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ABSTRACT 
 

THERMAL BEHAVIOUR OF DIELECTRIC MATERIALS                                                                           

DURING RAPID HEATING 

 

Daipayan Sarkar, M.S. 

The University of Texas at Arlington, 2012 

 

Supervising Professor:  Abdolhossein Haji-Sheikh 

 

The objective of this research is to understand the temperature variation in dielectric materials 

of different geometry. The work is divided into three major segments. The Thermal Wave model 

has been taken into consideration as the classical Fourier law of heat conduction breaks down 

when a dielectric material of sub-micron geometry is heated rapidly. The first part of the work 

discusses primarily about the temperature distribution in a semi-infinite dielectric material, 

followed by the temperature profile in a finite body (plate) and finally mathematical formulation is 

presented for a two-layered body. The thermal wave equation is used because in dielectric 

materials the lag time due to temperature ( t ) is much less than the lag time due to heat flux     

( q ),  qt    and hence all the terms describing the effects of t in the governing equation 

used for expressing the phenomena of Hyperbolic Heat Conduction in a material can be 

neglected. Boundary conditions of first and second kind are applied to the thermal wave 

equation for all three cases that are discussed later in the study. The classical Laplace
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Transform method has been used as a tool to analyze the mathematical models for all the 

illustrations presented in the study. Analytical solutions are obtained for semi-infinite and finite 

bodies for different boundary conditions and a mathematical formulation has been presented to 

calculate the heat flux at the interface for a two-layered dielectric body. Due to large complexity 

of the problem and intense use of algebra several Mathematica subroutines are developed to 

compute and examine the thermal behavior of dielectric materials during rapid heating.
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CHAPTER 1 

INTRODUCTION 

1.1 Literature Review 

The Boltzmann transport theorem is often modified for evaluating the temperature field 

during a rapid energy transport in micro-scale devices. An existing mathematical model uses a 

wave model to describe the variation of temperature fields in dielectric fields.  

 The classical Fourier heat conduction model considers the heat propagation to be at 

infinite speed. This model does not adequately describe the temperature field due to phonons 

transport at very small time within a thin device. Accordingly, Cattaneo [1] and Vernotte [2] 

modified the Fourier heat conduction model for application to non-metallic bodies where 

phonons are the major heat carriers. However, the transport of energy by free electrons and 

phonons contribute to the conduction of heat in metals as reported by Tien and Lienhardt [3]. 

Later, Qui and Tien [4, 5] used a two-step radiation-heating model to study absorption of photon 

energy by electrons and subsequent heating of the lattice through electron-phonon coupling. A 

modified Boltzmann transport theorem [5] leads to the development of linear systems in order to 

study the transport of energy in microscale devices. Surveys of earlier studies of energy 

transport in dielectric materials are in Joseph and Preziosi [6], Tzou [7], and Ho et al. [8].  

 This work presents systematic analytical techniques that can serve as a tool for 

determination of temperature in thin films in the presence of a thermal wave. First, consideration 

is given to determination of the temperature solution in semi-infinite bodies using the classical 

method of Laplace transforms. Investigators have earlier worked on this topic before [17] but the 

mathematical formulation and analysis has been presented in this work again because we 

would require the results obtained for the semi-infinite case to validate the results obtained for a 

plate. The solution obtained is highly accurate. The mathematical derivation of the energy 
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if a material has free electrons, the electrons can be considered separately and, at a given time, 

t, equation presented is based on the hypothesis that electrons and lattice of a substance 

absorb energy input.The electron gas temperature, )(tTe  is different from the lattice 

temperature, T tl ( ) ; however, they are related [5, 7] by equation,  

                                                               t

tT
tTtT l

tle





)(
)()(        (1.1) 

and t  is a time delay equal to the ratio of lattice heat capacitance to the electron/lattice 

coupling coefficient. According to Eq. (1.1), the temperatures of electron gas and lattice are 

related. The energy balance applied to an elemental volume at location r and at time t yields the 

relation, 
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The parameter Ce  is the volumetric heat capacities of electron gas and Cl  is that for the 

lattice. Assuming thermophysical properties are constant, the substitution of Te  from Eq. (1.1) 

into Eq. (1.2) yields,  

                                            
 ),(),( tSt rrq

2

2 ),(

t

tT
C

t

T
C l

e
l








 r
                             (1.3) 

where le CCC   and the variable CCete /  is defined as the thermalization time in [4] 

and the lag time in [7].  

Next, the Fourier equation,  

                                                               
),(),( tTkt fe rrq                                                 (1.4) 

needs to be modified as to become 
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After eliminating q within Eq. (1.3) and Eq. (1.5) and keeping only the second order terms of 

Taylor series, the final form of the microscale thermal conduction equation is [9] 
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when 0t , this equation reduce to the thermal wave equation,  

                                       















t

tS
tStTk q

),(
),()],([

r
rr

2

2 ),(),(

t

tT
C

t

tT
C q








 rr
(1.7) 

where q  related to the speed of propagation of thermal wave. As discussed in [7], the 

parameter q  for metals, is the same as F , known as the electron relaxation time at the 

Fermi surface. As discussed in [4, 5], the parameter 
elt GC  where eG  is the coupling 

factor between electron gas and the lattice. Further information related to these parameters is in 

[9-12]. 

 .The wave propagation in finite bodies due to a volumetric heat source is presented in 

[19]. The investigators have used Green’s function solution to compute the temperature. Other 

investigators have performed experiments in biological materials like processed meat and 

concluded the existence of a damped wave model [20]. In the past investigators have done 

experiments on gold films to obtain data of femtosecond laser heating and computed their 

results using finite difference methods [21]. Recently studies related to wave propagation in 

multilayer bodies were analyzed by [22, 23].  Most of these works emphasize more on the use 

of finite difference schemes or Green’s function solution. Khadwari et al. have studied the 

thermal behavior of composite slabs that consisted of two metal layers and adopted the Laplace 

transform approach to solve the problem [22].  

1.2 Research Objectives 

 The work that is presented here in this thesis emphasizes on the use of classical 

Laplace transform method. The work has been restricted to the use of boundary conditions of 

first and second kind to dielectric materials of different geometries which are presented from 
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Chapter 2-5 in this study. Prior to presentation of the temperature field in a plate by utilizing a 

Laplace transform technique, a brief discussion of the temperature solution in a semi-infinite 

body is presented. The solution technique is similar to that in Baumeister and Hamill [17], with 

some modification. This is necessary since, at small time, the temperature solution in a plate is 

the same as that for a semi-infinite body with the same surface condition. The Chapter 6 of this 

study shows the mathematical formulation of a two-layered non-metallic material with perfect 

contact condition subjected to boundary condition of second kind. Analytical solutions were 

obtained which gave us a highly accurate temperature solution for all the cases that are 

discussed later in the text. To make our argument on accuracy even stronger, we have 

illustrated the difference in error in Figure 1.1. Hence analytical solution will give us a highly 

accurate temperature solution. 

 

Figure 1.1 Dimensionless lattice temperatures as a function of   at selected   locations
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CHAPTER 2 

TEMPERATURE DISTRIBUTION IN SEMI-INFINITE BODIES IN THE                            

PRESECENCE OF HEAT WAVES 

2.1 Introduction 

In this section, consideration is given to one-dimensional temperature solution in semi-

infinite bodies. The temperature solutions for two cases are considered: (1) having a specified 

surface temperature and (2) having a prescribed surface heat flux. For both cases, it is 

hypothesized that the initial temperature is uniform with zero derivative with respect to time. As 

stated earlier, for thermal wave problems 0t . Then, in a one-dimensional body, the 

governing equation becomes where T is the medium temperature that stands for the lattice 

temperature. 
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     (2.1) 

The work presented in this chapter is essentially done to emphasize on the thermal 

behavior of plate and a geometry consisting of two layers of dissimilar dielectric material. The 

cases discussed here have been previously investigated by other researchers in the past and 

their contribution is deeply appreciated. This chapter principally shows how Laplace transform 

method can be used to solve the problems accurately and efficiently. 

2.2 Semi-Infinite body with specified surface temperature 

The Figure 2.1 represents the geometry of the problem. It has an initial temperature iT  and a 

surface temperature jump oT , when 0t , it is convenient to define a dimensionless 
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temperature )/()( iTTiTT   . Therefore, when the surface temperature has a constant 

value, the parameter oT  becomes the assigned surface temperature. 

 

 

Figure 2.1 A semi-infinite body with temperature T0 at the surface x=0. 

 

Furthermore, in dimensionless space, one can set, qx  /   and, qt  /  to get  
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Defining the Laplace Transform of ),( 
 
as ),( s , then, the Laplace transform of Eq. (2.2), 

when 0)0,(   and 00|/    is 
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for0<,                 (2.3) 

for a semi-infinite body. Equation (2.3) is an ordinary differential equation whose solution that 

satisfies the condition of finite ),(  , as  , is 

  )1(exp  ssA        (2.4) 
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The constant A in Eq. (2.4) depends on the surface condition, when 0 . By placing a known 

dimensionless surface condition ),0(   in Eq. (2.4), it makes ),0( sA   and then Eq. (2.4) 

takes the following form 

  )1(exp),0(  sss       (2.5) 

The inverse Laplace transforms of Eq. (2.5) is obtainable using a technique discussed in [17] as 
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where )(    is the Dirac delta function. This equation has a zero value when   . Then, 

the convolution theorem provides the temperature solution, 
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When the surface temperature oT  is a constant, then using o),0( TT   to get 1),0(   and 

Eq. (2.7) becomes 
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where )/(  qtH  is the Heaviside function. Figures 3.1 and 3.2 describes the numerical 

behaviors of Eq. (2.8) and it shows the variation of temperature as a function of time at different 
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axial locations. This figure clearly demonstrates the existence of a temperature jump as the 

thermal wave arrives at any given location. 

2.3 Semi-Infinite body with prescribed heat flux 

 

 

 x= q    x=0 

  x 

 Front   q 

   

 

Figure 2.2 A semi-infinite body with heat flux q at the surface x=0 

 

The thermal wave equation for the given example is given by: 
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Where k is thermal conductivity of the material, C is the capacitance and is equal to the product 

of the density (ρ) and specific heat of the material (  )and q is the lag time due to heat flux. If 

one multiplies both sides of Eq. (2.9) by q  the hyperbolic form of the heat conduction equation 

takes the following form; 
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Where α= k/ C, is the thermal diffusivity of the material. The Eq. (2.10) can be further reduced to 

a form where position (x) and time (t) are replaced by dimensionless variables in space (ξ) and 

time (η) defined as.  

                                                  
q

x


        and     

q

t


                              (2.11) 

The above transformations are made in Eq. (2.10) to become 

                                                    
2

2

2

2

 











 TTT
     (2.12) 

A close examination of Eq. (2.12) can lead us to derive a dimensionless form of the thermal 

wave equation in a semi- infinite body. By replacing the temperature (T) with a dimensionless 

temperature variable (θ) where θ is given by, 

                                                   
qq

iTTk




)( 
       (2.13) 

where iT  is the initial temperature of the body and is assumed to be equal to zero. 

2

2

2
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     (2.14) 

The boundary conditions are given by a heat flux at x=0 is given by the following equation, 

     
x

T
k

t

q
q q









                                                             (2.15.1) 

A careful observation would lead us to a conclusion that there exists a lag time due to the heat 

flux. This means that after a pulse has been generated at the surface at x=0 it takes sometime 

before there is considerable jump in temperature on that surface. Thus we hypothesize the heat 

flux q to be a pulse and mathematically we define it by a step function defined as follows: 










0

00
)(0 tq

t
tSq               (2.15.2) 
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Now, after replacing the variables in Eq. (2.15.1) with the dimensionless variable in space (ξ), 

time (η) and temperature (θ) it takes the following form, 

)0(1 



 




     (2.16) 

Note I: L {  (   )            

In the given example     and thus the Laplace transform of the Dirac delta function gives us 

unity, L { (   )    . 

Observe that the first term of Eqn. (2.15.1) becomes a Dirac delta function because thee 

differentiation of a Step function results into a Dirac delta function [18]. Let denote the Laplace 

transform of θ, ( =L {θ}). Now taking a Laplace transform of Eq. (2.15.2), we obtain, 

                                                           

1
1







s


     (2.17) 

Thus we proceed by taking Laplace transform of the Eq. (2.15.1), 




 2
2

2

ss 



    (2.18) 

Solving the differential equation Eq. (2.14) we obtain the following solution, 

          
]

2
[2]

2
[1  ssExpCssExpC    (2.19) 

Now by setting ξ to positive infinity one can predict that the value of the constant C1 goes to 

zero. Thus the solution reduces to, 

]
2

[2  ssExpC      (2.20) 

The value of the constant C2 can be determined by applying the boundary condition at x=0; that 

is, ξ=0. By placing θ̅ from Eq. (2.20) into Eq. (2.16) one can compute the value of the constant 

C2. 
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From Eq. (2.21) we have, 
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Substituting the value of C2 obtained from Eq. (2.23) in Eq. (2.20) to obtain an expression for , 
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  (2.24) 

By taking Laplace inversion of Eq. (2.24) we obtain the dimensionless temperature profile in a 

semi-infinite body. Further reducing Eq. (2.24) would result in a form whose Laplace inversion 

can be easily obtained from standard Laplace Transform Tables, e.g., from Eq. (88) in Appendix 

3 of [18] as 

                                    

]2[
2

1
]2[

2

1
 ssExp

ss

ssExp

sss









               (2.25) 

Note II: The terms within this equation have the forms whose inverse Laplace transforms are 

obtainable using relation, 
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Following the procedure stated in Note II and applying the same to Eq. (2.25) we deduce the 

temperature profile.  
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The first term of the Eq. (2.27) is an integral because of applying convolution integral theorem to 

the first term of Eq. (2.26). 

2.4 Conclusion 

In this chapter analytical solutions were obtained for a semi-infinite dielectric body with 

boundary conditions of first and second kind. They are given by Eq. (2.7) and Eq. (2.27) in the 

chapter. It has been well illustrated in this chapter how the classical method of Laplace 

transform was used to derive the temperature solution. The formulated equations are now going 

to be used to predict the temperature field in the dielectric substance. The analysis of these 

equations will be done in the following chapter with the help of several illustrations and data of 

several cases which has been presented in tabular form as well. The work in this chapter is to 

examine the thermal behavior of the given geometry and also to emphasize on the thermal 

behavior of a dielectric plate. These observations will be discussed later in the study. 
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CHAPTER 3 

ANALYSIS OF TEMPERATURE DISTRIBUTION DUE TO THE OCCURENCE OF A                                                 

THERMAL WAVE IN SEMI-INFINITE BODIES 

3.1 Introduction 

In this chapter we are going to examine the thermal behavior of a semi-infinite dielectric 

material when it is subjected to different boundary conditions as discussed in the previous 

chapter. The work presented in this chapter has been studied earlier by different researchers 

but it has been worked on again in order to emphasize on the thermal behavior for dielectric 

material of finite size. As the mathematical formulation was presented and analytical solutions 

were obtained prior to this section, we have used them to develop several Mathematica 

subroutines that are presented in Appendix A of the work. 

The first sub-section shows the variation in temperature distribution in dimensionless 

space ( ) holding the dimensionless time ( ) constant. Thus for different values of   several 

temperature profiles for the case temperature prescribed on the surface of a dielectric semi-

infinite body were plotted as shown in Figure 3.1. The results obtained have a good agreement 

with those available in the literature. 

The subsequent part essentially focuses on the case when heat flux has been specified 

on the surface of the dielectric material. For a specified time it has been shown how the jump in 

temperature takes place inside the material. The jump in temperature has been well illustrated 

later in the chapter with the help of figures. Also the hyperbolic nature of the thermal wave 

equation is shown in Figure 3.2 when the wave is travelling inside the substance. The results 



 

14 
 

are presented in tabulated form and  by witnessing the nature of the plots and on comparing 

them with other previous studies a resilient similarity between the results was perceived. 

3.2 Analysis of thermal behavior for X10 case 

In this section analysis has been done for specified wall temperature at the surface of a 

dielectric substance as discussed earlier in section 2.1 of Chapter 2. The results that are 

presented in Table 3.1 were obtained from the developed Mathematica subroutine presented in 

Appendix A of the study. In an attempt to acquire better accuracy huge quantity of data were 

generated for different specified dimensionless time but a few of those obtained results have 

been represented in Table 3.1.  

Table 3.1 Dimensionless temperature distribution in a semi-infinite body with boundary condition 

of first kind for different dimensionless time in a dimensionless space. 

 

η = 1 η = 2 η = 3 η = 4 

ξ θ ξ θ ξ θ ξ θ 

0 0 0 0 0 0 0 0 

0.0125 0.00054796 0.0375 0.0010759 0.0625 0.0012422 0.0875 0.00126677 

0.025 0.0010959 0.075 0.0021515 0.125 0.0024836 0.175 0.00253193 

0.0375 0.00164381 0.1125 0.0032266 0.1875 0.0037232 0.2625 0.0037939 

0.05 0.00219167 0.15 0.0043008 0.25 0.0049603 0.35 0.00505108 

0.0625 0.00273947 0.1875 0.0053739 0.3125 0.0061941 0.4375 0.00630188 

0.075 0.00328719 0.225 0.0064457 0.375 0.0074236 0.525 0.00754474 

0.0875 0.00383481 0.2625 0.0075158 0.4375 0.0086481 0.6125 0.00877807 

0.1 0.00438232 0.3 0.008584 0.5 0.0098667 0.7 0.0100003 

0.125 0.00547695 0.3375 0.00965 0.5625 0.0110786 0.7875 0.01121 

0.15 0.00657093 0.375 0.0107135 0.625 0.012283 0.875 0.0124056 

0.175 0.00766415 0.45 0.0128321 0.75 0.0146658 1.05 0.0147484 
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Table 3.1 – continued 

 

η = 1 η = 2 η = 3 η = 4 

ξ θ ξ θ ξ θ ξ θ 

0.2 0.00875648 0.525 0.0149376 0.875 0.0170088 1.225 0.0170172 

0.225 0.00984779 0.5625 0.0159847 0.9375 0.0181634 1.3125 0.0181202 

0.25 0.0109379 0.6 0.0170278 1 0.0193057 1.4 0.0192006 

0.275 0.0120268 0.6375 0.0180665 1.0625 0.0204349 1.4875 0.020257 

0.3 0.0131143 0.675 0.0191006 1.125 0.0215502 1.575 0.0212881 

0.35 0.0152846 0.7125 0.0201299 1.1875 0.022651 1.6625 0.0222926 

0.375 0.0163671 0.75 0.0211539 1.25 0.0237364 1.75 0.0232694 

0.4 0.0174477 0.7875 0.0221726 1.3125 0.0248058 1.8375 0.0242173 

0.425 0.0185263 0.825 0.0231857 1.375 0.0258584 1.925 0.0251351 

0.45 0.0196027 0.8625 0.0241928 1.4375 0.0268936 2.0125 0.0260218 

0.475 0.0206769 0.9 0.0251938 1.5 0.0279106 2.1 0.0268763 

0.5 0.0217486 0.9375 0.0261883 1.5625 0.0289088 2.1875 0.0276977 

0.5 0.800549 0.975 0.0271762 1.625 0.0298875 2.275 0.0284849 

0.525 0.790675 1.0125 0.0281572 1.75 0.0317841 2.3625 0.0292372 

0.55 0.780815 1.05 0.0291309 1.875 0.0335953 2.45 0.0299536 

0.575 0.77097 1.0875 0.0300973 2 0.0353165 2.5375 0.0306335 

0.6 0.76114 1.125 0.031056 2.0625 0.0361419 2.625 0.0312759 

0.625 0.751327 1.1625 0.0320068 2.125 0.0369433 2.7125 0.0318804 

0.65 0.741531 1.2 0.0329495 2.1875 0.03772 2.8 0.0324462 

0.675 0.731752 1.275 0.0348095 2.25 0.0384717 2.8875 0.0329728 

0.7 0.721991 1.3125 0.0357263 2.3125 0.0391977 2.975 0.0334597 

0.725 0.71225 1.35 0.0366341 2.375 0.0398978 3.0625 0.0339065 
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Table 3.1 – continued 

 

η = 1 η = 2 η = 3 η = 4 

ξ θ ξ θ ξ θ ξ θ 

0.75 0.702528 1.425 0.0384215 2.4375 0.0405714 3.15 0.0343127 

0.775 0.692827 1.4625 0.0393007 2.5 0.0412181 3.2375 0.0346779 

0.8 0.683146 1.5 0.0401699 2.5 0.327723 3.325 0.035002 

0.825 0.673487 1.5 0.512536 2.5625 0.313909 3.4125 0.0352848 

0.85 0.66385 1.575 0.490038 2.625 0.3003 3.5 0.035526 

0.875 0.654236 1.65 0.467805 2.6875 0.2869 3.5 0.2093 

0.9 0.644645 1.725 0.445849 2.75 0.273712 3.5875 0.195454 

0.925 0.635079 1.8 0.424181 2.8125 0.260738 3.675 0.181988 

0.95 0.625537 1.875 0.40281 2.875 0.247981 3.7625 0.168905 

0.975 0.616021 1.95 0.381746 2.9375 0.235445 3.85 0.156206 

1 0.606531 2 0.367879 3 0.22313 4 0.135335 

1 0 2 0 3 0 4 0 

 

The data presented in the above table corresponds to Figure 3.2 of the study. As 

mentioned earlier a sample of data has been presented in order to locate the position inside the 

body where the jump in temperature occurs at a fixed time which was specified by us for each 

simulation. The data obtained for each dimensionless time was thoroughly examined. The 

Figure 3.1 has also been plotted with the aid of the same data by not introducing a time delay. 

Figure 3.1 and Figure 3.2 are discussed in detail below. 
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Figure 3.1 Front travelling with finite speed in a semi-infinite body with specified temperature at 

the wall for different dimensionless time in dimensionless space. 

 

The Figure 3.1 noticeably shows the front moving forward due to sudden change in wall 

temperature. Here we have graphically represented the temperature profile for four different 

time in space when x > 0. We observe that for each case the dimensionless temperature rises 

up rapidly to 1 at x =0 followed by heat conduction which is hyperbolic in nature. Also there is a 

sudden drop in temperature when the value of   becomes equal to the specified value of  . In 

the figure the wave travels in the direction of the arrowhead. Since we hold the temperature 

constant at the wall and the geometry being semi-infinite we see that the effect of hyperbolic 

heat conduction reduces and diffusion slowly takes over as time increases and finally the 

temperature of the body becomes equal to the wall temperature for very large times. 
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Figure 3.2 Dimensionless temperature profiles with uniform pulse width in a semi-infinite body 

under the effect of constant wall temperature. 

  

Figure 3.2 is an alternate way of graphically representing the effect of hyperbolic heat 

conduction. The difference between Figure 3.2 and 3.1 is essentially we try to plot the graph 

between two time intervals. For instance, referring Figure 3.2, we notice that the temperature 

monotonically increases till   = 0.5 where the jump in temperature takes place. The jump takes 

place because we specify   to be as 0.5. From Table 3.1 we see that at    = 0.5 the value of  

  changes from 0.0217486 to 0.800549. We observe gradual decrease in temperature till  =1 

when the temperature drops down to zero. This explanation holds good for all the other values 

of   that are represented in the figure. 

In dielectric materials the energy carriers are essentially phonons and it would be 

agreeable to comment on the energy between two consequent values of  . Notice that the 
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pulse width is uniform for each one but the height of the pulse changes. As   increases the 

height of the pulse decreases but notice that distance travelled by the wave for the pulse to 

occur for a larger value of   is more that compared to a much lower value. This has been well 

illustrated in Figure 3.2. Hence the area under the curve remains the same for each time of 

travel. In other words the difference in the height of two neighboring pulses is adjusted with the 

length of the wave travel before the jump in temperature occurs for a specified value of  . 

3.3 Analysis of thermal behavior for X20 case 

In this section analysis has been done when heat flux strikes the surface of a dielectric 

substance at x = 0 and t = 0as discussed earlier in section 2.2, Chapter 2. The results that are 

presented in Table 3.2 were obtained from the developed Mathematica subroutine presented in 

Appendix A of the study. In an attempt to acquire better accuracy huge quantity of data were 

generated for different specified dimensionless time but a few of those obtained results have 

been represented in Table 3.2 and Table 3.3. The Figure 3.2 and Figure 3.3 were plotted using 

the entire data set that was obtained after the simulation. 

Table 3.2 Dimensionless temperature distribution in a semi-infinite body with boundary condition 

of second kind for different dimensionless time in a dimensionless space. 

 

η = 1 η = 2 η = 3 η = 4 

ξ θ ξ θ ξ θ ξ θ 

0 1.44649 0 1.8131 0 2.12685 0 2.40362 

0.025 1.42159 0.075 1.7389 0.0625 2.06485 0.0875 2.31702 

0.05 1.39689 0.15 1.6663 0.125 2.00386 0.175 2.23222 

0.075 1.3724 0.225 1.59531 0.1875 1.94386 0.2625 2.14921 

0.1 1.3481 0.3 1.52591 0.25 1.88487 0.35 2.068 

0.125 1.32401 0.375 1.45811 0.3125 1.82688 0.4375 1.98858 

0.15 1.30012 0.45 1.3919 0.375 1.76989 0.525 1.91095 
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Table 3.2 – continued 

 

η = 1 η = 2 η = 3 η = 4 

ξ θ ξ θ ξ θ ξ θ 

0.175 1.27643 0.525 1.32728 0.4375 1.71389 0.6125 1.83511 

0.2 1.25294 0.6 1.26425 0.5 1.6589 0.7 1.76104 

0.225 1.22965 0.675 1.2028 0.5625 1.60489 0.875 1.61821 

0.25 1.20657 0.75 1.14292 0.625 1.55188 0.9625 1.54943 

0.275 1.18368 0.825 1.0846 0.6875 1.49986 1.05 1.4824 

0.3 1.16099 0.9 1.02784 0.75 1.44882 1.225 1.35354 

0.325 1.13851 0.9375 1.00005 0.8125 1.39876 1.4 1.23153 

0.35 1.11623 0.975 0.972639 0.875 1.34969 1.575 1.11629 

0.375 1.09414 1.05 0.918976 0.9375 1.30159 1.6625 1.06116 

0.4 1.07226 1.125 0.866845 1 1.25446 1.75 1.00768 

0.425 1.05058 1.2 0.816236 1.125 1.1631 1.8375 0.955837 

0.45 1.0291 1.275 0.767138 1.25 1.07558 1.925 0.905602 

0.475 1.00781 1.35 0.719541 1.375 0.991849 2.0125 0.856964 

0.5 0.98673 1.425 0.673431 1.4375 0.951391 2.1 0.809904 

0.525 0.965845 1.5 0.628796 1.5 0.911865 2.275 0.720443 

0.55 0.94516 1.575 0.585623 1.625 0.83558 2.45 0.637062 

0.575 0.924674 1.65 0.543898 1.75 0.762941 2.625 0.559596 

0.6 0.904386 1.725 0.503606 1.8125 0.727972 2.7125 0.523027 

0.65 0.864405 1.8 0.464732 1.875 0.693893 2.8 0.48787 

0.7 0.825215 1.875 0.42726 1.9375 0.660697 2.975 0.421701 

0.75 0.786813 1.95 0.391175 2 0.628375 3.0625 0.390641 

0.8 0.749196 2 0.367879 2.25 0.507676 3.15 0.360898 
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Table 3.2 – continued 

 

η = 1 η = 2 η = 3 η = 4 

ξ θ ξ θ ξ θ ξ θ 

0.85 0.712363 2 0 2.5 0.400302 3.325 0.305265 

0.9 0.67631 1.875 0.40281 2.625 0.351429 3.5 0.254599 

0.95 0.641034 1.95 0.381746 2.75 0.305664 3.85 0.167331 

1 0.606531 2 0.367879 3 0.22313 4 0.135335 

1 0 2 0 3 0 4 0 

 

 

Figure 3.3 Front moving with finite speed in a semi-infinite body under the influence of a 

prescribed heat flux for different dimensionless time in dimensionless space. 
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The figure above represents the behavior of a semi-infinite dielectric material when 

subjected to a heat flux. The Figure 3.3 corresponds to Table 3.2. The graph is similar to Figure 

3.1 apart from a noticeable change, that is the surface temperature of the body at x = 0.  The 

reason for the increase in surface temperature is because initially after heat flux comes in 

through the surface at x = 0, we cut it off. The heat that is stored in the body after each pulse 

has been generated is the cause for the rise in surface temperature. The area under each curve 

represents the energy stored inside the body after each pulse has been generated. As 

commented earlier for Figure 3.1 that diffusion process takes over as time increases the same 

can be understood for this case. 

Table 3.3 Dimensionless temperature distribution with uniform pulse width  in a semi-infinite 

body with prescribed heat flux. 

 

η = 1 η = 2 η = 3 η = 4 

ξ θ ξ θ ξ θ ξ θ 

0 0.210909 0 0.175355 0 0.151447 0 0.134476 

0.05 0.210879 0.075 0.175306 0.125 0.151344 0.175 0.134319 

0.1 0.21079 0.15 0.17516 0.25 0.151037 0.35 0.133851 

0.15 0.21064 0.225 0.174915 0.375 0.150527 0.525 0.133072 

0.2 0.2104314 0.3 0.174574 0.5 0.149814 0.7 0.131987 

0.25 0.210162 0.375 0.174136 0.625 0.1489 0.875 0.130601 

0.275 0.210005 0.45 0.173601 0.75 0.147788 1.05 0.128919 

0.3 0.209834 0.525 0.17297 0.875 0.146481 1.225 0.126951 

0.35 0.209446 0.6 0.172244 1 0.144981 1.3125 0.125861 

0.4 0.209 0.675 0.171423 1.125 0.143293 1.4 0.124704 

0.45 0.208493 0.75 0.170508 1.25 0.141421 1.575 0.122189 

0.5 0.207929 0.825 0.1695 1.375 0.139369 1.75 0.119417 
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Table 3.3 – continued 

 

η = 1 η = 2 η = 3 η = 4 

ξ θ ξ θ ξ θ ξ θ 

0.525 0.965845 0.9 0.1684 1.5 0.137142 1.925 0.116402 

0.55 0.94516 0.975 0.167209 1.625 0.134747 2.0125 0.114807 

0.575 0.924674 1.05 0.165928 1.75 0.132189 2.275 0.109695 

0.6 
0.904386 1.125 0.164558 1.875 0.129474 2.45 0.106034 

0.70 0.825215 1.425 0.158221 2.375 0.117188 2.975 0.0940161 

0.8 0.749196 1.5 0.628796 2.5 0.400302 3.325 0.0853212 

0.9 0.67631 1.8 0.464732 2.75 0.305664 3.675 0.208691 

1 0.606531 2 0.367879 3 0.22313 4 0.135335 

1 0 2 0 3 0 4 0 

 

 

Figure 3.4 Dimensionless temperature profiles with uniform pulse width   in a semi-infinite 

body under the effect of a prescribed heat flux. 
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Figure 3.4 is an alternate way of graphically representing the effect of hyperbolic heat 

conduction. The difference between Figure 3.4 and 3.3 is that in the later, we essentially try to 

plot the graph between two time intervals. For instance referring to Figure 3.4, we notice that 

the temperature monotonically decreases till   = 0.5 where the jump in temperature takes place 

because  was specified to be 0.5. From Table 3.3 we see that at   = 0.5 the value of    

changes from 0.207929 to 0.965845. We observe significant drop in temperature till  =1 after 

which the temperature drops down to zero. This explanation holds good for all the other values 

of   that are represented in the figure. 

In this case the pulse width of 
 
is kept uniform but the height of the pulse shrinks like 

before as   increases.  The energy that is generated after each pulse can be calculated by 

considering a differential element of width d  inside the pulse and integrating it over the entire 

pulse width. This should be equal to the heat flux coming in at that particular time and thus first 

law of thermodynamics holds good. As mentioned in the previous case the effect of hyperbolic 

heat conduction decreases as time increases. 

3.4 Conclusion 

Analytical solutions that were obtained in Chapter 2 were analyzed successfully and the 

results were compared with previous works that were available in the literature.  The acquired 

results were in good agreement with the existing solution and hence the objective was 

achieved. As we said earlier that the analysis of this section was done in order to verify the 

results for a finite body under special circumstances. Also the physics behind the occurrence of 

the phenomena of Hyperbolic Heat Conduction was examined in detail and grasped. 

.
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CHAPTER 4 

TEMPERATURE SOLUUTION IN FINITE BODIES IN THE                                       

PRESECENCE OF A HEAT WAVE 

4.1 Introduction 

 In this Chapter we are going to discuss about a flat thin plate made of a dielectric 

substance when subjected to rapid heating. Boundary conditions of first and second kind are 

considered to solve the particular boundary value problem. The use of dimensionless 

parameters is encouraged because we are heating a sub-micron substance in very small time.    

4.2 Thermal Wave in a plate with prescribed heat flux on the surface 

 

                             

 

Lxξ /  
  x=0 

  x 

  q 

   

Front 

 

             Figure 4.1 Geometry of a flat dielectric plate with heat flux q at the surface x=0. 

The thermal wave equation in a finite body (plate) is given by the same equation that for a semi-

infinite body; that is, Eq. (2.1). Since there is no volumetric heat source present in the problem 

we can neglect that take the effect of source into consideration. 
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Thus we finally obtain,                                                            
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Multiplying both sides of Eq. (4.1) by 
2L we obtain,

            

 

                                                       
2

2
2

2

2

2
2

t

T
L
q

t

TL

x

T
L




















      (4.2) 

                                                    

2

2

2

2

22

2

2












































L

t

T

L

q

L

t

T

L

x

T






                 (4.3) 

Following the same procedure that was adopted to solve for the temperature in a semi-infinite 

body we need to first convert Eq. (4.3) into a dimensionless form. This can be achieved by 

making the following transformations, 

                                                      L

x
  

2
L

t
 

     
2

*

L

q
q


       (4.4) 

where   is a dimensionless variable in space (x),   is a dimensionless variable in time (t) and 

*
q  is the dimensionless lag time due to heat flux. 
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Further one can reduce Eq. (4.5) by multiplying with a factor
qL

k
and , the dimensionless 

variable for temperature is given by the form, 
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                                                                 qL

iTTk )( 
                    (4.6) 

where k is the thermal conductivity if the slab, T is the temperature of the slab, iT  is the initial 

temperature of the slab, q is the heat flux and L is the length of the slab. Hence the final form of 

the thermal wave equation in dimensionless form becomes, 
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The following step is to alter the boundary conditions from the regular form to a dimensionless 

form. To solve the above differential equation, Eq. (4.7) we need two boundary conditions, one 

at x=0 and another one at x=L. The boundary conditions specified at x=0 is that of a heat flux 

(q) entering the surface at time t=0. The mathematical representation of the above statement 

would be, 
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Working on Eq. (4.8) one can make some modifications to achieve a dimensionless form. 
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Now closely observing Eq. (4.10) we see that there are a few terms that can be replaced by 

using Eq. (4.4). After doing so Eq. (4.10) appears with the dimensionless parameters ,   and
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A careful examination of Eq. (4.11) would lead us back to Eq. (2.15.2) and we deduce the 

following, 
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The term on the right hand side of Eq. (4.13) can be replaced by the dimensionless temperature 

variable , refer Eq. (4.6). Hence the final form of Eq. (4.8) in dimensionless form is 

represented as, 
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Thus one can write the boundary condition at x=0; that is,  =0 as, 
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Now the surface at x=L; that is,  =1 is considered to be as insulated. The mathematical 

representation of the earlier statement is, 
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Subsequently we take the Laplace transform of the equations, Eq. (4.7), Eq. (4.15) and Eq. 

(4.16) and obtain a new set of equations. 
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Solution to the Eq. (4.18) is given by, 
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Applying the boundary condition 1; that is, Eq. (4.19) to Eq. (4.21) one can derive the value for 

the coefficient B. 
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Replacing B obtained in Eq. (4.23) in Eq. (4.21), the equation becomes, 
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Applying the second boundary condition at x=L; that is,  =1 given by Eq. (4.20) to Eq. (4.24) 

one can obtain the value for the constant A. 
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After obtaining the expression for determining the value of constant A in Eq. (4.26) we replace it 

in Eq. (4.24) to obtain, 
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Subsequently one can also express Eq. (4.28) in exponential form. A result of this 

demonstration is shown below, 
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A close observation if Eq. (4.30) will encourage us to comment on the denominator of the term 

inside the brackets. This form can be expanded in terms of a series using Taylor series 

expansion method. 

Note III: The Taylor series expansion for the expression 
1

1
 is given by, 
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Comparing the denominator of the term inside the brackets in Eq. (4.30) with Note III, the 

resulting expression looks like, 
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(4.33) 

Comparing Eq. (4.33) with Note II, one can easily draw similarity between them and thus 

encourages us to take the Inverse Laplace transform of the obtained equation, Eq. (4.33).  

The Inverse Laplace transform will give us the temperature distribution in a finite body using a 

thermal wave model for dielectric materials. 
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4.3 Thermal Wave in a plate with prescribed temperature on the surface 

The governing equation for determining the temperature solution in a plate when it is 

subjected to a thermal wave is expressed by the same equation used earlier in the study, Eq. 

(4.1). Following the same procedure that was adopted to solve for the temperature solution in a 

plate for prescribed heat flux case one can derive the solution for the current case, prescribed 

temperature. Hence the final form of the thermal wave equation in dimensionless form 

becomes, 
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    (4.35) 
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Figure 4.2 Geometry of a flat dielectric plate with prescribed temperature T0 at the surface x=0 

where the dimensionless form of temperature   is given by
iw

i

TT

TT




  and T, Tw and Ti are 

surface temperature, wall temperature and the initial temperature respectively. The following 

step is to alter the boundary conditions from the regular form to a dimensionless form. To solve 

the above differential equation, Eq. (4.35) we need two boundary conditions, one at x = 0 and 

another one at x = L. The boundary conditions specified at x = 0 is that of a prescribed 

temperature Ti at time t = 0.  
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The alternate boundary condition is at x = L where the plate is insulated. Hence there is no heat 

flow coming in or going out. These boundary conditions can be expressed mathematically in a 

way shown below. 

At x = 0, that is 0 we have T = T0 and hence based on our selection of boundary condition 

we can say that  

                                                          0
0

0
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Laplace Transform of Eq. (4.36) would result in, 

                                                        00}{}{   LL                                                     (4.37) 

A special case would be described as when the prescribed wall temperature T0 would be equal 

to the initial temperature of the body Ti. The mathematical formulation is shown below.     
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Hence the Laplace transform of Eq. (4.38) would be, 
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At x = L, using boundary condition of second kind, that is q = 0 one deduces the following 

equations. 
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By taking Laplace transform of Eq. (4.41), 
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Taking Laplace transform of the governing equation, Eq. (4.35) we obtain Eq. (4.17) which has 

been discussed in the earlier case. 
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Solution to the above equation, Eq. (4.43) can be obtained straight from the case discussed 

previously with minor alterations and can be used in the present instance to solve the problem. 
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Applying the different boundary conditions talked earlier we can derive the values of the 

constants C and D. The Eq. (4.37) talks about the first boundary condition and applying it to Eq. 

(4.44) would help us derive a relation between 0 , C and D. 
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The following step would be to apply the second boundary condition to Eq. (4.42) to Eq. (4.44) 

to further reduce Eq. (4.45). 
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Substituting the value of D obtained in Eq. (4.47) back in Eq. (4.45) to get C, 
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Replacing Eq. (4.44) with the attained values C and D we obtain, 
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Subsequently one can also express Eq. (4.49) in exponential form. A result of this 

demonstration is shown below, 
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Note IV: The Taylor series expansion for the expression 
1

1
 is given by, 
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Relating the denominator of the term inside the brackets in Eq. (4.51) with Note IV, the resulting 

expression looks like, 
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Recall, the inverse Laplace transforms of Eq. (4.53) is obtainable using a technique discussed 

in [17] as shown in Eq. (2.6.1) 
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Thus the temperature solution is given by the following relation, 
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where 1  and 2  are given by the relations, 
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4.4 Conclusion 

In this chapter flat plate with insignificant thickness was analyzed by applying boundary 

conditions of first and second kind on either ends of the plate. They are given by Eq. (4.54) and 

Eq. (4.34) in the chapter. For the second time it has been well demonstrated in this chapter how 

the classical method of Laplace transform was used to derive an analytical form of the 

temperature solution so efficiently. The formulated equations are now going to be used to 

predict the temperature field in the dielectric substance. The analysis of these equations will be 

done in the following chapter and the thermal behavior will be discussed in detail with the help 

of several illustrations and data of several cases. 
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CHAPTER 5 

ANALYSIS OF TEMPERATURE DISTRIBUTION DUE TO THE OCCURENCE OF A                                                 

THERMAL WAVE IN A PLATE 

5.1 Introduction 

In this chapter we are going to examine the thermal behavior of a flat thin plate of a 

dielectric material, when it is subjected to different boundary conditions as discussed in the 

previous chapter. As the mathematical formulation was presented and analytical solutions were 

obtained prior to this section, we have used them to develop several Mathematica subroutines 

that are presented in Appendix B of the work. The Eq. (4.34) and Eq. (4.54) have been 

restricted with finite number of terms to get a good convergence which is very critical in this 

problem. 

The first sub-section shows the variation in temperature distribution in dimensionless 

space ( ) holding the dimensionless time ( ) constant. Thus for different values of   several 

temperature profiles for the case, temperature prescribed on the surface of a dielectric finite 

body are well illustrated in this chapter. The subsequent part essentially focuses on the case 

when heat flux has been specified on the surface of the dielectric material. The results of which 

have been well illustrated with the help of graphs and tables. 

Also the similarity in the temperature solution of a finite body with that of a semi-infinite 

body has been emphasized for all times before the wave front strikes the insulated wall. 

Furthermore special attention has been given to the analysis in a region close to the insulated. 

wall when the front is just about to strike the surface and when reflection occurs from the 

surface Certain anomalies have been encountered and an attempt has been taken to explain 

the cause for the occurrence of those anomalies. 
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5.2 Analysis of thermal behavior of a dielectric plate for X22 case 

Table 5.1 Dimensionless temperature in a plate for a specified dimensionless time under the 

influence of a heat flux when the wave propagates from x =0 to x = L. 

 

ξ 
η = 0.2  η = 0.6   η = 1.0 

θ θ θ 

0 1.09758 0.111788 0.102719 

0.02 1.07765 0.111786 0.102716 

0.04 1.05787 0.111778 0.102709 

0.06 1.03823 0.111765 0.102698 

0.08 1.01874 0.111746 0.102682 

0.1 0.999395 0.111723 0.102661 

0.12 0.980194 0.111694 0.102636 

0.14 0.961137 0.11166 0.102606 

0.16 0.942226 0.11162 0.102572 

0.18 0.923459 0.111576 0.102533 

0.2 0.904837 0.111526 0.10249 

0.22 0 0.11141 0.102389 

0.24 0 0.111344 0.102332 

0.26 0 0.111274 0.10227 

0.28 0 0.111198 0.102204 

0.3 0 0.111116 0.102133 

0.32 0 0.11103 0.102058 

0.34 0 0.950442 0.101978 

0.36 0 0.941651 0.101893 

0.38 0 0.924171 0.101804 

0.4 0 0.906827 0.101711 

0.42 0 0.889618 0.101613 

0.44 0 0.872545 0.10151 

0.46 0 0.855607 0.101403 

0.48 0 0.838804 0.101292 

0.5 0 0.822137 0.101176 

0.54 0 0.789205 0.100931 

0.58 0 0.756813 0.100667 

0.6 0 0.740818 0.100529 

0.7 0 0 0.099772 

0.8 0 0 0.749196 

0.9 0 0 0.67631 

1 0 0 0.606531 
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Figure 5.1 Dimensionless temperature distribution in a flat thin dielectric plate at different 

dimensionless time when wave propagates from x = 0 to x = L. 

 

Table 5.2 Dimensionless temperature in a flat plate for a specified dimensionless time under the 

influence of a heat flux when the wave reflects backward after striking the insulated 

wall. 

 

ξ 
η = 1.0  η = 1.1   η = 1.2 

θ θ θ 

0 0.166936 0.163586 0.160383 

0.01 0.166935 0.163585 0.160382 

0.02 0.166932 0.163583 0.160379 

0.03 0.166927 0.163578 0.160375 

0.04 0.166921 0.163572 0.160369 

0.05 0.166912 0.163564 0.160361 

0.06 0.166902 0.163554 0.160351 

0.07 0.16689 0.163542 0.16034 

0.08 0.166876 0.163528 0.160326 

0.09 0.16686 0.163513 0.160311 

0.1 0.166842 0.163495 0.160295 

0.11 0.166822 0.163476 0.160276 

0.12 0.1668 0.163455 0.160256 

0.13 0.166777 0.163433 0.160234 

0.14 0.166751 0.163408 0.16021 

0.15 0.166724 0.163382 0.160185 



 

40 
 

Table 5.2 – continued 

 

ξ 
η = 1.0  η = 1.1   η = 1.2 

θ θ θ 

0.16 0.166695 0.163354 0.160158 

0.17 0.166664 0.163324 0.160129 

0.18 0.166631 0.163292 0.160098 

0.19 0.166596 0.163258 0.160065 

0.2 0.16656 0.163223 0.160031 

0.21 0.166521 0.163186 0.159995 

0.22 0.166481 0.163147 0.159957 

0.23 0.166439 0.163106 0.159918 

0.24 0.166394 0.163063 0.159876 

0.25 0.166348 0.163018 0.159833 

0.26 0.166301 0.162972 0.159789 

0.27 0.166251 0.162924 0.159742 

0.28 0.166199 0.162874 0.159694 

0.29 0.166146 0.162822 0.159644 

0.3 0.16609 0.162769 0.159592 

0.31 0.166033 0.162714 0.159538 

0.32 0.165974 0.162656 0.159483 

0.33 0.165913 0.162598 0.159426 

0.34 0.16585 0.162537 0.159367 

0.35 0.165786 0.162474 0.159307 

0.36 0.165719 0.16241 0.159245 

0.37 0.165651 0.162344 0.159181 

0.38 0.16558 0.162276 0.159115 

0.39 0.165508 0.162206 0.159048 

0.4 0.165434 0.162135 0.158978 

0.41 0.165359 0.162061 0.158908 

0.42 0.165281 0.161986 0.158835 

0.43 0.165201 0.161909 0.15876 

0.44 0.16512 0.161831 0.158684 

0.45 0.165037 0.16175 0.158607 

0.46 0.164952 0.161668 0.158527 

0.47 0.164865 0.161584 0.158446 

0.48 0.164776 0.161498 0.158363 

0.49 0.164685 0.161411 0.158278 

0.5 0.164593 0.161321 0.158191 

0.51 0.164499 0.16123 0.158103 

0.52 0.164403 0.161137 0.158013 

0.53 0.164305 0.161042 0.157922 

0.54 0.164205 0.160946 0.157828 

0.55 0.164103 0.160848 0.157733 

0.56 0.164 0.160748 0.157637 

0.57 0.163894 0.160646 0.157538 

0.58 0.163787 0.160542 0.157438 

0.59 0.163678 0.160437 0.157336 

0.6 0.904386 0.16033 0.157233 
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Table 5.2 – continued  

 

ξ 
η = 1.0  η = 1.1   η = 1.2 

θ θ θ 

0.61 0.896326 0.160221 0.157127 

0.62 0.888298 0.16011 0.15702 

0.63 0.880302 0.159998 0.156912 

0.64 0.872338 0.159884 0.156801 

0.65 0.864405 0.159768 0.156689 

0.66 0.856504 0.15965 0.156575 

0.67 0.848634 0.159531 0.15646 

0.68 0.840796 0.15941 0.156343 

0.69 0.832989 0.159287 0.156224 

0.7 0.825215 0.863851 0.156103 

0.71 0.817471 0.856077 0.155981 

0.72 0.809759 0.848335 0.155857 

0.73 0.802079 0.840624 0.155732 

0.74 0.79443 0.832943 0.155604 

0.75 0.786813 0.825294 0.155475 

0.8 0.749196 0.787514 1.37394 

0.9 0.67631 1.29122 1.36493 

1 1.21306 1.28818 1.36193 
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Figure 5.2 Reflection of a heat wave after the front strikes the insulated wall for 1  
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Figure 5.3 Propagation and reflection effect of a thermal wave in a finite body. 

 

Figure 5.4 Front reflecting back of an insulated wall for dimensionless time 4.13.1,2.1 and  
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 Here we are analyzing the case of prescribed heat flux at the surface x = 0 for a flat thin 

plate which is insulated at the other end, x = L. The equation to calculate the dimensionless 

temperature variable θ is given by Eq. (4.34) which was formulated using the classical Laplace 

transformation. For convenience of the reader let us recall the equation over here which will 

help us make some critical observation of the solution. 
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  (4.34) 

 To perform an analysis we have restricted ourselves to consider finite number of terms 

for the series in Eq. (4.34).This has been done because there is no change in the temperature 

profile for any value of m > η and also to get a better convergence. It also reduces the 

computation time significantly. For instance when m = 0 in the equation all the terms are left 

only with   which means that the front can only travel the length of the plate for once and thus 

the effect of reflection if time is greater than 1, that is, η > 1 cannot be observed. In most of the 

cases discussed here in this work we have restricted the value of m to be as 4.  

 The Table 5.1 represents the value of non-dimensional temperature (θ) at different non-

dimensional time (η) in a finite non-dimensional space ( ).  An observation of the table will help 

us realize that we have initially analyzed the part where the wave propagates form the surface x 

= 0 to the insulated wall x = L. Non-dimensional temperature solutions that are obtained at 

every non-dimensional time of η < 1 as a result of a propagating heat wave were similar to the 
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results that were previously obtained for a semi-infinite body maintaining the same boundary 

condition at x = 0. When a unit pulse of heat is applied on the surface of the plate, the heat does 

not start penetrating through the surface immediately which thus gives rise to the phenomena of 

hyperbolic heat conduction. Instead it slowly builds up and then a pulse is generated in some 

specified time at a particular location inside the body. This pulse then travels inside the body of 

finite length before it reaches the other end with finite speed. The front that is moving with a 

speed ( ) given by the ratio of thermal diffusivity ( ) and the square of the lag time due to 

heat flux )( q , that is, the mathematical representation is given by q   [13]. An 

illustration of this process is shown in Figure 5.1 which was generated after solving the Eq. 

(4.34) for values of η ≤ 1 some of which are presented in tabular form in Table 5.1.  

 Subsequently we are going to look at what happens when the wave reflects back of the 

insulated wall. This is a salient feature of the problem and hence more emphasis has been 

given to its analysis by viewing the eccentric thermal behaviors occurring in an area of close 

proximity to the insulated surface. When the pulse that was travelling with a finite speed of   in 

the plate comes in contact with the insulated surface at x = L, the surface starts reflecting the 

thermal energy induced by the pulse. Hence the temperature of the surface at x = L increases 

significantly and it starts reflecting back heat waves. Analysis has shown us that there is an 

abrupt jump in temperature in a space which is located very close to the wall surface, refer 

Figure 5.2. The cause behind this abrupt jump in temperature is explained in this study with help 

of phonons vibrating in a very small space as a result of which the kinetic energy gets converted 

into thermal energy. The work presented in this thesis essentially deals with sub-micron 

geometry dielectric material when heated rapidly in a very small time of like nanoseconds to 

picoseconds. Thus a crystalline state of the material can be brought into consideration to 

describe the cause of the sudden jump in temperature. 

A phonon in quantum physics is defined to be a vibration when a lattice oscillates 

uniformly at the same frequency. The density of states is defined as the number of states at 
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each energy level left to be occupied by electrons. In thermodynamics the phonon density of 

states determines the specific heat capacity of the crystal. The energy of phonon fluctuates 

between some mean values when it is in excited state. Now referring to Figure 5.2 we can see 

this temperature rise taking place in very small space. At a dimensionless time slightly over one, 

that is, 1 , the temperature inside the body shoots up to a value between 1.21306 to 

1.36193. These values are obtained from Table 5.2 of the study. Notice from Table 5.1 the 

value of non-dimensional temperature was 0.606531 when the first front struck the surface. 

After subsequent fronts have struck the surface as time passed by we have seen the 

temperature at the surface buildup to a value of 1.21306 which is a jump by 49.99%, 

approximately twice the previous obtained value when the first set of wave fronts travelled the 

entire span of the body. This is a significant jump which encouraged us to go further in detail 

and understand the cause behind it. A sample math formulation based on fundamental theory 

was considered to be the best possible explanation in view of the context of this study. The 

discussion is presented with the help of Figure 5.5 as shown below, 

 

 
           h 
                                                                          H 
  
 
                       ∆x      
  
                                                                                                                                 ∆x/2 
 
                      (a)                                                                                                       (b) 
Figure 5.5 Representation of phonon excitation levels in a region inside the plate (a) at normal 

state (b) when it has reached an excited state. 

 

 Let us begin by considering the Figure 5.5 (a) where we assume the total energy 

present in the body be U. Mathematically one can express the following set of equations. They 

are given by a simple relation that states energy inside the body sown in Figure 5.5 (a) is equal 

to the product of the number of phonons with the energy of each phonon. This is expressed as, 
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                                                      phononphonon eNTCx  ..1..                                          (5.1) 
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                                                          (5.2) 

where    is the  density of the material in kg/ m
3
 , )1.( x  is the volume in m

3
 , C is the specific 

heat of the material in J/ kg K, T  is the temperature in K , phononN   is the number of phonons 

and phonone   is equal to energy of each phonon ( hephonon ). All other parameters will remain 

constant except for x which we specify to be as half the initial specified value. The geometry of 

the problem is shown in Figure 5.5 (b). Thus the energy stored in the body represented by 

Figure 5.5 (a) will be the same and thus if you replace  x  by x /2, the dimensionless 

temperature rises by a factor of two.    
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where Tnew is the newly obtained temperature of the body due to vibration of phonons. This 

jump has been well illustrated with the help of Figure 5.3 and 5.4 in the study. Figure 5.3 also 

shows the superposition of a propagating and reflecting heat waves of different amplitudes at a 

location closer to the insulated wall.  From Figure 5.2 and 5.4 one can comment that the pulse 

retains back to its standard profile for a larger non-dimensional time   of 1.4 onwards.  

5.3 Analysis of thermal behavior of a dielectric plate for X12 case 

Table 5.3 Dimensionless temperature in a flat plate for specified dimensionless time with 

constant wall temperature when the wave propagates from x =0 to x = L. 

 

ξ 
η = 0.2 η = 0.4 η = 0.6 η = 0.8 η = 1.0 

θ θ θ θ θ 

0 1 1 1 1 1 

0.02 0.990476 0.990908 0.9913 0.991658 0.991985 

0.04 0.980953 0.981816 0.982601 0.983317 0.983971 

0.06 0.97143 0.972725 0.973903 0.974977 0.975958 
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Table 5.3 – continued 
 

ξ 
η = 0.2 η = 0.4 η = 0.6 η = 0.8 η = 1.0 

θ θ θ θ θ 

0.08 0.961909 0.963636 0.965206 0.966637 0.967946 

0.1 0.95239 0.954548 0.95651 0.9583 0.959935 

0.12 0.942873 0.945462 0.947817 0.949964 0.951925 

0.14 0.933359 0.936379 0.939126 0.94163 0.943918 

0.16 0.923848 0.927299 0.930438 0.933299 0.935914 

0.18 0.91434 0.918223 0.921753 0.924971 0.927912 

0.2 0 0.90915 0.913071 0.916646 0.919913 

0.22 0 0.900081 0.904394 0.908325 0.911918 

0.24 0 0.891018 0.895721 0.900008 0.903926 

0.26 0 0.881959 0.887053 0.891696 0.895939 

0.28 0 0.872906 0.87839 0.883389 0.887957 

0.3 0 0.86386 0.869733 0.875086 0.879979 

0.32 0 0.854819 0.861081 0.86679 0.872007 

0.34 0 0.845786 0.852436 0.858499 0.86404 

0.36 0 0.836759 0.843798 0.850215 0.856079 

0.38 0 0.827741 0.835168 0.841938 0.848125 

0.4 0 0 0.826544 0.833667 0.840177 

0.42 0 0 0.817929 0.825405 0.832236 

0.44 0 0 0.809322 0.817149 0.824302 

0.46 0 0 0.800724 0.808903 0.816377 

0.48 0 0 0.792136 0.800665 0.808459 

0.5 0 0 0.783556 0.792435 0.800549 

0.52 0 0 0.774987 0.784215 0.792649 

0.54 0 0 0.766428 0.776005 0.784757 

0.56 0 0 0.75788 0.767805 0.776875 

0.58 0 0 0.749344 0.759615 0.769002 

0.6 0 0 0 0.751436 0.76114 

0.62 0 0 0 0.743269 0.753288 

0.64 0 0 0 0.735112 0.745447 

0.66 0 0 0 0.726968 0.737617 

0.68 0 0 0 0.718836 0.729798 

0.7 0 0 0 0.710716 0.721991 

0.72 0 0 0 0.70261 0.714197 

0.74 0 0 0 0.694516 0.706415 

0.76 0 0 0 0.686437 0.698645 

0.78 0 0 0 0.678371 0.690889 

0.8 0 0 0 0 0.683146 

0.82 0 0 0 0 0.675417 

0.84 0 0 0 0 0.667702 

0.86 0 0 0 0 0.660002 

0.88 0 0 0 0 0.652316 

0.9 0 0 0 0 0.644645 

0.94 0 0 0 0 0.629351 

0.98 0 0 0 0 0.614121 

1 0 0 0 0 0 
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Figure 5.6 Dimensionless temperature distribution in a flat thin dielectric plate at different 

dimensionless times when wave propagates from x = 0 to x = L for X12 case. 

 
Figure 5.7 Front moving forward for different values of dimensionless time 

                                  when x = 0 to x = L for X12 case. 
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 After analyzing the X22 case we are now going to perform the analysis for X12 case, 

that is when constant wall temperature is prescribed at x = 0 and insulated wall at x = L.  The 

analysis was done by solving the Eq. (4.54) for finite number of terms to get a better 

convergence. The equation has been presented again in this chapter for the convenience of the 

reader. 
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where, 1  and 2  are given by the relations, 
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 . 

 Table 5.2 represents the value of non-dimensional temperature (θ) at different non-

dimensional time (η) in a finite non-dimensional space ( ). In this problem the surface at x = 0 

is rapidly heated to reach a dimensionless temperature value of one, that is, 1
0





. As the 

surface temperature changes rapidly there is a gradient formed which is noticeable in Figure 5.5 

of this chapter. Several different dimensionless temperature profiles are plotted for all 

dimensionless time of η ≤ 1 and looking at them one can comment on the temperature gradient 

being fairly uniform. The figure also shows the front moving towards the other end at x = L of 

the body where it is going to encounter an insulated wall. Similar results were observed on 

comparing the results with the results that were obtained for a semi-infinite body for X12 case 

for all dimensionless time when the front has not  encountered the insulated wall and is 

travelling with a finite speed of (  ) inside the body. In addition to that both Figure 5.6 and 

Figure 5.7 have a very strong resemblance with the graphical representation shown in [14]. The 

heat coming in the body is fairly constant because the gradient does not shift by much. Figure 
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5.7 was plotted by taking the data obtained by taking the difference between the two 

subsequent non-dimensional temperatures at a specified time interval in the body. The 

accuracy in these results was very high because they were compared with the work presented 

in [14] where the investigators have used the Fourier series approach and Green’s Function 

solution to solve the problem. The results obtained here are in close agreement with the results 

that are presented in [14].   

 The analysis presented above is followed by examining the behavior of the reflecting 

wave in a similar way as it was done earlier for the X22 case. Certain anomalies have been 

encountered while performing the analysis and sincere efforts have been taken to justify their 

causes and effects.  

Table 5.4 Dimensionless temperature in a flat plate for specified dimensionless time with 

constant wall temperature when the wave propagates from x =0 to x = L. 

 

ξ 
η = 1.2 

η = 1.4 η = 1.6 

θ ∆ θ =1- θ θ ∆ θ =1- θ θ ∆ θ =1- θ 

0 1 0 1 0 1 0 

0.02 0.992285 0.007715 0.99256 0.00744 0.992814 0.007186 

0.04 0.984571 0.015429 0.985121 0.014879 0.985627 0.014373 

0.06 0.976857 0.023143 0.977682 0.022318 0.978442 0.021558 

0.08 0.969144 0.030856 0.970244 0.029756 0.971257 0.028743 

0.1 0.961432 0.038568 0.962808 0.037192 0.964074 0.035926 

0.12 0.953722 0.046278 0.955373 0.044627 0.956892 0.043108 

0.14 0.946014 0.053986 0.947939 0.052061 0.949711 0.050289 

0.16 0.938309 0.061691 0.940508 0.059492 0.942533 0.057467 

0.18 0.930606 0.069394 0.93308 0.06692 0.935357 0.064643 

0.2 0.922906 0.077094 0.925654 0.074346 0.928184 0.071816 

0.22 0.915209 0.084791 0.918231 0.081769 0.921013 0.078987 

0.24 0.907516 0.092484 0.910812 0.089188 0.913846 0.086154 

0.26 0.899827 0.100173 0.903396 0.096604 0.906682 0.093318 

0.28 0.892142 0.107858 0.895985 0.104015 0.899522 0.100478 

0.3 0.884461 0.115539 0.888577 0.111423 0.892366 0.107634 

0.32 0.876786 0.123214 0.881175 0.118825 0.885215 0.114785 

0.34 0.869116 0.130884 0.873777 0.126223 0.878068 0.121932 

0.36 0.861451 0.138549 0.866384 0.133616 0.870925 0.129075 

0.38 0.853793 0.146207 0.858998 0.141002 0.863789 0.136211 

0.4 0.84614 0.15386 0.851616 0.148384 0.856657 0.143343 

0.42 0.838494 0.161506 0.844241 0.155759 1.30516 -0.30516 
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Table 5.4 – continued 

 

ξ 
η = 1.2 

η = 1.4 η = 1.6 

θ ∆ θ =1- θ θ ∆ θ =1- θ θ ∆ θ =1- θ 

0.44 0.830855 0.169145 0.836873 0.163127 1.30437 -0.30437 

0.46 0.823224 0.176776 0.829511 0.170489 1.3036 -0.3036 

0.48 0.815599 0.184401 0.822157 0.177843 1.30285 -0.30285 

0.5 0.807983 0.192017 0.814809 0.185191 1.30214 -0.30214 

0.54 0.792775 0.207225 0.800138 0.199862 1.30079 -0.30079 

0.58 0.777602 0.222398 0.7855 0.2145 1.29956 -0.29956 

0.6 0.77003 0.22997 0.778194 0.221806 1.29898 -0.29898 

0.64 0.754915 0.245085 1.27364 -0.27364 1.29792 -0.29792 

0.68 0.739842 0.260158 1.27263 -0.27263 1.29696 -0.29696 

0.7 0.732321 0.267679 1.27216 -0.27216 1.29652 -0.29652 

0.8 0.694897 0.305103 1.27029 -0.27029 1.29476 -0.29476 

0.9 1.24251 -0.24251 1.26917 -0.26916 1.29371 -0.2937 

1 1.24211 -0.24211 1.26879 -0.26879 1.29335 -0.29335 

 
Figure 5.8 Dimensionless temperature distributions in a flat thin dielectric plate at different 

dimensionless time when wave reflects back of the insulated wall for X12 case. 
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Figure 5.9 Front travelling back in a flat thin dielectric plate at different dimensionless time when 

wave reflects back of the insulated wall for X12 case. 

 
Figure 5.10 Propagation and reflection of a moving front of an insulated wall showing the effect 

of superposition. 
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The thermal wave in a dielectric material of fnite size as shown in Figure 5.6 comes in 

contact with the  insulated wall at x = L, the energy genarated inside the body due to the 

propagation of the pulse is being absorbed by the wall. Thus the wall temperature starts rising 

up and for any non-dimensional time of η  > 1 we see that there is a wave reflecting back of the 

surface travelling towards the surface at x = 0 as shown in Figure 5.8 and Figure 5.9. A careful 

observation of  Figure 5.8 would display that the non-dimensionless temperature goes above 

the specified value of 1. This strange behaviour has been explained with the excitation level of 

phonons present in the lattice of the dielectric material and also with theory of superposition of a 

propagating and reflecting heat wave. The phenomena of superposition has been illustrated in 

Figure 5.10 in which the solid lines ( when η ≤ 1) represent the wave propagation and the 

dashed lines (when  η  ≥1) represent the reflection of the wall surface.  

 Observing Figure 5.8 we can say that there is a temperature gradient between ξ = 0  

and ξ = 0.8 for a dimensionless time of η = 1.2. Also there is drop in temperature when η = ξ. So 

for a dimensionless time of 1.2 the value of ξ becomes 0.8 because the front travels the entire 

span of the plate, that is, from ξ = 0  to ξ = 1 and then travels two units backwards from ξ = 1 to 

ξ = 0.8. The drop in non-dimensional temperature is from 1.24211 units to 0.694897 units. But 

then as stated earlier that there exists a gradient which in other words say that there is heat 

coming in. Thus when these two waves encounter each other as shown in Figure 5.10 for η = 

0.8 and η = 1.2 at the same location of ξ = 0.8 they superimpose with each other. The result of 

which is observed in Figure 5.8 because the phonons present in a minuscule space starts 

vibrating rapidly and the vibrational energy gets converted to the thermal energy as expalained 

earlier in this Chapter for the X22 case. This explanation is valid for all other values of  η > 1.2  

until the effect of hyperbolic heat conduction perishes and classical diffusion takes over. 

5.4 Conclusion 

  In this chapter a complete analysis of thermal wave effect in a dielctric flat plate 

of miniscule thickness has been demonstrated. At first we examined the X22 case whose 
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solution is given by Eq. (4.34) in the study. Investigating the X22 boundary value problem we 

observed an existence of a thermal wave, when a sub-micron size dielectric material is heated 

rapidly in small time. The propagation and reflection of the wave front is well illusrated in this 

chapter. It was perceived that there is an abrupt jump in temperature at the insulated wall 

surface and its neighbouring space. The cause of this anomalous rise in surface temperature  

was elucidated with the aid of phonons vibrating in the lattice in a very small space where their 

kinetic energy gets converted to thermal energy when they reach their respective excitattion 

level . Similar explanations were made to justify the rise in temperature for the X12 case when 

we hold the non-dimensional wall temperature as 1 unit at x = 0. In view of  the superposition 

effect in waves, it makes our argument even more stronger to rationalize the observed 

anomalies.
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CHAPTER 6 

ESTIMATION OF HEAT FLUX AT THE INTERFACE OF A                                                            

TWO-LAYER DIELECTRIC MATERIAL 

6.1 Introduction 

In this section an attempt has been made to compute the heat flux at the interface of a 

dielectric substance. The geometry has been shown in Figure 6.1. A bold assumption has been 

made to simplify the problem by considering the second layer semi-infinite. This assumption 

was made because in practice the second layer is usually much thicker than the first. An 

example of this would be CVD decomposition on a silicon substrate. It has been presented 

widely in the literature that the thickness of the diamond film is around 5 µ in comparison to a 

100 µ silicon substrate. These data has encouraged us to consider the second layer semi-

infinite. Once again Laplace transform method has been used to estimate the heat flux at the 

interface considering perfect contact between the two layers. The results for temperature 

distribution that were derived in previous chapters for different cases have been used with 

certain necessary modifications.  

We start by assuming a prescribed heat flux striking the surface of layer 1 as shown in 

Figure 6.1. The heat flux is assumed to be a unit pulse striking the surface at x = 0 when t = 0. 

Furthermore both the layers have the same initial temperature and it has been assumed to be 

zero. The problem has been solved by dividing it into three different cases that were discussed 

in previous chapters. This was done to emphasize on the use of previous results obtained to 

determine the current results and also to verify the results that were obtained. 
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6.2 Mathematical Formulation 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.1 Geometry of the problem 
 

 
By observing the geometry one can comment on the fact that we can compute the heat 

flux at the interface by dividing the geometry into individual geometries of a plate and a semi-

infinite body results of which are derived earlier in previous chapters of this thesis.  In this 

problem we have divided the geometry into three different parts starting with the plate, layer 1, 

with a unit pulse applied on the surface x = 0 and insulated at x = L. Consequently another 

plate, layer 1, is considered with desired quantity of heat flux at the interface q at x = L and is 

insulated at x = 0. Finally the semi-infinite body, layer 2 is considered with the heat flux at 

interface q at      x = L. 

Initially we will start with the case accounting for the known quantity of heat flux q0 on 

the surface at x = 0 of layer 1. The subscript 1 that will be used later in this section denotes 

layer 1 and the subscript 1 denotes layer 2. Small modifications are made to reduce the 

equation to dimensionless form. The dimensionless parameters used in this section are defined 

as follows, 
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After we have defined all the necessary dimensionless parameters required to solve the 

problem the following step would be to apply them to the governing equations and equations 

prevailing the boundary conditions. For layer 1 the following equations are listed below. The 

governing equation is the same that was used earlier in section 4.2 of Chapter 4. Multiplying 

both sides of Eq. (4.1) by 
2L  we obtain, 
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Multiplying both sides of Eq. (6.2) with ( Lqk 01 ) to make it dimensionless in temperature as 

well because the initial temperature is assumed to be zero. 
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The Eq. (6.4) is now entirely dimensionless whose Laplace transform is given by, 
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For simplicity we divide layer 1 in two different sub layers 1a and 1b of same thickness L, refer 

Figure 6.2 and Figure 6.3. 
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Figure 6.2 Geometry of a finite dielectric body for X22 case. 
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Figure 6.3 Geometry of a finite dielectric body for X22 case where unknown quantity heat flux is 
at x =L.  
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 The solution to Eq. (6.5) can be expressed in the same way as Eq. (4.21) but careful 

consideration has been taken to express the solution for Case 1a and Case 1b pertaining to 

Figure 6.2 and Figure 6.3 separately. The significant difference in the solution is by replacing ξ 

with (1-ξ) for the Case 1b. They are represented as follows,       
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Solving for Case 1a, that is when a unit pulse of heat is applied on the surface at t = 0. The 

boundary conditions at x = 0 is similar to Eq. (4.8). After making the necessary alterations it 

becomes,  
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Multiplying both sides of Eq. (6.8) by L, we acquire, 
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Assuming the heat flux as a pulse of unit step we follow the same methodology that was 

adopted earlier in section 4.2 of Chapter 4, Eq. (4.12 - 4.15) we deduce the following form, 
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By taking the Laplace transform of Eq. (6.12), 
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Applying Eq. (6.13) to Eq. (6.6) one can acquire the value of the coefficient B in the equation. 

The following steps lead to determining the value of B. 
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We introduce a new parameter )(s  which essentially abbreviates the term 
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of coefficient A can be calculated by using the other boundary condition at x = L where the plate 

is insulated. Thus we have, 
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By taking Laplace transform of Eq. (6.17) 
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Substituting the value of B back in Eq. (6.6) and applying Eq. (6.17) to it would result in 

obtaining the value of A. The steps are shown as follows, 
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Thus after obtaining the values of A and B we substitute them back into Eq. (6.6). The same 

methodology adopted in Chapter 4 Eq. (4.27- 4.30) is then used to express the equation in an 

exponential form.  
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Subsequently we calculate the temperature distribution for Case 1b. The geometry of the 

problem is shown in Figure 6.3. Observing the geometry it is implicit that if do shift of axis then 

the problem is exactly similar to Case 1a. The prominent difference is the heat flux which in this 

case is an unknown quantity. The procedure to solve the problem remains the same. The 

solution to the governing equation is represented as Eq. (6.7) in the study. Hence it is essential 

to apply the two boundary conditions to calculate the values of the coefficients E and F. At x = L 

we have heat flux coming in which is given by the equation, 
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Since q0 is a known amount of heat flux as assumed earlier in the problem lets specify the value 

of q0 to be as unity. Hence after setting q0 = 1 the equation simplifies to the following form, 
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The Laplace transform of the above equation is given by, 
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where  q  is the Laplace transform L{ q } =  q . 

Applying Eq. (6.23) to Eq. (6.7) we can easily find the value of the coefficient F.  
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The boundary condition at x = 0 is same as the boundary condition at x = L for the previous 

Case 1a and thus by similarity we can say that, 
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Using the Eq. (6.27) and Eq. (6.26) we can find the value of E. 
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After obtaining the values of E and F we substitute them back into Eq. (6.7). The same 

methodology is adopted as in Chapter 4 Eq. (4.27- 4.30) which is then used to express the 

equation in an exponential form.  
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Finally we have to consider the semi-infinite body as shown in Figure 6.4. Heat flux of an 

unknown quantity is applied at the surface x = L. Since at the beginning of the problem we have 

made the assumption that the two layers are in perfect contact and there is no presence of 

thermal resistance at the interface. 
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Figure 6.4 A semi-infinite dielectric body with boundary condition X20 at the surface.  

 

Hence the value of this applied unknown quantity of heat flux can be assumed to be q. The 

formulation of this case is as follows. The governing equation is similar to Eq. (6.1) and is given 

by, 
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The above equation can be made dimensionless in space, time and temperature by undergoing 

the following steps which are as demonstrated below. 
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Multiplying both sides of Eq. (6.35) with ( Lqk 02 ) to make it dimensionless in temperature as 

well because the initial temperature is assumed to be zero. Hence we obtain the subsequent 

result, 
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Taking Laplace transform of Eq. (6.36), 
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Solution of the above differential equation is shown earlier in the study in Chapter 2, section 2.3, 

Eq. (2.19 - 2.20). Thus we have, 
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The boundary condition at x = 0 we have heat flux striking the surface of the semi-infinite layer. 

The value of the heat flux that we are considering here is same as the one considered before 

for Case 1b. The reason we do so is because it has been stated that there is perfect contact 

between the two-layers of the dielectric body. The equation is similar to Eq. (6.21) with small 

variations in existing parameters to denote the layer 2. 
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Divide both sides of the equation with q0 and other ways to make the equation dimensionless, 

we acquire, 
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As it has been earlier specified that q0 = 1, one can further reduce Eq. (6.40) before taking 

Laplace transform. 



 

65 
 

                                                                      1

2



















q

q    (6.41) 

                                                                      qsq 













1

2    (6.42) 

Applying the boundary condition given by Eq. (6.42) to Eq. (6.38) one can calculate value of the 

coefficient 2C which is given by, 
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Substituting the value of 2C back in Eq. (6.38) to acquire the following result, 
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Now by assuming the case of perfect contact between the layers we can equate Eq. (6.20), Eq. 

(6.32) and Eq. (6.45) by substituting the value of ξ as 1 in each of them. By doing so we obtain 

the relation, 
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Arranging the terms containing q  on one side we acquire, 
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The left side of equation can be solved using standard inverse Laplace transforms but the right 

side contains the unknown heat flux parameter at the interface which needs to be computed 

numerically. One of the many approaches in finding the profile for q is that by approximating the 

variation in the profile with some functions whose Laplace transforms are easily available. For 

example q could vary either as a second order polynomial or as an exponential function. The 

numerical analysis of which is not presented in this study. 

6.3 Conclusion 

In this chapter we have done the complete mathematical formulation to derive Eq. (6.49) which 

can be used to compute the heat flux at the interface of a two-layer dielectric material. Once 

again it has been shown how Laplace transforms can be used to solve a complex problem 

using the existing solutions. The numerical analysis of the heat flux at the interface has been 

placed as a future work in the study.  
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CHAPTER 7 

FUTURE WORK 

It has been well illustrated in this study how classical method of Laplace transform is used to 

find solutions to semi-infinite, finite and two-layer dielectric bodies. This study can be further can 

be further extended by numerically estimating the profile for the heat flux at the interface by 

doing a complete analysis of Eq. (6.49) presented in the study. In addition to that one can 

compute the Green’s function solution of the problem form existing solution that is available in 

[15]. Another interesting problem would be calculate the temperature profile in a two-layer 

dielectric material where both the layers are of finite size with both ends insulated and a thin 

volumetric heat source at the interface. If one can formulate the Green’s function solution for the 

problem defined above then it can be used to find out the temperature solution in the body due 

to the presence of a volumetric heat source located anywhere within the body. Such problems 

and many more can be attempted in the future by us and other investigators which will help us 

explore some other anomalies that exist in heat conduction. 
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APPENDIX A 

MATHEMATICA SUBROUTINE TO COMPUTE THE TEMPERATURE PROFILE FOR A SEMI-

INFINITE DIELECTRIC BODY SUBJECTED TO BOUNDARY                                               

CONDITION OF FIRST AND SECOND KIND AT x = 0.  
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1. Semi-Infinite body, X10 problem 
 

eta1=4; 

Clear[xi]; 

eta2=7/2; 

nt=40; 

dx=eta2/nt; 

n1=eta1/dx; 

n2=eta2/dx; 

m=0; 

Do[m=m+1;xi[m]=(n-1)*dx;Print[m,"  ",N[xi[m]]],{n,1,n2}]; 

m=m+1; 

xi[m]=eta2-1/10^10; 

Print[m,"  ",N[xi[m]]]; 

Do[m=m+1;xi[m]=eta2+(n-n2)*dx;Print[m,"  ",N[xi[m]]],{n,n2,n1-1}]; 

m=m+1; 

xi[m]=eta1-1/10^10; 

Print[m,"  ",N[xi[m]]]; 

Do[m=m+1;xi[m]=eta1+(n-1)*dx;Print[m,"  ",N[xi[m]]],{n,1,nt+10}]; 

nst=m 

 

 Clear[x]; 

f=If[t>x,Exp[-t/2]*BesselI[1,Sqrt[t^2-x^2]/2]/Sqrt[t^2-x^2],0]; 

eta=eta1; 

Do[x=xi[n]; 

 f0=If[eta>x,Exp[-x/2],0]; 

 fun=NIntegrate[f,{t,x,eta}]; 

 ans1[n]=f0+x*fun/2; 

 Print[N[x],",  ",N[eta],",  ",N[ans1[n]]],{n,1,nst}] 

 

 Clear[x]; 

f=If[t>x,Exp[-t/2]*BesselI[1,Sqrt[t^2-x^2]/2]/Sqrt[t^2-x^2],0]; 

eta=eta2; 

Do[x=xi[n]; 

 f0=If[eta>x,Exp[-x/2],0]; 

 fun=NIntegrate[f,{t,x,eta}]; 

 ans2[n]=f0+x*fun/2;Print[N[x],",  ",N[eta],",  ",N[ans1[n]],",  ",N[ans2[n]],",  ",N[ans1[n]-

ans2[n]]],{n,1,nst}] 

 

2. Semi-Infinite body, X20 problem 

 

eta1=4; 

Clear[xi]; 

eta2=7/2; 
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nt=40; 

dx=eta2/nt; 

n1=eta1/dx; 

n2=eta2/dx; 

m=0; 

Do[m=m+1;xi[m]=(n-1)*dx;Print[m,"  ",N[xi[m]]],{n,1,n2}]; 

m=m+1;xi[m]=eta2-1/10^10; 

Print[m,"  ",N[xi[m]]]; 

Do[m=m+1;xi[m]=eta2+(n-n2)*dx;Print[m,"  ",N[xi[m]]],{n,n2,n1-1}]; 

m=m+1; 

xi[m]=eta1-1/10^10; 

Print[m,"  ",N[xi[m]]]; 

Do[m=m+1;xi[m]=eta1+(n-1)*dx;Print[m,"  ",N[xi[m]]],{n,1,nt+10}]; 

nst=m 

 

f=If[t>x,Exp[-t/2]*BesselI[0,Sqrt[t^2-xx^2]/2],0]; 

eta=eta1; 

Do[x=xi[n]; 

f0=f/.t->eta/.xx->x; 

fun=NIntegrate[f/.xx->x,{t,x,eta}]; 

ans1[n]=f0+fun;Print[N[x],",  ",N[eta],",  ",N[ans1[n]]],{n,1,nst}] 

 

If[t>x,Exp[-t/2]*BesselI[0,Sqrt[t^2-xx^2]/2],0]; 

eta=eta2; 

Do[x=xi[n]; 

f0=f/.t->eta/.xx->x; 

fun=NIntegrate[f/.xx->x,{t,x,eta}]; 

ans2[n]=f0+fun; 

Print[N[x],",  ",N[eta],",  ",N[ans1[n]],",  ",N[ans2[n]],",  ",N[ans1[n]-ans2[n]]],{n,1,nst}]
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APPENDIX B 

MATHEMATICA SUBROUTINE TO COMPUTE THE TEMPERATURE PROFILE FOR A 

FINITE DIELECTRIC BODY SUBJECTED TO BOUNDARY CONDITION OF FIRST AND 

SECOND KIND AT x = 0 AND INSULATED BOUNDARY CONDITION AT x = L



 

72 
 

1. Plate, X12 problem 
 
InvLpTr[a_,kx_,t_]:=( 

  ans=If[t>kx,Exp[-a t/2]*BesselI[1,a Sqrt[t^2-kx^2]/2]/Sqrt[t^2-kx^2],0]; 

  Return[ans]) 

Print["xi","  ","Time","  Temperature"]; 

tq=1; 

xi=0; 

tm=10/10; 

np=100; 

dtx=1/np; 

m=0; 

L=1; 

aa=1/tq; 

Do[fun=0; 

sgn=-1; 

Do[sgn=-sgn; 

k=(xi+2*m*L)*Sqrt[tq]; 

f0=If[tm>k,Exp[-aa k/2],0]; 

f1=NIntegrate[InvLpTr[aa,k,t],{t,k,tm}]; 

fun=fun+(f0+aa*k*f1/2)*sgn;k=(2*L+2*m*L-xi)*Sqrt[tq]; 

f0=If[tm>k,Exp[-aa k/2],0]; 

fun=fun+sgn*(f0+aa*k*NIntegrate[InvLpTr[aa,k,t],{t,k,tm}]/2),{m,0,12}]; 

Print[N[xi],"  ",N[tm],"    ",N[fun],"    ",N[1-fun]];xi=xi+dtx,{j,1,np+1}]; 

N[fun]  

 

2. Plate, X22 problem 

 

InvLpTr[a_,kx_,t_]:=( 

  ans=If[t>kx,Exp[-a*t/2]*BesselI[0,a Sqrt[t^2-kx^2]/2],0]; 

  Return[ans]) 

Print["xi","  ","Time","  Temperature"]; 

sm=0; 

tq=1; 

alf=1; 

xi=0; 

tm=14/10; 

np=50;dtx=1/np; 

aa=1/tq; 

m=0; 

L=1; 

dtm=6/10; 

Do[fun[j]=0; 

  Do[k=(xi+2*m*L)*Sqrt[tq/alf]; 
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   fun[j]=fun[j]+tq*InvLpTr[aa,k,tm]+NIntegrate[InvLpTr[aa,k,t],{t,0,tm}]; 

   fun[j]=fun[j]-tq*InvLpTr[aa,k,tm-dtm]-NIntegrate[InvLpTr[aa,k,t],{t,0,tm-dtm}]; 

   k=(2*L+2*m*L-xi)*Sqrt[tq/alf]; 

   fun[j]=fun[j]+tq*InvLpTr[aa,k,tm]+NIntegrate[InvLpTr[aa,k,t],{t,0,tm}]; 

fun[j]=fun[j]-tq*InvLpTr[aa,k,tm-dtm]-NIntegrate[InvLpTr[aa,k,t],{t,0,tm-dtm}],{m,0,4}]; 

 

sm=sm+N[fun[j]]*dtx; 

Print[N[xi],"  ",N[tm],"  ",N[fun[j]]]; 

xi=xi+dtx,{j,1,np+1}]; 

plfn=Table[fun[j],{j,1,np+1}]; 

sm 

sm=sm-(N[fun[1]]*dtx+N[fun[np+1]])*dtx/2 

sm=sm/dtm 

 

(* Subroutine to calculate the temperature where the jump occurs *) 

InvLpTr[a_,kx_,t_]:=( 

  ans=If[t>kx,Exp[-a*t/2]*BesselI[0,a Sqrt[t^2-kx^2]/2],0]; 

  Return[ans]) 

xi=0.25+1/10^10; 

tm=20/10; 

dtm=1/4; 

tq=1; 

alf=1; 

aa=1/tq; 

m=0; 

L=1; 

ans1=0; 

ans2=0; 

Do[k=(xi+2*m*L)*Sqrt[tq/alf]; 

  ans2=ans2+tq*InvLpTr[aa,k,tm]+NIntegrate[InvLpTr[aa,k,t],{t,0,tm}]; 

  ans2=ans2-tq*InvLpTr[aa,k,tm-dtm]-NIntegrate[InvLpTr[aa,k,t],{t,0,tm-dtm}]; 

  k=(2*L+2*m*L-xi)*Sqrt[tq/alf]; 

  ans1=ans1+tq*InvLpTr[aa,k,tm]+NIntegrate[InvLpTr[aa,k,t],{t,0,tm}]; 

  ans1=ans1-tq*InvLpTr[aa,k,tm-dtm]-NIntegrate[InvLpTr[aa,k,t],{t,0,tm-dtm}],{m,0,2}]; 

N[ans2] 

N[ans1] 

N[ans1+ans2]
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