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ABSTRACT

THE LATTICE BOLTZMANN METHOD FOR

COMPUTATIONAL FLUID DYNAMICS

APPLICATIONS

Chinmay H. Adhvaryu, M.S.

The University of Texas at Arlington, 2008

Supervising Professor: Brian H. Dennis

An  analysis  of  lattice  Boltzmann  method  is  presented  in  this  thesis.  This  analysis 

contrast with the traditional lattice Boltzmann work, where complex fluids are considered with 

extended  properties.  Focus  of  the  current  thesis  is  on  the  validation  and  use  of  lattice 

Boltzmann method for traditional fluid dynamics. 

In first part of the document a historical and theoretical background of lattice Boltzmann 

method is presented. In this part  some conclusions are drawn about the stability  and other 

physical characteristics of the lattice Boltzmann method. Second part deals with the computer 

implementation of the LBM. It also discusses some aspect about practical usage of this method 

as a CFD tool. Boundary conditions are discussed in the same sections. Different method for 

boundary conditions and their numerical characteristics are presented. In the last section two 

numerical case studies are given for the lattice Boltzmann. Purpose of these numerical studies 

is to validate lattice Boltzmann method for traditional CFD application. Results of this numerical 

studies also reveals some facts about the physical aspect of lattice Boltzmann method. 
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CHAPTER 1

INTRODUCTION

The present thesis investigates lattice Boltzmann method for the Computational Fluid 

Dynamics application.  Computational Fluid Dynamics, known today as CFD, is defined as the 

set of methodologies that enable the computer to provide us with a numerical simulation of fluid 

flows. Lattice Boltzmann method is relatively new approach for the hydrodynamic simulations. 

Unlike  traditional  CFD method  this  approach  is  based  on  kinetic  theory.  It  is  a  bottom-up 

approach. In kinetic theory fluid motion is described at the particle collision level.

Recently much research effort has been invested in using lattice Boltzmann method to 

solve  Navier-Stokes  fluids.  It  has  been  an  active  area  of  research  in  computational  fluid 

dynamics from last 15 years. 

Aim of this thesis is to develop a basic understanding of lattice Boltzmann method as a 

theoretical  and numerical  tool  for fluid dynamic simulations. Its parallel and differences with 

traditional CFD methods are discussed. This thesis investigates lattice Boltzmann method from 

the CFD point of view.

1.1 Content of the Thesis

Chapter 2 of this thesis describes the introduction to CFD and traditional CFD methods. 

A simple introduction to philosophy of lattice Boltzmann method is given in the same chapter. 

Historical background and historical background of lattice Boltzmann method is described in 

chapter 3. A multi-scale Chapmann-Enskog procedure to recover Navier-Stokes equation from 

discrete Boltzmann equation is described in chapter 3. Computer aspect of lattice Boltzmann 

are given in chapter 4. In the next chapter boundary conditions of lattice Boltzmann method are 

discussed. Last chapter, chapter 6 presents the result obtained from lattice Boltzmann code 

developed during this thesis work. These results are validated against the standard results.
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CHAPTER 2

INTRODUCTION TO COMPUTATIONAL FLUID DYNAMICS

2.1 Introduction

Computational  Fluid  Dynamics,  known  today  as  CFD,  is  defined  as  the  set  of 

methodologies that enable the computer to provide us with a numerical simulation of fluid flows. 

We use the word simulation to indicate that we use the computer to solve numerically the laws 

that govern the movements of fluids, in or around material system. 

The core of CFD research area is represented by a partial differential equation (PDE) 

widely known as the Navier-Stokes equation, which expresses a local conservation law for the 

momentum in the system. The Navier-Stokes equations are the basic governing equations for a 

viscous, heat conducting fluid. It is a vector equation obtained by applying Newton's Law of 

Motion to a fluid element and is also called the momentum equation. Solving the Navier-Stokes 

equation is actually a numerically very challenging task, in spite of the apparent simplicity of the 

PDE. Much effort is therefore invested in developing numerical approaches to the resolution of 

this equation, rather than adding even more complexity by additional physical terms. In general 

these numerical techniques require discretization of the partial differential equation (PDE). In 

next section we give an overview of most popular methods used for the discretization process.

2.2   Discretization Methods  

2.2.1. Finite Difference Method

The finite Difference approximation is the oldest method applied to obtain numerical 

solution of differential equations. This method is based on the properties of Taylor expansions 

and on the straightforward application of the definition of derivatives. It is probably the simplest 

method  to  apply  particularly  on  the  uniform meshes.  Limitation  of  structured  grid  makes it 

difficult to apply for problems with complex geometry. 
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2.2.2 Finite Volume Method

The finite volume method (FVM) The Finite Volume Method (FVM) is one of the most 

versatile discretization techniques used in CFD. It is most widely applied method in CFD. The 

reason behind the appeal to the FVM lies in its generality, its conceptual simplicity and its ease 

of  implementation   for  arbitrary  grids,  structured  as  well  as  unstructured.  In this  technique 

integral formulation of the conservation laws is discretized directly in the physical space. FVM is 

based on cell averaged values, which appear as a most fundamental quantity in conservation 

equations. This distinguishes the FVM from finite element and finite difference, where the main 

numerical quantities are the local function values at the mesh points. Thus FVM has the great 

advantage  that  the  conservative  discretization  is  automatically  satisfied,  through  the  direct 

discretization of the integral form of the conservation laws. 

2.2.3 Finite Element Method

The Finite  Element  Method originated from the  field  of  structural  analysis.  In  FEM 

original PDEs are multiplied by a test function and integrated over the domain, resulting in the 

weak formulation of  the problem.  Infinite  dimension subspace which contains the unknown 

function is then replaced by a subspace of finite dimension, chosen so that the approximate 

solution  consist  of  piecewise  constant  polynomial  function.  Suitable  choice  of  test  function 

leads to a system of algebraic equation. The FEM is based on the definition of function values 

attached to the nodes of the mesh, where the numerical value of the unknown functions, and 

eventually their derivatives, will have to be determined. 

2.3 The Lattice Boltzmann Method 

The Lattice Boltzmann method is relatively new. The  Method  of  lattice  Boltzmann 

equation (LBE) is an innovative numerical method based on kinetic theory to simulate various 

hydrodynamic  systems.  The lattice  Boltzmann equation  was  introduced  to  overcome  some 

serious deficiencies of its historic predecessor: the lattice gas automata. The lattice Boltzmann 
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equation overcomes two major shortcomings of the lattice gas automata: intrinsic noise and 

limited values of transport coefficients, both due to the Boolean nature of the LGA method. This 

method was proposed by McNamara and Zanetti [1]. The fundamental idea of the LBM is to 

construct  simplified  kinetic  models  that  incorporate  the  essential  physics  of  microscopic  or 

mesoscopic  processes  so  that  the  macroscopic  averaged  properties  obey  the  desired 

macroscopic equations. The basic premise for using these simplified kinetic-type methods for 

macroscopic fluid flows is that the macroscopic dynamics of a fluid is the result of the collective 

behavior of many microscopic particles in the system and that the macroscopic dynamics is not 

sensitive to the underlying details in microscopic physics. By developing a simplified version of 

the  kinetic  equation,  one  avoids  solving  complicated  kinetic  equations  such  as  the  full 

Boltzmann  equation,  and  one  avoids  following  each  particle  as  in  molecular  dynamics 

simulations.  Lattice  Boltzmann  scheme  is  based  on  microscopic  picture  but  it  focuses  on 

averaged macroscopic behavior of the fluid. That gives the simplicity in implementation, clear 

physical picture and fully parallel algorithm. 
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CHAPTER 3

THEORY OF LATTICE BOLTZMANN METHOD

3.1   History of Lattice gas cellular automaton to Lattice Boltzmann Method  

Lattice  gas  cellular  automaton  models  were  the  harbingers  of  LBM.  The  Lattice 

Boltzmann Equation developed in the wake of Lattice gas cellular automaton method and was 

generated precisely  in  response to its  initial  drawbacks.  Simple  cellular  automaton obeying 

nothing but  conservation laws at microscopic  level  can be used to simulate hydrodynamics 

system was first  proposed by Frish,  Hasslacher,  and Pomeau [2]  in  1986. The Lattice gas 

automata  is  based  on  the  simple  evolution  rules  of  occupation  number  ni on  the  lattice. 

occupation number ni is borrowed from statistical mechanics. It represents two states:

ni x , t =0 particle absence at site x , time t ,
n ix ,t =0 particle presence at site x , time t.                (3.1)

The collection of occupation numbers n ix , t  over the entire lattice defines a 6N- 

dimensional time dependent boolean field whose evolution takes place in a Boolean phase-

space consisting of  26N discrete states in the case of FHP hexagonal lattice shown in Fig 

3.1. 

Figure 3.1: FHP Hexagonal  
lattice

1
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4
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0

5



Prescribed evolution rules for this Lattice gas automata should cater two basic mechanism. 

● Free streaming

● Collision

Free streaming consists of simple particle transfers from site to site according to set of 

discrete speeds  c ia . Thus, a particle sitting at site  x at time  t with speed  c ia will 

move to site xcia at time t1. In equations :

n ixc ia , t1=ni x , t .                                                       (3.2) 

This defines the discrete free streaming operator i as

i n i≡ni xc ia , t1−n ix , t .                                                  (3.3) 

Collision operator changes occupation number from  n i to ni
' on the same site. So 

collision operator C in :

n ' i−n i=C in                                                                   (3.4) 

Where n≡[n1 , n2 , ..... , nb]  denotes the set of occupation numbers at a given lattice site. 

So, the final Lattice gas cellular automata update rule follows 

i n i=C i

or
n ixc i , t1=n ' ix , t  ,

                                                              (3.5) 

The equation (3.4) and (3.5)  represent the micro dynamic equation for the lattice gas. 

The Lattice gas cellular automata suffers from a major problem of statistical noise. Like any 

particle particle  method LGCA are exposed to a fair amount of statistical fluctuation [4].

As an alternative approach to Lattice gas automata the Lattice Boltzmann method was 

developed by statistical averaging the dynamics of former method. This was apparently to cure 

the statistical noise present in the Lattice gas automata due to the occupation number ni. The 

earliest LBM was first proposed by G. McNamara and G. Zanetti in 1988, with the explicit intent 

of  curing the statistical  noise problem plaguing Lattice  gas automata [3].  The basic  idea is 
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simple: Just replace the boolean occupation number  n i with the corresponding ensemble-

averaged populations

f i=〈n i〉 ,                                                                                (3.6) 

where  the  brackets  stand  for  suitable  ensemble  averaging.  The  change  in  perspective  is; 

instead of tracking single boolean molecules we follow the time history of a collective population 

representing a microscopic degree of freedom of group of particle. 

The  whole  intension  of  developing  Lattice  gas  cellular  automata  for  hydrodynamic 

simulation was to use use underlaying boolean microdynamics. This would allow the idea of 

“exact computing” since the occupation number is represented by boolean string of 0 and 1. 

LBE is a direct transcription of LGCA microdynamics with the plane replacement  n i f i ,

the  trade-off  is  clear:  noise  is  erased because  f i is  by definition  an averaged,  smooth, 

quantity.   On the other hand , being the real numbers, the f i  are no longer amenable to 

exact Boolean algebra. 

It is interesting to note that LBE is an intermediate step in deriving Navier-Stokes from 

LGCA. Theoretical framework of LBE was based on LGCA models. In other words our basic 

understanding of LBE was restricted by our knowledge of the statistical mechanics of LGCA. 

However X.  He and L.-S. Luo proved that LBE is a finite difference form of the continuous 

Boltzmann  equation  [5,6].  In  next  section  LBE  is  established  on  the  basis  of  Boltzmann 

equation. 

3.2 From the Boltzmann Equation to the lattice Boltzmann Equation

Lattice Boltzmann Equation models evolved from the boolean arithmetic based , the 

lattice gas automata. But the model presented here shows the LBE as a specially discretized 

form of the continues Boltzmann equation in time and phase space. It shows that the LBE is 

finite difference form of the continues Boltzmann equation. We start with Boltzmann equation 

with single relaxation BGK collision operator [7, 8]. 
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3.2.1 Boltzmann Equation and Distribution function

The Boltzmann equation also known as the Boltzmann transport equation, devised by 

Ludwig Boltzmann, describes the statistical distribution of particles in a fluid. It is an equation for 

the time evolution of f ix , p , t  , the particle distribution function in the phase space. Phase 

space here can be viewed as a space in  which coordinates are given by the position and 

momentum vectors at the time. The distribution function f ix , p , t  , gives the probability of 

finding a particular molecule with a given position and momentum. 

3.2.2 Derivation of Lattice Boltzmann Equation

The Boltzmann BGK equation in the form of ordinary differential equation [7,9]. 

∂ f
∂ t

⋅∇ f =−1

 f−g                                                                   (3.7)

Where   f ix , , t  is  the  single  particle  distribution  function,   is  the  microscopic 

velocity,   is  the  relaxation  time  due  to  collision,  and  g  is  the  Boltzmann-Maxwellian 

distribution function: 

g≡ 
2R T D /2 exp [

−−u2

2 R T
]                                                            (3.8) 

In which R is the ideal gas constant, D is the dimension of the space, and  ,u , and T are 

the  microscopic  density  of  mass,  velocity  and  temperature,  respectively.  The  macroscopic 

variables are the (microscopic velocity) moments of the distribution function of f ix , , t  :

=∫ f d =∫ g d ,                                                                     (3.9a) 

u=∫ f d =∫ gd  ,                                                                 (3.9b) 

=
1
2∫−u2 f d=1

2∫ −u2g d  ,                                                    (3.9c) 

In equation (3.9), an assumption of Chapmann-Enskog [9] has been applied: 
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∫ h f x , , t d =∫h g x , , t d  ,                                                 (3.10) 

Where  h  is  a  linear  combination  of  collisional  invariants.  Collisional  invariant  is  a 

microscopic property which does not charge under the effect of collision. 

The energy in equation(3.9), can also be written in terms of temperature T:

=
D 0

2
RT=

D 0

2
N A kB T                                                                                                 (3.11) 

Where  D0 , N A , and k B are the number of degrees of freedom of a particle, Avogadro's 

number, and the Boltzmann constant, respectively. 

3.2.2.1 Discretization of Time

Equation (3.7) can be rewritten in the form of an ordinary differential equation:

Dt f 1


f =1


g                                                                                                              (3.12) 

Dt=
∂
∂ t
⋅∇ is the time derivative along the characteristic line  . The above equation 

can be formally integrated over a time step of t :

f x t , ,t t =e−t /  f x , , t  1


e− t /∫0
 t

e t ' / g x t ' , , tt ' dt '

(3.13) 

Assuming that t is small enough and g is smooth enough locally, and neglecting the terms 

of  order  of  t
2 or  smaller  in  the  Taylor  expansion  of  the  right  hand  side  of  the 

equation(3.13) we obtain

f x t , , t t − f x , ,t =−1

[ f x , ,t −g x , , t] ,

 (3.14) 

Where =/ t is the dimensionless relaxation time.  
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 3.2.2.2 Equilibrium Function g

In the lattice Boltzmann equation, the equilibrium distribution function is obtained by a 

truncated small velocity expansion of often called low-Mach-number approximation [10]. 

g= 
2R T D /2 exp [

−−u 2

2 R T
]

=


2R T D /2 exp[−22RT ]exp[⋅uRT
−

u2

2RT ]
=


2R T D /2 exp[−22RT ]×{1⋅u

RT

⋅u2

2 RT 2
−

u2

2RT }u3
For convenience, the following notation for the equilibrium distribution function with truncated 

small velocity expansion shall be used from now on. 

f eq =


2 R T D/2 exp[−22RT ]×{1⋅uRT

⋅u2

2 RT 2
−

u2

2RT }u3                    (3.15)

Although f eq  only retains the terms up to u2 , it is trivial to maintain high order terms 

of u in the above expansion if necessary. 

3.2.2.3 Discretization of phase space

For  the  discretization  of  phase  space,  we  need  two  consideration.  First,  the 

discretization of momentum space is coupled to that of configuration space such that a lattice 

structure  is  obtained.  This  is a special  characteristic  of  lattice  Boltzmann equation.  Second 

quadrature  must  be  accurate  enough  so  that  not  only  the  conservation  constraints  are 

preserved exactly, but also the necessary symmetries required by the Navier-Stokes equations 

are retained. 

To derive the Navier-Stokes equation from the Boltzmann equation using Chapman-

Enskog analysis, first two order approximation of the distribution function should be considered, 

i.e.  f eq  and  f 1 [9].  Calculating  the  hydrodynamic  moments  of  equation  (3.9)  is 

equivalent to evaluating the following integral in general:
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I=∫ f eq d 

=


2RT D /2∫exp[−22RT ]×{1⋅uRT

⋅u2

2RT 2
−

u2

2RT }d                     (3.16)

Where  is a polynomial of  . The above integral has following structure:

∫e− x2xdx ,

which can be calculated numerically with Gaussian-type quadrature. Our objective is to use 

quadrature to evaluate hydrodynamic moments  , u , and T . 

To recover the two dimensional 9-velocity LBE model on square lattice space, if we use 

following values for  :

m, n= x
m y

n ,

where x and y are the x and y components of  . The integration of equation (3.16) 

using these values gives us the following equation for the equilibrium distribution function for 

two dimensional, 9- velocity LBE model:

f 
eq =w{13e⋅u

c2

9 e⋅u

2

2 c4
−3u2

2c2 }                                                                  (3.17)

Where weights,

w=4/9, =0
w=1/9, =1,2,3,4
w=1/36, =5,6,7,8

                                                                                             (3.18)

and microscopic velocities

e=0, 0 , =0
e=cos , sinc =−1/2 =1,2,3,4
e=2 cos , sinc =−1/2/ 4 =5,6,7,8

                       (3.19)

Here is c=3RT=x / t or RT=cs
2=c2/3 where cs is the sound speed of the model. 

Here  the  phase  space  is  discretized  in  to  a  square  lattice  space  with  a  lattice  constant 
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x=3RTt . It should be noted that temperature T has no physical significance since we 

are dealing with isothermal model. 

Following  the  same  procedure  different  configuration  for  the  phase  space  can  be 

achieved. For example two-dimensional 6-velocities and 7-velocities triangular lattice can be 

constructed.  Similar  way  three  dimensional  27  velocities  square  lattice  model  can  be 

constructed. 

3.3 Lattice Boltzmann Equation to Navier Stokes equation

Application of Taylor series expansion of the lattice Boltzmann equation followed by the 

a  Chapmann-Enskog  expansion  results  in  the  typical  hierarchy  of  equation;  Euler,  Navier-

Stokes, Burnett, etc. By selecting the appropriate number of speeds and the appropriate form of 

the  equilibrium distribution  function,  one  may match  the  equations  that  result  from the  LB 

method with those of the traditional kinetic theory to the desired level. Higher order terms that 

are not matched represent behavior of the lattice gas that differs from a Maxwellian gas. The 

Chapmann-Enskog theory yields correct behavior to the Euler level but the Navier-Stokes level 

is valid only in incompressible limit. In other terms, the incorrect terms become small as the 

square of the Mach number becomes small. Here we should a make note that in these models 

only mass and momentum are conserved.  So we are discussing isothermal  incompressible 

applications.  Complete  energy  conserving  models  can  yield  the  correct  form  of  the 

compressible continuity, momentum and energy equation. We limit our discussion to isothermal 

incompressible LB schemes with low Knudsen number and Mach number limit. 

This section provides a description of the Chapmann-Enskog expansion of the discrete-

velocity Boltzmann equation and application of the lattice Boltzmann discretization.  We are 

using BGK collision operator where  is relaxation parameter, which is inversely proportional 

to density. With this condition discrete velocity Boltzmann equation becomes : 

∂ f i

∂ t
e i⋅∇ f i=

−1

 f i− f i

eq                                                                                      (3.20)
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Macroscopic flow variables are defined by moments of distribution function: 

Mass,

≡∑
i

f i;                                                                                                          (3.21)

Momentum,

u≡∑
i

f i⋅e i .                                                                                                    (3.22)

The Chapmann-Enskog procedure is based on a double expansion in the smallness parameter 

of both dependent f ix , t  and independent space time variable. This method requires the 

expansion of  the distribution function in the small  parameter such that  f i≡ f 0 f 1 ... , 

where subscript 0 denotes local equilibrium  f 0= f eq  and subscript 1 departure from this 

local  equilibrium.  So  for  Chapmann-Enskog  procedure  other  differential  operators  will  be 

evaluated like following:

f i= f i
0 f i

12 f i
2... ,

∂
∂ t

= ∂
∂ t 1

2 ∂
∂ t 2

... ,

∂
∂ x

= ∂
∂ x1

,

                                                                                            (3.23)

It is already shown that to first order in   we have the following continuity and momentum 

equation [2]. 

∂
∂ t

∇⋅u=0,                                                                                                           (3.24) 

∂
∂ t

u∇⋅=0,                                                                                                    (3.25)

where =01 ;0 and 1  are the equilibrium and non-equilibrium momentum 

flux tensors, respectively, and are defines as,
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
 l =∑

i
ei e i f i

l 
                                                                                                       (3.26)

with l=0,1. 

If we use value of f 0= f eq from equation (3.17) and other values in equation (3.18-3.19). 

The above yields ,


0= puu                                                                                                      (3.27)

where p is the pressure, p=/3, the equation of state for an ideal gas with constant sound 

speed, C s=1/3. First term on the right hand side of the equation (3.27)  is isotopic part of 

this tensor, with pressure term. Second term on the right hand side of the equation (3.27) gives 

the Galilean invariant convective term in momentum equation. 

Using the standard Chapmann-Enskog procedure, 1 can be calculated,


1=−∇ u∇ u                                                                                 (3.28)

The resulting momentum  equation is, 


∂u

∂ t
∇⋅uu=−∇  p∇⋅∇u∇ u

or


∂u

∂ t
u

∂u

∂ x

=− ∂ p
∂ x

∂
∂ x  ∂u

∂ x 

u
∂
∂ x

u
∂
∂ x 

 ∂
∂ x ∂ u

∂ x

∂ u

∂ x ,

                                      (3.29)

where  =
3 is the kinematic viscosity in first equation. Note that these equations are not 

standard Navier-Stokes equations. In the second equation, the second term on the right hand 

side has derivatives of density. If these gradients of density are negligible, then this discrete 

lattice  Boltzmann  equation  should  behave  like  Navier-Stokes  equations.  If  we  make  an 

assumption of  low Mach number  then Navier-Stokes equation can be recovered  in  nearly 
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incompressible  limit  i.e  M=u /C s≪1 and u ' ~ ' ~ p ' ~M 2 .  Where  primes 

quantities denotes fluctuations. 

3.4 Lattice Boltzmann BGK model

In this section all  the possible lattice  structures are  presented and there constants. 

Lattice Boltzmann equation with single relaxation time BGK collision operator can be written as 

following:

f ixei , t1− f i x , t =−1
  f ix , t − f i

eq x , t                                                (3.30)

where, f i
eq =wi{13e i⋅u

c2

9 e i⋅u 

2

2c4
−3u2

2c2 }                                                       (3.31)

With hydrodynamic moments are, 

=∑
i

q

f i , and u=∑
i

q

f ie i .                                                                                    (3.32)

It should be noted here that since equation (3.30) has a Lagrangian nature in space 

discretization, and because of the implicit nature in the time, the discretization error in equation 

(3.30) has a special form which can be included in viscosity terms. It turns out that equation 

(3.30) is a secind order method both in space and time, if replace   by, 

=2−1
6                                                                                                                       (3.33)

i.e., the truncation error can be absorbed into the viscosity to increase the accuracy of lattice 

Boltzmann method. 

There  are  different  types  of  lattice  structures.  With  substituting  corresponding 

parameters in equation (3.30 – 3.33) different lattices can be constructed. These parameters 

are shown in table (3.1)
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              Table 3.1 Parameters of some DnQm BGK lattices

Lattice Name C s
2 Weight w i

D1Q3 1/3 4/6
1/6

D1Q5 1 6/12
2/12
1/12

D2Q9 1/3 16/36
4/36
1/36

D3Q15 1/3 16/72
8/72
1/72

3.5 Summary

In  this  chapter  theoretical  development  of  lattice  Boltzmann  is  discussed.  Lattice 

Boltzmann  equations  are  hyperbolic  subset  of  the  Navier-Stokes  equations.  It  is  a  simple 

advection and diffusion equation. As opposed to nonlinear u∇ u convective term in Navier 

Stokes equation, LBE has a linear streaming operator. 
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CHAPTER 4

COMPUTER IMPLEMENTATION OF LATTICE BOLTZMANN METHOD

4.1 Introduction

Focus of this chapter is use of lattice Boltzmann as a computational fluid dynamics tool. 

Having  discussed  theory  of  lattice  Boltzmann  equation  in  previous  chapters,  mathematical 

implementation of this method is discussed in this chapter.  Lattice Boltzmann equation with 

single relaxation time BGK approximation is following,

f ixe i t , t t − f i x i , t =−1
 [ f ix ,t − f i

eq x , t ]                                    (4.1)

where  is  relaxation  time  and  f eq is  equilibrium  distribution  function.  It  is  a  general 

practice to divide equation (4.1) in to two steps: collision and streaming

collision step : f i
t x , t t = f ix ,t −1

 [ f i x i , t − f i
eqx ,t ]                            (4.2a)

streaming step: f ixe i t , t t = f t x , t t  ,                                               (4.2b)

Where f i
t x , t t  is post collision distribution function. It should be noted that with such a 

splitting in the computational procedure, there is no need to store both  f i
t x , t t  and 

f ix ,t 

4.2 Lattice Boltzmann Algorithm and its Computer Implementation

4.2.1 Lattice Boltzmann algorithm and accuracy

In  this  section  general  computer  implementation  of  lattice  Boltzmann  method  is 

explained. In this section computer coeds are given with the appropriate part. The algorithm 

consists of iterative procedure using equation (4.2). 

In a numerical  simulation,  the distribution functions  f i  are stored in  q  single  or 

double precision floating point variables. This means that additionally to the precision trade off 
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due to the discretization of the 6-D phase space and the time, one introduces a numerical error 

due to the fixed-width representation of real numbers. In its current form, the model has actually 

a numerical deficiency that may keep the latter numerical error needlessly high. This is because 

we store the sum of both large and small numbers in the same variable. This is because we 

store the sum of both large and small  numbers in the same variable.  The density  can 

namely  be  split  in  two  contributions: 0
dyn ;0  is  the  constant  density  of  the 

incompressible flow, and dyn , a measure of the pressure variations, scales at at a second 

order  with  respect  to  the  Mach  number  of  the  system.  For  low  Mach-number  flows,  the 

contribution  dyn can therefore not be stored in the variable with sufficient accuracy.  The 

same is true for the variables f i
eq  that contain contributions at several orders of magnitude. 

This situation can be improved by simulating the dynamics of  f i
dyn= f i−0 ti  instead of 

f i . They have the same dynamics as the f i :

f i
dyn xe i t , t t − f i

dynx , t =− f i
dyn x , t − f i

dyn ,eq x , t                          (4.3)

where ,

f i
dyn ,eq= f i

eq−0wi=
dyn w iwi3ei⋅u

9
2
e i⋅u

2−3
2
|u |2 ,                                (4.4)

dyn=∑
i

9

f i
dyn , =dyn0 and u=∑

i

9

e i⋅ f i
dyn                                                        (4.5)

In a simulation, the value of  0  is fixed when you implement the initial and the boundary 

conditions. In the following, we will always work with f i
dyn  , but we skip the superscript (dyn). 

Finally, we implement the dynamics in a slightly different form in which the following discussion 

of the numerical implementation is simplified. For this, the f i  are renamed to f i
in  , and 

we introduce the temporary variables f i
out . The dynamics consists then of
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a collision step: f i
out=1− f i

in f i
eq

a streaming step: f i
inxei t , t t = f i

out x , t 

It is interesting to note that the collision step is purely local, that means, it involves no transfer of 

information  between  lattice  cells.  The  streaming  step  on  the  other  hand  involves  no 

computations,  but  performs only  copies between adjacent  cells.  This  clear  distinction helps 

writing simple codes with advanced features such as parallel program execution.

4.2.2 Computer implementation

Simulations of fluid dynamics are resource consuming, both in the usage of CPU time 

and memory storage. It is therefore crucial to design the code in such a manner as to allocate 

as little memory as possible, and to arrange the variables in memory in an appropriate way. 

During accesses to the central memory, data chunks are regularly pre fetched into the cache, 

where they should be utilized as extensively as possible, thus avoiding new accesses to the 

central memory. A good result is for example obtained when you are able to traverse linearly 

through  contiguous  memory  chunks  during  the  execution  of  the  program.  For  this  matter 

distribution functions are stored in multidimensional arrays as shown below. 

Arrays to store velocity and density can be avoided in order to save memory. Those quantities 

can be computed locally and can be stored in double precision variable at each collision step. 

The lattice constants are stored in a constant,  globally accessible array,  as in the following 

example for the D2Q9 lattice:

They are stored as constants as to avoid any possible change during the execution.

 double f[lx][ly][q]; // lx * ly * q double-precision matrix (2D case)
 double f[lx][ly][lz][q]; // lx * ly * lz * q double-precision matrix (3D case)

// lattice weights
static const double w[9] = { 4./9., 1./36., 1./9., 1./36., 1./9., 1./36., 1./9., 1./36., 1./9. };

// lattice velocities
static const int c[9][2] = {
{0,0},{-1,1}, {-1,0}, {-1,-1}, {0,-1},{1,-1}, {1,0}, {1,1}, {0,1}};
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4.2.2.1 Collision step

In  order  to  carry  out  collision  step,  we  need  equilibrium  distribution  function.  To 

calculate value of distribution function we need values of  density  and velocity u calculated 

from distribution functions from the last time step. We can calculate density  locally, making 

a function as following. We can do the same thing to calculate velocity u locally.

Once density and velocity is determined, equilibrium distribution function can be calculated in a 

function as following. 

 // Compute the local particle density on a lattice site
 void computeRho(double f[q], double* rho) {
 int iF;
 *rho = 0.;
 for (iF=0; iF<q; ++iF) {

rho += f[iF];
}

 }

 // Compute the local flow velocity, and its norm-square on a lattice site
 void computeU(double f[q], double rho, double u[d], double* uSqr) {
 Int iD, iF;
 *uSqr = 0.;
 for(iD=0; iD<d; ++iD) {

u[iD] = 0.;
for (iF=0; iF<q; ++iF) {

u[iD] += f[iF] * c[iF][iD];
}
u[iD] /= rho;
*uSqr += u[iD]*u[iD];
}

 }

 // Compute local equilibrium term from rho and u
 double fEq(int iF, double rho, double u[d], double uSqr) {
 int iD;
 double c_u = 0.; // scalar product between c_{iF} and u
 for (iD=0; iD<d; ++iD) {

c_u += c[iPop][iD] * u[iD];
 }
 // remember that we are working with f̂ {dyn} = f-rho0
 return rho*w[iPop] +
 (rho+rho0)*w[iPop]*(3.*c_u + 4.5*c_u*c_u - 1.5*uSqr);
 }
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Once we have value of equilibrium distribution function we can carry out BGK collision step. 

4.2.2.2 Streaming step

The implementation of the streaming step contains a subtlety. Suppose the values of 

f ¿  and f out  were stored in two different arrays. Then the streaming step, applied to all 

lattice sites would be straightforward:

This does not work though when fIn and fOut are identical, because during the loop traversal, 

one overwrites values that are still needed further ahead. There are several possible solutions 

to that problem, the one shown here proposes to store the values of f in  and f out  in the 

same  collection  of  q  population  functions,  but  at  a  different  index.  For  this,  we  define  an 

opposite opp(i) of an index i [0 · ·· q −1]  in such a way that copp i =−c i. . That means 

that all the f’s must be swapped after collision:

 // Apply the BGK collision step on a lattice site
 void bgkCollideSite(double f[q]) {
 double rho, u[d], uSqr;
 int iF;
 computeRho(f, &rho);
 computeU(f, rho, u, &uSqr);
 for (iF=0; iF<q; ++iF) {

f[iF] *= (1.-omega);
f[iF] += omega * fEq(f, iF, rho, u, uSqr);
}

 }

 // streaming step, version using a temporary array
 void stream2D(double fIn[lx][ly][q], double fOut[lx][ly][q]) {
 int iX, iY, iF, nextX, nextY;
 for (iX=0; iX<lx; ++iX) {

for (iY=0; iY<ly; ++iY) {
for (iF=0; iF<q; ++iF) {

nextX = iX + c[iF][0];
nextY = iY + c[iF][1];
if (nextX>=0 && nextY>=0 && nextX<lx && nextY<ly) {
fIn[nextX][nextY][iF] = fOut[iX][iY][iF];
}

}
}

 }
 }
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So streaming step using a single array:

4.2.2.3 Final code

 // swap two double precision values
 void swap(double* val1, double* val2) {
 double tmp = *val1;
 *val1 = *val2;
 *val2 = tmp;
 }
 // apply this step after the collision step, to store fOut in the opposite
 // location of fIn
 void swapAfterCollision(double f[q]) {
 int iF;
 for (iF=1; iF<q/2; ++iF) {

swap(&f[iF], &f[iF+q/2]);
}

 }

 void stream2D(double f[lx][ly][q]) {
 int iX, iY, iF, nextX, nextY;
 for (iX=0; iX<lx; ++iX) {

for (iY=0; iY<ly; ++iY) {
for (iF=1; iF<q/2; ++iF) {

nextX = iX + c[iF][0];
nextY = iY + c[iF][1];
if (nextX>=0 && nextY>=0 && nextX<lx && nextY<ly) {
swap(&f[iX][iY][iF+q/2], &f[nextX][nextY][iF]);
}

}
}

     }
 }

 // Execute one BGK iteration step (without boundary conditions)
 void bgkIteration(double f[lx][ly][q]) {
 int iX, iY;
 // Apply collision over entire space
 for (iX=0; iX<lx; ++iX) {

for (iY=0; iY<ly; ++iY) {
bgkCollideSite(f[iX][iY]);
swapAfterCollision(f[iX][iY]);

}
 }
 // Apply streaming over entire space
 stream2D(f);
 }
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Final code using above mentioned procedure will look like this. It is worth noting here that no 

boundary condition has been implemented. In a case with boundary conditions, collision step is 

the place to introduce it.

4.3 Choice of units in simulation setup

When simulating real life fluid dynamics, all the variables and simulation parameters are 

represented in the form of physical unit. On the other hand lattice Boltzmann models express 

everything in terms of lattice units. To use lattice Boltzmann method effectively for CFD, one 

should translate physical unit to lattice unit and vice versa. In this section a simple procedure is 

discussed to achieve this translation. 

The approach presented here consists of two steps. A physical system is first converted 

into  a  dimensionless  one,  which  is  independent  of  the  original  physical  scales,  but  also 

independent of simulation parameters. In a second step, the dimensionless system is converted 

into a discrete simulation. The correspondence between these three systems (the physical one 

(P), the dimensionless one (D), and the discrete one (LB) ) is made through dimensionless, or 

scale-independent numbers. The solutions to the incompressible Navier-Stokes equations for 

example depend only on one dimensionless parameter, which is the Reynolds number (Re). 

Thus,  the three systems (P),  (D),  and (LB) are  defined so as to  have  the same Reynolds 

number. The transition from (P) to (D) is made through the choice of a characteristic length 

scale l 0  and time scale  t 0 , and the transition from (D) to (LB) through the choice of a 

discrete space step x and time step t. 

For example we want to simulate flow in a cavity. For this, a length scale l 0  and a 

time scale t 0 are introduced which are representative for the flow configuration. The length

l 0   could length or width of the cavity, and  t 0 could be the time needed by a passive 

scalar in the fluid to travel a distance l 0  . The physical variables such as the time t p  and 

the position vector x p , are replaced by their dimensionless counterparts:
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t d=
t p

t 0, p
and xd=

x p

l 0, p
                                                                                               (4.6)

where the dimensionless Reynolds number has been defined as

Re=
l 0
2

to
                                                                                                                         (4.7)

Note  that  by  expressing  reference  variables  in  the  dimensionless  system,  one  finds  that 

l 0,d=1 and  t 0,d=1  .  One  may  therefore  consider  the  dimensionless  system as  the 

system in which  l 0  and  t 0  are  unity.  It  is  worth  mentioning that  the viscosity  in the 

dimensionless system is  d=1/Re .  Now dimensionless space  can  be  discretized.  The 

discrete space interval  x  is defined as the reference length divided by the number of cells 

N  used to  discretize  this  length.  In the same way,   t  is  defined as the reference time 

divided by the number of iteration steps Niter needed to reach this time.

 x=
l d ,0

N

 t=
t d , 0

N iter

                                                                                                                        (4.8)

Other  variables,  such as velocity  and viscosity,  are  easily  converted between (D) and (LB) 

through a dimensionless analysis:

ud=
 x
 t

u lb

l=
1
Re

=
x
2

 t
lb

                                                                                                              (4.9)

So, if we take u0=l 0/ t o we find 

u0,d=1 and u0, lb= t / x                                                                                       (4.10)

24



There is no straightforward intuitive way to chose  t . In other numerical schemes 

than LB,   t  is often linked to   x  by stability considerations. In explicit time-stepping 

schemes, it is common to use the relation  t ~ x2  to keep the model numerically stable.

4.4 Differences between LBE and other CFD methods

As a CFD tool lattice Boltzmann method differs from other CFD methods in various 

aspects. There are two major differences. They are mentioned below.

4.4.1 Convection

One major  difference is  absence of  convective  non-linear  term in  lattice  Boltzmann 

method.  Other  Navier-Stokes  based  CFD  methods  has  to  inevitably  treat  the  non  linear 

convective term  u⋅∇ u ; .  In lattice Boltzmann this nonlinear convection simply becomes 

advection in linear streaming step. Non linearity of the convection is absorbed in to the collision 

term. 

4.4.2 Pressure

In traditional CFD methods, for the incompressible Navier-Stokes solver, pressure is 

calculated  by  solving  Poisson's  equation.  While  in  the  case  of  lattice  Boltzmann  method 

pressure is determined from equation of state. 
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CHAPTER 5

BOUNDARY CONDITIONS

5.1 Introduction

Boundary  conditions  and  Initial  conditions  are  essential  for  any  computational  fluid 

dynamic  methods.  For  traditional  CFD  methods,  for  every  boundary  and  initial  conditions 

Navier-Stokes equations has a unique solution. There are different types of boundary conditions 

depending on the problem description and given data. 

One major difficulty with implementation of boundary conditions in LB is, one has to 

translate given information from macroscopic variables to distribution function f i , since it is 

the only variable to be evaluated in lattice Boltzmann method. In this section various types of 

boundary conditions are discussed and how to implement them in terms of lattice Boltzmann 

equations. 

5.2 Boundary Condition

 5.2.1 Dirichlet Boundary Conditions

Dirichlet  class  of  boundary  conditions  are  probably  the  simplest  types  of  boundary 

conditions in  terms of  mathematics and implementation.  These kind of  boundary conditions 

specifies value of the solution or other variable on the boundary.  In this section we discuss 

various methods to implement Dirichlet boundary condition. Following discussion is considering 

D2Q9 square lattice. 

5.2.1.1.Velocity Boundaries

For  example  consider  a  boundary  node  in  figure  5.1.  Boundary  is  aligned  with  x 

direction. Distribution functions f 4 , f 7 , f 8 are inside the wall. While f 3 , f 0 , f 1 are on 

the  wall.  After  streaming  f 0 , f 1, f 3, f 4 , f 7, f 8 are  known.  Suppose  that  x  and  y 
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components of  velocity  ux and u y are specified on  the  wall.  We can  use hydrodynamic 

moments to determine the values of f 2, f 5, f 6 and  .

We can express fluid density in following manner 

=∑
i

9

f i

So , f 2 f 5 f 6=− f 0 f 1 f 3 f 4 f 7 f 8 ,
                                                 (5.1)

u=∑
i

9

f i e i

So , f 5− f 6=u x− f 1− f 3− f 7 f 8
                                                                       (5.2)

and u y= f 2 f 5 f 6− f 4 f 7 f 8 ,
So ,  f 2 f 5 f 6=uy f 4 f 7 f 8.

                                                                  (5.3)

Comparing equation (4.1) and (4.3) we get

= 1
1−uy

[ f 0 f 1 f 32 f 4 f 7 f 8]                                                                     (5.4)

However f 2, f 5 and f 6 remain undetermined. If we assume that bounceback rule is still 

holds true then,

Figure 5.1 : Boundary node aligned with X direction
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f 2= f 4
2
3
u y ,

f 5= f 7−
1
2
 f 1− f 3

1
2
ux

1
6
uy ,

f 6= f 8
1
2
 f 1− f 3−

1
2
ux

1
6
uy.

                                                                       (5.5)

The collision is applied to all boundary nodes. The same boundary conditions can be developed 

for other walls as well. The above described scheme is also known as Zou and He boundary 

conditions suggesting the name of the original author who proposed this idea [14]. 

The only difficulty with this approach is orientation of the wall. All boundaries can not be 

treated with the same equations. While implementation of lattice Boltzmann method one has to 

take care of the different walls using different equations. To overcome this shortcoming there 

have  been  some  new methods  based  on  extrapolation  principal  are  proposed  [12].  These 

methods will be briefly discussed later in this chapter. 

5.2.1.2 Pressure boundaries

Pressure  boundary  conditions  are  essentially  specify  density  on  the  boundaries  in 

lattice Boltzmann methods. In lattice Boltzmann method pressure is defined by the equation of 

state p=/C s
2. Where C s=RT is speed of sound. Consider the figure 5.2

Figure 5.2: D2Q9 lattice on inlet

28

1

5

8

3

4

2
6

7x

y

x



Pressure is to be specified on the flow boundary, in this case it is inlet. Pressure should be 

specified along the y direction on the inlet, and that  u y  is also specified. After streaming, 

f 2, f 3, f 4, f 6, f 7  are known, in addition to =in , uy=0. We need to determine u x

and f 1, f 5, f 8 as follows.

f 1 f 5 f 8= in− f 0 f 2 f 3 f 4 f 6 f 7 ,                                                        (5.6)

f 1 f 5 f 8= inu x f 3 f 6 f 7                                                                              (5.7)

f 5− f 8=− f 2 f 4− f 6 f 7                                                                                          (5.8)

Comparing equation (5.6) and (5.7) we get,

u x=1−
[ f 0 f 2 f 42 f 3 f 6 f 7]

in
                                                                      (5.9)

If  we  use  bounceback  rule  for  the  non-equilibrium  part  of  the  particle  distribution 

function, normal to the inlet, to find f 1− f 1
eq = f 3− f 3

eq . With f 1 known, f 5, f 8 are 

obtained by the remaining two questions: 

f 1= f 3
2
3
in ux

f 5= f 7−
1
2
 f 2− f 4

1
6
inux ,

f 8= f 6
1
2  f 2− f 4

1
6 inux.

                                                                                 (5.10)

The corner node at the inlet needs some special treatment. Take the bottom node at 

the  inlet  as  an  example.  After  streaming,  f 3, f 4, f 7 are  known,   is  specified,  and 

u x=u y=0. We need to determine f 1, f 2, f 5, f 6, f 8. We use the bounceback rule for the 

non-equilibrium particle distribution function normal to the inlet and the boundary to find

f 1= f 3 f 1
eq − f 3

eq= f 3,
f 2= f 4 f 2

eq− f 4
eq= f 4

 

(5.11)
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using f 1, f 2 in equations (5.7) and (5.8), we find 

f 5= f 7, f 6= f 8=
1
2 [ in− f 0 f 1 f 2 f 3 f 4 f 5 f 7]                                    (5.12)

We can repeat the same procedure for top inlet node and outlet nodes. 

The specification of velocities  u x , uy at a flow boundary is actually equivalent to a 

velocity  wall  boundary  condition.  The  effect  of  specifying  velocity  at  the  inlet  is  similar  to 

specifying pressure at the inlet, since both conditions will generate a density difference in the 

flow.

5.2.2. Curved and other complex boundaries

Boundary condition implementation methods presented in the last sections are effective 

for the simple geometries and boundaries. They yield second order accuracy [13]. However 

these  schemes  can  not  be  extended  for  complex  geometries  and  other  types  of  complex 

boundaries such as porous media, moving boundaries. 

In this section an extrapolation scheme is discussed for curved boundaries. This section 

is  largely  based on reference [13].  This  scheme can be extended for  other  more  complex 

boundaries as well. Consider a curved boundary shown in figure 5.3. Here we are considering 

velocity boundary condition.

As shown in  figure  5.3.  ,  the link  between the fluid  node  X f and the wall  node 

X w interacts the physical boundary at  X b , and  X f =X we i . The fraction of the 

intersected link in the fluid region is =〚X f−X b〛/〚X f−X w 〛 . This scheme is based 

on specifying unknown distribution after the streaming with, decomposing it in to two parts just 

as Chapmann-Enskog analysis: where  f i
eq  and f i

ne are the equilibrium and unsteady 

part of  the distribution function respectively.  Guo et  al.  2002 suggested a fictitious value of 

equilibrium part as following [13]. 
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Figure 5.3: Curved boundary

f eq  X w=wi[ w0 ei⋅uw

cs
2 

ei⋅uw
2

2cs
4 −

uw
2

2cs
2 ]                                                       (5.13)

where ≡ X w is an approximation of w≡ X w ,  and uw is an approximation of 

uw=u X w  to be chosen. Note that the LBM can be viewed as a special finite difference 

scheme for the discrete Boltzmann equation [15].  With this knowledge it  is reasonable to a 

determine uw by a linear extrapolation using,

uw=uw1≡ub−1u f /
or

uw=uw2≡ub−1u ff / 1
                                                                             (5.14)

It is usually more accurate using uw1 than using uw2 to approximate uwf since X f is 

closer to X w than X ff . It should be noted here that if  is small, the denominator in 
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the  expression  of  uw1 will  be  too  large,  and  it  will  lead  to  numerical  instability  in  the 

computation. Therefore, it is better to use uw=uw1 for ≥0.75 . Based on the expression 

of shear viscosity  , we can obtain that M=u0/C s=C s Re −0.5 /L , where u0  

and  L are characteristic velocity and length, respectively, and Re is the Reynold's number. Now 

if we choose  such that C s Re −0.5/ L=1 , then Mach number M is of the same 

order of the lattice spacing   . It  is well  under stood that in the incompressible limit,  the 

density fluctuation is of order M 2 , therefore w=wM 2 . From this we can 

conclude the following :

f i
eq xw − f i

eq xw =
2                                                                                         (5.15)

To determine the non-equilibrium part, same procedure can be followed. Finally post collision 

distribution function at the boundary can be prescribed as 

f i X we i t ,t t = f i
eq X w ,t 1−−1 f i

ne X w ,t .                                    (5.16)

This boundary condition scheme is second order in space and time. There are other schemes 

as well based on idea of finite difference type extrapolation [12].

5.2.3 Neumann boundary condition

Neumann type boundary conditions specifies the value of  derivative  of  the solution 

takes at the boundaries. Since lattice Boltzmann equation is evolution of distribution function in 

discrete space and time, It becomes difficult to apply Neumann boundary in terms distribution 

function. As explained in last two sections Dirichlet boundary conditions for lattice Boltzmann 

equations are very well studies. If we can represent derivatives in terms of Taylor's expansion 

and then we can find the solution on the boundary using extrapolation, we should be able to use 

Neumann condition. To explain this scheme we use an example. Suppose we want to impose 

following boundary condition.

n⋅∇ u  |∂=0,                                                                                                                (5.17)
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Where u is velocity,  n is normal vector pointing outwards the computational domain 

and  ∂ is the boundary. For simplicity let us assume  n=−1,0. So equation (5.17) 

reads,

∂x u |∂=0.                                                                                                                       (5.18)

Consider the following figure. Lets say wall is situated at x0 for all y. The value of u for x>x0 is 

known. 

Figure 5.4: Neumann boundary

To  use  the  Dirichlet  boundary  condition  to  apply  Neumann  boundary  let  us  do  a  Taylor 

expansion of u up to second order. 

u x0 x=ux0x u '  x0
x2

2
u ' '  x0x

3                                                       (5.19)

u x02x=u x02xu ' x02x
2u ' ' x0 x3                                                 (5.20)

We want to impose ∂x u |∂=0. We have two equations and two unknowns. We can solve 

for,

u x0=
4u x01−u x02

3
.                                                                                     (5.21)

Now  imposing  this  velocity  as  a  Dirichlet  boundary  condition  we  can  ensure  Neumann 

boundary.
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CHAPTER 6

NUMERICAL RESULTS

6.1 Introduction

In this chapter numerical results of lattice Boltzmann method are presented. They are 

compared with analytical solutions or numerical solutions using another methods such as finite 

difference or finite element. Comparison is made and, it is shown that lattice Boltzmann method 

gives  satisfactory  results  within  given  range  of  Reynold's  number  for  incompressible  flows. 

Mainly two numerical studies are conducted 1. Poiseuille flow and 2. lid driven cavity flow. For 

both the problems considered lattice Boltzmann yields satisfactory results.  In the end small 

description of error in lattice Boltzmann is given. 

6.2 Poiseuille Flow

Poiseuille flow is an incompressible flow between two parallel stationary plate. In an 

incompressible  fluid  Poiseuille  flow is  created  between two  stationary  walls  when pressure 

gradient or body force is aligned with the walls. Numerical simulation for plain Poiseuille flow 

driven by either a pressure gradient or a fixed velocity profile at the entrance of channel were 

carried out to test the validity of the lattice Boltzmann method. Since the analytical solution to 

Poiseuille  flow is available it  is  an ideal  case to check the validity  of  the lattice Boltzmann 

equations. 

6.2.1 Problem setup

At the entrance of channel, two types of boundary conditions are implemented. One is 

constant pressure boundary condition, other is a fixed velocity profile. At the outlet , a constant 

pressure boundary condition is applied. 

The velocity solution of the incompressible Navier-Stokes equations corresponding to 

Poiseuille flow is,
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u  y=u0[1− y
l 

2]                                                                                                          (6.1)

Where u0 is the maximum velocity. l Is width of the channel. u0 can be determined by,

u0=2 F L2/ , where  is kinematic viscosity. The channel width is 2L. The distribution 

function f i is evolved by the standard procedure of streaming and collision. In addition, the 

momentum  in  channel  direction  is  incremented  by  adding  the  amount  F to f 1 ,  and 

subtracting it  from  f 3 .  On the top and bottom No-slip  condition was implemented.  The 

density on this boundaries was set to 2.7. 

For  pressure  inlet  condition  inlet  pressure  (density)  was  set  to  2.0  and  outlet  1.0. 

Relaxation parameter   was  another  variable.  For  the range of  0.710.0 results 

were found matching well with the analytical solution. All the results presented here were taken 

once the steady state is achieved. Criteria for steady is

∑ |u x i , t1−u xi , t  |
|u x i ,t  |

≪10−6                                                                                  (6.2)

where summation is over entire system. Figure 6.1 shows the velocity profile of  ux . Here 

ux is normalized with the maximum velocity at the inlet. Grid size used here was 30X6 for 

different values of   . Reynold's number is kept constant to 20.0. Pressure contours along 

the channel are shown in figure 6.2
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Figure 6.1: u(y)/U Analytical and lattice Boltzmann solution

Figure 6.2: Pressure contours

It  should  be  mentioned  here  the  contours  presented  in  the  figure  6.2  are  density. 

Pressure is related to density with the relation p=c s
2=1/3 for d2q9 lattice. The vertical 

component of the velocity,  u y is also observed in this numerical experiments. In all cases it 

was found to be less than 10−6 . 

All the numerical results agree with the analytical results of the Navier-Stokes equation 

within the machine accuracy. This is not a surprise since lattice Boltzmann model should work 

well under the condition that Mach number M<<1.  
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6.3 Cavity Flow

The problem considered is two-dimensional viscous flow in a cavity. An incompressible 

fluid is bounded by the a square enclosure and the flow driven by a uniform translation of the 

top wall.  Schematic example is given in figure 6.3. 

Figure 6.3: Cavity flow

The fluid motion generated in this cavity is an example of closed streamline problems 

that  are  of  theoretical  importance  because  they  are  part  of  the  broader  field  of  steady, 

separated  flows.  Cavity  flow is  a  very  standard  benchmark  problem for  CFD.  Most  of  the 

conventional numerical solution to this problem use vorticity -stream function formulation and 

discretize the incompressible Navier-Stokes equation using finite difference[16], multi grid[17] 

and finite element[3] method and there variations. Most of the validation done here is based on 

work presented in reference [4]. Results are validated against the results of Ghia et al. [17].  

Present numerical study has been carried out for a wide range of Reynold's number. 

Reynold's number used are from 100, 400, 1000,2000, 5000, and 7500. Various properties such 

as stream function, pressure contours, velocity profiles etc. against the reference [17]. 

6.3.1. Boundary Conditions and configuration 

Boundary condition for lid driven cavity flow are simple. On the top wall sliding wall or 

Dirichlet velocity boundary conditions were applied. On other walls Dirichlet velocity boundary 

37



condition with zero normal velocity component were applied. Configuration for the boundary 

conditions are shown in figure 6.4 

Figure 6.4 : Boundary condition for cavity flow

For the Re = 100, mesh size used was 60x60. For other Reynold's number different 

configuration  were  used.  For  Re  =  400,1000  128x128  mesh  size  was  used.  For  all  other 

Reynold's number 257x257 mesh size was used. Initially the velocities at all nodes except the 

top nodes, are set to zero. The x-velocity of the top is U and y velocity is zero. Uniform fluid 

density =2.7 was imposed  initially. 

The Reynold's number used in the cavity simulation is  Re=U LN / . Where U is 

the uniform velocity at the top wall.  LN Is the number of lattice units along any one side of 

the square cavity. In next section results are discussed. 

6.3.2 Stream Function

Figure 6.5 a – f  (on next  page) show plot  of  the stream function for the Reynold's 

number considered. It is apparent that flow structure is in good agreement with the previous 
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a. b.

c. d.

e. f.

Figure 6.5:Streamlines for a). Re=100 b). Re=400 c). Re=1000 d). 2000 e).5000 f).  
Re =7500
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work of Ghia et al. [17]. These plots give a clear picture of the over all flow pattern and the effect 

of the Reynold's number on the structure of the steady recirculating eddies in the cavity.  In 

addition to primary center vortex, a pair of counter rotating eddies of much smaller strength 

develop in the lower corners of the cavity. At Re = 2000, a third secondary vortex is seen in the 

upper left corner. For Re>5000, a tertiary vortex in the lower right hand corner appears. 

As Reynold's number increases, the primary vortex center moves towards the right and 

becomes increasing circular. Finally, this center moves down towards the geometric center of 

the cavity as the Re increases and becomes fixed in its x location. The movement of the vortex 

center location versus Re is shown in figure 6.6. 

Figure 6.6: Location of the center of the primary vortex
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For  all  the  results  presented  here  following  steady  state  criteria  was  used. 

∑ |u xi ,t1−u x i ,t  |
|u x i , t  |

≪10−6 .   Considering the kinetic,  unsteady and compressible 

nature of lattice Boltzmann method, the excellent agreement with other established methods 

[17], is quite encouraging. 

6.3.3 Velocity Profiles

Velocity components along a vertical and horizontal center lines for different values of 

Reynold's number is given in figure 6.7-6.8. These results are compared against the results 

presented by Ghia et al [17]. 

0

0.2

0.4

0.6

0.8

1

1.2

u(y)/U vs y 

100 ghia
400 ghia
1000 ghia
5000 ghia
7500 ghia
100 LBM
400 LBM
1000 LBM
5000 LBM
7500 LBM

u(y)/U

y

Figure 6.7: Velocity profile for x velocity through geometric center
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Figure 6.8: Profile of y velocity at the geometric center of cavity

Velocity profiles presented in figure 6.7-6.8 are normalized against top wall velocity U. 

Profiles matches really well with the presented in reference [17] for all given Reynold's numbers. 

6.3.4 Vorticity

The plots are vorticity are given in figure 6.9(a-f). These plots confirms the fact that as 

Reynold's number increases viscous effects are decreasing. It is reflected by the decrease of 

shear  layer.  For  7500  Reynold's  number,  vorticity  contours  in  center  of  cavity  are  nearly 

constant, while viscous effects are confined to thin shear layers near the wall. The thinning of 

the wall boundary layers with increasing Reynold's number is evident from these plots. 
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a. b.

c.
d.

e. f.

Figure 6.9 : Vorticity contours for Re a. 100,b. 400, c. 1000, d. 2000, e. 5000, f. 7500
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6.3.5 Pressure

Pressure contours for different Reynold's numbers are given in the figure 6.10. It  is 

worth noting here that pressure in the lattice Boltzmann method satisfies the equation of state of 

an  isothermal  gas,  given  by  p=c s
2   The  observed  agreement  between  different 

approaches demonstrate that the LBE is valid for simulating incompressible flows.

a. b.

c. d.

Figure 6.10: Pressure contours a. Re = 100, b. Re = 400, c. Re = 5000, d. Re = 7500
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6.4 Sources of Errors

Results presented here matches well with the results given by Ghia et al [17]. At high 

Reynold's  number there are  some variation in  the location of  center  of  primary vortex and 

secondary  vortex.  For  the  secondary  vortex  one  reason  could  be  the  singularities  on  the 

corners. In pressure contours results on the corners are fluctuating. Possible source of errors 

are listed below. 

There is a small compressibility effect present in lattice Boltzmann method. It has been 

shown  that  lattice  Boltzmann  equation  represents  the  Navier-Stokes  equation  in  nearly 

incompressible  limit  for the small  Mach number limit  (M=u/Cs<<1).  For  incompressible fluid 

density is constant. But in lattice Boltzmann simulations density can not be constant, otherwise 

pressure changes can not be described. So in the steady case, the continuity equation lattice 

Boltzmann equation represent  is  ∇⋅u=0. Due to non constant density the velocity  u 

does not satisfy the incompressible continuity equation given by ∇⋅u=0. This could be the 

source of compressibility error in the method. 

6.5 Summary

In this chapter numerical  results for lattice Boltzmann method were presented.  Two 

problems  were  considered.  A  two-dimensional  flow  in  channel  or  Poiseuille  flow  and  two-

dimensional lid driven cavity flow. Results of lattice Boltzmann method closely matches with the 

results from traditional CFD methods. Despite of the lattice Boltzmann method being kinetic in 

nature this  validation is  quite encouraging and leads to a conclusion that  lattice Boltzmann 

method can be used for sub sonic, incompressible CFD applications. 
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