

ERROR CORRECTION METHODS FOR LATENCY-CONSTRAINED

FLASH MEMORY SYSTEMS

by

PRIYANKA ANKOLEKAR

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2008

Copyright © by Priyanka Ankolekar 2008

All Rights Reserved

ACKNOWLEDGEMENTS

 Foremost, I would like to thank my mentors and supervisors, Stephan Rosner at

Spansion Inc. and Dr. Jonathan Bredow at UT-Arlington, without whom I would not have done a

thesis. Dr. Bredow not only supervised my thesis, he agreed to do so from Texas while I was in

California for the entire duration of my work. I would like to thank him for being patient, having

faith in me and providing me with vital guidance all the time. Stephan Rosner shared a lot of his

expertise and insight with me refusing to accept anything less than the best I could do. His

enthusiasm and inspiration was always there when I needed it.

 I wish to thank Roger Isaac and Qamrul Hasan of Spansion for patiently answering all

my questions and for the endless discussions which helped me out of many a tight-spot I

encountered while working on this thesis. There are many others at Spansion whose assistance

I deeply value – George Minassian, Venkat Natarajan, Mark Randolph and Darlene Hamilton. I

would like to specially thank Filomena Mendonsa for brightening up the atmosphere at work.

 I would like to express my appreciation to Dr. A. Davis and Dr. S. Gibbs for helping me

to take this thesis to consummation by being a part of my thesis committee.

 I am tempted to individually thank all of my friends, but the list will be too long and from

fear of leaving someone out, I will simply say thank you all very much. However, Hari deserves

a special thank you for helping me in every way and making my stay in California so easy.

 I cannot finish without saying how grateful I am to Vinayak for making me laugh when I

was stressed out and for the incredible amount of patience he has had with me. Lastly and most

importantly, I would like to thank my parents whose faith in me sometimes borders on craziness

and without which I would not be studying for a Master’s degree. To them I dedicate this thesis.

July 11, 2008.

iii

ABSTRACT

ERROR CORRECTION METHODS FOR LATENCY-CONSTRAINED

FLASH MEMORY SYSTEMS

Priyanka Ankolekar, M.S.

The University of Texas at Arlington, 2008

Supervising Professor: Jonathan Bredow

 Maintaining the reliability of data stored in Flash devices and reading it correctly has

become a challenge as the demand for higher density is forcing aggressive shrinking of Flash

architectures. For all Flash systems, especially latency-constrained NOR Flash, an on-chip error

correction code (ECC) is the only viable and robust solution to this problem.

This thesis investigates and optimizes low-latency error correction schemes for on-chip

implementation in NOR systems using existing error correction methods as a starting point. As

the first step towards doing this, a mathematical relation has been derived to compute the bit

error rate (BER) of a memory array using technology-specific voltage distribution curves. The

required error correction capacity is calculated using the BER of the memory array. Current on-

chip error correction (ECC) schemes in NOR Flash consist of a single error correcting Hamming

code. However, for emerging Flash devices single bit error correction does not suffice to

maintain data reliability. This problem has been addressed by analyzing and optimizing existing

ECC schemes for low latency and minimal hardware and parity overhead while achieving at

iv

least 2-bit error correction. One of the proposed algorithms is a dual bit Hamming code which

uses the Hamming code for 2-bit error detection and correction. Another optimized scheme,

called Hierarchical BCH, makes effective use of the fast and simple Hamming code to correct

frequently occurring single bit errors and the multi error correction BCH code to correct higher

order errors in the rare case when the Hamming code detects a 2-bit error. This scheme gives

an average latency of around 4ns while improving the array BER from 10-7 to 10-15. Thus all

these methods have been quantitatively proven to be applicable in latency-constrained

eXecute-in-Place (XiP) NOR Flash systems.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...iii

ABSTRACT ...iv

LIST OF ILLUSTRATIONS..ix

LIST OF TABLES..xi

Chapter Page

1. INTRODUCTION... 1

1.1. Data Reliability in Flash Memory... 1

2. FLASH MEMORY AND FAILURE MECHANISMS.. 4

2.1. Flash Memory Architectures.. 4

 2.1.1. Conventional Flash Technology……………………………………………………..4

 2.1.2. Flash Architectures …………………………………………………………………...4

 2.1.3. Spansion MirrorBit® Flash Technology …………………………………………….5

 2.1.4. Types of Flash Memory: NAND and NOR …………………………………………6

 2.1.5. NOR XiP Execution Model …………………………………………………………..7

2.2. Flash Memory Failure Mechanisms .. 8

 2.2.1. Narrowing of the Threshold Voltage Window.. 8

 2.2.2. Widening of Charge Distributions.. 8

 2.2.3. Single Bit Charge Loss/Gain ... 9

2.3. Standard Approaches against Flash Failures ... 10

 2.3.1. Dynamic Reference Tracking.. 10

 2.3.2. Compensating Technology Errors in Design Cycles... 11

vi

 2.3.3. Using Error Correction Codes (ECCs) .. 11

2.4. Defining Bit Error Rate as a Measure for Failures... 12

 2.4.1. Case 1 – The General Case ... 13

 2.4.2. Case 2 – Voltage Distributions at Start of Life .. 14

 2.4.3. Case 3 – Non-overlapping distributions: ‘1’ read as ‘0’..................................... 15

 2.4.4. Case 4 - Non-overlapping distributions: ‘0’ read as ‘1’...................................... 16

 2.4.5. Case 5 – Overlapping distributions: ‘1’ read as ‘0’.. 16

 2.4.6. Case 6 – Overlapping distributions: ‘0’ read as ‘1’.. 17

3. ANALYSIS OF ERROR CORRECTION CODES .. 20

3.1. HAMMING CODES ... 20

 3.1.1. The Mechanics .. 21

 3.1.2. Encoding ……………………………………………………………………………..23

 3.1.3. Decoding ……………………………………………………………………………..24

 3.1.3.1. Standard Array Method …………………………………………………...25

 3.1.4. Error Detecting and Correcting Capabilities ……………………………………...27

 3.1.5. Cyclic Hamming Codes …………………………………………………………….28

3.2. Multi Bit Error Correction BCH Codes ... 28

 3.2.1. The Mechanics .. 30

 3.2.2. Encoding ... 31

 3.2.3. Decoding ... 35

 3.2.3.1. Standard Algebraic Decoding Method... 35

 3.2.3.2. Massey’s Step-by-Step Decoding Algorithm.. 38

3.3. Computing Required Error Correction Capacity.. 40

4. IMPLEMENTATION AND RESULTS .. 43

4.1. Error Correction Architectures for NOR Flash... 43

 4.1.1. Single Bit Hamming Code ... 43

vii

 4.1.2. Dual Bit Hamming Code.. 46

 4.1.3. BCH Code ... 49

 4.1.4. Hierarchical BCH... 52

4.2. Analyzing and Comparing Implementations.. 54

 4.2.1. Software Implementation .. 55

 4.2.2. Hardware Implementation ... 56

 4.2.3. Mixed Implementation ... 60

5. SUMMARY AND CONCLUSIONS .. 61

APPENDIX

 A. HOW TO COMPUTE MINIMAL POLYNOMIALS………………………………………63

REFERENCES.. 66

BIOGRAPHICAL INFORMATION ... 70

viii

LIST OF ILLUSTRATIONS

Figure Page

2.1. The Conventional Memory Cell – A Floating Gate Transistor [12].……………………………4

2.2. Transistor threshold voltage distributions of cells in (a) an SLC array (b) a 2 bits/cell MLC
array.. 5

2.3. A MirrorBit cell .. 6

2.4. NOR XiP Execution model ... 7

2.5. Vt/Complementary Bit Disturb window – ideal Vt distributions ... 8

2.6. Actual Vt distributions of cells storing a ‘1’ and a ‘0’ respectively... 9

2.7. Overlap of Vt distributions of cells containing ‘1’ and ‘0’ .. 9

2.8. Dynamic reference curve ... 11

2.9. General case for calculation of current BER using a dynamic reference voltage................ 13

2.10. Threshold voltage distributions across the memory array at the start of life...................... 14

2.11. Read error in non overlapping distributions (‘1’ read as a ‘0’) ... 15

2.12. Read error in non overlapping distributions (‘0’ read as a ‘1’) ... 16

2.13. Read error in overlapping Vt distributions (‘1’ read as a ‘0’) .. 17

2.14. Read error in overlapping distributions (‘0’ read as a ‘1’)... 17

3.1. The mechanics of encoding of a (7, 4) Hamming code ... 21

3.2. Single bit error detection and correction using Hamming codes ... 22

3.3. Standard array for an (n, k) linear code ... 26

3.4. 2D representation of redundancy around each code vector and the concept of dmin 27

3.5. (a) Modulo-2 addition (b) Modulo-2 multiplication.. 29

ix

3.6. Graphical representation of u = (1 1 1) .. 30

3.7. Oversampling polynomial u(X) ... 30

4.1. Single bit Hamming decoding algorithm... 45

4.2. Hamming decoder block diagram .. 46

4.3. Dual Bit Hamming Code Flow Diagram ... 47

4.4. Step-by-step BCH decoding algorithm for 2-bit error correction.. 50

4.5. Block Diagram of Massey’s step-by-step BCH Decoding Algorithm.................................... 51

4.6. Example of Hierarchical BCH code.. 52

4.7. Flow Diagram for the Hierarchical BCH Decoding Scheme…………………………………..53

4.8. Block Diagram of the Hierarchical BCH Decoding Scheme…………………………………..54

4.9. Gate Level Circuit for a (7, 4) Hamming Code... 58

4.10. Gate Level Circuit for a (15, 7) BCH Code... 59

x

LIST OF TABLES

Table Page

2.1. Comparing NAND and NOR Flash memory... 7

3.1. Reconstructing the oversampled polynomial u(X).. 31

4.1. Summary of optimized architectures for latency-constrained Flash systems 44

4.2. Lookup table for erroneous data bit pairs and corresponding 3-bit pattern for (7, 4)
Hamming code.. 49

4.3. Possible Implementation Choices for ECC Architectures .. 55

4.4. Latencies for Software Implementation of ECC Architectures ... 56

4.5. Estimated Latency and Gate Count for Hardware Implementation.................................... 57

4.6. Estimated Latency and Gate Count for Generic 256b Codes .. 57

4.7. Latency and Gate Count for Synthesized Hardware Designs.. 59

xi

CHAPTER 1

INTRODUCTION

1.1. Data Reliability in Flash Memory

 Flash technology is the fastest growing semiconductor business because the

embedded devices market and especially mobile devices require a substantial amount of fast,

non-volatile, solid-state storage having high densities. Flash memory is indispensable in battery-

powered applications like cell phones, cars, printers, networking equipment, set-top boxes,

high-definition TVs, games and other consumer electronics. The increasing complexity of and

demand for these products along with an enormous price pressure forces aggressive shrinking

of device geometries as well as increasing storage capacities per area by storing multiple bits in

each memory cell through multi-level cell (MLC) architectures for Flash memories.

These advances in increasing stored information per unit area by storing multiple bits

as different charge levels in a memory cell result in a significant technical challenge in storing

and detecting bits. Increased density leads to an increase in the Bit Error Rate (BER) of

memory devices. This BER is affected by common disturb mechanisms such as silicon defects,

cross-coupling, charge loss (or gain) over time. Bit disturb mechanisms increasingly affect data

reliability and need to be compensated for with new methods as currently used solutions are not

adequate anymore. For system stability it is mandatory to maintain some maximum BER.

 There are two main approaches to achieve a suitable BER in a Flash memory array.

One approach is making designs adaptable to technology errors. However, an extensive debug

phase extends the overall design cycle of the product affecting the cost adversely and resulting

in a loss in market opportunity. This method requires research on a per product basis and

therefore is impractical for cost reasons.

1

 The second approach is to correct bit errors in real-time using error correction codes

(ECCs). Error correction methods reconstruct lost information by adding redundancy to the

stored information. They can be implemented in a controller outside the memory device or on-

chip with the memory array itself. The controller external to the memory chip can allow an area-

efficient implementation of the algorithm. But controllers designed for NOR Flash memory

devices do not have the infrastructure for supporting an ECC implementation making this a non-

viable option.

This makes on-chip ECC the only solution. Only simple ECC algorithms can be

implemented in the memory device because typical memory technologies do not easily support

the efficient integration of large scale digital circuits. Ideally less complex ECC algorithms

provide low latency access to the memory array and thus do not interfere with the software

model of the memory system. The advantage of applying ECC on the memory device is that,

differently from controller-based ECC, ECC-requirements of the memory, like low latency and

low hardware and parity overhead, can be matched with the complexity of the applied ECC

algorithm. The disadvantage is the limitation to low-complexity (and typically low-latency) ECC

algorithms.

Advancements in Flash technology demand an improvement in and optimization of the

methods used to protect and correct stored bits. This thesis addresses this problem in low

latency NOR Flash memories in the following manner:

The causes for failures in Flash memory have been studied and related technology

data has been used to extract error probabilities for a given memory array. These probabilities

help determine the bit error rate for the memory array. The computed bit error rate (BER) has

been used to quantify the exact requirements for an on-chip ECC implementation in NOR Flash.

These requirements are low latency, required error correction capacity, a low gate count (in

case of a hardware implementation) and a parity overhead that matches the ‘spare’ area

available in the array (Spare area in a given memory array is a fixed area consisting of a certain

2

fixed number of bits that are not available for use by the consumer. This area can be used to

store ECC redundancy computed internally in the memory device. As long as the ECC

redundancy is less than or equal to the number of bits in the spare area, it does not add any

additional bit overhead). These requirements are used as the basis for comparison of relevant

published error detection/ correction (EDC/ECC) algorithms. This study helps to identify

shortcomings in existing algorithms with regards an on-chip implementation in low-latency Flash

systems. Existing algorithms are optimized in the light of these shortcomings to adhere to NOR

Flash requirements and constraints. It is found that there is a trade-off between the error

correction capacity of the algorithm, hardware complexity, latency and data overhead.

Giving primary consideration to low latency and high error correction capacity followed

by a low hardware complexity and data overhead, a system-level implementation is proposed

for each recommended solution. Every implementation is evaluated in terms of latency,

bandwidth impact, die size and scalability across generations. This helps to arrive at optimum

solutions for ECC algorithms that can be applied to improve data reliability in low-latency NOR

Flash memories as device geometries become smaller.

3

CHAPTER 2

FLASH MEMORY AND FAILURE MECHANISMS

2.1. Flash Memory Architectures

Flash memory is nonvolatile (NVM) memory that can be electrically erased and

programmed.

2.1.1 Conventional Flash Technology

Information is stored in a Flash memory in an array of memory cells consisting of

floating gate transistors. A floating gate transistor is a MOSFET having two gates – a control

gate (CG) and a floating gate (FG). The floating gate is completely surrounded by the dielectric

layer. Hence charge trapped on it remains unchanged for extended periods of time. This charge

alters the threshold voltage (Vt) [5] of the transistor. To read data, a voltage is applied to the

control gate. The presence (logical ‘0’) or absence (logical ‘1’) of current through the channel

helps detect the stored bit. Figure 2.1 shows a floating gate transistor.

Figure 2.1 The Conventional Memory Cell – A Floating Gate Transistor [12]

2.1.2 Flash Architectures

A single memory cell can store one or more bits of data. A cell which stores a single

data bit is called a single level cell (SLC) while one which stores more than one bit is a

multilevel cell (MLC). MLCs store multiple bits per cell by storing varying amounts of charge for

each bit pattern. Therefore, in MLCs, the amount of current flow is sensed, rather than the mere

4

presence or absence of it as in SLCs, in order to determine the level of stored charged. Figure

2.2 shows the threshold voltage distributions in (a) single level cells and (b) multilevel cells.

(b)

(a)

Figure 2.2 Transistor threshold voltage distributions of cells in

(a) an SLC array (b) a 2 bits/cell MLC array

2.1.3 Spansion MirrorBit® Flash Technology

Spansion’s MirrorBit® Flash technology physically stores two independent bits on a

single cell. This makes it an SLC technology that can store multiple bits per cell. In a MirrorBit

cell (Figure 2.3) data is stored as charge trapped in a thin insulating oxide-nitride-oxide (ONO)

layer over the junction edges of MOSFET transistors (Note – In a floating gate transistor charge

is trapped on a conducting gate terminal). The cell is programmed by injecting channel hot

electrons (CHE) into the ONO layer and is erased by band-to-band-generated tunnel-assisted

hot hole injection (HHI). The stored charge is sensed by reversing the role of the source and the

5

drain relative to programming conditions and reading the cell current [2]. Since charge can be

stored on both sides of the transistor two-bit operation per cell is attained [3, 4].

Figure 2.3 A MirrorBit cell

MirrorBit architecture involves storing two bits (MirrorBit) or four bits (MirrorBit Quad)

per cell. Thus a single MirrorBit cell can store at least 4 (2 bits/cell) up to 16 (4 bits/cell) levels of

charge. This significantly improves the storage density. At smaller geometries, for example,

45nm or 32nm, the ONO layer can store a mere few hundred electrons making it difficult to read

the amount of stored charge. Therefore read errors are inherent to Flash technology.

2.1.4 Types of Flash memory: NAND and NOR

Flash memories are classified as – NAND and NOR Flash. These two types differ in the

manner in which individual memory cells are connected [13]. Table 2.1 compares NAND and

NOR Flash operation.

6

Table 2.1 Comparing NAND and NOR Flash memory

Parameter NOR NAND

Density 1Mbit – 1Gbit 64Mbit – 16 Gbit (or
higher)

Read initial access 80ns 20,000ns
Program 2 Mbytes/s 10 Mbytes/s

Erase 2 Mbytes/s Very high
Access method Random Sequential

2.1.5 NOR XiP Execution Model

 Random read accesses in NOR result in a very low initial read access time (~80ns) in

comparison with sequential access NAND (~20,000ns). Therefore NOR is used for code

storage and execution while NAND is used for data storage purposes. NOR is used in eXecute-

in-Place (XiP) execution models (Figure 2.4) for code storage and execution. In such a model,

the processor executes code directly from memory without copying it into RAM and then

executing it. This makes for faster execution of codes while minimizing the RAM requirement of

the system resulting in an overall reduction in cost. The XiP Execution Model combines high

performance read with relatively inexpensive storage.

CPU

DRAM

NOR Flash
memory

Code Data

DRAM: fast write

NOR: XiP = fast random read

Figure 2.4 NOR XiP Execution model

7

2.2 Flash Memory Failure Mechanisms

2.2.1 Narrowing of the threshold voltage window

The gate dielectric layer has point defects in which charges get trapped. These trapped

charges may migrate and redistribute between traps due to thermal activation. This

redistribution may change the threshold voltage (Vt) of the cell ultimately leading to a read error

[1]. During an erase cycle, holes are injected into the ONO layer. In the subsequent

programming step some holes stay and accumulate from cycle to cycle [1]. This degrades the Vt

of the cell. The difference between the threshold voltages of a stored 0 and a 1 is called the Vt-

window. It is also known as the Complementary Bit Disturb (CBD) window because if this

window reduces so that the threshold voltages of 1 and 0 overlap, a 1 may be read as a 0 and

vice versa.

Vt/CBD window

Figure 2.5 Vt/Complementary Bit Disturb window – ideal Vt distributions

2.2.2 Widening of charge distributions

Figure 2.5 illustrates the ideal distributions of the Vt of the cells having a 1 and a 0

respectively. In reality, all the cells storing a 1 (or a 0) do not have the same Vt, their Vt values

deviate from the ideal (Figure 2.2). This results in a Vt distribution as shown in Figure 2.6.

Vt1

cells

Vt0 Threshold voltage

8

Figure 2.6 Actual Vt distributions of cells storing a ‘1’ and a ‘0’ respectively

As the number of programming cycles increases, trapped charges alter the Vt –

distributions shown in Figure 2.6. The distributions widen. This widening of distributions along

with the narrowing of the Vt window results in an overlap of the ‘1’ and ‘0’ voltage distribution

curves (Figure 2.7). If a programmed or erased bit lies in the overlap region, there is a read

error.

Figure 2.7 Overlap of Vt distributions of cells containing ‘1’ and ‘0’

2.2.3 Single bit charge loss/gain

Single bit charge gain (SBCG) typically occurs after some program-erase cycling. It

results in a very small number of cells having a large threshold voltage shift from the normal

distribution. It has been attributed to localized defects in the tunnel oxide [6-8]. Such bits are

called ‘tail’ bits because they lie at the ends of the voltage distribution curves. This effect is

Vt1 Vt0Vref
Threshold

voltage

cells

Vt1 Vt0

cells

Threshold
voltageVref

9

commonly associated with the transient charging and discharging of cycling induced traps in the

tunnel oxide [9], [10].

There are primarily three failure mechanisms in MLC Flash memory devices causing

random bit errors which affect the reliability of stored data particularly as device geometries

become smaller (for example, 45nm or 32nm).

2.3 Standard Approaches against Flash Failures

Data reliability issues in Flash memory are currently being addressed in three ways: by

using dynamic reference voltage tracking, compensating technology errors in design cycles and

using error correction codes.

2.3.1 Dynamic Reference Voltage Tracking

Bit failures caused by narrowing and shifting of the CBD window can be mitigated to a

certain extent by using a dynamic reference tracking scheme. In this method, the reference

(Vref) of the voltage distributions is made dynamic so that it varies in accordance with the shift in

the distribution curves. The dynamic reference is computed by taking an average of three

voltages – Vt of a cell containing a ‘1’, a ‘0’ and a read reference cell. The read reference cell is

set to a predetermined Vt value at wafer sort that distinguishes erased bits from programmed

bits. The result is a reference curve over a period of time instead of a fixed reference line or

point. So Figure 2.7 is redrawn as Figure 2.8.

10

Figure 2.8 Dynamic reference curve

2.3.2 Compensating Technology Errors in Design Cycles

This method involves in-depth, hence prolonged, research on a per product basis to

compensate for failure mechanisms for individual designs. Each design is analyzed for possible

failure mechanisms and solutions are proposed to eliminate or minimize their effect. This results

in increased design cycles which has an unfavorable impact on the cost of and the time taken to

market the product.

2.3.3 Using Error Correction Codes (ECCs)

An ECC algorithm can be applied on the controller of the Flash system or on the Flash

memory chip itself.

An error correction algorithm can be implemented on a controller which is part of the

system architecture but external to the memory chip. The ECC algorithm reconstructs lost

information by adding redundancy to the stored data.

This technique allows large scale integration which supports an area effective

implementation of ECC algorithms. It is easy to implement robust and more sophisticated ECC

algorithms, but at the cost of a significant increase in read latencies. Therefore, it works well for

storage-optimized devices where longer read latencies are acceptable. There are techniques to

Vt1(mean) Vt0(mean)

Ref curve

cells

Threshold voltage

11

reduce the read latencies for a controller-based ECC, but for XiP or code-optimized Flash

memories the infrastructure for implementing an ECC algorithm on the controller does not exist.

This makes an on-chip ECC the only choice. The major advantage of an on-chip ECC is

the algorithm hardware can be scaled down along with the device. On the flip side, complex

ECC algorithms cannot be implemented easily as they require large digital circuits. Besides,

since the algorithm is on-chip, read latencies have to be kept very small. Therefore the

algorithms should be simple. Thus the ECC requirements of the memory can be matched with

the complexity of the applied ECC algorithm. Therefore, on-chip ECC is the preferred

implementation for latency constrained XiP NOR Flash. Software algorithms can also be

implemented on-chip due to the presence of an on-chip 8051-like microcontroller.

On-chip ECC in NOR Flash memory should be constrained to achieve a low latency –

typically 10ns, a low implementation complexity which translates to a low gate count (< 5000

NAND gates) in case of hardware and minimal RAM footprint in case of software and most

importantly, a target bit error rate ~10-15 for the memory array.

2.4 Defining Bit Error Rate as a Measure for Failures

The raw BER of the array should be known accurately in order to decide the error

correction capacity of a given ECC algorithm needed to achieve the required target BER (~10-

15). The BER prior to using ECC can be computed using the technology data which is plotted as

voltage distribution curves for the memory array (Section 2.1). The aggregate error distribution

function is defined using the ‘1’ and ‘0’ threshold voltage distribution as a function of the number

of programming cycles. The reference voltage varies dynamically as the voltage distribution for

the array changes. Based on this distribution and the consequent variation of the reference

(Vref), a formula is derived to compute the BER for a given Flash device. Six cases have been

considered.

12

2.4.1 Case 1 – The General Case

In general the 1 and 0 distribution curves overlap. The reference voltage is in the middle

of the overlap region (Figure 2.9).

#cells

Threshold
Voltage

Figure 2.9 General case for calculation of raw array BER using a dynamic reference voltage

The region in green consists of all the erased (1) bits which are read as a 0 while the

region in red represents the programmed (0) bits which are read as a 1. At any given time, a

read error occurs in a cell if and only if:

i. (program a ‘0’) AND (programmed cell lies in the red region) or

ii. (erase/write a ‘1’) AND (erased cell lies in the green region)

Consider (i):

P(‘0’ read as a ‘1’)

= P(program ‘0’ , Vt0 < Vref)

= {Area (red region)} / {Area (Vt0 curve) distribution}

= { } / { } (2-1) ∫
r

tt

V

V

dVVP
min0

00)(∫
max0

min0

0 0)(
V

V

tdVVP t

Taking into account statistical variability in the decision threshold (reference) voltage Vref, this

becomes,

13

P(‘0’ read as a ‘1’) = { } (2-2) ∫ <
maxr

minr

refrefref0t

V

V

dV)V(P)VV|'0'program(P

Similarly, for (ii)

P(‘1’ read as a ‘0’)

= P(erase/write ‘1’ , Vt1 > Vref)

= {Area (green region)}/{Area (Vt1 curve)}

= { } / { } (2-3) ∫
max1

11)(
V

V

tt

r

dVVP ∫
max1

min1

11)(
V

V

tt dVVP

Taking into account statistical variability in the decision (reference) threshold voltage (Vref), this

becomes,

P(‘1’ read as a ‘0’) = { } (2-4) ∫ >
maxr

minr

refrefref1t

V

V

dV)V(P)VV|'1'program(P

2.4.2 Case 2 – Voltage Distributions at Start of Life

Figure 2.10 is a representation of the distribution at the start of life of the device. The 1

and 0 threshold voltage distributions are very tight and do not overlap each other. The resulting

reference voltage (Vref) also lies approximately at the center of the CBD window. Therefore

there are no read errors possible in this case.

 BER = 0 (2-5)

Figure 2.10. Threshold voltage distributions across the memory array at the start of life

Vref

Vt0 curve

Vref curve

Vt1 curve

#cells

Threshold Voltage

14

2.4.3 Case 3 – Non-overlapping distributions: ‘1’ read as ‘0’

#cells

Threshold Voltage

Figure 2.11. Read error in non overlappin

This (Figure 2.11) is a special case of

distributions for ‘0’ and ‘1’ do not overlap each o

distribution. The cells that lie towards the right of V

as a 0. The probability of a cell containing ‘1’ being r

P(‘1’ read as ‘0’)

= P(erase/write ‘1’ , Vt1 > Vref)

= {Area (green region)}/{Area (Vt1 curve)}

= { } / { / } ∫
max1

11)(
V

V

tt

r

dVVP ∫
max1

min1

11)(
V

V

tt dVVP

Accounting for the statistical variability in the decisio

P(‘1’ read as a ‘0’) = { ∫ >
maxr

minr

refref1t

V

V

)V(P)VV|'1'program(P

15
curve
curve

g distributions (‘1’ read as a ‘0’)

Case 1. Although the threshold voltage

ther, the computed Vref lies within the ‘1’-

ref in the shaded region are incorrectly read

ead as a ‘0’ is:

 (2-6)

n threshold voltage (Vref),

} (2-7) refdV

2.4.4 Case 4 - Non-overlapping distributions: ‘0’ read as ‘1’

#cells

curve

Threshold voltage

curve

Figure 2.12. Read error in non overlapping distributions (‘0’ read as a ‘1’)

This is similar to Case 3. Here the reference lies within the Vt0 distribution. All the cells

lying to the left of Vref in the red region are read as ‘1’ instead of a ‘0’. The probability of this read

error is

P(‘0’ read as ‘1’)

= P(program ‘0’ , Vt0 < Vref)

= {Area (red region)} / {Area (Vt0 curve)}

= { } / { / } (2-8) ∫
rV

V

tt dVVP
min0

00)(∫
max0

min0

00)(
V

V

tt dVVP

However, since the decision threshold voltage (Vref) varies over the lifetime of the device,

P(‘0’ read as ‘1’) = { } (2-9) ∫ <
maxr

minr

refrefref0t

V

V

dV)V(P)VV|'0'program(P

2.4.5 Case 5 – Overlapping distributions: ‘1’ read as ‘0’

This is similar to Case 3. The difference is the overlap between the threshold voltage

distributions for cells containing ‘1’s and ‘0’s respectively. A read error occurs if a stored ‘1’ is

read as a ‘0’, i.e. the memory cell lies in the green region of the distribution.

16

#cells

Figure 2.13. Read error in overlapping Vt distributions (‘1’ read as a ‘0’)

The probability of error is given by:

P(‘1’ read as a ‘0’) = P(erase/write ‘1’ , Vt1 > Vref)

= {Area (green region)}/{Area (Vt1 curve)}

= { } / { / } (2-10) ∫
max1

11)(
V

V

tt

r

dVVP ∫
max1

min1

11)(
V

V

tt dVVP

Considering the statistical variability of Vref,

P(‘1’ read as a ‘0’) = } (2-11) ∫ >
maxr

minr

refrefref1t

V

V

dV)V(P)VV|'1'program(P

2.4.6 Case 6 – Overlapping distributions: ‘0’ read as ‘1’

Threshold Voltage

curve curve

curve curve

Threshold Voltage

#cells

Figure 2.14. Read error in overlapping distributions (‘0’ read as a ‘1’)

17

 This case is similar to Case 4. The probability of a ‘0’ read as a ‘1’ is:

P(‘0’ read as a ‘1’)

= P(program ‘0’ , Vt0 < Vref)

= {Area (red region)} / {Area (Vt0 curve)}

= { } / { / } (2-12) ∫
rV

V

tt dVVP
min0

00)(∫
max0

min0

00)(
V

V

tt dVVP

Accounting for a variable decision threshold voltage, Vref,

P(‘0’ read as a ‘1’) = } (2-13) ∫ <
maxr

minr

refrefref0t

V

V

dV)V(P)VV|'0'program(P

Thus a mathematical relation has been developed to compute the current bit error rate

using threshold voltage distributions in an array for all possible read error conditions that can

occur in Flash memory.

XiP type NOR uses MLC architectures at smaller geometries. These are highly prone to

bit disturbs. The bit error rate for a given memory array can be computed mathematically using

technology data. Error correction codes are one of the important methods used to maintain data

reliability by keeping the BER below 10-15. The low latency requirements of XiP NOR make a

low-complexity on-chip ECC the preferred choice. Hamming codes and binary BCH codes are

well suited for implementing as on-chip ECC for NOR Flash memory.

Hamming codes are the simplest error correcting block codes. They provide single bit

error ECC and 2-bit error detection (EDC) (Section 3.1). These codes and their implementation

as an on-chip ECC in Flash has been discussed in [31, 32]. [31] shows a Hamming decoder

using asynchronous techniques. Asynchronous pulse generators are used to design a

controllable clock for the decoder which is independent of the system clock. The transistors in

the pulse generator have to be properly tuned. This may be an unnecessary effort for small

18

power savings. An area efficient implementation has been proposed in [32] for an on-chip

Hamming decoder in NAND Flash. A few hundred gates are required to implement a Hamming

decoder as will be proved in a later section. Therefore an area overhead is not a severe

problem.

Hamming codes are suitable for a lower order BER (~10-12). They fail to ensure data

reliability as BER increases to around 10-7 for multi level cell architectures at smaller

geometries. This necessitates the use of multi bit error correction. Convolutional codes

effectively correct multiple bit errors. However a hardware implementation of a Viterbi

encoder/decoder requires 20-30K gates which is very high for NOR Flash. [33] discusses a

possible implementation of convolutional codes as on-chip ECC in MLC NOR. It is shown that

the BER can be taken from 10-2 to 10-11 which is not the target bit error rate that is expected to

maintain reliability of the Flash array. The performance of this code can be said to be

comparable to a BCH algorithm discussed in detail later. Binary BCH codes can be designed to

detect and correct multi bit errors. However there is a tradeoff between implementation

complexity, latency and error correction capability of the code. The previous chapter discusses

two BCH decoding algorithms of which Massey’s step-by-step decoding algorithm [20] is

expected to be effective in NOR Flash. The possibility of using BCH codes for error control in

Flash memories has been mentioned in [36]. However it does not elaborate the possible

implementation methods that may be used.

19

CHAPTER 3

ANALYSIS OF ERROR CORRECTION CODES

On-chip error correction codes effectively compensate for deteriorating bit error rates

which are generally of the order of 10-7 to 10-11 in Flash memory. Error correction codes improve

the reliability of data by adding carefully designed redundant data over time (convolutional

codes) or space (block codes). Convolutional codes operate on data streams where each bit is

processed together with its succeeding and preceding bits. The results improve for higher

encoder rates. The encoders and decoders used for convolutional codes (e.g. the Viterbi

decoder and the Trellis encoder) are hardware-intensive circuits easily consisting of 20k-50k

gates. This makes convolutional codes a good candidate only when hardware overhead is not a

stringent constraint. On the other hand, block code algorithms can be designed to work within

the latency and hardware constraints of NOR devices making them the codes of choice for on-

chip ECC in Flash memory.

3.1. Hamming Codes

 Block codes transform large blocks of data into code words. They only use

current input data to compute redundancy for given data block as opposed to their convolutional

counterparts which use past and future data too. The computed redundancy creates an

extended decision ‘space’ around each information/data block. If the data word that is read out

from memory lies in the decision space that ‘belongs’ to a certain information block, it is

decoded as that information block.

Hamming codes illustrate the creation of redundant space around data blocks to detect

and/or correct errors by simple mapping. Simple mechanics and the ease of implementation

make these codes a popular choice for communication and data storage systems. However,

they are ineffective if the number of random errors is large or if the errors are bursty.

20

3.1.1. The Mechanics

The (7, 4) (= (n, k)) Hamming code is the simplest single-error detection and correction, double-

error detection code. Here 4 is the information block length (k) and 7 is the length of the output

code word (n). The 3 additional bits (n-k) in the output code word are the redundant parity bits.

In the example (Figure 3.1), d1, d2, d3 and d4 are the data bits to be encoded. p1, p2 and p3 are

the parity bits.

Figure 3.1. The mechanics of encoding of a (7, 4) Hamming code

Suppose [d1 d2 d3 d4] = [1 1 0 1]. The parity bits (p1, p2, p3, …, pn-k) are inserted in

positions which are powers of 2 (20, 21, 22, …, 2n-k-1) because each parity bit represents an even

parity check on information bits which are in bit positions whose binary representations have a

‘1’ in the same place as the bit position (binary representation of a power of 2) of the parity. This

21

has the advantage of making the check positions independent of each other. For this example,

the parity bits are computed in the following manner:

For p1: Check alternate bits to see if even parity condition is satisfied.

 p1 = d1 d2 d4 = 1 (3-1)

For p2: Check alternate sets of 2 bits each for even parity, starting with p2

 p2 = d1 d2 d3 = 0 (3-2)

For p3: Check alternate sets of 4 bits each (starting with p3) for even parity,

 p3 = d2 d3 d4 = 0 (3-3)

In general, for pn-k alternate sets of 2n-k-1 bits each are checked to satisfy even parity. In this

example, 1101 is encoded and stored as 1001101 where the underlined bits are parity.

The relation between parity bits and the data bits is represented in matrix form as,

 = (3-4) []321 ppp
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1110
1101
1011

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

4

3

2

1

d
d
d
d

To detect and correct a single bit error: Suppose the retrieved code word is 1001111.

1 0 1 0 1 1 1

20 21 22

1 2 3 4 5 6 7

Retrieved
code word

? 1 1 1 p1 = 1

? 11 1 p2 = 1

p3 = 11

11

11?

Check 1 bit,
Skip 1 bit

Check 2 bits,
Skip 2 bits

Check 4 bits,
Skip 4 bits

Observed parity (p1,p2,p3) = 100
Calculated parity (p1,p2,p3) = 1

d1 d2 d3 d4

Figure 3.2. Single bit error detection and correction using Hamming codes

22

Assuming that at most a single bit may be disturbed, the erroneous bit is identified in the

following manner (Figure 3.2):

If the observed parity (p1, p2, p3) = 100 and the calculated parity = 111, then the parity bits in

conflict are p2, p3. The bit that is exclusive to p2 and p3 is d3. Hence d3 is the disturbed bit.

Now suppose the retrieved code word is 1100101 (2-bit error). In this case, the observed parity

(p1, p2, p3) = 110 and the calculated parity = 011 showing that (p1, p3) are in conflict. Hence d2 is

incorrectly predicted to be in error.

In Hamming codes with distance 3 a double bit error is indistinguishable from a single

bit error in a different code. In order to detect two bit errors and detect and correct a single bit

error simultaneously, an additional parity bit is included in the code word. This increases the

distance of the code to 4. This additional parity bit is calculated by adding (modulo-2) all the

other bits in the code vector. Thus the presence of two bit errors can be detected but it cannot

be corrected while a single bit error is detected and corrected.

3.1.2. Encoding

As k increases (e.g. a (31, 26) code), it is impractical to use the above method.

The “generation” of a code word is achieved by a generator matrix, G. The rows of a

generator matrix generate all the code words for a particular code. G is a (k x n) matrix for a (n,

k) code where n is the length of the code word and k is the data block length. In the k-

dimensional vector space of all the binary n-tuples, it is possible to find k linearly independent

code words such that every code word v is a linear combination of these k code words. If u is

the information vector then,

 v = u.G (3-5)

The generator matrix for the (7, 4) code is

 G = (3-6)
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000101
0100111
0010110
0001011

23

Equation (3-6) shows the generator matrix in systematic form. The code word obtained after

multiplying data with this matrix will have message bits easily distinguishable from the parity

bits. Such a form of the encoded code work is called the systematic form. The generator matrix

in systematic form is

 G = [P Ik] (3-7)

Where

P = k x (n-k) matrix which generates the parity bits.

Ik = k x k identity matrix, i.e. a matrix having elements, bij = 1 for all i = j else bij = 0.

 Another useful matrix is called the parity check matrix (H). H is a (n-k) x n matrix such

that G.HT = 0 i.e. G and H are orthogonal. Alternately, an n-tuple v is a code word in the code

generated by G if and only if v.HT = 0. For G as written in Equation (3-7), the parity check matrix

H is

 H = [In-k PT] (3-8)

Where

PT = transpose of matrix P in Equation (3-7)

In-k = (n-k) x (n-k) identity matrix.

H is called the parity check matrix because each row of H represents an even parity group with

‘1’s in the positions of the bits that comprise the group.

3.1.3. Decoding

For a (n, k) linear code, if v = (v0, v1, v2, …, vn-1) is the stored vector and r = (r0, r1, r2,

…, rn-1) is the vector read out from memory (received vector), then r may differ from v due to

noise.

 r = v + e (3-9)

Where e is an n-tuple called the error vector or error pattern.

24

When r is read out, the host system should first determine if r contains any errors. If so,

an error correction algorithm must be executed. Errors are detected by computing the

syndrome, s, which is the vector product of the output vector and the transpose of the parity-

check matrix.

 s = r.HT (3-10)

 = (v + e).HT

 = e.HT

If there are no errors or undetectable errors, s = 0, else s ≠ 0. Undetectable error patterns are

those which transform v into another valid code. Since there are 2k – 1 nonzero code words,

there are 2k – 1 undetectable error patterns.

 If H is expressed in the systematic form, then Equation (3-10) yields a linear

relationship between the syndrome and the error digits.

 s0 = e0 + en-kp00 + en-k+1p10 + … + en-1pk-1,0 (3-11)

 s1 = e1 + en-kp01 + en-k+1p11 + … + en-1pk-1,1

 …

…

 sn-k-1 = en-k-1 + en-kp0,n-k-1 + en-k+1p1,n-k-1 + … + en-1pk-1,n-k-1

Any error correction scheme is a method to solve the (n-k) linear equations of Equation (3-11)

for the error digits. Once e is found, the vector r + e is taken as the actual stored code word

[15]. Solving these equations is not easy since they have 2k solutions. One of the most popular

decoding schemes for linear block codes like Hamming codes, is the Standard Array Method

which is also known as the syndrome decoding or table lookup decoding method.

3.1.3.1. Standard Array Method

For an (n, k) linear block code, there are 2k valid code vectors, v1, v2, …, v2
k. The

received vector r may be any one of 2n possible n-tuples. Any decoding scheme is a rule to

partition the 2n possible received vectors into 2k disjoint subsets D1, D2, …, D2
k such that the

25

code vector vi is contained in the subset Di for 1 ≤ i ≤ 2k [15]. Thus a data ‘space’ is generated

around each valid code word. If r is located in the subset Di, then r is decoded into vi. This

decoding is correct only if the actual stored vector was indeed vi.

v1 v2 … vi … v2
k

v1+e2 e2+v2 … e2+vi … e2+v2
k

v1+e3 e3+v2 … e3+vi … e3+v2
k

.

.

.

v1+ei ei+v2 … ei+vi … ei+v2
k

.

.

.

 v1+e2
n-k e2

n-k+v2 … e2
n-k+vi … e2

n-k+v2
k

Figure 3.3. Standard array for an (n, k) linear code

v1 , v2, …, v2
k are the 2k valid code vectors of the (n, k) linear block code. Generally, v1

= 0. e2, e3, …, e2
n-k are distinct n-tuples from the remaining 2n – 2k n-tuples. Thus, all the n-

tuples are used in the array. Each subset Di for 1 ≤ i ≤ 2n-k is the ith column in this array (Figure

3.3). The 2n-k rows are known as the cosets and the n-tuples e2, e3, …, e2
n-k are the coset

leaders for the corresponding rows. r is decoded correctly only if the error pattern is a coset

leader. All the 2k n-tuples of any given coset have the same syndrome. The syndromes for

different cosets differ.

Summarizing the decoding process for a linear block code: The first step is to compute

the syndrome s = r.HT. This helps to locate the corresponding coset leader, say et, for this

26

syndrome. The deduced coset leader is used to decode r as v = r + et. u is easily obtained from

v since it is in the systematic form.

3.1.4. Error Detecting and Correcting Capabilities

An important property of a code is the code’s minimum distance, also known as the

minimum Hamming distance. Hamming distance is the number of positions in which two code

words differ. The minimum Hamming distance, dmin, is the least possible distance between a

pair of code words for a given code. It determines the error-detecting/correcting capabilities of

the code. The rows of generator matrix G define a basis for the code vectors. For Hamming

codes, the basis (rows of G) satisfies even parity conditions. This characterizes dmin (= 3) for a

Hamming code.

If a code has minimum distance dmin, no error patterns of dmin – 1 or fewer errors can

change one code vector into another code vector. Therefore, the random error-detecting

capability of a block code with minimum distance dmin is dmin – 1.

Figure 3.4. 2D representation of redundancy around each code vector and the concept of dmin

In order to be able to detect and correct an error correctly, the received vector must lie

in the space surrounding the corresponding transmitted vector (Figure 3.4). If the received

vector differs from the transmitted vector in t places (t errors); it can be corrected only if

 t ≤ ⎣ ⎦2/)1d(min− (3-12)

Where denotes the largest integer no greater than (d⎣ 2/)1d(min− ⎦ min – 1)/2.

dmin

Code
Vector

Redundant
space

27

 For a Hamming code dmin = 3. Hence it can detect up to 2 bit errors and can detect and

correct a single bit error.

3.1.5. Cyclic Hamming Codes

Cyclic Hamming codes can be represented as a polynomial. For v = (v0, v1, …, vn-1), the

code polynomial is

 v(X) = v0X0 + v1X1 + v2X2 + …+ vn-1Xn-1 (3-13)

The power of X denotes the position of the code vector component. For example, the vector (1

0 0 1 0 1 1) is represented as 1 + X3 + X5 + X6.

The encoding and decoding circuits of a cyclic code consist of shift registers with

feedback connections. The power of X represents the number of serial shifts of the components

through the circuit. Due to the cyclic structure of the code, the circuit may be designed to

decode the first received bit and decode subsequent bits using the same circuitry. Thus a cyclic

code saves hardware but increases the computational delay which is not favorable for NOR

Flash. On the other hand, the linear decoding process explained in Section 3.1.3 can be made

parallel making the circuit faster. Therefore linear Hamming codes are preferred over cyclic

Hamming codes for implementation in NOR Flash devices.

 Hamming codes are very simple to understand and implement. They are well-suited

when the BER has to be improved from around 10-10 to 10-15. They fail to detect and correct

multi bit errors and hence are inefficient as raw BER increases to 10-6.

3.2. Multi Bit Error Correction: BCH Codes

The Bose-Chaudhuri-Hocquenghem (BCH) codes are a generalized form of Hamming

codes for multi bit error detection and correction. They include both binary and multilevel codes.

Multi level BCH codes are suitable for correcting burst errors. Since the errors in a Flash device

are random, it is convenient to use binary BCH codes for Flash memory.

28

Before evaluating BCH codes, a review of finite field arithmetic is required in order to

understand and utilize multi bit error correcting codes. Binary arithmetic is a subset of finite field

arithmetic. A finite field is a set of finite elements over which math operations like addition,

subtraction, multiplication and division generate values which belong to the same set. More

formally it can be said that addition, subtraction, multiplication and division are closed on the

field. A finite field is also known as a Galois field (GF). A Galois field in which the elements can

take q different values is referred to as GF(q) [16]. In GF(p), where p is a prime number,

modulo-p arithmetic is used. An example of modulo-2 arithmetic is shown in Figure 3.5.

+ 0 1
0 0 1
1 1 0

(a)

. 0 1
0 0 0
1 1 0

(b)

Figure 3.5. (a) Modulo-2 addition (b) Modulo-2 multiplication

In any prime size field, there is always at least one element whose powers constitute all

the nonzero elements of the field [16]. This element is called the primitive. For example, in

GF(5), the number 3 is primitive because:

30 = 1

31 = 3

32 = 4

33 = 2(all modulo-5)

The pattern repeats for higher powers of 3.

 The finite field GF(p) can be extended to a field of pm elements where m is any positive

integer. The field thus formed, GF(pm), is called an extension field of GF(p). For binary BCH

codes, GF(2) and its extension field GF(2m) are used.

29

 A single bit error detection and correction code like a Hamming code differs from a multi

bit error detection and correction code in the manner in which the data bits are utilized to

generate redundant space. For a Hamming code there is only one set of linearly independent

equations, hence it can detect and correct only single bit errors. On the other hand, if multiple

sets of linearly independent equations are superimposed on the same data bits, a code that can

correct multiple errors, each corresponding to a linearly independent set of equations is

obtained.

3.2.1. The Mechanics

Code vectors in polynomial form can be represented graphically. For example, u = (1 1 1) ≡

u(X) = 1+X+X2 is represented as shown in Figure 3.6.

Figure 3.6. Graphical representation of u = (1 1 1)

For a polynomial of degree n, n+1 distinct points describe the polynomial completely.

The idea behind BCH codes is to store more than n+1 points satisfying the polynomial. This is

oversampling the polynomial. While reading out data, as long as any set of n+1 correct points is

read out, the information polynomial u(X) can be rebuilt.

Figure 3.7. Oversampling polynomial u(X)

30

In the above example, u(X) is oversampled with 5 points, a, b, c, d and e (Figure 3.7).

When these points are transmitted point e is disturbed. Polynomials are constructed using all

permutations of n + 1 (= 3, here) points. The results are tabulated in Table 3.1.

Table 3.1. Reconstructing the oversampled polynomial u(X)

 Points

Corresponding
polynomial

a, b, c

u(X)

a, b, d

u(X)

a, b, e

u1*(X)

a, c, d

u(X)

a, c, e

u2*(X)

a, d, e

u3*(X)

b, c, d

u(X)

b, c, e

u4*(X)

b, d, e

u5*(X)

c, d, e

u6*(X)

u(X) occurs more frequently than any other polynomial (ui*(X) represents any

polynomial other than the correct one). Hence it is assumed that u(X) is the information vector

that was transmitted. This illustrates how oversampling a polynomial helps to recover the actual

data at the receiving end.

3.2.2. Encoding

The encoding process for BCH codes can be explained in the following manner: The

first step is to oversample u(X) which is done by multiplying it with g(X). The code polynomial

can be written as v(X) = u(X).g(X) (Equation 3-5). u cannot be assumed to be oversampled

since it represents user information which has to be protected. Therefore the only means of

31

introducing redundancy is via appropriate selection of g. The example in Section 3.2.1 showed

that for every error to be detected there should be at least two redundant points or samples.

Therefore for t errors to be detected g should introduce atleast 2t redundant samples. This

implies g(X) should have at least 2t roots.

Consider formulating these statements mathematically, i.e. showing how the 2t roots of

g(X) help introduce redundancy in u(X) by oversampling it.

If n denotes the length of the code word v and k is the length of the information vector u then n

and k are related such that the number of redundant symbols is

n – k ≤ mt [15]

where m is a positive integer (m ≥ 3) defined in terms of n as n = 2m – 1 and t is the maximum

number of errors that can be corrected (t < 2m-1).

 The generator polynomial g(X) for a binary BCH code is the lowest degree polynomial

over GF(2) which has (α, α2, α3, …, α2t) as its roots i.e. g(αi) = 0 for 1 ≤ i ≤ 2t [15]; where α is a

primitive element in GF(2m). Lowest degree polynomial implies g(X) has only (α, α2, α3, …, α2t)

as its roots and no roots other than these. Using a binary Galois field is a typical scenario since

information is generally represented as a combination of 1’s and 0’s. An extended binary field

GF(2m) uses binary symbols of length m.

 The 2t roots of g(X) indicate that for t bit errors to be detected and corrected at least 2t

redundant samples are introduced. g(X) can be represented in the factored form. The generic

way of doing this is

 g(X) = (X + α).(X + α2). (X + α3)… (X + α2t) (3-14)

However, according to the definition of g(X), its coefficients lie in GF(2). Therefore, equation (3-

14) is not the correct definition of g(X) in terms of its roots. Instead g(X) can be defined in terms

of minimal polynomials of each of (α, α2, α3, …, α2t). To include all roots that may have

coefficients over GF(2m), the following procedure is used:

32

The minimal polynomial Φ(X) of any element β in GF(2m) is defined as the polynomial of

smallest degree over GF(2) having β as its root, i.e. Φ(β) = 0. For example, the minimal

polynomial of 0 in GF(2m) is X and that of 1 is X + 1.

Suppose the minimal polynomial of αi for 1 ≤ i ≤ 2t is denoted by Фi(X). Therefore, the factored

form of g(X) can be written as

 g(X) = LCM{Ф1(X), Ф2(X), …, Ф2t(X)} (3-15)

LCM: Least Common Multiple

Equation (3-15) is simplified using the concept of conjugates in a finite field, explained below:

If β is an element in GF(2m), then the element (β)p^2, which also belongs to GF(2m)

satisfies [f(β)]p^2 = f(βp^2). β and (β)p^2 are called conjugates. Conjugates are transparent to the

order of equations.

f(X): polynomial with binary coefficients.

Every even power of α in GF(2m) can be written in terms of an odd power and a power

of 2. For example, α12 = (α3)4 = (α3)2^2. Therefore every even power of α is a conjugate of some

preceding odd power of α. In the above example, α12 is a conjugate of α3.

Appendix A shows that a root and its conjugate have the same minimal polynomial.

Therefore all roots contained in the even polynomials are contained in the odd polynomials as

well. Therefore the even polynomials do not contribute to g(X) and can be eliminated. The

expression for g(X) is reduced to

 g(X) = LCM{ Ф1(X), Ф3(X), …, Ф2t-1(X)} (3-16)

This is the generator polynomial for a binary t-error-correcting BCH code of length 2m – 1.

For a single-error-correcting BCH code of length 2m – 1, the generator matrix is

 g(X) = Ф1(X) (3-17)

Since α is a primitive element of GF(2m), Ф1(X) is a primitive polynomial of degree m. Therefore,

the single-error-correcting BCH code of length 2m – 1 is a Hamming code. [15]

33

 Thus while a single-error-correcting Hamming code is defined by a single primitive

polynomial, a t-error-correcting BCH code is defined by t primitive polynomials as explained in

Equation (3-16).

 Here is an illustrative example:

For a (15, 5) (= (n, k)) triple-error correcting code. The assumption t = 3 makes the example

simpler to understand.

n = 15 = 2m – 1 => m = 4.

Let α be a primitive element in GF(24). According to the definition; α, α2, α3, α4, α5 and α6 are

the roots of g(X) for the this code. The minimal polynomials for α, α2 and α4 are identical

(Appendix A) and

 Ф1(X) = Ф2(X) = Ф4(X) = 1 + X + X4 (3-18)

The minimal polynomials for α3 and α6 are the same,

 Ф3(X) = Ф6(X) = 1 + X + X2 + X3 + X4 (3-19)

The minimal polynomial for α5 is,

 Ф5(X) = 1 + X + X2 (3-20)

Taking the LCM, the generator polynomial for the (15, 5) triple-error correcting BCH code is,

g(X) = 1 + X + X2 + X4 + X5 + X8 + X10

 The parity-check matrix for BCH codes can be derived from the roots of g(X). Since the

code polynomial, v(X) = u(X).g(X), v(X) has α, α2, α3, …, α2t as its roots. Hence, for 1 ≤ i ≤ 2t,

 v(αi) = v0 + v1αi + v2α2i + … + vn-1α(n-1)i = 0 (3-21)

This equation can be written as a product of two matrices where each element of the resulting

vector equals Equation (3-21) for the corresponding i; 1 ≤ i ≤ 2t.

34

 (v0, v1, …, vn-1). =0=v.M (3-22)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−)1n(t2)1n(3)1n(21n

t6963

t4642

t232

α....ααα
...
...
αααα
α...ααα
α...ααα
1....111

Comparing this with v.HT = 0 (Equation 3-8) the parity-check matrix, H = MT, for the BCH code:

 H = (3-23)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−

)1n(t2t6t4t2

)1n(3963

)1n(2642

1n32

α...ααα1
...
...
...

α...ααα1
α...ααα1
α...ααα1

3.2.3. Decoding

Decoding BCH codes involves detecting and correcting a larger number of errors as

compared with single bit error detection and correction in Hamming codes.

There are two popular approaches, namely, the Standard Algebraic Decoding Method

and Massey’s Step-by-Step Decoding Algorithm [20]. There are several modifications made to

the Step-by-Step algorithm [21- 23]. The basic Step-by-Step algorithm [20] has been analyzed

here.

3.2.3.1. Standard Algebraic Decoding Method

This method closely emulates the mechanics described earlier (Section 3.2.1). The

decoding process has two steps: Error detection and Error Correction.

 To detect errors all probable nth degree information polynomials (u(X)) are constructed

using all possible permutations of n+1 points. If the polynomials are not all equal, it implies at

least one of the points is disturbed. Errors are corrected by identifying the most frequently

occurring polynomial, from amongst those constructed in the previous step, and assuming it to

35

be the stored information u. The point(s) common to the remaining (less frequently occurring,

hence assumed to be erroneous) polynomials is/are said to be the disturbed sample(s).

This process can be mathematically formulated in the following manner:

Suppose the code vector stored at a memory location is v(X). If r(X) is the vector that is

read out and e(X) is the error pattern then

r(X) = v(X) + e(X)

The syndrome S is constructed in order to determine the presence or absence of errors. If S is

non-zero it indicates the presence of errors and vice versa. For a t-error-correcting BCH code, S

is a 2t-tuple since H is a 2t x n matrix.

 S = (S1, S2, …, S2t) = r.HT = e.HT (3-24)

where Si = r(αi) = e(αi) for 1 ≤ i ≤ 2t.

 Error Correction involves finding the exact locations of disturbed samples and

correcting the samples by complementing them. The error-location algorithm for BCH codes is

designed to detect locations of multiple-errors. Equation (3-24) shows that S depends only on

the error pattern e. Suppose e(X) has ν errors at locations Xj1, Xj2, …, Xjν.

 e(X) = Xj1 + Xj2 + …+ Xjν (3-25)

where 0 ≤ j1 < j2 < …< jν ≤ n.

Combining Equations (3-24) and (3-25);

 S1 = αj1 + αj2 + …+ αjν (3-26)

S2 = (αj1)2 + (αj2)2 + …+ (αjν)2

S3 = (αj1)3 + (αj2)3 + …+ (αjν)3

.

.

.

S2t = (αj1)2t + (αj2)2t + …+ (αjν)2t

36

where αj1, αj2, …, αjν are unknown. Any method for solving these equations is a decoding

algorithm for the BCH codes. [15]

 Let βp = αjp for 1 ≤ p ≤ ν. These are the error location numbers. Equation (3-26) is

rewritten as

 S1 = β1 + β2 + …+ βν (3-27)

S2 = β1
2 + β2

2 + …+ βν2

S3 = β1
3 + β2

3 + …+ βν3

.

.

.

S2t = β1
2t + β2

2t + …+ βν2t

The error locator polynomial is defined [15] as:

 σ(X) = (1 + β1X)(1 + β2X) … (1 + βνX) (3-28)

 = σ0 + σ1X + σ2X2 + … + σνXν

The roots of this polynomial specify the locations of the errors. S1, S2, …, S2t can be written in

terms of the roots of σ(X).

For the (15, 5) BCH code example (Section 3.2.2) suppose the received systematic code

polynomial is,

r(X) = X3 + X5 + X12

The syndrome components are remainders when r(X) is divided by Ф1(X), Ф3(X), Ф5(X)

(Equation 3-18, 3-19 and 3-20) successively,

b1(X) = 1, (3-29)

b3(X) = 1 + X2 + X3

b5(X) = X2

Using the power and polynomial representations of the elements in GF(24) and substituting α,

α2 and α4 into b1(X),

37

S1 = S2 = S4 = 1

Substituting α3 and α6 into b3(X),

S3 = 1 + α6 + α9 = α10,

S6 = 1 + α12 + α18 = α5

Substituting α5 into b5(X),

S5 = α10

 The error locator polynomial is determined by an iterative procedure known as

Berlekamp’s iterative algorithm. The roots of this polynomial or the error location numbers are

found using Peterson’s substitution method [18] or Chien’s search algorithm [19], the latter

preferred because of available optimizations of its hardware implementation. The simplest way

to implement Chien’s search algorithm is using a look-up table. This is impractical for large

block sizes. Another hardware circuit used is called the Chien searcher [21]. The complexity of

the circuit increases in proportion to the block length. Hence it too is inefficient for long block

codes.

 Summarizing standard algebraic decoding method, the first step is to compute the

syndrome, S = r. HT in order to detect errors. If S is nonzero, which implies there are errors in

the received word, then the error location polynomial is determined from the components of S.

The roots of this polynomial give the error-location numbers. Once the error locations have

been identified, correcting these errors is to complement the bit at that position.

 The Step-by-Step decoding algorithm (Section 3.2.3.2) proposed by Massey is an

efficient alternative to the standard algebraic method.

3.2.3.2. Massey’s Step-by-Step Decoding Algorithm

The step-by-step decoding algorithm corrects erroneous bits by checking the impact of

changing (complementing) each bit on the total number of errors in the code word. If changing a

38

bit reduces the number of errors, then the change is retained else the bit is changed back to its

original value. This algorithm has been explained by Massey in [27].

It is easier to implement this algorithm since it avoids calculating the coefficients of an

error locator polynomial and searching the roots [21]. It exploits the cyclic nature of BCH codes.

The decoding algorithm is explained below:

 Errors are detected by computing the syndrome S (Equation 3-10). A nonzero value of

the syndrome indicates the presence of errors.

 For correcting the errors: The weight of the error pattern e indicates the number of

errors in r. Each bit of r is successively complemented (one bit at a time) and the weight of the

resulting error pattern is observed. If the weight reduces it implies the bit under consideration

was erroneous and has been corrected by complementing it. On the other hand, if the weight

increases, it is assumed that the bit is not disturbed and its value should remain unchanged.

Since this method involves changing the received symbols one at a time and testing the

resultant weight of error pattern, it is called the step-by-step algorithm.

To formulate this algorithm mathematically, consider the received vector is r(X) which is

equal to v(X) + e(X) where v is the transmitted (stored) code word and e is the error pattern.

For a t-error correcting BCH code (Equation 3-24)

S = (S1, S2, …, S2t) = r.HT = e.HT

where Si = r(αi) = e(αi) for 1 ≤ i ≤ 2t.

A non zero value of S indicates the presence of errors in r.

The total number of non zero elements in e, i.e. the Hamming weight of e, gives the

total number of errors in the received code word. This helps the decoder determine when it

should stop complementing the code word bit-by-bit.

Massey defines a procedure [20] to determine the weight of e. The total number of

errors can be estimated by determining the singularity or non singularity of matrix, Lj. (Equation

3-30)

39

The matrix Lj [20] is defined for any binary BCH code having code length n and any j such that 1

≤ j ≤ n-1, Lj is the j x j matrix

 Lj = (3-30)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−− j4j23j22j21j2

12

1

S...SSSS
.
.
.

0...1SSS
0...001S

3

Lj is singular if the weight of e is j -1 or less, and is non-singular if the weight of e is j or j+1 [20].

Using this property the number of errors can be defined in terms of det(L1), det(L2), …,

det(Lt). For example, det(L4) = 0 implies that the number of errors is three or less. The exact

number of errors can be determined in terms of the relations among det(L1), det(L2), .., det(Lt).

For example, if det(L1) ≠ 0, det(L2) ≠ 0, and det(Lp) = 0 for p = 3, 4, …, t, then two errors have

occurred [20]. The only thing that is of consequence here is whether det(Lp) (1 ≤ p ≤ t) is equal

to zero or not.

The process of complementing bits and checking the weight of the resulting error

pattern against the weight of the actual error pattern can be done by decoders in parallel. This

reduces the computational time at a nominal hardware overhead. This makes this algorithm one

of the prime choices for use in low latency NOR Flash.

Thus, broadly, there are two error correction codes to choose from – Hamming and

BCH. Selecting an appropriate one depends on the current BER of the array and the required

BER (~ 10-15 for NOR). The error correction capacity of the algorithm is a function of these

parameters.

3.3. Computing Required Error Correction Capacity

The current BER of a memory array can be computed from the voltage distribution

curves (Section 2.4).

40

 The current BER for a given memory array is denoted by Pe which denotes the

probability of one exclusive bit to be in error in the array. Using this, the probability that a single

bit is in error in a k-bit block is given by

 1 – (1-Pe)k = current BER of the k-bit block (3-31)

After using ECC, the size of the encoded block (parity + data) = n (say) and the maximum no. of

errors that can be corrected = t

Therefore the probability of an error in a n-bit block after applying ECC is given by

P(error in a n-bit block after ECC) = PECC

= 1 – P(all possible errors that the ECC can correct)

 = 1 – {P(0 error) + P(1b error) + P(2b error) + … + P(t-bit errors)}

 = 1 – { nC0.Pe
0.(1-Pe)n + nC1.Pe

1.(1-Pe)n-1 + … + nCt.Pe
t.(1-Pe)n-t}

= 1 - n∑
=

t

0i

C .Pi e
i.(1-P)e

n-I (3-32)

If Pnew is the BER of the array after using ECC, then Pnew is the target BER of the array. Pnew

can be computed by solving the following relation:

 1 - ∑
=

t

0i

nCi.Pe
i.(1-Pe)n-i = 1 – (1 – Pnew)k (3-33)

Thus, the required error correction capacity of an error correction code is a function of

the current bit error rate and the target bit error rate. [31] also uses a similar relation to compute

the improved bit error rate after using a single bit correcting Hamming code on a 512-bit NOR

block.

There are two main choices for an error correction code for low latency Flash memory.

[36] also lists these as possible methods to improve Flash device reliability. For lower bit error

rates of the order of 10-12 a single error correcting Hamming code is a viable choice because its

error correction capacity suffices at low BER levels such as these and the Hamming decoding

algorithm involves very simple math which may be implemented using XOR gates. For higher

41

BER in high density devices today (~10-7), multiple error correction is required. The BCH code is

a good option. Although it is mathematically more involved than the Hamming algorithm, there

are relatively simpler BCH decoding algorithms which have simple implementations [21-23].

Massey’s step-by-step decoding algorithm is one example. The required error correction

capacity of the code can be computed as a function of the current array bit error rate and the

expected or target bit error rate. These algorithms are used as a starting point for optimizing

methods to ensure reliability of data in a Flash device.

42

CHAPTER 4

IMPLEMENTATION AND RESULTS

Presently NOR Flash memory have an on-chip Hamming code implemented in

hardware. These codes suffice when bit error rates are of the order of 10-12. However for

technology nodes 45nm and 32nm the raw BER is in the range 10-7 to 10-11. This necessitates

multi bit error correction in the memory array. From Equation 3-33, it can be shown that 2 bit

error correction on a 256-bit or smaller block of data helps achieve the required target BER of

10-15. The Hamming and BCH algorithms studied earlier serve as a good starting point. These

algorithms have been combined and modified to obtain architectural schemes which have

latencies < 10ns and a high error correction capacity making them suitable for NOR Flash.

4.1. Error Correction Architectures for NOR Flash

Tradeoffs between latency, error correction capability and complexity differ for

Hamming codes and BCH codes. Considering that higher order errors are less likely,

combinations of these two codes are investigated further to take advantage of simple fast

algorithms for more common single bit errors and using slower stronger algorithms for less likely

higher-order errors in order to minimize the performance impact on XiP NOR.

The proposed optimized architectures are summarized in Table 4.1.

The decoding algorithms for each of these architectures are discussed briefly here. A

mathematical explanation is covered in Chapter 3.

4.1.1. Single Bit Hamming Code

 Hamming codes (Section 3.1) can detect and correct single bit errors and only

detect two bit errors. These are the simplest block codes and have been the primary choice for

43

an ECC in Flash memory until now. However they are inefficient in improving data reliability in

high BER MLC Flash devices.

Figure 4.1 illustrates the decoding process for a single bit ECC Hamming code. Section

3.1.2 explains the encoding. A part of the decoder circuit is used for encoding.

Table 4.1. Summary of optimized architectures for latency-constrained Flash systems

Code

Key Concept

Single bit Hamming code

 1 bit ECC.
 Adding even parity to certain data groups.

Dual bit Hamming code

 2 bit ECC
 Limiting error possibilities to data bits only

by duplicating Hamming parity.

BCH code

 ≤ 2 bit ECC
 Oversampling data to add redundancy.

Hierarchical BCH

 ≤ 2 bit ECC
 Performance improvement by using BCH to

correct multi bit errors and Hamming

The Decoding Algorithm (Section 3.1.3) for a single bit ECC Hamming code is

explained below:

 The primary step is to determine if an error has occurred or not. A non-zero output from

the syndrome computation block indicates a single bit error in either the data or its parity. (This

block helps determine parity bits when used for encoding). If there is no error, then the decoding

process comes to an end. However, if the syndrome is not zero, the error pattern corresponding

to the syndrome pattern is determined. This is bit pattern is added (modulo-2) to the input bits to

obtain the corrected output vector.

44

Input bit string

Compute syndrome
(s)

Is s=0?

Stop

Yes

No

Detect error pattern
(e)

Add error pattern to input
bit string to correct error

Error detection

Error correction

No error

Figure 4.1. Single bit Hamming decoding algorithm

It is assumed that there is at most a single bit error in the input. The syndrome may be nonzero

for higher number of errors as well and may correspond to an incorrect error pattern. In this

case, an input bit may be erroneously ‘corrected’.

 Figure 4.2 shows the block diagram of a Hamming decoder. It has been color coded

with respect to the flow diagram (Figure 4.1) to depict the functionality of the blocks.

45

Syndrome Calculation Circuit
(XOR gates)

Error Pattern Detection Circuit
 multi-input AND gates

+ + +

r0 r1 r(n-1)

r(n-1)r0 r1

v0 v1 v(n-1)

s0 s1 s(n-1)

Input register = vector stored in flash (r)

Output register = corrected vector (v)

n XOR gates

Figure 4.2. Hamming decoder block diagram

 A Hamming code is the simplest to understand and the easiest to implement single bit

correction code. However, it does not suffice for bit error rates as high as 10-6. Complex codes

can take care of higher number of errors; however, it will be highly beneficial if Hamming codes

can be modified to provide more than single bit error correction. This way the simple

implementation of Hamming codes can be exploited to provide stronger protection.

4.1.2. Dual Bit Hamming Code

 A Hamming code has a minimum Hamming distance of 3. This allows only single bit

error detection and correction. If the distance is increased to 4, double bit error detection only is

possible. However, it can be shown that for a very small block size (4 or 7 data bits, i.e (8, 4) or

46

(12, 7) codes) 2 bit errors can be detected and corrected. (The additional parity bit is for 2-bit

error detection).

 The encoding process is the same as for a Hamming code. The decoding process is

shown in Figure 4.3.

Input bit string

Compute syndrome
(s)

Is s=0?

Stop

Yes

No

Re-compute parity
bits

Add re-computed parity to
received parity

Error detection

Error correction

No error

Refer lookup table to
determine pair of

erroneous bits

Figure 4.3. Dual Bit Hamming Code Flow Diagram

The Decoding Algorithm for 2-bit error correction using Hamming codes:

 Before starting the decoding process, the presence of errors should be detected. The

syndrome computation block does this. The number of errors detected is also important

because the correction process differs for single and double bit errors. The error correction

process for correcting a single bit error has been described in Section 3.1.3. For a double bit

error, parity bits are recomputed using the disturbed (received) data. The recomputed parity is

47

added (modulo-2) to the received parity. The bit string obtained from this operation is compared

against a lookup table (Table 4.2) to determine the double bit error pattern.

 This algorithm works correctly only under the assumption that errors occur in data bits

alone, not in parity bits. For protecting parity bits, two Hamming codes should be used in

tandem. But the resultant overhead is unacceptable.

Applicability to small block sizes only

This scheme is applicable only to (7, 4) and (11, 7) Hamming codes.

Consider a (7, 4) code. The number of data bits is 4 and the number of parity bits is 3.

Therefore the total number of possible 3-bit patterns (on adding received and recomputed

parity) is 23 or 8 (including the all-zero pattern). For a 4-bit data block, the number of data bit

pairs is 4C2 which is equal to 6. It has been observed that a one-to-one correspondence exists

between erroneous data pairs and 3-bit patterns obtained by adding received and recomputed

parity (Table 4.2). (The all-zero pattern indicates no error!). This correspondence is independent

of the values of the data bits themselves.

Say, data = (d1 d2 d3 d4) (MSB)

 parity = (p1 p2 p3) (MSB)

A similar relation can be found for a (11, 7) code. For larger data block sizes, the

number of data bits is far larger than the number of parity bit combinations. Hence there cannot

be an injective relation between the two. Therefore this scheme fails.

This error control scheme has an overhead of nearly 30-50%. Therefore it can be

applied only in very small but sensitive areas of the memory device, for example, the Flash File

System (FFS). The FFS is a small percentage of the entire memory. Therefore, although the

absolute overhead is very high, it is still a very small number with respect to the storage

capacity of the entire chip.

48

Table 4.2. Lookup table for erroneous data bit pairs and corresponding 3-bit pattern for (7, 4)

Hamming code

Erroneous data bits pair

Sum of parity

(d1, d2)

011

(d1, d3)

101

(d1, d4)

001

(d2, d3)

110

(d2, d4)

010

(d3, d4)

100

Thus, Hamming codes for very small block sizes can provide 2-bit error correction. The

implementation is very simple. However, due to the extremely high overhead it finds limited

applicability. This calls for a need to have algorithms which will be effective for multi-bit error

correction in the entire array. The tradeoff would be obviously, higher complexity and higher

latency.

4.1.3. BCH Code

Hamming codes find limited applicability as BER increases. Stronger algorithms are

required to maintain data reliability. BCH codes are a good choice because they can be

designed for any level of error correction.

The encoding process is explained in detail in (Section 3.2.2). Encoding takes place

when data is written into memory, and need not be done during the write cycle. As a result

latency is not a tight constraint for the encoder. So the BCH encoder may work satisfactorily

49

even if its design is not highly optimized. On the other hand, decoding always occurs during the

read cycle. As mentioned earlier, there is a latency constraint of 10ns on the decoder. The

decoder architecture described in this section has been optimized for latency (and area, in case

of a hardware only implementation).

It was found (Section 3.2.3) that the step-by-step decoding algorithm is one of the most

optimum ones for application in XiP NOR. (Section 3.2.3.2) provides a complete mathematical

analysis of the algorithm. It has been explained graphically in

The Decoding Algorithm (two-bit error correction) using BCH codes

 As for the previous algorithms, the first step is to check for errors. This is done using a

syndrome computation block. An all-zero syndrome indicates there is no error, or an

undetectable error. If the syndrome is non-zero, determinants L1 and L2 are computed.

Compute
syndrome (s)

Compute
det(L1) and det(L2)

Is s=0?

No

Yes

Complement
data bit

What is value of
(L1, L2)?

(0,0)

(1,0)No error!

(0,1)

1 bit error
errors reduced

3 bit error
errors increases;

Revert back to
original bit

End

Figure 4.4. Step-by-step BCH decoding algorithm for 2-bit error correction

50

An assumption is made that at most two bits may be disturbed. The singularity/non singularity of

each determinant helps determine the initial number of erroneous bits. Each data bit

complemented at a time and the total number of errors are checked again. If the number of

errors decreases, then the complemented bit was in error and has been corrected by

complementing it. On the other hand, if the total number of errors increases, it implies an error

was introduced upon complementing the data bit. Hence it is reverted back to its original value.

This step is executed until the number of errors is zero or until all data bits have been checked.

This process can be done in parallel using one decoding engine for each data bit. (Correcting

parity bits is not required). As a result the entire decoding process executes in one cycle.

r0 r1 rn-1 rn

Received bit string
(data+parity)
(one data bit

complemented)

Syndrome computation blocks0 sn-k-1

n

n-k

A

Compute
Det(L1)

Compute
Det(L2)

m m n = 2m -1

A
For data bit 0

Figure 4.5. Block Diagram of Massey’s step-by-step BCH Decoding Algorithm

51

This algorithm can be generalized for a t-error correcting code depending upon the

required error correction capability for a given block size to maintain a BER of 10-15. As the

number of bits to be corrected and data block size increases the algorithm becomes more

complex, especially the determinant computation block.

The likelihood of higher order errors although nonzero is a small number. Therefore,

the strengths of Hamming code and BCH code can be combined if there is a scheme which

executes the simple and fast Hamming code for lower order errors and the more complex BCH

codes for less likely higher order errors. Such a scheme is elaborated in the next section and its

feasibility in terms of overhead and maximum latency (area for hardware implementation) is

studied.

4.1.4. Hierarchical BCH

 The Hamming code is simple and fast but has minimal error correction capacity while

the BCH code is more complex but can be designed to achieve any level of error correction.

The hierarchical ECC scheme explained here combines the strengths of both these codes.

 The Hamming code is applied on smaller blocks of data. All these small data blocks are

together protected by a single BCH code. The BCH code is executed only if any of the

Hamming decoders detects a 2-bit error in the data. In the example shown in Figure 4.6, 5 bits

of Hamming parity protect a 16 bit data block. Six such data blocks are together protected by a

single (128, 96) 4-bit error-correcting BCH code. The BCH decoder executes only if any of the

six Hamming codes detect a 2-bit error.

Figure 4.6. Example of Hierarchical BCH code

 The error correction capacity of the BCH code is computed using the formula given in

(Section 3.3).

16b 16b 5b 5b 16b 5b

6 1 2

52

The Hierarchical decoding algorithm

 Hamming decoders work on small blocks of data, typically 16 or 32b each, correcting

possible single bit errors and checking for 2b errors. If a 2b error is detected by any Hamming

decoder, the BCH decoder is set into action. This decoder is initialized if a 2b error is detected

is any of the smaller Hamming data blocks. Thus the more frequently lower order errors are

resolved by a simple and fast Hamming code while the complex and timing intensive BCH code

corrects only the less frequent higher order errors. Figure 4.7 explains the operation graphically.

The Hamming-BCH hierarchical design combines the strengths of both codes at the cost of

additional overhead in terms of data and hardware and higher latency. A sample

implementation (Figure 4.8) will help check if these are within acceptable limits.

Figure 4.7. Flow Diagram for the Hierarchical BCH Decoding Scheme

53

Figure 4.8. Block Diagram of the Hierarchical BCH Decoding Scheme

4.2. Analyzing and Comparing Implementations

 The architectures elaborated in the previous section have to be verified for possible

applicability in the NOR Flash device. This implies studying the impact of each implementation

on latency, RAM footprint (software) and gate count or area (hardware). There are three

possible implementation choices (Table 4.3) –

 Software

 Hardware

 Mixed (hardware + software)

The architectures are verified for small block sizes: (7, 4) Hamming code, (15, 7) BCH

code and a combination of (11, 7) Hamming code and (15, 7) BCH code for the hierarchical

process. Small block sizes make it easy to validate the output. Larger block sizes will alter the

parameters only to a tolerable extent.

54

Table 4.3. Possible Implementation Choices for ECC Architectures

Single bit
Hamming

(7, 4)

Dual Bit

Hamming
(7, 4)

BCH code

(15, 7)

Hierarchical BCH

HC: (11,7)
BCH: (15,7)

Software

Hardware

Mixed

4.2.1. Software Implementation

A software implementation is possible inside the memory chip due to the presence of

an on-chip 8051-like microcontroller. This microcontroller operates at a clock frequency of

40MHz.

A C code was written for each algorithm. These codes verify the functionality of the

algorithm besides exploring their applicability. Codes were written for (7, 4) Hamming code, (15,

7) BCH code and (11, 7) Hamming and a (15, 7) BCH code for the Hierarchical BCH scheme.

An assumption was made that each C instruction takes 1 controller clock cycle to execute. This

is a good first order estimate because the approximate cycles per instruction (CPI) for a clock

speed of 40MHz is around 1.5 [41]. This means a single instruction takes around 1.5 clock

cycles to execute. Besides, there may be branches within a code.

 The latency estimates for each of the architectures are shown in Table 4.4.

 An assembly code would make the execution at least 10-20x times faster.

However, the on-chip 8051-like controller does not necessarily execute one instruction in a

single clock cycle, it may take more. Therefore the latencies shown in

Table suggest a good ballpark figure. Since these numbers completely rule out a pure software

solution the architectures were not investigated for RAM usage.

55

Table 4.4. Latencies for Software Implementation of ECC Architectures

Single bit
Hamming

(7, 4)

Dual Bit

Hamming
(7, 4)

BCH code

(15, 7)

Hierarchical BCH

HC: (11,7)
BCH: (15,7)

Software

~40 clocks=1µs

~40 clocks=1µs

~400 clocks =

10µs

~450 clocks =

11.25µs
Hardware

Mixed

4.2.2. Hardware Implementation

Each ECC hardware implementation has been studied and optimized for latency and

silicon area (or gate count).

 There are several possible hardware implementation schemes available for each

algorithm [21-23]. The appropriate one was chosen through an elimination process based on

rough estimates of latency and gate count deduced from the basic block diagram of the

architecture. The calculations were done by hand based on valid approximations (for example,

a single register/flipflop stage may be approximated to take up one clock cycle = 10ns). The

numbers deduced were expected to be within at least a 20-30% margin of the actual ones.

Modifications were made to the chosen architectures to keep the latency within 10ns. The

estimates for the chosen architectures are shown in Table 4.5. Table 4.6 shows the estimated

latency and gate count for a 256-bit data block.

 The architectures singled out based on hand analysis were finally verified by writing a

Verilog code for each of these and synthesizing it using Synopsys Design Compiler. The latency

and gate count obtained after synthesis are tabulated in . The numbers shown prove the

veracity of the estimates.

56

Table 4.5. Estimated Latency and Gate Count for Hardware Implementation

Single bit
Hamming

(7, 4)

Dual Bit

Hamming
(7, 4)

BCH code

(15, 7)

Hierarchical BCH

HC: (11,7)
BCH: (15,7)

Software

~40 clock

cycles = 1µs

~40 clock

cycles = 1µs

~400 clock

cycles = 10µs

~450 clock cycles =

11.25µs

Hardware

Lat. ~10ns
Gates~150

Lat. ~10ns
Gates~180

Lat. ~10ns
Gates~360

Lat. ~20ns
Gates~510

Mixed

Table 4.6. Estimated Latency and Gate Count for 256b Generic Codes

Single bit
Hamming
(265, 256)

Dual Bit

Hamming

BCH code

(255, 239)

Hierarchical BCH

(n = 2m – 1)
HC (38, 32)

BCH (255, 239)

Software

Hardware

Lat. ~10ns

Gates~1200

N/A

Lat. ~10ns

Gates~2500

Lat. ~20ns

Gates~4000

Mixed

-

- - -

 It is clear that a hardware implementation of ECC algorithms will help to improve data

reliability without making hefty demands of the bandwidth and silicon area. For the small data

blocks considered for synthesis, the overhead in terms of parity bits per data bit is very large.

However, the ratio decreases significantly as the data block size is increased keeping the

latency and gate count within acceptable limits.

57

 Figure 4.9 shows the gate-level circuit representation for a (7, 4) Hamming code and

Figure 4.10 shows the circuit for a (15, 7) BCH code after synthesizing the respective Verilog

codes.

r0 r1 r2 r3 r4 r5 r6

+ + +

+ + + + + + +

s0 s1 s2

e0 e1 e2 e3 e4 e5 e6

r0
r1 r2 r3 r4 r5 r6

Corrected Vector

Received
vector (r)

Computation of
syndrome (s)

Error correction
circuit

Figure 4.9. Gate Level Circuit for a (7, 4) Hamming Code

58

Figure 4.10. Gate Level Circuit for a (15, 7) BCH Code.

Table 4.7. Latency and Gate Count for Synthesized Hardware Designs

Single bit
Hamming

(7, 4)

Dual Bit

Hamming
(7, 4)

BCH code

(15, 7)

Hierarchical BCH

HC: (11, 7)
BCH: (15, 7)

Software

~40 clock

cycles = 1µs

~40 clock

cycles = 1µs

~400 clock

cycles = 10µs

~450 clock cycles =

11.25µs

Hardware

Lat. ~3ns
Gates~70

Lat. ~4ns

Gates~110

Lat. ~7ns

Gates~320

Lat. ~8ns

Gates~450

Mixed N/A

N/A N/A N/A

59

4.2.3. Mixed Implementation

A mixed implementation typically employs hardware for timing sensitive tasks and uses

software for the variable blocks in the design. In this case, a pure hardware analysis satisfies

both latency and area constraints making it the best choice for an on-chip ECC in NOR Flash.

This makes a mixed implementation unnecessary.

It has been shown that a hardware on-chip error correction code satisfies latency and

die area constraints for single as well as multi bit error correction using standard ECC

algorithms and optimized schemes using the standard algorithms.

60

CHAPTER 5

SUMMARY AND CONCLUSIONS

 The aim of this thesis is to develop error correction methods for latency-constrained

Flash systems.

 As a first step towards this goal, it was necessary to extract error probabilities of a NOR

Flash array from technology-specific threshold voltage data. This was not done earlier simply

because it was not important to precisely determine the error correction capacity that is required

to achieve a certain target bit error rate. Earlier Flash arrays had a raw BER on the order of 10-

12 for which a single bit Hamming proves to be sufficient. The BER derived from the proposed

mathematical relations was a good starting point to determine correction requirements for the

memory array. The next step was to review existing error correction algorithms with respect to

NOR Flash requirements, namely, low latency (< 10ns) and low hardware gate count (< 5000

NAND gates). Applying these constraints to existing algorithms and their architectural

possibilities brought several shortcomings to light. For example, Hamming codes were easy to

implement but could not help with higher order bit error rates. On the other hand, BCH codes

had excellent correction capacities but very complex implementations. This lead to efforts to

optimize existing architectures and develop new schemes concentrating on the strengths of

Hamming and BCH codes.

One such optimization is the dual bit Hamming code. This code gives 2-bit error

correction using the simple Hamming algorithm for block sizes less that 1 byte in length. The

small block sizes are suitable for applying error correction in Flash File Systems which have a

read granularity of 1 byte. Flash File System is a very small but important block on the Flash

chip. Therefore it is important to maintain its reliability. This cannot be done using the same

block codes which are used in the memory array because of the large block sizes that are

typically used in the array (256 bits).

61

It has been shown that the BCH code is very useful for correcting multiple bit errors with

a latency of around 10 ns which is suitable for XiP application. The hardware complexity of this

implementation is around 3500 NAND gates which is well within the margin set for NOR Flash.

It is important to note that lower order errors (1 bit errors) occur at least 1012 times more

frequently than higher order errors (2 bit errors). Therefore the BCH code is mostly correcting

single bit errors with rare exceptions. The Hierarchical BCH code overcomes this problem by

having the Hamming code perform error correction on the lower order errors (single bit ECC)

and the BCH code being executed only once out of approximately 1012 times when there is a 2

bit error. This results in an average latency equal to the latency of the Hamming code (3 – 4ns)

along with multiple error correction capacity. This algorithm is expected to be very useful in

Flash systems like LPDDR2 (32nm) which has a read access time of 50ns. For such a low read

access time even a latency of 10ns proves to be a huge penalty making the Hierarchical

scheme an implementation of choice. The applicability of these optimizations was proved in

simulations and via implementations in both hardware and software. The software

implementation, although not applicable proved the functionality of the algorithms while the

hardware implementation gave a gate count well within the 5000 NAND gates constraint.

 The proposed and analyzed algorithms take error correction in NOR Flash a step ahead

from single bit correction to 2 bit correction at a minimal latency (< 10ns) and hardware

overhead (< 5000 NAND gates). The software and hardware simulations proved that the

proposed solutions provide at least 2x improvement in protecting data in NOR Flash arrays.

Array bit error rates of the order of 10-7 for XiP Flash can be brought down to 10-15 using 2-bit

error correction.

 Low latency, low complexity error correction architectures make it possible to have

reliable high storage density Flash systems at smaller geometries.

62

APPENDIX A

HOW TO COMPUTE MINIMAL POLYNOMIALS

63

 For any element β in the field GF(2m), the corresponding minimal polynomial Φ(X) is the

polynomial of smallest degree over GF(2) such that Φ(β) = 0. Φ(X) is unique. For example, the

minimal polynomial of 0 is X and that of 1 is X + 1.

 Before learning to compute minimal polynomials it is essential to learn the following

theorem.

 Theorem: If f(X) is a polynomial having coefficients in GF(2) and β is an element in the

extension field GF(2m) such that β is a root of f(X), then for any j ≥ 0, (β)2^j is also a root of f(X).

[f(β)]2^j = f(β2^j)

The element β2^j is called a conjugate of β.

The general equation for the minimal polynomial Φ(X) of β in GF(2m) is given as;

 Φ(X) = ∏
−

=

β+
1e

0i
)}i^2()^(X{

Where e is the smallest integer such that β2^e = β.

Example:

Consider GF(24). Let β = α1. The conjugates of β are

β2 = α2, β2^2 = α4, β2^3 = α8 and e = 4 (since β2^4 = α16 = α)

Substituting in the general equation, the minimal polynomial for β = α1 is computed as;

64

Φ(X) = (X + β) (X + β2) (X + β4) (X + β8)

= (X + α) (X + α2) (X + α4) (X + α8)

= X4 + X3(α8 + α4 + α2 + α) + X2(α12 + α10 + α9 + α6 + α5 + α3) + X(α14 + α13 + α11 + α7) + α15

= X4 + X + 1 (Table below)

Representation for the elements of GF(24) generated by (1 + X + X4)

Power representation Polynomial representation 4-Tuple representation

0 0 0000

1 1 1000

α α 0100

α2 α2 0010

α3 α3 0001

α4 1 + α 1100

α5 α + α2 0110

α6 α2 + α3 0011

α7 1+ α + α3 1101

α8 1+ α2 1010

α9 α + α3 0101

α10 1 + α + α2 1110

α11 α + α2 + α3 0111

α12 1+ α + α2 + α3 1111

α13 1 + α2 + α3 1011

α14 1 + α3 1001

65

REFERENCES

1. MirrorBit Technology – The Future of Flash memory is here today,

Available at <http://www.spansion.com/flash_memory_technology/mirrorbit.html>

2. M. Janai, B. Eitan, A. Shappir, E. Lusky, I. Bloom, and G. Cohen, Data Retention Reliability

Model of NROM Nonvolatile Memory Products, IEEE Transactions on Device and Materials

Reliability, Vol.4, No.3, Sept. 2004, pp. 404-415.

3. B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, and D. Finzi, Can NROM, a 2-bit trapping

storage cell, give a real challenge to floating gate cells?, Proc. SSDM, 1999, Tokyo, Japan,

Sept. 1999, pp. 522-524.

4. B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, and D. Finzi, NROM: A Novel Localized

Trapping, 2-bit non-volatile memory, IEEE Electron Device Lett., Vol. 2, No. 11, Nov. 2000.

5. Threshold Voltage, Wikipedia, Nov. 2007,

Available at: < http://en.wikipedia.org/wiki/Threshold_voltage>

6. T. C. Ong et al., Erratic erase in ETOX flash memory array, VLSI Technology Symp., 1993,

p. 83.

7. S. Yamada et al., Non-uniform current flow through thin oxide after Fowler-Nordheim current

stress, Proc. Int. Reliability Physics Symp., 1996, pp.108.

8. S. Satoh, G. Hemink, K. Hatakeyama, and S. Aritome, Stress-induced leakage current of

tunnel oxide derived from flash memory read-disturb characteristics, IEEE Trans. Electron

Devices, Vol. 45, pp. 482-486, Feb. 1998.

9. S. Shuto et al., Read disturb degradation mechanism for source erase flash memories, IEEE

Symp. VLSI Technology Dig. Tech. Papers, 1996, pp.242.

10. M. Kato et al., Read-disturb degradation mechanism due to electron trapping in the tunnel

oxide for low-voltage flash memories, IEDM Tech. Dig., 1994, p. 45.

66

http://www.spansion.com/flash_memory_technology/mirrorbit.html
http://en.wikipedia.org/wiki/Threshold_voltage

11. Atwood, G. et al., Future Direction and Challenges for Etox Flash memory scaling, IEEE

Trans. Device and Material Reliability, vol. 4, no.3, Sept 2004, pp. 301-305.

12. Floating Gate Transistor, Wikipedia, May 2008.

Available at <http://en.wikipedia.org/wiki/Floating-gate_transistor>

13. Flash memory, Wikipedia, June 2008.

Available at < http://en.wikipedia.org/wiki/Flash_memory>

14. Bayesian Inference, Wikipedia, June 2008.

Available at < http://en.wikipedia.org/wiki/Bayesian_analysis>

15. Lin, S. and Costello, D., Jr., Error Control Coding: Fundamentals and Applications, Prentice-

Hall, Inc., Englewood Cliffs, N.J., 1983.

16. Sweeney, P., Error Control Coding: From Theory to Practice, John Wiley & Sons, Ltd.,

England, 2005.

17. Meggitt, J., Error Correcting Codes and their implementation for data transmission systems,

IEEE Trans., IT-7, vol. 4, pp. 234-244, October 1961.

18. Peterson, W.W., Encoding and Error-Correction Procedures for the Bose-Chaudhuri codes,

IRE Trans. Inf. Theory, IT-6, pp.459-470, September 1960.

19. Chien, R.T., Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem codes, IEEE

Trans., IT-10, pp. 357-363, 1964.

20. Massey, J.L., Step-by-Step Decoding of the Bose-Chaudhuri-Hocquenghem Codes, IEEE

Trans., IT-11, pp. 580-585, October 1965.

21. Wei, S. and Wei C., High-speed hardware decoder for double-error-correcting binary BCH

codes, IEE Proc., Vol. 136, pp. 227-231, June 1989.

22. Wei, S. and Wei, C., A High-Speed Real-Time Binary BCH Decoder, IEEE Trans. On

Circuits and Systems for Video Technology, Vol. 3, no. 2, April 1993.

23. Che, C., Su S. and Wei, S., New Step-by-Step Decoding for Binary BCH Codes, The Ninth

Int. Conf. on Comm. Sys., pp. 456-460, September 2004.

67

http://en.wikipedia.org/wiki/Floating-gate_transistor
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Bayesian_analysis

24. Szwaja, Z., On step-by-step decoding of BCH binary code, IEEE Trans. Info. Theory, IT-13,

pp. 350-351, 1967.

25. Cyclic Redundancy Check, Wikipedia, 6 Dec. 2007,

Available at: < http://en.wikipedia.org/wiki/Cyclic_redundancy_check>

26. Wozencraft, J.M. and Reiffen, B., Sequential Decoding, MIT Press, Cambridge, Mass.,

1961.

27. Massey, J.L., Threshold Decoding, MIT Press, Cambridge, Mass., 1963.

28. Dowla, F., ed., Handbook of RF and Wireless Technologies, Elsevier, 2004.

Available at: <books.google.com>, pp. 377.

29. Shannon, C., Communication in the presence of noise, Reprinted in the Proc. of the IEEE,

Vol. 86, No. 2, Feb. 1998.

30. Mackay, D., Information Theory, Inference, and Learning Algorithms, Cambridge University

Press, 2003.

31. Ou, E. and Yang W., Fast Error Correcting Circuits for Fault Tolerant Memory, Intl.

Workshop on Mem. Tech., Des., and Testing (MTDT), pp. 8-12, 2004.

32. T. Tanzawa, T. Tanka, K. Takeuchi, R. Shirota, A. Aritome, H. Watanabe, G. Hemink, K.

Shimizu, S. Sato, Y. Takeuchi and K. Ohuchi, A Compact On-Chip ECC for Low Cost Flash

Memories, IEEE J. Solid-State Circuits, vol. 32, pp. 662-669, May 1997.

33. F. Sun, S. Devarajan, K. Rose and T. Zhang, Multilevel Flash Memory On-chip Error

Correction based on Trellis Coded Modulation, IEEE Symp. On Circuits and Systems, pp. 1443-

1446, May 2006.

34. S. Gregori, O. Khouri, R. Micheloni and G. Torelli, An Error Control Code Scheme for

Multilevel Flash Memories, IEEE Int. Workshop on Memory Tech., Des. & Test., pp. 45-49,

2001.

35. C. Winstead, Analog Soft Decoding for Multi-level Memories, Proc. of the 35th Int. Symp. on

Multiple-Valued Logic, pp. 132-137, 2005.

68

http://en.wikipedia.org/wiki/Cyclic_redundancy_check

36. S. Gregori, A. Cabrini, O. Khouri and G. Torelli, On-Chip Error Correcting Techniques for

New-Generation Flash Memories, IEEE Proc., vol. 91, pp. 602 – 616, April 2003.

37. S. Gregori, P. Ferrari, R. Micheloni and G. Torelli, Construction of Polyvalent Error Control

Codes for Multilevel Memories, 7th IEEE Int. Conf. on Electronics, Circuits and Systems, vol. 2,

pp. 751 – 754, 2000.

38. H. Chang, C. Lin, T. Hsiao, J. Wu and T. Wang, Multi-level Memory Systems using Error

Control Codes, Int. Symposium on Circuits and Systems, vol. 2, pp. II-393 – 396, May 2004.

39. C. L. Chen and M. Y. Hsiao, Error-Correcting Codes for Semiconductor Memory

Applications: A State-of-the-Art Review, IBM J. Res. Develop., vol. 28, pp. 124 – 134, March

1984.

40. B. Benjauthrit, L. Coady and M. Trcka, An Overview of Error Control Codes for Data

Storage, Intl. NonVolatile Memory Technology Conf., pp. 120 – 126, 1996.

41. Cycles Per Instruction, Wikipedia, June 2008.

Available at <http://en.wikipedia.org/wiki/Cycles_Per_Instruction>

69

http://en.wikipedia.org/wiki/Cycles_Per_Instruction

BIOGRAPHICAL INFORMATION

Priyanka is currently pursuing a Master’s degree in Electrical Engineering at the

University of Texas at Arlington. Her research interests include hardware architecture and digital

circuit design. She has been an intern in the Product Development and Systems Engineering

group at Spansion Inc. since May 2007. She has also worked on projects at the Tata Institute of

Fundamental Research and the Bhabha Atomic Research Centre in India. She enjoys reading

autobiographies and biographies, and when she is not reading she likes to trek, hike, run or

walk.

70

	Data Reliability in Flash Memory
	Flash Memory Architectures
	Flash Memory Failure Mechanisms
	Narrowing of the threshold voltage window
	Widening of charge distributions
	Single bit charge loss/gain
	Standard Approaches against Flash Failures
	Dynamic Reference Voltage Tracking
	Compensating Technology Errors in Design Cycles
	Using Error Correction Codes (ECCs)
	Defining Bit Error Rate as a Measure for Failures
	Case 1 – The General Case
	Case 2 – Voltage Distributions at Start of Life
	Case 3 – Non-overlapping distributions: ‘1’ read as ‘0’
	Case 4 - Non-overlapping distributions: ‘0’ read as ‘1’
	Case 5 – Overlapping distributions: ‘1’ read as ‘0’
	Case 6 – Overlapping distributions: ‘0’ read as ‘1’
	Hamming Codes
	The Mechanics
	Multi Bit Error Correction: BCH Codes
	The Mechanics
	Encoding
	Decoding
	Standard Algebraic Decoding Method
	Massey’s Step-by-Step Decoding Algorithm
	Computing Required Error Correction Capacity
	Error Correction Architectures for NOR Flash
	Single Bit Hamming Code
	Dual Bit Hamming Code
	BCH Code
	Hierarchical BCH
	Analyzing and Comparing Implementations
	Software Implementation
	Hardware Implementation
	Mixed Implementation

