

Table 4.1 shows entity concepts and instance examples (database entries).

Table 4.1. Entity concepts and instances

Entity Concept Representative Database Entry accession
compound NCBI PubChem [46] CID:164010
protein UniProt P07327
gene NCBI UniGene [46] Hs.654433
mrna EMBL Nucleotide M12963
dna GenBank AY948115
structure PDB 1HSO
reaction Reactome REACT-896.4
pathway KEGG Pathway ko00010
organism NCBI Taxonomy 9606
disease OMIM 103700
. . .

4.1.2 Relationship Concepts

This section discusses various types of relationships proposed in biological

and biomedical domain. These domain relationships can help promote the inter-

operability of ontologies and support the automation of text mining in biomedical

literature and query formulation in mediator systems. Currently, our mediated on-

tology contains these kinds of ontological relationships: ChEBI relationships [31] and

OBO relationships [98].
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OBO relationships are proposed by Open Biomedical Ontologies consortium.

The proposed 10 relationships are: is-a, part-of, located-in, contained-in, adjacent-

to, transformation-of, derives-from, preceded-by, has-participant, and has-agent. In

chapter 3, we proposed 3 extended EER relationships: sequence-ordered, functional-

process and molecular-spatial. In the following, we give the comparisons between two

data models.

The two models overlap in certain areas and differ in others. The is-a is a basic

relationship and is already handled by class/subclass inheritance in EER modeling.

The part-of is also handled by aggregation relationship, although not explicitly. OBO

spatial relationships (connecting one entity to another in terms of relations between

the spatial regions they occupy): located-in and contained-in can be derived from

molecular-spatial relationships.

The located-in relates two continuants c1 and c2 such that the spatial regions

they occupy r1 and r2 are related by part-of relation all the time. The contained-in

relates two continuants such that the spatial regions they occupy are overlapping all

the time. By definition, molecular-spatial relationship relates a set of atoms (com-

ponents) to a molecule (composite object). Atoms are located in x, y, z coordinates

within (contained in) a molecule. The molecular spatial relationship bares some char-

acteristics of aggregation (reverse is part-of ) relationship that these atom entities are

connected by some forces (bonding) that need explicit modeling. So, these two OBO

spatial relationships can be explicitly modeled by the molecular spatial relationship.

But adjacent-to relation, which relates two disjoint continuants proximate to each

other in space all the time, cannot be modeled by our model explicitly. An example

is: intron adjacent-to exon. OBO temporal relations (connecting entities existing

at different times): transformation-of, derives-from, and precede-by are also similar

to process relationships. The process relationship relates various kinds of entities,
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designated by 3 distinct roles: input, output and catalyst that they participate in

during a biological process. The transformation-of relates continuant class C1 and

C2 wherever an instance of the class C1 is to have existed at some earlier time as an

instance of the distinct class C2. That means the same instance belongs to differ-

ent classes at different time. For example, normal colon changes into carcinomatous

colon. In ER modeling, the same entity (instance) cannot belong to different en-

tity type (class). This is unlike transformation-of and derives-from relationships,

which relate different entities in the time axis in both instance level and class level.

As derives-from relates classes of continuants by time, preceded-by relates classes

of processes by time. An example is: translation preceded-by transcription. This

relationship can be modeled by process relationship if we treat processes (defined

in OBO) as entities in ER, so P1 preceded-by P2 can be modeled such that P1 is

the input entity of a process relationship while P2 is the output and process name

is ”preceded-by”. The has-participant relates a process, a continuant, and a time

where the continuant participates as a bearer in the process. Examples are: transla-

tion has-participant amino acid and cell division has-participant chromosome. The

has-agent relates a process, a continuant, and a time where the continuant partici-

pates as a direct cause for the process. An example is: transcription has-agent RNA

polymerase. This responsible continuant is thus an entity that acts as a catalyst in

a process relationship.

From the above definitions of OBO relations, we can see that they all incor-

porate a temporal argument, while our model does not provide it explicitly. But

process relationship already indicates this implicitly, that input entities occur before

output entities in a process. Concerning relationships in extended ER model that

cannot be modeled by the OBO relationships, sequence-ordered relationship cannot
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be modeled. It relates two entity types E1 and E2, where instances of E1 are ordered

and related to one instance of E2. Also this relationship set can have duplicates.

Chemical entities are often bound to proteins when the protein 3D structure is

measured, and can participate in enzymic reactions. The protein interaction and the

pathway databases all involve small molecules. The ChEBI (Chemical Entities of Bio-

logical Interest) ontology proposed 7 relationships: is-conjugate-base-of, is-conjugate-

acid-of, is-tautomer-of, is-enantiomer-of, has-functional-parent, has-parent-hydride,

and is-substituent-group-from [31]. These relationships can only be applied on the

Molecule concept level, but not all types of molecules.

The above different domain relationship sets are non-overlap. These sematic

relationships are very important domain knowledge. In addition to our defined re-

lationships, they can be used by scientists to query sequence, interaction, structure,

reaction, and pathway/process data sets. For example, has-functional-parent denotes

the relationship between two molecular entities, one of which possesses one or more

functional groups from which the other can be derived by functional modification.

So, this can be used in querying protein modification data.

4.1.3 Attribute Concepts and Annotations

In order to accurately describe the properties of the raw instance data, such

as the function of a gene or the detailed domain structure of a specific protein, the

external classification/annotation concepts need to be integrated into our mediated

ontology.

The annotation is descriptions of the raw bioinformatics data (sequences, struc-

tures, etc). In a typical sequence database entry, it includes biological functions,

sequence features, or literature references. Annotations are in free text form, usu-

ally captured from literatures by domain experts. They are easy for human to read
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and understand, but are difficult for automated computer processing. If we want to

integrate different data instances (proteins or genes), annotations must be parsed to

some basic forms, which can be used by scientists to make queries on the source data

instances. Because different annotators may use different terms for the same con-

cept, domain ontologies have been created to address this standardization problem.

This also helps the integration of bioinformatics data sources. The Gene Ontology

(GO) is such an ontology. It has being successfully used to annotate genes and gene

products. It has 3 sub-ontologies: cellular components, molecular functions, and bi-

ological processes. Its concepts are organized into a DAG (Directed Acyclic Graph)

structure. In this graph data model, a node represents an individual concept, and

an edge denotes a relationship between the two concepts (nodes). GO only has 2

relationships: isa and partof. The ontology graph has partial-order, and multiple

inheritance properties.

While the annotation describes the instance data, the classification has a dif-

ferent purpose. It categorizes the instance data into different groups. For example,

NCBI Taxonomy classifies the organisms by their evolutional lineages. So, its struc-

ture is strictly a tree, which is a hierarchy of isa relationships (from the leaf to the

root). Figure 4.1 shows the Homo Sapiens taxonomy [1, 31]. Annotations and clas-

sifications are both treated as our mediated ontology concepts. Their relationships

with the instance data can be denoted by: NCBI-taxonomy classify organism, and

GO-annotation annotate protein, for instance.

There exists several standard instance classification systems. For the pro-

tein structure data, CATH and SCOP (Structure Classification of Protein) [7] are

both the standard classification systems. CATH is a hierarchical classification of

protein domain structure, which cluster proteins at four major levels: Class(C),

Architecture(A), Topology(T) and Homologous superfamily(H). Class describes the
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Figure 4.1. NCBI taxonomy, from [1] .

secondary structure. Architecture describes the gross orientation of secondary struc-

ture. Topology cluster structures into fold groups according to their topological con-

nections and numbers of secondary structures. The homologous superfamilies cluster

proteins with highly similar structures and functions [23]. Examples of CATH values

are ”mainly alpha”, ”orthogonal bundle”, ”helicase, ruva protein; domain 3”, and so

on. Currently, we only choose CATH data. Later, we will incorporate SCOP data.

The enzyme is a major class of protein data. It acts as a catalyst role in the

biochemical reactions. The only authentic classification of enzymatic reactions is

ENZYME [41]. Enzyme Commission (EC) number is assigned to each type of char-

acterized enzyme. Examples of EC values are ”oxidoreductases”, ”receptor protein-

tyrosine kinase”, ”hydrolases”, and so on.

For nucleotide sequence data, we choose SO (Sequence Ontology) as a stan-

dard. The SO provides a set of terms and relationships to describe the biological

sequence features. It includes both raw features, such as nucleotide similarity hits,

and interpretations such as gene models [34].

For the pathway data, we choose BioPAX [9] and KEGG database [50] ontology.

KEGG has its own classification system called KO (KEGG Orthology). It organizes
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the pathways in 4 levels. Examples of KO values are ”metabolism”, ”carbohydrate

metabolism”, ”glycolysis/gluconeogenesis”, and so on.

Our low level (classification) concepts are directly imported from several au-

thentic annotation sources: ENZYME, CATH, PDB and GO. These data sets only

include protein/gene/pathway database entry ids and their annotation/classification

system ids and values. For example, the Swiss-Prot protein id:P08833 (Insulin-like

growth factor-binding protein 1), its PDB structure id:1ZT3 (C-terminal domain of

Insulin-like Growth Factor Binding Protein-1 isolated from human amniotic fluid),

and id:1ZT5 (C-terminal domain of Insulin-like Growth Factor Binding Protein-1

isolated from human amniotic fluid complexed with Iron(II)), its GO annotation

id:0005615 (cellular component, extracellular space), etc. Our system does not store

other information such as protein sequences and 3D structure features. These extra

data will dynamically be fetched from the original data sources through our web

service retriever based on the query specification of the user.

4.2 Ontology Structure

The Mediated Domain Ontology (MDO) is a conceptual data model for our

mediator system. The term ”mediated” means that it incorporates both the stable

concepts (entity-like and relation-like concepts), but also a dynamically evolving

control vocabularies of diverse classification/annotation systems on sub-domains.

The high level (core) concepts are independent of external data sources. The low

level concepts (annotations and classifications) will reflect the updated protein or

gene annotations. MDO has a DAG structure. The core concepts are backbones; the

low level concepts are extended from core concepts through annotate and classify

relationships.
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moleculebiopolymerisaDNA isa proteinisa enzymeisareceptor isa reactionenzymaticreactionisreactionof isacatalyze
interaction isinteractionof pathwayconversionisa sequenceOrder processpartofstructuredomain-structureisa atombond hasapartof partof annotate CATH

EC classifygenesequenceOrder encode catalyst roleisa isa
2rd-structure molecule-spatial

Figure 4.2. High level concepts in mediated ontology.

Figure 4.2 shows the structure of the core concepts in MDO. The Entity, Re-

lationship, and Attribute concepts are not shown out. Molecule is the core of core

concept sets. It hasa Structure (Molecular structure), and can produce other con-

cepts such as Reaction and Pathway through molecular interactions. Molecule can
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be specialized into DNA and Protein. Protein can be specialized into Receptor and

Enzyme. Enzyme has one more relationship: catalyze with Enzymatic reaction com-

pared to its parent concept Protein.

4.3 Formal Definitions

We now give a formal definition for our mediated domain ontology. Let C be

the set of domain concepts. The concepts can be classified into 3 types:

• Entity-like concept EC, whose instances are tuples, and are available in the

data sources.

• Attribute-like concept AC, whose instances are values.

• Relation-like concept RC, which denotes the binary relationships between 2

concepts.

Definition 1. A attribute-like concept AC is used to describe the internal or static

characteristics of an entity. Its instance is a value.

EXAMPLE: Name, Length, and Type are typical attributes.

Definition 2. A entity-like concept EC which abstractly denotes a class of entities,

can be designated by a concept name (or label) and defined by a set of attribute-like

concepts AC. Thus, a entity-like concept EC is defined as EC = 〈Name, otherACs〉.
EXAMPLE: Molecule is defined as: 〈Name, CAS, Formula, MolecularWeight〉.

Definition 3. A relation-like concept RC is used to describe the external or dynamic

characteristics of an entity. It denotes a binary relationship between 2 concepts. Its

relationship instance is a triplet.

EXAMPLE: Encode is a relationship concept. Gene encode Protein is one of the

relationship instances.
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Definition 4. The structure of domain model is an ontology O = 〈C,R〉, where

C = {c1, c2, . . . , cn} is a set of concepts, and R = {r1, r2, . . . , rm} is a set of relation-

ship concepts RC between any pair of concepts ci and cj.

Definition 5. A concept can be interpreted (supported) by the existence of one

or more data instances d. The interpretation of a concept c is defined as I(c). De-

pending on the concept type, this interpretation function I will return different sets

of data instances (the set of all instances of the supporting sources). For the EC, it

will be evaluated to a set of data instances D = {d1, d2, . . . , dk}. For the RC, it will

be evaluated to a set of data instance pairs. Some highly abstract concepts in the

ontology cannot directly create instances.

There are two types of RCs, named intra-relationship and inter-relationship.

Intra-relationship is between the same concepts; inter-relationship is between 2 dif-

ferent concepts. There are 3 basic RCs: isa, partof, and attributeof, which denote

the relationship between part and whole, the relationship of concept type hierarchy,

and the relationship of attributes. The others are: definedby, attributeof, typeof, and

isabout. We also define 3 basic domain RCs: order, process, and molecule-spatial,

which denote 3 common concepts in life science [39]. ACs include many types of

standard annotations, such as GO-annotation, SO-annotation, CATH-annotation,

etc.

4.4 Customized View of Domain Concepts

Since each domain ontology has its own focus, the same concept can be ex-

pressed in different degrees of abstraction. For example, the concept Structure is

the leading role in the CATH ontology, but in EC ontology it becomes a supporting
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role. The concept Structure can be specified by different criteria such as topology in

CATH, bond type in EC, and so on, thus creating different specification paths in the

mediated ontology. The same principle can be applied in the reverse (abstraction)

path. For example, one specific structure concept of the protein can be ”zoom out”

into the disease concept or the pathway concept.

The above different paths of the concept navigation provide the basis for the

customized view of domain concepts for querying and integration. In the rest of

this chapter, we will use biological studies of aging as an example to illustrate the

application of our proposed mediated taxonomy/classification approach to integrate

the related data sets.

Aging is a process that is complex and multi-disciplinary. The data that de-

scribes the aging process span over different domains and abstraction levels from

genomic and proteomic experimental results reported in the aging research litera-

ture to various online database resources. They include aging-related knowledge

discovery in research literatures such as Telemakus [58], organelle databases such as

MitoMap [79] that contain mitochondrial proteins of humans and many other gen-

eral databases that contain genes/proteins with a role in aging. Usually scientists

researching on proteins are often interested in sets of proteins, sharing certain prop-

erties such as folding structure, or enzyme reaction and doing comparative studies

on these data instances in other prospects such as source organism, protein-protein

interaction or pathways. Some typical questions arise. Examples in mitochondria

related aging process are:

1. Retrieve all variants (isozymes) of Insulin-like Growth Factor (IGF)?

2. Do all organism have similar or same isozymes?

3. Do these isozymes interact with same receptor?

4. What differences (structure or function) are there among these IGF receptor?
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Figure 4.3. Mediator logical architecture.

5. Retrieve all structures of IGF binding proteins in the mitogen-activated protein

kinase (MAPK) pathways.

The above questions can be formulated using SQL queries with concept relationship

constraints. For example, question no.1 can be translated into the following SQL

query:

SELECT m2.name (or accession) as isozymes

FROM molecule m1, molecule m2

WHERE m1.name = ’IGF’

AND (m1.accession, m2.accession) IN isozyme_view

Figure 4.3 show the mediator logical system architecture. Each type of query

represents one specific view of the user. For example, view1 may focus on the struc-
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ture view of data constrained by other concepts (attribute values and domain rela-

tionships)

4.5 Summary

In this chapter, we described how we created our mediated ontology from the

many ontology databases that exist. The mediated ontology is the heart of our

integrated querying system, which guides the user through query formulation by

selecting ontology terms of interest. The user selections are converted into an SQL

query on the mediated ontology, which retrieves various accession numbers from

diverse data sources that match the user query. These are described in the following

chapters.



CHAPTER 5

BIOMEDIATOR SYSTEM

This chapter gives the overview of BioMediator system architecture and the

functions of each component. The mediator system has been implemented in C sharp

language, running on .NET Framework 2.0 in the windows system. The mediated

domain ontology described in the previous chapter is stored on the MySQL server.

The user interface consists of several ASP.NET web pages, hosted by IIS web server.

Figure 5.1 shows the overall architecture. Section 5.1 presents the Domain Ontology

Server that stores the MDO and the instance data. Section 5.2 presents the User

Query Interface that the user can use to formulate queries by browsing the domain

ontology concepts. Section 5.3 presents the Query Processor that executes the user

queries and returns the results back to the user. Section 5.4 presents the Service

Data Retriever that retrieves the data requested by the user. Section 5.5 presents

the external web services provider: BioServiceBroker [28].

5.1 Domain Ontology Server

In the previous chapter, we discussed the mediated domain ontology. The MDO

can be implemented into a relational database server using the Resource Description

Framework (RDF) data model. This domain ontology server stores all the mediation

data, and manages the domain concepts, their properties, and relationships, as well

as the information about the mapping to the data sources. The next section will

briefly describe the basic concepts of the RDF data model, and discuss why we

adopt it.

68
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Figure 5.1. Mediator system architecture.
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Figure 5.2. RDF graph data model in triple.

5.1.1 RDF Data Model

The Resource Description Framework (RDF) is a language for representing

information about resources in the World Wide Web. It is a data model used by the

semantic web technology. It is simple graph data model, shown in Figure 5.2. A triple

has three parts: a subject, an object and a predicate that denotes the relationship

between the subject and the object. The arrow is always pointing toward the object.

So, this graph describes:

an instance uniprot:P07327’s type is a protein. Note that in an RDF graph, a

node may be a URI (Uniform Resource Identifier) with optional fragment identifier

(URI reference, or URIref), a literal, or blank.

As we discussed in chapter 2, bioinformatics data is not like traditional commer-

cial data. The entity types are easy to determine, but its attributes are relatively

difficult to identify. Relationships at the data instance level, such as one protein

instance interacts with other protein instances, are the primary concerns of the sci-

entists. These various relationships cannot be easily captured or modeled at the

schema level. Figure 5.3 shows an RDF graph that describes various information

about the protein instance: uniprot:P07327. The rectangle nodes denote literal val-

ues. The content can be expressed by a collection of RDF statements in Table 5.1.

Each statement is a triple of the subject-predicate-object form. It asserts the follow-
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Figure 5.3. RDF graph about a protein instance.

ing facts: uniprot:P07327 is a protein; its name is ”Alcohol dehydrogenase 1A”; it

has a pdb:1ZT3 3D molecular structure; and so on.

Since the bioinformatics data is a mixture of raw data instances and anno-

tations, we use this simple RDF model to store various relationships between data

instances. We do not use ordinary tables to store bio-entities (data warehouse ap-

proach). The data warehouse approach uses a pre-defined and unified data schema

that specify the entities and relationships at the schema level. Our RDF approach

stores these relationships at the instance level. Different bio-entity types (entity
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Table 5.1. RDF statements about a protein instance

(uniprot:P07327) (type) (protein)
(uniprot:P07327) (name) (Alcohol dehydrogenase 1A)
(uniprot:P07327) (biosourceof) (taxon:9606)
(uniprot:P07327) (hasa) (pdb:1HSO)
(taxon:9606) (type) (organism)
(taxon:9606) (name) (human)
(embl:M12271) (type) (mrna)
(embl:M12271) (length) (1397)
(embl:M12271) (translate) (uniprot:P07327)
(pdb:1HSO) (type) (structure)

concepts in MDO) and their associated attributes can be implemented by database

views.

5.1.2 Mediator Data Schema

Figure 5.4 shows the conceptual ER model of the mediator schema. Entity

CONCEPT stores all the core concepts. The attribute Level denotes the abstraction

level of the concept. The attributes CType, CType2 and CType3 denote the different

types of the same concept instance. For example, the concept enzyme CType value is

protein, CType2 value is catalyst, and CType3 value is null. Note that many of these

values could be NULLs. This design gives us the possibility of implementation for

multiple inheritance concept hierarchies (typeof or isa relationship). It also provides

a way of increasing selectivity of the target data instance for the queries. Table 5.2

shows some examples of domain concepts.

Relationship Relation stores all possible binary relationships between two con-

cepts except for isa relationship. Table 5.4 shows some examples of relationships

between two concepts. The rest of the concepts that come from external sources

(classification or annotation terms) and attribute concepts such as Name, Symbol,
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Figure 5.4. ER model of the mediator schema.

Length, and so on are stored in the entity ATTRIBUTE. Their value can be used to

annotate the instance data stored in the entity INSTANCE with the key attribute:

Accession of external data sources. Data instances can be either directly supported

by various evidence records (stored in the entity EVIDENCE) such as experimental

results written in the research literatures, or conceptually interpreted by the core

entity concepts.

Note that we put the attribute names as values in the ATTRIBUTE table, as

shown in Table 5.3 for the joined results. This design is beneficial for the mediation

system since there is no need to store all the values of attributes, and some attributes

of the instance will change in the future or are unknown at present but will be added

later on. This allows the flexibility to add new attributes in the future as needed.
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Table 5.3 shows the examples of records in the join table INSTANCE-ATTRIBUTE.

Note that AttrVal usually is a coding number, such as EC number 1.1.1.1, which is

long text. Table 5.5 shows some examples of instance-level relationships.

5.2 User Query Interface

Figure 5.5. A web interface for ontology browsing and querying.

The main user interface is a query interface for browsing concepts and formu-

lating queries, shown in Figure 5.5. It consists two main parts: Ontology Browser

and Query Form.

Ontology Browser (left-hand frame) gives users a tree view of the entity con-

cepts. Users can browse it to find specific concepts through several high level ac-
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cess points: molecule, structure, interaction, reaction, pathway, process, disease, and

source. These concepts are at the first level, the rest of the more specific concepts

are built up by isa relationships under the core concepts. Note that the displayed

concepts in the tree view are just one subset of the total concepts.

Once a node is clicked, the concept becomes the main focus when users want to

make queries about it. We call it the center concept. This concept, a list of related

concepts, and their corresponding relationships will be shown in Query Form (right-

hand frame). A list of attributes of each concept can be vertically expanded/collapsed

by clicking the ”+/-” sign beside it. Also a list of filter operations corresponding to

each type of attributes can be horizontally expanded/collapsed by clicking the ”+/-”

sign beside it. For examples, the operations: ”equal to” and ”in” will be applied

to identifier type attribute such as accession (for a database entry); the operations:

”equal to” and ”like” will be applied to string type attribute such as name; the

operations: ”equal to”, ”less than”, ”greater than” and ”between” will be applied to

integer type attribute such as length and weight. The users can select concepts and

attributes of interest for the query.

The users can customize the domain concepts according to their own view of

data. The users can select any members (typeof) of these concepts to form the

first level concepts. For example, if a user wants to query the information about

one class of proteins, their 3D structures, genes, and associated diseases, he or she

can do the following: In the molecule domain ontology, select protein. This is the

center concept. The other selected concepts are the context (associated or constraint

concepts). In the structure domain ontology, select protein 3D structure. In the

disease domain ontology, select disease. This set of entity concepts: protein, protein

3D structure, and disease constitutes the first level concepts, which will be displayed

in the Ontology Browser. After the user sets up the initial concepts set, the system
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will automatically calculate the first level instance data set: protein instances, protein

3D structure instances, and disease instances, and relationship data set: protein-

structure instances; protein-disease instances with all known available data sources.

5.3 Query Processor

Currently, the Query Processor module has two components: the concept

Query Generator and the Query Translator. Next, we will discuss their individual

functions.

5.3.1 Concept Query Generator

The concept Query Generator module captures all the information that users

specified in the browsing query interface, and transforms it into a concept query.

Then, the Query Translator translates this concept query into a internal SQL query

that can be efficiently executed against the underlying relational database.

The syntax of the concept query is similar to the syntax of SQL with a little

extension. We add RDF like triples into WHERE clause to specify the relationships

among entity concepts. The following examples show the above user query and the

transformed concept query.

user query:

Find name, RNA transcript, 3D structure of the

protein with UniProt accession: P07327.

concept query:

SELECT protein.accession, protein.name,

rna.accession, structure.accession

FROM protein, rna, structure



77

WHERE protein.accession = ’uniprot:P07327’

AND ( rna <translate> protein

OR protein <hasa> structure )

So why do we need the concept query? Some types of queries will be repeated

just by changing the input parameters. The user can save his/her selections from the

query form to a concept query script. This script can be execute directly in concept

query interface by typing in or loading from a disk. If users get familiar with the

concept syntax and names of the entity, attribute and relationship concepts, they

can write the query directly.

5.3.2 Query Translator

The query translator module translates the concept query into the internal SQL

queries. The following examples show how the above concept query is translated into

an SQL query.

concept query:

SELECT protein.accession, protein.name,

rna.accession, structure.accession

FROM protein, rna, structure

WHERE protein.accession = ’uniprot:P07327’

AND ( rna <translate> protein

OR protein <hasa> structure )

SQL query:

SELECT protein.accession, protein.name,

rna.accession, structure.accession

FROM protein
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LEFT JOIN irelation ON ( protein.instance_id =

irelation.instance_id1 ) LEFT JOIN structure ON

( irelation.instance_id2 = structure.instance_id ) ...

WHERE protein.accession = ’uniprot:P07327’

AND ( irelation.relationship = ’translate’ OR

irelation.relationship = ’hasa’ )

Note that in the above SQL query, entity protein, rna, structure, etc are not

physical tables, they are database views, generated by the user who makes a query

when these entities appeared in the concept query for the first time. These views can

be automatically updated by the local database engine when new data are added in.

Here is an SQL example to generate the protein view:

CREATE VIEW protein AS

SELECT i.instance_id, i.accession,

(CASE WHEN i_a.attr_id = 1 THEN i_a.attr_value ELSE null END)

AS Name,

(CASE WHEN i_a.attr_id = 5 THEN i_a.attr_value ELSE null END)

AS Length,

...

(CASE WHEN i_a.attr_id = 31 THEN i_a.attr_value ELSE null END)

AS GoAnnotation

FROM instance i, instance_attribute i_a

WHERE i.instance_id = i_a.instance_id

AND i.concept_name = ’protein’
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5.4 Service Data Retriever

The Service Data Retriever component consumes the result of query processing

that contains the remote data source information, such as APIs, web services, and

retrieve data in XML format through HTTP protocol.

Figure 5.6. Analysis of a UniProt XML file.

Currently, the supported web service operation is the UniProt fetch service.

The accepted parameter is the protein accession, like ”uniprot:P07327”. The return
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data set is one or more database entries in XML format. A parser is automatically

called to parse this protein entry to extract EC instances, RC instances, and AC

instances and populate these data sets into the mediator system. Figure 5.6 shows

the analysis of a typical UniProt protein entry in XML format. The following is the

output data sets. Note that the symbol | is a separator.

instance records:

uniprot:P07327|ADH1A_HUMAN|protein

taxonomy:9606|Homo sapiens|organism

embl:M12271|NULL|mrna

...

instance-attribute records:

uniprot:P07327|name|alcohol dehydrogenase subunit alpha

...

instance-relation records:

uniprot:P07327|encode|unigene:hs.654433

uniprot:P07327|biosourceof|taxonomy:9606

uniprot:P07327|translate|embl:M12271

uniprot:P07327|molecule-structure|pdb:1HSO

uniprot:P07327|molecule-structure|pdb:1U3T

uniprot:P07327|protein-disease|OMIM:103700

uniprot:P07327|protein-pathway|KEGG:hasa:124

uniprot:P07327|protein-drug|PharmGKB:PA24570

...
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5.5 BioService Provider

This section briefly describes the server side of BioService system: BioService-

Broker [28], its functionality and services. The BioMediator’s external data access

is through the web services provided by BioServiceBroker. BioServiceBroker is a

multi-level ontology-enabled service broker for dynamically integrating web services

in the bioinformatics domain. It has a UBSI (Unified Biomedical Service Interface)

for clients to invoke many published service operations. Our Service Data Retriever

dynamically retrieves data by calling UBSI’s operations. For example, to retrieve the

sequence of a specific protein, Our Service Data Retriever calls getProteinSequence

of UBSI; the input parameter is the protein database accession number.
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Table 5.2. CONCEPT relation

Label Name CType CType2 CType3
entity entity
attribute attribute
relationship relationship
source source
role role
data source dataSource source
biological source bioSource source
. . .
molecule molecule physicalEntity
structure structure entity
interaction interaction relationship entity
reaction reaction entity
pathway pathway entity
process process entity
. . .
catalyst catalyst role molecule
. . .
protein protein molecule
enzyme enzyme protein catalyst
DNA dna molecule
RNA rna molecule
. . .
chemical structure chemicalStructure
. . .
organelle organelle bioSource
cell cell bioSource
tissue tissue bioSource
organ organ bioSource
organism organism bioSource
. . .
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Table 5.3. INSTANCE-ATTRIBUTE relation

Accession AttriuteName AttributeValue
spt:P07327 EC-annotation 1.1.1.1
gbk:gene3484 symbol IGFBP1
gbk:NM-000596 length 1660 bp
spt:P14139 EC-annotation 6.6.1.2
spt:P07327 CATH-annotation 1.10.8.10
omim:609342 MESH-annotation C06.405.748.398
. . .

Table 5.4. CONCEPT-CONCEPT relation

Concept Concept Relationship

bond molecular structure partof
atom molecule molecular structure
gene DNA ordered-bag
gene protein encode
gene mRNA transcript
. . .

Table 5.5. INSTANCE-INSTANCE relation

Instance Instance Relationship

gbk:gene3484 spt:P07327 encode
gbk:gene3484 gbk:NM-000596 transcript
gbk:NM-000596 spt:P07327 translate
spt:P07327 spt:P08833 isozyme
. . .



CHAPTER 6

APPLICATIONS

This chapter describes how to use BioMedaitor to query for bioinformatics data

sources. We use some examples to illustrate the process of query formulation.

6.1 Customizable Query Formulation

The web site of major bioinformatics data sources usually provides an ontology

interface to navigate their data. Each concept is associated with a collection of

database entries. High level concepts associate more data instances, such as in

GO. The problem is when you browse the concept tree, you must go down many

levels of hierarchy to find the specific term of the interest. When you click the

term, the system will return a web page full of links to the external databases. The

data sources to which they linked span over various domains on different levels of

abstraction. For example, in NCBI UniGene web site, one gene can sometimes link

to more than 50 nucleotide sequences, but there is no indication of any differences

among them. Most of the time, users must check these links one by one to see if there

are any interest in the data. Actually, these browsing results can be conceptually

modeled in a framework of a mediated ontology. The same instance level of data

can be differentiated from each other in the context of this framework for multiple

comparisons.

Our query interface provides a ”browse-and-query” model for users to locate the

data of their interest. The browsing interface provides several levels of access points,

from individual molecules to integrated pathways and processes. Once you choose

84
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the main concept of interest, the other related concepts will become a context in a

query. This context can be classified into 2 types: the association and the constraint.

The next two sections will illustrate these concepts.

6.1.1 Association Queries

The Association Query means retrieving all relevant information about one

type of data instances. It includes: proteins, protein structures, enzymatic reactions,

protein annotations, etc. Usually, the query includes a center concept and other

associated concepts, and the return tuple set is only limited by the center concept.

EXAMPLE 1. Find all information about genes and structures of ”IGFBP”

proteins.

We can first browse the concept tree to locate the protein concept. Once found,

we expand the concept node to see if there are any classification called ”IGFBP”.

Once found, click the IGFBP concept node to check if there are any attributes or

related concepts of interest. Suppose that the gene concept related by encode is

the user interest. Then the user can select these attributes to query the system. In

the query, the ”IGFBP” protein family limits the returned set of protein instances

and any matching gene instances and structure instances will be returned whenever

a ”IGFBP” protein instance is retrieved. The system will return a list of protein

accession numbers and the values of the selected attribute. Some values of genes

and structures may be empty. The formulated query in concept query format is as

follows:

SELECT protein.accession, protein.name,

gene.accession, structure.accession

FROM protein, rna, structure

WHERE protein.type = ’IGFBP’
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AND ( gene <encode> protein

OR protein <hasa> structure )

6.1.2 Constraint Queries

The Constraint Query means the context concepts restrict the return set of

main concept instances. The conditions specified in other related concepts also affect

the main concept.

EXAMPLE 2. Find proteins with some characteristic structure specified by

CATH 3D domain classification.

In this query, the user can first browse from structure concept, then locate

and select domain structure. The protein concept will appear as a related concept

to domain structure. The user can check the attribute CATH-annotation of domain

structure, and specify the conditions. The following is the formulated query.

SELECT protein.accession, protein.name,

FROM protein, structure

WHERE structure.CATH-annotation = ’CATH:T556’

AND protein <hasa> structure

6.2 Browsing-based Data Integration

Our mediator only stores the identifers of database entries from various data

sources, and associated annotations or classifications. These identifers belong to

different types of the data, and are integrated under a mediated ontology. Extra

data such as sequences of proteins or nucleotides are not stored locally. We adopt

the navigational or linked-based integration. After the users submits the query, the

system will return a set of database accessions in a tabular format. The detailed

reports of database entries can be browsed by the links. If the return set is beyond
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the user comprehension, the result can be further filtered out by applying the various

filter operations on the concepts’s attributes.

Currently, our mediator integrates the bioinformatics data from the following

sources: UniPort, PDB, ENZYME, CATH, and GO. Annotation data sets including

the database accessions are reloaded often to keep the data updated with new release

of each source. Because bulk downloads and parsing for accessions and annotations

are one time operations, the mediator does not incur much maintenance problems.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this thesis, first we studied the characteristics of bioinformatics data, various

data exchange formats, and data models used for sequences, structures, interactions,

pathways and processes. Conceptual data models such as EER lack the representa-

tion power for capturing these biological concepts. We proposed the enhanced EER

model and diagrams to address this problem. Then, we studied the problems with

querying and integrating the above resources in various integrative systems. Most

systems lack the flexible query interface for the biologist to make queries from his or

her view of data relationships, and thus can not fully integrate different types of raw

data in the various contexts. We found that ontology-based and web-service-assisted

mediator architecture is more suitable for integrating often updated data sources. For

this reason, we focused on the development of the mediated domain ontology that

uses our new proposed relationships. Our mediator system is implemented based on

this ontology, which helps the query interface design and use.

7.1 Summary of Contributions

• EER Data Model Enhancements. We introduced three new types of relation-

ships into the EER model: ordered relationship, process relationship and molec-

ular spatial relationship. We also extended the relationships to allow bags (or

multi-sets) of relationship instances, since many relationships in molecular bi-

ology fall into this category. We illustrated the need for these relationships in

modeling biological data and we proposed some special diagrammatic notation.

88
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By introducing these extensions we anticipate that biological data having these

properties will be made explicit to the data modeler, which would help direct

future biological database implementation. In particular, our unordered bag

relationship can be used for various reaction data, and our ordered bag should

be useful for sequences and genetic features. Our process relationship would

be useful for the reaction, interaction and pathway data. These changes do

not add much complexity to the existing EER model, thus making them eas-

ier for integration. We also give the formal definitions for these new concepts

and summarized their notation and usage. We also showed how these addi-

tional concepts can be mapped into relations for implementation in relational

databases.

• We proposed the mediated domain ontology for the purpose of bioinformatics

data query and integration. It consists of two sets of concepts: the instance-

supported domain concepts (core), and instance-associated annotation/classification

concepts (external). The ontological concepts can be roughly classified into 3

types: entity concepts, attribute concepts, and relationship concepts. Core

entity concepts such as Protein, Nucleotide, Structure, Interaction, Reaction,

Pathway, Process, BioScource and DataScource, are manually set up by the

analysis of various molecular database entries. Attribute concepts include the

common attributes of the above entity concept instances, and standard anno-

tation concepts. External annotation concepts such as in GO and in ChEBI

can be queried and downloaded automatically through the web service provider

based on the user needs. We apply RDF data model in the design of the medi-

ator schema. It is based on hybrid taxonomy ontologies for integration of the

protein and gene instance data in the context of interactions, pathways and

processes.
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• BioMediator Querying and Browsing Interface. A prototype BioMediator sys-

tem has been built for biologists to navigate the domain concepts and construct

queries. The system pre-stores the domain concepts about bioinformatics data

sources and their database entries. The users can formulate the queries by

browsing the concept tree and selecting the specific concepts of interest and

its attributes and related concepts. After submitting a query, the system will

return a list of accession numbers from the different data sources. Users can

click the links to check the detailed reports of that data entry. Extra attribute

data will be retrieved via external BioService provider [28].

7.2 Future Research Direction

Currently, we only experimented with a subset of data from each source. It

is possible that with more and more integrated data, the query performance will

degrade. Even though the RDF model can provide a way for making flexible query

feasible, efficient indexing and querying these millions of instances will become a

problem. So, subsequent work should focus on the indexing of this pseudo RDF

store built on the relational databases.
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