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ABSTRACT 

 
TIME INVARIANT MODELING OF HIGHER ORDER DC-DC CONVERTERS 

 

LEI NIU, M.S. 

 

The University of Texas at Arlington, 2012 

 

Supervising Professor:  Ali Davoudi 

 A time invariant modeling technique is proposed for higher order dc-dc converters, 

including Cuk, SEPIC, and Zeta converters. This thesis also investigates some issues involved 

in applying existing averaging techniques such as circuit averaging, state space averaging, 

generalized state space averaging, Krylov-Bogoliubov-Mitropolsky method, and Floquet theory, 

to model the dynamic behaviors of higher order converters. The proposed methodology is 

shown to provide better accuracy compared to existing techniques, and distinguishes between 

different types of carrier signals of modulation, for instance, sawtooth and isosceles triangle 

carrier signal. This thesis offers a straightforward systematic procedure and summarizes this 

procedure with a list of rules, which makes the conversion from the state space model to the 

proposed time invariant model much easier. Hence, high order time invariant models can be 

easily developed for system design and stability analysis purposes. Both closed-loop time 

domain responses and open-loop frequency domain responses have been simulated and 

compared with the detailed switching model to verify the proposed methodology. Moreover, the 

simulation results of Cuk converter model are validated by experimental data for a 20W Cuk 

converter in both time and frequency domains. 
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CHAPTER 1 

INTRODUCTION 

Pulse-width modulation (PWM) DC-DC converters has been widely implemented in 

various applications, such as telecommunication system, computer system, portable electronic 

devices, uninterrupted power supplies (UPS), and solar energy harvesting system for its high 

switching frequency, high power density, high conversion efficiency, and compactness [1]-[7].  

As the expectation of performance for different applications increases, the conventional PWM 

DC-DC converters such as buck, boost, and buck-boost converters have begun to show their 

limitations in applications that involves galvanic isolation, wide range of input-to-output 

conversion ratio, and non-pulsating input and output current [8]-[10]. These limitations often 

cause the system designers to add additional components to the conventional converters, and 

result in high unit cost and hampers of the overall system performance. For example, in most 

maximum power point tracking (MPPT) techniques such as perturb and observe (P&O) and 

incremental conductance (IncCond), the process of determining the global maximum power 

point (MPP) of the solar module involves scanning the P-V curve (power-voltage curve) of the 

solar module [6] and [11]. This scanning often requires MPP tracker, which mainly consists of a 

PWM converter, to operate the photovoltaic (PV) system for a wide range of voltage levels. In 

such cases, buck-boost type behavior of MPP tracker is generally desired for performing the 

scan. Although buck-boost converter has a wide range of conversion ratio, it has an inverting 

output voltage, and compared to higher order converters, it is difficult to employ galvanic 

isolation which is a safety requirement for grid integrated solar systems [12]-[13]. Also, buck-

boost converter has pulsating input and output current which makes it a poor choice for fuel cell 

and light-emitting diode (LED) related applications [14]-[15]. 
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These aforementioned limitations of the conventional converters have motivated 

researchers and system designers to investigate the feasibility of employing higher order 

converters, namely Cuk converter [16]-[18], single-ended primary inductance converter (SEPIC) 

[19]-[21] and zeta converter [22]-[24], into their particular applications. In general, higher order 

converters have wide range of input-to-output conversion ratio, better adaptability of integrating 

transformers for galvanic isolation, and non-pulsating input and output current. For example, 

since Cuk converter has both input and output inductors, it has non-pulsating input and output 

current that makes it a great candidate for fuel cell and LED related applications [15],[18] and 

[25]. In a fuel cell power system, when the fuel cell operates at full load, even small current 

ripple in addition to the average fuel cell current can overload the fuel cell, which results lifespan 

and capacity reduction of the fuel cell [26]. In LED load applications, current distortion can lower 

the efficiency of the LED, and also introduces voltage distortion that causes flickering lights 

which may cause eye discomfort, headache and other well-known problems [27] and [28]. 

However, one drawback of the Cuk converter is that the output voltage polarity is inverted. 

Different from the Cuk converter, SEPIC has a non-inverting output voltage. Also, SEPIC has 

non-pulsating input current which makes SEPIC topology a great candidate for PV related 

applications. For example, the authors in [14] and [19] have suggested that SEPIC topology is 

highly suitable for multiple-input DC-DC converter (MIC) because of its non-pulsating input 

current, grounded switched and non-inverting output voltages. Another example of higher order 

converters is zeta converter. Compared with SEPIC, zeta converter also has a non-inverting 

output voltage. Since zeta converter topology offers easy adaptability for galvanic isolation, non-

pulsating output current and non-inverting output voltage, zeta converter topology has become 

a great candidate for applications such as grid-integrated PV system, and low power switch-

mode power supplies (SMPS) [8], [12] and [22]. A comparison table that summarizes the basic 

characteristics of both conventional converters and higher order converters have been listed in 
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Table 1.1. A similar table has been presented in [10], but only few converters have been 

selected. 

Table 1.1 Comparison Table of Conventional Converters and Higher Order Converters 

 Although higher order converters have many advantages, they still suffers from the 

complex dynamic behaviors as the conventional PWM DC-DC converters. Due to switches and 

diodes, PWM DC-DC converters are piece-wise linear time-varying systems that exhibits 

complex phenomenon such as bifurcation and chaos [29] and [30]. These complex dynamic 

behaviors have made designing stabilizing controllers for PWM DC-DC converters, especially 

for higher order converters, a very difficult task [31] and [32]. The key in designing stabilizing 

controllers is to develop a model that reveals the insight of the dynamic behaviors and the 

stability of these converters [24] and [33]. As a result, for the last forty years, many modeling 

techniques for PWM DC-DC converters have been proposed. Circuit averaging (CA) [34], [35] 

and state space averaging (SSA) techniques [36]-[38] were among the first modeling 

techniques developed for PWM DC-DC converters. In CA, the switches are represented by their 

 Conventional 
Converters 

Higher Order 
Converters 

Characteristcs Buck Boost Buck-
Boost Cuk SEPIC Zeta 

Conversion 
Ratio Narrow Narrow Wide Wide Wide Wide 

Input Current Pulsating Non-
pulsating Pulsating Non-

pulsating 
Non-

pulsating Pulsating 

Output Current Non-
pulsating Pulsating Pulsating Non-

pulsating Pulsating Non-
pulsating 

Output Voltage 
Polarity 

Non-
inverting 

Non-
inverting Inverting Inverting Non-

inverting 
Non-

inverting 

Type of Switch Floated Grounded Floated Grounded Grounded Floated 

Energy Storage 
Components 2 2 2 4 4 4 
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linear equivalent circuits with implementing the DC transformer model, hence traditional circuit 

analysis tools such as Kirchhoff voltage law (KVL) and Kirchhoff current law (KCL) can be 

employed. The end result of CA is often the input-output characteristic equation in terms of the 

control input, which is used for designing purposes. In SSA, a state space model is derived from 

the piece-wise linear circuit for each switching state. The SSA model is formed by estimating 

the system state variables with their averages in a given switching period. Although both CA 

and SSA techniques are two different ways of modeling PWM converters, the results produced 

by both CA model and SSA model have shown to be same [38]. However, both CA and SSA 

techniques can only approximate the system dynamics with acceptable accuracy when the 

switching frequency is relatively much faster than the dynamics of the system [36]. Also both CA 

and SSA does not account for switching ripples, which makes them inferior tools for designing 

stabilizing controller [31]. Due to the limitations in CA and SSA, several other techniques such 

as generalized state space averaging (GSSA) [39]-[41], Krylov-Bogoliubov-Mitropolsky (KBM) 

method of generalized averaging [42]-[46], and Floquet theory [36] have been proposed for 

switching frequency dependent approximation and ripples estimation for the system state 

variables. GSSA has been developed based on frequency-selective averaging. The accuracy of 

GSSA model can be improved by including more orders of harmonics from each state variable. 

However, as the order of the converter and the order of the harmonics increase, deriving the 

GSSA model becomes very difficult. As a result, GSSA is not a good candidate for modeling 

higher order converters with higher orders of harmonics approximation. KBM method has been 

widely used to solve for weakly nonlinear partial differential equations. KBM method also 

provides ripple estimation of state variables. However, in order for KBM method to provide 

sufficient accuracy of approximation, the ratio between the switching period and the system time 

constant system must be very small. Floquet theory has focused on improving SSA modeling by 

offering ripple estimation for the steady state condition, but it does not expose any information 

about the transient response.  
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Due to the problems in the existing modeling techniques, a new technique, namely 

time-invariant multi-frequency (TIMF) modeling, has been introduced by P.L. Chapman, A. 

Davoudi, and Y. Chen in [47], [48]. TIMF modeling has been developed on the basis of quasi-

Fourier series (QFS) representation of state variables and switching function that allows it to 

account for the effects of ripples. Different from existing techniques, TIMF provides precise 

modeling of the switching function by taking into account the carrier signal. In the original works, 

both sawtooth and isosceles triangular carrier signal have been studied. Although the triangular 

carrier has been rarely used for PWM DC-DC converter, it has been implemented in PWM 

inverters for less baseband distortion [47]. Moreover, because triangular carrier allows double 

edge control, it is more suitable for PWM controllers operated at switching frequency greater 

than 1MHz [49]. In [47], TIMF models for conventional PWM DC-DC converters have been 

developed. However, no experimental results were given. In [48], TIMF has been used to model 

multiple-input buck-boost converters. However, only time-domain analysis has been provided. 

In the original works, the development of TIMF of a given converter depends on coefficient 

matching of both sizes of state equations. The process can become tedious and mathematically 

involved as the order of the system and the order of harmonics increase.  

This thesis is an extended work of the previous works in TIMF [47], [48]. In this thesis, 

TIMF has been used to model higher order converters such as Cuk converter, SEPIC and zeta 

converters. Both time domain analysis and frequency domain analysis have been obtained and 

compared with the detailed switching model for all three higher order converters. Experimental 

results have been obtained for Cuk converter to verify closed-loop time-domain and open-loop 

frequency domain responses. Comparison has been made between the existing modeling 

techniques and TIMF. For accelerating the process of developing the TIMF model, the 

procedure of developing the TIMF model has been summarized into a set of rules. By following 

these rules, high order TIMF model can be easily developed. 
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The structure of this thesis is as follows. Chapter 2 covers a literature review of existing 

modeling techniques. These techniques are introduced in the following order: CA, SSA, GSSA, 

KBM method, and Floquet Theory. Chapter 3 begins with the introduction of the TIMF modeling 

techniques. The rest of Chapter 3 presents the case studies of Cuk converter, SEPIC and zeta 

Converter. In the Cuk converter subsection, experimental results of both time domain and 

frequency domain have been given. The Cuk converter subsection also includes the 

comparison between the existing techniques and TIMF. Chapter 4 concludes the thesis and 

offers visions for future works on TIMF modeling technique. 
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CHAPTER 2 

OVERVIEW OF EXISTING TIME INVARIANT TECHNIQUES 

2.1 Circuit Averaging 

The key concept in circuit averaging (CA) is to model the nonlinear behaviors of 

switching with linear circuit elements with the optimistic assumption that the linear equivalent 

circuit models will reveal the main characteristics of the dynamical behaviors [34]-[42]. 

Compared with state space averaging, CA offers a better physical insight of the converter, and 

the DC and small-signal characteristics of the converter can be easily developed by using 

traditional circuit analysis techniques such Kirchhoff voltage (KVL), Kirchhoff current law (KCL), 

inductor volt-second balance and capacitor charge balance. The expressions of inductor volt-

second balance and capacitor charge balance are given in Equation 2.1 and 2.2, respectively 

where >< Lv  and >< Ci  are the averages of inductor voltage, ( )tvL  , and capacitor current, 

( )tic , in a given switching period, sT , respectively.  

 As discussed, the most important part of CA is to model the PWM switch with linear 

circuit elements such as dependent voltage source and current source [40]. Most PWM 

switches in DC-DC PWM converters can be considered as a three-terminal nonlinear device as 

presented in Figure 2.1. In Figure 2.1, terminals a , p  and c  are referred to as active, passive 

and common, respectively. In continuous conduction mode, there are two switching states for 

the switching device. In the first switching state, the switch is at Position 1 and stays at Position 

1 during the time interval sdTt <<0 , where d  is the duty cycle. In the second switching state, 

 ( ) ( ) 0
0

=>=< ∫
sT

LL tvtv  (2.1) 

 ( ) ( ) 0
0

=>=< ∫
sT

cc titi , (2.2) 
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at sdTt =  the switch changes its position to Position 2, and stay at Position 2 for the rest of the 

switching period. The relations of the instantaneous terminal voltages and currents during these 

two switching states are given by Equation 2.3 and 2.4. 

 

Figure 2.1 A three-terminal nonlinear device 

Since the CA mainly focus on the DC and small-signal characteristics of the converter, the 

relations of the average terminal voltages and currents are given by 

With the relations presented in Equation 2.5 and 2.6, the three-terminal nonlinear device, as 

shown in Figure 2.1, can be represented with linear circuit models by exploiting the concept of 

dependent voltage and current sources, as shown in Figure 2.2.  

 

Figure 2.2 Dependent source representation of PWM switch 

 ( ) ( )




=
0
ti

ti c
a  

ss

s

TtdT
dTt
≤<

≤≤0  (2.3) 

 ( ) ( )




=
0

tv
tv ap

cp  
ss

s

TtdT
dTt
≤<

≤≤0 . (2.4) 

 ><>=< ca idi  (2.5) 

 ><>=< apcp vdv . (2.6) 
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Replacing the PWM switch with the equivalent average circuit model, as shown in Figure 2.2, 

changes the nature of the PWM converter from a piece-wise linear time varying system to a 

linear time-invariant (LTI) system. The resulting system is much easier to analyze compared 

with the original system. However, the assumptions of small ripples and high switching 

frequency have led to substantial discrepancy at low switching frequencies between the CA 

model and the actual system [82]. 

Despite the shortcomings of CA model, CA model can easily include non-ideal 

behaviors of circuit components such as equivalent series resistances (ESR) of the inductors 

and capacitors, forward voltage drop and on-resistance of the switches and diodes by 

incorporating the DC transformer model of the PWM switch, as shown in Figure 2.3. Although 

real DC transformer does not exist, the benefit of implementing DC transformer model is that 

rules for solving circuits with transformers still apply here [34]. In [37], a systematic approach of 

including the parasitic elements has been presented.  

 

Figure 2.3 DC transformer model of PWM switch 

 In fact, Figure 2.1 shows only an example of PWM switch. Not all PWM switches are 

arranged as shown in Figure 2.1. As a result, the number of topologies is restricted for the CA 

techniques. In [36], a generalized PWM-switch model has been proposed.  

2.2 State Space Averaging 

As previously discussed in CA, DC transformer model has made analyzing non-ideal 

PWM converter easier. However, in CA, the average model of PWM switch is heavily 

dependent on the converter topology. In the case of a non-ideal PWM switch, in order to include 
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the on-resistance and forward bias voltage of the semiconductor devices, an extra step has 

been taken to derive the average model for these parasitic effects in the switching components. 

These limitations of CA have led a shift of interest to the state space averaging (SSA) technique 

[50]-[53]. In SSA, the linear equivalent circuit model corresponded to each switching state of 

PWM converter has been represented by a system of differential equations using the relations 

between time varying voltage and current in a given inductor and capacitor [43]-[45], [80]. 

Depending on the number of switching states, there are the same number of sets of system of 

differential equations. The state space model of the PWM converter is formed by taking time 

average of these sets of system of differential equations within a given switching period. Due to 

the convenience in computing for the input-to-output and control-to-output transfer functions in 

the state space model, SSA has also been widely used for analyzing systems with piece-wise 

linear networks and designing the controller for a dynamic system. Although CA and SSA 

models have been developed based on different theories, the results obtained from SSA and 

CA have been shown to be the identical [45]. The rest of this subsection will be devoted to 

deriving the SSA model of PWM converters in CCM. 

As already described in CA, in CCM, the switch is on during sdTt <<0  and is off 

during ss TtdT << , where d  is the duty cycle and sT  is the switching period. Therefore, the 

state space model of PWM DC-DC converter in CCM can be represented as 

in which 1x  and 2x  are vectors of state variables such as inductor currents and capacitor 

voltages in different switching states , 1x  and 2x  are the time derivatives of vector 1x  and 2x , 

respectively, A  is the system matrix, b  is the input matrix, and the subscript 1 and 2 

corresponds the on and off state of switch, respectively. In Equation 2.7 and 2.8, 1x  and 2x  are 

 ( )ubxAx 1111 += d  sdTt <<0  (2.7) 

 ( )( )ubxAx 2222 1 +−= d  ss TtdT <<  (2.8) 
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not the same vectors of state variables because they are from different linear circuit models. 1x  

relates to 2x  at time sdTt =  as stated in Equation 2.9.  

As presented in Equations 2.7-2.9, in order to solve 2x , one has to first solve for 1x . And to 

solve for 1x  for the next switching period, one needs the value of 2x  at the previous switching 

period. The purpose of SSA is to simplify this procedure by finding the condition in which 1x  

and 2x  can be represented by only one unknown vector avx , an average vector that closely 

related to both vectors. As a result, one can simply combine Equations 2.7 and 2.8 into one 

equation and solve for avx , 

To find such condition, one should first examine the cycle transition matrix as given in Equation 

2.11. To make logical deduction easier, only the homogenous solution of Equation 2.8 for 

sTt <<0  has been considered (neglect the terms ub1  and ub2 ), which is given by 

where ( )01x  is the initial conditions of  state variable vector 1x  in the first switching cycle. 

Similarly, the homogeneous solution of Equation 2.9 is given by 

where ( )0avx  is the initial condition of avx  in the first switching cycle. Compared with Equation 

2.12, Equation 2.11 involves the multiplication of two exponential matrices. Consequently, in 

order for Equation 2.10 to be valid, the following condition must be satisfied [75] 

Approximating the exponential matrices by their first harmonics, the left hand side of Equation 

2.13 becomes 

 ( ) ( )ss dTdT 21 xx =  (2.9) 

 ( ) ( )( )ubxAubxAx 2211 1 +−++= avavav dd . (2.10) 

 ( )01
)1( 12 xx AA

2
ss dTTd ee −= , (2.11) 

 ( )012 )1(
av

AA xx ss dTTd
av e +−= , (2.12) 

 ssss dTTddTTd eee 1212 )1()1( AAAA +−− ≈ . (2.13) 



 

 12 

and the right hand side of Equation 2.13 becomes 

After comparing Equation 2.14 with 2.15, one can easily conclude that Equation 2.14 will 

approximately equal to Equation 2.15 only if sT  is relatively small compared to time constants in 

1A  and 2A . If this condition is true, then Equations 2.7 and 2.8 can be combined into Equation 

2.10 without losing too much information about the system dynamics. Consequently, the output 

y  is can be approximated as 

where Tc  is the output matrix. Equations 2.10 and 2.16 together forms the bases of the SSA 

modeling of PWM converters .  

Different from the solving algebraic equations in CA, SSA often involves matrix 

calculation, which is more mathematically involved. However, SSA model offers a better insight 

of the dynamical behavior of the PWM converter. Since both CA and SSA models of PWM 

converters are frequency independent models that assume high switching frequency, if the 

switching frequency of PWM converter is relatively low, both models will become inaccurate 

[58]. Also, both modeling techniques cannot be used for large signal analysis due to their 

inability to account of ripples in the capacitor voltage and inductor currents. These shortcomings 

have made CA and SSA inferior tools for analyzing stability of a system, especially for higher 

order converters, which are systems that exhibit more complex dynamical behaviors. In 

response to these shortcomings of CA and SSA, modeling techniques that offer ripple 

estimation and large-signal characteristics have become the one of the major research areas in 

power electronics. 

 [ ][ ]ss
dTTd dTITdee ss

12
)1( )1(12 AAIAA +−+≈−   

 ( ) ( ) 2
1212 11 sss dTddTTd −++−+≈ AAAAI  (2.14) 

 ( ) ( ) ss
dTTd dTTde ss

12
1 112 AAIAA +−+≈+− . (2.15) 

 ( )( ) av
TT

av ddy x cc 21 1−+= , (2.16) 
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2.3 Generalized State Space Averaging 

As in SSA technique, generalized state space averaging (GSSA) also assumes that the 

switching frequency of PWM converter is higher than the system dynamics. GSSA technique, 

as presented in [46]-[48], has been developed on basis of frequency-selective averaging. In 

frequency-selective averaging, due to periodic nature of the switching operation, circuit state 

variables such as inductor currents or capacitor voltage have been estimated by quasi-Fourier 

series (QFS). Different from original Fourier series, quasi-Fourier series contains time-

dependent Fourier coefficients, namely the QFS coefficients. Consequently, GSSA modeling 

provides frequency dependent approximation and ripples estimation for the state variables. The 

accuracy of GSSA can be improved by increasing the order of harmonics in the model. Since 

GSSA produces large signal model for PWM circuits, it has been widely implemented in the 

fields such as modeling of resonant converters [80], [81], multiconverter [83], and power 

electronic loads [84]. The purpose of this section is to briefly review the concept of frequency-

selective averaging and GSSA modeling. 

In frequency-selective averaging, a signal ( )tx  is represented in the exponential form of 

the Fourier series 

where sω  is the radian frequency, n  is the index number, and ( )txn  is the complex QFS 

coefficient. Procedure in computing these complex Fourier coefficients is the same as 

computing the constant Fourier coefficients, which is given by 

where T  is the period. Converting ( )tx  from the complex form to trigonometric form of Fourier 

series in terms of ( )txn  as defined in Equation 2.17 simply yields 

 ( ) ( )∑
∞

−∞=

=
n

tjn
n

setxtx ω , (2.17) 

 ( ) ( ) ττω detx
T

tx sjnt

Tt
n

−

−∫=
1 , (2.18) 
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where ( ){ }txnℜ  and ( ){ }txnℑ  are the real part and imaginary part of ( )txn . The process of the 

conversion are presented in [76]. In Equation 2.19, the DC component of the signal is given by 

This DC component 0x  is the same as the average value of a state variable predicted in SSA. 

In order words, when the effects of harmonics are low, GSSA model can be reduced to SSA 

model. In order to apply the GSSA to any PWM DC-DC converter, two properties must be 

investigated: 1) the derivative of ( )txn  with respect to time and 2) the product of the switching 

signal ( )tq  and state variable ( )tx . 

The first property that must be investigated is the derivative of ( )txn  with respect to 

time. According to Leibniz integral rule, differentiating Equation 2.18 yields 

Since the signal is assumed to be periodic, the second part of Equation 2.21 can be neglected, 

and leaving 

as presented in [46]. Therefore, from Equation 2.22, the voltage-current relations for passive 

circuit elements, resistors, inductors, and capacitors are given by 

 ( ) ( ){ } ( ) ( ){ } ( )tntxtntxxtx s
n

nsn ωω sincos2
1

0 ∑
∞

=

ℑ−ℜ+= , (2.19) 

 ( )∫ −=
t

Tt
dx

T
x ττ1

0 . (2.20) 

 ( ) ( ) ( )( )∫ −
−− −=

t

Tt

jn
s

jnn dexjnex
Tdt

tdx
ss ττωτ τωτω1 ,

 
(2.21) 

 ( ) ( ) ( )( )Ttjntjn ss eTtxetx
T

−−− −−+ ωω1 .
 

 

 ( )
ns

n

n xjn
dt
dx

dt
tdx

ω−=  (2.22) 

 nn Riv =  (2.23) 

 nsn
n ijnv

dt
diL ω−=  (2.24) 
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respectively. 

 The second property that is required for constructing GSSA model is the product of the 

switching signal ( )tq  and state variable ( )tx . Consider a special case of the switching signal 

( )tq  and state variable ( )tx  in complex exponential form are approximated by the first harmonic 

1=n ,  

One can simply carry out the multiplication using expressions of ( )tq  and ( )tx  as presented in 

Equation 2.26 and 2.27, or using the discrete convolution method described in [46], the 

following products are obtained 

where 0qx  refers to the sum of products with common term 0e , 1qx  the sum of products 

with common term tj se ω , and 1−qx  the sum of products with common term tj se ω− . Given that 

1q  and 1−q , 1x  and 1−x  are complex conjugate pairs, Equations 2.28-2.30 can be written as 

 nsn
n vjni

dt
dvC ω−= , (2.25) 

 ( ) tjtj ss eqeqqtq ωω
110 ++≈ −

−  (2.26) 

 ( ) tjtj ss exexxtx ωω
110 ++≈ −

− . (2.27) 

 1111000 −− ++= xqxqxqqx  (2.28) 

 01101 xqxqqx +=  (2.29) 

 01101 xqxqqx −−−
+= , (2.30) 

 ( )IIRR xqxqxqqx 1111000 2 ++=  (2.31) 

 RRR qxxqqx 10101 +=  (2.32) 

 III qxxqqx 10101 += , (2.33) 
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where superscript R  and I  indicate the real and imaginary part of the complex number, 

respectively.  

Using these two described properties, the state space model can be converted to 

GSSA model. However, as the order of harmonics considered increases, the process in deriving 

the products becomes very complicated. As a result, GSSA is not a good candidate for 

modeling higher order converters with higher orders of harmonics approximation. For 

comparison purpose, GSSA model of Cuk converter has been derived, and details are 

presented in Chapter 3. 

2.4 Krylov-Bogoliubov-Mitropolsky Method of Generalized Averaging 

Krylov-Bogoliubov-Mitropolsky (KBM) method of generalized averaging has been 

introduced in [49] and [50]. KBM method has been widely used to solve for weakly nonlinear 

partial differential equations, as discussed in [54]-[57]. Since KBM method computes ripple 

approximations for state variables, it has been used to model various converters, such as PWM 

converters, and PFC converters [58]-[65]. However KBM method also has its limitation. In order 

for KBM method to provide sufficient accuracy of approximation, a parameter ε  which is related 

to the product of the switching period and the system time constant must be very small [47]. 

This concept can be illustrated by the following example, consider a simple first order differential 

equation [66] 

The solution to Equation 2.34 is simply 

where C  is a constant. Expanding the exponential term in Equation 2.35 yields 

 x
dt
dx ε−= . (2.34) 

 tCex ε−= , (2.35) 

 









−+−= 

2
1

22ttCx εε . (2.36) 
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Obviously, if 
t
1

<<ε , then x  can be approximated by using only one, two or three terms. This 

idea is the principal concept behind averaging method. The same concept has also been 

applied when using KBM to obtain analytical results from state space model of PWM 

converters. As discussed in [55] and [57], due to the periodic nature of PWM converters, their 

state space models can be described as  

where 1<<ε , and ( )xtF ,  is a function of t  and x . The general solution of Equation 2.37 is 

given by 

where nx  are the fundamental set of solutions for Equation 2.37. Equation 2.38 is also known 

as the asymptotic approximation of state variable x . By applying averaging to the right hand 

side of Equation 2.38 by defining 

where ( )yG  is the time average of ( )xtF , . As a result, state space average model of Equation 

2.37 is given by  

Equation 2.40 is the time-invariant (TI) averaged system of Equation 2.37  [49]. Integrating 

Equation 2.37 and applying change of variables simply yields 

where iΨ  are the zero-average functions of time that estimates ripples. Since ( )ty  can be 

easily obtained from SSA model, the unknowns in Equation 2.41 are iΨ . With the help of 

Equation 2.40, the time invariant system of Equation 2.37 can also be written as 

 ( )xtFx ,ε=  (2.37) 

 n
n xxxxx εεε ++++= 2

2
10 , (2.38) 

 ( ) ( ) ττ dxF
T

yG
T

T ∫∞→
=

0
,1lim , (2.39) 

 ( )yGy ε= . (2.40) 

 ( ) ( ) ( ) +Ψ+Ψ+= ),(, 2
2

1 ytyttytx εε , (2.41) 
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where nG  is the fundatmental set of solutions of Equation 2.40.  

In order to find the unknown iΨ , first differentiating Equation 2.41, and substituting y  

with Equation 2.42 and x  with Equation 2.37, then by equating the coefficients of ε , 2ε and 

higher orders of ε , expressions for iΨ  in terms of ( )yGi  can be found. The whole process is 

illustrated through an example of deriving KBM model for the open-loop Cuk converter, and 

details are presented in case study section of Cuk converter. 

2.5 Floquet Theory of PWM Converter Modeling 

Converter modeling using Floquet theory has been presented in [36], [67]-[70]. This 

method has aimed at improving SSA modeling by offering ripple estimation for the steady state 

response. A major limitation of this method is that it does not expose any information about the 

transient response. Consequently, it is not certain how this method can be applied for closed-

loop control. Despite these limitations of Floquet theory, it has been used to analyze the stability 

of various converters [60], [62].  

In CCM, a PWM DC-DC converter has two switching states, and the state space model 

can be represented by the following equation, 

where )(tx  is the state variable vector, iA  is the effective system matrix which includes the 

effects of the switching function, ib  is the excitation term that incorporates the inputs to the 

system, and i  refers to the switching state. The time that the converter stays in every switching 

state is  

  ++= )()( 2
2

1 yGyGy εε , (2.42) 

 ( ) ( ) i
i

i tt bxAx += ∑
=

2

1

  (2.43) 

 Tdt ii =∆ , (2.44) 
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where id  is the duty cycle of thi  switching state, and T  is the switching period. From Equation 

2.43, during the time interval ii ttt <<−1  , solving )(tx  yields  [36], 

where 

Assuming iA  is invertible, Equation 2.47 becomes 

By evaluating from Equation 2.45 through multiple iterations, ( )itx  can be related to ( )0tx  as 

shown in the Equation 2.49 

If the system exhibits a periodic behavior, then the solution for system described in Equation 

2.44 also has the following property 

Because of the above assumption, Floquet theory can only be used for analyzing steady state 

response, and is not suitable for transient analysis. Thus, by combining Equations 2.49 and 

2.50, the initial conditions of state variables can be found as 

In order to simply the derivation, for each switching state i , the system can be represented as 

or 

 ( ) ( ) iiii tt ΓxΦx += −1  (2.45) 

 Td
i

iieAΦ = , (2.46) 

 ( ) ττ de i
t

t

t
i

i

i

ii bΓ A∫ −

−=
1

. (2.47) 

 ( ) ii
Td

i
iie bAIΓ A 1−−= . (2.48) 

 ( ) ( ) iiiiiiii tt ΓΓΦΓΦΦΦxΦΦΦx +++= −−− 1121011  . (2.49) 

 ( ) ( ) ( ) ( )02 tTtTtt iii xxxx ==−=−=  . (2.50) 

 ( ) ( ) ( )iiiiiiit ΓΓΦΓΦΦΦΦΦΦIx +++−= −−
−

− 1121
1

110  . (2.51) 

 
( ) ( )

















=








11
tt

dt
d ii x

00
bAx  (2.52) 
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By solving Equation 2.53, two important equations can be obtained. The first equation relates 

the state variable at 1−it  to it  by the following equation 

where  

The second equation relates ( )itx̂  to ( )0ˆ tx  

By defining new variables totΦ  and totΓ , Equation 2.51 simplifies into 

where 

The new variables totΦ  and totΓ  relate to totΦ̂  as given in Equation 2.60 

Since the average steady state values of the state space vector avx  relates to ( )tx  as 

avx  can be found by introducing them to the state variable vector as presented in the following 

system 

 ( ) ( )tt
dt
d

i xAx ˆˆˆ = . (2.53) 

 ( ) ( )1ˆˆˆ −= ii tt xΦx , (2.54) 

 Td
i

iieAΦ ˆˆ = . (2.55) 

 ( ) ( ) ( )0011 ˆˆˆˆˆˆˆ ttt totiii xΦxΦΦΦx == −  . (2.56) 

 ( ) ( ) tottott ΓΦIx 1
0

−−= , (2.57) 

 11 ΦΦΦΦ −= iitot  (2.58) 

 iiiiitot ΓΓΦΓΦΦΦΓ +++ −−= 1121  . (2.59) 

 






 −−
=

00
ΓΦI

Φ tottot
tot

ˆ . (2.60) 

 ( )t
Tav xx 1

= , (2.61) 
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The ripples of each state variable can be estimated by finding the Fourier series coefficients kc  

where the index k  refers to the number of harmonics. From Equations 2.44, 2.45 and 2.63, 

between it  and 1−it , kc  is defined as, 

Rearranging Equation 2.64 yields 

where 

From Equations 2.66 and 2.67, it can be clearly seen that 

From Equations 2.66 and 2.67, one can also conclude the following equation [36] 

After integrating both sides in Equation 2.70, and substituting ( )1−ik tv  with Equation 2.68, the 

vector ( )ik tw  is found as 

 
( ) ( )



































=
















av

ii

av

t

T

t

dt
d

x

x

00I
000
0bA

x

x
11 . (2.62) 

 ( ) dtetx
T

c tjkTt

t
k

ω−+

∫=
0

0

1 , (2.63) 

 ( ) ( ) ( )dtteee
T i

ttjktttjk
n

i

t

t
k

iiii
i

t
1

ˆ

1

ˆ1 111

1
−

−−−−

=

−−−

−
∑∫= xc A ωω . (2.64) 

 ( )∑
=

=
m

i
ikk t

1

wc , (2.65) 

 ( ) ( )dtte
T

t
i

i

i
t

t
ik

tjk
ik ∫

−

−−=
1

11 vw ω  (2.66) 

 ( ) ( )( ) ( )1
ˆ ˆ1

−
−− −= i

ttjk
ik tet iii xv IA ω . (2.67) 

 ( ) ( )11 ˆ −− = iik tt xv  (2.68) 

 ( ) 01 =−ik tw . (2.69) 

 
( )
( )

( )
( )


















 −
=








−−
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ik
tjk

i
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t

e
T

jk
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t
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d

i w
v

0I

0IA

w
v

11
ˆ

ω

ω
. (2.70) 
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where  

With knowing average values of the state space vector avx , and the Fourier coefficients kc ,  

one can easily estimate the steady state response of the system. Floquet theory has the 

capability of modeling PWM DC-DC converters in the discontinuous conduction mode (DCM), 

however as the number of switching states increases, Equation 2.50 will become extremely 

complicated. Thus, finding the state space vector avx , and the Fourier coefficients kc becomes 

a very difficult task. 

 

 

 ( ) ( )1ˆ,
−= i

Td
ik tet iki xw Λ , (2.71) 

 











 −
=

−− 0I

0IA
Λ

11
ˆ

, itjk
i

ki e
T

jk
ω

ω
. (2.72) 
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CHAPTER 3 
 

TIME INVARIANT MULTI-FREQUENCY MODELING OF HIGHER ORDER CONVERTERS 

 In this chapter, the development of time invariant multi-frequency (TIMF) models has 

been reviewed. Case studies have been made for Cuk converter, Zeta converter and SEPIC. 

For each case study, converter model with parasitic elements has been constructed. By 

including the parasitic elements in the models, the dynamic performance of the converter can 

be predicted with better accuracy. Also in case studies, closed-loop time domain response and 

open-loop frequency domain response have been studied and compared with the detailed 

switching model. The difference between implementing sawtooth carrier signal and triangular 

signal has been examined. In the case study session for Cuk converter, the experimental 

results obtained from 20W Cuk converter has been used to validate the TIMF model in both 

time domain and frequency domain. In order to show the improvement of accuracy with the 

TIMF model, first order TIMF model of Cuk converter has been compared with existing 

averaging techniques. In order to show the improvements in accuracy by increasing the order of 

the TIMF, in the case study session for Zeta converter, sixth order TIMF model has been 

implemented and compared with second order TIMF model. As expected, ripple estimation has 

been greatly improved. 

3.1 General Theory 

Time-invariant multi-frequency (TIMF) modeling method, previously introduced by P.L. 

Chapman, A. Davoudi, and Y. Chen in [71], [72], has been developed based on the quasi-

Fourier series (QFS) representation of the switching function, duty cycle command, inductor 

currents and capacitor voltages of a PWM DC-DC converter operated in the continuous 

conduction mode (CCM) under a constant switching frequency. As a result, TIMF has the ability 
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to achieve highly accurate estimation of the ripple effects by including higher order harmonics. 

Suppose a state variable ( )tx , the quasi-Fourier series representation of ( )tx  is given by 

where swω  is the switching frequency in radians, )(0 tx , )(tx
nα , and )(tx

nβ  are time-

dependent QFS coefficients, n  is an index term, and N  is the number of harmonics considered 

by QFS. The QFS has been first introduced in [40]. However, the complex exponential form has 

been replaced by trigonometric form for the simplicity in developing TIMF model. As presented 

in Equation 3.1, for every state variable ( )tx , there are 12 +N  QFS coefficients.  The higher the 

number N , the better the approximation is. However, as N  increases, the computation time 

also increases. From this point on, the time dependency of state variable will be expressed 

implicitly. In order to develop TIMF model for any PWM DC-DC converters, the following three 

important properties are indispensible: 1) first order time derivative of state variable x , 2)  

carrier signal dependent model of the switching function q , and 3) computation of the product 

of state variable x  and switching function q .   

3.1.1 First Order Time Derivative of State Variable x  

Since in TIMF model, each state variable x  is represented by QFS, it becomes 

inevitable that there should be a corresponding representation for the time derivative of state 

variable x . Differentiating both sides of Equation 3.1, the time derivative of variable x  has the 

form 

 ( ) ( ) ( ) ( ) ( ) ( )∑
=

++=
N

n
swsw tntxtntxtxtx

nn
1

0 sincos ωω βα  (3.1) 

 ( ) ( )++−+= ∑
=

N

n
swswswsw tnxntnxn

dt
dx

dt
dx

nn
1

0 cossin ωωωω βα

 

 

 

 ( ) ( )tn
dt

dx
tn

dt
dx

swsw
a nn ωω β sincos + .

 

(3.2) 
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Equation 3.2 can be expressed in a more compact form 

 where x  is a vector of QFS coefficients, c  is a vector of time-varying coefficients, and Ω is a 

( )12 +N -by- ( )12 +N  matrix. These newly introduced vectors and matrix have been expressed 

explicitly in Equation 3.4-3.6, 

The characteristics of the matrix Ω  are summarized in Equation 3.7-3.9. For an given integer 

m  that satisfies the condition Nm ≤<1 ,  

and otherwise, 

where j  and k  correspond to the j -th row and k -th column of matrix Ω . Since the time 

derivative of x  has been expressed with vectors and matrices, it would be convenient to also 

express x  in a similar manner. After substituting Equation 3.4 and 3.5 into Equation 3.1, x  can 

be represented as 

 





 +−=

dt
d

dt
dx xΩxc  (3.3) 

 [ ]
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xxxxx βαβα 
110

T =x  (3.4) 

 ( ) ( ) ( ) ( )[ ]tntntt swswswsw ωωωω sincossincos1 =c
 (3.5) 
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Ω . (3.6) 

 swmm mω−=+12,2Ω  (3.7) 

 swmm mω=+ 2,12Ω , (3.8) 

 0, =kjΩ  (3.9) 

 cx=x . (3.10) 
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Applying Equation 3.10 to the state variables of DC-DC converter yields 

where v  and i  represent the capacitor voltage and inductor current. Similarly, the switching 

function q  and the duty cycle command d  can be represented as 

 

3.1.2 Carrier Signal Dependent Model of the Switching Function q  

 

Figure 3.1 Switching function q , duty cycle command d , and sawtooth carrier signal 

The model of switching function q  is one of the major differences between GSSA and 

TIMF modeling techniques. In TIMF model, the switching function q  is determined by 

comparing the duty cycle command and the carrier signal. This feature produces a carrier 

dependent switching function model, which is more realistic compared with the one in GSSA 

model. In a PWM converter, the switching function q  can either be one or zero, representing 

the on and off state of the switch, respectively.  As shown in Figure 3.1, when the duty cycle 

command d  is greater than the carrier signal, q  is set to one. Conversely, when the duty cycle 

 cv=v  (3.11) 

 ci=i  (3.12) 

 cq=q  (3.13) 

 cd=d . (3.14) 
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command d  is less than the carrier signal, q  is set to zero. The goal is to find a way to 

represent the switching function q  that reflects this comparsion between the carrier signal and 

the duty cycle command. From Equation 3.1, the switching function q  in QFS representation is 

given by 

where 0q , 
n

qα  and 
n

qβ  are QFS coefficients. As shown in Figure 3.1, for a given switching 

period T , q  is set to one between time lt  and ht , and zero for the rest of the period. Hence, 

the QFS coefficients are computed as 

Evaluating 0q , 
n

qα  and 
n

qβ  yields 

In order to simplify Equation 3.20 and 3.21, the following three properties are considered: 
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where u  and v  are any arbitrary functions or constants, Equation 3.20-3.21 evolve into 

To further simplify the expressions for 
n

qα  and 
n

qβ , let 

thus, Equation 3.25-3.26 become 

If the values for lt  and ht  are known, then 0q , 
n

qα  and 
n

qβ  can be determined for every 

period T  using Equation 3.19, 3.29 and 3.30. This simplification from Equation 3.20 and 3.21 to 

Equation 3.29 and 3.30 may seem trivial at first glance, however a few good reasons make 

these extra steps meaningful. First, 
T
th  and 

T
tl  are dimensionless numbers that represents 

fractions of the period T , which have a range between 0 and 1, whereas ht  and lt  from 

Equation 3.20 and 3.21 have units in seconds, which increase with simulation time and are 

difficult to solve for every single period. Second, 
T

tt lh +  and 
T

tt lh − , as will be discussed later, 

have special implications to the average of the duty cycle command, which can be used directly 

for simplifying the calculations. 
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In addition to trigonometric representation of the switching function q , as shown in 

Equation 3.15, q  can also be expressed in the compact trigonometric form 

where 

 Substituting nqα  and nqβ  into Equation 3.32 and 3.33 with Equation 3.29 and 3.30 yields 

By using Equation 3.27, 3.34 and 3.35, Equation 3.31 becomes  

This expression of the switching function q  has been shown in many power electronics 

textbooks and related publications [46], [86]. This confirms that legitimacy of model of q

developed in Equations 3.19, 3.29 and 3.30.  

Continuing the discussion of the QFS coefficients of switching function q , since the 

switching frequency swω  is assumed to be constant in a given PWM DC-DC converter, the only 

unknowns in Equation 3.29 and 3.30 are δ  and φ . As clearly shown in Equation 3.36, the 

symbol φ  is the phase shift of the switching function. The graphical representation of φ  is 

shown in Figure 3.2. In order to show this mathematically, expressing Equation 3.27 in terms of 

swω  yields 
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Let 
20

lh ttt +
= , the phase shift becomes 

 

Figure 3.2 Switching function q , duty cycle command d , and sawtooth carrier signal and phase 
shift φ  

 
The second unknown is δ . Based on expression of δ  in Equation 3.27 and the observation 

made from Figure 3.2, one can conclude that δ  is equivalent to duty cycle command d  over a 

given switching period. However, there is a small difference between the two variables. δ  is the 

duty cycle of switching function q  over a given period T . On the other hand, d  is the desired 

duty cycle at anytime t . Therefore, δ  is in fact the average of d  for a given period T . 

In order to determine the values for φ  and δ , one must locate lt  and ht  for a given 

switching period T  of the switching signal. From Figure 3.2, it is obvious that the location of  ht  

is where the duty cycle command intersects with the sawtooth carrier signal, and the location of 

lt  is the beginning of every period. Since lt  is defined as the beginning of cycle of the switching 

signal q , for  the case of sawtooth carrier signal, its relative position is always equals to zero in 

a period. In order to find ht , one have to equate the duty cycle command d  and the carrier 
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signal, then locate the point of intersection in relative to the switching period. By using Equation 

3.1, the duty cycle command is expressed as 

where 0d , 
n

dα  and 
n

d β  are QFS coefficients, and 0d  is the average value of the duty cycle. In 

a given period T , the sawtooth carrier signal sawtooths  can be expressed as a continuous 

function of time  

where sawtoothh  is the maximum height of the sawtooth signal and t  is time in seconds. As 

shown in Figure 3.2, at htt = , Equation 3.39 equals to Equation 3.40, and by assuming 

1=sawtoothh , the resulting equation is give by 

Moving the duty cycle command to the left side in Equation 3.41 yields  

Finally, an expression with the only one unknown variable ht  has been established in Equation 

3.42. However, analytically solving for ht  is quite complicated. For this reason an iterative 

method, Newton-Raphson’s method [74], has been used to find ht .  

Newton Raphson’s  method is an iterative method to estimate the root x  of a given 

function ( )xf . The convergence of Newton Raphson’s method depends on the nature of the 

function and the intial guess value for x . If the convergence exists, the root x  can be found 

through iteration method 
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 ( )
( )i

i
ii xf

xfxx
′

−=+1 , (3.43) 

where i  is the number of iterations, and ( )xf ′  is the derivative with respect to x . As more 

iteration has been performed, ix  become closer and closer to the root of ( )xf . As the result, the 

error between ix  and 1+ix  also becomes smaller than the previous iteration. The iteration 

process terminates when the error reduces to a predetermined value. 

In  this thesis, Newton Raphson’s method has been applied to Equation 3.42 for find 

T
th . First, one needs to define ( )xf , which is in the form 
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i = , rewriting Equation 3.44 as 
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For simplicity, only the first harmonic of the duty cycle command is considered ( 1=N ). This 

assumption is valid because the first harmonic often dominates the ripples in the state variables, 

and in a closed-loop controlled DC-DC converter, a low pass filter is often employed in the 

feedback loop of the controller signal, thus further reduces the impact of higher frequency 

components of the duty cycle command signal. For 1=N , the derivative of Equation 3.46 with 

respect to 
T
th  is given by 
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Consequently, with the initial guess 0d
T
th = , the value of 

T
th  can be approximated by the 

following expression, 
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Therefore, 

With knowing the values of lt  and ht  in the sawtooth carrier signal, the QFS coefficients of 

switching function q  can be found using Equations 3.19, 3.25 and 3.26.  

 Another type of carrier signal is the isosceles triangular carrier. Although isosceles 

triangular carrier is rarely used for DC-DC converter, it has proven to be useful for other types of 

PWM converters. For instance, in PWM inverters, implementing a triangular carrier signal can 

reduce the baseband distortion [71]. Also, comparing to sawtooth carrier,  triangular carrier is 

more suitable for PWM controllers operated at high switching frequency (greater than 1MHz) 

because two control actions can be taken in one switching period. The fast reset in sawtooth 

carrier has been replaced by the two equal ramps in triangular carrier for better stability and  

control. [61].  

 

Figure 3.3 Switching function q , duty cycle command d , and isosceles triangular carrier signal 
and phase shift φ  
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 As demonstrated in Figure 3.3, when the triangular carrier signal is used, the switching 

function q  still equals to one between lt  and ht , and equals to zero otherwise. However, lt  no 

longer equals to zero. Therefore, in order to model the switching function q  with the triangular 

carrier signal, one has to first solve for both lt  and ht . From Figure 3.3, it is obvious that the 

isosceles triangular carrier signal triangulars  consists of two piece-wise linear function for every 

period of T  

During 0
2

≤<− tT , an expression with only lt  can be found by equating the carrier signal 

triangulars
 

(Equation 3.49) with the duty cycle command d  (Equation 3.39) at time 

)5.0( Ttt l −−= , as shown in Equation 3.47. Similarly, an expression with only ht  is found by 

equating Equation 3.50 and Equation 3.39 at time htt = , as presented in Equation 3.52.  

Similar to the sawtooth carrier case, in Equation 3.51 and 3.52, swω  has been replaced with 

T
π2 . Assuming 1=triangularh , and 1=N , the simplified version of Equation 3.51 and 3.52 are 

given by 
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In order to use Newton Raphson’s method, moving the right hand sides of Equations 

3.53 and 3.54 to the left hand sides yields 

By applying Newton Raphson’s method with initial guesses 
2
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T
tl −= and 

2
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estimation for 
T
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and 

T
th  are given by 
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By substituting the expressions of lt  and ht  into Equation 3.19, 3.25 and 3.26, QFS coefficients 

0q , 
1αq  and 

1βq  can be solved. This concludes the model of the switching function q  in the 

case of isosceles triangular carrier signal. 

3.1.3 Computation of the Product of State Variable x  and Switching Function q  

The state space model of PWM converters often involves the multiplication of the 

switching function q  and state variable x . For this reason, this sub-section is dedicated to 

finding the TIMF representation of the product of the switching function q  and the state variable 

x . The product g  of the switching function q  and any state variable x  is given by 

Due to the dynamic behavior of g ,  it can also be represented by QFS. Hence, 

where 0g , 
1αg  and 

1βg  are the QFS coefficients of g . The objective is to define these QFS 

coefficients in terms of QFS coefficients of q  and x . For accomplishing this objective, first 

substituting x  with Equation 3.1 and q with Equation 3.15 into Equation 3.61 yields 

In many cases, this product g  can be well approximated by only two harmonics. For this 

reason, with assumption of 2=N , Equation 3.63 becomes 
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By applying distributive property of multiplication to Equation 3.64, the result is given by 

Equation 3.65. 

In order to identity different frequency components, by applying the trigonometric properties as 

given in Equations 3.66-3.73 to Equation 3.62, the result is given in Equation 3.74. 
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where u  and v  are any arbitrary functions or constants.  
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Since only harmonics of 2≤N  are considered, the terms in Equation 3.74 with ( )tswω3cos , 

( )tswω3sin , ( )tswω4cos , and ( )tswω4sin  are discarded. Therefore, 

After equating the QFS coefficients in the product g  described in Equation 3.62 and Equation 

3.75, the result is given by 
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Finally, g  can be represented in the compact form as 

where  

and  

After recalling the vector representation of QFS coefficients x as defined in Equation 3.4, 

Equation 3.83 can be also expressed as 

where Q is a 5 by 5 matrix, given by 
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This separation of the QFS coefficients of the state variable x  from the product g  is an 

essential part of the TIMF model, because TIMF model describes the system with QFS 

coefficients of the state variable, not the state variable itself as in the original state space model. 

Conversely, if the QFS coefficients vector of the switching function q  is given by 

then Equation 3.74 can also be written as 

where X  is a 5 by 5 matrix 

Equation 3.87 becomes useful when one tries to linearize the TIMF model. Details of 

linearization is discussed in [46]. Due to neglect of higher order harmonics, g  can be estimated 

as 

or 

 
3.2 Case Study for Cuk Converter 

3.2.1 Model Construction  

The schematic of the Cuk converter with parasitic elements is shown in Figure 3.4. In 

CCM, the Cuk converter has two switching states. In the first switching state, as shown in 
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Figure 3.5(a), the switching function q  is on, and the diode is reversely biased. As a result, the 

MOSFET is replaced by a resistor mr  to account for the conduction loss, and the branch 

containing the diode is opened. In the second switching state, as shown in Figure 3.5(b), the 

switching function q  is off, and the diode conducts. Thus, the MOSFET branch is opened, and 

the diode is replaced by a resistor dr  to account for the conduction loss, and a voltage source 

dv  to account for the forward voltage drop. 

 

Figure 3.4 Cuk converter with parasitic elements 

 

(a)  (b) 

Figure 3.5 Cuk converter in CCM: (a) when q  is on and (b) when q  is off 

Therefore, the state space model of the Cuk converter is given by 
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As shown in Equation 3.94, the capacitor current remains the same expression in both 

switching states. Further simplifying Equations 3.91-3.94 yields 

In TIMF model, state variable is modeled by a vector of its QFS coefficients as shown in 

Equation 3.4. Knowing the vector of the QFS coefficients, one can easily reconstruct the state 

variable using Equation 3.1. Recall the time derivative of a state variable x  can be represented 

by Equation 3.3, therefore the left hand sides of Equation 3.95-3.98 becomes the following 
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where  
1Li , 

2Li , 
1Cv  and 

2Cv  are vectors of QFS coefficients of state variables  
1Li , 

2Li , 
1Cv , 

and 
2Cv , the vector c  has been previously defined in Equation 3.56, and  Ω  is defined in 

Equation 3.6 . For 2=N , 

and  

Using Equations 3.11-3.13, one can convert the right hand sides of Equations 3.95-3.98 into 

vector representation. Hence, 
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Rearranging Equations 3.108-3.111 yields 
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In Equations 3.112-3.115, the products of the switching function q  and variable state variables 

x  have been observed. After substituting Equation 3.89 into Equations 3.112-3.115, the 

equations become  
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In Equations 3.116-3.119, with the exceptions of constants, all of the terms are multiplied with 

the vector c  from the left. In order to simplify the derivation for TIMF model, one can also define 

a constant z  as a multiplication of two vectors as  

where the vector c  as defined in Equation 3.56 and 

Finally, 
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Now all the terms on both sides of Equations 3.122-3.125 are multiplied by vector c  from the 

left, one can simply factor out the vector c  from both sides, and equating the coefficients. Thus, 

the TIMF model of the Cuk converter has the form of 

 ( ) ( )+










+
−−

21 CC QvcQvc
Rr

r

C

C

2

21
  

 +










+
−−













+

+
−+−

221 CLL cvcici
Rr

r
r

Rr
r

rrr
C

C
d

C

C
CLd

2

2

2

2

22
1

2

  

 ( ) ( )−












+

+
−+−

21 LL Qi-cQi-c d
C

C
CLd r

Rr
r

rrr
2

2

22

2

  

 ( ) ( )
22 LdC Ωiccq-cvQv-c 2

2

21 Lv
Rr

r
d

C

C +++










+
−

 (3.123) 

 ( ) ( )
1112

1
CLLL

C ΩvcQi-cciQic
v

c 11 C
dt

d
C +++=

 
(3.124) 

 222
2

CCL
C Ωvccvci

v
c 22

22

2 11 C
RrRr

r
dt

d
C

CC

C +
+

−










+
−= .

 
(3.125) 

 ( )( ) ( )−++−=
21

1
LL

L QiQi
i

mmL rrr
dt

d
L 11   

 ( ) −−+++
121 CLL vii ddCL rrrr

11   

 ( )( ) ( ) ( )+−+++
121 CLL Qv-Qi-Qi- ddCL rrrr

11   

 ( ) ( )( )
1Ldg Ωiq-vvq 1Lvvv dgg +−+−+
 

(3.126) 

 ( ) ( )−












+

+
−++−=

21
2

LL
L QiQi

i
m

C

C
CLCm r

Rr
r

rrrr
dt

d
L

2

2

221

2

2   



 

 49 

In the original state space model (Equations 3.91-3.94) has four unknown state 

variables (
1Li ,

2Li ,
1Cv , and 

2Cv ), and four equations. In TIMF model, there are 20 unknown 

QFS coefficients and 20 equations. These extra coefficients and equations enable TIMF to 

perform ripple estimation, which the SSA is not able to achieve. Further simplification of 

Equations 3.126-3.129 yields 
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where 5I  is an 5-by-5 identity matrix. Adapting TIMF in the matrix form becomes 

where [ ]T00000  0 = and 
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 In order to simplify the process of converting from the state space model to TIMF, one 

can develop a set of rules from comparing the original state space model (Equations 3.91-3.94) 

to the TIMF model.  
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Table 3.1 Rules for Converting State Space Model to TIMF Model  
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As a result of the comparison, Table 3.1 shows a set of rules from converting from state space 

model to TIMF model. 

 

3.2.2 Proportional-Intergral Control Scheme  

This sub-section focuses on the modeling of proportional-integral (PI) controller for 

TIMF model in the voltage controlled mode (VCM). Similar modeling of PI controller has already 

been discussed in [71] and [78]. In VCM, the output voltage outv  tracks a reference voltage refv  

by feeding back the difference of them into the PI compensator. The PI compensator produces 

the duty cycle command d  that reduces this difference, thus 

where pk  and ik  are the proportional gain and the integral gain, respectively. Since both the 

duty cycle command d  and the output voltage outv  can be represented by QFS, therefore 

Equation 3.155 becomes 

where refv  is a DC voltage. Reorganizing Equation 3.156 yields 
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The integral of sine and cosine terms on the right hand side can be evaluated by integration by 

parts as shown in Equation 3.158. 

Applying integration by parts again, 
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In Equation 3.159, for higher harmonics and high switching frequency, ( )2swnω  will become 

extremely large. Thus, Equation 3.159 reduces to 

Substituting Equation 3.160 back into Equation 3.157 yields 

Since there is often a low pass filter in the feedback loop of VCM PWM converters, the duty 

cycle command signal d  can be well approximated by 1=N . Thus, 

Equating the coefficients on both sides of Equation 3.162 yields 

 ( ) ( ) =









+∫ ∑

=

dttnvtnvk
N

n
swoutswouti nn

1
__ sincos ωω βα   

 ( ) ( )








−∑

=

N

n
sw

sw

out
sw

sw

out
i tn

n
v

tn
n

v
k nn

1

__ cossin ω
ω

ω
ω

βα .
 

(3.160) 

 
( ) ( ) =++∑

=

N

n
swsw tndtndd

nn
1

0 sincos ωω βα  
 

 
( ) ( ) +










++− ∑

=

N

n
swoutswoutrefoutp tnvtnvvvk

nn
1

__0_ sincos ωω βα  
 

 
( ) ( ) ( )









−+− ∑∫

=

N

n
sw

sw

out
sw

sw

out
irefouti tn

n
v

tn
n

v
kdtvvk nn

1

__
0_ cossin ω

ω
ω

ω
βα . (3.161) 

 ( ) ( ) =++ tdtdd swsw ωω βα sincos
110   

 ( ) ( ) +++− )sincos(
11 __0_ tvtvvvk swoutswoutrefoutp ωω βα   

 ( ) ( ) ( )∫ 









−+− t

v
t

v
kdtvvk sw

sw

out
sw

sw

out
irefouti ω

ω
ω

ω
βα cossin 11 __

0_ . (3.162) 

 ( ) ( )∫ −+−= dtvvkvvkd refoutirefoutp 0_0_0  (3.163) 

 
sw

out
ioutp

v
kvkd

ω
β

αα
1

1

_
_1 −=

 
(3.164) 



 

 56 

If the tracking function is  

then simply inverting the signs on the right side of Equation 3.142-3.145 yields 

 

3.2.3 Closed-Loop Time Domain Analysis 

The schematic of PI controlled Cuk converter, as illustrated in Figure 3.6, has been 

implemented for both detailed switching model and second order TIMF model in SIMULINK 

program. In the detailed switching model, the switch has been simulated by a relational operator 

which outputs either zero or one by comparing the duty cycle command with the carrier signal. 

Details of SIMULINK block diagrams and codes are attached in Appendix B. The simulated 

circuit parameters are listed in Table 3.2. One important principle of selecting the parameter 

values is that the converter must operates in CCM. Depending on the load resistance, one 

should choose the appropriate inductors for operating the converter in CCM. For simulation 

configuration parameters, the max step size is set to 1 μs with relative tolerance of 10-3, and the 

solver is chosen to be ode45 (Dormand-Prince). This setting is the same for all simulations that 

will be discussed in case study section of Cuk converter. The sawtooth and triangular carrier 

signals in the detailed switching model are simulated by using modulators from PLECS toolbox. 

For the transient study, the load resistance undergoes a step change from 15 Ω to 10 Ω at 

 
sw

out
ioutp

v
kvkd

ω
α

ββ
1

1

_
_1 += . (3.165) 

 ( ) ( )dtvvkvvkd outrefioutrefp ∫ −+−= , (3.166) 

 ( ) ( )∫ −+−= dtvvkvvkd outrefioutrefp 0_0_0  (3.167) 

 
sw

out
ioutp

v
kvkd

ω
β

αα
1

1

_
_1 +−=

 
(3.168) 

 
sw

out
ioutp

v
kvkd

ω
α

ββ
1

1

_
_1 −−= . (3.169) 



 

 57 

sec5.0=t . The transient responses of detailed switching model and TIMF model with 

sawtooth carrier signal are shown in Figure 3.7. TIMF model match well with the detailed 

switching model in the steady state as well as in the transient. The zero order term of TIMF 

model is related to the average value of each state variable. For inductor currents 
1Li  and 

2Li , 

and the capacitor voltage 
1Cv , the detailed switched model shows slightly larger ripples than 

TIMF model. This error can be reduced by considering higher order of harmonics. Due to the 

equivalent series resistance (ESR) in output capacitor, outv  contains larger ripples than 
2Cv . 

The detailed switching model of the Cuk converter has also compared with its TIMF model for 

the case of triangular carrier signal, as shown in Figure 3.8. As clearly shown in Figure 3.8, 

TIMF model has well estimated the response of the detailed switched model. The only slight 

difference between using a sawtooth carrier signal and triangular carrier signal is the fact that 

their phase angles are different. 

 

Figure 3.6 The schematic of PI controlled Cuk converter 

Table 3.2 Parameter values of Cuk converter used in time-domain analysis 

 

Parameter gv
 1L  2L  1C  2C  SWf  dv  dr  

Value 9 V 363 μH 363 μH 15 μF 56 μF 10kHz 0.4 V 14 mΩ 
         

Parameter mr  1Lr  
2Lr  

1Cr  
2Cr  refv  pk  ik  

Value 0.7 Ω 64.6mΩ 58.6mΩ 66.4mΩ 478.5mΩ -15 V 2.9*10-4 5 
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(a) (b) 

Figure 3.7 Transient response of detailed switching model and TIMF with sawtooth carrier: (a) 
complete transient response and (b) close-up view 
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(a) (b) 

Figure 3.8 Transient response of detailed switching model and TIMF with triangular carrier: (a) 
complete transient response and (b) close-up view 

 



 

 60 

3.2.4 Open-Loop Frequency Domain Analysis 

In this sub-section, by using SIMULINK the open-loop Cuk converter shown in Figure 

3.4 has been constructed for both TIMF model and detailed switching model. The small-signal 

input-to-output transfer function 
g

out

v
v
ˆ

ˆ
 and small-signal control-to-output transfer function 

d
vout

ˆ
ˆ

 

have been extracted from the simulations with both sawooth and triangular carrier signals for 

verifying TIMF model against detailed switching model. The parameter values of the Cuk 

converter are shown in Table 3.3. As shown in Table 3.3, most parameter values are the same 

as in the time-domain analysis with the exception of the load resistance R , which is set to a 

constant value of 15Ω. For extracting the transfer functions in the detailed switching model, 

small signal injection and frequency sweep methods have been implemented. For extracting the 

transfer functions from TIMF model, the TIMF model is linearized at the same operating points 

as the detailed switching model by means of MATLAB build-in function linmod. The transfer 

functions are examined up to 5 kHz, which is one-half of its switching frequency swf . The 

results beyond 5 kHz are distorted due to the cross-interference between the switching of the 

circuit and the injected perturbations [77]. 

Table 3.3 Parameter values of Cuk converter used in frequency-domain analysis 

 

In order to extract the small-signal input-to-output transfer function 
g

out

v
v
ˆ

ˆ
 in the detailed 

switching model, a small sine wave of magnitude 0.1V of selected frequency is added to input 

voltage, as depicted in Figure 3.9. Signals that have been generated in the SIMULINK program 

can be easily export to the workspace of MATLAB by using a sink block called “To Workspace”. 

Parameter gv  1L  2L  1C  2C  swf  dv  dr  
Value 9 V 363 μH 363 μH 15 μF 56 μF 10kHz 0.4 V 14 mΩ 

         

Parameter mr  1Lr  
2Lr  

1Cr  
2Cr  R  D   

Value 0.7 Ω 64.6mΩ 58.6mΩ 66.4mΩ 478.5mΩ 15 Ω 0.641  
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From the workspace, one can simply use a MATLAB function called fft to apply the fast Fourier 

transform to any signal available in the workspace. As a result, the magnitude and phase of 

input-to-output transfer function 
g

out

v
v
ˆ

ˆ

 
at each selected frequency has been extracted by 

applying fast Fourier transform. Program codes for extracting the magnitude and phase angle 

using fft function are attached in Appendix C. The resulting magnitude and phase plots of the 

input-to-output transfer function with sawtooth carrier are plotted in Figure 3.10. The data points 

produced by the detailed switching model are considered as a reference for comparison. As 

shown in Figure 3.10, TIMF model match well with the detailed switching model up to 5 kHz, 

which is one half of the switching frequency. The phase plot as shown in Figure 3.10(b) begins 

at 180 degrees since the output voltage of the Cuk converter is inverted. The magnitude and 

phase plots of the input-to-output transfer function with triangular carrier are plotted in Figure 

3.11. As shown in Figure 3.11, the TIMF model correctly predicts the detailed switching model. 

In cases of sawtooth carrier and triangular carrier, the magnitude plots are identical as shown in 

Figure 3.10(a) and Figure 3.11(a), and the phase plots are almost identical with only a 

difference of a few thousandth of a degree as shown in Figure 3.10(b) and 3.11(b). 

 

Figure 3.9 Small signal injection for extract input-to-output transfer function of Cuk converter 
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(a) (b) 

Figure 3.10 Input-to-output transfer function of Cuk converter with sawtooth carrier: (a) 
magnitude plot (b) phase plot 

 

 
 

(a) (b) 

Figure 3.11 Input-to-output transfer function of Cuk converter with triangular carrier: (a) 
magnitude plot (b) phase plot 

 

Similarly, to extract the control-to-output 
d

vout
ˆ

ˆ
, a small perturbation has been injected 

to the duty ratio d , as shown in Figure 3.12. The sine wave has a constant magnitude of 0.1, 

but its frequency changes every time a data point is collected. Different from the case of input-

to-output transfer function where the initial condition for every state variable has been set to 

zero, the operation points for the input-to-output transfer function of each state variable has 

been set to its steady state values as shown in Table 3.4 and Table 3.5. Due to the same 

reason discussed before, the transfer functions for both sawtooth and triangular carrier signals 

have been examined up to 5 kHz. The resulting control-to-output transfer function for sawtooth 

carrier signal are plotted in Figure 3.13 and control-to-output transfer function for triangular 
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carrier are plotted in Figure 3.14. In the magnitude plots, there is no noticable mismatch 

between the detailed switching model and TIMF model. However, small discrepancy has been 

observed for the phase plots. One factor contributes to the discrepancy is due to neglect of the 

higher harmonic terms in the QFS representation of the switching function q , and the duty 

cycle command d . 

 

Figure 3.12 Small signal injection for extract control-to-output transfer function of Cuk converter 

Table 3.4 Operating points for detailed switching model of control-to-output transfer function of 
Cuk Converter 

 

 
Table 3.5 Operating points for TIMF model of control-to-output transfer function of Cuk 

Converter 
 

 

 Detailed Swiching 
Model  

 1Li  1.8387 A  
 2Li  -0.9975 A  
 1Cv  23.7943 V  
 2Cv  -14.963 V  

 TIMF Model  
0_1Li  1.8387 A 0_2Li  -0.9975 A 0_1Cv  23.794 V 0_2Cv  -14.963 V 

11 _αLi  -0.5863 A 12 _αLi  0.6897 A 11 _αCv  2.3322 V 12 _αCv  -0.0617 V 

11 _ βLi  -0.315 A 12 _ βLi  0.1944 A 11 _ βCv  1.6542 V 12 _ βCv  0.2397 V 

21 _αLi  -0.1262 A 22 _αLi  0.1138 A 21 _αCv  0.2441 V 22 _αCv  0.014 V 

21 _ βLi  0.0721 A 22 _ βLi  -0.0797 A 21 _ βCv  -0.5768 V 22 _ βCv  0.0195 V 
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(a) (b) 

Figure 3.13 Control-to-output transfer function of Cuk converter with sawtooth carrier: (a) 
magnitude plot (b) phase plot 

 

(a) (b) 

Figure 3.14 Control-to-output transfer function of Cuk converter with triangular carrier: (a) 
magnitude plot (b) phase plot 

 
3.2.5 Experimental Verifications  

A 20W prototype of the PWM DC-DC Cuk converter has been built, and measurement 

data have been collected for both closed-loop time domain and open-loop frequency domain 

analyses.   

3.2.5.1 Time Domain Response of Cuk converter 

3.2.5.1.1 Experimental Setup 

 For obtaining the closed-loop time-domain response, the Cuk converter labeled as (e) 

in Figure 3.15 has been constructed. The main objectives are to verify the time-domain 

responses of the state variables of the Cuk converter predicted by the TIMF model. The values 
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of each individual component have been displayed in Table 3.2. The step change in load has 

been achieved by switching from 15Ω load resistance to 10Ω with single pole single throw 

(SPST) relay. The manufacture number of this relay is T77V1D10-12, and its contact rating is 

10A at 12 VDC. This relay has been controlled manually by turning on or off the voltage supply 

labeled as (a) in Figure 3.15. Two other voltage supplies have been used for the controller 

circuit and the input power. Microcontroller ATmega32 has been implemented for the controller 

circuit labeled as (d) in Figure 3.15.  

 

Figure 3.15 Experimental setup for closed-loop controlled Cuk Converter: (a) control voltage for 
relay, (b) voltage supply for microcontroller, (c) input voltage, (d) microcontroller, (e) 

microcontroller, (f) relay for changing load resistance, (g) resistive load, and (h) oscilloscope 

 
3.2.5.1.2 Comparison with Simulation Results 

The experimental results for the setup described in the previous section are shown in 

Figure 3.15. Figure 3.16 shows the transient response to a step change of load from 15Ω to 

10Ω. Due to noises in the circuit, the experimental results have larger ripples and slightly 
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distorted waveforms than the simulated results as shown in Figure 3.16(b). Due to the switching 

loss, the measured inductor current 1Li  is 0.3A higher than the simulated results. Under closed-

loop control, the output power of the converter tends to maintain the same power as in the 

simulation, but since the switching loss has not been considered in the model, slightly higher 

current has been observed in the measurement of 1Li . Overall, the experimental results match 

well with the simulation results of TIMF model. The close-up view of time response in the steady 

state is shown in Figure 3.17. 

 

(a)  (b) 

Figure 3.16 Comparison between experimental results and simulation results of TI multi-
frequency model: (a) experimental results, (b) simulation results 
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(a)  (b) 

Figure 3.17 Close-up view of steady state response: (a) experimental results, (b) simulation 
results 

 

3.2.5.2 Frequency Response of Cuk converter  

3.2.5.2.1 Experimental Setup 

 For verifying the frequency response of the open-loop Cuk converter modeled by TIMF  

technique, the Cuk converter has been set up as shown in Figure 3.18. The gating signal has 

been generated by the modulator, in which duty cycle command of 0.641 has been generated 

by comparing a sinusoidal wave of amplitude of 50mV at an offset of 1.312V with a sawtooth 

signal of amplitude 2.724V. A close-up view of the modulator is shown in Figure 3.19. The main 

component of modulation circuit is TL494, which is a PWM control integrated circuit (IC) from 

Texas Instruments. By applying the small signal injection and frequency sweep methods, the 

frequency response of the control-to-output transfer function 
d

vout
ˆ

ˆ

 
of the Cuk converter has 

been obtained.  
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Figure 3.18 Experimental setup for obtaining the frequency response of Cuk converter: (a) 
signal generator for disturbance, (b) voltage supply for the modulator, (c) voltage supply for 

MOSFET driver, (d) input voltage, (e) oscilloscope, (f) open-loop Cuk converter, (g) modulator 
 

 

Figure 3.19 Close-up view of the modulation circuit 
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3.2.5.2.2 Comparison with Simulation Results 

 The experimental results obtained from the setup shown in Figure 3.18 has been 

depicted in Figure 3.20. As shown in Figure 3.20, the measurement data and TIMF model are 

approximately the same. This verification assures that the TIMF model is able to capture major 

dynamical behaviors of the Cuk converter. 

 

(a) (b) 

Figure 3.20 Control-to-output transfer function of the Cuk converter with sawtooth carrier: (a) 
magnitude plot (b) phase plot 

 
3.2.6 Comparison with Existing Time Invariant Techniques 

3.2.6.1 Generalized State Space Averaging Model Of Cuk Converter 

From the state space model of Cuk converter given by Equations 3.91-3.94, GSSA 

model can be derived. Only the first order has been derived for the comparison, because the 

complexity considerable increases for higher order models of GSSA. Although GSSA model of 

Cuk converter has been presented in [85], the model has not included the parasitic elements, 

and only open-loop time domain analysis has been done.  

In order to derive the GSSA model of Cuk converter, the original state space model 

(Equations 3.91-3.94) has to be rearranged by applying distributive property, the zero order 

terms after the rearrangement are 
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The first order terms can be obtained from the zero order terms by dropping the constants from 

the expressions and adding an extra term I
sw x1ω  for the real part, and R

sw x1ω−  for imaginary 

part of each state variable to the end of the right hand side of the equations. The results for the 

real part of each state variable are 
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And the results for imaginary part of each state variable are  
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3.2.6.2 Krylov-Bogoliubov-Mitropolsky Model of Cuk Converter  

A typical Cuk converter is shown in Figure 3.4. When the circuit operates in CCM, there 

are two different circuit topologies for when the switching is on and when the switching is off as 

depicted in Figure 3.5. The state space equation has the form of 
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where  
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notice that [ ]xu  is defined as a step function. Following the procedure described in [49], the 

next step in developing the KBM model is to explicitly define ε , 

 Tαε = , (3.189) 

where α  is the largest coefficient in matrices 1A , 2A , 1b , and 2b . Introduce a new variable τ  
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Equation 3.182 becomes 
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and  
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 ( ) ( )[ ]1,ττ triDuh −=  (3.192) 

Applying averaging to the right hand side of Equation 3.191 yields 

 ( ) [ ]2121 bbAA DyDyG ++



 +=

ααα
11 . (3.193) 

Use Equation 3.193 to rewrite y  in the original time-scale 

 [ ] 2121 bbAA DyDy +++= . (3.194) 

The next step is to differentiate Equation 2.42 with respect to time, 
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Substitute in Equation 3.191 for x , Equation 2.42 for x , Equation 2.43 for y , and  
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After equating the coefficients in Equation 3.197, the results are 
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Use Equation 3.193 to substitute for 1G  in Equation 3.198, and solve of 1Ψ , 
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α
bA . (3.200) 

The only unknown in Equation 3.200 is y , however, y  can be found from Equation 3.194. 

Knowing 1Ψ  and y , state variable x  can be approximated by its first order model as 

 ( ) ( ) ( )yttytx ,1Ψ+≈ ε . (3.201) 

3.2.6.3 Comparison of Open-Loop Frequency Response Simulations  

Different modeling techniques discussed in Chapter 2 have been applied to open-loop Cuk 

converter, and compared with the detailed switching model as shown in Figure 3.21. The 

harmonics approximation with each modeling techniques has been limited to only first order for 

comparison purpose. The open-loop Cuk converter parameters are listed in Table 3.3. In 

detailed switching model, the nonlinearity behavior of the switch is simulated by comparing the 

duty cycle command d  with the sawtooth carrier signal. When the duty cycle command is 

greater than the carrier signal, the switch is on, and otherwise the switch is off. Due to this close 

resemblance between the detailed switching model and the real world converter, the detailed 

switching model has been used here as a reference for checking the accuracy of other 

modeling techniques. Observing the inductor current waveforms as shown in Figure 3.21(a) and 

(b), due to the non-linear modeling of  the switch, KBM offers the best estimation for the 

inductor currents. TIMF offers the second best approximation. Floquet theory has the worst 

approximation because it does not reveal any information about the phase. One explanation to 

this problem is the fact that in Floquet theory the beginning value and the end value of a state 

variable during a given switching period is assumed to be the same. Because of this 

assumption, Floquet theory can only be used to approximate the steady state values of the 

state variables. The zero order terms from both TIMF and GSSA are almost identical for the 

inductor currents. For the capacitor voltage 
1Cv  as shown in Figure 3.21(c), the same 

observation as in the inductor currents has been made. However, in capacitor voltage 2Cv  as 

shown in Figure 3.21(d), a catastrophe has happened in the KBM model. KBM has only 
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estimated the average value for capacitor voltage 
2Cv .  

 

(a) (b) 

 

(c) (d) 

 

(e) 

Figure 3.21 Comparison of state variables of open-loop Cuk converter: (a) inductor current 1Li , 
(b) inductor current 2Li , (c) capacitor voltage 1Cv , (d) capacitor voltage 2Cv , and (e) output 

voltage outv  
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As a result, it offers the worse approximation among all other modeling technique. One 

explanation for this catastrophe is that the ripple estimation in KBM depends on the nonlinearity 

modeling of the switch, and if a state variable does not include the switching function in its state 

space equation, KBM will only estimate the average value for that state variable. Among other 

techniques in Figure 3.21(d), TIMF offers the best estimation. Also, the zero order term of 

GSSA shows an offset when comparing with the actual average value of the detailed switching 

model. Consequently, in the output voltage as presented in Figure 3.21(e), TIMF shows the best 

match with the detailed switching model. The zero order term of TIMF presents the best 

estimation for the average value of the detailed switching model. 

The input-to-output transfer functions obtained from different modeling techniques has 

been plotted in Figure 3.22. Floquet theory has been excluded from this comparison due lack of 

phase estimation. In Figure 3.22, both TIMF and GSSA show great resemblance with the 

detailed switching model. The control-to-output transfer functions obtained from different 

modeling techniques has been presented in Figure 3.23. The same observation has been made 

in Figure 3.22 can be applied to the bode plots for control-to-output transfer functions. TIMF and 

GSSA still show better match for the detailed switching model than KBM. 

 

 

(a) (b) 

Figure 3.22 Bode plots for input-to-output transfer function of open-loop Cuk converter: (a) 
magnitude plot and (b) phase plot  
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(a) (b) 

Figure 3.23 Bode plots for control-to-output transfer function of open-loop Cuk converter: (a) 
magnitude plot and (b) phase plot  

 
 After comparing both open-loop time domain response and frequency domain 

response, one can make the conclusion that TIMF shows the best match for the detailed 

switching model among all other model techniques that have been discussed in this work. Table 

3.6 summarizes the distinct features of different modeling techniques. 

Table 3.6 Comparison of Different Modeling Techniques 

 SSA/CA KBM GSSA Floquet TIMF 

Ripple Estimation No Yes Yes Yes Yes 

Discrepancy at Low 
Frequency Yes No No No No 

Carrier Signal 
Dependent Modeling No No No No Yes 

Model Construnction Easy Difficult Moderate Difficult Easy 

Closed-Loop Control Yes Yes Yes No Yes 

Higher Order Model N/A Difficult Moderate Difficult Moderate 

DCM/CCM Both CCM CCM Both CCM 
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3.3 Case Study for Zeta Converter 

3.3.1 Model Construction 

 The schematic diagram of the Zeta converter including parasitic components is shown 

in Figure 3.24. Due to the floated switch of Zeta converter, a separate voltage supply of isolated 

ground is required for the MOSFET driver. If isolated ground is not possible, p-channel 

MOSFET often has been used for the switch, and an additional gate driving circuit is needed to 

drive the switch. The two switching states of the Zeta converter have been shown in Figure 

3.25. 

 

Figure 3.24 Zeta converter including parasitic components 

 

(a) (b) 

Figure 3.25 Zeta converter in CCM: (a) when q  is on and (b) when q  is off 

The resulting state space model is  
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Also the output voltage is 

By applying rules discussed in Table 3.1, TIMF model can be easily developed from the state 

space model, as presented in Equation 3.207-3.210 
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where for 2>N , Ω ,  1Li , 
2Li , 

1Cv  and 
2Cv  are defined in Equations 3.103-3.104 and 

3.3.2 Closed-Loop Time Domain Analysis 

  The same procedure performed for the time domain analysis of the Cuk converter has 

been performed to the Zeta converter. The component values have been carefully chosen so 

that the converter operates in the CCM. The schematic diagram of closed-loop controlled Zeta 

converter is presented in Figure 3.26. Both detailed switching model and TIMF model have 

been simulated in SIMULINK. The component values used for the simulations have been 

presented in Table 3.7. The solver used for the simulations is ode45 (Dormand-Prince), with 

max step size of 10-5 and relative tolerance of 10-3.  Both sawtooth and triangular carriers have 

been used for time domain analysis. For observing the transient response of the Zeta converter, 

the load decreases from 10Ω to 5Ω at time 5.0=t  in seconds. With state variables modeled by 

the second order ( 2=N ) and duty cycle command modeled by first order ( 1=N ), the transient 

response of the Zeta converter has been shown in Figure 3.27(a). A close-up view of the 

transient response has been shown in Figure 3.27(b). Overall, the TIMF model shows matched 

well with detailed switching model. However, the ripples of the state variables have been found 

to be slightly larger than the detailed switching model in the steady state as shown in Figure 

3.27(c). This slight discrepancy is due to the neglect of high order terms in the QFS 

representation of state variables and the duty cycle command. In order to illustrate the point, the 

order of the duty cycle command model has been increased by one using Equation 3.131. The 

resulting plots have been shown in Figure 3.28. Comparing the transient response in Figure 

3.27(b) and Figure 3.28(b), one can conclude that the waveforms have been slightly improved 

as the order of duty cycle command increases. The ripples in the TIMF model has been greatly 

reduced as can be observed by comparing Figure 3.27(c) and Figure 3.28(c). The results can 

 [ ]0000d
T v=dv  (3.211) 

 [ ]0000g
T v=gv . (3.212) 
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be greatly improved when the order of both state variables and duty cycle command are 

increased to sixth order, as shown in Figure 3.29. In the case of triangular carrier signal, as 

shown in Figure 3.30, slightly better results have also been obtained when comparing with the 

sawtooth case as shown in Figure 3.27. When using the triangular carrier, the waveform of 2Cv  

of TIMF model has less clipping or sharp edges than using the sawtooth carrier, as shown in 

Figure 3.30(b). Less clipping avoids the high frequency terms that are needed for good 

approximation with TIMF model. Therefore, the error is less when triangular carrier is 

implemented. However, this error is usually relatively small compared to the magnitude of the 

ripples in the state variables. 

Table 3.7 Parameter values of Zeta converter used in time-domain analysis 

 

 

Figure 3.26 The schematic diagram of PI controlled Zeta converter 

Parameter gv  1L  2L  1C  2C  swf  dv  dr  
Value 15 V 100 μH 200 μH 100 μF 55 μF 100kHz 0.4 V 14 mΩ 

         

Parameter mr  1Lr  
2Lr  

1Cr  
2Cr  refv  pk  ik  

Value 0.07 Ω 1 mΩ 0.55 mΩ 0.19 Ω 95 mΩ 5 V 0.005 4 
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(a) (b) (c) 

Figure 3.27 Comparison between detailed switching model of Zeta Converter and the second 
order TIMF model of Zeta converter with first order model of PI controller in the case of 

sawtooth carrier: (a) Zoom-out view of the transient response, (b) Close-up view of the transient 
response, and (c) Steady state response 
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(a) (b) (c) 

Figure 3.28 Comparison between detailed switching model of Zeta Converter and the second 
order TIMF model of Zeta converter with second order model of PI controller in the case of 

sawtooth carrier: (a) Zoom-out view of the transient response, (b) Close-up view of the transient 
response, and (c) Steady state response 
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(a) (b) (c) 

Figure 3.29 Comparison between detailed switching model of Zeta Converter and the sixth 
order TIMF model of Zeta converter with sixth order model of PI controller in the case of 

sawtooth carrier: (a) Zoom-out view of the transient response, (b) Close-up view of the transient 
response, and (c) Steady state response 
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(a) (b) 

Figure 3.30 Comparison between detailed switching model of Zeta Converter and the second 
order TIMF model of Zeta converter with first order model of PI controller in the case of 

triangular carrier: (a) Zoom-out view of the transient response and (b) Close-up view of the 
transient response 
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3.3.3 Frequency Domain 

In this section, the small-signal input-to-output transfer function 
g

out

v
v
ˆ

ˆ  and small-signal 

control-to-output transfer function 
d

vout
ˆ

ˆ
 of the open-loop Zeta converter have been extracted 

and compared with the detailed switching model. To extract the transfer functions from the TIMF 

model, linmod command from MATLAB has been used. To obtain the bode plots from the 

detailed switching model, small signal injection and frequency sweep method has been 

exploited, as previously discussed in the Cuk converter. Zeta converter as presented in Figure 

3.23 has been simulated in SIMULINK, and the output of each state variable has been exported 

to the workspace in MATLAB. The second order model of state variables and first order model 

of the duty command cycle have been implemented in this section. The parameter values used 

for simulating the Zeta converter has been presented in Table 3.8. For extracting the input-to-

output transfer function 
g

out

v
v
ˆ

ˆ  and the control-to-output transfer function 
d

vout
ˆ

ˆ
 in the detailed 

switching model, the circuit topologies shown in Figure 3.31 and Figure 3.32 have been 

implemented, respectively. The frequency responses obtained from both models have been 

examined up to 50 kHz. 

Table 3.8 Parameter values of Zeta converter used in frequency-domain analysis 

 

Parameter gv  1L  2L  1C  2C  swf  dv  dr  
Value 15 V 100 μH 200 μH 100 μF 55 μF 100kHz 0.4 V 14 mΩ 

         

Parameter mr  1Lr  
2Lr  

1Cr  
2Cr  R  D   

Value 0.07 Ω 1 mΩ 0.55 mΩ 0.19 Ω 95 mΩ 5 Ω 0.27  
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Figure 3.31 Small signal injection for extract input-to-output transfer function of Zeta converter 

 

Figure 3.32 Small signal injection for extract control-to-output transfer function of Zeta converter 

 Using method discussed before, the bode plot of input-to-output transfer function 
g

out

v
v
ˆ

ˆ
 

have been obtained. By implementing sawtooth carrier, the magnitude and phase plots are 

shown in Figure 3.33. The plots for triangular carrier are shown in Figure 3.34. In both cases, 

the TIMF model is almost identical to the detailed switching model. The same conclusion can be 

made to explain the bode plots for control-to-output transfer function 
d

vout
ˆ

ˆ
, as shown in Figure 

3.35 and 3.36. Unlike the input-to-output transfer function case where the initial conditions for all 
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states are zero, the operating points for the control-to-output transfer function in its steady state 

as listed in Table 3.9 and Table 3.10. 

 

(a) (b) 

Figure 3.33 Input-to-output transfer function of Zeta converter with sawtooth carrier: (a) 
magnitude plot (b) phase plot 

 

(a) (b) 

Figure 3.34 Input-to-output transfer function of Zeta converter with triangular carrier: (a) 
magnitude plot (b) phase plot 

 

 

(a) (b) 

Figure 3.35 Control-to-output transfer function of Zeta converter with sawtooth carrier: (a) 
magnitude plot (b) phase plot  
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(a) (b) 

Figure 3.36 Control-to-output transfer function of Zeta converter with triangular carrier: (a) 
magnitude plot (b) phase plot  

 
Table 3.9 Operating points for detailed switching model of control-to-output transfer function of 

Zeta converter 
 

 
Table 3.10 Operating points for TIMF model of control-to-output transfer function of Zeta 

converter 

 

3.4 Case Study for SEPIC 

3.4.1 Model Construction 

In this section, the state space model including parasitic components has been 

developed for the single-ended primary-inductor converter (SEPIC) which is shown in Figure 

 Detailed Switching 
Model  

 1Li  0.3716 A  
 2Li  1.0042 A  
 1Cv  -5.0214 V  
 2Cv  5.0212 V  

 TIMF Model  
0_1Li  0.3716 A 0_2Li  0.3716 A 0_1Cv  -5.0214 V 0_2Cv  5.0212 V 

11 _αLi  -0.1162 A 12 _αLi  -0.1162 A 11 _αCv  -6.68 mV 12 _αCv  -0.0145 V 

11 _ βLi  0.1029 A 12 _ βLi  0.1029 A 11 _ βCv  8.24 mV 12 _ βCv  -1.62 mV 

21 _αLi  -0.0509 A 22 _αLi  -0.0509 A 21 _αCv  3.407 mV 22 _αCv  43.16 μV 

21 _ βLi  -6.39 mA 22 _ βLi  -6.39 mA 21 _ βCv  -6.29 mV 22 _ βCv  -0.356 mV 
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3.37. Figure 3.38 illustrates the different switching states for SEPIC in CCM. As a result, the 

state space model is 

Using Table 3.1, second order TIMF model has been developed from the state space model 
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where the vectors Ω , 
1Li , 

2Li , 
1Cv , 

2Cv , dv  and gv
 
are defined in Equations 3.103-3.107, and 

3.211-3.212. 

 

Figure 3.37 SEPIC with parasitic components 

 

(a) (b) 

Figure 3.38 Circuit diagram of SEPIC in CCM: (a) when q  is on and (b) when q  is off 
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(a) (b) 

Figure 3.39 Transient response of detailed switching model and TIMF of SEPIC with sawtooth 
carrier: (a) zoom-out view and (b) close-up view 
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(a) (b) 

Figure 3.40 Transient response of detailed switching model and TIMF of SEPIC with triangular 
carrier: (a) zoom-out view and (b) close-up view 
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Table 3.11 Parameter values of SEPIC used in time-domain analysis 

 

Table 3.12 Parameter values of SEPIC used in frequency-domain analysis 

 

3.4.2 Closed-Loop Time Domain Analysis 

In this section, the second order TIMF model given by Equations 3.217-3.220 of SEPIC 

has been simulated in SIMULINK and compared with the detailed switching model. The 

configuration parameters for the SIMULINK is the same as in the case of Zeta converter, 

maximum step size of 10-5, relative tolerance of  10-3, and ode45 (Dormand-Prince) as the 

solver. Parameter values of SEPIC used in time-domain analysis has bee shown in Table 3.11. 

As the load resistance decreases from 30Ω to 15Ω at 5.0=t , the transient responses are 

captured for second order TIMF model in the case of sawtooth carrier and triangular carrier, as 

shown in Figure 3.39 and 3.40. The plots show that TIMF model match well with the detailed 

switching model. 

 

3.4.3 Open-Loop Frequency Domain Analysis 

In this section, the bode plots of the small-signal input-to-output transfer function 
g

out

v
v
ˆ

ˆ
 

and small-signal control-to-output transfer function 
d

vout
ˆ

ˆ
 of TIMF model of the open-loop SEPIC 

Parameter gv  1L  2L  1C  2C  swf  dv  dr  
Value 120 V 500 μH 100 μH 47 μF 200 μF 100kHz 0.4 V 1 mΩ 

         

Parameter mr  1Lr  
2Lr  

1Cr  
2Cr  refv  pk  ik  

Value 7 mΩ 10 mΩ 20 mΩ 0.53 Ω 125 mΩ 80 V 0.007 2 

Parameter gv  1L  2L  1C  2C  swf  dv  dr  
Value 120 V 500 μH 100 μH 47 μF 200 μF 100kHz 0.4 V 1 mΩ 

         

Parameter mr  1Lr  
2Lr  

1Cr  
2Cr  R  D   

Value 7 mΩ 10 mΩ 20 mΩ 0.53 Ω 125 mΩ 15 Ω 0.4  
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have been obtained and compared with the data obtained from the detailed switching model. 

Parameter values of SEPIC used in frequency-domain analysis has been shown in Table 3.12. 

In order to obtain the data points of the input-to-output transfer function for the detailed 

switching model, Figure 3.41 has been implemented in SIMULINK. In the case of sawtooth 

carrier, the bode plots are shown in Figure 3.43. In the case of triangular carrier, the bode plots 

are shown in Figure 3.44. For control-to-output transfer function 
d

vout
ˆ

ˆ
, the operating point is set 

according to Table 3.13 and Table 3.14. By implementing the schematic shown in Figure 3.42, 

one can easily obtain the magnitude and phase at different frequency for the detailed switching 

model. The bode plots for sawtooth and triangular carriers are shown in Figure 3.45 and 3.46. 

Small discrepancy has been observed in the phase plots at the higher frequencies, this is due to 

the neglect of high frequency terms in the TIMF model. Overall the results of TIMF match well 

with the detailed switching model. 

 

Figure 3.41 Small signal injection for extract input-to-output transfer function of SEPIC 
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Figure 3.42 Small signal injection for extract control-to-output transfer function of SEPIC 

Table 3.13 Operating points for detailed switching model of control-to-output transfer function of 
SEPIC 

 

 

Table 3.14 Operating points for TIMF model of control-to-output transfer function of SEPIC 
 

 

 Detailed Switching 
Model  

 1Li  3.4092 A  
 2Li  -5.1042 A  
 1Cv  119.761 V  
 2Cv  76.5629 V  

 TIMF Model  
0_1Li  3.4092 A 0_2Li  -5.1042 A 0_1Cv  119.761 V  0_2Cv  76.5629 V 

11 _αLi  -0.3635 A 12 _αLi  1.7742 A 11 _αCv  0.1705 V  12 _αCv  0.0351 V 

11 _ βLi  0.119 A 12 _ βLi  -0.5877 A 11 _ βCv  -0.0407 V 12 _ βCv  -0.0235 V 

21 _αLi  -0.0347 A 22 _αLi  0.1725 A 21 _αCv  5.4681 V  22 _αCv  2.1898 V 

21 _ βLi  3.4092 A 22 _ βLi  -5.1042 A 21 _ βCv  119.761 V 22 _ βCv  76.5629 V 
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(a) (b) 

Figure 3.43 Input-to-output transfer function of SEPIC with sawtooth carrier: (a) magnitude plot 
(b) phase plot 

 

 

(a) (b) 

Figure 3.44 Input-to-output transfer function of SEPIC with triangular carrier: (a) magnitude plot 
(b) phase plot 

 

(a) (b) 

Figure 3.45 Control-to-output transfer function of SEPIC with sawtooth carrier: (a) magnitude 
plot (b) phase plot 
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(a) (b) 

Figure 3.46 Control-to-output transfer function of SEPIC with triangular carrier: (a) magnitude 
plot (b) phase plot 
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CHAPTER 4 
 

CONCLUSION 

4.1 Contribution 

In this thesis, the state space models with parasitic elements for higher order converters 

such as Cuk converter, SEPIC and zeta converter, have been developed. TIMF model has been 

applied to these higher order converters and compared with the detailed switching model for 

both time domain response and frequency domain response. In this thesis, the process of 

converting from state space model to TIMF model has been simplified by defining a set of rules. 

With these rules, the TIMF model with higher order harmonics can be obtained. Experimental 

verification for TIMF has been done using Cuk converter. Experimental results show great 

match between TIMF and the measurement data in both time domain and frequency domain. 

Lastly, the existing models have been simulated and compared with TIMF model of open-loop 

Cuk converter in both time domain and frequency domain. TIMF presents itself as the best 

candidate for modeling higher order converters. 

4.2 Future work 

TIMF provides a convenient way to achieve high accuracy for estimating the inductor 

current and capacitor voltage waveforms. TIMF model can be further improved by including  the 

switching losses in the model. It would be of great interest to extend TIMF to other classes of 

converters such as soft switching converters, resonant converters, and inverters. In this paper, 

the controllers have been developed based on voltage mode control (VMC). For future work, 

current mode control and nonlinear control methods can also be added to the list. In [48], TIMF 

has been utilized to model multiple-input buck-boost converter. For future research, TIMF can 

be applied to model multiple-input multiple output (MIMO) converters.  
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APPENDIX A 
 
 

SCHEMATIC DIAGRAMS FOR CUK CONVERTER
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Figure A.1 Schematic diagrams for Cuk Converter used in time domain analysis of the 

experimental section 
 
 

 

Figure A.2 Schematic diagrams for Cuk Converter used in frequency domain analysis of the 
experimental section 
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