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ABSTRACT 

 

STRUCTURAL OPTIMIZATION USING MATLAB PARTIAL DIFFERENTIAL 

EQUATION TOOLBOX AND RADIAL BASIS FUNCTION BASED  

RESPOSNE SURFACE MODELS 

 

 

Faisal Tanveer Mosharrof, M.S. 

 

The University of Texas at Arlington, 2008 

 

Supervising Professor:  Bo Ping Wang  

As a decision making tool, optimization has become an inseparable part of the 

modern design process. However, in spite of the advances in computer capacity and 

speed, the computational time for some complex problems is too high to use 

conventional solution approach. In order to reduce the computational effort and the cost 

associated with such type of problems, approximation methods such as response surface 

methodology (RSM) along with design of experiments (DOE) are used in engineering 

design optimization. The main idea involves replacing the expensive simulation model 

during the design and optimization process with a simplified mathematical 

approximation of the original problem. This method is applicable where the calculation 
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of the design sensitivity information is difficult or impossible to compute, and also in 

the cases with noisy functions, where the sensitivity information is not reliable. 

Although a variety of optimization techniques are already in use, researchers are 

working to figure out more efficient and improvised techniques for design optimization. 

In this research, an efficient and simple structural optimization method based on 

response surface methodology and design of experiments has been developed and 

implemented using MATLAB for solving computationally expensive design 

optimization problems. Four different radial basis function models known as 

Multiquadric Interpolation, Multiquadric Regularization, Gauss Interpolation, and 

Gauss Regularization were utilized for constructing the response surface models and 

three different low discrepancy sequencing methods known as Halton sequence, Faure 

sequence, and Sobol sequence were used to generate the design of experiments. 

MATLAB Partial Differential Equation Toolbox was used for finite element model 

development and determining the true response of the design problems. Several design 

optimization problems have been solved using the proposed optimization scheme. The 

results thus obtained have been compared to that attained by solving the same problems 

using MATLAB optimization function fmincon. The comparison of the results 

demonstrates the effectiveness and applicability of the proposed optimization scheme.   
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CHAPTER 1 

 
INTRODUCTION 

 

 In today’s competitive world, engineers and manufacturers are under enormous 

pressure for the reduction of production cost and time, but at the same time improving 

the product quality. Design of complex engineering systems includes a wide variety of 

activities whose objective is to determine the optimum characteristics of a product even 

before it is manufactured. Nowadays, as a decision making tool, optimization has 

become an integral part of the design process. Design optimization intends to minimize 

or maximize the objective functions by selecting properly the design variables and by 

satisfying the constraints [1]. The application of design optimization both shortens 

design-cycle time and identifies new designs that are not only feasible, but also 

increasingly optimal with respect to pre-specified design criterion.  

Today’s advanced finite element analysis (FEA) techniques, efficient 

computational algorithms and high power computers have enabled mechanical and 

structural design engineers to apply optimization techniques to find best possible 

solutions for complex engineering problems. Although a large variety of optimization 

techniques are currently being used in almost every discipline of engineering, 

researchers around the globe are working constantly to develop more efficient and 

improvised methods for design optimization. Since design optimization is an inherently 

nonlinear problem, there is no single method to solve all optimization problems 
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efficiently. Hence, the design engineer has to choose the most appropriate optimization 

method to solve his design problem by properly recognizing the nature of the problem 

and understanding the pros and cons of the optimization method he is intended to use. 

1.1 Response Surface Approximation for Design Optimization 
 

In structural optimization, the computational time for some complex problems is 

too high to use conventional solution approach. It can take several hours to get a finite 

element solution of one variant in order to obtain a response of the structure. Some 

times it is necessary to perform calculations of several thousand variants for the 

optimum design problem. For example, a single crash testing simulation can require 10 

to 15 hours even when performed in a parallel processing environment [2]. Such 

complexity can severely limit comprehensive exploration of design alternatives. 

Consequently approximation methods such as response surface methodology are used in 

engineering design to minimize the computational expense of running such analysis and 

simulations, which is nothing but a simplified mathematical approximation of the actual 

problem. 

Response surface methodology (RSM) is a method for constructing global 

approximations to system behavior based on results calculated at various points in the 

design space [3]. The strength of the method is in applications where the calculation of 

the design sensitivity information is difficult or impossible to compute, as well as in 

cases with noisy functions, where the sensitivity information is not reliable, or when the 

function values are inaccurate. Response surface methodology is associated with design 

of experiment (DOE). The selection of points in the design space where the response 
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must be evaluated is commonly known as design of experiment. The choice of 

experimental design can have a large influence on the accuracy of the approximation 

and the cost of constructing the response surface. 

 A variety of applications of the approximation methods in engineering design 

and optimization are found in the literature. These applications ranged from space 

station power systems, to fluid flow problems and oil tanker design, to structural design 

and automotive crash worthiness [4]. However, researches are going on for the 

development of new algorithms for applying approximation techniques for structural 

optimization more efficiently. In this research, a response surface approximation 

method based on radial basis function is employed for structural optimization.  

1.2 Objective and Approach 
 

The main objectives of this research are: 

1. Development of an effective, simple and easy to apply structural optimization 

scheme using MATLAB Partial Differential Equation Toolbox and radial basis 

function (RBF) based response surface model for solving computationally 

expensive simulation based optimization problems. 

2. Implementation of the developed scheme by solving various application problems. 

These objectives are achieved by writing a design optimization code in 

MATLAB. Four different radial basis function models namely, Multiquadratic 

Interpolation, Multiquadratic Regularization, Gauss Interpolation and Gauss 

Regularization are used for constructing response surfaces, where as three different low 

discrepancy sequences namely, Halton, Faure and Sobol sequence are employed for 
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design of experiments creation. MATLAB Partial Differential Equation Toolbox is used 

for finite element analysis and obtaining true response of the problem. MATLAB built-

in optimization function fmincon is used for response surface optimization. 

The results obtained from the response surface optimization are then compared 

to those obtained by optimizing the actual problem using fmincon directly. 

1.3 Contributions 
 

This research contributed substantially to the following developments presented 

in this thesis: 

1. Developed and implemented an effective, simple and easy to use response surface 

based optimization scheme for solving computationally expensive simulation based 

optimization problems. 

2. Demonstrated the possibility of using four different forms of radial basis function 

for response surface approximation based structural optimization. 

3. Systematically explored the possibility of using three different low discrepancy 

sequences for the generation of design of experiments (DOE) to be used for 

structural optimization. 

4. Successfully employed MATLAB Partial Differential Equation Toolbox for solving 

simulation based structural optimization problems. 

1.4 Outline of the Thesis 
 

This thesis is documented into six chapters. 

 The general idea of structural optimization is presented in Chapter 2. 

Application of optimization in the field of engineering design, formulation of general 
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optimization problem, classifications of available optimization methods, the use of 

sequential quadratic programming for optimization are also discussed in this chapter. 

 In Chapter 3, a detailed discussion is presented on structural optimization based 

on response surface methodology (RSM), use of radial basis functions (RBF) for 

problem approximation, use of quasi Monte Carlo techniques for design of experiments 

(DOE) creation and use of MATLAB Partial Differential Equation Toolbox for 

structural optimization. 

 Chapter 4 explains the proposed algorithm for structural optimization using 

radial basis function based response surface model and MATLAB Partial Differential 

Equation Toolbox. 

 Chapter 5 presents the implementation of the proposed optimization scheme by 

solving ten different application problems. 

 Finally, the conclusions and recommendations for future research are presented 

in Chapter 7. 
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CHAPTER 2 

 
STRUCTURAL OPTIMIZATION 

2.1 Introduction 
 

Optimization is the process of maximizing or minimizing a desired objective 

function while satisfying the prevailing constraints [5]. The ever-increasing competition 

and a growing dearth of the raw materials resulted in a demand for light weight and low 

cost structures. The weight or cost optimization of structures is the major means of 

existence for modern design and manufacturing industries. Hence, the motivation of 

optimization is to exploit the available limited resources in a manner that maximizes the 

utility. The objective of optimal design is to achieve the best feasible design according 

to a preselected measure of effectiveness [6]. 

2.2 Applications of Optimization 
 

Optimization is not a new phenomenon in human life. In our daily life, we come 

across innumerable examples of optimization in nature. The honeycomb structure is an 

example of one of the most compact packaging arrangement. In metals and alloys, the 

atoms take positions of least energy to form unit cells that define the crystalline 

structure of materials. Optimization techniques are currently being used in a wide 

variety of industries like automobile, aerospace, electrical, chemical, MEMS and many 

other manufacturing industries. Over the last decades, design optimization theory has 

advanced rapidly and now it is a part and parcel of modern engineering design process. 
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Some examples of the diversified industrial applications of optimization technique are 

listed below: 

1. Weight, vibration, and noise optimization of automobile for maximum fuel 

efficiency, reduction of manufacturing cost, and improving ride quality. 

2. Design of aircraft and aerospace structures for minimum weight. 

3. Design of structures like bridges, towers, dams for minimum cost. 

4. Optimal design of various mechanical components like linkages, cams, machine 

tools etc. 

5. Optimal design of electrical networks. 

6. Optimization in production, planning, and control, etc. 

2.3 Formulation of Optimization Problem 
 

The optimization problem is stated as [7],  

Find the set of design variables, X = {X1, X2, X3, …..,Xn}, that will –  

   Minimize  F(X)           (2.1) 

Subject to: gj(X) ≤ 0  j = 1,…,m         (2.2) 

                U
ii

L
i XXX ≤≤  i = 1,…,n       (2.3) 

 The function, F(X), is referred to as the objective or merit function and is 

dependent on the values of the design variables, X, which themselves include member 

dimensions or shape variables of a structure as examples. The limits on the design 

variables, given in Eq. (2,3), are referred to as side constraints and are used to limit the 

region of search for the optimum. For maximization of F(X), one has to simply 

minimize the negative of F(X). 
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 The gj(X) are referred to as constraints and they provide bounds on various 

response quantities. Some typical constraints for structural optimization include stress, 

displacement, frequency, local buckling, system buckling load factor, dynamic 

response, aeroelastic divergence and aeroelastic flutter, etc.  

 X* constitutes the optimum solution for the problem in k-dimensional space. 

Any optimization problem as stated above is known as constrained optimization 

problem. If there is no constraint present, that is known as unconstrained optimization 

problem. 

2.4 Type of Optimization Methods 
 

Over the years, optimization techniques have been studied extensively and have evolved 

considerably and many algorithms and implementations are now used by the 

engineering community. Optimization methods can be broadly classified into three 

categories [8]: (1) Conventional numerical optimization methods, (2) stochastic 

optimization methods, and (3) hybrid methods. These methods are briefly described 

below: 

1. Conventional Numerical Optimization Methods:  

These methods are also known as mathematical programming methods and are used to 

find the minimum of a function of several variables under a prescribed set of 

constraints. For these methods, it is now standard practice for computationally 

inexpensive approximate models to be used in lieu of exact models to reduce 

computational cost. One important reason these methods have been widely accepted and 

used is attributed to the theoretical guarantee of convergence to a local optima of the 
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exact problem. Some of the conventional numerical methods commonly used in 

engineering design are, steepest-descent methods, conjugate-gradient, quadratic 

programming, pattern search methods, linear approximation methods, etc. 

2. Stochastic Optimization Method: 

 Conventional numerical optimization methods are very sensitive to the starting 

point selection and associated with the possibilities of stopping at local optima. The 

search for algorithms that are capable of avoiding local optima has led to the 

development of stochastic optimization techniques, where the probabilistic factors in 

the search process encourage global exploration. Stochastic techniques produce new 

design points that do not use information about the local slope of the objective function 

and are thus not prone to stalling at local optima as in the case with conventional 

numerical optimization methods. Examples of some modern stochastic optimization 

methods are simulated annealing, tabu search, genetic algorithms, particle swarm 

optimization, ant colony optimization, differential evolution etc. 

3. Hybrid Methods: 

 The design of global search methods is governed by two competing goals: first 

one is the exploration, which is important to ensure global reliability; i.e., every part of 

the domain is searched enough to provide a reliable estimate of the global optimum. 

The second one is exploitation, which is also important as it concentrates the search 

effort around the best solutions found so far by searching their neighborhoods to 

produce better results. Many recent search algorithms achieve these two goals using a 

combination of dedicated global and local searches. These are commonly known as 
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hybrid methods. Such hybrids have been used successfully to solve a wide variety of 

engineering design problems and often proved to be more efficient to find better 

solutions than other techniques. Examples of such method are Hybrid Evolutionary 

Algorithm-Local Search methods (EA-LSs). 

2.5 Finite Element based Optimization 
 

Structural design process has been dramatically changed with the introduction of finite 

element method (FEM). Mathematically, finite element method may be viewed as a 

numerical tool to analyze problem governed by partial differential equations describing 

the behavior of the system. Finite element method can be used to determine the 

deformations and stresses in structure, to analyze dynamic response, heat conduction, 

fluid flow, and other phenomenon of a system. Considering the importance and wide 

usage of optimization techniques in structural design, various optimization tools have 

become a major feature of today’s commercial finite element codes. 

Optimization problem based on finite elements can generally be expressed as [5]:  

Minimize  f(x, U)           (2.4) 

Subject to   gi(x, U) ≤ 0  i = 1,…,m   (2.5) 

and   hj(x, U) = 0  j = 1,…,l   (2.6)  

Where, U is an (ndof ×1) nodal displacement vector from which the displacement field 

u(x, y, z) is readily determined. ‘ndof’ is the number of degrees of freedom in the 

structure. It is to be noted here that U is implicitly a function of x, i.e. any change in the 

element parameter xi will affect the displacement. The relation between U and x is 
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governed by partial differential equations of equilibrium. Finite element discretization 

of these differential equations can be expressed as: 

K(x) U = F(x)        (2.7) 

Where, K is a (ndof × ndof) square stiffness matrix and F is a (ndof ×1) load vector. The 

functions f, gi, hj are implicit functions of design variables x. They depend explicitly on 

x, and also implicitly through U as given by Eq. (2.7). The objective function f is 

typically the weight of the structure, and gi are constraints commonly reflecting limits 

on stresses at various points within the structure. Then if σ is the upper bound allowed 

on stress, the constraint function would be written as, 

01≤−
σ
σ ijk       (2.8) 

Where, i = element, j = stress component, k = load condition 

 A general outline of the finite element based optimization process is shown in 

Figure 2.1. The process starts with by specifying the analysis and design models of the 

problem, which includes providing an initial geometric description of the component 

along with a definition of the physics of the problem (i.e. loads, boundary conditions, 

material properties, etc.), the design variables, objective and constraint requirements as 

a function of the geometry. In the next step, the component geometry is meshed using 

an automatic mesh generator and the specified problem physics and design 

requirements are mapped from the geometry to the finite element data. A finite element 

analysis is performed to compute the desired responses, which is in turn used for 

computing the design objectives and constraint functions. These design functions are 
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then passed on to the optimizer, which based on design sensitivity coefficients 

determines what changes in design parameters are required in order to achieve an 

optimal design. The process is continued until convergence is obtained. 

 

 

 

Figure 2.1 General outline of structural design optimization [9] 
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2.6 Sequential Quadratic Programming for Optimization 
 

In this research, MATLAB built-in optimization function fmincon has been used 

to optimize both the proposed response surface model of the application problems and 

the actual   problems of study to compare the results and performance of the two 

approaches. fmincon uses sequential quadratic programming (SQP) method for 

optimization purpose. Sequential quadratic programming (SQP) methods represent the 

state of the art nonlinear programming methods. As the name implies, sequential 

quadratic programming methods are iterative methods which solve at each iteration a 

quadratic programming problem (QP). The formulation of sequential quadratic 

programming is based on Newton’s method and Karush-Kuhn-Tucker (KKT) equations. 

KKT equations based algorithms attempt to compute the Lagrange multipliers directly. 

Constrained quasi-Newton methods guarantee super-linear convergence by 

accumulating second-order information regarding the KKT equations using a quasi-

Newton updating procedure [10]. 

Consider a general problem of the form, 

                                                             (2.9) 

Subject to  Gi(x) = 0 i = 1,….,me,              (2.10) 

    Gi(x) ≤ 0 i = me+1,….,m              (2.11) 

For the problem given as in the Eq. (2.9), a quadratic programming sub problem 

is formulated based on a quadratic approximation of the Lagrangian function as bellow: 

∑
=

+=
m

i
ii xgxfxL

1
)(.)(),( λλ               (2.12) 

min f(x) 
 x
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At the kth iteration, the following quadratic programming sub problem is solved 

for the next search direction: 

                        (2.13) 

Subject to  0)()( =+∇ ki
T

ki xgdxg ,       i = 1,….,me             (2.14) 

And   0)()( ≤+∇ ki
T

ki xgdxg ,      i = me+1,….,m             (2.15) 

 This sub problem can be solved using any quadratic programming algorithm. 

The solution procedure involves two phases. The first phase involves the calculation of 

a feasible point (if one exists) and the second phase involves the generation of an 

iterative sequence of feasible points that converge to the solution. The solution of the 

sub problem is used to form a new iterate as follows: 

dxx kkk α+=+1                (2.16) 

Where, d is the direction vector at the given point xk and kα  is the step size. The step 

size parameter kα  is determined by an appropriate line search procedure so that a 

sufficient decrease in the objective function is obtained. A number of iterations are 

performed before the optimal result is obtained. 

 The main disadvantage of sequential quadratic programming is that it is a local 

method. So the finding of global minima is influenced by the starting point that must be 

close to the global solution. 
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CHAPTER 3 

 
DESIGN OF EXPERIMENTS AND RADIAL BASIS FUNCTION FOR RESPONSE 

SURFACE BASED STRUCTURAL OPTIMIZATION 
 

3.1 Introduction 
 

In many areas of modern design and manufacturing industries, the design 

process has been transformed by the introduction of enormous computing power and 

advances in information technology, computational sciences and artificial intelligence. 

These advances are leading to new ways of managing the design process, reducing the 

design cycle times, cost savings and improvement in product quality. In spite of the 

advancement of computer capacity and speed, the massive computational cost of 

complex engineering simulations makes it impractical to rely exclusively on simulation 

codes for the purpose of design optimization. In order to reduce the computational 

efforts, alternative methods based on approximation concepts are evolved, which 

involve replacing the expensive simulation model during the design and optimization 

process.  

Response Surface Methodology (RSM) based optimization refers to the idea of 

speeding optimization process by using approximate models for the objective and 

constraint functions. Generally response surface means any function that represents the 

trends of a response over the range of the design variables. The basic approach of RSM 

based optimization is to construct a simplified mathematical approximation of the 

computationally expensive simulation and analysis code, which is then used in place of 
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the original code to facilitate design optimization process. Since the approximation 

model acts as a surrogate for the original code, it is also referred as a surrogate model, 

surrogate approximation, approximation model, or metamodel [4].  

The quality of the response surface model is extremely crucial as a poor model 

will be misleading, causing the optimization process to diverge and increasing the 

design cycle time. Hence, an important objective of the response surface construction is 

to achieve an acceptable level of accuracy while attempting to minimize the number of 

function evaluations [3]. The accuracy of the response surface is based on two 

important issues: a) the choice of the approximation function, and b) the selection of the 

design points on the design space where the design will be evaluated, i.e. the design of 

experiments. Increasing the number of experimental points could improve the accuracy. 

However, using a large number of points is expensive and the potential accuracy may 

be inhibited by other factors like the order of the approximating functions, the sub 

region size under investigation etc. 

Generally, response surface based optimization method involves the following 

steps: 

1. Choose an experimental design to sample the region of interest. 

2. Perform analysis (or simulations) based on the selected sample data. 

3. Construct the response surface model to the observed sample data. 

4. Perform approximate optimization to find the predicted optimal design. 

5. Validate the predicted optimal design by conducting an analysis on the actual 

model. 
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6. Check for convergence (stop if within convergence tolerance). 

7. Update response surface model using new data points and iterate until converge. 

3.2 Response Surface Methodologies 
 

To meet the challenge of ever increasing model complexity, the process of 

building response surfaces has gained wide acceptance from the design community. So 

far, a wide variety of metamodeling techniques have been used, but still newer and 

improved techniques are being proposed by the researchers. The most popular form of 

the RSM involves fitting second-order polynomial functions using least-squares 

regression over a set of data points [2]. An interpolation method known as Kriging is 

widely used by the design and analysis of computer experiments. Recently, statistical 

techniques, such as Multivariate Adaptive Regression Splines and radial basis function 

approximation are getting attention from the designers and researchers. 

A detailed review of early RSM developments and applications (from 1966 to 

1988 period) is presented by Myers et al. [11]. Barthelemy et al. [12] identified three 

general categories of approximation according to their ranges of applicability in the 

design space. These are local, medium range, and global approximations. They also 

distinguished between function approximation, in which an alternate and explicit 

expression is sought for the objective and /or constraints of the problem, and problem 

approximation where the focus is on replacing the original statement of the problem by 

one which is approximately equivalent but easier to solve. Jin et al. [13], and Auzins et 

al. [14] performed systematic comparative studies about the performance of various 

modern response surface methods and reported that the radial basis function based 
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response surface model out performs other methods. Simpson et al. [4] discussed about 

some of the practical implementations of RSM in multidisciplinary analysis and 

optimization and pointed out the future research directions in approximation methods. 

In another paper, Simpson et al. [15] presented survey reports and recommendations for 

the use of statistical techniques to build approximations of expensive computer analysis 

codes. After reviewing various metamodeling techniques they proposed some selection 

criterion for choosing right metamodeling scheme to represent a specific problem. 

The knowledge of the performance of different metamodeling techniques with 

respect to different modeling criteria is of utmost importance to designers when trying 

to choose an appropriate technique for a particular application. Various factors 

contribute to the success of a given metamodeling technique such as, nonlinearity of the 

model behavior, the dimensionality and data sampling technique, the internal parameter 

settings of the various techniques etc. So, it is not prudent to conclude that a particular 

RSM technique is suitable for all kinds of problems.    

3.3 Radial Basis Function (RBF) 
 

Multiquadrics (MQ) functions (RBF) have been developed for scattered 

multivariate data interpolation by Hardy [16] in 1971, which is a special case of Radial 

Basis Functions. A radial basis function model uses a series of basis functions that are 

symmetric and centered at each sampling point. The method uses linear combinations of 

a radially symmetric function based on Euclidean distance of other such metric to 

approximate response function. Let )(xf be the true response function and )(~ xf  be the 

approximate obtained using RBF. Then in general form,  
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)()(~

1
∑
=

−=
n

i
iCf icxxx φ          (3.1) 

Where, n is the number of center points, x  is the vector of design variables, icx  is the 

vector of center points at the ith center point, icxx −  is the Euclidean distance, φ  is 

the basis function, and iC is the unknown coefficient. Figure 3.1 shows the 1-D Gauss 

and  Multiquadric basis function (see Table 3.1) centered at 0 and with h = 1.  Note that 

h is known as shift or smooth parameter for Multiquadric function. The parameter h 

controls the width of the Gauss basis.    

 

 

(a)      (b) 

Figure 3.1 (a) Guassian and (b) Multiquadric RBF with centers at 0 and h = 1 
 

In real world applications, radial basis function techniques have become 

extremely useful, ranging from geodesy, geophysics, surveying and mapping, 

photogrammetry, remote sensing, signal processing, artificial intelligence, geography, 
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digital terrain modeling, hydrology,  to the solution of elliptic, parabolic and hyperbolic 

partial differential equations [17]. A list of common radial basis functions is presented 

in Table 3.1. Nevertheless the most popular radial basis functions are the Thin-Plate 

Spline, Gaussian and Multiquadrics (MQ). Among these common functions, the 

Multiquadrics (MQ) appears to be the overall best performing RBF [18, 20, 2]. 

 

Table 3.1 Common Radial Basis Functions ( iirr xx −== ) [20] 
 

Name )(rφ  Parameters 

Thin-plate spline rr ln2  2Rx∈  

Cubic spline 3r  3Rx∈  

Polyharmonic splines rr n ln2  n ≥ 1, 2Rx∈  

Polyharmonic splines 12 −nr  n ≥ 1, 3Rx∈  

Sobolev spline )(rKr ν
ν  0>ν , νK : spherical Bessel function 

Matern spline )(hrKe hr
ν

−  0>ν , h > 0 

Exponential spline hre−  h > 0 

Gaussians 2hre−  h > 0 

Multiquadrics 22 hr +  h > 0 

Inverse multiquadrics 2/122 )( −+ hr  h > 0 

Compactly supported )()1( rpr m +−  m ≥ 2, )(rp : polynomial of Wendland 

 



 

 
21

3.4 Radial Basis Functions for Response Surface Methodology 
 

Radial basis function approximations have been shown to produce good fits to 

arbitrary contours of both deterministic and stochastic response functions. Jin, et al. [13] 

observed that in terms of accuracy and robustness of the various techniques for different 

types of problems (i.e., different orders of nonlinearity and problem scales), RBF shows 

the best performance among different metamodeling techniques. However, Harpham et 

al. [21] demonstrated that the optimal choice of basis function is problem dependent. 

In this research, four different models for two of the most popular radial basis 

functions have been used for response surface generation. These are,  

(a) Multiquadric Interpolation (MQI), 

(b) Multiquadric Regularization (MQR), 

(c) Gauss Interpolation (GuassI), and 

(d) Guass Regularization (GuassR) 

To determine the unknown coefficient iC  in Eq. (3.1), let us replace x  and 

)(~ xf  in equation Eq. (3.1) with m vectors of design variables and their corresponding 

function values at the sampling points. We obtain the following series of m equations, 

)()(~

1
11 ∑

=

−=
n

i
iCf icxxx φ , 

)()(~

1
22 ∑

=

−=
n

i
iCf cixxx φ ,             (3.2) 

…. 



 

 
22
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n

i
mim Cf icxxx φ  

The matrix form of the Eq. (3.2) is 

ACf =        (3.3) 

Where, [ ]Tmfff )(~),..(~),(~
21 xxxf = , T

nCCC ],...,[ 21=C   

And, ),( cixxA −= jji φ        (i = 1, 2,....,n,         j=1, 2, ....., m) 

Now, if n = m, Eq. (3.1) is an interpolation model and if m > n, Eq. (3.1) 

becomes a regression model. Interpolating metamodels are capable of yielding globally 

accurate response surface [13, 2]. Generally for RBF interpolation models, while 

calculating the Euclidean distance, the set of sampling/data points and the set of center 

points for the RBF are same [2, 22]. Hence the RBF passes through all the sampling 

points exactly. This means that function values from the approximate function are equal 

to the true values at the sampling points. The unknown coefficient iC  can easily be 

found by solving Eq. (3.3), 

fAC 1−=            (3.4) 

In this research, for the Multiquadric Interpolation and Guass Interpolation, the 

unknown coefficient iC  is determined using Eq. (3.4). With Multiquadric 

Regularization and Gauss Regularization model, for determining the optimum value of 

the unknown coefficient iC  (the weight vector), the sum of error square is used to 

measure the accuracy of fit of the response surface model and an additional weight 

penalty term is introduced as follows: 
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Where r is the regularization parameter, which controls the balance between fitting 

error and the smoothness of the fitting function. A small value of r means the data can 

be fit tightly without causing a large penalty. A value of r = 0.001 is used for all the test 

problems solved in this research.  

 The objective of introducing Eq. (3.5) is to find the minimum error function that 

would give a good approximation of the response function. To do that, we have to 

differentiate Eq. (3.5) with respect to C (which is the free variable), equate the result to 

zero, and then solve the resulting equations. For ith weight optimization, differentiating 

Eq. (3.5) with respect to C gives, 
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The derivative of )(~
jf x  can be obtained from Eq. (3.3), 

    )(
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=

∂

∂ x        (3.7) 

Substituting this into Eq. (3.6) and equating the result to zero leads to the equation, 

∑ ∑
= =

=+
m

j

m

j
jijijij xAxfrCxAxf

1 1
)()()()(~          (3.8) 

There are n such equations, for 1 ≤ i ≤ n, each representing one constraint on the 

solution. Since there are exactly as many constraints as there are unknowns, the system 

of equations has a unique solution. The above equation can be written in the matrix 

form as, 
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Since there is one of these equations for each value of i form 1 up to n, it is possible to 

stack them one on top of the other to create a relation between two vector quantities as 

given below, 
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               (3.10) 

This is equivalent to  

   YACIfA ˆT
n

T r =+                   (3.11) 

Where ]....[ 21 nAAAA =  and In is and identity matrix of length n.  

Substituting for vector f in the above equation from Eq. (3.3), 

   CIfAYA n
TT r+=ˆ  

    CIACA n
T r+=  

    CIAA )( n
T r+=   

Hence, YAIAAC ˆ)( 1 T
n

T r −+=                (3.12) 
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As all the values on the right hand side of the above equation is known, from this 

equation, optimal value of the unknown coefficient, C (the weight matrix) that gives a 

good approximation of the response function can be found. Using Eq. (3.12), the 

optimal coefficient matrix C is determined for Multiquadric Regularization and Gauss 

Regularization model  in this research. Once the coefficient matrix C is known, the 

approximate function can be found using Eq. (3.3). It is to be noted here that for 

interpolation model, r = 0 in Eq. (3.12). 

3.5 Choosing the Optimal Shift Parameter for Radial Basis Function 
 

The parameter h in the radial basis function is known as the shift parameter. It is 

sometimes also called the smooth or shape parameter of the radial basis function. It is 

well known that the accuracy of the multiquadric interpolants depends heavily on the 

choice of shift parameter [23]. It is verified that, this is true for the Gaussian 

interpolants also [17].   The proper choice of the shift parameter is of great importance 

because by adjusting the shift parameter, the accuracy of the approximation can be 

considerably increased. By increasing the shift parameter, the root mean square (RMS) 

error of the fit drops to a minimum and then grows rapidly thereafter [24]. Thus there 

exists an optimal shift parameter that will yield minimum RMS for the fitted function. 

Effective methods for selecting optimal shift parameter have been developed by Wang 

[18, 19] and Rippa [17].  

To select the optimal shift parameter, number of experiments were performed 

with different values of the shift parameter h, at the initial stage of this research. The 

results are not presented here as they are beyond the scope of this thesis. However, at 
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the end of the experimentations, a shift parameter value of 1 is selected for solving the 

problems in this research. 

3.6 Design of Experiments 
 

Design of Experiments (DOE) is a procedure for choosing a set of samples in 

the design space, with the general goal of maximizing the amount of information gained 

from a limited number of samples [25]. One of the goals of a design of experiments 

study is to estimate and predict the trends in the response data. 

In general, the design of experiments techniques can be classified as classical 

and modern design of experiments techniques. The classical techniques were developed 

for laboratory and field experiments while the modern DOE techniques pertain to 

deterministic computer simulations. Both classical and modern design of experiments 

technique share the common goal of extracting as much information as possible from a 

limited set of laboratory or computer experiments. Examples of classical DOE 

techniques are central composite design, Box-Behnken design, full- and factorial-

factorial design etc. The examples of modern DOE techniques are Latin hypercube 

sampling, Orthogonal array sampling, Quasi-Monti Carlo sampling etc. that are also 

known as space filling techniques as they put the sampling points in the interior as 

compared to the extremes of the design space in order to accurately extract the response 

trend information.   

The fundamental difference between classical and modern DOE stems from the 

assumption that random error exists in a laboratory experiment, but does not exist in a 

computer experiment. Another feature that distinguishes classical DOE from modern 
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DOE is the choice of probability distribution functions associated with design 

parameters. Classical DOE typically assumes that the possible values of a design 

parameter are uniformly distributed between a lower and upper bound. On the other 

hand, modern DOE methods are intended to handle design parameters that have both 

uniform and non uniform probability distributions. In classical DOE, the goal of 

minimizing the effects of random error has the affects of placing the samples on the 

boundaries or vertices of the design space and placing very few samples in the interior 

of the design space. This causes the interior of the design space to be largely 

unexplored. In contrast, for modern DOE, there is no notion of random errors, i.e. for a 

specific input data, computer simulation always produces the exact same response 

irrespective of the number of simulation run. Apart from the assumption that there is no 

random error in a computer simulation, an additional assumption is made in modern 

DOE that the true response trend is unknown. Due to this reason, modern DOE methods 

tend to place samples on the interior of the design space which is preferred in an effort 

to minimize bias error. Bias error arises when there is a difference between the 

functional form of the true response trend, and the functional form of the estimated 

trend.  

For dealing with large and complex design space, it is not possible to estimate 

the number of design points in advance to resolve key features with a response surface. 

Incrementally adding data can create an opportunity to monitor resolution convergence, 

provided the design sites are appropriately chosen. Ideally the addition of any points 

would improve the predictive capabilities of a response surface. However, new points 
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that are chosen very near existing points can produce little or no improvement. On top 

of that, clustered points that are too close together can cause the response surface ill-

conditioned. Moreover, adding unnecessarily more points would increase the cost of 

computation. Hence, in order to get the maximum amount of information out of a 

minimum number of design points with no prior knowledge of the design space requires 

a uniform sampling. The ideal sampling method would create a uniform sample and 

maintain that uniformity regardless of the number of points added in each incremental 

update. Literature survey reveals that among the modern DOE techniques, Quasi-Monte 

Carlo sampling attracted the researchers most due to its better uniformity properties, 

which reduces the computational intensity of the optimization problem considerably.  

Guinta et al. [25], Simpson, et al. [26], and Diwekar, et al. [27] presented the 

comparative results of the performance of different modern DOE techniques and 

reported that the Hammersley sampling sequence, a variant of Quasi-Monte Carlo 

sampling out performs the other DOE methods for accurate approximation globally as 

the root mean square error associated with it is consistently low.  

In this research, three different Quasi-Monte Carlo techniques, namely Halton 

sequence, Faure sequence and Sobol sequence are used for generating the design of 

experiments for response surface.  

3.7 Quasi-Monte Carlo Sampling for Design of Experiments 
 

 Quasi-Monti Carlo (QMC) sampling is a deterministic sampling procedure that 

uses low discrepancy sequences. The concept of low discrepancy is associated with the 

property that the successive numbers are added in a position as far away as possible 
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from the others numbers, this is, avoiding clustering. The sequence is constructed based 

in the scheme that each point is repelled from the others. Hence, if the idea for the 

points is “maximally avoiding of each other”, the job for the numbers generated 

sequentially is to fill in the larger gaps between the previous numbers of the sequence. 

The deterministic nature of the Quasi-Monti Carlo method results in best possible 

spread of data through out the design space, but does not employ a regular grid or a 

Cartesian lattice of sample sites [9]. Some of the well known low discrepancy 

sequences are van der Corput sequence (1935), Halton sequence (1960), Sobol 

sequence (1967), Faure sequence (1982) and Niederreiter sequence (1987). But this is a 

growing research area and new sequences and the improvement of the previous 

sequences are being proposed [28]. According to the knowledge of this author, only a 

limited number of papers exist referring to the use of Halton and Sobol sequence for 

DOE generation for optimization of mechanical systems. Levi et al. [29] introduced an 

innovative structural design optimization method for optimizing stochastic systems 

where they used Sobol sequence for the DOE generation. Nelson, et al. [30] studied 

four well known Quasi-Monte Carlo sampling methods and suggested that Sobol 

sequence produces the most uniform samples on an incremental basis compared to the 

other sequences. Wang, et al. [31] proposed an optimization algorithm for solving real-

world crashworthiness problems to enhance the structural impact performance, where 

they used Halton sequencing method for creating the design of experiments. 

In this research, an already developed MATLAB code for generating Halton 

sequence, Faure sequence and Sobol sequence is used. The design of experiments 
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generated by these sequences are then employed for response surface creation.  Brief 

discussions on these sequences are given in the following subsections.  

3.7.1 Halton Sequence 

The Halton sequence is a low discrepancy sequence which uses one different prime 

base for each dimension. For the first dimension it uses base 2, for the second 

dimension it uses base 3, for the third dimension uses base 5, and so on. Higher base 

means higher cycle and higher computational time.  

The Halton sequence in relatively prime bases b1, b2,…,bs is defined as sequence [28]:

    ( ))(),...(),( 21
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sbbbn ΦΦΦ=              (3.13) 

Where, )(nbΦ  is the radical inverse function: 
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This sum is coming from the digit expansion of the integer n in base bj: 
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Where, m is the lowest integer that makes aj(n) = 0 for all j > m. 

 To illustrate this algorithm, consider the expansion of n = 4610 using base b = 5: 

n = 4610 = 1415 = 1 × 52 + 4 × 51 + 1 × 50 

Now using the radical inverse function (Eq. 3.14): 
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Table 3.2 shows some sampling generated by Halton sequence. 
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Table 3.2 First Five Sampling of Different Base by Halton Sequence 

 
 b = 2 b = 3 b = 5 

n = 1 0.5 0.3333 0.2 

n = 2 0.25 0.6667 0.4 

n = 3 0.75 0.1111 0.6 

n = 4 0.125 0.4444 0.8 

n = 5 0.625 0.7778 0.04 

 

The major problem for the Halton sequence is its degradation when the 

dimension is large. It gives uniform distributions for lower dimensions from 1 to 10. As 

the number of dimensions increases, the quality of the Halton sequence rapidly 

decreases because the two-dimensional planes within the hypercube are sampled in 

cycles with increasing period due to the large prime number base. Due to the correlation 

between dimensions, Halton sequence becomes unsatisfactory after dimension 14 [32]. 

Many researchers proposed permutations of the radical inverse function in order to 

overcome the correlation problems and reported improvement over the original Halton 

sequence for larger values of dimensions [28]. 

In this research an externally developed MATLAB code for Halton sequence 

generation is used which uses “Leaping” technique to eliminate the correlation problem 

in higher dimensions [28]. Halton sequence leaped technique uses only every Lth 

Halton number subject to the condition that L is a prime different from all bases 
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b1,…….,bs used. This gives a formula for generation of the Halton points leaped – 

namely, n in Eq. (3.13) is replaced by mL, where L is the leap, and m = 1, 2, 3,…. The 

effect of leaping a Halton sequence is to choose a subset that progressively fills all parts 

of the unit cube in a similar manner to the original sequence.  

3.7.2 Faure Sequence 

The Faure sequence is like the Halton sequence, but with two differences: (1) it 

uses only one base for all dimensions, and (2) it uses a permutation of the vector 

elements for each dimension. The base of a Faure sequence is the smallest prime 

number that is larger than or equal to the number of dimensions in the problem. As in 

the case with Halton sequence, there is the problem of low speed at which the Faure 

sequence generates increasing finer grid points to cover the unit hypercube. However, 

this problem is not too sever as the Halton sequence. For example, if the dimension of 

the problem is 50, the last Halton sequence uses the 50th prime number that is 229, 

whereas the Faure sequence uses the first prime number after 50, that is a base 53, 

which is much smaller that 229.  

By reordering the sequence within each dimension, Faure sequence prevents 

some problem of correlation for sequential high-dimensions that occurred with the 

Halton sequence. The algorithm for the Faure sequence uses eq. (3.14) and Eq. (3.15). 

But before using the eq. (3.14), there are a combinatorial rearrange of the aj, which is 

performed using a recursive equation, from dimension (d-1) to the new dimension d: 
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 Faure sequence exhibits high-dimensional degradation at approximately the 25th 

dimension. [32].  

 
(a)      (b) 

 
(c) 

Figure 3.2 Fifty DOE points by (a) Halton, (b) Faure, and (c) Sobol sequence 
 

3.7.3 Sobol Sequence 

The sobol sequence, like the Faure sequence, has the same base for all 

dimensions and proceeds a reordering of the vector elements within each dimension. 
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The Sobol sequence is simpler and faster than the Faure sequence in the aspect that 

Sobol sequence uses base 2 for all dimensions. But Sobol uses a more complex 

reordering algorithm. Its reordering is based on a set of direction numbers, {vi}. The vi 

numbers are given by the equation,  

i
i

i
mv
2

=                (3.17) 

Where, mi are odd positive integers less than 2i, and vi are chosen so that they satisfy a 

recurrence relation using the coefficients of a primitive polynomial in the Galois field of 

order 2. A primitive polynomial is irreducible (i.e. can not be factored into polynomials 

of smaller degree) and does not divide the polynomial xr + 1 for r < 2p – 1. Thus, the 

Sobol sequence can be expressed as, 
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 Sobol sequence does not show any degradation through the 260th dimension 

[32]. So, it outperforms both Halton and Faure sequences. Figure 3.2 shows the first 

fifty DOE points generated by Halton, Faure and Sobol sequence. 

3.8 Scaling of Data Points 
 

It is often desirable to eliminate wide variations in the magnitudes of design 

variables and the value of constraints by normalization. Design variables may be 

normalized to the order 1 by scaling. This operation may enhance the efficiency and 

reliability of the numerical optimization process [6]. 

For example, consider the variables X1 and X2 limited by side constraints, 

0 ≤ X1 ≤ 0.1 
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0 ≤ X2 ≤ 100 

The original variables can be replaced by new variables Y1 and Y2 defined by, 

Y1 = 10X1 

Y2 = X2/100 

And the side constraints become, 

0 ≤ Y1 ≤ 1 

0 ≤ Y2 ≤ 1 

In this research, the data points, i.e. the design variables generated by the low 

discrepancy sequences are scaled between 0 and 1 and that scaled data have been used 

for response surface training, evaluation and optimization purposes. The equations used 

for the scaling purpose are: 

Xs = a + b × X              (3.19) 

Where, X and Xs is the value of the design variables in physical and scaled unit. 

XLXU
b

−
=

1                (3.20) 

And,    a = - b × XL               (3.21) 

XU is the maximum upper bound value of the design variables and XL is the minimum 

lower bound value of the design variables. 

 
3.10 MATLAB Partial Differential Equation Toolbox for Structural Optimization 

 
 MATLAB Partial Differential Equation (PDE) Toolbox has been chosen for the 

modeling and FEM study in this research. The MATLAB Partial Differential Equation 

Toolbox contains tools for the study and solution of Partial Differential Equations in 
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two dimensions and time, using the finite element method. Some of the key features of 

PDE Toolbox are: 

• Complete Graphical User Interface for pre- and post-processing of 2-D PDEs. 

• Automatic and adaptive meshing. 

• Geometry creation using constructive solid geometry paradigm. 

• Boundary condition specification: Dirichlet, generalized Neumann, and mixed. 

• Flexible coefficient and PDE problem specification using MATLAB syntax. 

• Nonlinear and adaptive solvers for handling systems with multiple dependent 

variables. 

• Simultaneous visualization of multiple solution properties, FEM-mesh overlays, 

and animation. 

The PDEs implemented in the toolbox are used as a mathematical model for a wide 

variety of phenomena in different branches of engineering and science. The following is 

a list of examples that can be solved using MATLAB PDE Toolbox [33]: 

1. The elliptic and parabolic equations are used for modeling: 

• Structural mechanics – plain stress, plain strain problems. 

• Steady and unsteady heat transfer in solids. 

• Flows in porous media and diffusion problems. 

• Electrostatics in dielectric and conductive media. 

• Potential flow. 

2. The hyperbolic equation is used for modeling: 
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• Transient and harmonic wave propagation in acoustics and 

electromagnetics. 

• Transverse motions of membranes. 

3. The eigenvalue problems are used for determining natural vibration states in 

membranes and structural mechanics problems.  

MATLAB is one of the well known packages that perform mathematical and 

engineering computation. The capabilities of MATLAB and some of its powerful 

toolbox are beyond any doubts. They provide engineers, scientists, mathematicians, and 

educators with an environment for technical computing applications. These products 

serve a broad range of tasks for a variety of industries from automotive and electronics 

to industrial equipment and telecommunications. 

However, it is to be noted here that, MATLAB PDE Toolbox does not have a 

wide history as a structural analysis tool. Literature survey reveals only a few instances 

where the MATLAB PDE Toolbox has been used as the principal investigation tool and 

they are not even in the field of structural analysis. MATLAB PDE Toolbox user’s 

guide [33] presented some examples of solving plain stress and plain strain problems 

using PDE Toolbox. Min, et al. [34] performed numerical simulation of straight fins 

heat conduction based on PDE tool and showed that MATLAB PDE Tool is convenient 

and highly efficient for numerical simulation, and applicable to practical engineering 

design optimization of heat exchanger. Makarov [35] presented a MoM antenna 

simulation code which was implemented using MATLAB PDE Toolbox. Magistris [36] 

reported the realization of a MATLAB PDE Toolbox based electromagnetic-fields 



 

 
38

virtual laboratory. So, at the beginning of this research, some of the problems were also 

solved using ANSYS and the results were found to be very identical with MATLAB 

PDE Toolbox. Hence it can be claimed that the results obtained using MATLAB PDE 

Toolbox in this research are correct and valid. 
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CHAPTER 4 
 

ALGORITHM FOR STRUCTURAL OPTIMIZATION USING RADIAL BASIS 
FUNCTION BASED RESPONSE SURFACE MODEL  

 
4.1 Introduction 

 
The core objective of this research is to construct and implement a design 

optimization code in MATLAB, which is based on response surface methodology, and 

design of experiment technique and uses radial basis function as approximation model. 

MATLAB Partial Differential Equation Toolbox is used for the finite element modeling 

and analysis. An already developed external MATLAB code is used for the generation 

of design of experiments. All the experiments are performed on Personal Computer 

with Intel Pentium 3.4 GHz processor and 2 GB memory in Windows XP environment. 

The MATLAB version used is MATLAB 7.4 (R 2007a). 

The following sections describe the process and algorithm involved in the 

implementation of the optimization scheme presented in this research. The solution 

procedures are summarized in the flowchart in Figure 4.1. 

4.2 Modeling the Problem in MATLAB PDE Toolbox 
 

For each of the problem solved in this research, the pre-optimization step 

involved is to model the problem in MATLAB PDE Toolbox. The geometry is built for 

a specific set of design values, material properties are specified, and boundary 

conditions are applied. The problem is then solved and various responses such as 

displacement, stress and frequency are obtained. The whole finite element analysis is 
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then saved as an M-file and later converted into the parametric model of the problem. 

This MATLAB M-file parametric model is then ready to be used with the automated 

design optimization process.  

4.3 Algorithm for Optimization Scheme 
 

The stages involved in the optimization algorithm are described below: 

1.  Definition of the problem: 

The first stage involves the definition of the design problem. Problem definition 

includes, specifying the actual analysis /response function, actual constraints function, 

method (sequencing technique) for generating the DOE points (sets of input design 

variables), the upper limit (XU) and lower limit (XL) of the input design variables, 

number of total DOE points to be generated (nPoints), number of initial DOE points to 

be taken (Ninit) out of the nPoints for obtaining the initial responses, the RSM model to 

be used for function approximation, and the shift parameter h, and regularization 

parameter r. The coefficient matrices of the objective functions (Ax and Ay) and 

constraints functions (Cx, Cy, Cb) are also specified in this stage.  

2. Generation of Design of Experiments: 

In this stage, based on the user specified sequencing method, ‘nPoints’ number 

of data points (DOE) are generated within the design space. These data points are scaled 

data within 0 to 1 limit and stored in a matrix called ‘XQMC’. It is to be noted here that 

scaled data have been used for all cases of response surface training and evaluation 

purposes. But for the creation of the initial data base, these scaled data have been 

converted into physical unit within the predefined upper limits (XU) and lower limits 
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(XL) and have been stored in the matrix named ‘XData’. Then the elements of the 

XData matrix have gone under a filtration process and only those data points which 

satisfy the geometric constraints of the problem have been kept in the XData matrix 

leaving all the other data points out. 

3. Creating the initial data base: 

This stage consists of calling the response function ‘Ninit’ number of times and 

evaluating it for the first ‘Ninit’ data points taken from ‘XData’ and storing the response 

into ‘YC’ matrix. Note that this response is the true response (stress, frequency etc.) 

which is obtained from the finite element analysis of the parametrically modeled 

problem in MATLAB PDE Toolbox.  The first ‘Ninit” data points are stored into the 

‘XC’ matrix, which is later converted into scaled data and stored into ‘XCs’ matrix. The 

required initial database is now ready for the response surface creation. 

4. Training of Response Surface Model: 

In this stage, based on the database information, i.e. the scaled data points XCs, 

the true response YC, the name of the response surface model, shift parameter h, and 

regularization parameter r, response surface approximation is done and the coefficient 

‘Ci’ of the radial basis function approximation is determined. For interpolation model, 

Eq. (3.4) and for regularization model, Eq. (3.12) is used for the determination of Ci. 

Note that, in this stage the Euclidean distance for the radial basis function is calculated 

for each of the scaled data points XCs using built-in MATLAB function dist. 
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5. Optimization Stage: 

 In this stage, the approximate response, ‘Yapp’ is obtained for different set of 

evaluation points ‘Xes’ using the Eq (3.3). Here, the elements of Xes are scaled within 0 

to 1 and determined by MATLAB built-in optimization function fmincon with the initial 

set of values fixed at 0.5 for each element. In this case, the Euclidean distance for the 

radial basis function is calculated for each Xes to XCs using built-in MATLAB function 

dist. The elements of Xes are then converted to physical unit and stored into Xe matrix. 

Then the MATLAB built-in optimization function fmincon solves the following 

optimization problem, which is just a linear combination of the design variables and 

responses:  

Find Xe to minimize,   f = Ax * [Xe] + Ay *[Yapp]     (4.1) 

Subject to the constraint,  g = Cx * [Xe] + Cy * [Yapp] – Cb ≤ 0   (4.2) 

Where, Ax and Ay are the coefficient matrices that define the input and output 

objectives respectively and Cx, Cy and Cb are the coefficient matrices that define the 

input and output constraints of the design problem. 

After this first phase of the optimization stage is over, the optimal Xe is stored 

into scaled matrix ‘XSQP’ and then transformed into physical unit and stored into 

‘Xsqp’ matrix.  

In the second phase of the optimization stage, a while loop is initiated setting 

‘Iter’ = 1, for Iter ≤ Itermax, where Itermax are pre-specified number which should be 

chosen by the user based on the nature of the problem. For each of the iteration, two 

new data points, one is Xsqp and the second one is (Ninit + Iter )th data point from 
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XData are added to XC matrix. True responses (YC) for these points are also obtained 

and YC matrix is updated accordingly. Then the following objective and constraints 

functions are formulated: 

Objective function:   ff = Ax * [XC] + Ay *[YC]     (4.3) 

Constraint function:   gg = Cx * [XC] + Cy * [YC] – Cb ≤ 0   (4.4) 

Then for each element along the length of XC, the maximum values of Eq. (4.4) 

is obtained and stored into ‘g’ matrix.  Next, the indices of only those elements of g, 

that are less than gEPS (tolerance for constraints; gEPS = 0.001 used in this research) 

i.e. g < gEPS are determined and stored into the matrix ‘Ifeasible’. The values of the 

objective and constraint functions for those Ifeasible elements are then stored into ‘ff’ 

and ‘gg’ matrices respectively. Then the minimum ff is determined and stored into 

‘fBEST’ and the corresponding gg is stored into ‘gBEST’ metrix. 

If Iter is greater or equal to Itermin (a pre-defined number), convergence check is 

started, otherwise Iter is incremented by 1 and stage 4 and 5 are repeated. 

6. Convergence Check: 

 In this stage, the database just before the final optimization call, i.e. before the 

last implementation of the 5th stage is fed to the convergence check function which 

determines the optimal objective function value following the same procedure as in the 

case of the second phase of the 5th stage and stored into the matrix named ‘fBest’. Then 

the values of fBEST and fBest are compared. If fBest is less or equal to fBEST, the 

optimization loop is terminated and the optimum result is published. Otherwise Iter is 

incremented by 1 and the stages from 4 to 6 are repeated until the convergence is 
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achieved. If the maximum number of iterations is reached the pre-defined upper level 

Itermax, and yet the problem is not converged, then the design parameters need to be 

checked and redefined if necessary.  

A flow chart for this optimization algorithm is presented in Figure 4.1. 
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Figure 4.1 Flow chart of the proposed algorithm for structural optimization 
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CHAPTER 5 
 

IMPLEMENTATION OF RBF META MODELS IN DESIGN OPTIMIZATION 
 

5.1 Introduction 
 

In this research, various meta models have been developed and implemented 

successfully for ten different application problems. These problems are of different 

difficulty levels, ranging from two design variables to six design variables, involving 

weight, or shape optimization with subject to different geometric, stress or frequency 

constraints.  The problems studied during this research are: 

1. Determining the optimal location and radius of a hole for minimum weight design 

of a rectangular plate with one circular hole. 

2. Determining the optimal location and radius of a hole for minimum weight design 

of a rectangular plate with two circular holes. 

3. Stress minimization of a rectangular plate with three circular holes by finding the 

optimal locations for the holes. 

4. Shape optimization of a five stepped cantilever beam. 

5. Minimum weight design of a trapezoidal plate.  

6. Weight minimization of a trapezoidal plate with one circular hole by finding the 

heights of two parallel sides and the radius of the hole. 

7. Weight minimization of a trapezoidal plate with one circular hole by finding the 

heights of two parallel sides and the optimal location and radius of the hole. 
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8. Minimum weight design of a quadrangular plate. 

9. Determination of the length of three sides and the radius of the hole for minimum 

weight design of a quadrangular plate with one circular hole. 

10. Determination of the length of three sides and the location and radius of the hole 

for minimum weight design of a quadrangular plate with one circular hole. 

The FEM models are generated using MATLAB PDE Toolbox and triangular 

mesh elements are used for all the cases. The RSM used are based on three different 

low discrepancy sequencing techniques namely, Halton, Sobol and Faure sequence 

using four different RBF models namely, Multiquadratic Interpolation (MQI), 

Multiquadratic Regularization (MQR), Gauss Interpolation (GuassI) and Gauss 

Regularization (GaussR). For each RBF model with a specific sequencing method, two 

different initial data levels (i.e. number of DOE points) are set up for ensuring sufficient 

DOE points for the creation of initial response surface to determine the best possible 

results. So, the total number of experimental combinations becomes 24 for each 

example. Finally, these results are compared to the results obtained by solving the same 

problems using the built-in MATLAB optimization function fmincon. 

It is found that for most of the implementations, RBF based models give better 

results than the fmincon function (i.e. direct SQP solution by fmincon). The number of 

functional evaluations required (also the time) for the convergence of RSM based 

optimization is also significantly less than that required in case of fmincon function. 

The detailed description of the application problems studied in this research is 

presented in the following sections. 
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5.2 Rectangular Plate with a Circular Hole – Minimum Weight Design 
 

The first problem solved in this work is a rectangular plate with one circular 

hole as shown in Figure 5.1. One end of the plate is fixed and a tensile pressure load of 

1000 Psi is applied along the edge of the other end. 

The plate has dimensions of 30 × 20 × 1 all in inch. It is made of steel with 

Young’s Modulus of Elasticity, E = 29 × 106 Psi, Yield Strength, σY = 36 × 103 Psi, 

Poisson’s ration, υ = 0.31 and weight density = 0.285 lbf/inch3. 

 

 

Figure 5.1 Rectangular plate with a circular hole 
 

The objective of this analysis is to find the optimal location and radius for the 

hole to minimize the volume of the plate (i.e. the weight) such that the maximum von 

Mises stress developed in the structure would not exceed one third of the Yield strength 

(σY/3). Thus the problem formulation is as follows: 

Design variables: Location and radius of the hole [X, Y, R]. 



 

 49

Lower bounds for the design variables are: [2 2 1] and upper bounds for the design 

variables are: [28 18 8].  

Objective function: Minimize the volume [minimize V] 

Subject to the constraints –  

a. Geometric constraints (to ensure that the hole lies inside the plate): 

    X – R ≥ 2, Y – R ≥ 2, X + R ≤ 28 and Y + R ≤ 18.  

  b. Von Mises Stress constraint: Max. σVM ≤ 12000 Psi. 

As discussed earlier, for each combination of a specific sequencing technique 

and RBF model, two different numbers of initial DOE points have been used to create 

the response surface which makes 24 total numbers of experimental combinations. The 

first set consists of 10 DOE points, whereas the second set consists of 30 DOE points. 

All 24 simulation runs converge to give the same result with the optimal location for the 

center of the hole, X = 15, Y = 10 and, radius R = 8 inch. The minimum volume of the 

plate is 398.9381 inch3 and the maximum von Mises stress with this result is 

10249.1733 Psi. The simulation sets with 10 initial DOE points took 22 function 

evaluations and sets with 30 initial DOE points took 42 function evaluations to 

converge to this result. Note that the four significant results represented in this thesis are 

for numerical comparison. They are not to be interpreted as engineering design data.  

To compare the results obtained from response surface optimization methods, 

the same problem was solved using MATLAB built-in optimization function fmincon. 

The randomly selected initial values for the design variables are 20, 12 and 4 inch for X, 

Y and R respectively. The optimal results obtained is X = 16.3562, Y= 10 and R= 8 
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inch. The minimum volume of the plate is 398.9381 inch3 and the maximum von Mises 

stress with this result is 10610.7763 Psi. The optimization process took 45 function 

evaluations to converge to this result.  

The comparative plots of variations of design variables, volume of the plate and 

the maximum von Mises stress with number of function evaluations are presented in 

Figure 5.2, Figure 5.3 and Figure 5.4. The optimal design and the von Mises stress 

distribution are presented in Figure 5.5 and Figure 5.6 respectively. 
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(a)       (b) 

 
(c) (d) 
 

Figure 5.2 Variation of design variables for rectangular plate with a circular hole by   
(a) Halton sequencing with MQI model, (b) Sobol Sequencing with MQI model,         

(c) Faure sequencing with MQI model and (d) fmincon function 
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(a) (b) 

 
  (c)      (d) 
 

Figure 5.3 Variation of volume for rectangular plate with a circular hole by (a) Halton 
sequencing with MQI model (10 initial DOE), (b) Sobol Sequencing with MQI model 

(10 initial DOE), (c) Faure sequencing with MQI model (10 initial DOE) and              
(d) fmincon function 
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(a) (b) 

 
(c)      (d) 

 

Figure 5.4 Variation of max. von Mises stress for rectangular plate with a circular hole 
by (a) Halton sequencing with MQI model (10 initial DOE), (b) Sobol Sequencing with 
MQI model (10 initial DOE), (c) Faure sequencing with MQI model (10 initial DOE) 

and (d) fmincon function 
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Figure 5.5 Optimum design of the rectangular plate with a circular hole 

 

Figure 5.6 von Mises stress distribution with the optimum design for the rectangular 
plate with circular hole 
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5.3 Rectangular Plate with Two Circular Holes – Minimum Weight Design 
 

The second problem solved is a rectangular plate with two circular holes as 

shown in Figure 5.7. The plate is made of steel with Young’s Modulus of Elasticity, E = 

29 × 106 Psi, Yield Strength, σY = 36 × 103 Psi, Poisson’s ration, υ = 0.31 and weight 

density = 0.285 lbf/inch3. 

 

 

Figure 5.7 Rectangular plate with two circular holes 
 

The plate has dimensions of 30 × 20 × 1 all in inch. Left end of the plate is fixed 

and a tensile pressure load of 1500 Psi is applied along the right edge. The left hole has 

a radius of 6 inch and it’s center is fixed at 7.5 inch from the left edge and 10 inch 

above the bottom edge. The center of the right hole is fixed at 10 inch above the bottom 

edge. The location of the X center (i.e. the location of the center along the length of the 

plate) and the radius of the hole are to be determined such that the volume of the plate 
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(hence the weight) is minimized subject to von Mises stress developed does not exceed 

one third of the Yield strength (σY/3) of steel. The problem formulation is as follows: 

Design variables: Location of X coordinate of center and radius of the hole [X, R]. 

Lower bounds for the design variables are: [17 1] and upper bounds for the design 

variables are: [28 7].  

Objective function: Minimize the volume [minimize V] 

Subject to the constraints –  

a. Geometric constraints (to ensure that the hole lies inside the plate and does 

not intersect the left hole): 

   X – R ≥ 16, X + R ≤ 28.  

b. Von Mises Stress constraint: Max. σVM ≤ 12000 Psi. 

As in the case with the first problem, the total numbers of experimental 

combination here is also 24. For each combination of a specific sequencing technique 

and RBF model, two different numbers of initial DOE points have been used to create 

the response surface. The first set consists of 10 DOE points, whereas the second set 

consists of 30 DOE points. All 24 simulation runs converge to give the same result with 

the optimal location for the X center of the hole, X = 22 and radius R = 6 inch. The 

minimum volume of the plate is 373.8053 inch3 and the maximum von Mises stress 

with this result is 11905.1532 Psi. The simulation sets with 10 initial DOE points took 

22 function evaluations and sets with 30 initial DOE points took 42 function evaluations 

to converge to this result. 
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The same problem was solved using MATLAB built-in optimization function 

fmincon for comparing the results with response surface model. The initial values for 

the design variables X and R are randomly selected as 25 and 1 inch respectively. The 

optimal results obtained is X = 22 and R= 6 inch. The minimum volume of the plate is 

373.8053 inch3 and the maximum von Mises stress with this result is 11905.1532 Psi. 

The optimization process took 22 function evaluations to converge to this result. These 

results are exactly same as those obtained from response surface model.  

The comparative plots of variations of design variables, volume of the plate and 

the maximum von Mises stress with number of function evaluations are presented in 

Figure 5.8, Figure 5.9 and Figure 5.10. The optimal design and the von Mises stress 

distribution are presented in Figure 5.11 and Figure 5.12 respectively. 
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(a) (b) 

 
(c)      (d) 

 

Figure 5.8 Variation of design variables for rectangular plate with two circular holes by 
(a) Halton sequencing with MQI model (10 initial DOE), (b) Sobol Sequencing with 
MQI model (10 initial DOE), (c) Faure sequencing with MQI model (10 initial DOE) 

and (d) fmincon function 
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(a) (b) 

 
(c)      (d) 

 

Figure 5.9 Variation of volume for rectangular plate with two circular holes by            
(a) Halton sequencing with MQI model (10 initial DOE), (b) Sobol Sequencing with 
MQI model (10 initial DOE), (c) Faure sequencing with MQI model (10 initial DOE) 

and (d) fmincon function 
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(a) (b) 

 
  (c)      (d) 
 

Figure 5.10 Variation of max. von Mises stress for rectangular plate with two circular 
holes by (a) Halton sequencing with MQI model (10 initial DOE), (b) Sobol Sequencing 

with MQI model (10 initial DOE), (c) Faure sequencing with MQI model (10 initial 
DOE) and (d) fmincon function 
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Figure 5.11 Optimum design of the rectangular plate with two circular holes 
 

 

Figure 5.12 von Mises stress distribution with the optimum design for the rectangular 
plate with two circular holes 
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5.4 Rectangular Plate with Three Holes – Minimization of Maximum Stress 

 
The third problem solved in this work is a rectangular plate with three holes, as 

shown in Figure 5.13. The left edge of the plate is fixed and a tensile load of 2000 Psi is 

applied along the right edge. The plate has dimensions of 30 × 20 × 1 all in inch. The 

radius of the larger hole is 3 inch and the smaller two have a radius of 1.5 inch each.  

The plate is made of steel with Young’s Modulus of Elasticity, E = 29 × 106 Psi, 

Yield Strength, σY = 36 × 103 Psi, Poisson’s ration, υ = 0.31 and weight density = 0.285 

lbf/inch3. 

 

 

Figure 5.13 Rectangular plate with three holes 
 

The objective of this analysis is to find the optimum locations for the holes so 

that the maximum von Mises stress developed in the structure would be minimum, 
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subjected to some specific geometric constraints. The problem formulation is as 

follows: 

Design variable: Locations of the centers [X1, Y1, X2, Y2, X3, Y3] 

Lower bounds and upper bounds of the design variables are [3.5, 7.5, 11.5, 7.5, 21.5, 

7.5] and [6, 12, 16, 12, 26, 12] respectively. 

Objective function: Minimize the maximum von Mises stress [minimize max. σVM]. 

Subject to the geometric constraints –  

Distance between first and second holes should be at least 4.6 inch. 

i.e. 6.4)()( 22 ≥−+−= 21211 yyxxd  

Distance between second and third holes should be at least 4.6 inch. 

i.e. 6.4)()( 22 ≥−+−= 32322 yyxxd  

And distance between first and third holes should be at least 3.1 inch. 

i.e. 1.3)()( 22 ≥−+−= 31313 yyxxd  

These are to ensure that none of the holes can intersect one another. 

A total of 24 experiments were carried out to find the best possible RBF model. 

For each combination of a specific sequencing technique and RBF model, two different 

numbers of initial DOE points have been used to create the response surface. The first 

set consists of 10 DOE points, whereas the second set consists of 30 DOE points. For 

Halton sequencing method, MQR RSM with 10 initial DOE points gives the best 

results. For this case, the optimum locations for the holes are (3.5, 10.8438), (11.5, 

10.1681) and (24.6596, 10.1735) respectively with maximum von Mises stress of 
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6161.7255 Psi and the optimization process converges with 22 function evaluations. For 

Sobol sequencing technique, all the 8 experimental combinations give the same results. 

The optimum locations for the holes in this case are, (4.75, 9.75), (13.75, 9.75) and 

(23.75, 9.75) respectively with maximum von Mises stress of 6113.463 Psi. However, 

for this problem, Faure sequencing technique with MQI RSM and GuassR RSM with 30 

initial DOE points give the best possible results. The optimum locations for the holes in 

this case are, (5.7449, 8.9694), (12.9694, 8.9694) and (22.9694, 8.9694) respectively 

with maximum von Mises stress of 6002.8299 Psi. The problem converges after 42 

function evaluations. 

To compare these results with MATLAB built-in function fmincon, experiment 

has been performed with randomly selected starting points for the center locations of 

the three holes as (5.1, 9.6), (13.5, 9.6) and, (24.5, 9.5) respectively. The optimal 

locations for the holes obtained are (5.7486, 10.3579), (12.9906, 10.2343) and, 

(24.2794, 10.3257) respectively with maximum von Mises stress of 6111.1 Psi and the 

optimization process converged in 506 functional evaluations. So, the best results 

obtained using RBF models are less than that of using fmincon function and fmincon 

also takes much more functional evaluations than the RBF models. 

With an intention to improve the design further, the results obtained from the 

response surface optimization were used again as the initial design variable input for 

another round of fmincon function optimizations with the lower and upper bounds for 

the design variables were initial input – 0.5 and initial input + 0.5 respectively. 
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However the optimization processes failed to give any improvement to the previous 

designs. 

The comparative plots of variations of design variables and the maximum von 

Mises stress with number of function evaluations are presented in Figure 5.14 and 

Figure 5.15. The optimal design and the von Mises stress distribution are presented in 

Figure 5.16 and Figure 5.17 respectively. 
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(a) (b) 

 
(c)      (d) 

 

Figure 5.14 Variation of design variables for rectangular plate with three circular holes 
by (a) Halton sequencing with MQR model (10 initial DOE), (b) Sobol Sequencing with 

MQI model (10 initial DOE), (c) Faure sequencing with MQI model (30 initial DOE) 
and (d) fmincon function 
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(a)      (b) 

 
(c)      (d) 
 

Figure 5.15 Variation of maximum von Mises stress for rectangular plate with three 
circular holes by (a) Halton sequencing with MQR model(10 initial DOE), (b) Sobol 
Sequencing with MQI model(10 initial DOE), (c) Faure sequencing with MQI model 

(30 initial DOE) and (d) fmincon function 
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Figure 5.16 Optimum design for the rectangular plate with three circular holes 
 
 

 

Figure 5.17 von Mises stress distribution with the optimum design for the rectangular 
plate with three circular holes 
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5.5 Five Stepped Cantilever Beam – Eigen Value Problem 
 

The fourth problem solved is a five stepped cantilever steel beam as shown in 

Figure 5.17. One end of the beam is fixed and the other end is free. The beam is not 

subjected to any external loading. The length of each step is 24 inch. So, the total length 

of the beam is 120 inch.  

The steel beam has a Young’s modulus of 3×107psi, poisson’s ration 0.31 and 

weight density 0.285 lbf/in3. 

 

 

 

Figure 5.18 Five stepped cantilever beam 
 

The objective of this problem is to find the optimum heights for each of the 

steps of the beam so that the First Natural Frequency (in-plane) is maximized subjected 

to the some specific geometric constraints. The problem formulation is as follows: 

Design variables: Heights of each step [d1, d2, d3, d4, d5] 

The lower and upper bounds for the design variables are [0.05, 0.04, 0.03, 0.02, 0.01] 

and [4, 3.5, 3, 2.5, 2] respectively.  

Objective function: Maximize the first natural frequency [minimize – f1] 
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Subject to the following geometric constraints: 

d2 – d1 ≤ - 0.1,  d3 – d2 ≤ - 0.1, 

d4 – d3 ≤ - 0.1,  d5 – d4 ≤ - 0.1 

These constraints have been used to ensure that the heights of the steps follow the 

condition: d1 > d2 > d3 > d4 > d5. 

In order to determine the best possible RBF model, 24 experiments were 

performed. Similar to the previous problems, for each combination of a specific 

sequencing technique and RBF model, two different numbers of initial DOE points 

have been used to create the response surface. The first set consists of 10 DOE points, 

whereas the second set consists of 30 DOE points. It is found that Halton sequence with 

MQR RBF model for 30 initial DOE points produces the maximum first natural 

frequency of 14.8820 Hz. The optimum heights of the steps are d1 = 4 inch, d2 = 3.5 

inch, d3 = 3 inch, d4 = 1.7998 inch and d5 = 0.18554 inch. The number of function 

evaluations required to converge is 42. For Sobol sequencing technique, MQI RBF 

model with 10 initial DOE points produces the maximum first natural frequency of 

14.2947 Hz. The optimum heights of the steps are d1 = 3.5463 inch, d2 = 3.3018 inch, 

d3 = 3 inch, d4 = 0.96445 inch and d5 = 0.30561 inch. The problem converged with 22 

function evaluations. For Faure sequencing technique, MQI RBF model with 30 initial 

DOE points produces the maximum first natural frequency of 14.2015 Hz. The 

optimum heights of the steps are d1 = 3.6667 inch, d2 = 3.5 inch, d3 = 2.4127 inch, d4 

= 1.5735 inch and d5 = 0.38783 inch. The problem converged with 42 function 

evaluations. 
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In order to compare these results, the same problem is solved using MATLAB 

built-in function fmincon with a randomly selected initial values for the design variables 

as d1= 4 inch, d2=3.5 inch, d3=3 inch, d4 = 2.5 inch, and d5 = 2 inch. The maximum 

first natural frequency is found to be 13.1653 Hz. The optimum heights are d1 = 4 inch, 

d2 = 3.2719 inch, d3 = 2.136 inch, d4 = 1.2891 inch and d5 = 0.61245 inch. The total 

number of function evaluations was 1005 for this case. 

With an intention to improve the design further, the following hybrid approach 

is tested. Starting from the best results obtained from the response surface optimization 

as the initial design variable inputs for another round of fmincon function optimization. 

The lower and upper bounds for the design variables were initial input – 0.005 and 

initial input + 0.005 respectively. Halton sequencing with MQR RSM model with 30 

initial DOE produces the best results.  The optimization process took 1005 function 

evaluations to give an improved design of d1 = 4.005 inch, d2 = 3.505 inch, d3 = 3.005 

inch, d4 = 1.8048 inch and d5 =0.19054 inch with maximum first natural frequency of 

14.9598 Hz. This optimal design and the first mode shape for this design are presented 

in Figure 5.20 and Figure 5.21 respectively. The result shows that the first natural 

frequency increases from 14.8820 Hz (RSM result) to 14.9598 Hz. This improvement is 

achieved with 1005 additional finite element solutions. 

The comparative plots of variations of design variables and the maximum first 

natural frequency with number of function evaluations are presented in Figure 5.18 and 

Figure 5.19 respectively. 
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(a) (b) 

 
(c)      (d) 

 

Figure 5.19 Variation of design variables for five stepped cantilever beam by (a) Halton 
sequencing with MQR model (30 initial DOE), (b) Sobol Sequencing with MQI model 

(10 initial DOE), (c) Faure sequencing with MQI model (30 initial DOE) and     
  (d) fmincon function  
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(a) (b) 

 
  (c)      (d) 
 

Figure 5.20 Variation of maximum first natural frequency for five stepped cantilever 
beam by (a) Halton sequencing with MQR model (30 initial DOE), (b) Sobol 

Sequencing with MQI model (10 initial DOE), (c) Faure sequencing with MQI model 
(30 initial DOE) and (d) fmincon function 
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Figure 5.21 Optimum design for the five stepped cantilever beam 
 

 

Figure 5.22 First mode shape for the optimal design of five stepped cantilever beam 
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5.6 Trapezoidal Plate – Minimum Weight Design 
 

The fifth problem solved in this work is a trapezoidal plate as shown in Figure 

5.22. Left edge of the plate is fixed and an outward pressure load of 2000 Psi is applied 

along the top edge. 

The length of the plate is 30 inch and the thickness is 1 inch. The plate is made 

of aluminum with Young’s Modulus of Elasticity, E = 1 × 107 Psi, Yield Strength, σY = 

60000 Psi, Poisson’s ration, υ = 0.33 and weight density = 0.1 lbf/inch3. 

 

 

Figure 5.23 Trapezoidal Plate 
 

The objective of this problem is to find the optimal heights of the two parallel 

edges of the trapezoid which would minimize the volume (hence the weight) of the 

plate such that the maximum von Mises stress developed in the structure would not 

exceed 40000 Psi (σY/1.5). The problem formulation is as follows: 
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Design variable: [X1, X2] 

Lower and upper bounds for the design variables are [15, 2] and [25, 12] respectively. 

Objective function: Minimize the volume [minimize V] 

Subject to von Mises stress constraints - Max. σVM ≤ 40000 Psi. 

 A total of 24 experiments were performed in order to determine the best 

possible RBF model. As usual, for each combination of a specific sequencing technique 

and RBF model, two different numbers of initial DOE points have been used to create 

the response surface. The first set consists of 10 DOE points, whereas the second set 

consists of 30 DOE points. For Halton sequence, GuassI RBF with 30 initial DOE 

points produces the best minimum volume for the plate. In this case, the optimal design 

has a volume of 273.5808 inch3 and the optimal values for the design variables are X1 = 

15 inch and X2 = 12 inch. The maximum von Mises stress for this design is 40002.1676 

Psi. The optimization process requires 42 function evaluations for convergence. For 

Sobol sequence, MQR RBF with 10 initial DOE points produces the best results with a 

volume of 274.7537 inch3. The optimal values for the design variables are X1 = 

15.1585 inch and X2 = 12 inch. The maximum von Mises stress for this design is 

39995.5541 Psi. The optimization process converges after 22 function evaluations. For 

Faure sequence, MQI RSM with 10 initial DOE points produces the best results with a 

volume of 273.3937 inch3. The optimal values for the design variables are X1 = 

15.1131 inch and X2 = 12 inch. The maximum von Mises stress for this design is 

40026.3866 Psi. The optimization process converges after 22 function evaluations. 
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For optimization using fmincon function, the same problem produces a volume 

of 277.542 inch3 for a randomly selected initial design variables, X1 = 16 and X2 = 3. 

The optimum design variables are X1 = 15 inch and X2 = 11.4972 inch. Corresponding 

maximum von Mises stress for this case is 40000 Psi. The total number of function 

evaluations is 22 for this case. The comparative plots of variations of design variables, 

volume of the plate and the maximum von Mises stress with number of function 

evaluations are presented in Figure 5.23, Figure 5.24 and Figure 5.25 respectively. 

To improve the design further, the best results achieved from the response 

surface optimizations were used again as the initial design variables input for another 

round of fmincon function optimizations. The lower and upper bounds for the design 

variables were initial input – 0.5 and initial input + 0.5 respectively. This time, Faure 

sequence with MQI RSM and 10 initial DOE points gives the best results. The 

optimization process took 19 function evaluations to give an improved design of X1 = 

15.2624 inch and X2 = 12.5 inch with a volume of 270.3715 inch3. The corresponding 

maximum von Mises stress is 40000 Psi. The optimal design and the von Mises stress 

distribution for this design are presented in Figure 5.26 and Figure 5.27 respectively. 
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(a)      (b) 

 
(c)      (d) 

 

Figure 5.24 Variation of design variables for trapezoidal plate by (a) Halton sequencing 
with GaussI model (30 initial DOE), (b) Sobol Sequencing with MQR model (10 initial 
DOE), (c) Faure sequencing with MQI model (10 initial DOE) and (d) fmincon function 
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(a) (b) 

 
(c)      (d) 

 

Figure 5.25 Variation of volume for trapezoidal plate by (a) Halton sequencing with 
GaussI model (30 initial DOE), (b) Sobol Sequencing with MQR model (10 initial 

DOE), (c) Faure sequencing with MQI model (10 initial DOE) and (d) fmincon function 
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(a) (b) 

 
  (c)      (d) 
 

Figure 5.26 Variation of maximum von Mises stress for trapezoidal plate by (a) Halton 
sequencing with GaussI model (30 initial DOE), (b) Sobol Sequencing with MQR 

model (10 initial DOE), (c) Faure sequencing with MQI model (10 initial DOE) and     
(d) fmincon function 
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Figure 5.27 Optimal design for trapezoidal plate 
 

 

 

Figure 5.28 Maximum von Mises stress distribution for the optimal design of the 
trapezoidal plate 
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5.7 Trapezoidal Plate with a Circular Hole Fixed at Center – Minimum Weight 
Design 

 
The sixth problem solved in this work is a trapezoidal plate with a circular hole. 

The center of the hole is fixed in such a way that it is always at the middle of the plate’s 

length and it’s Y center coordinate is parameterized so that it is always at the middle of 

the height of the plate with respect to the right parallel edge of the trapezoid as shown in 

Figure 5.28. The length of the plate is 30 inch and the thickness is 1 inch. The 

coordinates of the center of the hole can be expressed as (Xc, Yc) ≡ (15, 
2

X2-X1X2 + ). 

Left edge of the plate is fixed and an outward pressure load of 2000 Psi is applied along 

the top edge. 

 

 

Figure 5.29 Trapezoidal plate with a circular hole fixed at center 
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The plate is made of aluminum with Young’s Modulus of Elasticity, E = 1 × 107 

Psi, Yield Strength, σY = 60000 Psi, Poisson’s ration, υ = 0.33 and weight density = 0.1 

lbf/inch3. 

The objective of this problem is to find the optimal heights of the two parallel 

edges of the trapezoid and the radius of the hole which would minimize the volume 

(hence the weight) of the plate such that the maximum von Mises stress developed in 

the structure would not exceed 40000 Psi (σY/1.5). The problem formulation is as 

follows: 

Design variable: [X1, X2, R] 

Lower and upper bounds for the design variables are, [20, 2, 4] and [25, 6, 8] 

respectively. 

Objective function: Minimize the volume [minimize V] 

Subject to –  

a. Geometric constraints (to ensure that the hole lies inside the plate): 

   X1 – X2 ≥ 2R + 0.5 

b. von Mises stress constraint: Max. σVM ≤ 40000 Psi. 

As in the case of the previous problems, a total of 24 experiments were 

performed in order to determine the best possible RBF model. For each combination of 

a specific sequencing technique and RBF model, two different numbers of initial DOE 

points have been used to create the response surface. The first set consists of 10 DOE 

points, whereas the second set consists of 30 DOE points. For Halton sequence, GuassI 

RBF with 30 initial DOE points produces the best minimum volume for the plate. In 
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this case, the optimal design has a volume of 406.4515 inch3 and the optimal values for 

the design variables are X1 = 20 inch, X2 = 4.07035 inch and R = 6.49414 inch. The 

maximum von Mises stress for this design is 40001.2771 Psi. The optimization process 

requires 42 function evaluations for convergence. For Sobol sequence, MQI RBF with 

30 initial DOE points produces the best results with a volume of 407.5787 inch3. The 

optimal values for the design variables are X1 = 20 inch, X2 = 3.92083 inch and R = 

3.92083 inch. The maximum von Mises stress for this design is 39437.2554 Psi. The 

optimization process converges after 42 function evaluations. For Faure sequence, 

MQR RSM with 10 initial DOE points produces the best results with a volume of 

408.2261 inch3. The optimal values for the design variables are X1 = 20 inch, X2 = 

3.77638 inch, and R = 6.5584 inch. The maximum von Mises stress for this design is 

39337.1115 Psi. The optimization process converges after 22 function evaluations. 

For fmincon function, the same problem produces an optimal volume of 

408.8521 inch3 for a randomly selected initial design variables, X1 = 20, X2 = 5, and R 

= 4. The optimum design variables are X1 = 20 inch, X2 = 3.0553 inch, and R = 6.8012 

inch. Corresponding maximum von Mises stress for this case is 39999.9996 Psi. The 

total number of function evaluations is 114 for this case. The comparative plots of 

variations of design variables, volume of the plate and the maximum von Mises stress 

with number of function evaluations are presented in Figure 5.29, Figure 5.30 and 

Figure 5.31 respectively. 

The best results achieved from the response surface optimizations were used 

again as the initial design variables input for another round of fmincon function 
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optimizations. The lower and upper bounds for the design variables were initial input – 

0.5 and initial input + 0.5 respectively. This time, Faure sequence with MQR RSM and 

10 initial DOE points produces the best results. The optimization process took 54 

function evaluations to produce an improved design of X1 = 19.5 inch, X2 = 4.2096 

inch, and R = 6.2058 inch with a volume of 400.8658 inch3. The maximum von Mises 

stress is 39999.7094 Psi.  

The optimal design and the von Mises stress distribution for this design are 

presented in Figure 5.32 and Figure 5.33 respectively. 



 

 86

 
(a) (b) 

 
(c)      (d) 

 

Figure 5.30 Variation of design variables for trapezoidal plate with a circular hole fixed 
at center by (a) Halton sequencing with GaussI model (30 initial DOE), (b) Sobol 

Sequencing with MQI model (30 initial DOE), (c) Faure sequencing with MQR model 
(10 initial DOE) and (d) fmincon function 
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(a) (b) 

 
(c)      (d) 

 

Figure 5.31 Variation of volumes for trapezoidal plate with a circular hole fixed at 
center by (a) Halton sequencing with GaussI model (30 initial DOE), (b) Sobol 

Sequencing with MQI model (30 initial DOE), (c) Faure sequencing with MQR model 
(10 initial DOE) and (d) fmincon function 
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(a) (b) 

 
(c)      (d) 

 

Figure 5.32 Variation of maximum von Mises stress for trapezoidal plate with a circular 
hole fixed at center by (a) Halton sequencing with GaussI model (30 initial DOE), 

 (b) Sobol Sequencing with MQI model (30 initial DOE), (c) Faure sequencing 
with MQR model (10 initial DOE) and (d) fmincon function 
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Figure 5.33 Optimal design for trapezoidal plate with circular hole fixed at center 
 
 

 

Figure 5.34 von Mises stress distribution for optimal design of trapezoidal plate with 
circular hole fixed at center 
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5.8 Trapezoidal Plate with a Circular Hole with Unspecified Center Location – 
Minimum Weight Design 

 
The seventh problem solved in this work is a trapezoidal plate with a circular 

hole as shown in Figure 5.34. The location of the center is not specified in this problem. 

It can be anywhere inside the plate provided some constraints are satisfied. Left edge of 

the plate is fixed and an outward pressure load of 2000 Psi is applied along the top edge. 

The length of the plate is 30 inch and the thickness is 1 inch. 

The plate is made of aluminum with Young’s Modulus of Elasticity, E = 1 × 107 

Psi, Yield Strength, σY = 60000 Psi, Poisson’s ration, υ = 0.33 and weight density = 0.1 

lbf/inch3. 

 

 

Figure 5.35 Trapezoidal plate with a circular hole with unspecified center location 
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The objective of this problem is to find the optimal heights of the two parallel 

edges of the trapezoid and the center location and radius of the hole which would 

minimize the volume (hence the weight) of the plate such that the maximum von Mises 

stress developed in the structure would not exceed 40000 Psi (σY/1.5). The problem 

formulation is as follows: 

Design variable: [X1, X2, Xc, Yc, R] 

Lower and upper bounds for the design variables are, [15 4 10 5 2] and [20 6 15 15 4] 

respectively. 

Objective function: Minimize the volume [minimize V] 

Subject to –  

(a) Geometric constraints (to ensure that the hole lies inside the plate): 

Xc – R ≥ 1,  Xc + R ≤ 29, 

Yc + R ≤ X1 – 1,  d ≥ R + 1 

Where, d is the shortest distance of the circular hole center from the bottom edge 

of the plate and is given by,
22 X2  900

X2.Xc

X2  900

30.Ycd
+

−
+

=  

(b) von Mises stress constraint: Max. σVM ≤ 40000 Psi. 

A total of 24 experiments were performed in order to determine the best possible 

RBF model. For each combination of a specific sequencing technique and RBF model, 

two different numbers of initial DOE points have been used to create the response 

surface. The first set consists of 10 DOE points, whereas the second set consists of 30 

DOE points. For Halton sequence, MQI RBF with 10 initial DOE points produces the 
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best minimum volume for the plate. In this case, the optimal design has a volume of 

317.9507 inch3 and the optimal values for the design variables are X1 = 15 inch, X2 = 

5.4523 inch, Xc = 12.1476, Yc = 8.7293 and R = 6.49414 inch. The maximum von 

Mises stress for this design is 39287.611 Psi. The optimization process requires 22 

function evaluations for convergence. For Sobol sequence, MQR RBF with 30 initial 

DOE points produces the best results with a volume of 316.8925 inch3. The optimal 

values for the design variables are X1 = 15 inch, X2 = 5.8611 inch, Xc = 12.4855, Yc = 

8.8735 and R = 3.92083 inch. The maximum von Mises stress for this design is 

38974.2337 Psi. The optimization process converges after 42 function evaluations. For 

Faure sequence, MQI RSM with 30 initial DOE points produces the best results with a 

volume of 321.7413 inch3. The optimal values for the design variables are X1 = 15 inch, 

X2 = 5.6703 inch, Xc = 13.764, Yc = 9.1954 and R = 3.7084 inch. The maximum von 

Mises stress for this design is 39337.1115 Psi. The optimization process converges after 

42 function evaluations. 

For fmincon function, the same problem produces an optimal volume of 

316.7711 inch3 for a randomly selected initial design variables, X1 = 20, X2 = 5, Xc = 

12, Yc = 8 and R = 1. The optimum design variables are X1 = 15 inch, X2 = 5.5309 

inch, Xc = 11.9201, Yc = 8.7028 and R = 4 inch. Corresponding maximum von Mises 

stress for this case is 40000 Psi. The total number of function evaluations is 285 for this 

case. The comparative plots of variations of design variables, volume of the plate and 

the maximum von Mises stress with number of function evaluations are presented in 

Figure 5.35, Figure 5.36 and Figure 5.37 respectively. 
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  (a)      (b) 

 
(c)      (d) 

 
Figure 5.36 Variation of design variables for trapezoidal plate with a circular hole with 
unspecified center location by (a) Halton sequencing with MQI model (10 initial DOE), 

(b) Sobol Sequencing with MQR model (30 initial DOE), (c) Faure sequencing with 
MQI model (30 initial DOE) and (d) fmincon function 
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(a) (b) 

 
(c)      (d) 

 

Figure 5.37 Variation of volume for trapezoidal plate with a circular hole with 
unspecified center location by (a) Halton sequencing with MQI model (10 initial DOE), 

(b) Sobol Sequencing with MQR model (30 initial DOE), (c) Faure sequencing with 
MQI model (30 initial DOE) and (d) fmincon function 
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(a) (b) 

 
  (c)      (d) 
 

Figure 5.38 Variation of maximum von Mises stress for trapezoidal plate with a circular 
hole with unspecified center location by (a) Halton sequencing with MQI model (10 

initial DOE), (b) Sobol Sequencing with MQR model (30 initial DOE), (c) Faure 
sequencing with MQI model (30 initial DOE) and (d) fmincon function 

 

To improve the design further, the best results obtained from the response 

surface optimizations were used again as the initial design variables input for another 

round of fmincon function optimizations. The lower and upper bounds for the design 
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variables were initial input – 0.5 and initial input + 0.5 respectively. This time, Faure 

sequence with MQI RSM and 30 initial DOE points produces the best minimum volume 

of 300.2922 inch3. The optimal values for the design variables are X1 = 14.5667 inch, 

X2 = 6.1703 inch, Xc = 14.264, Yc = 8.6954 and R = 3.749 inch. The corresponding 

maximum von Mises stress is 40000.0004 Psi. The optimization process took 326 

function evaluations to converge. The optimal design and the von Mises stress 

distribution for this design are presented in Figure 5.38 and Figure 5.39 respectively. 

 

 

Figure 5.39 Optimal design for Trapezoidal plate with a circular hole with unspecified 
center location 
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Figure 5.40 von Mises stress distribution for optimal design of Trapezoidal plate with a 
circular hole with unspecified center location  

 

 

5.9 Quadrangular Plate – Minimum Weight Design 
 

The eighth problem solved in this work is a quadrangular plate as shown in 

Figure 5.40. Left edge of the plate is fixed and an outward pressure load of 2000 Psi is 

applied along the top edge. The length of the top edge of the plate is 30 inch and the 

thickness is 1 inch.  

The plate is made of aluminum with Young’s Modulus of Elasticity, E = 1 × 107 

Psi, Yield Strength, σY = 60000 Psi, Poisson’s ration, υ = 0.33 and weight density = 0.1 

lbf/inch3. 
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Figure 5.41 Quadrangular Plate 
 

The objective of this problem is to find the optimal lengths of left, bottom and  

right edges of the plate which would minimize the volume (hence the weight) of the 

plate such that the maximum von Mises stress developed in the structure would not 

exceed 40000 Psi (σY/1.5). The problem formulation is as follows: 

Design variable: [X1, Y1,Y2] 

Lower and upper bounds for the design variables are [1, 15, 2] and [30, 25, 12] 

respectively. 

Objective function: Minimize the volume [minimize V] 

Subject to von Mises stress constraints - Max. σVM ≤ 40000 Psi. 
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 In order to determine the best possible RBF model, a total of 24 experiments 

were performed. As usual, for each combination of a specific sequencing technique and 

RBF model, two different numbers of initial DOE points have been used to create the 

response surface. The first set consists of 10 DOE points, whereas the second set 

consists of 30 DOE points. For Halton sequence, MQI RBF with 30 initial DOE points 

produces the best minimum volume for the plate. In this case, the optimal design has a 

volume of 223.4073 inch3 and the optimal values for the design variables are X1 = 

6.82849 inch, Y1 = 17.5496 inch and Y2 = 6.65034 inch. The maximum von Mises 

stress for this design is 39644.1667 Psi. The optimization process requires 42 function 

evaluations for convergence. For Sobol sequence, GuassR RBF with 10 initial DOE 

points produces the best results with a volume of 224.7151 inch3. The optimal values 

for the design variables are X1 = 11.5725 inch, Y1 = 16.4421 inch and Y2 = 7.80359 

inch. The maximum von Mises stress for this design is 38792.1443 Psi. The 

optimization process converges after 22 function evaluations. For Faure sequence, 

GuassI RSM with 30 initial DOE points produces the best results with a volume of 

226.1603 inch3. The optimal values for the design variables are X1 = 5.70846 inch, Y1 

= 18.1356 inch and Y2 = 6.50911 inch. The maximum von Mises stress for this design 

is 39956.8313 Psi. The optimization process converges after 42 function evaluations. 

For optimization using fmincon function, the same problem produces a volume 

of 243.1761 inch3 for a randomly selected initial design variables, X1 = 8, Y1 = 15 and 

Y2 = 10. The optimum values for the design variables are X1 = 10.9939 inch, Y1 = 15 

inch and Y2 = 4.2852 inch. Corresponding maximum von Mises stress for this case is 
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40000 Psi. The total number of function evaluations is 68 for this case. The comparative 

plots of variations of design variables, volume of the plate and the maximum von Mises 

stress with number of function evaluations are presented in Figure 5.41, Figure 5.42 and 

Figure 5.43 respectively. 

To improve the design further, the best results achieved from the response 

surface optimizations were used again as the initial design variables input for another 

round of fmincon function optimizations. The lower and upper bounds for the design 

variables were initial input – 0.5 and initial input + 0.5 respectively. This time, Sobol 

sequence with GuassR RSM and 10 initial DOE points gives the best results. The 

optimization process took 77 function evaluations to give an improved design of X1 = 

11.3227 inch, Y1 = 16.2596 inch and Y2 = 7.99861 inch with a volume of 215.9669 

inch3. The corresponding maximum von Mises stress is 39999.9973 Psi. The optimal 

design and the von Mises stress distribution for this design are presented in Figure 5.44 

and Figure 5.45 respectively. 
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(a) (b) 

 
(c)      (d) 

 

Figure 5.42 Variation of design variables for quadrangular plate by (a) Halton sequence 
with MQI model (30 initial DOE), (b) Sobol Sequence with GuassR model (10 initial 

DOE), (c) Faure sequence with GaussI model (30 initial DOE) and (d) fmincon function 
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(a) (b) 

 
  (c)      (d) 
 

Figure 5.43 Variation of volume for quadrangular plate by (a) Halton sequence with 
MQI model (30 initial DOE), (b) Sobol Sequence with GuassR model (10 initial DOE), 

(c) Faure sequence with GaussI model (30 initial DOE) and (d) fmincon function 
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(a) (b) 

 
  (c)      (d) 
 

Figure 5.44 Variation of maximum von Mises stress for quadrangular plate by  
 (a) Halton sequence with MQI model (30 initial DOE), (b) Sobol Sequence with 
GuassR model (10 initial DOE), (c) Faure sequence with GaussI model (30 initial DOE) 

and (d) fmincon function 
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Figure 5.45 Optimal design for quadrangular plate 
 

 

 

Figure 5.46 von Mises stress distribution for optimal design of quadrangular plate 
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5.10 Quadrangular Plate with a Circular Hole Fixed at Center – Minimum Weight 
Design 

 
The ninth problem solved in this work is a quadrangular plate with a circular 

hole. The X center and Y center coordinates of the hole is parameterized in such a way 

that they are always at the middle with respect to the bottom and right edge of the plate 

respectively as shown in Figure 5.46. The length of the top edge of the plate is 30 inch 

and the thickness is 1 inch. The coordinates of the center of the hole can be expressed as 

(Xc, Yc) ≡ (
2

X1 , 
2

Y2-Y1Y2 + ). Left edge of the plate is fixed and an outward pressure 

load of 2000 Psi is applied along the top edge. 

 

 

Figure 5.47 Quadrangular plate with a circular hole fixed at center 
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The plate is made of aluminum with Young’s Modulus of Elasticity, E = 1 × 107 

Psi, Yield Strength, σY = 60000 Psi, Poisson’s ration, υ = 0.33 and weight density = 0.1 

lbf/inch3. 

The objective of this problem is to find the optimal lengths of left, bottom and  

right edges of the plate and the radius of the hole that would minimize the volume 

(hence the weight) of the plate such that the maximum von Mises stress developed in 

the structure would not exceed 40000 Psi (σY/1.5). The problem formulation is as 

follows: 

Design variable: [X1, Y1, Y2, R] 

Lower and upper bounds for the design variables are, [1 15 2 1] and [30 25 12 6] 

respectively. 

Objective function: Minimize the volume [minimize V] 

Subject to –  

(a) Geometric constraints (to ensure that the hole lies inside the plate): 

   X1 ≥ 2R + 0.5, 

Y1 – Y2 ≥ 2R + 0.5 

(b) von Mises stress constraint: Max. σVM ≤ 40000 Psi. 

A total of 24 experiments were performed in order to determine the best possible 

RBF model. For each combination of a specific sequencing technique and RBF model, 

two different numbers of initial DOE points have been used to create the response 

surface. The first set consists of 20 DOE points, whereas the second set consists of 40 

DOE points. For Halton sequence, MQI RBF with 40 initial DOE points produces the 
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best minimum volume for the plate. In this case, the optimal design has a volume of 

224.8266 inch3 and the optimal values for the design variables are X1 = 13.4857 inch, 

Y1 = 16.6559 inch, Y2 = 8.9453 inch and R = 1 inch. The maximum von Mises stress 

for this design is 39606.8779 Psi. The optimization process requires 52 function 

evaluations for convergence. For Sobol sequence, MQI RBF with 20 initial DOE points 

produces the best results with a volume of 228.6264 inch3. The optimal values for the 

design variables are X1 = 13.8423 inch, Y1 = 16.3937 inch, Y2 = 8.245 inch and R = 

1.4997 inch. The maximum von Mises stress for this design is 38839.6399 Psi. The 

optimization process converges after 32 function evaluations. For Faure sequence, MQI 

RSM with 40 initial DOE points produces the best results with a volume of 224.8802 

inch3. The optimal values for the design variables are X1 = 11.9813 inch, Y1 = 17.5315 

inch, Y2 = 9.3317 inch, and R = 1inch. The maximum von Mises stress for this design 

is 39286.392 Psi. The optimization process converges after 52 function evaluations. 

For fmincon function, the same problem produces an optimal volume of 

239.3363 inch3 for a randomly selected initial design variables, X1 = 15, Y1 = 16, Y2 = 

5, and R = 4. The optimum design variables are X1 = 4.3861 inch, Y1 = 19.1949 inch, 

Y2 = 5.7788 inch, and R = 1.1284 inch. Corresponding maximum von Mises stress for 

this case is 39993.0713 Psi. The total number of function evaluations is 153 for this 

case. The comparative plots of variations of design variables, volume of the plate and 

the maximum von Mises stress with number of function evaluations are presented in 

Figure 5.47, Figure 5.48 and Figure 5.49 respectively. 
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(a) (b) 

 
(c)      (d) 

 

Figure 5.48 Variation of design variables for quadrangular plate with a circular hole 
fixed at center by (a) Halton sequence with MQI model (40 initial DOE), (b) Sobol 

Sequence with MQI model (20 initial DOE), (c) Faure sequence with MQI model (40 
initial DOE) and (d) fmincon function 
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(a) (b) 

 
(c)      (d) 

 

Figure 5.49 Variation of volume for quadrangular plate with a circular hole fixed at 
center by (a) Halton sequence with MQI model (40 initial DOE), (b) Sobol Sequence 

with MQI model (20 initial DOE), (c) Faure sequence with MQI model (40 initial DOE) 
and (d) fmincon function 
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(a) (b) 

 
(c)      (d) 

 

Figure 5.50 Variation of maximum von Mises stress for quadrangular plate with a 
circular hole fixed at center by (a) Halton sequence with MQI model (40 initial DOE), 
(b) Sobol Sequence with MQI model (20 initial DOE), (c) Faure sequence with MQI 

model (40 initial DOE) and (d) fmincon function 
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The best results obtained from the response surface optimizations were used 

again as the initial design variables input for another round of fmincon function 

optimizations. The lower and upper bounds for the design variables were initial input – 

0.5 and initial input + 0.5 respectively. This time, Sobol sequence with MQI RSM and 

20 initial DOE points produces the best results. The optimization process took 298 

function evaluations to produce an improved design of X1 = 13.3423 inch, Y1 = 

16.5516 inch, Y2 = 8.651 inch, and R = 1.5305 inch with a volume of 221.5685 inch3. 

The maximum von Mises stress is 39954.1884 Psi. The optimal design and the von 

Mises stress distribution for this design are presented in Figure 5.50 and Figure 5.51 

respectively. 

 

 

Figure 5.51 Optimal design for quadrangular plate with a circular hole fixed at center 
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Figure 5.52 von Mises stress distribution for optimal design of quadrangular plate with 
a circular hole fixed at center 

 

 

5.11 Quadrangular Plate with a Circular Hole with Unspecified Center Location – 
Minimum Weight Design 

 
The last problem solved in this work is a quadrangular plate with a circular hole 

as shown in Figure 5.52. The location of the center is not specified in this problem. It 

can be anywhere inside the plate provided some constraints are satisfied. Left edge of 

the plate is fixed and an outward pressure load of 2000 Psi is applied along the top edge. 

The length of the top edge of the plate is 30 inch and the thickness is 1 inch. 

The plate is made of aluminum with Young’s Modulus of Elasticity, E = 1 × 107 

Psi, Yield Strength, σY = 60000 Psi, Poisson’s ration, υ = 0.33 and weight density = 0.1 

lbf/inch3. 
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Figure 5.53 Quadrangular plate with a circular hole with unspecified center location 
 

The objective of this problem is to find the optimal lengths of left, bottom and  

right edges of the plate and the center location and radius of the hole which would 

minimize the volume (hence the weight) of the plate such that the maximum von Mises 

stress developed in the structure would not exceed 40000 Psi (σY/1.5). The problem 

formulation is as follows: 

Design variable: [X1, Y1, Y2, Xc, Yc, R] 

Lower and upper bounds for the design variables are, [12, 15, 2, 5, 10, 3] and [20, 20, 6, 

15, 15, 5] respectively. 

Objective function: Minimize the volume [minimize V] 

Subject to –  
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(a) Geometric constraints (to ensure that the hole lies inside the plate): 

Xc – R ≥ 1,  Yc + R ≤ Y1 – 1, 

d1≥ R + 1,  d2 ≥ R + 1 

Where, d1 is the shortest distance of the circular hole center from the bottom edge of 

the plate and is given by,
2222 Y2  X1

Y2.Xc

Y2  X1

X1.Ycd1
+

−
+

=  

And d2 is the shortest distance of the circular hole center form the right edge of 

the plate and is given by, 
2222 Y2) - Y1( X1) - (30

X1) - Y2).(Xc - (Y1

Y2) - (Y1  X1) - (30

Y2) - X1).(Yc- (30d2
+

−
+

=  

(b) von Mises stress constraint: Max. σVM ≤ 40000 Psi. 

A total of 24 experiments were performed in order to determine the best possible 

RBF model. For each combination of a specific sequencing technique and RBF model, 

two different numbers of initial DOE points have been used to create the response 

surface. The first set consists of 20 DOE points, whereas the second set consists of 40 

DOE points. For Halton sequence, MQI RBF with 40 initial DOE points produces the 

best minimum volume for the plate. In this case, the optimal design has a volume of 

221.5929 inch3 and the optimal values for the design variables are X1 = 12.8833 inch, 

Y1 = 15.8807 inch, Y2 = 6 inch, Xc = 8.7544, Yc = 10 and R = 3.0338 inch. The 

maximum von Mises stress for this design is 39917.5646 Psi. The optimization process 

requires 52 function evaluations for convergence. For Sobol sequence, MQI RBF with 

40 initial DOE points produces the best results with a volume of 222.8673 inch3. The 

optimal values for the design variables are X1 = 12.5134 inch, Y1 = 15.0112 inch, Y2 = 
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4.5298 inch, Xc = 10.2276, Yc = 10 and R = 3 inch. The maximum von Mises stress for 

this design is 39789.6959 Psi. The optimization process converges after 52 function 

evaluations. For Faure sequence, all the RSM with 40 initial DOE points produces the 

same best results with a volume of 258.3025 inch3. The optimal values for the design 

variables are X1 = 15.4519 inch, Y1 = 15.9329 inch, Y2 = 4.0525 inch, Xc = 13.3965, 

Yc = 10.1166 and R = 3.6997 inch. The maximum von Mises stress for this design is 

37150.8379 Psi. The optimization process converges after 52 function evaluations. 

For fmincon function, the same problem produces an optimal volume of 

215.9873 inch3 for a randomly selected initial design variables, X1 = 15, Y1 = 20, Y2 = 

5, Xc = 12, Yc = 8 and R = 1. The optimum design variables are X1 = 12 inch, Y1 = 

15.9662 inch, Y2 = 6 inch, Xc = 9.5188, Yc = 10.8025 and R = 3.054 inch. 

Corresponding maximum von Mises stress for this case is 39999.9326 Psi. The total 

number of function evaluations is 516 for this case. The comparative plots of variations 

of design variables, volume of the plate and the maximum von Mises stress with 

number of function evaluations are presented in Figure 5.53, Figure 5.54 and Figure 

5.55 respectively. 
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(a) (b) 

 
(c)      (d) 

 

Figure 5.54 Variation of design variables for quadrangular plate with a circular hole 
with unspecified center location by (a) Halton sequence with MQI model (40 initial 

DOE), (b) Sobol Sequence with MQI model (40 initial DOE), (c) Faure sequence with 
MQI model (40 initial DOE) and (d) fmincon function 
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(a) (b) 

 
(c)      (d) 

 

Figure 5.55 Variation of volume for quadrangular plate with a circular hole with 
unspecified center location by (a) Halton sequence with MQI model (40 initial DOE), 
(b) Sobol Sequence with MQI model (40 initial DOE), (c) Faure sequence with MQI 

model (40 initial DOE) and (d) fmincon function 
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(a) (b) 

 
  (c)      (d) 
 

Figure 5.56 Variation of maximum von Mises stress for quadrangular plate with a 
circular hole with unspecified center location by (a) Halton sequence with MQI model 

(40 initial DOE), (b) Sobol Sequence with MQI model (40 initial DOE), (c) Faure 
sequence with MQI model (40 initial DOE) and (d) fmincon function 

 

To improve the design further, the best results obtained from the response 

surface optimizations were used again as the initial design variables input for another 

round of fmincon function optimizations. The lower and upper bounds for the design 
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variables were initial input – 0.5 and initial input + 0.5 respectively. This time, Halton 

sequence with MQI RSM and 40 initial DOE points produces the best minimum volume 

of 210.59 inch3. The optimal values for the design variables are X1 = 12.6983 inch, Y1 

= 15.5892 inch, Y2 = 6.5 inch, Xc = 9.241, Yc = 10.4998 and R = 2.8055 inch. The 

corresponding maximum von Mises stress is 40000.0014 Psi. The optimization process 

took 260 function evaluations to converge. The optimal design and the von Mises stress 

distribution for this design are presented in Figure 5.56 and Figure 5.57 respectively. 

 

 

Figure 5.57 Optimal design for quadrangular plate with a circular hole with unspecified 
center location 
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Figure 5.58 von Mises stress distribution for optimal design for quadrangular plate with 
a circular hole with unspecified center location 

 

 

5.12 Discussions on the Results 
 

In this chapter, the feasibility of applying the proposed scheme for structural 

optimization has been demonstrated successfully. Except for a few instances, the 

proposed method outperformed MATLAB built-in optimization function fmincon in 

terms of finding the better optimum designs and the number of function evaluations 

requirements. The definition of the ten example problems solved in this research and the 

experimental combinations of different RSM models and LDS sequences are listed in 

Table 5.1 and Table 5.2 respectively. In the first problem all the combinations of radial 
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basis functions and sequencing methods produced the same optimum results. Although 

direct fmincon also produced the same optimum result for the minimum volume, the 

center location of the hole is not symmetric along the length of the plate. Moreover, it 

took more function evaluations (45 function evaluations) than the response surface 

optimization (22 function evaluations).  

Table 5.1 Definitions of Solved Example Problems 
 

No Problem Definition 

1 Determining the optimal location and radius of a hole for minimum weight 
design of a rectangular plate with one circular hole. 

2 Determining the optimal location and radius of a hole for minimum weight 
design of a rectangular plate with two circular holes. 

3 Stress minimization of a rectangular plate with three circular holes by 
finding the optimal locations for the holes. 

4 Shape optimization of a five stepped cantilever beam. 

5 Minimum weight design of a trapezoidal plate. 

6 Weight minimization of a trapezoidal plate with one circular hole by 
finding the heights of two parallel sides and the radius of the hole. 

7 Weight minimization of a trapezoidal plate with one circular hole by 
finding the heights of two parallel sides and the optimal location and radius 
of the hole. 

8 Minimum weight design of a quadrangular plate. 

9 Determination of the length of three sides and the radius of the hole for 
minimum weight design of a quadrangular plate with one circular hole. 

10 Determination of the length of three sides and the location and radius of the 
hole for minimum weight design of a quadrangular plate with one circular 
hole. 

 

Again in the second problem, all the combinations of radial basis functions and 

sequencing methods produced the same optimum results. In this case direct fmincon 

optimization required equal number of function evaluations (22 function evaluations) to 
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end up with the same results. In seventh and tenth problem, direct fmincon optimization 

produced better results than response surface optimization method. However, in both 

the cases, response surface optimization method reached very close (0.038 % for 

seventh problem and 2.595 % for tenth problem) to the optimum results achieved by 

direct fmincon optimization with a less number of function evaluations. The list of best 

performing RBF models and DOE methods are presented in Table 5.3. 

Table 5.2 List of Experimental Combinations 
 

No. Model Method DOE 

Level* 

No. Model Method DOE 

Level* 

1 Halton MQI 1 13 Sobol GaussI 1 

2 Halton MQI 2 14 Sobol GaussI 2 

3 Halton MQR 1 15 Sobol GaussR 1 

4 Halton MQR 2 16 Sobol GaussR 2 

5 Halton GaussI 1 17 Faure MQI 1 

6 Halton GaussI 2 18 Faure MQI 2 

7 Halton GaussR 1 19 Faure MQR 1 

8 Halton GaussR 2 20 Faure MQR 2 

9 Sobol MQI 1 21 Faure GaussI 1 

10 Sobol MQI 2 22 Faure GaussI 2 

11 Sobol MQR 1 23 Faure GaussR 1 

12 Sobol MQR 2 24 Faure GaussR 2 

*DOE Level:  
1. For 9th and 10th problems, initial DOE points 20, for all other problems, initial DOE points 10. 
2. For 9th and 10th problems, initial DOE points 40, for all other problems, initial DOE points 30. 
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Table 5.3 Best Performing RSM Models and DOE Methods for the Solution of Example 
Problems 

 
Problem No. of Design 

Variables 

RSM Model DOE Method 

1 3 All All 

2 2 All All 

3 6 MQI & GuassI Faure 

4 5 MQR Halton 

5 2 MQI Faure 

6 3 GuassI Halton 

7 5 MQR Sobol 

8 3 MQI Halton 

9 4 MQI Halton 

10 6 MQI Halton 

 

For the ten problems solved in this research, contributions of the response 

surface models and the sequencing methods for achieving the best optimal results are 

shown in Table 5.4 and Table 5.5 respectively. From the results, it is evident that 

Multiquadric Interpolation (MQI) model and Halton sequencing method contributed 

more number of times for producing best optimum results. However, all other RBF 

models and sequencing methods also demonstrated their capability of producing good 

results for the problem solved in this research. It is to be noted here that, as discussed in 

chapter 3, literature survey indicates the ability of Sobol sequencing method to 

demonstrate more uniform space mapping in higher dimension than Halton and Faure 

sequencing methods. In this research the maximum number of design variables was six. 
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Hence, due to this small dimension, all the sequencing methods demonstrated 

acceptable performance in this research. It would certainly be interesting to see the 

performance of these methods for generating design of experiments for structural 

optimization with large number of design variables. 

Table 5.4 Contribution of Response Surface Models for Achieving Best Optimal Design 
 

Response Surface Model 
No. of Instances Contributed to the 

best Optimal Design 

Multiquadric Interpolation (MQI) 7 

Multiquadric Regularization (MQR) 4 

Gauss Interpolation (GaussI) 3 

Gauss Regularization (GaussR) 3 

 

Table 5.5 Contribution of Sequencing Methods for Achieving Best Optimal Design 
 

Low Discrepancy Sequencing 

Methods 

No. of Instances Contributed to the 

best Optimal Design 

Halton 7 

Faure 4 

Sobol 3 

 

For some of the problems, optimization of the actual function by fmincon and 

response surface optimization scheme were used together to investigate the effect on the 

final optimal designs.  For these cases, initially the problems were solved by response 
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surface optimization and then the actual function is optimized by fmincon, considering 

the optimum results of the response surface optimization as the initial input for the 

design variables and optimum results of the response surface optimization ± X as the 

range for the design variables. Where, X is a number which would define a very narrow 

upper and lower bounds for the design variables. This combined technique showed 

some improvements of the final results than that achieved by using fmincon or response 

surface optimization individually. The comparison of results by RSM, fmincon and 

hybrid method are presented in Table 5.6. 

Table 5.6 Comparison of Results by RSM, fmincon and Hybrid Method 
 

Solution by RSM Solution by fmincon Solution by Hybrid 
Method  

Problem Best 
Objective 
Function 

No. of 
Functional 
Evaluations

Best 
Objective 
Function 

No. of 
Functional 
Evaluations

Best 
Objective 
Function 

No. of 
Functional 
Evaluations

1 398.9381 
inch3 22 398.9381 

inch3 45 -- -- 

2 373.8053 
inch3 22 373.8053 

inch3 22 -- -- 

3 6002.8299 
Psi 42 6111.1 

Psi 506 -- -- 

4 14.8820 
Hz 42 13.1653 

Hz 1005 14.9598 
Hz 1005 

5 273.3937 
inch3 22 277.542 

inch3 22 270.3715 
inch3 19 

6 406.4515 
inch3 42 408.8521 

inch3 114 400.8658 
inch3 54 

7 316.8925 
inch3 42 316.7711 

inch3 285 300.2922 
inch3 326 

8 223.4073 
inch3 42 243.1761 

inch3 68 215.9669 
inch3 77 

9 224.8266 
inch3 52 239.3363 

inch3 153 221.5685 
inch3 298 

10 221.5929 
inch3 52 215.9873 

inch3 516 210.59 
inch3 260 
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Although this hybrid technique could improve the final design to some extant, 

this has some problems also. When the optimal result of the response surface 

optimization is very near or on the border of the design space, using that optimal result 

as the initial input and defining the range of the design variable based on that could 

change the final dimensions of the structure that was initially intended due to the 

changes in the design space. Again, this combined technique could be very time 

consuming as in the second phase, fmincon might require large number of function 

evaluations before the solution is converged. 
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CHAPTER 6 
 

CONCLUSIONS AND RECOMMENDATIONS 
 

6.1 Conclusions 
 

In this research, an effective and simple structural optimization scheme based on 

response surface methodology (RSM) and design of experiments (DOE) has been 

successfully developed and implemented for solving computationally expensive design 

optimization problems. For this purpose a design optimization code was written in 

MATLAB. Four different radial basis function models namely, Multiquadric 

Interpolation, Multiquadric Regularization, Gauss Interpolation, and Gauss 

Regularization were utilized for constructing the meta models and three different Quasi-

Monte Carlo sequencing methods known as Halton sequence, Faure sequence, and 

Sobol sequence were used to generate the design of experiments. MATLAB Partial 

Differential Equation Toolbox was used for finite element model development and 

determining the true response of the design problems. 

Ten different design optimization problems have been solved successfully using 

the proposed optimization scheme. The results thus obtained have been compared to 

that achieved by solving the same problems using MATLAB optimization function 

fmincon. It was observed that the RSM based optimization scheme produced better 

results than fmincon function in most of the cases. Only for two problems fmincon 

achieved better optimum results than the proposed method. However, even for those 
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two problems the proposed method was very close to the results obtained by fmincon. 

Moreover, except for the second and fifth problems where the number of function 

evaluations were equal for both the problems, the number of function evaluations and 

the computation time were significantly less for the proposed RSM based optimization 

scheme. 

This research demonstrated the applicability of the various types of radial basis 

functions for response surface creation/ meta modeling purpose and the use of different 

Quasi-Monte Carlo sequencing method for generation of design of experiments for 

structural design optimization. Based on the results obtained in this research, it can be 

said that, it is not wise to recommend any specific radial basis function for meta 

modeling and any specific sequencing method for design of experiment purpose for all 

design optimization problems. Performance of any particular radial basis function and 

sequencing method is rather problem dependent and all the radial basis function models 

and sequencing methods studied in this research demonstrated their applicability for 

design optimization purpose. It is recommended to use more than one radial basis 

functions and sequencing methods if possible while solving any specific problem so that 

the best suited combinations could be determined by comparing their results. 

6.2 Recommendations for Future Work 
 

 The following studies are suggested to extend the applications of the 

proposed optimization scheme: 
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1. In this study, MATLAB optimization function fmincon was used to perform the 

response surface optimization, which is a local optimizer. Instead of fmincon, a 

global search technique can be utilized for response surface optimization. 

2. Problems associated with large dimension of design variables should be studied to 

examine the performance of the Quasi-Monte Carlo sequencing methods used for 

the generation of design of experiments with higher dimensions. 

3. The proposed optimization algorithm can be modified and extended to solve multi 

objective structural optimization problems. 

4. Instead of using MATLAB Partial Differential Equation Toolbox which is capable 

of only two dimensional modeling, the performance of the proposed optimization 

scheme can be studied by using it with a more powerful finite element code, capable 

of handling three dimensional modeling of complex structures. 

5. This method can be studied to solve more complex problems involving large non-

linear characteristics, topology optimization etc. 
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APPENDIX A 
 
 

DERIVATION OF THE SHORTEST DISTANCE FROM THE CENTER OF THE 
CIRCLE TO THE EDGE OF THE TRAPIZOIDAL/QUADRANGULAR PLATE 
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A1. Derivation of the shortest distance, d from the center of the circle, P to the edge AB 

of the trapezoidal plate:  

 

Figure A1 Derivation of the shortest distance from the center of the circle to the edge 
AB of the trapezoidal plate 
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A2. Derivation of the shortest distance, d1 and d2 from the center of the circle, P to the 

edge AB and BC respectively of the quadrangular plate:  

 

 

Figure A2 Derivation of the shortest distance from the center of the circle to the edge 
AB and BC of the quadrangular plate 
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