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ABSTRACT 

 

 A PIECEWISE LINEAR CLASSIFIER 

 

Publication No. ______ 

 

Abdul Aziz Abdurrab, MSEE 

 

The University of Texas at Arlington, 2007 

 

Supervising Professor:  Dr. Michael T. Manry  

A piecewise linear network is discussed which classifies N-dimensional input 

vectors. The network uses a distance measure to assign incoming input vectors to an 

appropriate cluster. Each cluster has a linear classifier for generating class 

discriminants. A training algorithm is described for generating the clusters and 

discriminants. A pruning algorithm is also described. The algorithm is applied after the 

network has grown completely, i.e, it has achieved the maximum number of clusters. 

The pruning algorithm eliminates the least important clusters, one at a time, leading to a 

more compact network. Theorems are given which relate the network’s performance to 

that of nearest neighbor and k-nearest neighbor classifiers. It is shown that the error 

approaches Bayes Error as the number of clusters and patterns per cluster approach 

infinity.  The mathematical complexity of the piecewise linear network classifier, in

 iii



 terms of number of multiplies, is compared against those of classical neural net 

classifiers, like the multi-layer perceptron and the nearest neighbor classifier. The 

classifier is also compared with these classifiers with respect to their sizes, i.e, number 

of clusters or hidden units. It is shown that the piecewise linear network classifier 

generally outperforms on both fronts. 
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CHAPTER 1 

INTRODUCTION 

The ease with which humans recognize a face, comprehend spoken words, read 

handwritten characters, identify and distinguish many things by feel disguises the 

astonishingly complex process of pattern recognition and classification. Pattern 

classification is the act of taking in raw data and deciding on the “category” of the data. 

Over the past many years, humans have evolved highly sophisticated neural and 

cognitive systems for such tasks. It is only natural that we should seek to design and 

build machines that can recognize and classify patterns. From automated speech 

recognition, fingerprint identification, optical character recognition, DNA sequence 

matching, and much more, it is obvious that reliable, accurate pattern recognition by 

machines is immensely useful. 

1.1 Classifier Design Problem 

A problem common to many disciplines is classification of data or patterns 

based on a-priori knowledge and on statistical information extracted from the patterns. 

The patterns to be classified are usually groups of measurements or observations, 

defining points in an appropriate multidimensional input space. A complete pattern 

recognition system consists of a preprocessor, e.g., a sensor that gathers the 

observations to be classified or described, a feature extraction mechanism that computes
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numeric or symbolic information from the observations, and a classification scheme that 

does the actual job of classifying observations, relying on the extracted features. The 

task of the classifier component proper of a full system is to use the feature vectors 

provided by the feature extractor to assign the object to a category. A typical classifier 

design problem can be split into two parts, training and evaluation. In general, the 

process of using data to develop the classifier is referred to as training the classifier. The 

most effective methods for developing classifiers involve learning from a set of 

example patterns that have already been classified. This set of patterns is termed the 

training dataset and the resulting learning strategy is characterized as supervised 

learning [3,4]. A training dataset usually consists of Nv labeled feature vectors xfp, each 

of dimension N. Each feature vector has its class label, ic(p), defined, where 1 ≤ p ≤ Nv. 

The goal is to design a classifier that estimates ic(p) from xfp, given the training data 

(xfp, ic(p)). Learning can also be unsupervised [3,4], in the sense that the system is not 

given a-priori labeling of patterns, instead it establishes the classes itself based on the 

statistical regularities of the patterns.  Evaluation of the classifier is important both to 

measure the performance of the system and to identify the need of improvement in its 

components. While an overly complex system may allow perfect classification of the 

training samples, it is unlikely to perform well on new patterns. This situation is known 

as overfitting [4]. One of the most important areas of research in statistical pattern 

classification is determining how to adjust the complexity of the model- not so simple 

that it can not explain the differences between the categories, yet not so complex as to 

give poor classification on novel patterns. 
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1.2 Conventional and Neural Net Classifiers 

Conventional classifiers like the Bayes [3,4] and k-nearest neighbor classifiers 

(k-NNC) [3,4] have long been used. A Bayes classifier is a simple probabilistic 

classifier that makes the final decision by combining two sources of information, i.e., 

the prior and the likelihood, to form a posterior probability using Bayes' rule [5]. 

The k-NNC classifies objects based on the closest training examples in the N-

dimensional feature space. In the training phase, the feature space is divided into 

convex polygons or clusters based on the class labels of the various training patterns. 

This leads to partitioning of the input space into a Voronoi tessellation [46] as shown in 

fig. 1.1. In the classification phase, distances from the new test vector to all the stored 

vectors are computed and the k closest samples are selected. The new vector is 

predicted to belong to the most numerous class labels within this set. The best choice of 

k depends on the data; generally larger values reduce the effect of noise on classification 

but make the decision boundaries less distinct. The algorithm is easy to implement, but 

can get computationally intense, especially when the size of the training set increases. 

Several artificial neural networks have also been used for classification 

purposes.  Neural nets can either undergo supervised learning or unsupervised learning, 

as in self-organizing map (SOM) networks [10,18]. In supervised learning, there exist 

the input feature vector, xfp and the feature vector’s class label, ic(p). Multi-layer 

Perceptrons (MLP) [6], radial basis function (RBF) networks [7] and support vector 

machines (SVM) [8,9] are trained using supervised learning techniques. Neural net 



 

classifiers are usually trained to minimize the Mean-Squared Error (MSE) over a 

number of iterations. 

 

 

Fig. 1.1  Voronoi tessellation of a two-dimensional space 

1.3 Introduction to the Piecewise Linear Classifier 

Feedforward neural nets with the universal approximation property [19,20] 

mimic Bayes discriminants [11,12] and have been successfully used for many 

classification tasks. However, training time is slow, and convergence of the 

classification error to Bayes error has not been shown. Such convergence theorems do 

exist for nearest neighbor classifiers (NNCs) and k-NNCs [3,4], which also have the 

advantage of being easy to design in a short period of time. However, the NNC and k-

NNC are rarely used because they are very time-consuming to apply. Piecewise linear 

networks (PLNs) have long been used for function approximation and classification 
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tasks [21-25] where speed of operation and simplicity are very important. One design 

approach is training an MLP having piecewise linear activations [26,27]. This approach 

is useful in hardware implementations, speeds up training as compared to 

backpropagation [47-49], and results in a continuous approximation. If we are willing to 

give up continuous approximation, a simpler piecewise linear network can be devised. 

Suppose that a distance measure is used to partition the feature space into a Voronoi 

tessellation. For each partition or cluster, a linear network maps that clusters members 

to the output space. This approach has been analyzed in detail for the approximation 

case [13]. 

1.4 Objectives and Overview of this Thesis 

In this thesis we develop a piecewise linear network classifier (PLNC), based 

upon the work in [13], which can be quickly designed and applied. Chapter 2 presents a 

review on various existing neural net classifiers. Chapter 3 discusses the structure, 

operation and training of the PLNC. It also discusses pruning techniques that can lead to 

more compact PLNCs. In chapter 4, the estimation of Bayesian a-posteriori 

probabilities by the PLNC is discussed, along with the PLNC’s relation to the NNC and 

k-NNC. Mathematical complexity of the PLNC, in terms of number of multiplies, 

against the nearest neighbor classifier (NNC) and the MLP are discussed in chapter 5. 

Simulations and performance comparisons against the NNC and the MLP, with respect 

to mathematical complexity and network sizes, are presented in chapter 6. Chapter 7 

concludes this thesis and puts forth proposals for future research work. 
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CHAPTER 2 

REVIEW OF NEURAL NET CLASSIFIERS 

An optimal classifier can be designed based on the Bayes’ rule [5] but this 

would require us to know the prior probabilities, Pi and the class conditional densities, 

f(x|i). Unfortunately, in pattern classification applications, this kind of complete 

knowledge about the probabilistic structure of the problem is rarely, if ever, available. 

In a typical case we merely have some vague, general knowledge about the situation, 

together with a number of design samples or training data- particular representatives of 

the patterns we want to classify. The problem, then, is to find some way to use this 

information to design or train the classifier. 

Many approaches have been developed to solve this problem. A few of these 

include Bayesian estimation [4], maximum likelihood estimation [42], and 

nonparametric design techniques such as the nearest neighbor rule and artificial neural 

networks [4]. Neural nets have the advantage that they do not require knowledge of the 

underlying probability distributions and in this limited sense they can be said to be 

nonparametric. They are usually trained to minimize the cost function [4], which in 

most cases is the mean squared error (MSE). In this chapter, we review three neural nets 

that have been widely used as classifiers and state their advantages and disadvantages.
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2.1 Multi-Layer Perceptrons 

This class of networks consists of multiple layers of computational units or 

nodes, usually interconnected in a feed-forward way. In many applications the hidden 

units of these networks apply a sigmoid function as an activation function at the unit’s 

output. The structure of the multi-layer perceptron (MLP) is shown in fig. 2.1. 

Multi-layer perceptrons use a variety of learning techniques, the most popular 

being backpropagation[47-49]. Here the computed output values are compared with the 

desired output to compute the value of an error function. The error is then fed back 

through the network, which is then reduced by adjusting the weights by a general 

optimization technique like the gradient descent [14].  

In general the problem of teaching a network to perform well, even on samples 

that were not used as training samples, is a quite subtle issue that requires additional 

techniques. This is especially important for cases where only very limited numbers of 

training samples are available. The danger is that the network overfits the training data 

and fails to capture the true statistical process generating the data. Computational 

learning theory is concerned with training classifiers on a limited amount of data. In the 

context of neural networks a simple heuristic, called early stopping [50,51], often 

ensures that the network will generalize well to examples not in the training set. Other 

typical problems of the backpropagation algorithm are the speed of convergence and the 

possibility of ending up in a local minimum of the error function.  
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Fig. 2.1  Stucture of a multi-layer perceptron 

 

2.2 Radial Basis Function Networks 

A radial basis function (RBF) is a real-valued function whose value depends 

only on the distance of its input vector from the origin. RBF Networks are used in 

function approximation, time series prediction, and control. In neural networks, radial 

basis functions are utilized as hidden units. RBF networks typically have 3 layers, the 

input layer, the hidden layer with the RBF non-linearity and a linear output layer. The 

input is first mapped onto each RBF in the hidden layer. The RBF activation chosen is 

usually a Gaussian. In regression problems the output layer is then a linear combination 

of hidden layer values representing mean predicted output. The interpretation of this 

output layer value is the same as a regression model in statistics. In classification 
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problems the output layer is typically a sigmoid function of a linear combination of 

hidden layer values, representing a posterior probability. 

RBF networks have the advantage of not suffering from local minima in the 

same way as MLPs. This is because usually the only parameters that are adjusted in the 

learning process are the weights from the hidden layer to the output layer. Linearity 

ensures that the error surface is quadratic and therefore has a single easily found 

minimum. 

RBF networks have the disadvantage of requiring good coverage of the input 

space by radial basis functions. RBF centers are determined with reference to the 

distribution of the input data, but without reference to the prediction task. As a result, 

representational resources may be wasted on areas of the input space that are irrelevant 

to learning. A common solution is to associate each data point with its own center, 

although this can make the linear system to be solved in the final layer rather large, and 

requires shrinkage techniques to avoid overfitting [4]. 

2.3 Support Vector Machines 

Support vector machines (SVMs) are a set of related supervised learning 

networks used for classification and regression. They usually consist of a feature 

extractor containing RBF hidden units, followed by a classifier that makes decisions 

based on a linear combination of features. A special property of SVMs is that they 

minimize the empirical classification error and maximize the geometric margin between 

the various classes. A typical classification problem involves separating N-dimensional 

data into different classes by an (N-1)-dimensional hyperplane. This could be done 



 

using a typical form of linear classifier. Possible boundaries for such a classification 

problem are shown in fig. 2.2. However, if it is also desired to achieve maximum 

separation between the different classes, this could be obtained using an SVM or other 

maximal margin classifier [11].  By maximizing this margin, SVMs avoid overfitting. A 

maximum-margin hyperplane for an SVM trained with samples from two classes is 

shown in fig. 2.3. Samples along the hyperplanes are called the support vectors. 

The parameters of the maximal margin hyperplane are commonly derived by 

solving a quadratic programming (QP) optimization problem using Platt’s Sequential 

Minimal Optimization (SMO) algorithm [15,16]. This algorithm breaks the problem 

down into 2-dimensional sub-problems that may be solved analytically, eliminating the 

need for a numerical optimization algorithm such as the conjugate gradient method 

[17]. 

 

L1 

L2 

L3 

Fig. 2.2  Possible boundaries to a simple classification problem 
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Fig. 2.3  A maximum-margin hyperplane for a support vector machine 

 

2.4 Problems with Classifiers 

Neural net classifiers have several problems. Training time for MLP and RBF 

classifiers can be long and they may suffer from overfitting [4]. SVM classifiers avoid 

overfitting but usually require several orders of magnitude more hidden units than RBF 

and MLP networks. 

Conventional classifiers also have problems. Bayes-Gaussian classifiers require 

accurate input statistics and Gaussian input vectors, both of which may be unavailable. 

Nearest neighbor classifiers, like SVMs, frequently require hundreds or thousands of 

parameters, and can take too long to apply. 
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CHAPTER 3 

THE PIECEWISE LINEAR CLASSIFIER 

In this chapter, a PLN [13] classifier (PLNC) is introduced which solves the 

problems discussed in section 2.4. 

3.1 Network Structure and Operation 

The network structure is shown in fig. 4.1. The PLNC consists of three layers: 

the input elements form the first layer, the hidden units the second and the output units 

the third. An (N+1)-dimensional vector x forms the input to the PLNC. Vector x is 

obtained from the N-dimensional feature vector xf. The means and standard deviations 

of the feature vector elements xfn are respectively μn and σn, where 1 ≤ n ≤ N. The 

feature vector elements are first normalized as 

 /fn fn nx x nμ σ⎡ ⎤← −⎣ ⎦                (3.1) 

The normalized feature vector is then augmented as  

( )TT :1f=x x           (3.2) 

to form the (N+1)-dimensional input, x, to the PLNC. The hidden layer consists of K 

clusters, each cluster having its N-dimensional cluster mean vector mc, where 1 ≤ c ≤ K. 

A Euclidean distance measure d(⋅) 

( ) [
2

1
,

N

c n
n

d x
=

= −∑x m ]cnm     (3.3)
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is used to do the clustering. xn is the nth element of vector x, and mcn is the nth element of 

the vector mc . Each cluster also has a weight matrix Ac of dimension Nc by (N+1), 

where Nc is the number of classes in the classification problem.  

The output of the network, y, comprises of Nc elements. The vector y is 

calculated by multiplying the input vector with the weight matrix of the cluster it has 

been assigned to. Given an input vector x, we find c such that d(x, mc) is minimized. 

Then we form the output vector y as  

c= ⋅y A x          (3.4) 

The estimate of the correct class ic is given by 

[ ]arg maxc i
i

i y′ =             (3.5) 

where yi is the ith element of the output vector y and 1 ≤ i ≤ Nc. 

 
d(·) 

c = 1 

c = 2 

c = K 

A1

A2

AK

 

Fig. 3.1  Structure of a Piecewise Linear Classifier 
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3.2 Network Training 

A classification problem typically involves a feature space with numerous 

feature vectors or samples that have to be classified into various class labels. In 

supervised learning, the training dataset includes the class label, ic, of each of the Nv 

feature vectors. The label is transformed into an Nc-dimensional target vector t such that 

( )        
     otherwise

c
pi

b i i p
t

b
⎧+ =

= ⎨
−⎩

    (3.6) 

where 1 ≤ p ≤ Nv, 1 ≤ i ≤ Nc and b is any positive integer. Before the network can be 

used for classification itself, it has to be trained. Training involves designing the PLNC 

weight matrices given numerous training patterns.  

The process of training a PLNC is divided into two parts. The first part involves 

partitioning of the input feature space into K clusters. The second part involves the 

calculation of the network weights by solving a set of linear equations whose solution 

minimizes the MSE of the network. The techniques used to perform these two parts of 

the training algorithm are mentioned in subsections 3.2.1 and 3.2.2 respectively. 

3.2.1 Clustering 

 The idea behind performing clustering is to group like feature vectors 

together, based on their inherent statistical properties, so that a simple linear classifier 

could be used for classification within every cluster. This would result in an overall 

complex decision boundary. Of the various techniques available [53-55], we use 

Kohonen’s self organizing maps (SOM) to do clustering. SOM partitions feature vectors 
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into clusters based on their distances from the cluster mean vectors. More information 

on SOM is available in appendix A.  

3.2.2 Solving for Ac

Clustering results in partitioning of the feature space into K clusters. Each 

cluster has its own weight matrix Ac, where 1 ≤ c ≤ K.  For a PLNC having linear output 

layer activations, the output vector is calculated by simply multiplying the input vector 

and the weight matrix of the cluster to which the pattern was assigned, as described in 

section 3.1. Hence, only the winning cluster’s weight matrix is turned on in order to 

generate the output vector. Elaborating on (3.4), the elements of the output vector y, are 

calculated as 

1

1

N

pi cin pn
n

y a x
+

=

= ⋅∑         (3.7) 

where acin is the element of the weight matrix Ac, belonging to row i  and column n. The 

elements of the output vector evaluated in (3.7) are compared with the Nc-dimensional 

desired output vector tp, described in (3.6). The mean squared error (MSE) for the cth 

cluster is given by 

( )
( ) 21

1 1 1

1 v cN c N N

c qi
q i nv

E t
N c

+

= = =
cin qna x⎡ ⎤

= −⎢ ⎥
⎣ ⎦

∑ ∑ ∑             (3.8) 

where Nv(c) is the number of feature vectors in cluster c and tqi is the actual output 

which could be +b or -b. The error gradient with respect to elements of the weight 

matrix Ac is given by 
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( )
( ) 1

1 1

12
vN c N

qj cjn qn qm
q ncjm v

E t a x
a N c

+

= =

∂ x⎡ ⎤
= − −⎢ ⎥∂ ⎣ ⎦

∑ ∑     (3.9) 

On further simplification we get 

( )
( ) ( ) 1

1 1 1

12
v vN c N c N

qj qm cjn qn qm
q q ncjm v

E t x a x x
a N c

+

= = =

⎡ ⎤⎛ ⎞ ⎛∂
= − −

⎞
⎢ ⎥⎜ ⎟ ⎜⎜ ⎟ ⎜∂

⎟⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑ ∑    (3.10) 

Equation (3.10) can be written in terms of auto-correlation and cross-correlation 

elements, and respectively, as 

( ) ( )
1

1
2 , ,

N

cjn
ncjm

E c j m a r n m
a

+

=

∂ ⎡ ⎤
= − −⎢ ⎥∂ ⎣ ⎦

∑      (3.11) 

The PLNC is designed by minimizing the training MSE. Hence, equating the gradient in 

(3.11) to zero, in order to minimize the error, yields 

( ) (
1

1
,

N

cjn
n

c j m a r n m
+

=

= ∑ ),      (3.12) 

Several techniques [14,17,56-59] can be used to solve the set of equations in (3.12). The 

technique described in appendix B is a modified version of the Gram-Schmidt 

procedure [28,29].  

3.2.3 Classification Error of the PLNC 

Upon obtaining the weight matrices for all clusters, the training is complete and 

these weights can be used to compute the outputs of the network in response to the input 

vectors. The predicted class label, ic′(p) for vector xp satisfies 1 ≤ ic′(p) ≤ Nc. If ic′(p) is 

not equal to the correct class label, ic(p), the PLNC is said to have incorrectly classified 
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the feature vector xf. The classification error percentage of the PLNC is one hundred 

times the total number of such incorrect classifications, divided by Nv. 

3.3 Review of Output Reset Algorithm 

The output of the PLNC, at a single node, can be considered to be the sum of an 

optimal output and noise, which is usually zero-mean. The noise contributes to the error 

in the classifier. Each instance of residual error contains at least two types of bias. The 

first type of bias ap is an additive constant, inherent to each output vector. The second 

type of bias dpi has error components due to individual output values having the correct 

sign but magnitude larger than b. Removal of these biases has no immediate effect on 

the class recognition error count. However, after removing ap and dpi, over several 

training iterations, Output Reset (OR) [30-32] training error E′ more closely models the 

class recognition error rate. 

We mechanize the removal of biases by introducing a new desired output 

vector, tp′, which accounts for both ap and dpi. The OR training error to be minimized is 

 
2

1 1

1 c vN N

pi pi
i pv

E t
N = =

′ ′ y⎡ ⎤= −⎣ ⎦∑∑             (3.13) 

where tpi′ = tpi + ap + dpi and dpi is a function of p and i. Our goal now is to find ap, dpi 

and ypi, that minimize E′. 

A sufficient condition for finding ap is that the gradient of E′ with respect to zp 

be zero, yielding 

1

1 cN

p pi
i

a z
M =

pid⎡ ⎤= −⎣ ⎦∑              (3.14) 
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Values for dpi are found by minimizing square error term [dpi + ap - zpi]2, yielding dpi = 

zpi – ap. But, in order to keep dpic – dpid greater than or equal to zero, we must also 

constrain dpi such that dpic  ≥ 0 and dpid ≤ 0. A non-zero value for dpi is said to be an 

active bias whereas a zero value is said to be inert. The values of dpic and dpid are, hence, 

given by: 

if :active

0 otherwise    : inert
c c

c

pi p p pi
pi

z a a z
d

− <⎧⎪= ⎨
⎪⎩

       (3.15) 

if :active

0 otherwise    : inert  
d d

d

pi p p pi
pi

z a a z
d

− >⎧⎪= ⎨
⎪⎩

       (3.16) 

According to (3.15) and (3.16), dp(i) is active if the sign of zp(i) is correct but has 

magnitude larger than ap. 

3.4 Network Validation 

 The PLNC is trained using the feature vectors in the training file. Had there been 

access to an infinite number of training samples, it would be possible to use the trained 

network for classifying any feature vector, of similar nature of course. But 

unfortunately, in real examples, we only have access to a finite set of examples, usually 

smaller than desired. It is possible to use the entire training data to train the classifier 

and then use it on new test data. This approach, however, has a fundamental problem. 

The final trained classifier will overfit [4] the training data and have poor generalization 

capability when used on new test data. 

A much better approach is to split the training data into disjoint subsets or files, 

one used for training, or the training file, and the other for validation, or the validation 
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file. An important reason for using the validation data is to test the generalization 

capability of the trained network and determine an optimum network size and a 

stopping point for the iterations involved in calculation of weights. 

Stopping Point 

Network Size 

Error 

   
  Training Error 
 
  Validation Error 

 

Fig 3.2  Training and Validation Errors 

 

3.5 Network Pruning 

Setting the ideal network size of a PLNC’s topology is usually a major problem. 

Both, large and small networks have their own advantages and disadvantages, making it 

difficult to select an optimum size. Different applications would further require different 

sized networks to yield best results. Large networks may fit a given data set, but often 
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result in poor generalization. Too many clusters and/or weights in a network tend to 

overfit the data set. Large networks are also more computationally intense and more 

difficult to analyze. Smaller networks, on the other hand, can fail to learn a data set. It is 

often unclear on how to choose an optimal trade-off between a large and a small 

network. 

 Although the training algorithm, mentioned in section 3.2, designs the PLNC by 

adding the desired number of clusters, it does not always lead to the most compact 

network with the most optimal cluster mean vectors. The validation error generally 

tends to decrease with increasing size of the network, but only to a certain extent. After 

this, the validation error starts increasing even though the training error still continues to 

decrease. This is the portion where the network overfits the training data set and yields 

poor validation error. This is shown in fig. 3.2. Pruning of those clusters whose 

elimination causes the least increase in classification error leads to a more compact 

PLNC. Optimal removal of a cluster from a network with K clusters would involve 

calculating the possible increase in error from all possible eliminations – one cluster at a 

time – and selecting the cluster that causes the least increase in error. 

There are a variety of methods available for pruning nodes and connections in 

neural networks, ranging from computationally extensive ones to much simpler ones. 

Examples are the Optimal Brain Damage [33], Optimal Brain Surgeon [34] and 

Skeletonization [35] techniques. A simple approach is described in this thesis; one that 

identifies and eliminates the least useful cluster in a completely trained network without 

significantly degrading the classifier’s performance. This approach is derived by 



 

replacing MSEs in the method of [13] with classification errors. The algorithm consists 

of the following steps: 

1. Let k be the index of the cluster to be potentially eliminated and Ek the error 

of the network after cluster k has been pruned. Set E = 0 and Ek = 0, 1 ≤ k ≤ 

K. 

2. For p = 1 to Nv 

a) Identify two nearest clusters to input vector xp with indices i, j and 

compute the two classification errors e1 and e2 if xp were assigned to 

clusters i and j respectively. 

 21

i
i

b) For k = 1 to K, accumulate errors as  

1

2

   
   

k k

k k

E E e k
E E e k

← + ≠
← + =

    (3.17) 

3. Find the smallest Ek as and eliminate cluster k
minkE min. The number of 

clusters K, now decreases by one, i.e., 

1K K← −             (3.18) 

4. Pass the data through the pruned network, redesign all the clusters and 

calculate the training error E. Save the network. 

5. Repeat the above steps if further pruning is required. 

Pruning results are discussed in chapter 6. 



 

CHAPTER 4 

NEURAL NETS AND THE BAYES OPTIMAL DISCRIMINANT 

Previous research into the area of pattern recognition has shown that multi-layer 

perceptron classifiers and conventional nonparametric Bayesian classifiers yield the 

same classification accuracy, statistically speaking [43-45]. These results were 

empirical and, hence, were dependent on the data sets used. However, the consistently 

similar performances led to investigations into the theoretical connections and it has 

been proved [12] that MLPs approximate the Bayes optimal discriminant function when 

used for classification. In this chapter we carry the investigation further and explore the 

relationship between the PLNC and Bayes discriminant. 

4.1 Neural Networks and Bayes Discriminant 

Over the past several years, neural networks have been used for many tasks, 

including classification and function approximation. There have been many useful 

theoretical results concerning their capabilities. One of these theorems [12] follows. 

Theorem 1: When neural net classifiers are trained to minimize the mean-squared error 

(MSE), the MSE approaches a constant value plus the expected squared error between 

the neural net output and Bayes discriminant, as the number of training patterns 

approaches infinity.  Specifically, 

( ) ( ) ( )( )
2

2

1 1 1

1lim  E
v c c

v

N N N

pi i p i iN p i iv

t y b y
N→∞

= = =

⎡⎡ ⎤ a⎤− = −⎢⎣ ⎦ ⎣∑∑ ∑x x x +⎥⎦
      (4.1)
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where a is a constant, independent of p, tpi is defined by (3.6), and yi(xp) is the ith output 

of the network. The Bayes discriminant bi(x), is the probability that the ith class is 

correct, given x, which is written as P(i|x). The above theorem, however, leaves room 

for some doubts: 

1. It does not give any bounds on the neural network’s probability of error. Neither 

does it state an inequality relating the neural network’s probability of error to 

Bayes probability of error.  

2. The mean-squared error in the theorem treats positive and negative errors the 

same. However, it is good if the correct class discriminant is larger than desired, 

but bad if it is smaller. This problem leads to sub-optimal networks. However, 

this is fixed in the PLNC using output reset [30-32].  

3. The theorem makes no use of the neural network’s structure. It applies equally 

well to any discriminant designed by minimizing the MSE. Neural networks 

with different structures could lead to different results. 

4.2 Nearest Neighbor and the Piecewise Linear Classifiers 

The nearest neighbor classifier (NNC) classifies objects based on the closest 

training pattern in the feature space. A test sample or feature vector in the input space is 

assigned to class i if its nearest training sample, usually determined via the Euclidean 

distance, belongs to that class. The feature space is divided into convex partitions or 

clusters based on the class labels of the various training patterns. Specifically, the 

distance measure, which is usually Euclidean, performs a Voronoi tessellation [46] of 

the N-dimensional input feature space. 



 

Now we consider the relationship between a PLNC and an NNC. As K 

approaches infinity, the convex Voronoi cells in the feature space get smaller in volume 

and the optimal decision boundaries in each cluster become linear. Hence, each cluster 

can have its own linear discriminant and overall, a more complex decision boundary can 

be achieved. Therefore, for a given value of K, the PLNC should perform better than the 

NNC. We begin to address this idea in the following lemmas. 

Lemma 1: If a PLNC and NNC have the same distance measure and identical cluster 

mean vectors, the PLNC has at least as good a performance as the NNC. 

Proof: Since the PLNC’s augmented input vector x includes the constant 1, the PLNC’s 

output vector y can have a 1 for the same class as picked by the NNC. Other class 

outputs can be 0. 

Suppose that the cth NNC cluster belongs to class ic. If we would like the 

PLNC’s cth cluster to always map patterns to class ic, the elements of the Nc by (N+1) 

matrix, Ac′, would be chosen such that its elements are defined as 

  ( )
1        and 1

,
0              otherwise         

c
c

m i n N
a m n

= = +⎧′ = ⎨
⎩

    (4.2) 

There can be occurrences when a PLNC’s Ac matrices could initially perform 

worse than the NNC for the same cth cluster. In such cases we can, however, guarantee 

that the PLNC performance is at least as good as the NNC by doing the following. If the 

PLNC’s performance is worse than that of the NNC for the cth cluster and the weight 

matrix obtained for this cluster is Ac, replace it with Ac′ as defined in (4.2). 
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Lemma 2: If a PLNC and a NNC have the same distance measure and identical cluster 

mean vectors, then as K approaches infinity, 
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⋅          (4.3) ( ) ( )eB eBe PLNC e NNCP  P   P   2 P≤ ≤ ≤

where Pe(PLNC), Pe(NNC) and PeB respectively denote the PLNC, NNC and Bayes 

probabilities of error. 

Proof: As K approaches infinity, we know that [11,12] 

( )eB eBe NNCP  P   2 P≤ ≤ ⋅      (4.4) 

Using lemma 1 and (4.4) yields the result of (4.3). 

4.3 Convergence of the PLNC Error Probability 

We now wish to be more specific and evaluate the average probability of error 

for the PLNC, as the amount of training data increases. First, recall the following 

lemma describing the convergence of the k-Nearest Neighbor Classifier (k-NNC) 

probability of error to Bayes error, Pe(k-NNC).  

Lemma 3 [4]: As k and (Nv/k) approach infinity, the k-NNC can be viewed as an 

attempt to estimate the a-posteriori probabilities from the training samples. Under this 

condition, k-NNC hence becomes optimal and 

e(k-NNC) eB
,
lim P = P

vNk
k
→∞

     (4.5) 

Here k is the number of nearest training vectors or samples to the test sample x. As k 

increases, the upper bound of the probability of error gets closer to the lower bound – 

the Bayes rate. In the limit as k goes to infinity, the two bounds meet and the k-NNC 

becomes optimal. We want to use a large value of k to obtain a reliable estimate. On the 



 

other hand, we want all of the k neighbors to be very near to the test sample, x. This 

forces us to choose a compromise k that is a small fraction of the total number of 

training samples, Nv. It is only in the limit as Nv goes to infinity that we can be assured 

of the nearly optimal behaviour of the k-NNC. 

We now investigate the relationship between Bayes discriminant and the PLNC 

in more detail. We start by stating the following theorem. 

Theorem 2: As K and Nv(c) approach infinity, the output of a PLNC approximates the 

a-posteriori probability functions of the class labels, given the input vector. Under this 

condition, the PLNC hence becomes optimal and 

       (4.6) 
( ) e(PLNC) eB,

lim P = P
vK N c →∞

Proof: We start by observing that the classification error for the cth cluster of a PLNC is 

given by (3.8). Let us start by taking into consideration only the feature vectors that 

have been assigned class label i. In this case, the MSE would be given by 

( )
( ) 21

,
1 1

1 vN c N

c i qi cin qn
q nv

E t a
N c

+

= =

x⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑ ∑           (4.7) 

where xqn is the nth element of the vector xq, and 1 ≤ q ≤ Nv(c). The partial derivative of 

the error with respect to the elements of weight matrix Ac is given by  

( ) 1

1 1

2
( )

vN c N

qi cin qn qm
q ncim v

E t a x x
a N c

+

= =

∂ − ⎡ ⎤
= −⎢ ⎥∂ ⎣ ⎦

∑ ∑            (4.8) 

Before going any further, we consider how letting K and  Nv(c) approach infinity effects 

the range and variability of the input feature vectors x. Assuming the feature space is a 
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bounded compact subset of RN, each cluster falls within a cell of the Voronoi 

tessellation. As K and Nv(c) simultaneously increase towards infinity, the maximum 

radius of each cluster decreases towards zero. The range of values the elements of a 

feature vector in a cluster can take, decreases so much that they become constant, i.e, 

variability within a cluster approaches zero. Within the cth cluster, as x becomes 

independent of the pattern number q, we can replace xqn with mean vector element mn in 

(4.8).  We also equate the gradient to zero, so as to minimize the MSE. Equation (4.8) 

reduces to 

( ) 1

1 1

2 0
( )

vN c N

qi cin n m
q nv

t a m m
N c

+

= =

− ⎡ ⎤
− =⎢ ⎥

⎣ ⎦
∑ ∑     (4.9) 

which becomes 

( ) 1

1 1
0

vN c N

qi cin n
q n

t a m
+

= =

⎡ ⎤
− =⎢

⎣ ⎦
∑ ∑ ⎥

⎤

   (4.10) 

Since the terms acin and mn are constants, we can replace the sum over n by the single 

constant aci(N+1) which yields 

( )

( 1)
1

0
vN c

qi ci N
q

t a +
=

⎡ − =⎣∑ ⎦      (4.11) 

This can be written as  

( )

( )

1
1

( )
vN c

qi v ci N
q

t N c a +
=

= ⋅∑     (4.12) 

which yields 
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( ) ( )

( )vN c

qit
1

1
q

ci N
v

a
N c
=

+ =
∑

         (4.13) 

Equation (3.6) gives the values of the elements of the desired output vector t. Without 

loss of generality, though, we can represent tqi as 

( )( )qi ct i qδ i= −          (4.14) 

where δ is the Kronecker delta function. In turn, (4.13) becomes 

( )

( )

( )

( )

1
1

( )
vN c

c
q

ci N
v

i q i
a

N c

δ
=

+

−
=
∑

     (4.15) 

δ(ic(q) – i) equals 1 if ic(q) equals i, so, the numerator summation equals the number of 

training vectors in cluster c that belong to class i.  This number could be represented by 

Nv(c,i), hence reducing (4.15) to 

    ( ) ( )1
( , )v

ci N
v

N c ia
N c+ =         (4.16) 

which converges to the a-posteriori probability P(i|x). Thus theorem 2 is proved.  

For a given cluster c, aci(N+1)  is largest for the class i which has the most input 

vectors in the cluster. This is precisely how the k-NNC makes decisions. So, each 

PLNC cluster with Nv(c) members emulates a k-NNC decision with k = Nv(c).  
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CHAPTER 5 

MATHEMATICAL COMPLEXITY 

Different classification applications have different requirements; speed may be 

the top priority in a real-time application while accuracy could be of prime importance 

in another. In order to find the best suited classifier for a particular application, 

performances of different kinds of classifiers can be compared. The basis for 

comparison could range from the speed of the network to the number of hidden units to 

the number of multiplies. In this chapter, we compare the number of multiplies in a 

piecewise linear network classifier against two other classifiers – the MLP and the 

NNC. 

5.1 Comparison of Number of Multiplies against the NNC

We consider a trained PLNC that is given the task of classifying an N-

dimensional test vector, xt, into one of Nc classes. As mentioned in section 3.2, it first 

assigns the vector to one of K clusters, using distance measure, and then assigns the 

vector a class ID using a simple linear classifier. It takes N multiplies to calculate the 

distance measure, given by 

( ) [
2

t
1

,
N

k tn
n

d m x m
=

= −∑x ]kn     (5.1) 

from the vector xt to a cluster center vector. Since a total of K clusters exist, the test 

vector’s distance from each of these clusters has to be measured. This results in a total 

of K·N multiplies. Once the test vector is assigned to a particular cluster, the
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corresponding Ac matrix is activated to calculate the output vector y, according to the 

formula 

c= ⋅y A x      (5.2) 

This calculation, in turn, requires (N+1) ·Nc multiplies. Hence, the total number of 

multiplies required to apply a PLNC to a test vector is given by: 

[ ] ( )1PLNC cM K N N N⎡ ⎤= ⋅ + + ⋅⎣ ⎦     (5.3) 

A trained NNC, on the other hand, would first have to calculate the distance of 

the test vector from KNNC clusters. This process requires a total of KNNC ·N multiplies. 

After all the distance measures are calculated, the closest cluster is found and test vector 

xt is assigned its class ID. Therefore, the total number of multiplies required to apply a 

NNC to a test vector is given by: 

[ ]NNC NNCM K N= ⋅             (5.4) 

In order to compare the two classifiers based on the number of multiplies, we equate 

(5.3) and (5.4) to obtain  

( 1) c NNCK N N N K N⋅ + + ⋅ = ⋅         (5.5) 

This leads us to the following equation 

( )1 c
NNC

N N
K K

N
+ ⋅

= +     (5.6) 

which provides the number of clusters in a NNC that would have the same number of 

multiplies as that of a PLNC. 

Performances of the classifiers, with respect to the number of multiplies, are compared 

in chapter 6. 
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5.2 Comparison of Number of Multiplies against the MLP 

Equation (5.3) states the number of multiplies required to apply a fully trained 

PLNC to a test vector. We now consider a trained MLP that is assigned the same task. 

We consider an MLP with one hidden layer, containing Nh hidden units. The input to 

the MLP is an (N+1)-dimensional vector, x, which is created by augmenting the test 

vector, xp, with 1. The ith input unit is connected to the jth hidden unit via weight w(j,i). 

The MLP first calculates net functions that form the input to the hidden units. Net 

Function at the jth hidden unit would be 

( ) ( )
1

1
,

N

i
i

NET j w j i x
+

=

⎡ ⎤= ⋅⎣ ⎦∑     (5.7) 

where 1 ≤ j ≤ Nh. Equation (5.7) seems to require N+1 multiplies, but since the last 

multiplication is just an addition – the last element of vector x being a 1 – it effectively 

requires only N multiplies. Calculation of Nh such net functions would hence require 

Nh·N multiplications. Each hidden unit applies an activation function, usually a 

sigmoidal function, to its input net function to obtain the output, O(j). Each sigmoidal 

activation can be considered equivalent to two multiplies, hence Nh hidden units would 

require 2.Nh multiplies. Finally, the output layer of the MLP calculates the output vector 

elements yk as 

( ) ( ) ( )
1

1 1
, ,

N Nh

k io i ho
i j

y w k i x w k j O
+

= =

⎡ ⎤ ⎡= ⋅ + ⋅⎣ ⎦ ⎣∑ ∑ j ⎤⎦    (5.8) 

where wio(k,i) is the weight connecting the ith input unit to the kth output unit, who(k,j) is 

the weight connecting the output of the jth hidden unit, O(j), to the kth output unit and1 ≤ 
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k ≤ Nc. The calculation of the output vector, y, hence requires Nc.(N+Nh) multiplies. 

Therefore, a trained MLP would require a total of 

( )2h h cN N N N N N⋅ + ⋅ + + h     (5.9) 

multiplies. In order to compare the PLNC and the MLP based on the number of 

multiplies, we equate (5.3) and (5.9) to obtain 

( ) ( )2 1h h c h cN N N N N N K N N N⋅ + ⋅ + ⋅ + = ⋅ + ⋅ +   (5.10) 

The number of clusters, K, hence required for a trained PLNC to have an equal number 

of multiplies as that of an MLP is given by 

( ) ( )2 1h cN N N N
K

N
h⋅ + + ⋅ −

=    (5.11) 

Performances of the classifiers, with respect to the number of multiplies, are compared 

in chapter 6. 
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CHAPTER 6 

PERFORMANCE COMPARISONS AND SIMULATION RESULTS 

The primary objective of performing these experiments is to examine and 

evaluate the performance of PLNC in light of the lemmas in chapter 4. In this chapter, 

we compare the performance of a PLNC with that of an NNC and an MLP using 

different data sets. Each data set consists of a training data file and a validation data file. 

The former is used to train the network and the latter is used to validate the design, i.e., 

test the generalization capability of the network. Performances are compared with 

respect to two parameters as mentioned below. 

1. In section 6.1, the classification error percentages are plotted as function of the 

number of clusters, for an NNC and a PLNC, or the number of hidden units, for 

an MLP. 

2. In section 6.2, the classification error percentages are plotted as a function of the 

number of multiplies required to apply the network. 

6.1 Training and Pruning Results 

In this section, we compare the performance of a PLNC with that of the NNC 

and an MLP using different data sets. The network is first trained using the training data 

file; the weights of the trained network are stored; the weights are then used to apply the 

network to a validation data file. During training, once the network is grown to the 

desired maximum size (in terms of number of clusters or hidden units) it is then pruned 
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down and error percentages are calculated at the end of each iteration. Similarly, during 

validation, the trained network is pruned down and error percentages calculated at the 

end of each iteration. The user has the ability to choose the size of the network based on 

the results. 

6.1.1 PLNC vs NNC 

Three data sets are used for the comparison. 

1. grng [36] – This is a geometric shape recognition data set for of four shapes - 

ellipse, triangle, quadrilateral, and pentagon. Each shape consists of a matrix of 

size 64 x 64 pixels. For each shape, training and test patterns were generated 

using different degrees of deformation. The deformations included rotation, 

scaling, translation, and oblique distortions. The feature set has 16 features. For 

this comparison, the NNC and PLNC, both use the same set of cluster center 

vectors for classification. The results of this comparison are shown in fig. 6.1. 

The poor performance of the NNC occurs because it is forced to use the same 

clusters as the PLNC, for this example only. 



 

 

Fig. 6.1  Comparison of equivalent sized PLNC and NNC for shape recognition data 
 

2. gong [37] – The raw data consists of images from hand printed numerals 

collected from 3,000 people by the Internal Revenue Service. Images are 32 by 

24 binary matrices. An image scaling algorithm is used to remove size variation 

in characters. The feature set contains 16 elements. The 10 classes correspond to 

the 10 Arabic numerals. For this comparison, the PLNC and NNC are allowed to 

design and use their own sets of cluster center vectors. The results of this 

comparison are shown in fig. 6.2. The linear classifier in each PLNC cluster 

allows the PLNC to outperform the NNC. 

 35



 

 

Fig. 6.2  Comparison of equivalent sized PLNC and NNC for numerical recognition 
problem 

 

3. comf18 [38] – This data set consists of texture features corresponding to an 

image segmentation problem. Each segmented region is separately histogram 

equalized to 20 levels. Then the joint probability density of pairs of pixels 

separated by a given distance and a given direction is estimated. We use 0, 90, 

180, 270 degrees for the directions and 1, 3, and 5 pixels for the separations. The 

density estimates are computed for each classification window. For each 

separation, the co-occurrences for the four directions are folded together to form 

a triangular matrix. From each of the resulting three matrices, six features are 

computed: angular second moment, contrast, entropy, correlation, and the sums 

of the main diagonal and the first off diagonal. This results in 18 features for 
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each classification window. For this comparison too, the PLNC and NNC are 

allowed to design and use their own set of cluster center vectors. The results of 

this comparison are shown in fig. 6.3. As in the previous examples, the PLNC 

outperforms the NNC. 

 

Fig. 6.3  Comparison of equivalent sized PLNC and NNC for segmentation problem 
 

6.1.2 PLNC vs MLP 

Two data sets are used for the comparison. 

1. F17C – This data set consists of parameters that are available in the basic health 

usage monitoring system (HUMS). The data was obtained from the M430 flight 

load level survey conducted in Mirabel Canada in early 1995. Each input vector 

contains 17 elements. The 39 classes represent different maneuvers of the flight 

like taking off, landing, turning right or left etc. This is an application for 
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prognostics or flight condition recognition. The results of this comparison are 

shown in fig. 6.4. In this example, the PLNC outperforms the MLP. 

 

Fig. 6.4  Comparison of equivalent sized PLNC and MLP for prognostics data 
 

2. mushroom - This data set includes descriptions of hypothetical samples  

corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota 

Family.  Each species is identified as definitely edible, definitely poisonous, or 

of unknown edibility and not recommended.  This latter class was combined 

with the poisonous one. The Guide clearly states that there is no simple rule for 

determining the edibility of a mushroom; no rule like ``leaflets three, let it be'' 

for Poisonous Oak and Ivy. The results of this comparison are shown in fig. 6.5. 

The PLNC outperforms the MLP for larger networks. 
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Fig. 6.5  Comparison of equivalent sized PLNC and MLP for mushroom edibility 
data 

 
6.2 Mathematical Complexity Comparisons  

Based on the work done in chapter 5, we compare the performance of a PLNC 

with that of the NNC and an MLP with respect to the number of multiplies required to 

apply each of these networks. Data points obtained from the training and pruning 

results, in section 6.1, are used to calculate the number of multiplies required to apply 

networks of various sizes. The classification errors are then plotted as a function of the 

number of multiplies. 

6.2.1 PLNC vs NNC 

Two data sets are used for the comparison – gong [37] and comf18 [38]. The 

results are shown in fig. 6.6 and fig. 6.7 respectively. 
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Fig. 6.6  Comparison of PLNC and NNC for numerical recognition problem 
based on the number of multiplies 

 

 

Fig. 6.7  Comparison of PLNC and NNC for segmentation problem based on the 
number of multiplies 
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6.2.2 PLNC vs MLP 

Two data sets are used for the comparison – F17C and mushroom. The results 

are shown in fig. 6.8 and fig. 6.9 respectively. 

 

Fig. 6.8  Comparison of PLNC and MLP for prognostics data based on the 
number of multiplies 

 

Figures 6.6 through 6.9 show that a PLNC requires fewer multiplications to 

obtain similar classification error percentage as compared to an MLP or an NNC. This 

is why the PLNC is much faster and far less mathematically complex than the classical 

neural net classifiers. 

 41



 

 

Fig. 6.9  Comparison of PLNC and MLP for mushroom edibility data based on the 
number of multiplies 

 42



 

 43

CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

In this thesis we first presented a brief overview of a typical classification 

problem, followed by a review of few of the existing classical and neural net classifiers 

along with their advantages and disadvantages. We then described a classifier based on 

a piecewise linear network and gave a design algorithm for it. The training algorithm 

has fast convergence because sets of linear equations are solved in each cluster. Due to 

the unavailability of theorems relating the mean squared error of existing neural 

networks and Bayes probability of error, we investigate the relastionship between the 

PLNC and Bayes probabilities of error. We started by proving that the performance of a 

PLNC is at least as good as an NNC, given the same distance measure and identical 

cluster mean vectors. Using existing theorems for the NNC and k-NNC, we then proved 

that the output of the PLNC approximates a Bayes optimal discriminant when trained to 

minimize the mean square error (MSE), leading to an optimal classifier. We have 

shown that the mathematical complexity of PLNCs is usually less than that other 

classifiers like MLPs and NNCs. It can, thus, be stated that the PLNC always trains 

faster than the MLP and often faster than the NNC, which usually requires a lot more 

clusters. Using several data sets, we have also shown that the PLNC often performs 

better than equivalent sized NNCs and MLPs. 
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7.2 Suggested Future Work 

Future work will involve training the linear classifiers using alternative methods 

and comparing the results. Implementing multiple distance measures, instead of only 

one, can prove effective during the clustering stage and is worth exploring in the future. 

Better stopping criterion for the output-reset method should also be a topic for future 

research. Means and standard deviations of the PLNC classification error should be 

compared against those of classical and neural net classifiers, so that their performance 

could be better generalized. 
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APPENDIX A 
 
 

REVIEW OF SELF ORGANIZING MAPS 
 

 

 

 

 

 

 

 

 



 

Kohonen’s SOM [10,18], in itself, is a type of unsupervised learning used to 

produce low dimensional representation of the training samples while preserving the 

topological properties of the input space. The goal of learning in SOM is to associate 

different feature vectors to respond similarly to certain input patterns or to group feature 

vectors with similar properties into clusters.  

Clustering of the Nv input vectors, xp, (1 ≤ p ≤ Nv) is performed using the SOM 

technique with the Euclidean distance measure d(⋅). At the end of each iteration, i.e., 

when feature vectors have been assigned to different clusters, we calculate the mean 

cluster vector mc of every cluster. The training algorithm, in brief, does the following: 

1. Let K be the total number of clusters and cluster mean vectors. Cluster mean 

vectors are first initialized as random vectors using parameters μn and σn as 

described in section 3.1. We denote a cluster mean vector by mc, where 1 ≤ c ≤ 

K. 

2. Training patterns are then fed to the network multiple times over a total of Nit 

iterations. During a single iteration it, where 1 ≤ it ≤ Nit, a pass is made over the 

entire training data set of Nv vectors. When an input feature vector, xp, is fed to 

the SOM, its Euclidean distance to all the cluster mean vectors is computed. The 

cluster mean vector that is the closest to the input vector, say the kth cluster in 

this case, along with its few neighboring clusters, is adjusted towards the input 

vector as 

( )c c p cz t ⎡ ⎤= + −⎣ ⎦m m x m     (1) 
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 for 

( )| |k c N t− ≤      (2) 

Here z(t) is the gain function that decides the amount by which the vectors are 

adjusted, k and c are cluster mean vector indices and N(t) is the neighborhood 

function that decides the neighborhood of cluster mean vectors that is adjusted. 

The closest cluster mean vector, mk, is at the center of the neighborhood. In our 

experiments, we have used a decreasing exponential gain function given by 

( ) 1
1.

t
Tz t a e

−

=                  (3) 

and a decreasing neighborhood function given by 

( ) 2
2.

t
TN t a e

−

=        (4) 

where 

 

( )vt p it N= + ⋅        (5) 

1 3
v itN NT ⋅

= ,                   (6) 

2 10
v itN NT ⋅

= ,                   (7) 

1
v

Ka
N

= ,                (8) 

and 

2 10
Ka =                  (9) 
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APPENDIX B 

 
 

REVIEW OF MODIFIED GRAM-SCHMIDT PROCEDURE 
 

 

 

 

 

 

 

 

 

 



 

The Gram-Schmidt procedure [60] is a method for orthonormalizing a set of 

vectors in an inner product space, most commonly the Euclidean space, Rn. The Gram-

Schmidt process takes a finite, linearly independent set S = {v1, …., vn} and generates an 

orthonormal set S′ = {u1, …., un} that spans the same subspace as S. 

In the context of a PLNC, basis functions for the network are the inputs and the 

constant 1. These are stored in a random vector x, which has a dimension Nu=N+1. Let 

xm denote the mth unit of this vector, where 1 ≤ m ≤ Nu. The Schmidt procedure, for 

orthonormalization of basis functions can be described [39] as follows: 

Given the basis functions xm, form the first orthonormal basis function as  

1
1

1

xx
x

′ =             (10) 

The second orthonormal basis function is found as  

1 1 2,c x x′=               (11) 

2 1 1
2

2 1 1

x c xx
x c x

′− ⋅′ =
′− ⋅

                  (12) 

The remaining orthonormal basis functions are calculated in a similar fashion. This 

process requires at least one pass through the training data for each new basis function, 

in order to calculate inner products of the form <xm, xj′>.  However, it can be noted that 

each xm′ is a weighted sum of the xj. It is therefore possible to reformulate the procedure 

so that all inner products <xm, xj′> are calculated as weighted sums of <xm, xk>, 

meaning that only one pass through the training data is necessary. 
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The normal Gram-Schmidt procedure is refined to obtain a more useful form 

[28,29], wherein the orthonormal system is represented in terms of autocorrelation 

elements. 

The mth orthonormal basis function xm′, can be expressed as 
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k
1

m

m mk
k

x g x
=

′ = ⋅∑           (13) 

From (3.30), for m = 1, the first basis function is obtained as 

1

1 1 11
1

k k
k

1x g x g x
=

′ = ⋅ = ⋅∑                 (14) 

( )
11 1

21

1 1

1,1
g

x r
= =                 (15) 

where  

( ) ,
1

1,
vN

i j pi pj
pv

r i j x x x x
N =

= = ⋅∑                   (16) 

For values of m between 2 and Nu, ci is first found for 1 ≤ i ≤ m-1 as 

( )
1

,
i

i iq
q

c g r q
=

= ⋅∑ m           (17) 

Then m coefficients bk are obtained as 

1

      1 1

1

m

k i ik
i k

m

b c g k m

b

−

=

= − ⋅ ≤ ≤ −

=

∑
           (18) 

Finally for the mth basis function the new amk coefficients (for 1 ≤ k ≤ m) are found as 



 

( )
1

1 2
2

1
,

k
mk

m

i
i

bg

r m m c
−

=

=
⎡ ⎤

−⎢ ⎥
⎣ ⎦

∑
              (19) 

Equation (3.4) can also be written as 

1

1

N

i cin
n

ny a x
+

=

= ⋅∑          (20) 

Equating yi in (20) to 

1

uN

i ciq
q

qy a x
=

′ ′= ⋅∑          (21) 

where the cluster weights in the orthonormal system are 

( )
1 1

, ,
q q

ciq qk k i qk
k k

a g x t g c i
= =

′ = ⋅ = ⋅∑ ∑ k

g

         (22) 

and using (13) we obtain cluster weights for the system as 

uN

cin ciq qn
q n

a a
=

′= ⋅∑       (23) 

A few of the advantages of using the modified Gram-Schmidt procedure over 

other linear equation solving techniques are: 

1. Since the modified Gram-Schmidt procedure is a noniterative technique, it is 

much faster [40] than other iterative techniques like the steepest descent and 

conjugate gradient. 

2. This method has low storage requirements [40] since the cluster weights can be 

calculated recursively. 
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3. If the locations of the basis functions are distinct, then the set of equations (3.12) 

is linearly independent and has a unique solution [41]. This is a single globally 

optimum solution to (3.13). 
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