
A PIECEWISE LINEAR CLASSIFIER

by

ABDUL AZIZ ABDURRAB

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2007

ACKNOWLEDGEMENTS

It is difficult to overstate my gratitude to my M.S. supervisor, Dr. Michael T.

Manry. Throughout my research period, he provided encouragement, sound advice,

good teaching, good company, and lots of good ideas that helped make my research

easy and interesting. I am thankful for the countless hours he invested in painstakingly

revising drafts for the thesis.

I thank Dr. Raymond R. Shoults and Dr William E. Dillon for reviewing my

work and also for agreeing to serve on my thesis committee.

I am indebted to my many student colleagues, both graduate and undergraduate,

for providing a stimulating environment to learn and grow.

I thank my peers and supervisors at Qualcomm, Inc. for being a constant source

of motivation, during my internship.

I would like to express my deepest appreciation to my aunts and uncles -

Khadija Khan and Dr. M. A. Sattar Khan, Qudsia Ahmad and Dr. Mohammad Ahmad,

Amena Hussaini and Sajjad Hussaini - and Ruqia Ali and Syed H. Ali who helped make

my stay miles away from home much easier.

I dedicate this thesis to my brother, sister and parents, Abdurrab Bin

Mohammed and Khursheed Unnisa Begum, whose prayers made this possible.

Lastly, I offer my obeisance to Allah S.W.T for guiding me from within.

April 10, 2007

 ii

ABSTRACT

 A PIECEWISE LINEAR CLASSIFIER

Publication No. ______

Abdul Aziz Abdurrab, MSEE

The University of Texas at Arlington, 2007

Supervising Professor: Dr. Michael T. Manry

A piecewise linear network is discussed which classifies N-dimensional input

vectors. The network uses a distance measure to assign incoming input vectors to an

appropriate cluster. Each cluster has a linear classifier for generating class

discriminants. A training algorithm is described for generating the clusters and

discriminants. A pruning algorithm is also described. The algorithm is applied after the

network has grown completely, i.e, it has achieved the maximum number of clusters.

The pruning algorithm eliminates the least important clusters, one at a time, leading to a

more compact network. Theorems are given which relate the network’s performance to

that of nearest neighbor and k-nearest neighbor classifiers. It is shown that the error

approaches Bayes Error as the number of clusters and patterns per cluster approach

infinity. The mathematical complexity of the piecewise linear network classifier, in

 iii

 terms of number of multiplies, is compared against those of classical neural net

classifiers, like the multi-layer perceptron and the nearest neighbor classifier. The

classifier is also compared with these classifiers with respect to their sizes, i.e, number

of clusters or hidden units. It is shown that the piecewise linear network classifier

generally outperforms on both fronts.

 iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... ii

ABSTRACT .. iii

LIST OF ILLUSTRATIONS... viii

Chapter

 1. INTRODUCTION ... 1

 1.1 Classifier Design Problem ... 1

 1.2 Conventional and Neural Net Classifiers .. 3

 1.3 Introduction to the Piecewise Linear Classifier....................................... 4

 1.4 Objectives and Overview of this Thesis .. 5

 2. REVIEW OF NEURAL NET CLASSIFIERS.. 6

 2.1 Multi-Layer Perceptrons.. 7

 2.2 Radial Basis Function Networks ... 8

 2.3 Support Vector Machines .. 9

 2.4 Problems with Classifiers .. 11

 3. THE PIECEWISE LINEAR CLASSIFIER .. 12

 3.1 Network Stucture and Operation ... 12

 3.2 Network Training... 14

 3.2.1 Clustering.. 14

 v

 3.2.2 Solving for Ac ... 15

 3.2.3 Classification Error of the PLNC ... 16

 3.3 Review of Output Reset Algorithm ... 17

 3.4 Network Validation ... 18

 3.5 Network Pruning.. 19

 4. NEURAL NETS AND THE BAYES OPTIMAL DISCRIMINANT 22

 4.1 Neural Networks and Bayes Discriminant .. 22

 4.2 Nearest Neighbor and the Piecewise Linear Classifiers 23

 4.3 Convergence of the PLNC Error Probability... 25

 5. MATHEMATICAL COMPLEXITY.. 29

 5.1 Comparison of Number of Multiplies against the NNC.......................... 29

 5.2 Comparison of Number of Multiplies against the MLP 31

 6. PERFORMANCE COMPARISONS AND SIMULATION RESULTS 33

 6.1 Training and Pruning Results .. 33

 6.1.1 PLNC vs NNC .. 34

 6.1.2 PLNC vs MLP .. 37

 6.2 Mathematical Complexity Comparisons ... 39

 6.2.1 PLNC vs NNC .. 39

 6.2.2 PLNC vs MLP .. 41

 7. CONCLUSIONS AND FUTURE WORK.. 43

 7.1 Conclusions.. 43

 7.2 Suggested Future Work ... 44
 vi

Appendix

A. REVIEW OF SELF ORGANIZIG MAPS .. 45

B. REVIEW OF MODIFIED GRAM-SCHMIDT PROCEDURE.................. 48

REFERENCES .. 53

BIOGRAPHICAL INFORMATION... 61

 vii

LIST OF ILLUSTRATIONS

Figure Page

 1.1 Voronoi tessellation of a two-dimensional space.. 4

 2.1 Structure of a multi-layer perceptron ... 8

 2.2 Possible boundaries to a simple classification problem.................................. 10

 2.3 A maximum-margin hyperplane for a support vector machine 11

 3.1 Structure of a Piecewise Linear Classifier .. 13

 3.2 Training and Validation Errors ... 19

 6.1 Comparison of equivalent sized PLNC and NNC
 for shape recognition data ... 35

 6.2 Comparison of equivalent sized PLNC and NNC
 for numerical recognition problem .. 36

 6.3 Comparison of equivalent sized PLNC and NNC
 for segmentation problem ... 37

 6.4 Comparison of equivalent sized PLNC and MLP
 for prognostics data ... 38

 6.5 Comparison of equivalent sized PLNC and MLP
 for mushroom edibility data .. 39

 6.6 Comparison of PLNC and NNC for numerical recognition problem

based on the number of multiplies .. 40

 6.7 Comparison of PLNC and NNC for segmentation problem

based on the number of multiplies .. 40

6.8 Comparison of PLNC and MLP for prognostics data
based on the number of multiplies .. 41

 viii

 ix

6.9 Comparison of PLNC and MLP for mushroom edibility data
 based on the number of multiplies .. 42

 1

CHAPTER 1

INTRODUCTION

The ease with which humans recognize a face, comprehend spoken words, read

handwritten characters, identify and distinguish many things by feel disguises the

astonishingly complex process of pattern recognition and classification. Pattern

classification is the act of taking in raw data and deciding on the “category” of the data.

Over the past many years, humans have evolved highly sophisticated neural and

cognitive systems for such tasks. It is only natural that we should seek to design and

build machines that can recognize and classify patterns. From automated speech

recognition, fingerprint identification, optical character recognition, DNA sequence

matching, and much more, it is obvious that reliable, accurate pattern recognition by

machines is immensely useful.

1.1 Classifier Design Problem

A problem common to many disciplines is classification of data or patterns

based on a-priori knowledge and on statistical information extracted from the patterns.

The patterns to be classified are usually groups of measurements or observations,

defining points in an appropriate multidimensional input space. A complete pattern

recognition system consists of a preprocessor, e.g., a sensor that gathers the

observations to be classified or described, a feature extraction mechanism that computes

 2

numeric or symbolic information from the observations, and a classification scheme that

does the actual job of classifying observations, relying on the extracted features. The

task of the classifier component proper of a full system is to use the feature vectors

provided by the feature extractor to assign the object to a category. A typical classifier

design problem can be split into two parts, training and evaluation. In general, the

process of using data to develop the classifier is referred to as training the classifier. The

most effective methods for developing classifiers involve learning from a set of

example patterns that have already been classified. This set of patterns is termed the

training dataset and the resulting learning strategy is characterized as supervised

learning [3,4]. A training dataset usually consists of Nv labeled feature vectors xfp, each

of dimension N. Each feature vector has its class label, ic(p), defined, where 1 ≤ p ≤ Nv.

The goal is to design a classifier that estimates ic(p) from xfp, given the training data

(xfp, ic(p)). Learning can also be unsupervised [3,4], in the sense that the system is not

given a-priori labeling of patterns, instead it establishes the classes itself based on the

statistical regularities of the patterns. Evaluation of the classifier is important both to

measure the performance of the system and to identify the need of improvement in its

components. While an overly complex system may allow perfect classification of the

training samples, it is unlikely to perform well on new patterns. This situation is known

as overfitting [4]. One of the most important areas of research in statistical pattern

classification is determining how to adjust the complexity of the model- not so simple

that it can not explain the differences between the categories, yet not so complex as to

give poor classification on novel patterns.

 3

1.2 Conventional and Neural Net Classifiers

Conventional classifiers like the Bayes [3,4] and k-nearest neighbor classifiers

(k-NNC) [3,4] have long been used. A Bayes classifier is a simple probabilistic

classifier that makes the final decision by combining two sources of information, i.e.,

the prior and the likelihood, to form a posterior probability using Bayes' rule [5].

The k-NNC classifies objects based on the closest training examples in the N-

dimensional feature space. In the training phase, the feature space is divided into

convex polygons or clusters based on the class labels of the various training patterns.

This leads to partitioning of the input space into a Voronoi tessellation [46] as shown in

fig. 1.1. In the classification phase, distances from the new test vector to all the stored

vectors are computed and the k closest samples are selected. The new vector is

predicted to belong to the most numerous class labels within this set. The best choice of

k depends on the data; generally larger values reduce the effect of noise on classification

but make the decision boundaries less distinct. The algorithm is easy to implement, but

can get computationally intense, especially when the size of the training set increases.

Several artificial neural networks have also been used for classification

purposes. Neural nets can either undergo supervised learning or unsupervised learning,

as in self-organizing map (SOM) networks [10,18]. In supervised learning, there exist

the input feature vector, xfp and the feature vector’s class label, ic(p). Multi-layer

Perceptrons (MLP) [6], radial basis function (RBF) networks [7] and support vector

machines (SVM) [8,9] are trained using supervised learning techniques. Neural net

classifiers are usually trained to minimize the Mean-Squared Error (MSE) over a

number of iterations.

Fig. 1.1 Voronoi tessellation of a two-dimensional space

1.3 Introduction to the Piecewise Linear Classifier

Feedforward neural nets with the universal approximation property [19,20]

mimic Bayes discriminants [11,12] and have been successfully used for many

classification tasks. However, training time is slow, and convergence of the

classification error to Bayes error has not been shown. Such convergence theorems do

exist for nearest neighbor classifiers (NNCs) and k-NNCs [3,4], which also have the

advantage of being easy to design in a short period of time. However, the NNC and k-

NNC are rarely used because they are very time-consuming to apply. Piecewise linear

networks (PLNs) have long been used for function approximation and classification

 4

 5

tasks [21-25] where speed of operation and simplicity are very important. One design

approach is training an MLP having piecewise linear activations [26,27]. This approach

is useful in hardware implementations, speeds up training as compared to

backpropagation [47-49], and results in a continuous approximation. If we are willing to

give up continuous approximation, a simpler piecewise linear network can be devised.

Suppose that a distance measure is used to partition the feature space into a Voronoi

tessellation. For each partition or cluster, a linear network maps that clusters members

to the output space. This approach has been analyzed in detail for the approximation

case [13].

1.4 Objectives and Overview of this Thesis

In this thesis we develop a piecewise linear network classifier (PLNC), based

upon the work in [13], which can be quickly designed and applied. Chapter 2 presents a

review on various existing neural net classifiers. Chapter 3 discusses the structure,

operation and training of the PLNC. It also discusses pruning techniques that can lead to

more compact PLNCs. In chapter 4, the estimation of Bayesian a-posteriori

probabilities by the PLNC is discussed, along with the PLNC’s relation to the NNC and

k-NNC. Mathematical complexity of the PLNC, in terms of number of multiplies,

against the nearest neighbor classifier (NNC) and the MLP are discussed in chapter 5.

Simulations and performance comparisons against the NNC and the MLP, with respect

to mathematical complexity and network sizes, are presented in chapter 6. Chapter 7

concludes this thesis and puts forth proposals for future research work.

 6

CHAPTER 2

REVIEW OF NEURAL NET CLASSIFIERS

An optimal classifier can be designed based on the Bayes’ rule [5] but this

would require us to know the prior probabilities, Pi and the class conditional densities,

f(x|i). Unfortunately, in pattern classification applications, this kind of complete

knowledge about the probabilistic structure of the problem is rarely, if ever, available.

In a typical case we merely have some vague, general knowledge about the situation,

together with a number of design samples or training data- particular representatives of

the patterns we want to classify. The problem, then, is to find some way to use this

information to design or train the classifier.

Many approaches have been developed to solve this problem. A few of these

include Bayesian estimation [4], maximum likelihood estimation [42], and

nonparametric design techniques such as the nearest neighbor rule and artificial neural

networks [4]. Neural nets have the advantage that they do not require knowledge of the

underlying probability distributions and in this limited sense they can be said to be

nonparametric. They are usually trained to minimize the cost function [4], which in

most cases is the mean squared error (MSE). In this chapter, we review three neural nets

that have been widely used as classifiers and state their advantages and disadvantages.

 7

2.1 Multi-Layer Perceptrons

This class of networks consists of multiple layers of computational units or

nodes, usually interconnected in a feed-forward way. In many applications the hidden

units of these networks apply a sigmoid function as an activation function at the unit’s

output. The structure of the multi-layer perceptron (MLP) is shown in fig. 2.1.

Multi-layer perceptrons use a variety of learning techniques, the most popular

being backpropagation[47-49]. Here the computed output values are compared with the

desired output to compute the value of an error function. The error is then fed back

through the network, which is then reduced by adjusting the weights by a general

optimization technique like the gradient descent [14].

In general the problem of teaching a network to perform well, even on samples

that were not used as training samples, is a quite subtle issue that requires additional

techniques. This is especially important for cases where only very limited numbers of

training samples are available. The danger is that the network overfits the training data

and fails to capture the true statistical process generating the data. Computational

learning theory is concerned with training classifiers on a limited amount of data. In the

context of neural networks a simple heuristic, called early stopping [50,51], often

ensures that the network will generalize well to examples not in the training set. Other

typical problems of the backpropagation algorithm are the speed of convergence and the

possibility of ending up in a local minimum of the error function.

yp(2)

yp(1)

yp(3)

yp(Nc)

xp(1)

xp(2)

xp(3)

xp(N)

Op(1)

Op(Nh)

NETp(1)

NETp(Nh)

who(1,1)

who(Nc,Nh)

w(1,1)

w(Nh,N)

Fig. 2.1 Stucture of a multi-layer perceptron

2.2 Radial Basis Function Networks

A radial basis function (RBF) is a real-valued function whose value depends

only on the distance of its input vector from the origin. RBF Networks are used in

function approximation, time series prediction, and control. In neural networks, radial

basis functions are utilized as hidden units. RBF networks typically have 3 layers, the

input layer, the hidden layer with the RBF non-linearity and a linear output layer. The

input is first mapped onto each RBF in the hidden layer. The RBF activation chosen is

usually a Gaussian. In regression problems the output layer is then a linear combination

of hidden layer values representing mean predicted output. The interpretation of this

output layer value is the same as a regression model in statistics. In classification

 8

 9

problems the output layer is typically a sigmoid function of a linear combination of

hidden layer values, representing a posterior probability.

RBF networks have the advantage of not suffering from local minima in the

same way as MLPs. This is because usually the only parameters that are adjusted in the

learning process are the weights from the hidden layer to the output layer. Linearity

ensures that the error surface is quadratic and therefore has a single easily found

minimum.

RBF networks have the disadvantage of requiring good coverage of the input

space by radial basis functions. RBF centers are determined with reference to the

distribution of the input data, but without reference to the prediction task. As a result,

representational resources may be wasted on areas of the input space that are irrelevant

to learning. A common solution is to associate each data point with its own center,

although this can make the linear system to be solved in the final layer rather large, and

requires shrinkage techniques to avoid overfitting [4].

2.3 Support Vector Machines

Support vector machines (SVMs) are a set of related supervised learning

networks used for classification and regression. They usually consist of a feature

extractor containing RBF hidden units, followed by a classifier that makes decisions

based on a linear combination of features. A special property of SVMs is that they

minimize the empirical classification error and maximize the geometric margin between

the various classes. A typical classification problem involves separating N-dimensional

data into different classes by an (N-1)-dimensional hyperplane. This could be done

using a typical form of linear classifier. Possible boundaries for such a classification

problem are shown in fig. 2.2. However, if it is also desired to achieve maximum

separation between the different classes, this could be obtained using an SVM or other

maximal margin classifier [11]. By maximizing this margin, SVMs avoid overfitting. A

maximum-margin hyperplane for an SVM trained with samples from two classes is

shown in fig. 2.3. Samples along the hyperplanes are called the support vectors.

The parameters of the maximal margin hyperplane are commonly derived by

solving a quadratic programming (QP) optimization problem using Platt’s Sequential

Minimal Optimization (SMO) algorithm [15,16]. This algorithm breaks the problem

down into 2-dimensional sub-problems that may be solved analytically, eliminating the

need for a numerical optimization algorithm such as the conjugate gradient method

[17].

L1

L2

L3

Fig. 2.2 Possible boundaries to a simple classification problem

 10

Fig. 2.3 A maximum-margin hyperplane for a support vector machine

2.4 Problems with Classifiers

Neural net classifiers have several problems. Training time for MLP and RBF

classifiers can be long and they may suffer from overfitting [4]. SVM classifiers avoid

overfitting but usually require several orders of magnitude more hidden units than RBF

and MLP networks.

Conventional classifiers also have problems. Bayes-Gaussian classifiers require

accurate input statistics and Gaussian input vectors, both of which may be unavailable.

Nearest neighbor classifiers, like SVMs, frequently require hundreds or thousands of

parameters, and can take too long to apply.

 11

CHAPTER 3

THE PIECEWISE LINEAR CLASSIFIER

In this chapter, a PLN [13] classifier (PLNC) is introduced which solves the

problems discussed in section 2.4.

3.1 Network Structure and Operation

The network structure is shown in fig. 4.1. The PLNC consists of three layers:

the input elements form the first layer, the hidden units the second and the output units

the third. An (N+1)-dimensional vector x forms the input to the PLNC. Vector x is

obtained from the N-dimensional feature vector xf. The means and standard deviations

of the feature vector elements xfn are respectively μn and σn, where 1 ≤ n ≤ N. The

feature vector elements are first normalized as

 /fn fn nx x nμ σ⎡ ⎤← −⎣ ⎦ (3.1)

The normalized feature vector is then augmented as

()TT :1f=x x (3.2)

to form the (N+1)-dimensional input, x, to the PLNC. The hidden layer consists of K

clusters, each cluster having its N-dimensional cluster mean vector mc, where 1 ≤ c ≤ K.

A Euclidean distance measure d(⋅)

() [
2

1
,

N

c n
n

d x
=

= −∑x m]cnm (3.3)

 12

is used to do the clustering. xn is the nth element of vector x, and mcn is the nth element of

the vector mc . Each cluster also has a weight matrix Ac of dimension Nc by (N+1),

where Nc is the number of classes in the classification problem.

The output of the network, y, comprises of Nc elements. The vector y is

calculated by multiplying the input vector with the weight matrix of the cluster it has

been assigned to. Given an input vector x, we find c such that d(x, mc) is minimized.

Then we form the output vector y as

c= ⋅y A x (3.4)

The estimate of the correct class ic is given by

[]arg maxc i
i

i y′ = (3.5)

where yi is the ith element of the output vector y and 1 ≤ i ≤ Nc.

d(·)

c = 1

c = 2

c = K

A1

A2

AK

Fig. 3.1 Structure of a Piecewise Linear Classifier

 13

3.2 Network Training

A classification problem typically involves a feature space with numerous

feature vectors or samples that have to be classified into various class labels. In

supervised learning, the training dataset includes the class label, ic, of each of the Nv

feature vectors. The label is transformed into an Nc-dimensional target vector t such that

()
 otherwise

c
pi

b i i p
t

b
⎧+ =

= ⎨
−⎩

 (3.6)

where 1 ≤ p ≤ Nv, 1 ≤ i ≤ Nc and b is any positive integer. Before the network can be

used for classification itself, it has to be trained. Training involves designing the PLNC

weight matrices given numerous training patterns.

The process of training a PLNC is divided into two parts. The first part involves

partitioning of the input feature space into K clusters. The second part involves the

calculation of the network weights by solving a set of linear equations whose solution

minimizes the MSE of the network. The techniques used to perform these two parts of

the training algorithm are mentioned in subsections 3.2.1 and 3.2.2 respectively.

3.2.1 Clustering

 The idea behind performing clustering is to group like feature vectors

together, based on their inherent statistical properties, so that a simple linear classifier

could be used for classification within every cluster. This would result in an overall

complex decision boundary. Of the various techniques available [53-55], we use

Kohonen’s self organizing maps (SOM) to do clustering. SOM partitions feature vectors

 14

into clusters based on their distances from the cluster mean vectors. More information

on SOM is available in appendix A.

3.2.2 Solving for Ac

Clustering results in partitioning of the feature space into K clusters. Each

cluster has its own weight matrix Ac, where 1 ≤ c ≤ K. For a PLNC having linear output

layer activations, the output vector is calculated by simply multiplying the input vector

and the weight matrix of the cluster to which the pattern was assigned, as described in

section 3.1. Hence, only the winning cluster’s weight matrix is turned on in order to

generate the output vector. Elaborating on (3.4), the elements of the output vector y, are

calculated as

1

1

N

pi cin pn
n

y a x
+

=

= ⋅∑ (3.7)

where acin is the element of the weight matrix Ac, belonging to row i and column n. The

elements of the output vector evaluated in (3.7) are compared with the Nc-dimensional

desired output vector tp, described in (3.6). The mean squared error (MSE) for the cth

cluster is given by

()
() 21

1 1 1

1 v cN c N N

c qi
q i nv

E t
N c

+

= = =
cin qna x⎡ ⎤

= −⎢ ⎥
⎣ ⎦

∑ ∑ ∑ (3.8)

where Nv(c) is the number of feature vectors in cluster c and tqi is the actual output

which could be +b or -b. The error gradient with respect to elements of the weight

matrix Ac is given by

 15

()
() 1

1 1

12
vN c N

qj cjn qn qm
q ncjm v

E t a x
a N c

+

= =

∂ x⎡ ⎤
= − −⎢ ⎥∂ ⎣ ⎦

∑ ∑ (3.9)

On further simplification we get

()
() () 1

1 1 1

12
v vN c N c N

qj qm cjn qn qm
q q ncjm v

E t x a x x
a N c

+

= = =

⎡ ⎤⎛ ⎞ ⎛∂
= − −

⎞
⎢ ⎥⎜ ⎟ ⎜⎜ ⎟ ⎜∂

⎟⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑ ∑ (3.10)

Equation (3.10) can be written in terms of auto-correlation and cross-correlation

elements, and respectively, as

() ()
1

1
2 , ,

N

cjn
ncjm

E c j m a r n m
a

+

=

∂ ⎡ ⎤
= − −⎢ ⎥∂ ⎣ ⎦

∑ (3.11)

The PLNC is designed by minimizing the training MSE. Hence, equating the gradient in

(3.11) to zero, in order to minimize the error, yields

() (
1

1
,

N

cjn
n

c j m a r n m
+

=

= ∑), (3.12)

Several techniques [14,17,56-59] can be used to solve the set of equations in (3.12). The

technique described in appendix B is a modified version of the Gram-Schmidt

procedure [28,29].

3.2.3 Classification Error of the PLNC

Upon obtaining the weight matrices for all clusters, the training is complete and

these weights can be used to compute the outputs of the network in response to the input

vectors. The predicted class label, ic′(p) for vector xp satisfies 1 ≤ ic′(p) ≤ Nc. If ic′(p) is

not equal to the correct class label, ic(p), the PLNC is said to have incorrectly classified

 16

the feature vector xf. The classification error percentage of the PLNC is one hundred

times the total number of such incorrect classifications, divided by Nv.

3.3 Review of Output Reset Algorithm

The output of the PLNC, at a single node, can be considered to be the sum of an

optimal output and noise, which is usually zero-mean. The noise contributes to the error

in the classifier. Each instance of residual error contains at least two types of bias. The

first type of bias ap is an additive constant, inherent to each output vector. The second

type of bias dpi has error components due to individual output values having the correct

sign but magnitude larger than b. Removal of these biases has no immediate effect on

the class recognition error count. However, after removing ap and dpi, over several

training iterations, Output Reset (OR) [30-32] training error E′ more closely models the

class recognition error rate.

We mechanize the removal of biases by introducing a new desired output

vector, tp′, which accounts for both ap and dpi. The OR training error to be minimized is

2

1 1

1 c vN N

pi pi
i pv

E t
N = =

′ ′ y⎡ ⎤= −⎣ ⎦∑∑ (3.13)

where tpi′ = tpi + ap + dpi and dpi is a function of p and i. Our goal now is to find ap, dpi

and ypi, that minimize E′.

A sufficient condition for finding ap is that the gradient of E′ with respect to zp

be zero, yielding

1

1 cN

p pi
i

a z
M =

pid⎡ ⎤= −⎣ ⎦∑ (3.14)

 17

Values for dpi are found by minimizing square error term [dpi + ap - zpi]2, yielding dpi =

zpi – ap. But, in order to keep dpic – dpid greater than or equal to zero, we must also

constrain dpi such that dpic ≥ 0 and dpid ≤ 0. A non-zero value for dpi is said to be an

active bias whereas a zero value is said to be inert. The values of dpic and dpid are, hence,

given by:

if :active

0 otherwise : inert
c c

c

pi p p pi
pi

z a a z
d

− <⎧⎪= ⎨
⎪⎩

 (3.15)

if :active

0 otherwise : inert
d d

d

pi p p pi
pi

z a a z
d

− >⎧⎪= ⎨
⎪⎩

 (3.16)

According to (3.15) and (3.16), dp(i) is active if the sign of zp(i) is correct but has

magnitude larger than ap.

3.4 Network Validation

 The PLNC is trained using the feature vectors in the training file. Had there been

access to an infinite number of training samples, it would be possible to use the trained

network for classifying any feature vector, of similar nature of course. But

unfortunately, in real examples, we only have access to a finite set of examples, usually

smaller than desired. It is possible to use the entire training data to train the classifier

and then use it on new test data. This approach, however, has a fundamental problem.

The final trained classifier will overfit [4] the training data and have poor generalization

capability when used on new test data.

A much better approach is to split the training data into disjoint subsets or files,

one used for training, or the training file, and the other for validation, or the validation

 18

file. An important reason for using the validation data is to test the generalization

capability of the trained network and determine an optimum network size and a

stopping point for the iterations involved in calculation of weights.

Stopping Point

Network Size

Error

 Training Error

 Validation Error

Fig 3.2 Training and Validation Errors

3.5 Network Pruning

Setting the ideal network size of a PLNC’s topology is usually a major problem.

Both, large and small networks have their own advantages and disadvantages, making it

difficult to select an optimum size. Different applications would further require different

sized networks to yield best results. Large networks may fit a given data set, but often

 19

 20

result in poor generalization. Too many clusters and/or weights in a network tend to

overfit the data set. Large networks are also more computationally intense and more

difficult to analyze. Smaller networks, on the other hand, can fail to learn a data set. It is

often unclear on how to choose an optimal trade-off between a large and a small

network.

 Although the training algorithm, mentioned in section 3.2, designs the PLNC by

adding the desired number of clusters, it does not always lead to the most compact

network with the most optimal cluster mean vectors. The validation error generally

tends to decrease with increasing size of the network, but only to a certain extent. After

this, the validation error starts increasing even though the training error still continues to

decrease. This is the portion where the network overfits the training data set and yields

poor validation error. This is shown in fig. 3.2. Pruning of those clusters whose

elimination causes the least increase in classification error leads to a more compact

PLNC. Optimal removal of a cluster from a network with K clusters would involve

calculating the possible increase in error from all possible eliminations – one cluster at a

time – and selecting the cluster that causes the least increase in error.

There are a variety of methods available for pruning nodes and connections in

neural networks, ranging from computationally extensive ones to much simpler ones.

Examples are the Optimal Brain Damage [33], Optimal Brain Surgeon [34] and

Skeletonization [35] techniques. A simple approach is described in this thesis; one that

identifies and eliminates the least useful cluster in a completely trained network without

significantly degrading the classifier’s performance. This approach is derived by

replacing MSEs in the method of [13] with classification errors. The algorithm consists

of the following steps:

1. Let k be the index of the cluster to be potentially eliminated and Ek the error

of the network after cluster k has been pruned. Set E = 0 and Ek = 0, 1 ≤ k ≤

K.

2. For p = 1 to Nv

a) Identify two nearest clusters to input vector xp with indices i, j and

compute the two classification errors e1 and e2 if xp were assigned to

clusters i and j respectively.

 21

i
i

b) For k = 1 to K, accumulate errors as

1

2

k k

k k

E E e k
E E e k

← + ≠
← + =

 (3.17)

3. Find the smallest Ek as and eliminate cluster k
minkE min. The number of

clusters K, now decreases by one, i.e.,

1K K← − (3.18)

4. Pass the data through the pruned network, redesign all the clusters and

calculate the training error E. Save the network.

5. Repeat the above steps if further pruning is required.

Pruning results are discussed in chapter 6.

CHAPTER 4

NEURAL NETS AND THE BAYES OPTIMAL DISCRIMINANT

Previous research into the area of pattern recognition has shown that multi-layer

perceptron classifiers and conventional nonparametric Bayesian classifiers yield the

same classification accuracy, statistically speaking [43-45]. These results were

empirical and, hence, were dependent on the data sets used. However, the consistently

similar performances led to investigations into the theoretical connections and it has

been proved [12] that MLPs approximate the Bayes optimal discriminant function when

used for classification. In this chapter we carry the investigation further and explore the

relationship between the PLNC and Bayes discriminant.

4.1 Neural Networks and Bayes Discriminant

Over the past several years, neural networks have been used for many tasks,

including classification and function approximation. There have been many useful

theoretical results concerning their capabilities. One of these theorems [12] follows.

Theorem 1: When neural net classifiers are trained to minimize the mean-squared error

(MSE), the MSE approaches a constant value plus the expected squared error between

the neural net output and Bayes discriminant, as the number of training patterns

approaches infinity. Specifically,

() () ()()
2

2

1 1 1

1lim E
v c c

v

N N N

pi i p i iN p i iv

t y b y
N→∞

= = =

⎡⎡ ⎤ a⎤− = −⎢⎣ ⎦ ⎣∑∑ ∑x x x +⎥⎦
 (4.1)

 22

 23

where a is a constant, independent of p, tpi is defined by (3.6), and yi(xp) is the ith output

of the network. The Bayes discriminant bi(x), is the probability that the ith class is

correct, given x, which is written as P(i|x). The above theorem, however, leaves room

for some doubts:

1. It does not give any bounds on the neural network’s probability of error. Neither

does it state an inequality relating the neural network’s probability of error to

Bayes probability of error.

2. The mean-squared error in the theorem treats positive and negative errors the

same. However, it is good if the correct class discriminant is larger than desired,

but bad if it is smaller. This problem leads to sub-optimal networks. However,

this is fixed in the PLNC using output reset [30-32].

3. The theorem makes no use of the neural network’s structure. It applies equally

well to any discriminant designed by minimizing the MSE. Neural networks

with different structures could lead to different results.

4.2 Nearest Neighbor and the Piecewise Linear Classifiers

The nearest neighbor classifier (NNC) classifies objects based on the closest

training pattern in the feature space. A test sample or feature vector in the input space is

assigned to class i if its nearest training sample, usually determined via the Euclidean

distance, belongs to that class. The feature space is divided into convex partitions or

clusters based on the class labels of the various training patterns. Specifically, the

distance measure, which is usually Euclidean, performs a Voronoi tessellation [46] of

the N-dimensional input feature space.

Now we consider the relationship between a PLNC and an NNC. As K

approaches infinity, the convex Voronoi cells in the feature space get smaller in volume

and the optimal decision boundaries in each cluster become linear. Hence, each cluster

can have its own linear discriminant and overall, a more complex decision boundary can

be achieved. Therefore, for a given value of K, the PLNC should perform better than the

NNC. We begin to address this idea in the following lemmas.

Lemma 1: If a PLNC and NNC have the same distance measure and identical cluster

mean vectors, the PLNC has at least as good a performance as the NNC.

Proof: Since the PLNC’s augmented input vector x includes the constant 1, the PLNC’s

output vector y can have a 1 for the same class as picked by the NNC. Other class

outputs can be 0.

Suppose that the cth NNC cluster belongs to class ic. If we would like the

PLNC’s cth cluster to always map patterns to class ic, the elements of the Nc by (N+1)

matrix, Ac′, would be chosen such that its elements are defined as

 ()
1 and 1

,
0 otherwise

c
c

m i n N
a m n

= = +⎧′ = ⎨
⎩

 (4.2)

There can be occurrences when a PLNC’s Ac matrices could initially perform

worse than the NNC for the same cth cluster. In such cases we can, however, guarantee

that the PLNC performance is at least as good as the NNC by doing the following. If the

PLNC’s performance is worse than that of the NNC for the cth cluster and the weight

matrix obtained for this cluster is Ac, replace it with Ac′ as defined in (4.2).

 24

Lemma 2: If a PLNC and a NNC have the same distance measure and identical cluster

mean vectors, then as K approaches infinity,

 25

⋅ (4.3) () ()eB eBe PLNC e NNCP P P 2 P≤ ≤ ≤

where Pe(PLNC), Pe(NNC) and PeB respectively denote the PLNC, NNC and Bayes

probabilities of error.

Proof: As K approaches infinity, we know that [11,12]

()eB eBe NNCP P 2 P≤ ≤ ⋅ (4.4)

Using lemma 1 and (4.4) yields the result of (4.3).

4.3 Convergence of the PLNC Error Probability

We now wish to be more specific and evaluate the average probability of error

for the PLNC, as the amount of training data increases. First, recall the following

lemma describing the convergence of the k-Nearest Neighbor Classifier (k-NNC)

probability of error to Bayes error, Pe(k-NNC).

Lemma 3 [4]: As k and (Nv/k) approach infinity, the k-NNC can be viewed as an

attempt to estimate the a-posteriori probabilities from the training samples. Under this

condition, k-NNC hence becomes optimal and

e(k-NNC) eB
,
lim P = P

vNk
k
→∞

 (4.5)

Here k is the number of nearest training vectors or samples to the test sample x. As k

increases, the upper bound of the probability of error gets closer to the lower bound –

the Bayes rate. In the limit as k goes to infinity, the two bounds meet and the k-NNC

becomes optimal. We want to use a large value of k to obtain a reliable estimate. On the

other hand, we want all of the k neighbors to be very near to the test sample, x. This

forces us to choose a compromise k that is a small fraction of the total number of

training samples, Nv. It is only in the limit as Nv goes to infinity that we can be assured

of the nearly optimal behaviour of the k-NNC.

We now investigate the relationship between Bayes discriminant and the PLNC

in more detail. We start by stating the following theorem.

Theorem 2: As K and Nv(c) approach infinity, the output of a PLNC approximates the

a-posteriori probability functions of the class labels, given the input vector. Under this

condition, the PLNC hence becomes optimal and

 (4.6)
() e(PLNC) eB,

lim P = P
vK N c →∞

Proof: We start by observing that the classification error for the cth cluster of a PLNC is

given by (3.8). Let us start by taking into consideration only the feature vectors that

have been assigned class label i. In this case, the MSE would be given by

()
() 21

,
1 1

1 vN c N

c i qi cin qn
q nv

E t a
N c

+

= =

x⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑ ∑ (4.7)

where xqn is the nth element of the vector xq, and 1 ≤ q ≤ Nv(c). The partial derivative of

the error with respect to the elements of weight matrix Ac is given by

() 1

1 1

2
()

vN c N

qi cin qn qm
q ncim v

E t a x x
a N c

+

= =

∂ − ⎡ ⎤
= −⎢ ⎥∂ ⎣ ⎦

∑ ∑ (4.8)

Before going any further, we consider how letting K and Nv(c) approach infinity effects

the range and variability of the input feature vectors x. Assuming the feature space is a

 26

bounded compact subset of RN, each cluster falls within a cell of the Voronoi

tessellation. As K and Nv(c) simultaneously increase towards infinity, the maximum

radius of each cluster decreases towards zero. The range of values the elements of a

feature vector in a cluster can take, decreases so much that they become constant, i.e,

variability within a cluster approaches zero. Within the cth cluster, as x becomes

independent of the pattern number q, we can replace xqn with mean vector element mn in

(4.8). We also equate the gradient to zero, so as to minimize the MSE. Equation (4.8)

reduces to

() 1

1 1

2 0
()

vN c N

qi cin n m
q nv

t a m m
N c

+

= =

− ⎡ ⎤
− =⎢ ⎥

⎣ ⎦
∑ ∑ (4.9)

which becomes

() 1

1 1
0

vN c N

qi cin n
q n

t a m
+

= =

⎡ ⎤
− =⎢

⎣ ⎦
∑ ∑ ⎥

⎤

 (4.10)

Since the terms acin and mn are constants, we can replace the sum over n by the single

constant aci(N+1) which yields

()

(1)
1

0
vN c

qi ci N
q

t a +
=

⎡ − =⎣∑ ⎦ (4.11)

This can be written as

()

()

1
1

()
vN c

qi v ci N
q

t N c a +
=

= ⋅∑ (4.12)

which yields

 27

() ()

()vN c

qit
1

1
q

ci N
v

a
N c
=

+ =
∑

 (4.13)

Equation (3.6) gives the values of the elements of the desired output vector t. Without

loss of generality, though, we can represent tqi as

()()qi ct i qδ i= − (4.14)

where δ is the Kronecker delta function. In turn, (4.13) becomes

()

()

()

()

1
1

()
vN c

c
q

ci N
v

i q i
a

N c

δ
=

+

−
=
∑

 (4.15)

δ(ic(q) – i) equals 1 if ic(q) equals i, so, the numerator summation equals the number of

training vectors in cluster c that belong to class i. This number could be represented by

Nv(c,i), hence reducing (4.15) to

 () ()1
(,)v

ci N
v

N c ia
N c+ = (4.16)

which converges to the a-posteriori probability P(i|x). Thus theorem 2 is proved.

For a given cluster c, aci(N+1) is largest for the class i which has the most input

vectors in the cluster. This is precisely how the k-NNC makes decisions. So, each

PLNC cluster with Nv(c) members emulates a k-NNC decision with k = Nv(c).

 28

CHAPTER 5

MATHEMATICAL COMPLEXITY

Different classification applications have different requirements; speed may be

the top priority in a real-time application while accuracy could be of prime importance

in another. In order to find the best suited classifier for a particular application,

performances of different kinds of classifiers can be compared. The basis for

comparison could range from the speed of the network to the number of hidden units to

the number of multiplies. In this chapter, we compare the number of multiplies in a

piecewise linear network classifier against two other classifiers – the MLP and the

NNC.

5.1 Comparison of Number of Multiplies against the NNC

We consider a trained PLNC that is given the task of classifying an N-

dimensional test vector, xt, into one of Nc classes. As mentioned in section 3.2, it first

assigns the vector to one of K clusters, using distance measure, and then assigns the

vector a class ID using a simple linear classifier. It takes N multiplies to calculate the

distance measure, given by

() [
2

t
1

,
N

k tn
n

d m x m
=

= −∑x]kn (5.1)

from the vector xt to a cluster center vector. Since a total of K clusters exist, the test

vector’s distance from each of these clusters has to be measured. This results in a total

of K·N multiplies. Once the test vector is assigned to a particular cluster, the

 29

corresponding Ac matrix is activated to calculate the output vector y, according to the

formula

c= ⋅y A x (5.2)

This calculation, in turn, requires (N+1) ·Nc multiplies. Hence, the total number of

multiplies required to apply a PLNC to a test vector is given by:

[] ()1PLNC cM K N N N⎡ ⎤= ⋅ + + ⋅⎣ ⎦ (5.3)

A trained NNC, on the other hand, would first have to calculate the distance of

the test vector from KNNC clusters. This process requires a total of KNNC ·N multiplies.

After all the distance measures are calculated, the closest cluster is found and test vector

xt is assigned its class ID. Therefore, the total number of multiplies required to apply a

NNC to a test vector is given by:

[]NNC NNCM K N= ⋅ (5.4)

In order to compare the two classifiers based on the number of multiplies, we equate

(5.3) and (5.4) to obtain

(1) c NNCK N N N K N⋅ + + ⋅ = ⋅ (5.5)

This leads us to the following equation

()1 c
NNC

N N
K K

N
+ ⋅

= + (5.6)

which provides the number of clusters in a NNC that would have the same number of

multiplies as that of a PLNC.

Performances of the classifiers, with respect to the number of multiplies, are compared

in chapter 6.

 30

5.2 Comparison of Number of Multiplies against the MLP

Equation (5.3) states the number of multiplies required to apply a fully trained

PLNC to a test vector. We now consider a trained MLP that is assigned the same task.

We consider an MLP with one hidden layer, containing Nh hidden units. The input to

the MLP is an (N+1)-dimensional vector, x, which is created by augmenting the test

vector, xp, with 1. The ith input unit is connected to the jth hidden unit via weight w(j,i).

The MLP first calculates net functions that form the input to the hidden units. Net

Function at the jth hidden unit would be

() ()
1

1
,

N

i
i

NET j w j i x
+

=

⎡ ⎤= ⋅⎣ ⎦∑ (5.7)

where 1 ≤ j ≤ Nh. Equation (5.7) seems to require N+1 multiplies, but since the last

multiplication is just an addition – the last element of vector x being a 1 – it effectively

requires only N multiplies. Calculation of Nh such net functions would hence require

Nh·N multiplications. Each hidden unit applies an activation function, usually a

sigmoidal function, to its input net function to obtain the output, O(j). Each sigmoidal

activation can be considered equivalent to two multiplies, hence Nh hidden units would

require 2.Nh multiplies. Finally, the output layer of the MLP calculates the output vector

elements yk as

() () ()
1

1 1
, ,

N Nh

k io i ho
i j

y w k i x w k j O
+

= =

⎡ ⎤ ⎡= ⋅ + ⋅⎣ ⎦ ⎣∑ ∑ j ⎤⎦ (5.8)

where wio(k,i) is the weight connecting the ith input unit to the kth output unit, who(k,j) is

the weight connecting the output of the jth hidden unit, O(j), to the kth output unit and1 ≤

 31

k ≤ Nc. The calculation of the output vector, y, hence requires Nc.(N+Nh) multiplies.

Therefore, a trained MLP would require a total of

()2h h cN N N N N N⋅ + ⋅ + + h (5.9)

multiplies. In order to compare the PLNC and the MLP based on the number of

multiplies, we equate (5.3) and (5.9) to obtain

() ()2 1h h c h cN N N N N N K N N N⋅ + ⋅ + ⋅ + = ⋅ + ⋅ + (5.10)

The number of clusters, K, hence required for a trained PLNC to have an equal number

of multiplies as that of an MLP is given by

() ()2 1h cN N N N
K

N
h⋅ + + ⋅ −

= (5.11)

Performances of the classifiers, with respect to the number of multiplies, are compared

in chapter 6.

 32

 33

CHAPTER 6

PERFORMANCE COMPARISONS AND SIMULATION RESULTS

The primary objective of performing these experiments is to examine and

evaluate the performance of PLNC in light of the lemmas in chapter 4. In this chapter,

we compare the performance of a PLNC with that of an NNC and an MLP using

different data sets. Each data set consists of a training data file and a validation data file.

The former is used to train the network and the latter is used to validate the design, i.e.,

test the generalization capability of the network. Performances are compared with

respect to two parameters as mentioned below.

1. In section 6.1, the classification error percentages are plotted as function of the

number of clusters, for an NNC and a PLNC, or the number of hidden units, for

an MLP.

2. In section 6.2, the classification error percentages are plotted as a function of the

number of multiplies required to apply the network.

6.1 Training and Pruning Results

In this section, we compare the performance of a PLNC with that of the NNC

and an MLP using different data sets. The network is first trained using the training data

file; the weights of the trained network are stored; the weights are then used to apply the

network to a validation data file. During training, once the network is grown to the

desired maximum size (in terms of number of clusters or hidden units) it is then pruned

 34

down and error percentages are calculated at the end of each iteration. Similarly, during

validation, the trained network is pruned down and error percentages calculated at the

end of each iteration. The user has the ability to choose the size of the network based on

the results.

6.1.1 PLNC vs NNC

Three data sets are used for the comparison.

1. grng [36] – This is a geometric shape recognition data set for of four shapes -

ellipse, triangle, quadrilateral, and pentagon. Each shape consists of a matrix of

size 64 x 64 pixels. For each shape, training and test patterns were generated

using different degrees of deformation. The deformations included rotation,

scaling, translation, and oblique distortions. The feature set has 16 features. For

this comparison, the NNC and PLNC, both use the same set of cluster center

vectors for classification. The results of this comparison are shown in fig. 6.1.

The poor performance of the NNC occurs because it is forced to use the same

clusters as the PLNC, for this example only.

Fig. 6.1 Comparison of equivalent sized PLNC and NNC for shape recognition data

2. gong [37] – The raw data consists of images from hand printed numerals

collected from 3,000 people by the Internal Revenue Service. Images are 32 by

24 binary matrices. An image scaling algorithm is used to remove size variation

in characters. The feature set contains 16 elements. The 10 classes correspond to

the 10 Arabic numerals. For this comparison, the PLNC and NNC are allowed to

design and use their own sets of cluster center vectors. The results of this

comparison are shown in fig. 6.2. The linear classifier in each PLNC cluster

allows the PLNC to outperform the NNC.

 35

Fig. 6.2 Comparison of equivalent sized PLNC and NNC for numerical recognition
problem

3. comf18 [38] – This data set consists of texture features corresponding to an

image segmentation problem. Each segmented region is separately histogram

equalized to 20 levels. Then the joint probability density of pairs of pixels

separated by a given distance and a given direction is estimated. We use 0, 90,

180, 270 degrees for the directions and 1, 3, and 5 pixels for the separations. The

density estimates are computed for each classification window. For each

separation, the co-occurrences for the four directions are folded together to form

a triangular matrix. From each of the resulting three matrices, six features are

computed: angular second moment, contrast, entropy, correlation, and the sums

of the main diagonal and the first off diagonal. This results in 18 features for

 36

each classification window. For this comparison too, the PLNC and NNC are

allowed to design and use their own set of cluster center vectors. The results of

this comparison are shown in fig. 6.3. As in the previous examples, the PLNC

outperforms the NNC.

Fig. 6.3 Comparison of equivalent sized PLNC and NNC for segmentation problem

6.1.2 PLNC vs MLP

Two data sets are used for the comparison.

1. F17C – This data set consists of parameters that are available in the basic health

usage monitoring system (HUMS). The data was obtained from the M430 flight

load level survey conducted in Mirabel Canada in early 1995. Each input vector

contains 17 elements. The 39 classes represent different maneuvers of the flight

like taking off, landing, turning right or left etc. This is an application for

 37

prognostics or flight condition recognition. The results of this comparison are

shown in fig. 6.4. In this example, the PLNC outperforms the MLP.

Fig. 6.4 Comparison of equivalent sized PLNC and MLP for prognostics data

2. mushroom - This data set includes descriptions of hypothetical samples

corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota

Family. Each species is identified as definitely edible, definitely poisonous, or

of unknown edibility and not recommended. This latter class was combined

with the poisonous one. The Guide clearly states that there is no simple rule for

determining the edibility of a mushroom; no rule like ``leaflets three, let it be''

for Poisonous Oak and Ivy. The results of this comparison are shown in fig. 6.5.

The PLNC outperforms the MLP for larger networks.

 38

Fig. 6.5 Comparison of equivalent sized PLNC and MLP for mushroom edibility
data

6.2 Mathematical Complexity Comparisons

Based on the work done in chapter 5, we compare the performance of a PLNC

with that of the NNC and an MLP with respect to the number of multiplies required to

apply each of these networks. Data points obtained from the training and pruning

results, in section 6.1, are used to calculate the number of multiplies required to apply

networks of various sizes. The classification errors are then plotted as a function of the

number of multiplies.

6.2.1 PLNC vs NNC

Two data sets are used for the comparison – gong [37] and comf18 [38]. The

results are shown in fig. 6.6 and fig. 6.7 respectively.

 39

Fig. 6.6 Comparison of PLNC and NNC for numerical recognition problem
based on the number of multiplies

Fig. 6.7 Comparison of PLNC and NNC for segmentation problem based on the
number of multiplies

 40

6.2.2 PLNC vs MLP

Two data sets are used for the comparison – F17C and mushroom. The results

are shown in fig. 6.8 and fig. 6.9 respectively.

Fig. 6.8 Comparison of PLNC and MLP for prognostics data based on the
number of multiplies

Figures 6.6 through 6.9 show that a PLNC requires fewer multiplications to

obtain similar classification error percentage as compared to an MLP or an NNC. This

is why the PLNC is much faster and far less mathematically complex than the classical

neural net classifiers.

 41

Fig. 6.9 Comparison of PLNC and MLP for mushroom edibility data based on the
number of multiplies

 42

 43

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this thesis we first presented a brief overview of a typical classification

problem, followed by a review of few of the existing classical and neural net classifiers

along with their advantages and disadvantages. We then described a classifier based on

a piecewise linear network and gave a design algorithm for it. The training algorithm

has fast convergence because sets of linear equations are solved in each cluster. Due to

the unavailability of theorems relating the mean squared error of existing neural

networks and Bayes probability of error, we investigate the relastionship between the

PLNC and Bayes probabilities of error. We started by proving that the performance of a

PLNC is at least as good as an NNC, given the same distance measure and identical

cluster mean vectors. Using existing theorems for the NNC and k-NNC, we then proved

that the output of the PLNC approximates a Bayes optimal discriminant when trained to

minimize the mean square error (MSE), leading to an optimal classifier. We have

shown that the mathematical complexity of PLNCs is usually less than that other

classifiers like MLPs and NNCs. It can, thus, be stated that the PLNC always trains

faster than the MLP and often faster than the NNC, which usually requires a lot more

clusters. Using several data sets, we have also shown that the PLNC often performs

better than equivalent sized NNCs and MLPs.

 44

7.2 Suggested Future Work

Future work will involve training the linear classifiers using alternative methods

and comparing the results. Implementing multiple distance measures, instead of only

one, can prove effective during the clustering stage and is worth exploring in the future.

Better stopping criterion for the output-reset method should also be a topic for future

research. Means and standard deviations of the PLNC classification error should be

compared against those of classical and neural net classifiers, so that their performance

could be better generalized.

 45

APPENDIX A

REVIEW OF SELF ORGANIZING MAPS

Kohonen’s SOM [10,18], in itself, is a type of unsupervised learning used to

produce low dimensional representation of the training samples while preserving the

topological properties of the input space. The goal of learning in SOM is to associate

different feature vectors to respond similarly to certain input patterns or to group feature

vectors with similar properties into clusters.

Clustering of the Nv input vectors, xp, (1 ≤ p ≤ Nv) is performed using the SOM

technique with the Euclidean distance measure d(⋅). At the end of each iteration, i.e.,

when feature vectors have been assigned to different clusters, we calculate the mean

cluster vector mc of every cluster. The training algorithm, in brief, does the following:

1. Let K be the total number of clusters and cluster mean vectors. Cluster mean

vectors are first initialized as random vectors using parameters μn and σn as

described in section 3.1. We denote a cluster mean vector by mc, where 1 ≤ c ≤

K.

2. Training patterns are then fed to the network multiple times over a total of Nit

iterations. During a single iteration it, where 1 ≤ it ≤ Nit, a pass is made over the

entire training data set of Nv vectors. When an input feature vector, xp, is fed to

the SOM, its Euclidean distance to all the cluster mean vectors is computed. The

cluster mean vector that is the closest to the input vector, say the kth cluster in

this case, along with its few neighboring clusters, is adjusted towards the input

vector as

()c c p cz t ⎡ ⎤= + −⎣ ⎦m m x m (1)

 46

 for

()| |k c N t− ≤ (2)

Here z(t) is the gain function that decides the amount by which the vectors are

adjusted, k and c are cluster mean vector indices and N(t) is the neighborhood

function that decides the neighborhood of cluster mean vectors that is adjusted.

The closest cluster mean vector, mk, is at the center of the neighborhood. In our

experiments, we have used a decreasing exponential gain function given by

() 1
1.

t
Tz t a e

−

= (3)

and a decreasing neighborhood function given by

() 2
2.

t
TN t a e

−

= (4)

where

()vt p it N= + ⋅ (5)

1 3
v itN NT ⋅

= , (6)

2 10
v itN NT ⋅

= , (7)

1
v

Ka
N

= , (8)

and

2 10
Ka = (9)

 47

 48

APPENDIX B

REVIEW OF MODIFIED GRAM-SCHMIDT PROCEDURE

The Gram-Schmidt procedure [60] is a method for orthonormalizing a set of

vectors in an inner product space, most commonly the Euclidean space, Rn. The Gram-

Schmidt process takes a finite, linearly independent set S = {v1, …., vn} and generates an

orthonormal set S′ = {u1, …., un} that spans the same subspace as S.

In the context of a PLNC, basis functions for the network are the inputs and the

constant 1. These are stored in a random vector x, which has a dimension Nu=N+1. Let

xm denote the mth unit of this vector, where 1 ≤ m ≤ Nu. The Schmidt procedure, for

orthonormalization of basis functions can be described [39] as follows:

Given the basis functions xm, form the first orthonormal basis function as

1
1

1

xx
x

′ = (10)

The second orthonormal basis function is found as

1 1 2,c x x′= (11)

2 1 1
2

2 1 1

x c xx
x c x

′− ⋅′ =
′− ⋅

 (12)

The remaining orthonormal basis functions are calculated in a similar fashion. This

process requires at least one pass through the training data for each new basis function,

in order to calculate inner products of the form <xm, xj′>. However, it can be noted that

each xm′ is a weighted sum of the xj. It is therefore possible to reformulate the procedure

so that all inner products <xm, xj′> are calculated as weighted sums of <xm, xk>,

meaning that only one pass through the training data is necessary.

 49

The normal Gram-Schmidt procedure is refined to obtain a more useful form

[28,29], wherein the orthonormal system is represented in terms of autocorrelation

elements.

The mth orthonormal basis function xm′, can be expressed as

 50

k
1

m

m mk
k

x g x
=

′ = ⋅∑ (13)

From (3.30), for m = 1, the first basis function is obtained as

1

1 1 11
1

k k
k

1x g x g x
=

′ = ⋅ = ⋅∑ (14)

()
11 1

21

1 1

1,1
g

x r
= = (15)

where

() ,
1

1,
vN

i j pi pj
pv

r i j x x x x
N =

= = ⋅∑ (16)

For values of m between 2 and Nu, ci is first found for 1 ≤ i ≤ m-1 as

()
1

,
i

i iq
q

c g r q
=

= ⋅∑ m (17)

Then m coefficients bk are obtained as

1

 1 1

1

m

k i ik
i k

m

b c g k m

b

−

=

= − ⋅ ≤ ≤ −

=

∑
 (18)

Finally for the mth basis function the new amk coefficients (for 1 ≤ k ≤ m) are found as

()
1

1 2
2

1
,

k
mk

m

i
i

bg

r m m c
−

=

=
⎡ ⎤

−⎢ ⎥
⎣ ⎦

∑
 (19)

Equation (3.4) can also be written as

1

1

N

i cin
n

ny a x
+

=

= ⋅∑ (20)

Equating yi in (20) to

1

uN

i ciq
q

qy a x
=

′ ′= ⋅∑ (21)

where the cluster weights in the orthonormal system are

()
1 1

, ,
q q

ciq qk k i qk
k k

a g x t g c i
= =

′ = ⋅ = ⋅∑ ∑ k

g

 (22)

and using (13) we obtain cluster weights for the system as

uN

cin ciq qn
q n

a a
=

′= ⋅∑ (23)

A few of the advantages of using the modified Gram-Schmidt procedure over

other linear equation solving techniques are:

1. Since the modified Gram-Schmidt procedure is a noniterative technique, it is

much faster [40] than other iterative techniques like the steepest descent and

conjugate gradient.

2. This method has low storage requirements [40] since the cluster weights can be

calculated recursively.

 51

 52

3. If the locations of the basis functions are distinct, then the set of equations (3.12)

is linearly independent and has a unique solution [41]. This is a single globally

optimum solution to (3.13).

 53

REFERENCES

 [1] C.M. van der Walt and E. Barnard,“Data characteristics that determine classifier

performance,” Proceedings of the Sixteenth Annual Symposium of the Pattern

Recognition Association of South Africa, pp.160-165, 2006.

[2] Schalkoff, Robert, Pattern recognition - statistical, structural and neural

approaches, John Wiley & Sons, 1992.

[3] K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd ed., Academic

Press, 1990.

[4] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, 2nd ed., John

Wiley & Sons, 2001.

[5] Thomas Bayes, "An Essay towards solving a Problem in the Doctrine of

Chances”, Philosophical Transactions, 1763

[6] W. H. Delashmit and M. T. Manry, "Recent Developments in Multilayer

Perceptron Neural Networks", Proceedings of the 7th annual Memphis Area

Engineering and Science Conference (MAESC), 2005.

[7] T. Poggio and F. Girosi, "Networks for approximation and learning," Proc.

IEEE 78 (9), pp. 1484-1487, 1990.

[8] Nello Cristianini and John Shawe-Taylor, An Introduction to Support Vector

Machines and Other Kernel-Based Learning Methods, Cambridge University Press,

2000.

 54

[9] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal

margin classifiers”, 5th Annual ACM Workshop on COLT, pp. 144-152, Pittsburgh, PA,

ACM Press, 1992.

[10] Simon Haykin, Neural networks - A comprehensive foundation, 2nd ed.,

Prentice-Hall, 1999.

[11] Michael D. Richard and Richard P. Lippman, “Neural Network Classifiers

estimate Bayesian a-posteriori probabilities,” Neural Computation, vol. 3, no. 4, pp.

461-483, 1991.

[12] Dennis W. Ruck, Steven K. Rogers, Matthew Kabrisky, Mark E. Oxley and

Bruce W. Suter, “The Multilayer Perceptron as an approximation to a Bayes optimal

discriminant function,” IEEE Trans Neural Networks, TNN-1(4):296-298, 1990.

[13] H. Chandrasekaran, J. Li, W.H. Delashmit, P.L. Narasimha, C. Yu and M.T.

Manry, “Convergent Design of Piecewise Linear Neural Networks”, NeuroComputing,

vol. 70, pp. 1022-1039, 2007.

[14] Jan A. Snyman, Practical Mathematical Optimization: An Introduction to Basic

Optimization Theory and Classical and New Gradient-Based Algorithms. Springer

Publishing, 2005.

[15] J. Platt, “Fast Training of Support Vector Machines using Sequential Minimal

Optimization,” Advances in Kernel Methods - Support Vector Learning, MIT Press,

1998.

 55

[16] J. Platt, “Using Sparseness and Analytic QP to Speed Training of Support

Vector Machines,” Advances in Neural Information Processing Systems 11, MIT Press,

1999.

[17] M. T. Manry, S. J. Apollo, L. S. Allen, W. D. Lyle, W. Gong, M.S. Dawson, and

A. K. Fung," Fast Training of Neural Networks for Remote Sensing," Remote Sensing

Reviews, vol. 9, pp. 77-96, 1994.

[18] T. Kohonen, Self-Organization and Associative Memory, 2nd ed., Springer-

Verlag, 1987.

[19] K. Hornik, M. Stinchcombe, and H. White, “Multilayer Feedforward Networks

Are Universal Approximators,” Neural Networks, Vol. 2, No. 5, pp. 359-366, 1989.

[20] K. Hornik, M. Stinchcombe, and H. White, “Universal Approximation of an

Unknown Mapping and its Derivatives Using Multilayer Feedforward Networks,”

Neural Networks, vol. 3, pp. 551-560, 1990.

[21] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and

Regression Trees, Wadsworth, Belmont, CA, 1984.

[22] D. B. Fogel, “An information criterion for optimal neural network selection,”

IEEE Trans. Neural Networks, vol. 2, no. 5, pp. 490-497, Sept.1991.

[23] J. H. Friedman, “Multivariate adaptive regression splines,” Annals of Statistics,

vol. 19, no. 1, pp. 1-141, 1991.

[24] S. Subbarayan, K. Kim, M. T. Manry, V. Devarajan and H. Chen, “Modular

neural network architecture using piecewise linear mapping,” 30th Asilomar Conference

on Signals, Systems & Computers, vol. 2, pp. 1171-1175, Nov. 1996.

 56

[25] W. Li, J.-N. Lin, and R. Unbehauen, “Canonical representation of piecewise

polynomial functions with nondegenerate linear domain partitions,” IEEE Trans.

Circuits and Systems I: Fundamental Theory and Applications, vol. 45, no. 8, pp. 838-

848, Aug. 1998.

[26] D.R. Hush and B. Horne, “Efficient algorithms for function approximation with

piecewise linear sigmoidal networks,” IEEE Trans. Neural Networks, Vol. 9, No. 6, pp.

1129-1141, 1998.

[27] E.F. Gad, A.F. Atiya, S. Shaheen, A. El-Dessouki, “A new algorithm for

learning in piecewise-linear neural networks,” Neural Networks 13, pp. 485–505, 2000.

[28] F. J. Maldonado, M. T. Manry, Tae-Hoon Kim, "Finding optimal neural network

basis function subsets using the Schmidt procedure", Proceedings of the International

Joint Conference on Neural Networks, vol. 1, pp. 444 – 449, July 2003.

[29] F. J. Maldonado, M. T. Manry, "Optimal Pruning of Feed-forward Neural

Networks Based upon the Schmidt Procedure," The 36th Asilomar Conference on

Signals, Systems, & Computers, pp. 1024 – 1028, 2002.

[30] L-M Liu, M.T. Manry, F. Amar, M.S. Dawson, and A.K. Fung, "Iterative

Improvement of Image Classifiers Using Relaxation," Conference Record of the Twenty

Eighth Annual Asilomar Conference on Signals, Systems, and Computers, vol. 2,

10/31/94 to 11/2/94, pp. 902-906.

[31] Jiang Li, Michael T. Manry, Li-Min Liu, Changhua Yu, and John Wei,

“Iterative Improvement of Neural Classifiers”, Proceedings of the Seventeenth

International Conference of the Florida AI Research Society, pp. 700-705, May 2004.

 57

[32] R.G. Gore, Jiang Li, Michael T. Manry, Li-Min Liu, Changhua Yu, and John

Wei, "Iterative Design of Neural Network Classifiers through Regression",

International Journal on Artificial Intelligence Tools, vol. 14, nos. 1&2 pp. 281-301,

2005.

[33] LeCun, J. S.Denker, and S. A.Solla, “Optimal brain damage,” Advances in

Neural Information Processing Systems 2, pp. 598-605, 1990.

[34] Hassibi, B., Stork, O.G., and WOLFF, G.J., “Optimal brain surgeon and general

network pruning,” Proceedings of International Conference on Neural Networks, San

Francisco, CA (Los Alamitos, CA: IEEE), pp. 293-299, 1993.

[35] C.Mozer and P.Smolensky, “Skeletonization: A technique for trimming the fat

from a network via relevance assessment,” Connection Sci., vol. 1, no. 1, pp. 3-26,

1989.

[36] H. C. Yau, M. T. Manry, "Iterative Improvement of a Nearest Neighbor

Classifier," Neural Networks, vol. 4, pp. 517-524, 1991.

[37] W. Gong, H. C. Yau, and M. T. Manry, "Non-Gaussian Feature Analyses Using

a Neural Network," Progress in Neural Networks, vol. 2, pp. 253-269, 1994.

[38] R.R. Bailey, E. J. Pettit, R. T. Borochoff, M. T. Manry, and X. Jiang,

"Automatic Recognition of USGS Land Use/Cover Categories Using Statistical and

Neural Network Classifiers," Proceedings of SPIE OE/Aerospace and Remote Sensing,

Orlando Florida, April 12-16, 1993.

[39] J.W. Dettman, Mathematical Methods in Physics and Engineering, 2nd ed.,

McGraw-Hill, 1962.

 58

[40] Wladyslaw Kaminski, Pawel Strumillo, “Kernel Orthonormalization in Radial

Basis Function Neural Networks,” IEEE Transactions on Neural Networks, vol. 8, no.

5, pp. 1177-1183, 1997.

[41] M. Bianchini, P. Frasconi, and M. Gori, “Learning without local minima in

radial basis function networks,” IEEE Trans. Neural Networks, vol. 6, pp. 749–755,

May 1995.

[42] Kay, Steven M., Fundamentals of Statistical Signal Processing: Estimation

Theory, Prentice Hall, ch. 7, 1993.

[43] D. W. Ruck, S. K. Rogers, and M. Kabrisky, “Target recognition: Conventional

and neural network approaches,” Proc. EEEE/INNS Int. Joint Conf. Neural Networks,

Abstract, 1989.

[44] S. K. Rogers, D. W. Ruck, M. Kabrisky, and G. L. Tarr, “Artificial neural

networks for automatic target recognition,” Proc. SPIE Conf. Appl. Artif. Neural

Networks, Bellingham, WA, 1990.

[45] D. W. Ruck, S. K. Rogers, and M. Kabrisky, “Tactical target recognition:

Conventional and neural network approaches,” Proc. 5th Ann. Aerospace Appl. Artif.

Intell. Conf., Oct. 1989.

[46] Mohammed Kolahdouzan and Cyrus Shahabi, “Voronoi-Based K Nearest

Neighbor Search for Spatial Network Databases,” Proceedings of the 30th Very Large

Data Bases (VLDB) Conference, Toronto, Canada, 2004.

[47] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by

back-propagating errors, Nature, pp. 533-536, 1986.

 59

[48] Y.Hirose, K.Yamashita, and S.Hijiya, “Back-propagation algorithm which

varies the number of hidden units,” Neural Networks, vol. 4, no. 1, pp. 61-66, 1991.

[49] R. Hecht-Nielsen, Theory of the backpropagation neural networks, Proceedings

of the international joint conference on neural networks, Washington DC, vol. 1. IEEE

Press, New York, pp. 593–605, 1989.

[50] L. Fausett, Fundamentals of Neural Networks : architectures, algorithms,and

applications, Prentice-Hall, 1994.

[51] L. Prechelt, Automatic Early Stopping Using Cross Validation: Quantifying the

criteria, Neural Networks 11, pp. 761-767, 1998.

[52] B. E. Boser, I. M. Guyon, and V. Vapnik, “A training algorithm for optimal

margin classifiers,” Fifth Annual Workshop on Computational Learning Theory,

Pittsburgh, 1992.

[53] Kendall A. Atkinson, An Introduction to Numerical Analysis, 2nd ed., John

Wiley & Sons, New York, 1989.

[54] Gene H. Golub and Charles F. Van Loan, Matrix computations, 3rd ed., section

4.2, Johns Hopkins University Press, 1996.

[55] J. More, “The Levenberg-Marquardt Algorithm, Implementation, and Theory,”

Conference on Numerical Analysis, 1977.

[56] R. P. Lippman, "An Introduction to Computing with Neural Nets," IEEE ASSP

Magazine, April 1987.

 60

[57] J. MacQueen, "Some Methods for Classification and Analysis of Multivariate

Observations," Proc. 5th Berkeley Symp. on Mathematical Statistics and Probability,

pp. 281, 1967.

[58] Y. Linde, A. Buzo and R. Gray, "An Algorithm for Vector Quantizer Design,"

IEEE Transactions on Communications, Jan. 1980.

[59] S. Lloyd, "Least-squares quantization in PCM", IEEE Transactions on

Information Theory, IT-28(2), pp. 129, 1982.

[60] Å. Björck, “Solving linear least squares problems by Gram-Schmidt

orthogonalization,” BIT Numerical Mathematics, vol. 7, no.1, pp. 1-21, March 1967.

 61

BIOGRAPHICAL INFORMATION

Abdul Aziz Abdurrab was born in Hyderabad, India in 1980. He received the

Bachelor of Technology in Electronics and Communication Engineering from

Jawaharlal Nehru Technological University in 2002 and the Master of Science in

Electrical Engineering from the University of Texas at Arlington (UTA) in 2007. While

studying at UTA, he did an internship at Qualcomm, Inc., San Diego, CA, where he was

responsible for testing firmware updates on real-time platforms and tuning an advanced

acoustic echo-canceller for CDMA chipsets.

His research interests include multimedia signal processing, neural network

algorithms and embedded microcontroller systems.

	1.1 Classifier Design Problem
	1.2 Conventional and Neural Net Classifiers
	1.3 Introduction to the Piecewise Linear Classifier
	1.4 Objectives and Overview of this Thesis
	2.1 Multi-Layer Perceptrons
	2.2 Radial Basis Function Networks
	2.3 Support Vector Machines
	2.4 Problems with Classifiers
	3.1 Network Structure and Operation
	3.2 Network Training
	3.3 Review of Output Reset Algorithm
	3.4 Network Validation
	3.5 Network Pruning
	4.1 Neural Networks and Bayes Discriminant
	4.2 Nearest Neighbor and the Piecewise Linear Classifiers
	4.3 Convergence of the PLNC Error Probability
	5.1 Comparison of Number of Multiplies against the NNC
	5.2 Comparison of Number of Multiplies against the MLP
	6.1 Training and Pruning Results
	6.2 Mathematical Complexity Comparisons
	7.1 Conclusions
	7.2 Suggested Future Work

