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ABSTRACT 

 

HIGH-LEVEL CONSTRAINT SUPPORT FOR COMBINATORIAL TESTING 

 

ANTHONY C. OPARA, M.S.  

 

The University of Texas at Arlington, 2008 

 

Supervising Professor:  Dr. Jeff Yu Lei  

Combinatorial testing constructs test cases by combining different input parameter 

values based on some effective combinatorial strategy. This software testing approach has 

displayed very promising attributes and is rapidly gaining popularity in recent years. However, 

existing work does not provide adequate support for constraint handling. Constraints are often 

specified as part of an input parameter model and they may be due to several reasons such as 

incompatibility between certain hardware and software components. A test generation algorithm 

needs to take these constraints into account during the test generation process to exclude 

combinations that are invalid from the domain semantics. 

In this thesis, we describe a general approach to handling constraints for combinatorial 

testing. Our approach includes a formal notation that allows the user to specify constraints at a 

higher level of abstraction. We discuss how to deal with the problem of “future conflicts”, which 

arises when a selected value satisfies all the constraints at one point in the test generation 

process but fails to satisfy some constraints in the future. Our approach can be combined with 

different combinatorial test generation algorithms, and we demonstrate this by showing how to 

extend an existing combinatorial test generation algorithm, called In-Parameter-Order-General 

         iv 

 



 

(IPOG), to handle constraints. We describe a Java based combinatorial testing tool developed 

in the course of this research work called FireEye, which implements an extended version of 

IPOG that supports constraint handling, and report some experimental results that demonstrate 

the effectiveness of our approach. 

     .
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

The trend in software development is increasingly moving towards the development of 

software systems that are larger, complex, more distributed and highly configurable. While 

these complex systems solve many complex problems, they are more error prone, thus the 

need for more detailed testing requirements. Many of today’s systems are built to be run on 

different operating systems and hardware configurations and consist of various components 

interacting to render software services to users. These components, which may have multiple 

versions, are configured by manipulating several compile and run-time options. Each new 

configuration item is often associated with a combinatorial increase in the number of potential 

runtime configurations and could possibly behave differently on different platforms or even 

possess different bugs.  Thus, ideally each configuration will have to be tested.   

Software Testing, which is the process of executing a program with the intent of finding 

faults in a program or system, is one of the approaches that can be used to ensure software 

quality in today’s systems. The software testing process begins with a test data generation 

stage followed by a test execution and then the test evaluation stage. During test generation, 

data which will be fed the system during the test execution phase is generated. The quality of 

the test data determines how effective the testing result will turn out. For large and complex 

systems, it is often impossible to test every combination of interacting parameters; hence it is 

necessary to reduce the set of test configurations, while still satisfying the required test 

coverage. Combinatorial testing is one approach to software testing that generates test cases 

selectively and not exhaustively, by combining values of different input parameters, based on 

some combinatorial strategy. A considerable number of combinatorial testing tools and 
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algorithms exist, that can be used to test highly configurable, complex and large systems, and 

some examples are IPOG [2], AETG [5], DDA [3] and PICT [8], which implement one of several 

combinatorial testing strategies. From the domain semantics, some combination of parameter–

values for a given system may be invalid or forbidden and will have to be excluded during test 

generation. Invalid parameter-value combinations are known as constraints and are often 

defined as part of the input parameter model of a system. Existing combinatorial testing tools do 

not provide adequate support for constraint handling and this is a big limitation to the 

combinatorial testing approach especially with testing today’s systems. Existing support for 

constraints includes one or more of the following restrictions [1]:              

1.  Requiring the user to explicitly define every illegal configuration. 

2. Requiring the user to re-model the input model into disjoint subsets of valid   

Combinations. 

3. The use of a proprietary constraint handling method that cannot be re-implemented. 

4. The use of third party constraint handling tools, which is often tweaked to work with 

existing test generation tools 

Having the user enumerate every illegal configuration or re-model the input model  is 

time consuming and error-prone, while the use of third party constraint handling tools often lead 

to unpredictable application behavior, arising from an inflexible integration with existing test 

generation tools  constraints. Figure 1 presents a model used to perform a compatibility test of 

web-based distributed banking software. This system can run on different platforms and we 

want to test that any claim such as: “our banking software can run on windows XP OS and Mac 

OSX” are valid. We consider a combination of Hardware (PC, Mac, Sparc), Operating system 

(Windows XP, Sun Solaris 8, ac OS X) ,Browser(IE5.5, Firefox 2.0, Mozilla 1.4), Java SDK (Sun 

JDK 1.4, Sun JDK 1.5, Oracle  JRockit 1.4) and Application server (Weblogic 8.1, Weblogic 

9.0), which represents different configurations supported by our banking application. There are 

a total of 162, (3 x 3 x 3 x 3 x 2), different combinations of the input model parameter values 
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and to fully test the system, we require a test suite for each configuration. For each test suite 

that is run, it is possible that a different behavior is exhibited by the system and a different set of 

bugs may be revealed in the application. For instance, a problem with Firefox browser may not 

be revealed under a Sun JDK 1.5 Plug-in but may be revealed under the JRockit 1.4 Plug-in. 

 

Figure 1: Input Model for web application compliance testing 

As with most real life applications, the input model parameters are not independent of 

each other and some interacting parameters may have combinations, which represent 

limitations to the input domain. For instance, PC’s, Macs and Sparc hardware will run their 

dedicated operating systems. This represents a constraint on our input model and in this case is 

due to inconsistencies between hardware and software components. The following is a list of 

valid constraints placed on our input model: 

1.  MAC hardware requires a MAC OS X operating system. 

2.  Sparc hardware requires a Sun Solaris 8 operating system. 

3.  PC hardware requires a Windows XP operating system. 

4.  A combination of Weblogic 8.1 Application Server and Oracle JRockit 1.4 Java SDK  

requires Firefox 2.0 Browser. 

5.  MAC OS X cannot occur with Weblogic 8.1 Application server. 

Any test case that includes one or more of the invalid combinations, which represents the 

constraints listed above, will fail to execute properly in the current domain context. For instance, 
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a test case (MAC OS X, Weblogic 8.1) cannot be executed successfully and must be excluded 

from the resulting test suite. A test that includes an invalid combination like (SPARC, Windows 

XP) will be rejected or fail during execution and this may compromise test coverage, if some 

valid combinations are only covered by this test. It would appear that removing such offending 

test cases from the resulting test suite is a sufficient solution. However, such a test case may 

cover other valid combinations not covered else where in the test suite. 

 This thesis describes our constraint handling strategy, which includes a formal notation 

that allows the user to specify constraints at a higher level of abstraction. Our approach to 

handling constraints in combinatorial testing deals with the problem of future conflicts and can 

be integrated seamlessly with any existing test generation algorithm. 

 We also describe FireEye, a java-based combinatorial testing tool we developed, which 

implements an extended version of the IPOG test generation algorithm.  

1.2 Structure of Thesis 

The rest of this thesis is organized as follows: In the next chapter, we provide an 

overview of the IPOG strategy and a survey of some existing support for constraint handling. 

Chapter 3 describes our approach to constraint handling, which is to treat the problem as a 

constraint satisfaction problem. In Chapter 4, we present our algorithmic support for to handling 

constraints in a given constrained input model. Chapter 5 describes the FireEye tool and 

highlights its major functionalities and chapter 6 presents some experimental results used to 

validate our constraint handling strategy. Finally, we present our conclusion in Chapter 7. 
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CHAPTER 2 

RELATED WORK 

2.1 Overview 

  
A considerable amount of work has been done on combinatorial testing strategies in the 

past, and one of the most prominent strategies is pairwise testing, which requires that for each 

pair of input parameter of a system, every valid combination of values of these pair be covered 

by at least one test case [2]. 

A generalization of pairwise testing is t-way or t-wise testing, and it requires that every 

combination of any t parameter values be covered by at least one test, where t is known at the 

strength of coverage. We present below an overview of the IPOG (In-Parameter-Order-General) 

strategy, which implements the t-way testing strategy and provides a seamless framework 

through which we provide an extension to handle constraints. We also examine current support 

for constraints by existing algorithms and tools.  

2.2 The IPOG Testing Strategy 

The IPOG strategy extends the IPO (In-parameter-order) strategy to enable the 

generation of a t-way test set for a given input model. The IPOG framework is defined as 

follows: Given a system with t or more parameters, the IPOG strategy generates a t-way test set 

for the first t parameters, it then extends the test set to generate a t-way test set for the first t + 1 

parameters, and continues with the extension of the test set for each additional parameter, until 

a t-way test set for every parameter has been generated. For an additional parameter, an 

existing test set is extended in two steps:  

� Horizontal growth: An existing test set is extended by adding a value for the new 

parameter. The new value is selected in a greedy approach, where the goal is to 

choose the value that covers the largest number of combinations.
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� Vertical growth: A new test is added to the test suite, if no existing test can be changed 

to cover the new combination. 

The IPOG strategy is deterministic and can be easily applied to general software applications. 

To illustrate the IPOG test generation strategy, we use a sample system with four parameters 

Browser: [IE, Firefox], OS: [Windows, Linux], Cache: [true, false] and RAM(GB): [1, 2, 4] as 

input to algorithm IPOG and describe the key steps in the algorithm to generate a 3-way test 

set: 

• Initialize test set (ts) to zero, put input parameters in an arbitrary order, and add into ts a 

test for every combination of the first t parameters. In our case, t = 3 and after execution 

of these procedures we have the following result: 

 

           Table 1:  8 possible combinations of the first 3 parameters  

                        

 

 

 

 

 

 

 

 

 

 

 

 

• Compute the set of all t-way combinations that must be covered in order to cover Pi, 

where i is the current parameter chosen by the algorithm. In the case of our system, i 

= RAM (GB) and the system needs to cover all 3-way combinations of the following 

parameter groups, (Browser, OS, RAM (GB)), (Browser, Cache, RAM (GB)), (OS, 

Cache, RAM (GB)).    
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� Choose one value from RAM (GB) greedily (value covers the largest number of 

combinations) and extend the test set by adding the new value - horizontal growth. The 

result of the horizontal extension is shown in Table 2.  

                                           Table 2: Horizontal extension step for Internet system 

 

 

 

 

 

 

 

 

 

 

  

 

• Cover the remaining uncovered combinations, one at a time by either adding a new test 

or changing a test to cover a combination. The latter operation can be performed only 

on don’t care values (or values that can be replaced by any value without affecting the 

test set coverage), while the former is executed if no existing test can be changed. For 

our system above, after horizontal extension, the following combinations have not been 

covered, (Firefox, Windows, 1), (Firefox, Linux, 3), (IE, Windows, 3), (Windows false, 1) 

etc. To cover these combinations, new tests have to be added. For instance to add a 

test for (Firefox, Linux, 3), a vertical extension is performed, by adding a new test 

(Firefox, Windows, *, 1), test 9, to figure 3 Table 2 above, where * represents don’t care 

value. To cover the combination (Windows, false, 1), the algorithm will change the value 

of cache from * to 1 in the 9th test above. Table 3 below shows the result of the vertical 

extension step of IPOG. 

 

 

 

 

 



 

 

 

8 

 

 

Table 3: Vertical extension for Internet system 
 

 

 

 

 

 

 

 

 

 

 

 
            

 

2.3 Existing Constraint Support 

 While the concept of constraints has often been described and several special handling 

strategies have been proposed, it appears that there is no general, re-implementation solution 

to the problem of handling constraints. A general and re-implementable solution that will keep 

the burden of manipulating constraints off the software tester is required. In this section, we give 

a brief survey of constraint handling by existing tools and algorithms. 

 2.3.1 Deterministic Density Algorithm (DDA)  

 The DDA algorithm is a greedy algorithm which generates a test suite by adding one 

test at a time to a test suite. For each subsequent test to be added many are created and then 

the test that covers the most combinations is chosen. DDA constructs one row of a test suite at 

a time using a steepest ascent approach [3].  

 The authors classify constraints into hard constraints, which represents forbidden 

configurations and soft constraints which are either avoids or neutral configurations. Avoids are 

combinations that are allowed but are undesirable in a test suite, while neutral combinations are 

combinations that have no coverage preference. 
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 To exclude a hard constraint in DDA, the weight of the forbidden configuration is w = -

1.0, for example the first constraint listed for our banking system in figure 1, is a hard constraint 

hence the tuple (MAC, Windows XP) is forbidden and must be assigned a weight w = -1.0. 

 To handle avoid combinations, a negative weight, -1.0 < w < 0.0 is assigned to the 

combinations and the magnitude of the negative weight chosen indicates the importance of 

avoiding the tuple. Neutral combinations are assigned a weight of w = 0.0 

 The weights assigned to a constrained input model in DDA may be applied to individual 

combinations or assigned to individual factors or levels. In the latter case, the algorithm 

calculates the weights by multiplying the (factor, value) weights between pairs. Table 4 shows 

weights assigned to hard constraints in figure 1, between hardware and OS. 

                                       Table 4: Weights of constraint pairs for DDA 
 

 

 

 The DDA algorithm currently supports only soft constraints and according to them, hard 

constraints are referred to as “constraint satisfaction” problem. We believe the requirement for 

specifying constraints in DDA is both time-consuming and error-prone since the user will have 

to specify a weight for every invalid combination. The fact that hard constraints are not handled 

also means that for some input spaces, forbidden configurations which are not testable have no 

way of being  excluded from the resulting test suite and this could be problematic in some test 

environments. 
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2.3.2 Automatic Efficient Test Generator (AETG) 

  AETG is a one-row-at-a-time greedy algorithm for generating covering arrays. To 

generate one row, the first t-tuple is selected based on the one involved in the most uncovered 

pairs, while the remaining parameters are assigned levels randomly. Levels in turn are selected 

based on the one that covers the most new t-tuple [5]. In AETG, constraint handling involves the 

use of multiple relations or explicitly defining disallowed tests. 

 2.3.2.1 Constraints as multiple relations 

 In this method, a constrained input model is rewritten into two or smaller constraint-free 

input models or relations. Test cases are then generated for each input model or relation and 

the final test suite is constructed by merging the different test suites from the multiple relations. 

To construct multiple relations for a constrained model, a parameter P involved in a constraint 

with the least number of values is selected and then the input model is split into intermediate 

models, one for each value of the selected parameter P. Next, the intermediate sub-models that 

contain constraints involving the selected parameter are further split by removing values of the 

other parameter such that the constraints are eliminated. This last step is applied recursively 

until all constraints have been eliminated. This method is also considered to be error-prone, 

heavily time consuming and inefficient for dealing with implicit constraints. 

             2.3.2.2 Constraints as disallowed tests 

  This method requires the user to explicitly supply a list of invalid sub-combinations. A 

disallowed test for a relation specifies a set of test cases that are not valid for that relation. The 

AETG combination strategy does not select any test cases including the invalid sub- 

combinations; instead it finds valid test cases to satisfy the desired coverage.  

 2.3.3 Intelligent Test Case Generator (Whitch) 

  Whitch includes two algorithms for finding coverage arrays, Combinatorial Test 

Services (CTS) and Test Optimizer of Functional Usage (TOFU). Both algorithms use algebraic 

constructions to generate covering arrays and constraint handling requires that invalid 
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combinations be expressed as all possible invalid configurations [6]. Consider the constraint in 

figure 1, (MAC hardware requires a MAC OS X operating system). This implies that the 

combination (MAC, Windows XP) is invalid in our domain context. In whitch, an enumeration of 

all combinations containing MAC and Windows XP is required for the banking systems. There 

are two of such configurations - (MAC, Windows XP), (MAC, Sun Solaris 8), for each hardware 

and operating system configuration. As the number of parameters and values increase, the set 

of invalid combinations may explode. Hence this method may not be feasible in some cases. 

2.3.4 Pairwise Independent Combinatorial Testing tool (PICT) 

PICT uses an algorithm similar to AETG with optimizations to increase execution 

speed. In PICT [7], constraints are specified in the form of propositional formulas, where IF-

THEN statements describe constrained value combinations in a test domain. 

     In [7], a description of the constraint handling support says that constraints are translated 

into a set of exclusions (invalid combinations) at the preparation phase and that test sets 

produced after the preparation phase are generated not to violate any exclusions. We do not 

have enough details on the method for avoiding the problem of removing an invalid test from a 

test not covered anywhere else and also no clear way of re-implementing the system. We also 

note that PICT does not support constraints involving mathematical expressions. For instance, 

the constraint [P1* 2 = P2 => P3 = 100] can not be specified in PICT????????????.
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CHAPTER 3 

A CONSTRAINT HANDLING STRATEGY 

3.1 Overview 

 In this chapter, we describe our approach to handling constraints in an input model. Our 

strategy consist of :  (1) The use of a constraint grammar, which allows the specification of 

constraints at a higher level of abstraction (2)  treating constraints as a constraint satisfaction 

problem and using forward checking to detect future conflicts. We also describe the different 

classes of constraints and how we handle each class.             

3.2 Constraint Specification 

Constraints can be specified in a number of different forms and styles. An intensional 

representation involves the use of variables and operators e.g. P1 = a => P2= b, which states 

that when variable P1 has value of a in a configuration, then variable P2 must have a value of b. 

 Extensional representation involves encoding constraints as forbidden/unwanted tuples, 

which define combinations of parameter- value that cannot execute successfully or not required 

in the context of the given system under test. For a system with parameters P1 = [0, 1], P2 = [2, 

3] and P3= [4, 5], extensionally (0, 2), (1, 4) may be specified as constraints in the system. This 

representation may give rise to implicit relationships among option value choices, which may 

lead to multiple forbidden tuples. In the example, (2, 4) is implicit and needs to be removed as 

well. Depending on the nature of the constraints, a large number of tuples may need to be 

specified and these may be problematic for some systems. We allow the specification of 

constraints at a higher level of abstraction according to a constraint grammar. 
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3.2.1 Constraint Grammar 

Figure 2 shows the BNF for our constraint grammar. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

    Figure 2: BNF for Constraint Grammar 

The following represents valid constraints according to the grammar: 

• Numeric Parameter > number , Numeric Parameter = number, String Parameter = 

“string literal” , Boolean Parameter = true, Boolean Parameter != false 

• Numeric Parameter1 > Numeric Parameter2,  Boolean Parameter1 != Boolean 

Parameter2 

• Numeric Parameter > number  => String Parameter = “string literal” 

• String Parameter  = “string literal”  && Boolean Parameter = true => Numeric Parameter 

<= number 

• Numeric Parameter1 * Numeric Parameter2 = number => String Parameter = “literal” 
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A parser generated for the grammar is used to parse the constraint texts and during test 

generation, values are supplied for each parameter in the constraint and evaluated with a 

Boolean result. 

3.3 Constraint Satisfaction Problem 

 We represent and solve a constraint problem as a CSP, which consist of: 

� A set of variables X = {x1, x2, ?,xn} 

� For each xi, a finite set Di of possible values (its Domain) 

� A set of constraints restricting the values that can be simultaneously assigned 

to the variables. 

 

A solution to a CSP is an assignment of a value from its domain to every variable, in such a 

manner that every constraint is satisfied.  Each constraint in a CSP may involve one or more 

parameters, where the number of parameters in the constraint is known as its arity. A constraint 

involving two parameters is known as a binary constraint, while a constraint involving one 

parameter is known as a Unary constraint and a higher order or non-binary constraint involves 

more that two parameters. A CSP with all binary or unary constraint is represented in a 

constraint graph. 

3.4 Constraint Graph 

  A constraint graph consists of binary or unary constraints in which each node represents a 

variable, and each arc represents a constraint between variables represented by the end points 

of the arc. A unary constraint is represented by an arc from and to the same node. Consider the 

following constraints: 

o OS != “Sun Solaris 8” 

o OS = “Mac OS X” => Application Server != “Weblogic 8.1” 

o Hardware = “Sparc” => Application Server != “Weblogic 8.1” 

o Hardware = “Mac” => OS = “Mac OS X” 
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Figure 3 shows the resulting constraint graph for these constraints. 

 

              Figure 3: Constraint graph for unary and binary constraints 

 
 

 
3.5 Non-Binary Constraints 

A Non-Binary constraint is a constraint that involves more than two variables (arity >2). 

We solve non-binary constraints by converting each non-binary constraint to an equivalent 

binary CSP, using the well known Hidden Variable Encoding [9]. This method encodes each 

non-binary constraint to a variable (called “hidden” variable) that has as domain the valid tuples 

of the constraint. For each tuple in the domain of the hidden variable Hv, the encoding 

introduces compatibility constraints between Hv and each original variable xi in the constraint c. 

Consider the tenary constraint: [(Application Server = “Weblogic 8.1”) && (Java SDK = “Oracle 

JRockit 1.4”) => (Browser = “Firefox 2.0”)] defined for the system in figure 1, to convert this 
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constraint to its binary equivalent, we introduce a hidden variable Hv to the constraint , where 

the domain of Hv is {(Weblogic 8.1, Oracle JRockit 1.4, Firefox 2.0) } . These values represent 

the combination values for (Application Server, Java SDK, Browser), that satisfy the non-binary 

constraint. A binary compatibility constraint between Application Server and Hv, Java SDK and 

Hv and between Browser and Hv now exists as a result of the introduction of the hidden 

variable and is shown in figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                        Figure 4: Hidden variable encoding of a non-binary CSP 
 
 
As part of our algorithmic extension to handle constraints, we implement a hidden variable 

translation algorithm, which converts every non-binary constraint in a CSP to its binary 

constraint equivalent.  

3.6 Future Conflicts 

The problem of future conflict arises when a selected value satisfies some constraints 

at one point in the test generation process but fails to satisfy every constraint in the future. This 

problem may lead to backtracking and removal of combinations earlier marked as covered and 

hence may affect test coverage. Consider a CSP with three parameters: P1[0,1], P2[1,3] , 

P3[1,2,3] and two constraints: P1 < P2 and P2 < P3 and the combination of values for P1,P2 : 
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(0,3) and P2, P3 : (3, 3). A test generation algorithm executes the following steps to cover the 

combinations: 

� Assign 0 to P1 and 3 to P2 

� Check the constraint between P1 and P2 

� Add combination to test suite since P1 < P2 is true. 

� Assign 3 to P3 

� Check constraint between P2 and P3 

� P2 is not less than P3, backtrack and remove 0,3  since no value of P3 can 

satisfy the constraint between P2(3) and P3 

This is clearly a problem and we detect and prevent this type of problem by using Forward 

Checking. 

3.7 Forward Checking 

Forward checking is a constraint propagation technique that is used to propagate the 

implications of constraints on one variable to onto other variables in the constraint graph. The 

Forward checking technique performs look ahead to detect impossible combinations as soon as 

possible, thereby preventing future conflicts. During forward checking whenever a variable X is 

assigned a value a, the algorithm checks every unassigned value of variable Y that is 

connected to X by a constraint and deletes from Y’s domain any value that is inconsistent with 

the value chosen for X. Any current assignment of value a to x that results in a “domain wipe-

out” of any future variable, is inconsistent and not part of a solution to the CSP. 

3.7.1 Preventing future conflict with forward checking 

Forward checking can be applied to the problem in section 3.6 as follows: 

• Assign 0 to P1 

• Check arc P1, P2 (every value of P2 is consistent with 0) 

• Assign 3 to P2 

• Check arc P2, P3 
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o Delete 1, 2, 3 from domain of P3 since none is less than 3 . This reduces the 

domain of P3. 

o Empty domain of P3 implies 0,3 is inconsistent. 
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CHAPTER 4 

ALGORITHMIC SUPPORT FOR CONSTRAINT HANDLING  

4.1 Overview 

 

In this section, we present the FireEye constraint handling strategy, Our motivation for 

providing this extension is to develop a general constraint handling strategy that is tightly 

integrated into an efficient test generation framework, easily re-implementable, scales well for a 

large number of parameter-values and frees the software tester from the trouble of manipulating 

constraints by listing all invalid combinations or re-modeling the system. We also show how to 

integrate our solution with the IPOG test generation algorithm. 

4.2 The FC-CS Algorithm 

Figure 5 shows the FC-CS algorithm, which implements forward checking and 

maintaining arc consistency strategy for constraint handling. The algorithm follows from the AC-

3 algorithm for arc consistency but also considers hidden variables during search and arc 

consistency. After applying algorithm FC-CS, either every arc is arc consistent or some 

parameter has an empty domain, indicating that the CSP cannot be made arc consistent. In the 

case of a domain wipe-out, the current assignment is regarded as invalid and therefore rejected. 

Algorithm FC-CS consists of three functions, FORWARD-CHECK, PROPAGATE and 

REMOVE-INCONSISTENT-VALUES.  

FORWARD-CHECK takes as input a tuple π, consisting of the combination of values to 

be checked against the set of constraints in the CSP, a set of input parameters ps and a CSP 

cs and returns false if some variable in the graph experiences a domain wipe-out during value 

assignment. PROPAGATE takes as input a node with a current assignment v in π and after 

execution every arc in the constraint graph is either arc-consistent or some node has an empty 
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domain. For each arc (Pi, Pj), if a value is deleted from domain of Pj then PROPAGATE revises 

those arcs that terminate at Pj. 

REMOVE-INCONSISTENT-VALUES takes as input an arc (Pi, Pk) and returns true if a 

value is removed from the domain of Pi.  A value is removed from the domain of a variable if the 

algorithm detects that the variable does not support the current assignment of value to Pi. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Figure 5: FC-CS Algorithm for Constraint Handling 
  

 

4.2.1 The FC-CS Strategy 

The FC-CS strategy is as follows: 

o Assign each value v to a node Xj in the constraint graph 

o Invoke propagate to propagate the effect of the current assignment 

� Insert every arc (Xi, Xj) terminating at Xj into a Queue 
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� Remove each arc (Xi, Xj) from the Queue 

� Look at each unassigned variable Xi connected to Xj by a constraint 

� Delete any value in the domain of Xi that is inconsistent with Xj 

� After deleting a value from the domain of Xi, every arc (Xk, Xi) 

pointing at Xi is re-inserted into the Queue and re-checked. 

o If there is any node Xj with empty domain, reject the current assignment. 

 

To describe algorithm FC-CS, we define a sample CSP and apply the algorithm to the CSP. 

Figure 6 shows our sample CSP, which is our input to algorithm FC-CS. 

 

 

   

 

 

 

       Figure 6: Sample CSP input to FC-CS 

 

A greedy algorithm like IPOG will generate its test one- row at a time, selecting values from 

each parameter to generate a t-way test set. During test generation, FC-CS will be invoked to 

determine if a tuple satisfies the constraints in the CSP. Consider the input π = (1, 3, 6), ps = 

{P1, P2, P3} and the CSP in figure 6. The initialization phase of FC-CS involves: 

� Sorting input parameters according to their domain sizes  

� Converting every non-binary constraint in the CSP into binary equivalent. 

� The initialization of the constraint graph, with all parameters in the input    model added 

to the graph and edges added between nodes that have binary constraints between 

them. 

In FORWARD-CHECK the value 1 from π is assigned to node P1 and PROPAGATE is 

invoked. Figure 7 shows a snapshot of the constraint graph with 1 assigned to P1. 
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Figure 7: Constraint Graph showing assignment P1 � 1 

 

 
In PROPAGATE, every arc terminating at P1 is inserted into the Queue [(P2, P1), (H1, P1)] and 

each arc is revised by invoking REMOVE-INCONSISTENT-VALUES on the arc. 

REMOVE-INCONSISTENT-VALUES checks arc P2, P1, and finds every value of P2 consistent 

with the current value of P1 (1). Next the arc (H1, P1) is checked and the tuples (2, 3, 5), (2, 4, 

6) are temporarily deleted from the domain of H1 since the value of P1 is not 1 in those tuples. 

This deletion causes the arcs (P1, H1), (P2, H1), (P3, H1) to also be inserted into the Queue 

and re-checked since they may have lost support as a result of the deletion. Figure 8 shows the 

result of invoking PROPAGATE on node P1 � 1. 
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Figure 8: Constraint Graph showing P1 � 1 and Domain [H1] reduced 

 
 
Next the algorithm assigns the value 3 to P2 and the effect is propagated. Arcs (P2, P1) and 

(P2, H1) are added to the queue in PROPAGATE. When REMOVE-INCONSISTENT-EDGES is 

invoked with (P2, H1), the remaining tuple (1, 4, 5) is removed from domain Hi since the 

assignment of P2 � 3 is not supported by H1. The domain Hi experiences a domain wipe-out 

and the function PROPAGATE returns to FORWARD-CHECK, which returns true to the test 

generation algorithm, indicating an invalid combination (1, 3, 7). 

Figure 9 shows the assignment of 3 to P2 which results in a domain wipe-out for Hi 
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                        Figure 9: Constraint Graph showing domain wipe out after assigning P2 � 3 

 
 

4.3 Integrating FC-CS with IPOG 

The algorithmic extension to IPOG happens at four major points and these points of 

extensions are described below. 

� IPOG adds into ts a test for every combination of the first t parameters: This step is 

modified to include a check for every test against the constraints in the CSP for 

satisfaction. Any test found to violate any constraint in the CSP is not added to ts. 

Figure 10 shows an algorithm that is used to check if a tuple satisfies every constraint in 

the CSP. 
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                                Figure 10: Algorithm IS-SATISFIED 

 

� IPOG generates a t-way combinations of values, π involving parameter Pi and t-1 

parameters among the first i – 1 parameters. We extend IPOG at this point to include a 

check that every tuple in π satisfies the constraints in CSP. Any tuple that does not 

satisfy the constraints in CSP will be removed from π. This check involves invoking the 

MAC-CS algorithm each time we pick up a tuple in π . 

� IPOG extends the test set ts by adding a value for the new parameter (Horizontal 

growth). When a test is selected for extension, we invoke the FORWARD-CHECK 

algorithm to check that the test satisfies every constraint in the CSP. 

� IPOG extends the test set ts by adding a new test or changing an existing test (Vertical 

Growth). In both cases, we invoke FORWARD-CHECK to validate the test and ensure 

the test satisfies every constraint in the CSP. 
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4.4 Don’t Care Values 

A don’t care value represents a value of a parameter that does not contribute to the test 

coverage of a test suite during test generation. A don’t care value may be represented by a 

character e.g. “*” to denote that any value of the parameter can be used to replace “*”. 

4.4.1 Handling Don’t Care Values in Constrained inputs 

In the presence of constraints, a value is regarded as don’t care, if and only if it does 

not contribute to the test coverage and does not violate any constraints in the input model. To 

enforce this condition, every value of the parameter needs to be checked against the set of 

constraints and if any violation is found, the value is not a don’t care value.  In the integration of 

FC-CS with IPOG, we check every don’t care value to ensure that it satisfies every constraint, 

� If we find that no value of the parameter satisfies all the constraints, we remove the test 

case.  

� If every value of the parameter satisfies every constraint, then we leave it as don’t care. 

� If any value satisfies every constraint, we replace the don’t care with the satisfying 

value. 

4.5 FC-CS Complexity 

We consider next, the complexity of the constraint handling strategy. For a binary CSP, 

space complexity is O(md), where m is the number of constraints and d is the maximum domain 

size. Worst case time complexity for binary CSP is O(n
2
d

3
), where n is the number of variables. 

A binary CSP has a maximum of O(n
2
) arcs and checking consistency of an arc (Xi, Xj) requires 

O(d
2 

) time. Each arc (Xk, Xi) can be inserted into the queue, 2d times. Total time complexity is 

O(n
2 
d

2  
2d) = O(n

2
d

3
). 

For a non-binary CSP, space complexity is dominated by the space required to store 

domain of the hidden variable and this is O(ed
k
), where e is the number of hidden variables and 

k is the maximum arity of the constraints. Worst case time complexity for non-binary CSP is 

given as O(ekd
k+1

). This time complexity is dominated by the call to REMOVE-INCONSISTENT- 
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VALUES. For every deletion of a value from a domain of one of the k original variables 

constrained with a hidden variable Hi, REMOVE-INCONSISTENT-VALUES will be invoked 

once. This means REMOVE-INCONSISTENT- VALUES can be called at most kd times. For 

each value a, we perform O(d
k
) checks to find out if a tuple in DOMAIN[Hi] supports value a, 

and for kd values, we have O(kdd
k 

) = O(kd
k+1

). In general, for e hidden variables, worst case 

time complexity is O(ekd
k+1 

). 

 

 



 

 

 

28 

CHAPTER 5 

FIREEYE: A T-WAY TESTING TOOL WITH CONSTRAINT SUPPORT 

 5.1 Overview  

 
FireEye is a combinatorial testing tool that can be used to generate t-way test suites. 

The test suites generated by FireEye are more effective when compared to manually generated 

tests, in detecting faults that are caused by interactions among different participating 

parameters. 

Today’s complex, large and heavily distributed systems increase testing requirements 

and Tester’s generally require tools that help to automate the process of testing, FireEye with its 

robust design and rich set of functionality help provide the automation required by testers and 

also helps to meet the increased testing requirements of today’s systems. 

In this chapter we describe the design and major features of FireEye.  

5.2 FireEye Architecture and Design 

5.2.1 Architectural Overview 

The overall design goal of FireEye is ease of use, extensibility of the core engine, 

minimal configuration and platform independence. Figure 11 shows a high level system 

architecture diagram for FireEye. 



 

 

 

29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                            

Figure 11: FireEye System High Level Architecture Overview 

 

5.2.2 General Workflow 

 The workflow that is generally executed is as follows 

1. User launches the main UI component. 

2. User creates or edits a system. 

3. User initiates a build event. 
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4. Build Action handler invokes build method exposed by the FireEye facade, passing the   

system configuration object. 

5. Build Action handler receives the build result and updates the swing component model. 

6. The controller component of the view updates the view with test results. 

5.2.3   FireEye GUI Design 

 The core design principle for the FireEye GUI is ease of use. We designed the GUI 

components to make the job of the software tester easy and enjoyable. We present below a use 

case diagram (Figure 12) for the FireEye GUI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: FireEye GUI use case diagram 
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5.3 Technology Stack 

The technologies, tools and frameworks used in developing FireEye are as follows: 

5.3.1 Graphical User Interface 

The following technologies and frameworks were used to implement FireEye user interface. 

� Java Swing: This is a GUI framework that implements a modified model-view-controller, 

sometimes referred to as separable model architecture. The swing architecture consists 

of a model, which represents the data for the application, a user-interface object, which 

consist of the controller and the view, and a user interface manager, which is used by 

components and programs to access look-and-feel information. 

� Swing layout: This is an extension library to swing, which enables the creation of 

professional cross platform layouts. 

5.3.2 Utility libraries 

� JDOM: A Java-based open-source library for accessing, manipulating and outputting  

XML data from Java code. 

� JXL: An open source java library for reading, writing and modifying excel spreadsheets 

       dynamically. 

� JFreeChart: An open source java chart library for displaying quality charts in client 

      applications. 

� JH: A java help library used to develop help viewer components for application help 

system. 

� XercesImpl: An open source implementation of Xerces, which is a Java XML parser. 

JCommon: A collection of utility classes used by JFreechart. 
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5.4 FireEye Major features 

In this section we provide an overview of the major features of FireEye. 

5.4.1 Input Model 

 We mentioned earlier that the major design goal of FireEye is ease of use, this is true 

as evidenced by our inputs to FireEye. Two input file formats are accepted by FireEye, a plain  

text file (Figure 13) and an XML input file (Figure 14). The plain text file can be created outside 

the application and may be converted to the GUI input format by opening the text file from the 

open window command and then saving the system in the XML format. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 13: Plain Text Input Model File for FireEye 

 

 



 

 

 

33 

A tester specifies test parameters and values, parameter groups and constraints in the input file. 

By default, the tool generates a pairwise test set and also provides an interface through which 

the tester can specify a different value for it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: XML input model file for FireEye 

 

Figure 14: XML input model file for FireEye 

 

5.4.2 T-way Test Set Generation 

This is the main feature of FireEye. When an input model is supplied, FireEye 

generates a t-way test set for the input, where t can be specified by the user or the default value 
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of 2 is used. FireEye supports t-way generation for 2 ≤ t ≤ 6 and allows the use of a variety of 

test set generation algorithms available from the GUI options window. The following is a list of 

supported algorithms developed by the ACTS group: IPOG, IPOG-D, IPOG-F, IPOG-F2 and 

Paintball. With FireEye, test set generation can proceed in two modes namely: scratch and 

extend. In scratch mode, a test set is built from the scratch, while in extend mode; a test set is 

generated by extending an existing test set. 

5.4.3 Mixed Strength Test Generation 

FireEye’s mixed strength test generation feature allows different parameter groups to 

be created and covered with different strengths. A tester may discover that certain parameter 

interactions leads to a different set of defects or increases the number of detects than other 

interactions, hence the parameters should be tested thoroughly, setting a higher t on the entire 

set of parameters may produce too many test cases. The use of mixed-strength test generation 

will help to achieve a higher coverage without the problem of a large test suite. For example 

consider a system with 8 parameters, P1, P2?P8.  A default relation, consisting of all the 

parameters and strength of 2 can be created, then additional relations can be created, if the 

tester finds that some parameters require better coverage, he may for instance create a relation 

that includes P2, P3, P4 and P5 with strength 4 if P2, P3, P4 and P5 could potentially interact with 

each other and their interaction may trigger certain defects. 

5.4.4 Constraint Support 

FireEye includes support for constraint handling by generating test cases that are free 

of invalid or unwanted combinations of input parameters. We discussed the constraint handling 

of strategy of FireEye in chapter 3. A user interface for specifying constraints is provided in 

FireEye. The interface allows the specification of constraints involving different types (numeric, 

Enum and Boolean), any arity and with any of logical, relational, mathematic and equality 

operators. To implement our constraint handling strategy, we define a constraint grammar, 

which supports high level input of constraints. FireEye’s constraint grammar supports identifiers, 
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� <Identifier><operator><String Literal>  

  e.g Application Server != “Weblogic 8.1” 

� <Identifier1> <operator> <Identifier2> 

e.g Loan_Amount < Household Income 

� <Identifier1><operator1><digits><Implication> 

<Identifier2><operator2> <Boolean> 

 e.g  Loan_Amount > 500,000 => Approved = false 

 

string literals, integer literals, digits, Booleans and operator tokens and a set of classes 

generated by JavaCC implements the lexical analyzer and parser for the grammar. The 

following texts represent constraints that are valid with respect to our constraint grammar: 

 

 

 

 

 

 

 

 

 

 

 

 

 

We provide an editor that enables the user to enter constraints similar to the ones above and 

these constraints are parsed according to the grammar before they are processed by the test 

generation engine during test generation. 

5.4.5 Coverage Verification 

Using this feature, a test set generated by FireEye or supplied by user can be verified for t-way 

coverage satisfaction. A 100% coverage is reported if a test set covers all t-way combinations. 

5.5 FireEye GUI components 

This section describes major GUI windows used to implement FireEye’s functionalities. 

5.5.1 Main Window 

Fig 15 shows FireEye’s main application window. This window contains menu items 

used to invoke other functional windows. 
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 Figure 15: FireEye Main Application Window 

Figure 15: FireEye Main Window 

 

 The main window consists of a split pane, a menu bar and a toolbar. The left pane 

displays a tree structure that is used to represent system configurations. Multiple systems can 

be displayed in the tree and each system is shown as a three-level hierarchy namely: a top 

node level, which represents the system, a second node level, which represents parameters, 

relations or constraints and a third leaf level, which represents a set of values. 
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 The right pane contains a tabbed pane, which consists of two tabs, namely: Test 

Result, shown in figure 15 and statistics shown in figure 16. The test result tab contains a table, 

which is used to display a test set for the currently selected system. Each row in the table 

represents a test and each column represents a parameter. The statistics tab displays relevant 

statistical information about the test set. It contains a graph button and a pane for displaying 

graphical results. The growth rate of the test coverage with respect to the tests in the test set 

displayed in the Test Result tab can be graphed by clicking on the graph below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Main Window showing Statistics Tab 

 

5.5.2 New System Window 

Fig 17 shows the new system window used to create a new system configuration, edit 

an existing system configuration, add relations and add constraints. The new system window 

contains a tabbed pane made up of three tabs namely: Parameters, Relations and Constraints. 
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The Parameters tab allows the user to enter a system name, a list of parameters and a list of 

values for each parameter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: New System window 

 

The Relations tab is shown in Figure 18, and it allows the user to create parameter groups with 

different strengths. The Constraints tab shown in Figure 19 allows the user to enter constraints 

as predicate functions. The tester can express constraints involving parameters and operators. 

The following operators are supported: logical, relational, equality and mathematical operators, 

and the tester can enter constraints involving any number of parameters. 
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Figure 18: New System Window showing Relations Tab 

 

Figure 19: New System Window showing Constraint Tab 
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5.5.3 Build Options Window 

The build options window is used to set or modify the build configuration for a current 

system. Figure 20 shows the build options window and the following option may be specified 

using this window 

• Algorithm: This option allows the user to choose which algorithm to be used for  test 

 generation. The user can choose between IPOG, IPOG-F, IPOG-D, IPOG-F2 and 

 Paintball. 

• Maxtries: This option is relevant to the paintball algorithm, and specifies the 

 number of candidates to be generated randomly at each step. 

• Randomize don’t care values: This option when checked, allows all don’t care 

 values in the resulting test set to be replaced with a random value. 

• Mode: The user can select between scratch or extend, to indicate how the test set 

 should be built. Scratch mode specifies that the test set be built from the  scratch, while 

 extend specifies that the test set should be built by extending an existing test set. 

• eProgress: This option is used to enable the display of progress information on the 

 console. 

 

 

 

Figure 20: Build Option Window 
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CHAPTER 6 

EVALUATION AND RESULTS 

6.1 Objectives 

 
In this chapter we show some experimental results obtained while investigating the 

effect on test suite size, of running IPOG with FC-CS algorithm on a constrained input model 

and the effect on execution time, of running IPOG with FC-CS algorithm on a constrained input 

model. We ran IPOG with FC-CS on an Intel Pentium 1.73MHz processor with 2GB of RAM 

running Windows XP. 

6.2 Impact of constraint handling on test suite size 

To investigate the impact of IPOG with FC-CS on size of test suite, we generate 

random CSP, and compare our result with PICT and IPOG. Table 5 shows a subset of size data 

on constrained input models.  A random CSP has n variables each with domain size d; and c 

number of constraints with arity k, and t satisfying tuples. We chose n between 3 and 6, c 

between 1 and 4, k between 1 and 4 and t between 2 and 3. For each n, we generate k values, 

where ki  represents the size of the domain [ni]. 

For each subsystem configuration, we run IPOG-Test on the constrained input, we also run 

PICT on the constrained and unconstrained input model. We record for each run, 4 test suite 

sizes and the result is shown in table 5. Table 5 shows the following data sets: 

1. The unconstrained input, model, SUT (n, d[ ]),d[ ], represents the array of domain sizes.  

2. CSP parameters (c, k, t) added to the SUT to form the constrained input model. The 

result of running IPOG on the unconstrained input. 

3. The result of running IPOG on the unconstrained input. 

4. The result of running PICT on the unconstrained input 
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5. The result of running IPOG with FC-CS on the constrained input. 

6. The result of running PICT on the constrained input. 

 

The overall result show a slight variation between the constrained and unconstrained input 

when t = 2 but when t = 3, we notice more variation.   We  can   conclude  from the results, that 

our implementation of IPOG with FC-CS constraint handling strategy produces test suite sizes, 

which compares favorably with known existing test tool that supports constraints. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

6.3 Impact of constraint handling on execution time 

 To investigate the execution time impact of running IPOG with FC-CS on a constrained 

input model, we use two classes of CSP’s namely, binary and non-binary. For binary CSP, we 

use two system configurations. System A has n fixed to 4 and d varied from 5 to 20, while 

System B has d fixed to 15 and n varied from 2 to 10 in increments of 2. In both systems we set 

Table 5: Size data comparison of existing tool with IPOG and FC-CS 
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t to 3. Table 6 shows the result of building System A for different d values and Table 7 shows 

the result of building System B for different n values. 

  Table 6: System A showing time for d between 5 and 20 

             

 

       Table 7: System B showing time for n between 2 and 10 

 
 

The result shown in Table 8 and 9, show that the running time of IPOG with FC-CS on binary 

CSP depends on the number of variables and the maximum domain size. We performed curve 

fitting analysis and extrapolation on the data and conclude that that for binary CSP, the 

asymptotic time complexity is bounded by O(n
2
d

k
). 

To investigate non-binary CSP with hidden variable encoding, we define 3 system 

configurations and each system has n = number of variables, d = maximum domain size, k = 
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arity of constraints, c = number of constraints and e = number of hidden variables. System A 

had n = 5, k = 3, c = 3, e = 2 and d is varied between 5 and 15, while System B has n = 5, k = 3, 

c = 10, d = 10 and e is varied between 1 and 10 and System C has n = 5, k is varied between 1 

and 4, d = 10, c = 3, and e = 1. Table 8, 9 and 10 show the result of running IPOG with FC-CS 

on the system configurations with t = 3. 

Table 8: Result of System A with d [5 to 15] 

 
 

 

Table 9: Result of System B with e [1 to 10] 

 

 

Table 10: Result of System C with k [1 to 4] 
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We note from the table above that IPOG with FC-CS performs better on non-binary constraints 

when the number of satisfying tuples is small. We performed curve fitting analysis on the 

execution time data, and the analysis showed that the running time is bounded by O(ekd
k+1

). 
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CHAPTER 7 

CONCLUSION 

 

In this thesis we provide a general, scalable and re-implementable solution to the problem of 

constraint handling. We describe our algorithmic extension and compare the results produced 

by our algorithm with the results from an existing tool. Our constraint handling strategy allows 

the entry of constraints at higher level of abstraction, which is a departure form the method of 

specifying constraints by existing tools. The resulting size of test suites generated by a 

combination of IPOG with FC-CS is comparable with that generated by existing constraint 

handling tools and our strategy is effectively integrated into the test generation algorithm and 

not through any third party tool. 
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