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ABSTRACT

GUIDANCE AND CONTROL OF UNMANNED AIRSHIPS FOR WAYPOINT

NAVIGATION IN THE PRESENCE OF WIND

Ghassan M.Atmeh, MS

The University of Texas at Arlington, 2012

Supervising Professor: Kamesh Subbarao

Airships are a specific class of Lighter-Than-Air (LTA) vehicles. These vehicles

achieve lift mainly through buoyancy; the usually ellipsoidal shaped hull contains a

lifting gas such as helium, which produces the required lift though air displacement.

Due to this method of operation an airship has the ability to conduct low-power

hover, which makes it ideal for applications requiring hovering over long periods of

time such as surveillance, terrain mapping, meteorology and GPS. In such applications

the conventional fixed wing unmanned aircraft is less suitable.

The work presented in this thesis deals with designing a controller that is ca-

pable of navigating an airship through a series of waypoints. A guidance algorithm

provides commands to the controller based on vehicle and waypoint positions (two

approaches were considered). A novel implementation of the extended Kalman filter

(EKF) provides the required states and wind speed estimates to increase the control

systems robustness to wind.

Translational and rotational kinematics and dynamics for the AS500 unmanned

airship are developed using classical mechanics principles, resulting in a nonlinear
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model. Airship dynamics differ strongly from conventional aircraft dynamics for they

exhibit virtual mass and virtual inertia effects, the aerodynamic model incorporated

in this work take into account these effects as the airship moves through air.

The developed model is trimmed at two points, one for a straight and level flight

the other for a level turn. These trim points are then incorporated in the linearization

of the airship model, which results in a twelve-state, linear, state-space model. The

linear model acquired is then used to design an Linear Quadratic Regulator (LQR)

control law, a Linear Quadratic Integral (LQI) control law, and a gain scheduling law,

which allow the airship to navigate through several waypoints. Two waypoint navi-

gation laws are developed to generate command signals to the proposed controllers.

The results from both cases are compared under specified wind conditions.

A novel implementation of the Extended Kalman filter (EKF) is employed to

estimate the airship entire state vector, angular rates measurement bias, and wind

speeds with only two sensors available; a global positioning system (GPS) and inertial

measurement unit (IMU) sensor. It is shown that the inclusion of the estimated wind

speeds enhances the robustness of the track following guidance law to wind.

The nonlinear model, proposed LQR and LQI controller, along with the guid-

ance laws, and Extended Kalman filter are implemented to simulate the flight of

the unmanned airship through a series of waypoints, in the presence of a wind field

generated from an exponentially correlated wind model.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

The dream of flight has always accompanied man throughout history. From

Leonardo da Vincis designs, to Otto Lilienthals gliders , and all the way to the Wright

brothers flight in Kitty Hawk, North Carolina, the dream of flight always captured

mans imagination. The dream of a controlled, powered flight was first realized by the

invention of the airship, where it is claimed that Jean-Baptiste Meusnier proposed a

design of an ellipsoidal airship in 1748 [1]; the design incorporated a rudder, elevator

and three large airscrews; however, it lacked a lightweight, powerful engine. Henri Gif-

fard was the first person to equip an airship with steam-engine technology successfully

flying his airship 17 miles in 1852, with a single propeller driven by a three horsepower

engine [2]. The golden age of the airship began with the launch of German Luftschiff

Zeppelin in 1900 but sadley ended in the tragic Hindenburg incident in 1937. During

that period there were many designs that came out in the United States and Britain

as well. Despite the demise of the golden age of airships, in the past decade interest

in them has grown due to the advancement in technology such as thermal analysis,

control system design, computational fluid dynamics, and optimal design. The fact

that evolving new demands, which cannot be satisfied with conventional aircraft, are

being imposed on the aeronautics community, has also sparked the interest in airships

[3]. Therefore, addressing the issue of analyzing the dynamics of such vehicles along

with implementing control methodologies that insure peak performance and safety, is

necessary for the continued advancement of the airship technology.
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Figure 1.1. USS Shenandoah Under construction, courtesy U.S. Naval Historical
Center.

Airships generally comprise of a hull, usually of ellipsoidal shape, a gondola,

and aerodynamic tail fins. The hull houses a low-density lifting gas, such as helium,

to achieve lift mainly through buoyancy. Fluid statics dictates that an object which

is less dense than the fluid in which it is immersed, experiences a force proportional to

the volume of the displaced fluid and in the opposite direction of its weight. Airships

utilize gases that are less dense than air to generate such force for means of flight, this

force is called the static lift. Due to this, airship dynamics are substantially different

from conventional aircraft dynamics, with significant effects from added mass and

added inertia, and a much higher sensitivity to wind [4]. Added mass and inertia

effects are changes in the dynamics of the airship due to mass and inertia of air in

which the it is flying. This is experienced by all aircraft, however in heavier-than-

2



Figure 1.2. A blimp from Airship Management Services, courtesy of AirshipManage-
ment Services, Inc.

air flight, the mass and inertia of air are negligible when compared to that of the

aircraft, in lighter-than-air flight such as airship flight they have a too profound of

an effect on airship dynamics that they cannot be neglected. Due to this method of

operation, airships have the ability to hover. This ability transforms airships into data

acquisition platforms [5] ideal for applications such as surveillance, terrain mapping,

climate research, inspection of man-made structures and GPS. In such applications

the conventional unmanned aircraft is not a applicable.

There are three main categories for airship classification [6], all based on struc-

tural aspects; rigid airships, non-rigid airships, and semi-rigid airships. Rigid airships

employ rigid-framed hulls to keep their shape, and contain multiple balloons filled

3



with the lifting gas. An example of rigid airships is the USS Shenandoah shown in

Figure.1.1. Non-rigid airships, or blimps, keep their shape based on pressure differ-

ence between the inside lifting gas and the outside atmosphere. Figure.1.2 shows an

example of a non-rigid airship (blimp). Semi-rigid airships also rely on pressure dif-

ference to maintain shape but incorporate some rigid parts to allow load distribution.

In light of all above mentioned, airship dynamics analysis and control is an in-

teresting Field of study, therefore, in this thesis the focus will be on unmanned airship

dynamics; analysis, estimation and control. The motivation behind this work is the

need to control an unmanned airship under real life disturbances, i.e wind. Airships

high sensitivity to wind originates from the fact that they have large wetted areas

and depend on light gases for lift, and due to this method of lift generation they

have special attributes. A major attribute is long endurance hover; this can trans-

form airships to low cost data reception and transmission platforms. One example

is the utilization of airships instead of space satellites for GPS applications. This

would reduces the cost substantially, since there is no need for a rocket launch to

get the airship into position, in addition if any malfunction should occur the airship

can always land and be maintains, unlike satellites where a space mission would be

conducted, and many more reasons. Therefore the need to control unmanned airships

is vital to the advancement of technologies that can inhibit their utilization in such

applications.

1.2 Thesis Outline

The goal of this thesis is to simulate the ability to control an unmanned airship

to navigate its way through a series of waypoints, in the presence of wind. It is

required that the airship visit all waypoints in the order they are given. In chapter 2

the dynamics and kinematics equations of an airship which, include the added mass

4



and inertia effects along with wind effects, are derived. These equations will be used

to create a computer simulation of the airship flight. Chapter 3 deals with linearizing

the developed nonlinear airship equations of motion, and utilizing the linear model

for the design of an LQR full-state-feedback controller and an LQI controller. The

purpose of the controllers is to fly the airship through a series of waypoints based on

commands generated by a navigation algorithm. Two guidance laws are developed

and utilized, a comparison in the results is shown to study the difference in the

logic of both laws. An Novel Extended Kalman filter (EKF) is also designed and

implemented in chapter 4 to estimate the required states for feedback control. The

EKF is also responsible for estimating the wind speeds to enhance the performance

of the controller. This is done by feeding the estimated wind speeds to the navigation

algorithm which generates commands, that account for the presence of wind, to the

controller, this makes the system more robust to wind.

5



CHAPTER 2

KINEMATICS AND DYNAMICS

The motion of an object in 3-dimensional space can be described, mathemat-

ically, in many ways. As customary to aerospace engineering applications, the dy-

namics and kinematics of the airship in 3-dimensional space are obtained using the

principles of classical mechanics. Newton’s second law on the rate of change of linear

momentum is used to derive the equations for translational dynamics, while Euler’s

second law on angular momentum enables the derivation of the equations for rota-

tional dynamics. Before diving into the detailed derivation, the airship adopted for

this work will be introduced followed by some mathematical concepts needed for the

equations derivation.

2.1 Airship Major Components

The airship selected for the work presented in this thesis is the AS500 airship

[7, 8, 9, 10]. The AS500 has a main hull engulfing the lifting gas and aerodynamic

tail fins incorporating control surfaces for stability and control. A main propeller,

capable of tilting for thrust vectoring, is positioned below the hull along the gondola.

A tail propeller is mounted to act as an aid in heading control. Figure 2.1 illustrates

the main components of the AS500.

2.2 Mathematical Preliminaries

In order to acquire the equations that describe the airship motion some mathe-

matical concepts are needed to aid in the process. The required concepts are revised

6
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Figure 2.1. Schematic drawing showing the main components of the AS500 airship -
not to scale.

in this section. Throughout this thesis the following notation will be adopted if not

otherwise stated; vectors will be denoted by boldface font lowercase letters and ma-

trices will be expressed in boldface font uppercase letters.

1. Vector triple product

a× (b× c) = (a.c)b− (a.b)c (2.1)

2. Vector quadruple product

a× (b× (c× d)) = (b.d)a× c− (b.c)a× d (2.2)

3. Vectors scalar product via their representations

a.b = a Tb (2.3)

4. Vectors vector product via their representations

a× b = −[a]
×
b (2.4)

7



where a = [a1 a2 a3]
T and [a]

×
is the skew-symmetric cross-product matrix and

is calculated as follows

[a]
×
=









0 a3 −a2

−a3 0 a1

a2 −a1 0









5. Order of cross product

[a]
×
b = −[b]

×
a (2.5)

6. Vectors product manipulation

a Tbc = ca Tb (2.6)

7. The transport theorem

ȧ =
da

dt
|I + ωBI × a (2.7)

8. Other required equalities

(a Tb)[a]
×
= −[b]

×
aa T (2.8)

[R12a]× = R12[a]×R12
T (2.9)

where R12 is the rotation matrix from coordinate frame 1 to coordinate frame 2. The

proofs for equations 2.8 and 2.9 are available in reference [11]

2.3 Assumptions

In order to derive the mathematical formulation for the airship equations of

motion the following assumptions are stated:

• The airship is a rigid body; relative motion between volume elements of the

airship is nonexistent.
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• The airship has a fixed mass, and its center of mass is at a fixed location, i.e.

no fuel or other mass is being introduced or exhausted from the airship.

• The airship center of volume is at a fixed location.

• The airship is at a neutral buoyancy state, i.e. the lift generated by the buoyancy

force is equal to the airship weight.

• The earth is flat, nonrotating and is an approximate inertial frame.

• The airships body frame is located at a fixed geometric location, the nose. This

assumption allows for a more general form of the equations of motion to be

derived, for it can, if required, accommodate the movement of the center of

mass or center of volume of the airship in future studies.

2.4 Translational Motion

The science of flight mechanics [12] is utilized to derive the equations of motion

in this and subsequent section based on previous published equations of motion for an

airship [9, 10], which were derived based on an extensive derivation for the equations of

motion for an aircraft in an aerial refueling scenario [11]. The derivation is presented

here for clarity and completion.

2.4.1 Translational kinematics

The airship motion in the inertial frame is the sum of the airship motion relative

to the atmosphere and the atmospheres inertial motion.

ṙa = RT
IBV +W (2.10)

where RIB is the rotation matrix from inertial frame to body frame, ra is the position

vector of the airships body frame origin, expressed in the inertial frame,V is the vector

of airship velocity relative to the atmosphere expressed in the body frame, and W is
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the atmosphere inertial velocity vector expressed in the inertial frame. All the vector

components are expressed below.

ra = [x y z]T

W = [Wx Wy Wz]T

V = [u v w]T

The rotation matrix from inertial frame to body frame is constructed based on

the 3-2-1 Euler angle rotation sequence, the matrix elements are shown below where

c and s denote cosine and sine respectively and φ, θ, and ψ are the bank, pitch, and

yaw angles respectively.

RIB =









c(θ)cψ c(θ)s(ψ) −s(θ)

−c(φ)s(ψ) + s(φ)s(θ)c(ψ) c(φ)c(ψ) + s(φ)s(θ)s(ψ) s(φ)c(θ)

s(φ)s(ψ) + c(φ)s(θ)c(ψ) −s(φ)c(ψ) + c(φ)s(θ)s(ψ) c(φ)c(θ)









2.4.2 Translational dynamics

Newtons second law of motion states that the sum of forces acting at a point

is equal to the rate of change of linear momentum. Based on the constant mass

assumption made in section 2.3, the rate of change of linear momentum of the airship

is equal to the mass multiplied by the acceleration of the center of mass expressed as

follows
�

F = M r̈cm (2.11)

with M is the scalar mass of the airship, vector rcm is the inertial position of the

airship center of mass expressed in the inertial frame. This vector is calculated based

on vector addition of the inertial position vector of the airships body frame origin

ra, expressed in the inertial frame, and the center of mass position vector relative to
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�

Figure 2.2. Graphical representation of position vectors required for equations of
motion derivation.

the body frame ρcm, expressed in the body frame. Figure 2.2 provides a graphical

representation of these vectors.

rcm = ra + ρcm (2.12)

substituting equation 2.12 into equation 2.11 yields equation 2.13.

�
F = M(r̈a + ρ̈cm) (2.13)

further substituting equation 2.10 into equation 2.13 and expressing all the vectors

in the body frame gives

�
F = MRIBṘ

T

IBV +MV̇ +MRIBẆ +M ρ̈cm (2.14)
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Examining the last term on the right-hand side of equation 2.14 and utilizing the

transport theorem from section 2.2. According to the theorem the following holds

true

ρ̇cm =
dρcm
dt

|I + ωBI × ρcm (2.15)

where dρcm

dt
|I = 0 and ωBI is the airship angular velocity vector with respect to the

inertial frame expressed in the body frame as ωBI = [p q r]T . This follows that

ρ̈cm = ω̇BI × ρcm + ωBI × ωBI × ρcm (2.16)

applying the cross-product matrix formulation and cross product properties discussed

in section 2.2 to equation 2.16 results in

ρ̈cm = [ρcm]×ω̇BI + [ωBI]
2
×
ρcm (2.17)

substituting equation 2.17 into equation 2.14 shows that

�
F = MRIBṘ

T

IBV +MV̇ +MRIBẆ +M [ρcm]×ω̇BI +M [ωBI ]
2
×
ρcm (2.18)

recall from section 2.2 that ṘIB = [ωBI ]×RIB therefore

Ṙ
T

IB = −RT
IB[ωBI]× (2.19)

substituting equation 2.19 into equation 2.18 and rearranging yields

�
F = M(−[ωBI ]×V + V̇ +RIBẆ + [ρcm]×ω̇BI + [ωBI ]

2
×
ρcm) (2.20)

The forces acting on the airship include aerodynamic, propulsive, gravitational, and

buoyancy. All are to be discussed later in this chapter.

2.5 Rotational Motion

2.5.1 Rotational kinematics

The rotational kinematics or attitude kinematics can be expressed by the rate

of change of the Euler angles. This is done by mapping the body angular velocity to
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the inertial frame based on the rotation sequence, the sequence adopted here is the

3-2-1 sequence or yaw-pitch-roll sequence and the governing equation is

Ω̇ = Γ(Ω)ωBI (2.21)

where Ω = [φ θ ψ]T and Γ(Ω) is shown below

Γ(Ω) =









1 sin(φ) tan(φ) cos(φ) tan(φ)

0 cos(φ) − sin(φ)

0 sin(φ) sec(θ) cos(φ) sec(θ)









2.5.2 Rotational dynamics

Euler’s second law states that the rate of change of angular momentum about

a point is equal to the sum of moments acting on that point. The sum of moments

acting on the airship center of mass in the inertial frame is obtained from the following

expression
�

MI = rcm ×M r̈cm (2.22)

the sum of moments on the airship in the body frame however reads as

�
MB =

�
MI − ra ×

�
F (2.23)

from translational dynamics ra ×
�

F = ra × M r̈cm, and as established previously

r̈cm = r̈a + ρ̈cm therefore the following holds

�
MB =

�
MI − ra ×M(r̈a + ρ̈cm) (2.24)

substituting the value of the moment in equation 2.22 and the value of rcm gives

�
MB = (ra + ρcm)×M(r̈a + ρ̈cm)− ra ×M(r̈a + ρ̈cm) (2.25)

which simplifies to
�

MB = ρcm ×M(r̈a + ρ̈cm) (2.26)
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the values of ra from equation 2.10 and ρ̈cm from equation 2.17 substituted into

equation 2.26 along with expressing all vectors in the body frame gives

�
MB =ρcm ×M(−[ωBI ]×V + V̇ +RIBẆ)...

+ ρcm ×M(ω̇BI × ρcm) + ρcm ×M(ωBI × ωBI × ρcm)

(2.27)

from the triple cross product identity the second term on the right-hand side of

equation 2.27 can be expressed as

ρcm ×M(ω̇BI × ρcm) =M [(ρcm.ρcm)ω̇BI − (ρcm.ω̇BI)ρcm]

=[M(ρ T
cmρcm)I3×3 − (ρcmρ

T
cm)]ω̇BI

(2.28)

similarly the third term on the right-hand side of equation 2.27 can be expressed as

follows based on vector and matrix properties introduced in section 2.2

ρcm ×M(ωBI × ωBI × ρcm) =Mρcm × [(ωBI .ρcm)ωBI − (ωBI .ωBI)ρcm]

=M(ρ T
cmωBI)ρcm × ωBI

=−M(ρ T
cmωBI)[ρcm]×ωBI

=−M [ωBI]×(ρcmρ
T
cm)ωBI

=− [ωBI ]×([M(ρ T
cmρcm)I3×3 − (ρcmρ

T
cm)]ωBI

−M(ρ T
cmρcm)ωBI)

=− [ωBI ]×([M(ρ T
cmρcm)I3×3 − (ρcmρ

T
cm)]ωBI)

(2.29)

where [M(ρ T
cmρcm)I3×3 − (ρcmρ

T
cm)] is the mathematical definition of the inertia ma-

trix IM , substituting equations 2.28 and 2.29 into equation 2.27

�
MB = −M [ρcm]×(−[ωBI ]×V+ V̇+RIBẆ)+ IM ω̇BI − [ωBI ]×IMωBI (2.30)

The moments acting on the airship include aerodynamic, propulsive, gravitational,

and buoyancy moments. All are to be discussed in the following section.
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2.6 Forces and Moments

2.6.1 Aerodynamics

Over the past century, airship aerodynamics have been the subject of study

for many aerodynamicists and engineers [13, 14, 15, 16, 17]. In the past four years

different methods have been applied to derive an aerodynamics model for airships,

analytical [1] and numerical [18]. However, to acquire a high fidelity aerodynamics

model wind tunnel tests are required [19]. To make an operational airship, it is

necessary to provide control surfaces and propulsion devices [10]. Each of these items

experiences individual drag when mounted to the hull due to the hull flow field.

The control surfaces alter the force and moment coefficients, therefore, they are used

to stabilize the airship. The gondola introduces asymmetry in the geometry of the

vehicle and influences all the forces. The aerodynamic model developed in [4] based

on the method outlined in [17] and was implemented in many technical publications

on simulation and control of airship dynamics [9, 20, 21, 22, 23].

The aerodynamic model adopted for the work presented in this thesis is based

on published data where the aerodynamic force and moment coefficients as a function

of control surface deflection, angle of attack and angle of side-slip are derived from

wind tunnel experiments. The reader is referred to ref.[10] for more detail. The

aerodynamics force on the airship can be expressed as:

FA = F0 + F1V̇ + F2ω̇BA (2.31)

where F1 and F2 are the virtual mass matrices which are a contribution of the dis-

placement of the air medium to the overall linear momentum change of a system
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moving through it, F0 is the main aerodynamic force vector in the body frame and

can be expressed as

F0 =









FxB

FyB

FzB








=









1
2
ρair||V||2SrefCT

1
2
ρair||V||2SrefCL

1
2
ρair||V||2SrefCN








−Du






V

ωBA




 (2.32)

CT , CL, CN are the body frame X-direction, Y -direction, and Z-direction aerodynamic

force coefficients, Sref is the reference surface area of the airship hull, and Du is the

translational portion of the Coriolis-centrifugal coupling matrix, and ρ is the air

density [10].

MA = M0 +M1ω̇BA +M2V̇ (2.33)

where M1 and M2 are the virtual inertia matrices which are a contribution of the

displacement of the air medium to the overall angular momentum change of a system

moving through it, M0 is the main aerodynamic moment vector in the body frame

and can be expressed as

M0 =









MxB

MyB

MzB








=









1
2
ρair||V||2SrefLrefCl

1
2
ρair||V||2SrefLrefCm

1
2
ρair||V||2SrefLrefCn








−Dω






V

ωBA




 (2.34)

M1 and M2 are the virtual inertia matrices which are a contribution of the displace-

ment of the air medium to the overall angular momentum change of a system moving

through it. Cl, Cm, Cn are the body frame x-direction, y-direction, and z-direction

aerodynamic moment coefficients, Lref is the reference length of the airship hull,and

Dω is the rotational portion of the Coriolis-centrifugal coupling matrix.

2.6.2 Propulsion

The AS500 airship has two sources of thrust, the main propeller and the tail

propeller. The main propeller has a tilt capability that enables it to produce thrust
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in the body frame x and z directions by rotating at an angle γTm. The tail propeller

only produces thrust in the y-direction of the body frame. The two vectors can be

expressed in the body frame as

Tm =









Tm cos(γTm)

0

−Tm sin(γTm)









(2.35)

Tt =









0

Tt

0









(2.36)

where Tm and Tt are the magnitude of the main and tail thrust respectively.

The moment due to the the propulsive forces acting on the airship in the body

frame can be calculated by multiplying the thrust vectors of both the main propeller

and the tail propeller by the location of each in the body frame and adding the results,

this is shown as

Mp = ρTm ×Tm + ρTt ×Tt (2.37)

where ρTm and ρTt are the position vectors of the main and tail propeller respectively

in the body frame.

2.6.3 Buoyancy and weight

The buoyancy force generated by the lifting gas acts in an opposite direction to

the weight. They both are represented in the inertial frame as one buoyancy-weight

vector FbgI = [0 0 (Fg−Fb)]
T , therefore to express the buoyancy-weight force vector

in the body frame it is premultiplied by the rotation matrix as follows

FbgB = RIBFbgI (2.38)
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and the moment due to the buoyancy force can be expressed as the product of the

location of the center of volume and the buoyancy force vector in the body frame.

Mbouy = ρcv ×RIBFbI (2.39)

where ρcv is the location of the center of volume in the body frame, expressed in

the body frame and FbI is the buoyancy force acting on the airship expressed in the

inertial frame. the moment due to the weigh can be expressed as the product of the

location of the center of mass and the weigh vector in the body frame

Mg = ρcm ×RIBFgI (2.40)

where FgI is the weight of the airship expressed in the inertial frame.

Now that the forces and moments acting on the airship from aerodynamic,

propulsive, buoyancy, and gravity have been clearly defined, the equations of motion

of the airship can be put into a final form that is more comprehensive and aids in the

analysis and simulation of the airship.

2.7 Equations Final Form

The dynamics and kinematics equations derived in the sections above can be

put into a more comprehensive form that aids in the analysis and simulation of the

airship motion later on. Equations 2.20 and 2.30 can be rearranged as follows, with

the substitution of the values of the forces and moments in section 2.6

V̇ = (MI3×3)
−1(F0 + F1V̇ + F2ω̇BA +Tm +Tt + FbgB)...

+ [ωBI ]×V −RIBẆ− [ρcm]×ω̇BI − [ωBI ]
2
×
ρcm

(2.41)

ω̇BI = I−1
M (M0 +M1ω̇BA +M2V̇ +Mp +Mbouy +Mg...

+M [ρcm]×(−[ωBI ]×V + V̇ +RIBẆ) + [ωBI ]×IMωBI)

(2.42)
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Equations 2.41 and 2.42 can be concatenated with equations 2.10 and 2.21 to from

the nonlinear state space form of the equation of motion for the airship as follows:

Cnssẋ = Anssx +Gnss (2.43)

where

Cnss =












I3×3 − (MI3×3)
−1F1 [ρcm]× − (MI3×3)

−1F2 [0]3×3 [0]3×3

I−1
M (−M [ρcm]× −M 2) I3×3 − I−1

M M 1 [0]3×3 [0]3×3

[0]3×3 [0]3×3 I3×3 [0]3×3

[0]3×3 [0]3×3 [0]3×3 I3×3












(2.44)

Anss =












[ωBI ]× [0]3×3 [0]3×3 [0]3×3

−MI−1
M [ρcm]×[ωBI ]× I−1

M [ωBI]×IM [0]3×3 [0]3×3

RT
IB [0]3×3 [0]3×3 [0]3×3

[0]3×3 Γ(Ω) [0]3×3 [0]3×3












(2.45)

Gnss =












(MI3×3)
−1(F0 +Tm +Tt + FbgB)−RIBẆ− [ωBI ]

2
×
ρcm)

I−1
M (M0 +Mp +Mbouy +Mg) +MI−1

M [ρcm]×RIBẆ

W

[0]1×1












(2.46)

x =

�

V ωBI ra Ω

�T

= [u v w p q r x y z φ θ ψ]T
(2.47)

2.8 Wind Model

The wind field experienced by the airship is simulated using an exponentially

correlated stochastic model [24], termed the Exponentially Correlated Wind Model
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or ECWM. The equations that govern the change of wind speed, in the inertial frame,

with time are as follows

Ẇx = −bwWx +
�

awbwηx

Ẇy = −bwWy +
�

awbwηy

Ẇz = 0

(2.48)

with aw as a coefficient showing the extent of the mean square value of the wind, bw

the inverse time constant to show the extent of the correlation of the wind, ηx and ηy

being the zero-mean Gaussian white noise. aw and bw are calculated as

aw = 2(E{W}2 + σ2
w) (2.49)

bw =
1

τw
(2.50)

The wind is assumed to have a Gaussian distribution with zero-mean, with a standard

deviation of 0.5 m/s.

The Dryden model is utilized to add turbulence effect to the wind model, this is

expressed in the following differential equations that govern the states of the Dryden

model

ẋw1 = −
V

Lu

xw1 + σu

�
2V

πLu

η1

ẋw2 = xw3

ẋw3 = −
V

Lv

xw2 − 2
V

Lv

xw3 + η2

ẋw4 = xw5

ẋw5 = −
V

Lw

xw4 − 2
V

Lw

xw5 + η3

(2.51)

where xw1, xw2, xw3, xw4, and xw5 are the states of the Dryden model, V is the airship

speed, and η1, η2 and η3 are zero-mean Gaussian white noise. Below is the expression

of the turbulence in the inertial frame

Wturb = RT
IBRturbxw (2.52)
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with RIB as the rotation matrix defined earlier, and

Rturb =










1 0 0 0 0

0 σv√
(π)

V
Lw

1.5
σv

�
3V
πLv

0 0

0 0 0 σw√
(π)

V
Lw

1.5
σw

�
3V
πLw










(2.53)

xw = [xw1 xw2 xw3 xw4 xw5]
T (2.54)

The equations derived in this chapter will aid in generating a high fidelity

nonlinear simulation for airship flight in a wind field. They will also be used to

design an Linear-Quadratic (LQ) controllers to navigate the airship through a series

of waypoints as will be discussed in chapters to come.
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CHAPTER 3

CONTROL AND NAVIGATION

3.1 Introduction

The ability to stabilize and control an airship is vital in any application, and

due to their high sensitivity to wind and other disturbances precise control is required.

The following contains a review of some of the control methods applied to airships

over the past decade.

PID is a well established method of control in various applications, the AU-

RORA airship project, which is focused on the development of sensing, control and

navigation technologies for autonomous or semi-autonomous airships [25], incorpo-

rates a PID controller for the longitudinal velocity, a PD altitude controller and a PD

controller for heading control are designed. A different approach incorporates a PID

controller, with gains designed using H2/H∞ methods [26], is developed to control

airship heading. The guidance and control strategy, based on a path tracking error

generation methodology that takes into account the distance and angular errors of

the airship with respect to a desired trajectory

Neural network augmented model inversion control is also applied to airship

control [27]. The model inversion control system is a combination of feedback lin-

earization and linear control. The theoretical aspect of applying the neural network is

to compensate for the feedback linearization and modeling error. A feedback control

law for way-point to way-point inertial navigation is designed for a control system fea-

turing closed-loop guidance laws that provide autonomous navigation capability to an

airship [28]. Closed loop commands keep the airship at desired speed, altitude and in-
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ertial position. A dynamic inversion path-tracking control law, forcing the closed-loop

system outputs to be independently controlled to follow a position command trajec-

tory, is designed for an airship [29]. The control law shows fast correction of trajectory

errors. Lyapunov stability based designs of state-feedback control laws [30] have also

been implemented to the airship control problem. A backstepping methodology is

utilized to design a closed-loop trajectory-tracking controller for an under actuated

airship [31]. The authors state that backstepping is suitable for the cascaded nature

of the vehicle dynamics and that it offers design flexibility and robustness against

parametric uncertainties which are often encountered in aerodynamic modeling and

air stream disturbances. Other methods including sliding mode control [32] and fuzzy

logic design are implemented for airship control [33].

In this thesis the Linear-Quadratic-Regulator problem, or LQR problem is

solved to acquire the optimal gains needed to design a controller for the airship.

With a full-state-feedback controller design, this controller is expected to fly the air-

ship through a series of waypoints based on commands generated by a path specific

navigation algorithm. The selection of an LQR-based controller design is accredited

to its ability to deal with multi variable systems in a relatively simple way, and its

ease of implementation [34]. A second controller is then designed, having a Linear-

Quadratic-integral (LQI) control structure; it is capable of receiving commands from

a proportional navigation law and fly the airship from one waypoint to the other.

The work presented in [35] and [36] shows an LQR implantation to the airship

system; in [35] however the exact gain scheduling law is not shown, neither is the

navigation law used to guide the airship through flight. In [36] the gain scheduling

law is implemented with 11 trim points, and the guidance law generates a commanded

yaw rate based on the airship heading and the commanded heading towards the next

waypoint. In this thesis however a more simplistic gain scheduling law, capable of con-
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trolling the airship in straight and level flight as well as level turn flight, is introduced.

Two guidance schemes are presented here; the first, a path specific guidance scheme,

commands the airship to go to the next waypoint on a specific path. The other, a

proportional navigation guidance scheme, commands it to go to the next waypoint

by rotating its velocity vector. Both [35] and [36] assume that the states and state

derivatives required to implement the control and navigation laws are available. This

is not always true in reality, where some states may not be available by measurement.

This issue is dressed in chapter 4 by designing and implementing a Kalman filter to

estimate the required states for control, based on a minimum number of sensors.

This chapter discusses the trim conditions required for the linearization of the

airship model, the linearization of the nonlinear dynamic model presented in the pre-

vious chapter, the solution to the LQR problem, the control laws and gain scheduling

law used to control the airship flight, along with a guidance algorithms.

3.2 Trim conditions

The airship motion is assumed to be confined to a plane at a specific altitude,

i.e. the airship will visit planar waypoints. It is also assumed that the airship speed is

held constant during flight. The airship will visit all waypoints preprogrammed into

the guidance algorithm in the order they are given. The AS500 airship is capable

of speeds up to 12.5 m/s [7], therefore it is assumed that it can operate safely at a

trim speed of 7 m/s. A trim altitude of 1000 m can be achieved if the correct mass

of Helium is loaded into the hull of the AS500. Since the volume of the AS500 is

15 m3 [7], it is assumed that the Helium in the hull will expand to that volume at

the trim altitude, but no more to prevent any damage. To do so the mass of Helium

loaded into the airship at sea level must account for such expansion, the following
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calculations show how this is possible. The volume of the airship at sea-level and the

volume at 1000 m are related as follows [4]

V0 = σV1000 (3.1)

where σ is the ratio of air density at 1000 m and the air density at sea-level and is

approximately 0.9. Setting V1000 equal to 15 m3 gives V0 = 13.5m3. The volume at

sea-level is related to the mass of Helium by

V0 = MHe/ρH0 (3.2)

where MHe and ρH0
are the mass of Helium and the density of Helium at sea-level

respectively. This calculation results in a required mass of 2.4 Kg of Helium to be

loaded into the airships hull.

Now that the trim speed and altitude have been selected the phases of flight

have to be identified. Since the airship will be traveling in a plane and visiting a set

of waypoints it will only be required to fly straight and level and execute a level turn.

This implies that two trim points have to be calculated, one for straight and level

flight, the other for level turn. The trim values of the airship states are given in table

3.1 below

where TM ,ΓTM , Tt,Δ1, and Δ2 are the main rotor thrust, main rotor tilt angle,

the stern rotor thrust, and the deflections of the aerodynamic control surfaces.

3.3 Linear Model

To solve the LQR problem and acquire the optimal gains for controlling the

airship, a linear state-space model of the airship dynamics is required. The nonlinear
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Table 3.1. Trim states

State/Input Straight and Level Level Turn

u (m/s) 6.99 6.98
v (m/s) 0 0.194
w (m/s) -0.365 -0.364
p (deg/s) 0 0.27
q (deg/s) 0 -0.02
r (deg/s) 0 5
z (m) -1000 -1000
φ (deg) 0 -0.8
θ (deg) -3 -3
TM (N) 10.2 10.5

ΓTM (deg) 36.4 35.6
Tt (N) 0.2 1.7

Δ1 (deg) 20 3.7
Δ2 (deg) 20 20

model in equation 2.43 can be linearized about the two trim points calculated in

section 3.2 and two linear state-space models having the form below are achieved

δẋ = Aδx+Bδu (3.3)

where A is the system matrix, B is the input matrix, δu and δx are the incremental

input and state vectors respectively and can be represented as follows

δx = [δu δv δw δp δq δr δx δy δz δφ δθ δψ]T

δu = [δTM δΓTM δTt δΔ1 δΔ2]
T

(3.4)

When linearizing the system at the straight and level trim point the following

system and input matrices are generated.
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ASL =

















−0.12506 0.00037693 −0.16262 0 0.83481 0.017203 0 0 0 0 0.097093 0

0.0041157 −11.38 −0.22913 −44.452 0.0018451 0.86643 0 0 0 −10.345 0.00089617 0

−0.038647 0.0034293 −2.1081 −0.0092395 1.1047 0.00058771 0 0 0 0 0.90358 0

0.0028364 −8.9358 −0.17682 −49.747 0.002237 1.6226 0 0 0 −11.586 0.0010036 0

0.015331 −0.00078239 0.42753 0 −0.41083 −0.00016844 0 0 0 0 −0.25897 0

0.001161 −2.4804 −0.054159 −9.3868 0.00037975 −0.050413 0 0 0 −2.1936 0.00019002 0

0.99863 0.0012949 −0.052219 0 0 0 0 0 0 0 0.000965 0

−0.0012068 1 0.0017198 0 0 0 0 0 0 0.36455 0 7

0.052222 −0.0016544 0.99863 0 0 0 0 0 0 0.0084492 −7 0

0 0 0 1 0 −0.052293 0 0 0 0 0 0

0 0 0 0 1 0.0016567 0 0 0 0 0 0

0 0 0 0 −0.001659 1.0014 0 0 0 0 0 0


















BSL =


















0.040355 −0.2955 0 0.01631 −0.016312

0 0 −0.11206 −5.0029 5.0029

−0.019751 −0.1186 0 0.0014896 −0.0014898

0 0 −0.10755 −3.793 3.793

0.0010567 −0.029937 0 −0.00042693 0.00042698

0 0 −0.032625 −1.133 1.133

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


















When linearizing the system at the level turn trim point the following system

and input matrices are generated.

ALT =

















−0.13169 0.17887 −0.17658 −0.069235 0.86457 −0.78423 0 0 0 0 0.097086 0

0.2968 −11.298 −0.1946 −44.439 −0.22906 0.8718 0 0 0 −10.344 0.0078344 0

−0.037486 0.068577 −2.1167 −0.18058 1.105 −0.14189 0 0 0 0 0.90352 0

0.21649 −8.8707 −0.16931 −49.724 −0.17571 1.6272 0 0 0 −11.584 0.0087738 0

0.015184 −0.017082 0.42961 0.081442 −0.411 0.045405 0 0 0 0 −0.25896 0

0.067414 −2.4599 −0.048073 −9.3812 −0.053664 −0.049158 0 0 0 −2.1932 0.0016611 0

0.99857 0.00075631 −0.053528 0 0 0 0 0 0 −0.010615 −0.00013499 −0.19832

0 0.9999 0.014128 0 0 0 0 0 0 0.37468 0 6.9972

0.053533 −0.014108 0.99847 0 0 0 0 0 0 0.19801 −6.9972 0

0 0 0 1 0.0007574 −0.053605 0 0 0 0 0.087392 0

0 0 0 0 0.9999 0.014128 0 0 0 −0.087141 0 0

0 0 0 0 −0.014148 1.0013 0 0 0 0 −0.0046779 0


















27



BLT =


















0.040956 −0.30753 0 0.072467 −0.072468

0 0 −0.11206 −5.0065 5.0065

−0.019501 −0.13176 0 0.0066183 −0.0066184

0 0 −0.10755 −3.7955 3.7955

0.0011184 −0.031858 0 −0.0018969 0.0018969

0 0 −0.032625 −1.1337 1.1337

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


















3.4 The LQR Problem

3.4.1 Problem statement

The Linear-Quadratic-Regulator problem is in its essence an optimization prob-

lem that deals with finding a state-feedback control law of the form δu = −Kδx that

minimizes a quadratic performance index subject to a linear dynamical constraint in

equation 3.3 [34]. The performance index is of the following form:

J =

�
∞

0

(δxTQδx+ δuTRδu)dt (3.5)

where Q is a diagonal n×n weighting matrix and is typically positive-semidefinite, n

is the number of states which is equal to 12. R is a diagonal m×m positive-definite

weighting matrix, where m is the number of inputs and is equal to 5 in the AS500

airship model.

3.4.2 Selection of Q and R matrices

Various methods of selecting the Q and R matrices are available in the liter-

ature. The elements in both Q and R are regarded as penalties of how important

a state is versus the control effort [37], one method is to select Q = CTC and

R = BBT and after the first run the values will be tuned for a required performance

[38], another method is based on deriving a mathematical relation between the sys-

28



tem response and the Q and R weighting matrices [39], this however is only done for

a two-order system. Since the goal of this thesis is not to derive the mathematical

formulation for selecting a Q and R matrix for the twelfth order airship system, the

method selected to acquire an initial value of diagonal weighting matrices is Bryson’s

law [40].

Bryson’s law suggests the selection of diagonal elements for Q based on the

inverse of the maximum allowable value for each state, and diagonal elements for R

based on the inverse of the maximum allowable value for each input. This approach

is utilized in designing the airship controller, after which the diagonal elements are

tuned to render a satisfactory performance.

3.4.3 Problem solution

After the selection of the Q and R matrices the LQR problem can be solved

by first solving the algebraic matrix Riccati equation of the form shown below.

ATP + PA+Q− PBR−1BTP = 0 (3.6)

The solution P of equation 3.6 is used to acquire the optimal gains as follows

K = R−1BTP (3.7)

When solving the LQR problem for the two systems shown in section 3.3 a set

of two gain matrices is achieved as follows.

KSL =






−0.0040 −0.0026 −0.3223 0.0003 −1.816 0.0109 0.0003 0 0.02819 −0.0006 −0.7183 0.0032

−0.1236 0.0023 −1.2294 0.0004 −6.9414 −0.0116 0 0 0.1114 −0.002 −2.5894 −0.0014

−0.0004 0.0202 0 −0.0006 −0.0005 −0.0930 0 0 0 0.0016 0.0010 −0.0408

−0.0002 0.6340 0.0224 0.0421 0.0790 −3.2655 0 −0.0002 −0.0003 0.0416 0.0230 −2.2377

0.0002 −0.6340 −0.0224 −0.0421 −0.0790 3.2655 0 0.0002 0.0003 −0.0416 −0.0230 2.2377
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KLT =






0.0008 −0.0003 −0.2693 0.0051 −1.5172 −0.0141 0.0003 0 0.02497 0.1862 −0.6023 0.0377

−0.1137 0.0126 −1.147 0.0248 −6.4934 −0.1423 0 0 0.1113 0.7764 −2.4273 0.0486

−0.0008 0.0196 −0.0018 −0.0004 −0.0138 −0.0907 0 0 0.0004 0.0035 −0.0094 −0.0402

−0.0161 0.6239 0.0112 0.0454 −0.0587 −3.2351 0 −0.0002 0.0099 0.0585 −0.1646 −2.2355

0.0161 −0.6239 −0.0113 −0.0454 0.0586 3.2351 0 0.0002 −0.0095 −0.0585 0.1646 2.2355







3.4.4 Set-point tracking control law

The gains calculated from the LQR problem solution in section 3.4.3 corre-

spond to a regulation problem. A regulation problem in control theory translates to

regulating the value of all the states of the system to zero. This however is not the

requirement of the designed controller. It is desired that the states of the airship

be driven to the corresponding trim values of the current flight segment. This is

accomplished by a set-point tracking control law, which is of the form

u = −K(x− xtrim) + utrim (3.8)

where x is the state vector, xtrim is the value of the trim states at the current flight

condition, utrim are the trim values for the inputs at the same flight condition, and

K is the same gain matrix calculated earlier. Figure 3.1 shows an illustrative block

diagram of a set-point tracking controller.

Figure 3.1. Block diagram of a set-point tracking controller.

30



3.5 The LQI Problem

The LQI problem is similar to the LQR one in which it is an optimization

problem, when solved finds the feedback control law of the following form δu = −Kz,

where z = [z1 z2] with z1 = x− xtrim and z2 = xi. xi is the output of the integrator

in figure 3.2. The LQI is applied to a system having an output, y, of state rates

which are compared to a reference signal r, this generates an error. The error is then

integrated, giving xi to be used in the control law. The cost function for the LQI

problem is of the following form

J =

�
∞

0

(zTQz+ δuTRδu)dt (3.9)

The LQI problem is solved to acquire the optimal gains in order to control the

Figure 3.2. Block diagram of a set-point tracking LQI controller.

airship motion and navigate its flight through a series of waypoints. A proportional

navigation law, introduced later in this chapter, will provide commanded turn rates

based on the airship location relevant to the next waypoint. The commanded turn

rate is compared to the airship actual turn rate in an LQI controller to generate the

required commands for turning the airship towards the next waypoint.
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3.6 Gain Scheduling Law

In order to have a smooth transition between the set of gain matrices that were

previously generated, a gain scheduling law is designed here. When the airship is

arrives at a waypoint, it must initiate a level turn. The heading command generated

by the guidance algorithm discussed later. After the turn is initiated the gains of the

controller have to transition from the ones corresponding to the straight and level

flight condition to those corresponding to the level turn condition, this is achieved

by a gain scheduling. The idea of gain scheduling spurs from the fact that a linear

controller will work well as long as the system is in the neighborhood of the trim

point, large deviations from the trim point may lead to unsatisfactory performance,

hence the idea of gain scheduling. In gain scheduling the system is linearized at

different points and gains corresponding to each linearized system are calculated. A

scheduling law in effect interpolates the values of the gains based on a scheduling

parameter that is a function of a scheduling variable. The proposed gain scheduling

law for controlling the airship based on the LQR designed gains is

K = (1− σ)KSL + σKLT (3.10)

where σ is the scheduling parameter, and is a function of the turn rate ψ̇. The selection

of the turn rate as a scheduling variable is based on the fact that the airship is only

required to fly straight towards the current waypoint and upon arriving executing a

level turn towards then next one. This translates into σ having a value between 0

and 1, where at σ = 0 the airship is flying straight and level and at σ = 1 the airship

is turning. The scheduling parameter as a function of the scheduling variable is set

to be a linear function as follows

σ = a1 ˙|ψ|+ a2 (3.11)
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The constants a1 and a2 can be solved for by substituting the values of 0 and 1 for σ

in equation 3.11 as follows

a1ψ̇SL + a2 = 0 (3.12)

a1ψ̇LT + a2 = 1 (3.13)

from equation 3.12

a1 = −
a2

ψ̇SL

(3.14)

by substituting equation 3.14 into equation 3.13 we get

−
a2

ψ̇SL

ψ̇LT + a2 =
ψ̇SL − ψ̇LT

ψ̇SL

a2 = 1 (3.15)

therefore

a2 =
ψ̇SL

ψ̇SL − ψ̇LT

(3.16)

substituting equation 3.16 into equation 3.14 yields

a1 = −
1

ψ̇SL − ψ̇LT

(3.17)

and by further substituting equations 3.16 and 3.17 into 3.11 the scheduling parameter

expression is

σ = −
1

ψ̇SL − ψ̇LT

ψ̇ +
ψ̇SL

ψ̇SL − ψ̇LT

(3.18)

Since for a straight and level flight the turn rate is required to be zero, equation 3.18

simplifies to

σ =
˙|ψ|

ψ̇LT

(3.19)

A saturation limit is imposed on equation 3.19, where when the value of ˙|ψ| is

larger than ψ̇LT , the value of σ is one, this is mathematically formulated as follows

σ = sat

�
˙|ψ|

ψ̇LT

�

: σ = 1, ∀ ˙|ψ| > ψ̇LT (3.20)
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It should be noted that the value of ˙|ψ| in equation 3.20 while flying in straight

and level should, theoretically, be zero. However, due to sensor imperfections while

measuring the turn rate and as a consequence of the dynamics of the closed-loop

feedback system, the value of ˙|ψ| during straight and level flight will not be perfectly

zero. This causes the scheduling parameter σ to not strictly be equal to zero during

straight and level flight as well. This generates an interpolated value of the gains

during straight and level flight, which in turn introduces additional modeling errors.

This effect will also be amplified later on when the estimated values of the states are

bed back to the controller from a Kalman filter.

3.7 Guidance Algorithms

3.7.1 Track-specific guidance law (TS)

Now that a controller has been designed to control the flight of the airship,

commands have to be sent to that controller in order for it to know what the airship

is to do, these commands are generated by the navigation algorithm. Based in these

commands the controller generates signals to the inputs of the airship to correct

their values in order to achieve the required flight. A track-specific guidance law is

discussed in this section.

It is required to fly the airship through a series of planar waypoints, for illus-

trative purposes lets name the waypoints A,B,C and D, and assume the airship will

visit them in that order. The guidance law tracks the waypoints in pairs, i.e when the

airship just passes waypoint A and is on its way to waypoint B, a geometric heading

based in the location of this pair of waypoints is calculated from equation 3.21, where

Ax, Ay, Bx, and By are the x and y coordinates of waypoints A and B respectively.

χgeo = tan−1

�
By − Ay

Bx − Ax

�

(3.21)
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The heading of the airship is calculated based in its projected ground speed as

χa = tan−1

�
ẏ

ẋ

�

(3.22)

using the geometric and airship headings a desired heading angle is calculated from

the following function

χd =
π

2
tanh

�
d

Ldes

�

(3.23)

where d is the normal distance to the virtual straight line path connecting the way-

points, shown in figure 3.3, and is calculated as follows

d = ||Rt|| sin (χgeo − χa) (3.24)

where ||Rt|| is the distance traveled from waypoint a, and Ldes is a design parameter

which is a function of the airship speed calculated as follows

Ldes = ||V||τ (3.25)

with τ being a performance design parameter. The commanded yaw angle provided

to the set-point tracking controller in equation 3.8 is calculated as follows

ψcomm = χd − β. (3.26)

where β is the airship side-slip angle.

The airship is flown in a straight line at that calculated desired heading until

it is within a predefined waypoint proximity zone of a specified radius. When the

waypoint proximity zone is breached the navigation algorithm switches to waypoints

B and C to calculate a new heading so that the airship turns and flies towards

waypoint C. The guidance law methodology is illustrated in figure 3.3.

It should be noted that the guidance law in equation 3.23 is limited to the case

where vectors V and Rt are as close to being parallel as possible, it would work fine

for minor deviations as well.
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Figure 3.3. Illustration of track-specific guidance law methodology.

3.7.2 Proportional navigation guidance law

Proportional navigation (PN) is a method of guidance that has been applied to

missiles for terminal guidance [41], it is probably the most popular guidance methods

for short-range intercept [42], it has also bee applied to aircraft for purpose of collision

avoidance [43]. In this section a proportional navigation guidance law is derived

for airship waypoint navigation purposes, where the waypoint is considered a non-

moving target and the airship is guided towards that target. Yaw rate commands

are generated by the PN law and fed into the LQI controller, shown in figure 3.2, as

reference signals r. The reference signal is compared with the airship yaw rate and

the error generates control signals to yaw the airship towards the next waypoint.
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The engagement geometry for planar pursuit of a waypoint by the airship is

shown in figure 3.4. Where χa, χLOS, RLOS, V and aPN are the airship heading,

Line-of-Sight (LOS) heading, the LOS vector, the airship velocity vector, and the

commanded acceleration by the PN guidance law. The commanded acceleration is

dictated by the PN law to be

Figure 3.4. Engagement geometry for planar pursuit of a waypoint.

aPN = Nχ̇LOSVc (3.27)

where N is the navigation constant with values usually ranging from 2 to 5, χ̇LOS is

the rate of rotation of the LOS, and Vc is the airship closing velocity on the waypoint.

From the engagement geometry in figure 3.4, it can be seen that

χ̇LOS =
−||V|| sin(χa − χLOS)

||RLOS||
(3.28)

Vc = ||V|| cos(χa − χLOS) (3.29)
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The value of the commanded heading rate for the airship can be calculated from

equation 3.27 to be [41]

χ̇comm =
aPN
Vc

(3.30)

to supply the controller with a commanded yaw rate it is assumed that the com-

manded heading rate from the PN law is equal to a commanded yaw rate, therefore

ψ̇comm = χ̇comm (3.31)

The value of ψ̇comm is given as a reference signal in the previously design LQI con-

troller to force the airship to track the yaw rate commands generated by the PN-law,

therefore guiding it through any series of waypoints.

3.8 Results and Discussion

3.8.1 Flight with no wind

The simulation is initialized with the airship at the origin point of the inertial

frame, the airship will then travel to four preprogrammed waypoints until it has

visited each one of them. The radius of the waypoint proximity zone around each

waypoint is set to 40 m, the altitude is held at 1000 m, and the speed is kept constant

at a value of 7 m/s. The simulation is carried out for both guidance laws without

wind effects, and is terminated when the airship has visited all the waypoints within

a proximity equal to the waypoint proximity zone radius. Below is a discussion of the

simulation results.

The results for using the track-specific guidance law are shown in figures 3.5 to

3.10. Figure 3.5 shows the time history of the body-axis velocities from the simulation,

it is notable that the forward speed is held at the value of 7 m/s, and the side-speed

has three major peaks each corresponding to the turns executed by the airship. Figure

3.6 shows the angular rates of the airship, it is noticed that the yaw rate has three
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distinguishable peaks of approximately 8 deg/s, also corresponding to the turns the

airship executed to visit the all the waypoints. Figure 3.7 shows the pitch angle held

approximately constant at the trim value, however an interesting observation can

be made about the roll and yaw angles; it seems that when the airship experiences

a positive yaw angle change, a negative bank angle is experienced, which is unlike

the case for a conventional aircraft where the bank angle is inward towards the yaw

angle. This can be explained by examining figure 3.8, where the tail thrust generated

by the tail rotor acts on the airship to change the yaw angle, however due to its

location being above the center of gravity the effect is translated to a negative bank

angle which is considerably small (-2.5 deg). Figure 3.9 shows the time history of the

airship inertial position where the maximum deviation from the trim altitude is 1 m,

the speed of the airship can be seen in figure 3.10 with a maximum deviation from

the trim speed of 0.5 m/s.
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Figure 3.5. Time history of body-axis velocities for track-specific guidance in no wind
condition.
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Figure 3.6. Time history of body-axis angular rates for track-specific guidance in no
wind condition.

The results for employing the PN guidance law in tandem with the LQI con-

troller are displayed in figures 3.11 to 3.16. Figure 3.11 shows that the value of the

side-speed differs from that when the specific-path guidance law is implemented; there

are no outstanding peaks in the values, however the behavior is that of sustaining

a specific value less that 0.5 m/s after the first 40 seconds of the simulation. This

indicates that the airship is in a continued turning motion. Unlike the value in figure

3.5, where three identifiable peaks suggest that the airship executes three clear turns.

The same argument can be made for the yawing and rolling body rates in figure 3.12;

where the values indicate a continuous yaw and roll after the first 40 seconds of the

simulation i.e. after the first waypoint is reached. This result shows the nature of

the PN guidance law, where an acceleration is constantly commanded to change the

direction of the velocity vector towards the target, in this case the waypoint. The

control inputs generated by the system are shown in figure 3.14, followed by the time
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Figure 3.7. Time history of attitude angles for track-specific guidance in no wind
condition.
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Figure 3.8. Airship control inputs for track-specific guidance in no wind condition.

history of the inertial position of the airship in figure 3.15 which displays the con-
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Figure 3.9. Time history of inertial positions for track-specific guidance in no wind
condition.
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Figure 3.10. Time history of airship speed for track-specific guidance in no wind
condition.
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trollers ability to efficiently hold the altitude. The speed is also shown to be kept

constant at 7 m/s, as shown in figure 3.16.
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Figure 3.11. Time history of body-axis velocities for proportional navigation guidance
in no wind condition.

The flight trajectory is shown in figure 3.17. The fundamental difference be-

tween the two guidance laws can be clearly seen in this figure; the track-specific

guidance law attempts to track a reference trajectory, therefore flying straight in be-

tween waypoints and turning in the vicinity of them to navigate towards the next

one. The PN law however puts the airship on a continuous arc-like trajectory after

it has passed the first waypoint, this is caused by continously generating acceleration

commands to change the heading if the airship towards the next waypoint. Both

guidance laws are capable of flying the airship through the waypoints, each however

in its own way, therefore they are both accepted candidates for the purpose of visiting

each waypoint. It can be seen from figure 3.17 that for the case of the TS guidance
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Figure 3.12. Time history of body-axis angular rates for proportional navigation
guidance in no wind condition.
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Figure 3.13. Time history of attitude angles for proportional navigation guidance in
no wind condition.

law, there exist a steady-state error in each segment. The maximum deviation from

the reference trajectory is 12.4 m in the last (fourth) segment. This is attributed to
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Figure 3.14. Airship control inputs for proportional navigation guidance in no wind
condition.
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Figure 3.15. Time history of inertial positions for proportional navigation guidance
in no wind condition.
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Figure 3.16. Time history of airship speed for proportional navigation guidance in no
wind condition.

the fact mentioned earlier in section 3.6; after executing a turn the value of the turn

rate, that is used to calculated the scheduling parameter σ from equation 3.20, is not

strictly zero. This causes the value if σ to not be strictly zero which in turn causes

the steady-state error. This is further demonstrated in subsection 3.8.4 ahead.

3.8.2 Flight in the presence of wind

The same simulation is now run with two differences; the first being that the

airship experiences a North-East wind field generated using the wind model in section

2.8 and shown in figure 3.18, and the second being the change of the waypoint prox-

imity zone radius to 60 m to accomedate the track-specific guidance law’s inability to

visit all the waypoints if the raduis is kept at 40 m in the presence of wind. The raduis

is also changed to 60 m for the PN guidance law for the sake of consistency. As a

result of the wind presence the airship flight path, for the track-specific guidance law,

can be seen to be shifted when compared to the no-wind flight path as shown in figure
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3.19, the wind field direction is indicated in the figure. The maximum deviation from

the reference trajectory for the TS guidance law in the presence of wind is 30.6 m,

and it occurs in the second segment. This shows how much the airship dynamics are

effected by the wind, and that this is an issue worthy of solving in order to to enhance

the performance of the controller. This is done by designing a Kalman filter algo-

rithm that estimates the wind speeds and feeds it back to the navigation algorithm

so that it can generate signals, with knowledge of the wind, to the controller in order

to get better performance during flight. This will be discussed in the next chapter.

For the PN guidance law, the trajectory is also shifted as can be seen in figure 3.20.

However since that the purpose of the PN law is to reach each waypoint traveling on

any trajectory possible, the wind effect is not too severe it terms of performance for

the airship manages to visit each waypoint.
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Figure 3.17. Airship flight trajectory in no wind condition.
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Figure 3.18. Wind field the airship experiences.
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Figure 3.19. Flight trajectories with and without the influence of North-East wind
for path specific guidance.

3.8.3 Waypoint proximity zone radius sensitivity

With any system the response is a product of the requirements. One of the

requirements in navigating the airship through a series of waypoints is the waypoint48
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Figure 3.20. Flight trajectories with and without the influence of North-East wind
for proportional navigation guidance.

proximity zone radius. Both the track-specific and PN guidance laws behave dif-

ferently for different values of the waypoint proximity radius, in this subsection the

sensitivity of both guidance laws to the waypoint proximity radius is investigated.

Simulations for both guidance laws are conducted in the presence of the wind field

in figure 3.18. It is observed that the track-specific guidance law can not meet the

requirement of visiting every waypoint with a waypoint proximity radius less than

50 m. The PN guidance law however is capable of meeting a 5 m waypoint proxim-

ity radius. This is due to the fact that the track-specific guidance law has an extra

constraint of minimizing the perpendicular distance to a straight line path between

each waypoint set. The PN guidance law however is only concerned with arriving at

the target, which is the next waypoint, the path it travels between waypoints is only

dictated by the lateral accelerations commanded by the PN law.
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The result for simulating the sensitivity of the track-specific guidance law to

the waypoint proximity zone radius is shown in figure 3.21. It can bee seen that the

for the smallest radius (50 m) the deviation form the reference trajectory is largest,

then decreases as the value of the waypoint proximity radius increases up until the

value of 70 m. That point shows to have the least deviation, but as the radius is

increases past 70 m the deviation starts to increase again.
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Figure 3.21. Path-specific guidance law sensitivity to waypoint proximity radius.

The sensitivity of the PN guidance law to the is shown in figure 3.22. It is

noticed that the smaller the value of the waypoint proximity radius the more flat the

airship trajectory tends to be, it is flying an almost rectangular shaped path. As the

waypoint proximity radius is increased it is clear that the airship trajectory is more

circular in nature; after the first waypoint is passed the airship goes on an ark-like

trajectory visiting all the other waypoints in the process. The curvature of the arc

increases as the waypoint proximity raduis increases.
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Figure 3.22. PN guidance law sensitivity to waypoint proximity radius.

3.8.4 Scheduling effect case study

A case study is conducted where the simulation for both guidance laws is ex-

ecuted two extra times in zero wind condition, however the value of the scheduling

parameter σ was fixed to 1 in one simulation and 0 in the other. This gives the results

of the airship flight trajectory when utilizing the straight and level (S-L) model only

to control its flight or the level turn (L-T) model only.

It can be deduced from figure 3.23 that for the track-specific guidance law when

the (S-L) model is used the flight trajectory is closer to the reference one than that

when the (L-T) model is used. When the scheduling law is used however the result is

in between the other two results, this is expected for the scheduling law interpolates

the gain values based on the parameter σ, and the same argument made earlier about

calculating the scheduling parameter σ, through the turn rate, yields a non-zero value

of σ for some cases where it should be zero. This is because the value of the turn rate

does not go back to a perfect zero after the airship executes its first turn, thereby
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causing a deviation on the flight path. The fact that most of the required flight of the

airship while flying through the waypoints is in straight and level also explains why

the use of the straight and level model only to control the airship yields such results.
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Figure 3.23. Flight trajectories with and without scheduling for track-specific guid-
ance law.

The result for the scheduling case study using the PN guidance law is shown

in figure 3.24. The figure shows that the use of a straight and level model only the

airship trajectory consists of two straight line segments and two curved segments,

together rendering what looks like a racetrack maneuver. However when utilizing

the level turn model only the airship trajectory has three curved segments and an

almost straight one; this is understandable since the only model available for the

controller is a turn model. The result of interest is the one when the scheduling

law is used; it is clear that the airship has a most curved trajectory. This is also
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attributed to how the scheduling parameter σ is calculated; since in the PN guidance

law there is continuously applied lateral acceleration to turn the airship towards the

next waypoint, the value of the turn rate after the first waypoint is reached does not

go back to zero, this is clear from figure 3.24. Therefore the scheduling parameter

is almost never zero for the rest of the simulation which makes the airship exhibit a

non-straight, arc-like trajectory while visiting the rest of the waypoints.

Both the controller and guidance laws rely on having all the states of the airship

available to function properly. These states however are not always available by

measurement, whether the system is built on a budget that doesn’t allow for expensive

sensors that measure some states, or that some states are not possible to measure with

the required accuracy. It can always be assumed that these states are available one

way or the other, however the motivation is to make the work presented in this thesis

implementable in reality, therefore this problem has to be overcome. The proposed

solution for this problem is the design of a Kalman filter algorithm that is capable of

optimally estimating the unmeasured states, along with providing an optimal estimate

for the measured ones, in order to feedback all the required states by the controller

and the guidance algorithm. This topic is discussed in the next chapter.
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Figure 3.24. Flight trajectories with and without scheduling for proportional naviga-
tion guidance law.
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CHAPTER 4

STATE AND WIND ESTIMATION

4.1 Introduction

Almost all phenomena we perceive in nature have quantifiable properties. The

knowledge of such properties aids in understanding them and the ability to observe

them allows for their utilization in the service of mankind. The first attempt of

observing a property is usually by measuring it with a sensor that can capture its

effect, this measurement however, due to multiple factors which are out of the scope

of this thesis, is flawed. The true value of a quantity being measured is never known

in practice, the measuring of that quantity gives a corrupted, yet some what accu-

rate observation of the truth. The construction of mathematical models also aids

in predicting how a system behaves, therefore giving the ability to again quantify

properties of that system which also deviate from the truth. It is often required to

obtain the knowledge of a system’s properties or states with an accuracy higher than

that from measurements and mathematical models. It is sometimes also required to

obtain values of unmeasurable states, whether these states are unmeasured due to

the lack of sensors to do so, or simply due to the inability to acquire such sensors for

any reason such as cost. This is where the Kalman filter has played a significant role

in many engineering applications. The Kalman filter is a recursive algorithm capable

of optimally estimating a system’s states or properties based on a set of observations

and a mathematical model of the process.

Different kinds of Kalman filters have been employed in applications spanning

from economics [44], computer vision [45, 46], and aerospace applications. Applica-
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tions such as State and parameter estimation of aircraft and Unmanned Aerial Ve-

hicles (UAV’s) [47, 48, 49, 50], GPS and sensors applications [51, 52], and wind field

estimation [53, 54, 24, 55] among many others are all examples of aerospace applica-

tions for the Kalman filter. Kalman filters have been utilized in applications involving

airships, such as system identification [3] along with parameter and state estimation

[56, 57, 58]. The work presented in this chapter will deal with designing an Extended

Kalman Filter (EKF), with a minimal sensor suite on-board the airship, for estimat-

ing the full state vector of the airship along with the wind field the airship is flying

in. It is assumed that no air-data sensors are available, the only sensors available are

an IMU and a GPS. A novel Extended Kalman Filter (EKF) is presented, where the

Jacobian need not be calculated at every instant, but is precalculated for the different

flight modes the airship will carry out. A Jacobian scheduling law is introduced to

supply the filter with the needed values at every instant of the flight. This approach

reduces computational intensity, since calculating the Jacobian for a complex non-

linear system is a computationally demanding task, without compromising the filters

ability to estimate not only the full state vector, but also the bias in measurements

and the wind field the airship is flying through. The Kalman filter is implemented

for the case where the path-specific guidance law is used to navigate the airship into

visiting a set of waypoints. This is because the results presented in subsection 3.8.2

have shown the degradation of performance of the system in the presence of wind,

therefore the attempt to estimate wind speeds and supply the path-specific guidance

law with such information is carried out to render an optimal wind-estimation based

controller.
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4.2 The Estimation Process Under a Kalman Filter Framework

There are multiple ways to implement a Kalman filter; the continuous Kalman

filter, the discrete Kalman filter, the continuous-discrete Kalman filter and so on. The

one more pertaining to reality is the continuous-discrete Kalman filter, it treats the

model as a continuous system, which is what real systems are, and the measurements

as a discrete process. This holds true because any sensor for it can only supply

measurements intermittently at a specific rate. The estimation process based on a

linear-continuous-discrete Kalman filter process is described below.

Consider a system model and a measurement model of the following form

ẋ(t) = Ax(t) +Bu(t) +G(t)w(t)

ỹk = Hkxk + vk

(4.1)

where vk and w(t) are the measurement and process noise respectively and are as-

sumed to be zero-mean Gaussian white-noise processes, this implies that the errors

are not correlated forward or backward in time [59].

The first step of running a Kalman filter is initializing the estimates and the

error covariance matrix, afterwards the Kalman filter works by propagating the state

estimates through time based on a mathematical model of the system, the propagated

value is denoted as x̂−

k . When a measurement is observed at some time instant tk

the estimates undergo a discrete time update denoted by x̂+
k , which are then used

as an initial condition to propagate the values to the next time instant tk+1 when

the next measurement is provided. The error covariance matrix also goes through a

propagation and an update by the filter; Since the propagation model is continuous

in time the error covariance matrix is propagated by the means of a continuous-

time Riccati equation [59], yielding a value P k
−. It is also updated based on the

standard discrete-time updates, giving the updated value as P k
+. The propagation
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and update are also termed the predictor and corrector. Below is a summary of the

continuous-discrete Kalman filter.

Step 1: Calculating the Kalman gain

Kk = P k
−Hk

T [HkP k
−Hk

T +Rk]
−1 (4.2)

where R is the measurement-noise covariance matrix.

Step 2: Update

x̂+
k = x̂−

k +Kk[ỹk −Hkx̂
−

k ]

P k
+ = [I −KkHk]P k

−

(4.3)

where I is an identity matrix.

Step 3: Propagation

˙̂x = F (t)x̂(t) +Bu(t)

Ṗ (t) = F (t)P (t) + P (t)F T (t) +G(t)Q(t)GT (t)

(4.4)

where F (t) is the Jacobian, and Q(t) is the process-noise covariance matrix.

4.3 The Extended Kalman Filter (EKF)

The Kalman filter introduced in the previous section is based on a linear system

model, sadly most systems are of nonlinear nature. To accommodate the nonlinear

behavior of real life systems the Extended Kalman Filter (EKF) is utilized. The EKF

is one approach among many to represent a linearized version of the Kalman filter

[59]. The EKF concept is based on the notion that the true state is adequately close

to the estimated state, hence the error dynamics can be approximated by a linearized

first-order Taylor series expansion. below is a description of the continuous-discrete

EKF.
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Assume both the system and measurements behave in a nonlinear fashion as in

the following form

ẋ(t) = f(x(t),u(t), t) +G(t)w(t)

ỹk = h(xk) + vk

(4.5)

where vk and w(t) are the measurement and process noise respectively and are as-

sumed to be zero-mean Gaussian white-noise processes, along with f(x(t),u(t), t) and

h(xk) being nonlinear functions. To implement an EKF the following steps are to be

executed

Step 1: Calculating the Kalman gain

Kk = P k
−Hk

T (x̂−

k )[Hk(x̂
−

k )P k
−Hk

T (x̂−

k ) +Rk]
−1

Hk
T (x̂−

k ) =
∂h

∂x
|
x̂
−

k

(4.6)

Step 2: Update

x̂+
k = x̂−

k +Kk[ỹk − h(x̂−

k )]

P k
+ = [I −KkHk(x̂

−

k )]P k
−

(4.7)

Step 3: Propagation

˙̂x(t) = f(x̂(t),u(t), t)

Ṗ (t) = F (x̂(t), t)P (t) + P (t)F T (x̂(t), t) +G(t)Q(t)GT (t)

F (x̂(t), t) =
∂f

∂x
|x̂k

(4.8)

4.4 EKF for Airship State and Wind Speed Estimation

4.4.1 Proccess

When applying the Kalman filter in the scope of this thesis the airship simulated

dynamic model derived in chapter 2 will serve as the process. Equation 2.43 rewritten

below is the mathematical formulation of the process.

Cnssẋ = Anssx +Gnss (4.9)
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with x being a twelve state vector expressed as

x = [u v w p q r x y z φ θ ψ]T (4.10)

4.4.2 Measurements

It is assumed that the airship incorporates two sensors only, a GPS and IMU

sensor. The reasoning behind this assumption is to later prove the ability of estimating

the entire state vector, measurement bias values, and the wind speed with a minimal

number of sensors. Such sensors are available in a conventional suite of on-board

UAV avionics [53].

The GPS will provide measurements for the inertial position vector, and the

IMU will provide measurements for the angular rates along with the Euler angles.

This leads to the following measurement vector

ỹ = [p̃ q̃ r̃ x̃ ỹ z̃ φ̃ θ̃ ψ̃]T (4.11)

To synthesize this measurement vector and incorporate it into the airship sim-

ulation the values of p , q , r , x , y , z , φ , θ , and ψ from the state vector in 4.10

are corrupted with time-invariant bias and zero-mean Gaussian white-noise. The bias

and white-noise standard deviation values are summarized in table 4.1.

4.4.3 Estimate and covariance matrix propagation

• State estimates propagation

For the purpose of propagating the state estimates the same equations used to simu-

late the airship motion are employed, with the only difference being that the estimated

state vector is substituted into the equations as shown below.

Cnss
˙̂x = Anssx̂ +Gnss (4.12)
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Table 4.1. Standard deviations and bias of measurement vector

Measurement Standard Deviation Bias

p̃ (deg/s) 1 2
q̃ (deg/s) 1 2
r̃ (deg/s) 1 2
x̃ (m) 3 0
ỹ (m) 3 0
z̃ (m) 3 0

φ̃ (deg) 1 0

θ̃ (deg) 1 0

ψ̃ (deg) 1 0

with x̂ being a twelve state-estimate vector expressed as

x̂ = [û v̂ ŵ p̂ q̂ r̂ x̂ ŷ ẑ φ̂ θ̂ ψ̂]T (4.13)

• Wind field and measurement bias estimates propagation

To propagate the estimated values of the wind field, the model presented in chapter 2

is utilized. Applying equation 2.48 to the estimates yields the following propagation

equations for the wind speed

˙̂
Wx = −bwŴx

˙̂
Wy = −bwŴy

˙̂
Wz = 0

(4.14)

and for the wind acceleration

¨̂
Wx = −bw

˙̂
Wx

¨̂
Wy = −bw

˙̂
Wy

¨̂
Wz = 0

(4.15)
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As for the bias values to be estimated, since they are time-invariant, the following

model for propagating their estimates in time is used








˙̂
bp

˙̂
bq

˙̂
br








=









0

0

0









(4.16)

where b̂p, b̂q, and b̂r are the estimated values of the bias in p̃ q̃, and r̃ respectively.

The description for the propagation models above leads to an estimates vector of

X̂ = [û v̂ ŵ p̂ q̂ r̂ x̂ ŷ ẑ φ̂ θ̂ ψ̂ b̂p b̂q b̂r Ŵx Ŵy Ŵz
˙̂
Wx

˙̂
Wy

˙̂
Wz]

T (4.17)

• Error covariance matrix matrix propagation

The error covariance matrix is an indication of the amount uncertainty of the es-

timated values. As more knowledge of the state is provided the amount of uncer-

tainty reduces, therefore the covariance matrix is propagated based on the system

model and the process noise covariance matrix Q. This is usually done by solving

the continuous-time Riccati equation 4.8, however the need to calculate the Jaco-

bian F (x̂(t), t) = ∂f

∂x
|x̂k

at every instant is computationally expensive, and can be a

complicated process for highly nonlinear systems. As a solution to this problem the

Jacobian for the two linear systems derived in chapter 3, extended to incorporate

elements for the bias terms and wind terms to be estimated, is implemented in the

error covariance matrix propagation. The two augmented Jacobians are then sched-

uled with the scheduling law proposed for the controller gains presented in equation

3.10, then a value of the Jacobian at every flight condition is supplied to the filter,

by the scheduling law, for the purpose of propagating the error covariance matrix.

In this novel implementation of the EKF only 6 elements out of the total 441

in the Jacobian are required to be calculated at every instant, these elements are the

ones pertaining to the change of the linear velocities (u v w) and angular rates
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(p q r) with respect to the wind acceleration. This effect can be seen in equations

2.41 and 2.42. The Jacobians for straight and level flight and level turn flight are

F SL =






















ASL [0]3×3 [0]3×3 [ dV
dẆ

]

[0]3×3 [0]3×3 [0]3×3 [ dω

dẆ
]

[0]3×3 [0]3×3 I3×3 [0]3×3

[0]3×3 [0]3×3 [0]3×3 [0]3×3

[0]3×3 [0]3×3 [0]3×3 [0]3×3

[0]3×3 [0]3×3 [Bw] [0]3×3

[0]3×3 [0]3×3 [0]3×3 [Bw]






















(4.18)

F LT =






















ALT [0]3×3 [0]3×3 [ dV
dẆ

]

[0]3×3 [0]3×3 [0]3×3 [ dω

dẆ
]

[0]3×3 [0]3×3 I3×3 [0]3×3

[0]3×3 [0]3×3 [0]3×3 [0]3×3

[0]3×3 [0]3×3 [0]3×3 [0]3×3

[0]3×3 [0]3×3 [Bw] [0]3×3

[0]3×3 [0]3×3 [0]3×3 [Bw]






















(4.19)

where [ dV
dẆ

] and [ dω

dẆ
] are the Jacobians for equations 2.41 and 2.42 respectively and

[Bw] =









−bw 0 0

0 −bw 0

0 0 0









(4.20)

The following scheduling law is used to acquire the value of the Jacobian

F = (1− σ)F SL + σF LT (4.21)
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where σ is the same scheduling parameter presented in chapter 3. Now to propagate

the error covariance matrix the continuous-time Riccati equation equation is solved

as follows

Ṗ (t) = FP (t) + P (t)F T +GQGT (4.22)

where Q is an 15 by 15 diagonal matrix with the following diagonal elements

Qi,i Value Qi,i Value

Q1,1 1e-2 Q9,9 1e-6

Q2,2 1e-2 Q10,10 1e-6

Q3,3 1e-2 Q11,11 1e-6

Q4,4 1e-2 Q12,12 1e-6

Q5,5 1e-2 Q13,13 1e-6

Q6,6 1e-2 Q14,14 1e-6

Q7,7 1e-6 Q15,15 1e-6

Q8,8 1e-6 - -

and

G =












I6×15

[0]6×15

[[0]3×6 I3×3 [0]3×6]

[[0]3×9 I6×6]












(4.23)

4.4.4 Estimate and covariance matrix update

The update phase of the EKF is implemented every time a measurement is

available, this is done by first calculating the Kalman gain from equation 4.6 however

here the Jacobian Hk
T (x̂−

k ) =
∂h
∂x
|
x̂
−

k

has a constant value for all flight. This is due

to the fact that there is no explicit measurement model, since the measurements
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are generated by corrupting the states from the process with zero-mean Gaussian

white-noise. The Kalman gain is calculated as

Kk = P k
−HT [HP k

−HT +Rk]
−1 (4.24)

with Rk being a 9 by 9 diagonal matrix with the following elements guidance

algorithm

Ri,i Value Ri,i Value Rii Value

R1,1 (π/180)2 R4,4 32 R7,7 (π/180)2

R2,2 (π/180)2 R5,5 32 R8,8 (π/180)2

R3,3 (π/180)2 R6,6 32 R9,c9 (π/180)2

and

H =









[0]3×3 [I]3×3 [0]3×6 [I]3×3 [0]3×6

[0]3×6 [I]3×3 [0]3×4 [0]3×4 [0]3×4

[0]3×9 [I]3×3 [0]3×3 [0]3×3 [0]3×3









After the Kalman gain has been calculated the estimate vector and the error covari-

ance matrix are updates as follows

X̂+
k = X̂−

k +Kk[ỹk − ŷ(X̂−

k )]

P k
+ = [I −KkHk(X̂

−

k )]P k
−

(4.25)

where

ŷ(X̂−

k ) = [p̂ q̂ r̂ x̂ ŷ ẑ φ̂ θ̂ ψ̂]T (4.26)

and X̂−

k is the propagated estimate vector in 4.17, and P k
− is the propagated value

of the error covariance matrix at the previous instant.

The estimate vector is fed back to the guidance algorithm and the controller in

order to fly the airship, in the presence of wind, through all the waypoints. It is again

reminded that the goal is to make the airship visit all the waypoints in the order they

are given.
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4.5 Results and Discussion

4.5.1 Flight with no wind

A simulation, with similar conditions to the one who’s results are displayed in

section 3.8, is conducted to show the performance of the controller when the estimated

state vector is given as feedback instead of the actual state vector. Some design

parameters have to be altered, this is attributed to the level of uncertainty in the

estimated states, this affects the controller performance. The waypoint proximity

zone radius is kept at 60 m, however the design parameter τ in the guidance law

is changed to 60 instead of 10 to yield satisfactory results. Two main simulations

are conducted, one in zero wind conditions and another under the influence of the

same wind field shown in section 3.8. The latter was simulated twice, where in one

run the estimated values of the wind field were not fed to the guidance algorithm,

unlike the second run where the estimated values of the wind field were known to

the guidance algorithm. The results are presented here to show how a more realistic

scenario can be implemented to navigate the airship from one waypoint to the other

in the presence of wind disturbance.

Figures 4.1 to 4.5 show the error between the estimated value and true value

of each state along with the bias, and figure 4.6 shows the true and estimated values

of the bias in the angular rates measurements. The 3-σ bounds are also plotted on

these figures, these bounds dictate the tolerance an estimation error is allowed to

have. The σ bounds are an indication to the maximum uncertainty allowed in the

estimated values, they are extracted from the error covariance matrix. There is only

so much information available to the filter, which limits its ability of estimating the

true values. It can be seen from these figures that the error values for all estimates

are well within the limit of the 3-σ bounds, that is an indication that the filter is
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working properly. The value if the 3-σ bound in figures 4.2, 4.3, and 4.4 are slightly

less than three times that of the standard deviations in table 4.1 used to generate

their measurements. The 3-σ bound for the angular rates estimates is 2.85 deg/s,

for the inertial position 8.8 m, and for the Euler angles 2.9 deg. This indicates that

the estimates are slightly closer to the truth value from that of the measurements.

The more important result however is seen in figures 4.1 and 4.5; the value of the

3-σ bound for the body axis velocity components is less than 0.6 m, and the value

for 3-σ bound of the bias value estimates is less than 1 deg. This shows the ability

to estimate the values of unmeasured states and bias with a low uncertainty.
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Figure 4.1. The estimation error and 3-σ bounds of the body-axes velocity compo-
nents in no wind condition.

Figures 4.7 to 4.10 and 4.12 are very similar to the results shown in the previous

chapter when the true values of the states were fed back to the controller, however

figure 4.11 shows the difference in performance if compared to the result in figure
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Figure 4.2. The estimation error and 3-σ bounds of the body-axes angular rates in
no wind condition.
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Figure 4.3. The estimation error and 3-σ bounds of the airship inertial position in no
wind condition.
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Figure 4.4. The estimation error and 3-σ bounds of the airship attitude in no wind
condition.
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Figure 4.5. The estimation error and 3-σ bounds of bias in p̃, q̃, and r̃ respectively
in no wind condition.
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Figure 4.6. True and estimated values of bias in p̃, q̃, and r̃ respectively in no wind
condition.

3.17. This change in performance is understandable for the values of the estimated

states have an uncertainty which deviates the controllers performance from that when

the true states where used in the feedback process. The maximum deviation from the

reference trajectory is 21.7 m, and occurs in the fourth segment.

4.5.2 Flight in the presence of wind

The same simulation carried out in subsection 3.8.2, with the presence of the

same wind field condition and with feedback of the estimated states. Here however,

the simulation is executed twice; during the first time estimated wind speeds are fed

to the navigation algorithm, and the second time they are not. When the estimated

wind speeds are known to the navigation algorithm, it is capable of generating desired

heading angle signals that ensure better performance of the controller. Figure 4.14

shows the estimation error and the 3-σ bounds of the wind speed, while figure 4.13
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Figure 4.7. Time history of body-axes velocity components for controller performance
with estimated states feedback in no wind condition.
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Figure 4.8. Time history of body-axes angular rates for controller performance with
estimated states feedback in no wind condition.
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Figure 4.9. Time history of airship inertial position for controller performance with
estimated states feedback in no wind condition.
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Figure 4.10. Time history of airship attitude for controller performance with esti-
mated states feedback in no wind condition.
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shows the true and estimated values of the wind speeds. It is clear that the Kalman

filter is capable of estimating the wind speed with acceptable levels of uncertainty,

given the minimal number of sensors on-board the airship.
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Figure 4.13. True and estimated value of wind speeds.

4.5.3 Wind-estimation based control

The design and implementation of the EKF with a minimal number of sensors

has aided in estimating the wind field in which the airship is flying. This information

can now be used to render the controller and TS guidance law more robust to wind.

The value of the estimated wind speeds are fed into the TS guidance law in such a

way that the inertial velocities used to calculate the vehicle heading in equation 3.22,

account for the wind information. This enables the TS guidance law to generate more

robust signals to the controller which in turn supplies the control commands required

to enhance the airship performance in the presence of wind. Examining figure 4.15
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Figure 4.14. The estimation error and 3-σ bounds of wind speed.

it can be seen that in both simulation cases the TS guidance law is robust to wind,

however, this robustness is amplified when the estimated wind speeds are available

at its disposal. The maximum deviation from the reference trajectory when wind

information is not supplied to the TS guidance law is 67.1 m, occurring in the third

segment. The maximum deviation is reduced to 47.1 m when the estimated wind

speeds are provided to the TS guidance law.
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CHAPTER 5

CONCLUDING REMARKS AND FUTURE WORK

5.1 Thesis contribution

With growing demand on applications requiring long endurance hover, in both

the civil and military applications, and the airship being a viable option for such

applications, the need to control such vehicles with a certain accuracy related to

realistic flight environment is essential. This thesis relied on the AS500 unmanned

airship model, which has been utilized for many applications, to address this need.

The work presented in this thesis consisted of three major parts, all listed below

• Constructing a nonlinear mathematical model for simulating an unmanned air-

ship flight.

• Designing optimal controllers using the LQR and LQI methods, along with two

guidance laws to accommodate each controller and navigate the airship through

waypoints.

• Design and implement a novel EKF to the airship control simulation.

The first major contribution of this thesis is the implementation of a novel EKF

where the Jacobian need not be calculated at every instant of the simulation, but

rather having precaculated ones and acquire the needed values based on a scheduling

law, without compromising the filters ability to estimate the airship states, measure-

ment bias, and surrounding wind speeds with a minimal number of sensors.

The second major contribution of this thesis is proving the fact that the esti-

mated wind speeds, provided by the EKF, allow increased robustness of the path-

specific guidance law and LQR control law to wind. It was shown that the airship
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has higher performance when the wind speed information from the EKF is passed to

the guidance algorithm.

The thesis also contributed to establishing a clear difference between the logic

employed by the path-specific guidance law and the PN law. Where the first was more

focused on flying the airship on a prescribed trajectory to reach each waypoint, while

the second was more concerned in achieving each waypoint without any consideration

to a specific trajectory. It was also established that the PN guidance law was able

to meet more strict requirements for buffer zone radius where it was able to visit all

waypoints with a buffer radius of 5 m under the defined wind condition, unlike the

path-specific guidance law which was capable of visiting all waypoints at a minimum

radius of 50 m under the same wind condition.

It is clear from the results presented in this thesis that the guidance laws pre-

sented along with the proposed controllers, are capable of flying the airship in a stable

manner to visit a set of waypoints. It has been demonstrated that the presence of

wind decreases the robustness of the path-specific guidance law and control scheme

presented. The PN guidance law presented showed high robustness to wind and capa-

bility to visit each waypoint at a small buffer radius requirement. It was also proved

possible to run a less computationally expensive Extended Kalman filter, based on

Jacobian scheduling, with the minimum amount of sensors available on an airship to

estimate the entire airship state vector, measurement bias, and wind speeds with an

acceptable level of uncertainty. And finally it was shown that when the estimated

values of wind speeds were supplied to the guidance algorithm its robustness to wind

was enhanced.

78



5.2 Future Work

The work presented in this thesis lays the groundwork for creating a simulation

environment for the AS500 airship capable of accommodating different control and

navigation schemes. The control and scheduling law accompanied by a navigation laws

and a Kalman filter have shown the ability to navigate the airship through a series

of waypoints. Several other studies can be augmented to the developed simulation

environment rendering it a test bed for guidance, navigation, and control of airships.

Some future studies that can be implemented include:

• Expanding the current controller capabilities to include a hover operating point

with station-keeping abilities.

• Designing and implementing an adaptive control scheme to control the airship

flight, including a hover operating point, to enhance performance.

• Studying the feasibility of utilizing an airship fleet for surrogate GPS applica-

tions.

5.3 Final Words

The airship, as a useful multipurpose atmospheric flight vehicle, has been aban-

doned in the past for safety reasons. The work conducted by researchers and engineers

for the past decade accompanied by the work presented in this document, show that

with the advancement of many scientific fields, especially control and estimation the-

ory, it is possible to feasibly and safely operate a manned or unmanned airship. The

airship platform can be utilized for many applications where conventional aircraft

designs are either inapplicable, or too expensive. The airship can also serve as an

alternative to some space vehicle applications at a much lower cost, such as GPS

satellites. With all the facts presented it cannot be denied that the airship is vital

79



to the advancement of aerospace technologies, as well as many other fields such as

communications and meteorology, therefore contributions to research in airships is

crucial.
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