

HIGH-LEVEL CONSTRAINT SUPPORT FOR COMBINATORIAL TESTING

by

ANTHONY C. OPARA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2008

Copyright © by Anthony Opara 2008

All Rights Reserved

ACKNOWLEDGEMENTS

 I am deeply grateful to my advisor, Dr. Lei, whose assistance, stimulating suggestions,

thoroughness and encouragement helped me throughout the duration of my research work and

thesis writing. I am also grateful to Mr. David Levine and Dr. Donggang Liu for serving as

committee members for my defense. Finally, I am grateful to members of my family and friends

for all their support and motivation throughout my research work.

 July 3, 2008

iii

ABSTRACT

HIGH-LEVEL CONSTRAINT SUPPORT FOR COMBINATORIAL TESTING

ANTHONY C. OPARA, M.S.

The University of Texas at Arlington, 2008

Supervising Professor: Dr. Jeff Yu Lei

Combinatorial testing constructs test cases by combining different input parameter

values based on some effective combinatorial strategy. This software testing approach has

displayed very promising attributes and is rapidly gaining popularity in recent years. However,

existing work does not provide adequate support for constraint handling. Constraints are often

specified as part of an input parameter model and they may be due to several reasons such as

incompatibility between certain hardware and software components. A test generation algorithm

needs to take these constraints into account during the test generation process to exclude

combinations that are invalid from the domain semantics.

In this thesis, we describe a general approach to handling constraints for combinatorial

testing. Our approach includes a formal notation that allows the user to specify constraints at a

higher level of abstraction. We discuss how to deal with the problem of “future conflicts”, which

arises when a selected value satisfies all the constraints at one point in the test generation

process but fails to satisfy some constraints in the future. Our approach can be combined with

different combinatorial test generation algorithms, and we demonstrate this by showing how to

extend an existing combinatorial test generation algorithm, called In-Parameter-Order-General

 iv

(IPOG), to handle constraints. We describe a Java based combinatorial testing tool developed

in the course of this research work called FireEye, which implements an extended version of

IPOG that supports constraint handling, and report some experimental results that demonstrate

the effectiveness of our approach.

 .

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS???????????????????????????. iii

ABSTRACT?????????????????????????????????. iv

LIST OF FIGURES???..??????????????????????????.. ix

LIST OF TABLES??????????????????????????????... x

Chapter Page

 1. INTRODUCTION ????????????????????..???..?.... 1

 1.1 Overview ?????????????????????.......?.?. 1

 1.2 Structure of Thesis ??????????????????..?..?. 4

 2. RELATED WORK ???????????????.????????..?? 5

 2.1 Overview ???????????..??????????????. 5

 2.2 The IPOG Testing Strategy ???????..?????????.... 5

 2.3 Existing Constraint Support ??????????..???????. 8

 2.3.1 Deterministic Density Algorithm (DDA) ?????.???. 8

 2.3.2 Automatic Efficient Test Generator (AETG)?????.?. 10

 2.3.2.1 Constraints as multiple relations???.?. 10

 2.3.2.2 Constraints as disallowed tests????? 10

 2.3.3 Intelligent Test Case Generator (Whitch) ???..???... 10

 2.3.4 Pairwise Independent Combinatorial Testing tool (PICT)... 11

 3. A CONSTRAINT HANDLING STRATEGY ……………………………… 12

 3.1 Overview ?????????????????????????.. 12

3.2 Constraint Specification ???.???????????????? 12

3.2.1 Constraint Grammar ????????????..???.. 13

vi

 3.3 Constraint Satisfaction Problem ?...?????????????? 14

 3.4 Constraint Graph????????.. ??????????..???. 14

 3.5 Non-Binary Constraints ??????????????....?..??.. 15

 3.6 Future Conflicts ???????????????..?..???..?? 17

 3.7 Forward Checking???????????????..??.???? 17

 3.7.1 Preventing future conflict with forward checking????. 17

 4. ALGORITHMIC SUPPORT FOR CONSTRAINT HANDLING ??????.. 19

 4.1 Overview ??????????????????????...?.?. 19

 4.2 The FC-CS Algorithm???????????????..??...?.. 19

 4.2.1 The FC-CS Strategy????????????????. 20

 4.3 Integrating FC-CS with IPOG ??..?????????????? 24

 4.4 Don’t Care Values????? ??..?????????????? 26

 4.4.1 Handling Don’t Care Values in Constrained inputs ???. 26

 4.5 FC-CS Complexity ?????..??..?????????????? 26

 5. FIREEYE: A T-WAY TESTING TOOL WITH CONSTRAINT SUPPORT?.... 28

 5.1 Overview ??????????????????????...??. 28

 5.2 FireEye Architecture and Design ??????????..??...?.. 28

 5.2.1 Architectural Overview ????????...??..?...?.. 28

 5.2.2 General Workflow??????????????..??? 29

 5.2.3 FireEye GUI Design ??????????????.?? 30

5.3 Technology Stack ??..???????????????...??? 31

 5.3.1 Graphical User Interface ????????.????...?. 31

 5.3.2 Utility libraries ?????????..????????.? 31

5.4 FireEye Major features ??..?????????????...??? 32

 5.4.1 Input Model ?????????????...??..?...?.. 32

vii

 5.4.2 T-way Test Set Generation ???????????....? 33

 5.4.3 Mixed Strength Test Generation ?????????..?.. 34

 5.4.4 Constraint Support ???????..??..?.????.? 34

5.4.5 Coverage Verification ???????..??..????.? 35

5.5 FireEye GUI components ??..????????????...??? 35

 5.5.1 Main Window ?????????????.??..?........ 35

 5.5.2 New System Window ??????.???.??..?...?.. 37

 5.5.3 Build Options Window ?????????????.?... 40

 6. EVALUATION AND RESULTS ??????????????????..... 41

6.1 Objectives ?????...??????????.??????...??. 41

 6.2 Impact of constraint handling on test suite size????????? 41

 6.3 Impact of constraint handling on execution time ????????. 42

 7. CONCLUSION ??????????????????.............................. 46

 REFERENCES???????????????????????.???.. 47

 BIOGRAPHICAL INFORMATION ????????...?????????? 49

viii

LIST OF FIGURES

Figure Page

 1 Input Model for web application compliance testing????................... 3

 2 BNF for Constraint Grammar ????.??????????????. 13

 3 Constraint graph for unary and binary constraints ????..????? 15

 4 Hidden variable encoding of a non-binary CSP ?????????.?. 16

 5 FC-CS Algorithm for Constraint Handling ???..????................... 20

 6 Sample CSP input to FC-CS ????.??????????????. 21

 7 Constraint Graph showing assignment P1 � 1????.?..????? 22

 8 Constraint Graph showing P1 � 1 and Domain [H1] reduced ????. 23

 9 Constraint Graph showing domain wipe out after assigning P2 � 3....... 24

 10 Algorithm IS-SATISFIED ??????.??????????????. 25

 11 FireEye System High Level Architecture Overview ??????????29

 12 FireEye GUI use case diagram ????????????????.?. 30

 13 Plain Text Input Model File for FireEye??????????????.... 32

 14 XML input model file for FireEye???????????????........ 33

 15 FireEye Main Window ????..????????????????? 36

 16 Main Window showing Statistics Tab ????????..?????.?. 37

 17 New System window??????????????.??.?????.. 38

 18 New System Window showing Relations Tab?????..?..?????. 39

 19 New System Window showing Constraint Tab???????........??.. 39

 20 Build Option Window????????????????..?????? 40

ix

LIST OF TABLES

Table Page

 1 8 possible combinations of the first 3 parameters?.?............................ 6

 2 Horizontal extension step for Internet system??????................... 7

 3 Vertical extension for Internet system?... 8

 4 Weights of constraint pairs for DDA?.????????????......... 9

 5 Size data comparison of existing tool with IPOG and FC-CS …….......... 42

 6 System A showing time for d between 5 and 20 ??????..??? 43

 7 System B showing time for n between 2 and 10 ?.???????..?. 43

 8 Result of System A with d [5 to 15] ????????.?..?????? 44

 9 Result of System B with e [1 to 10] ??????...?????.............. 44

 10 Result of System C with k [1 to 4] ???????????..????... 44

x

 1

CHAPTER 1

INTRODUCTION

1.1 Overview

The trend in software development is increasingly moving towards the development of

software systems that are larger, complex, more distributed and highly configurable. While

these complex systems solve many complex problems, they are more error prone, thus the

need for more detailed testing requirements. Many of today’s systems are built to be run on

different operating systems and hardware configurations and consist of various components

interacting to render software services to users. These components, which may have multiple

versions, are configured by manipulating several compile and run-time options. Each new

configuration item is often associated with a combinatorial increase in the number of potential

runtime configurations and could possibly behave differently on different platforms or even

possess different bugs. Thus, ideally each configuration will have to be tested.

Software Testing, which is the process of executing a program with the intent of finding

faults in a program or system, is one of the approaches that can be used to ensure software

quality in today’s systems. The software testing process begins with a test data generation

stage followed by a test execution and then the test evaluation stage. During test generation,

data which will be fed the system during the test execution phase is generated. The quality of

the test data determines how effective the testing result will turn out. For large and complex

systems, it is often impossible to test every combination of interacting parameters; hence it is

necessary to reduce the set of test configurations, while still satisfying the required test

coverage. Combinatorial testing is one approach to software testing that generates test cases

selectively and not exhaustively, by combining values of different input parameters, based on

some combinatorial strategy. A considerable number of combinatorial testing tools and

 2

algorithms exist, that can be used to test highly configurable, complex and large systems, and

some examples are IPOG [2], AETG [5], DDA [3] and PICT [8], which implement one of several

combinatorial testing strategies. From the domain semantics, some combination of parameter–

values for a given system may be invalid or forbidden and will have to be excluded during test

generation. Invalid parameter-value combinations are known as constraints and are often

defined as part of the input parameter model of a system. Existing combinatorial testing tools do

not provide adequate support for constraint handling and this is a big limitation to the

combinatorial testing approach especially with testing today’s systems. Existing support for

constraints includes one or more of the following restrictions [1]:

1. Requiring the user to explicitly define every illegal configuration.

2. Requiring the user to re-model the input model into disjoint subsets of valid

Combinations.

3. The use of a proprietary constraint handling method that cannot be re-implemented.

4. The use of third party constraint handling tools, which is often tweaked to work with

existing test generation tools

Having the user enumerate every illegal configuration or re-model the input model is

time consuming and error-prone, while the use of third party constraint handling tools often lead

to unpredictable application behavior, arising from an inflexible integration with existing test

generation tools constraints. Figure 1 presents a model used to perform a compatibility test of

web-based distributed banking software. This system can run on different platforms and we

want to test that any claim such as: “our banking software can run on windows XP OS and Mac

OSX” are valid. We consider a combination of Hardware (PC, Mac, Sparc), Operating system

(Windows XP, Sun Solaris 8, ac OS X) ,Browser(IE5.5, Firefox 2.0, Mozilla 1.4), Java SDK (Sun

JDK 1.4, Sun JDK 1.5, Oracle JRockit 1.4) and Application server (Weblogic 8.1, Weblogic

9.0), which represents different configurations supported by our banking application. There are

a total of 162, (3 x 3 x 3 x 3 x 2), different combinations of the input model parameter values

 3

and to fully test the system, we require a test suite for each configuration. For each test suite

that is run, it is possible that a different behavior is exhibited by the system and a different set of

bugs may be revealed in the application. For instance, a problem with Firefox browser may not

be revealed under a Sun JDK 1.5 Plug-in but may be revealed under the JRockit 1.4 Plug-in.

Figure 1: Input Model for web application compliance testing

As with most real life applications, the input model parameters are not independent of

each other and some interacting parameters may have combinations, which represent

limitations to the input domain. For instance, PC’s, Macs and Sparc hardware will run their

dedicated operating systems. This represents a constraint on our input model and in this case is

due to inconsistencies between hardware and software components. The following is a list of

valid constraints placed on our input model:

1. MAC hardware requires a MAC OS X operating system.

2. Sparc hardware requires a Sun Solaris 8 operating system.

3. PC hardware requires a Windows XP operating system.

4. A combination of Weblogic 8.1 Application Server and Oracle JRockit 1.4 Java SDK

requires Firefox 2.0 Browser.

5. MAC OS X cannot occur with Weblogic 8.1 Application server.

Any test case that includes one or more of the invalid combinations, which represents the

constraints listed above, will fail to execute properly in the current domain context. For instance,

 4

a test case (MAC OS X, Weblogic 8.1) cannot be executed successfully and must be excluded

from the resulting test suite. A test that includes an invalid combination like (SPARC, Windows

XP) will be rejected or fail during execution and this may compromise test coverage, if some

valid combinations are only covered by this test. It would appear that removing such offending

test cases from the resulting test suite is a sufficient solution. However, such a test case may

cover other valid combinations not covered else where in the test suite.

 This thesis describes our constraint handling strategy, which includes a formal notation

that allows the user to specify constraints at a higher level of abstraction. Our approach to

handling constraints in combinatorial testing deals with the problem of future conflicts and can

be integrated seamlessly with any existing test generation algorithm.

 We also describe FireEye, a java-based combinatorial testing tool we developed, which

implements an extended version of the IPOG test generation algorithm.

1.2 Structure of Thesis

The rest of this thesis is organized as follows: In the next chapter, we provide an

overview of the IPOG strategy and a survey of some existing support for constraint handling.

Chapter 3 describes our approach to constraint handling, which is to treat the problem as a

constraint satisfaction problem. In Chapter 4, we present our algorithmic support for to handling

constraints in a given constrained input model. Chapter 5 describes the FireEye tool and

highlights its major functionalities and chapter 6 presents some experimental results used to

validate our constraint handling strategy. Finally, we present our conclusion in Chapter 7.

5

CHAPTER 2

RELATED WORK

2.1 Overview

A considerable amount of work has been done on combinatorial testing strategies in the

past, and one of the most prominent strategies is pairwise testing, which requires that for each

pair of input parameter of a system, every valid combination of values of these pair be covered

by at least one test case [2].

A generalization of pairwise testing is t-way or t-wise testing, and it requires that every

combination of any t parameter values be covered by at least one test, where t is known at the

strength of coverage. We present below an overview of the IPOG (In-Parameter-Order-General)

strategy, which implements the t-way testing strategy and provides a seamless framework

through which we provide an extension to handle constraints. We also examine current support

for constraints by existing algorithms and tools.

2.2 The IPOG Testing Strategy

The IPOG strategy extends the IPO (In-parameter-order) strategy to enable the

generation of a t-way test set for a given input model. The IPOG framework is defined as

follows: Given a system with t or more parameters, the IPOG strategy generates a t-way test set

for the first t parameters, it then extends the test set to generate a t-way test set for the first t + 1

parameters, and continues with the extension of the test set for each additional parameter, until

a t-way test set for every parameter has been generated. For an additional parameter, an

existing test set is extended in two steps:

� Horizontal growth: An existing test set is extended by adding a value for the new

parameter. The new value is selected in a greedy approach, where the goal is to

choose the value that covers the largest number of combinations.

6

� Vertical growth: A new test is added to the test suite, if no existing test can be changed

to cover the new combination.

The IPOG strategy is deterministic and can be easily applied to general software applications.

To illustrate the IPOG test generation strategy, we use a sample system with four parameters

Browser: [IE, Firefox], OS: [Windows, Linux], Cache: [true, false] and RAM(GB): [1, 2, 4] as

input to algorithm IPOG and describe the key steps in the algorithm to generate a 3-way test

set:

• Initialize test set (ts) to zero, put input parameters in an arbitrary order, and add into ts a

test for every combination of the first t parameters. In our case, t = 3 and after execution

of these procedures we have the following result:

 Table 1: 8 possible combinations of the first 3 parameters

• Compute the set of all t-way combinations that must be covered in order to cover Pi,

where i is the current parameter chosen by the algorithm. In the case of our system, i

= RAM (GB) and the system needs to cover all 3-way combinations of the following

parameter groups, (Browser, OS, RAM (GB)), (Browser, Cache, RAM (GB)), (OS,

Cache, RAM (GB)).

7

� Choose one value from RAM (GB) greedily (value covers the largest number of

combinations) and extend the test set by adding the new value - horizontal growth. The

result of the horizontal extension is shown in Table 2.

 Table 2: Horizontal extension step for Internet system

• Cover the remaining uncovered combinations, one at a time by either adding a new test

or changing a test to cover a combination. The latter operation can be performed only

on don’t care values (or values that can be replaced by any value without affecting the

test set coverage), while the former is executed if no existing test can be changed. For

our system above, after horizontal extension, the following combinations have not been

covered, (Firefox, Windows, 1), (Firefox, Linux, 3), (IE, Windows, 3), (Windows false, 1)

etc. To cover these combinations, new tests have to be added. For instance to add a

test for (Firefox, Linux, 3), a vertical extension is performed, by adding a new test

(Firefox, Windows, *, 1), test 9, to figure 3 Table 2 above, where * represents don’t care

value. To cover the combination (Windows, false, 1), the algorithm will change the value

of cache from * to 1 in the 9th test above. Table 3 below shows the result of the vertical

extension step of IPOG.

8

Table 3: Vertical extension for Internet system

2.3 Existing Constraint Support

 While the concept of constraints has often been described and several special handling

strategies have been proposed, it appears that there is no general, re-implementation solution

to the problem of handling constraints. A general and re-implementable solution that will keep

the burden of manipulating constraints off the software tester is required. In this section, we give

a brief survey of constraint handling by existing tools and algorithms.

 2.3.1 Deterministic Density Algorithm (DDA)

 The DDA algorithm is a greedy algorithm which generates a test suite by adding one

test at a time to a test suite. For each subsequent test to be added many are created and then

the test that covers the most combinations is chosen. DDA constructs one row of a test suite at

a time using a steepest ascent approach [3].

 The authors classify constraints into hard constraints, which represents forbidden

configurations and soft constraints which are either avoids or neutral configurations. Avoids are

combinations that are allowed but are undesirable in a test suite, while neutral combinations are

combinations that have no coverage preference.

9

 To exclude a hard constraint in DDA, the weight of the forbidden configuration is w = -

1.0, for example the first constraint listed for our banking system in figure 1, is a hard constraint

hence the tuple (MAC, Windows XP) is forbidden and must be assigned a weight w = -1.0.

 To handle avoid combinations, a negative weight, -1.0 < w < 0.0 is assigned to the

combinations and the magnitude of the negative weight chosen indicates the importance of

avoiding the tuple. Neutral combinations are assigned a weight of w = 0.0

 The weights assigned to a constrained input model in DDA may be applied to individual

combinations or assigned to individual factors or levels. In the latter case, the algorithm

calculates the weights by multiplying the (factor, value) weights between pairs. Table 4 shows

weights assigned to hard constraints in figure 1, between hardware and OS.

 Table 4: Weights of constraint pairs for DDA

 The DDA algorithm currently supports only soft constraints and according to them, hard

constraints are referred to as “constraint satisfaction” problem. We believe the requirement for

specifying constraints in DDA is both time-consuming and error-prone since the user will have

to specify a weight for every invalid combination. The fact that hard constraints are not handled

also means that for some input spaces, forbidden configurations which are not testable have no

way of being excluded from the resulting test suite and this could be problematic in some test

environments.

10

2.3.2 Automatic Efficient Test Generator (AETG)

 AETG is a one-row-at-a-time greedy algorithm for generating covering arrays. To

generate one row, the first t-tuple is selected based on the one involved in the most uncovered

pairs, while the remaining parameters are assigned levels randomly. Levels in turn are selected

based on the one that covers the most new t-tuple [5]. In AETG, constraint handling involves the

use of multiple relations or explicitly defining disallowed tests.

 2.3.2.1 Constraints as multiple relations

 In this method, a constrained input model is rewritten into two or smaller constraint-free

input models or relations. Test cases are then generated for each input model or relation and

the final test suite is constructed by merging the different test suites from the multiple relations.

To construct multiple relations for a constrained model, a parameter P involved in a constraint

with the least number of values is selected and then the input model is split into intermediate

models, one for each value of the selected parameter P. Next, the intermediate sub-models that

contain constraints involving the selected parameter are further split by removing values of the

other parameter such that the constraints are eliminated. This last step is applied recursively

until all constraints have been eliminated. This method is also considered to be error-prone,

heavily time consuming and inefficient for dealing with implicit constraints.

 2.3.2.2 Constraints as disallowed tests

 This method requires the user to explicitly supply a list of invalid sub-combinations. A

disallowed test for a relation specifies a set of test cases that are not valid for that relation. The

AETG combination strategy does not select any test cases including the invalid sub-

combinations; instead it finds valid test cases to satisfy the desired coverage.

 2.3.3 Intelligent Test Case Generator (Whitch)

 Whitch includes two algorithms for finding coverage arrays, Combinatorial Test

Services (CTS) and Test Optimizer of Functional Usage (TOFU). Both algorithms use algebraic

constructions to generate covering arrays and constraint handling requires that invalid

11

combinations be expressed as all possible invalid configurations [6]. Consider the constraint in

figure 1, (MAC hardware requires a MAC OS X operating system). This implies that the

combination (MAC, Windows XP) is invalid in our domain context. In whitch, an enumeration of

all combinations containing MAC and Windows XP is required for the banking systems. There

are two of such configurations - (MAC, Windows XP), (MAC, Sun Solaris 8), for each hardware

and operating system configuration. As the number of parameters and values increase, the set

of invalid combinations may explode. Hence this method may not be feasible in some cases.

2.3.4 Pairwise Independent Combinatorial Testing tool (PICT)

PICT uses an algorithm similar to AETG with optimizations to increase execution

speed. In PICT [7], constraints are specified in the form of propositional formulas, where IF-

THEN statements describe constrained value combinations in a test domain.

 In [7], a description of the constraint handling support says that constraints are translated

into a set of exclusions (invalid combinations) at the preparation phase and that test sets

produced after the preparation phase are generated not to violate any exclusions. We do not

have enough details on the method for avoiding the problem of removing an invalid test from a

test not covered anywhere else and also no clear way of re-implementing the system. We also

note that PICT does not support constraints involving mathematical expressions. For instance,

the constraint [P1* 2 = P2 => P3 = 100] can not be specified in PICT????????????.

12

CHAPTER 3

A CONSTRAINT HANDLING STRATEGY

3.1 Overview

 In this chapter, we describe our approach to handling constraints in an input model. Our

strategy consist of : (1) The use of a constraint grammar, which allows the specification of

constraints at a higher level of abstraction (2) treating constraints as a constraint satisfaction

problem and using forward checking to detect future conflicts. We also describe the different

classes of constraints and how we handle each class.

3.2 Constraint Specification

Constraints can be specified in a number of different forms and styles. An intensional

representation involves the use of variables and operators e.g. P1 = a => P2= b, which states

that when variable P1 has value of a in a configuration, then variable P2 must have a value of b.

 Extensional representation involves encoding constraints as forbidden/unwanted tuples,

which define combinations of parameter- value that cannot execute successfully or not required

in the context of the given system under test. For a system with parameters P1 = [0, 1], P2 = [2,

3] and P3= [4, 5], extensionally (0, 2), (1, 4) may be specified as constraints in the system. This

representation may give rise to implicit relationships among option value choices, which may

lead to multiple forbidden tuples. In the example, (2, 4) is implicit and needs to be removed as

well. Depending on the nature of the constraints, a large number of tuples may need to be

specified and these may be problematic for some systems. We allow the specification of

constraints at a higher level of abstraction according to a constraint grammar.

13

3.2.1 Constraint Grammar

Figure 2 shows the BNF for our constraint grammar.

 Figure 2: BNF for Constraint Grammar

The following represents valid constraints according to the grammar:

• Numeric Parameter > number , Numeric Parameter = number, String Parameter =

“string literal” , Boolean Parameter = true, Boolean Parameter != false

• Numeric Parameter1 > Numeric Parameter2, Boolean Parameter1 != Boolean

Parameter2

• Numeric Parameter > number => String Parameter = “string literal”

• String Parameter = “string literal” && Boolean Parameter = true => Numeric Parameter

<= number

• Numeric Parameter1 * Numeric Parameter2 = number => String Parameter = “literal”

14

A parser generated for the grammar is used to parse the constraint texts and during test

generation, values are supplied for each parameter in the constraint and evaluated with a

Boolean result.

3.3 Constraint Satisfaction Problem

 We represent and solve a constraint problem as a CSP, which consist of:

� A set of variables X = {x1, x2, ?,xn}

� For each xi, a finite set Di of possible values (its Domain)

� A set of constraints restricting the values that can be simultaneously assigned

to the variables.

A solution to a CSP is an assignment of a value from its domain to every variable, in such a

manner that every constraint is satisfied. Each constraint in a CSP may involve one or more

parameters, where the number of parameters in the constraint is known as its arity. A constraint

involving two parameters is known as a binary constraint, while a constraint involving one

parameter is known as a Unary constraint and a higher order or non-binary constraint involves

more that two parameters. A CSP with all binary or unary constraint is represented in a

constraint graph.

3.4 Constraint Graph

 A constraint graph consists of binary or unary constraints in which each node represents a

variable, and each arc represents a constraint between variables represented by the end points

of the arc. A unary constraint is represented by an arc from and to the same node. Consider the

following constraints:

o OS != “Sun Solaris 8”

o OS = “Mac OS X” => Application Server != “Weblogic 8.1”

o Hardware = “Sparc” => Application Server != “Weblogic 8.1”

o Hardware = “Mac” => OS = “Mac OS X”

15

Figure 3 shows the resulting constraint graph for these constraints.

 Figure 3: Constraint graph for unary and binary constraints

3.5 Non-Binary Constraints

A Non-Binary constraint is a constraint that involves more than two variables (arity >2).

We solve non-binary constraints by converting each non-binary constraint to an equivalent

binary CSP, using the well known Hidden Variable Encoding [9]. This method encodes each

non-binary constraint to a variable (called “hidden” variable) that has as domain the valid tuples

of the constraint. For each tuple in the domain of the hidden variable Hv, the encoding

introduces compatibility constraints between Hv and each original variable xi in the constraint c.

Consider the tenary constraint: [(Application Server = “Weblogic 8.1”) && (Java SDK = “Oracle

JRockit 1.4”) => (Browser = “Firefox 2.0”)] defined for the system in figure 1, to convert this

16

constraint to its binary equivalent, we introduce a hidden variable Hv to the constraint , where

the domain of Hv is {(Weblogic 8.1, Oracle JRockit 1.4, Firefox 2.0) } . These values represent

the combination values for (Application Server, Java SDK, Browser), that satisfy the non-binary

constraint. A binary compatibility constraint between Application Server and Hv, Java SDK and

Hv and between Browser and Hv now exists as a result of the introduction of the hidden

variable and is shown in figure 4

 Figure 4: Hidden variable encoding of a non-binary CSP

As part of our algorithmic extension to handle constraints, we implement a hidden variable

translation algorithm, which converts every non-binary constraint in a CSP to its binary

constraint equivalent.

3.6 Future Conflicts

The problem of future conflict arises when a selected value satisfies some constraints

at one point in the test generation process but fails to satisfy every constraint in the future. This

problem may lead to backtracking and removal of combinations earlier marked as covered and

hence may affect test coverage. Consider a CSP with three parameters: P1[0,1], P2[1,3] ,

P3[1,2,3] and two constraints: P1 < P2 and P2 < P3 and the combination of values for P1,P2 :

17

(0,3) and P2, P3 : (3, 3). A test generation algorithm executes the following steps to cover the

combinations:

� Assign 0 to P1 and 3 to P2

� Check the constraint between P1 and P2

� Add combination to test suite since P1 < P2 is true.

� Assign 3 to P3

� Check constraint between P2 and P3

� P2 is not less than P3, backtrack and remove 0,3 since no value of P3 can

satisfy the constraint between P2(3) and P3

This is clearly a problem and we detect and prevent this type of problem by using Forward

Checking.

3.7 Forward Checking

Forward checking is a constraint propagation technique that is used to propagate the

implications of constraints on one variable to onto other variables in the constraint graph. The

Forward checking technique performs look ahead to detect impossible combinations as soon as

possible, thereby preventing future conflicts. During forward checking whenever a variable X is

assigned a value a, the algorithm checks every unassigned value of variable Y that is

connected to X by a constraint and deletes from Y’s domain any value that is inconsistent with

the value chosen for X. Any current assignment of value a to x that results in a “domain wipe-

out” of any future variable, is inconsistent and not part of a solution to the CSP.

3.7.1 Preventing future conflict with forward checking

Forward checking can be applied to the problem in section 3.6 as follows:

• Assign 0 to P1

• Check arc P1, P2 (every value of P2 is consistent with 0)

• Assign 3 to P2

• Check arc P2, P3

18

o Delete 1, 2, 3 from domain of P3 since none is less than 3 . This reduces the

domain of P3.

o Empty domain of P3 implies 0,3 is inconsistent.

19

CHAPTER 4

ALGORITHMIC SUPPORT FOR CONSTRAINT HANDLING

4.1 Overview

In this section, we present the FireEye constraint handling strategy, Our motivation for

providing this extension is to develop a general constraint handling strategy that is tightly

integrated into an efficient test generation framework, easily re-implementable, scales well for a

large number of parameter-values and frees the software tester from the trouble of manipulating

constraints by listing all invalid combinations or re-modeling the system. We also show how to

integrate our solution with the IPOG test generation algorithm.

4.2 The FC-CS Algorithm

Figure 5 shows the FC-CS algorithm, which implements forward checking and

maintaining arc consistency strategy for constraint handling. The algorithm follows from the AC-

3 algorithm for arc consistency but also considers hidden variables during search and arc

consistency. After applying algorithm FC-CS, either every arc is arc consistent or some

parameter has an empty domain, indicating that the CSP cannot be made arc consistent. In the

case of a domain wipe-out, the current assignment is regarded as invalid and therefore rejected.

Algorithm FC-CS consists of three functions, FORWARD-CHECK, PROPAGATE and

REMOVE-INCONSISTENT-VALUES.

FORWARD-CHECK takes as input a tuple π, consisting of the combination of values to

be checked against the set of constraints in the CSP, a set of input parameters ps and a CSP

cs and returns false if some variable in the graph experiences a domain wipe-out during value

assignment. PROPAGATE takes as input a node with a current assignment v in π and after

execution every arc in the constraint graph is either arc-consistent or some node has an empty

20

domain. For each arc (Pi, Pj), if a value is deleted from domain of Pj then PROPAGATE revises

those arcs that terminate at Pj.

REMOVE-INCONSISTENT-VALUES takes as input an arc (Pi, Pk) and returns true if a

value is removed from the domain of Pi. A value is removed from the domain of a variable if the

algorithm detects that the variable does not support the current assignment of value to Pi.

 Figure 5: FC-CS Algorithm for Constraint Handling

4.2.1 The FC-CS Strategy

The FC-CS strategy is as follows:

o Assign each value v to a node Xj in the constraint graph

o Invoke propagate to propagate the effect of the current assignment

� Insert every arc (Xi, Xj) terminating at Xj into a Queue

21

� Remove each arc (Xi, Xj) from the Queue

� Look at each unassigned variable Xi connected to Xj by a constraint

� Delete any value in the domain of Xi that is inconsistent with Xj

� After deleting a value from the domain of Xi, every arc (Xk, Xi)

pointing at Xi is re-inserted into the Queue and re-checked.

o If there is any node Xj with empty domain, reject the current assignment.

To describe algorithm FC-CS, we define a sample CSP and apply the algorithm to the CSP.

Figure 6 shows our sample CSP, which is our input to algorithm FC-CS.

 Figure 6: Sample CSP input to FC-CS

A greedy algorithm like IPOG will generate its test one- row at a time, selecting values from

each parameter to generate a t-way test set. During test generation, FC-CS will be invoked to

determine if a tuple satisfies the constraints in the CSP. Consider the input π = (1, 3, 6), ps =

{P1, P2, P3} and the CSP in figure 6. The initialization phase of FC-CS involves:

� Sorting input parameters according to their domain sizes

� Converting every non-binary constraint in the CSP into binary equivalent.

� The initialization of the constraint graph, with all parameters in the input model added

to the graph and edges added between nodes that have binary constraints between

them.

In FORWARD-CHECK the value 1 from π is assigned to node P1 and PROPAGATE is

invoked. Figure 7 shows a snapshot of the constraint graph with 1 assigned to P1.

22

Figure 7: Constraint Graph showing assignment P1 � 1

In PROPAGATE, every arc terminating at P1 is inserted into the Queue [(P2, P1), (H1, P1)] and

each arc is revised by invoking REMOVE-INCONSISTENT-VALUES on the arc.

REMOVE-INCONSISTENT-VALUES checks arc P2, P1, and finds every value of P2 consistent

with the current value of P1 (1). Next the arc (H1, P1) is checked and the tuples (2, 3, 5), (2, 4,

6) are temporarily deleted from the domain of H1 since the value of P1 is not 1 in those tuples.

This deletion causes the arcs (P1, H1), (P2, H1), (P3, H1) to also be inserted into the Queue

and re-checked since they may have lost support as a result of the deletion. Figure 8 shows the

result of invoking PROPAGATE on node P1 � 1.

23

Figure 8: Constraint Graph showing P1 � 1 and Domain [H1] reduced

Next the algorithm assigns the value 3 to P2 and the effect is propagated. Arcs (P2, P1) and

(P2, H1) are added to the queue in PROPAGATE. When REMOVE-INCONSISTENT-EDGES is

invoked with (P2, H1), the remaining tuple (1, 4, 5) is removed from domain Hi since the

assignment of P2 � 3 is not supported by H1. The domain Hi experiences a domain wipe-out

and the function PROPAGATE returns to FORWARD-CHECK, which returns true to the test

generation algorithm, indicating an invalid combination (1, 3, 7).

Figure 9 shows the assignment of 3 to P2 which results in a domain wipe-out for Hi

24

 Figure 9: Constraint Graph showing domain wipe out after assigning P2 � 3

4.3 Integrating FC-CS with IPOG

The algorithmic extension to IPOG happens at four major points and these points of

extensions are described below.

� IPOG adds into ts a test for every combination of the first t parameters: This step is

modified to include a check for every test against the constraints in the CSP for

satisfaction. Any test found to violate any constraint in the CSP is not added to ts.

Figure 10 shows an algorithm that is used to check if a tuple satisfies every constraint in

the CSP.

25

 Figure 10: Algorithm IS-SATISFIED

� IPOG generates a t-way combinations of values, π involving parameter Pi and t-1

parameters among the first i – 1 parameters. We extend IPOG at this point to include a

check that every tuple in π satisfies the constraints in CSP. Any tuple that does not

satisfy the constraints in CSP will be removed from π. This check involves invoking the

MAC-CS algorithm each time we pick up a tuple in π .

� IPOG extends the test set ts by adding a value for the new parameter (Horizontal

growth). When a test is selected for extension, we invoke the FORWARD-CHECK

algorithm to check that the test satisfies every constraint in the CSP.

� IPOG extends the test set ts by adding a new test or changing an existing test (Vertical

Growth). In both cases, we invoke FORWARD-CHECK to validate the test and ensure

the test satisfies every constraint in the CSP.

26

4.4 Don’t Care Values

A don’t care value represents a value of a parameter that does not contribute to the test

coverage of a test suite during test generation. A don’t care value may be represented by a

character e.g. “*” to denote that any value of the parameter can be used to replace “*”.

4.4.1 Handling Don’t Care Values in Constrained inputs

In the presence of constraints, a value is regarded as don’t care, if and only if it does

not contribute to the test coverage and does not violate any constraints in the input model. To

enforce this condition, every value of the parameter needs to be checked against the set of

constraints and if any violation is found, the value is not a don’t care value. In the integration of

FC-CS with IPOG, we check every don’t care value to ensure that it satisfies every constraint,

� If we find that no value of the parameter satisfies all the constraints, we remove the test

case.

� If every value of the parameter satisfies every constraint, then we leave it as don’t care.

� If any value satisfies every constraint, we replace the don’t care with the satisfying

value.

4.5 FC-CS Complexity

We consider next, the complexity of the constraint handling strategy. For a binary CSP,

space complexity is O(md), where m is the number of constraints and d is the maximum domain

size. Worst case time complexity for binary CSP is O(n
2
d

3
), where n is the number of variables.

A binary CSP has a maximum of O(n
2
) arcs and checking consistency of an arc (Xi, Xj) requires

O(d
2

) time. Each arc (Xk, Xi) can be inserted into the queue, 2d times. Total time complexity is

O(n
2
d

2
2d) = O(n

2
d

3
).

For a non-binary CSP, space complexity is dominated by the space required to store

domain of the hidden variable and this is O(ed
k
), where e is the number of hidden variables and

k is the maximum arity of the constraints. Worst case time complexity for non-binary CSP is

given as O(ekd
k+1

). This time complexity is dominated by the call to REMOVE-INCONSISTENT-

27

VALUES. For every deletion of a value from a domain of one of the k original variables

constrained with a hidden variable Hi, REMOVE-INCONSISTENT-VALUES will be invoked

once. This means REMOVE-INCONSISTENT- VALUES can be called at most kd times. For

each value a, we perform O(d
k
) checks to find out if a tuple in DOMAIN[Hi] supports value a,

and for kd values, we have O(kdd
k

) = O(kd
k+1

). In general, for e hidden variables, worst case

time complexity is O(ekd
k+1

).

28

CHAPTER 5

FIREEYE: A T-WAY TESTING TOOL WITH CONSTRAINT SUPPORT

 5.1 Overview

FireEye is a combinatorial testing tool that can be used to generate t-way test suites.

The test suites generated by FireEye are more effective when compared to manually generated

tests, in detecting faults that are caused by interactions among different participating

parameters.

Today’s complex, large and heavily distributed systems increase testing requirements

and Tester’s generally require tools that help to automate the process of testing, FireEye with its

robust design and rich set of functionality help provide the automation required by testers and

also helps to meet the increased testing requirements of today’s systems.

In this chapter we describe the design and major features of FireEye.

5.2 FireEye Architecture and Design

5.2.1 Architectural Overview

The overall design goal of FireEye is ease of use, extensibility of the core engine,

minimal configuration and platform independence. Figure 11 shows a high level system

architecture diagram for FireEye.

29

Figure 11: FireEye System High Level Architecture Overview

5.2.2 General Workflow

 The workflow that is generally executed is as follows

1. User launches the main UI component.

2. User creates or edits a system.

3. User initiates a build event.

30

4. Build Action handler invokes build method exposed by the FireEye facade, passing the

system configuration object.

5. Build Action handler receives the build result and updates the swing component model.

6. The controller component of the view updates the view with test results.

5.2.3 FireEye GUI Design

 The core design principle for the FireEye GUI is ease of use. We designed the GUI

components to make the job of the software tester easy and enjoyable. We present below a use

case diagram (Figure 12) for the FireEye GUI.

Figure 12: FireEye GUI use case diagram

31

5.3 Technology Stack

The technologies, tools and frameworks used in developing FireEye are as follows:

5.3.1 Graphical User Interface

The following technologies and frameworks were used to implement FireEye user interface.

� Java Swing: This is a GUI framework that implements a modified model-view-controller,

sometimes referred to as separable model architecture. The swing architecture consists

of a model, which represents the data for the application, a user-interface object, which

consist of the controller and the view, and a user interface manager, which is used by

components and programs to access look-and-feel information.

� Swing layout: This is an extension library to swing, which enables the creation of

professional cross platform layouts.

5.3.2 Utility libraries

� JDOM: A Java-based open-source library for accessing, manipulating and outputting

XML data from Java code.

� JXL: An open source java library for reading, writing and modifying excel spreadsheets

 dynamically.

� JFreeChart: An open source java chart library for displaying quality charts in client

 applications.

� JH: A java help library used to develop help viewer components for application help

system.

� XercesImpl: An open source implementation of Xerces, which is a Java XML parser.

JCommon: A collection of utility classes used by JFreechart.

32

5.4 FireEye Major features

In this section we provide an overview of the major features of FireEye.

5.4.1 Input Model

 We mentioned earlier that the major design goal of FireEye is ease of use, this is true

as evidenced by our inputs to FireEye. Two input file formats are accepted by FireEye, a plain

text file (Figure 13) and an XML input file (Figure 14). The plain text file can be created outside

the application and may be converted to the GUI input format by opening the text file from the

open window command and then saving the system in the XML format.

Figure 13: Plain Text Input Model File for FireEye

33

A tester specifies test parameters and values, parameter groups and constraints in the input file.

By default, the tool generates a pairwise test set and also provides an interface through which

the tester can specify a different value for it.

Figure 14: XML input model file for FireEye

Figure 14: XML input model file for FireEye

5.4.2 T-way Test Set Generation

This is the main feature of FireEye. When an input model is supplied, FireEye

generates a t-way test set for the input, where t can be specified by the user or the default value

34

of 2 is used. FireEye supports t-way generation for 2 ≤ t ≤ 6 and allows the use of a variety of

test set generation algorithms available from the GUI options window. The following is a list of

supported algorithms developed by the ACTS group: IPOG, IPOG-D, IPOG-F, IPOG-F2 and

Paintball. With FireEye, test set generation can proceed in two modes namely: scratch and

extend. In scratch mode, a test set is built from the scratch, while in extend mode; a test set is

generated by extending an existing test set.

5.4.3 Mixed Strength Test Generation

FireEye’s mixed strength test generation feature allows different parameter groups to

be created and covered with different strengths. A tester may discover that certain parameter

interactions leads to a different set of defects or increases the number of detects than other

interactions, hence the parameters should be tested thoroughly, setting a higher t on the entire

set of parameters may produce too many test cases. The use of mixed-strength test generation

will help to achieve a higher coverage without the problem of a large test suite. For example

consider a system with 8 parameters, P1, P2?P8. A default relation, consisting of all the

parameters and strength of 2 can be created, then additional relations can be created, if the

tester finds that some parameters require better coverage, he may for instance create a relation

that includes P2, P3, P4 and P5 with strength 4 if P2, P3, P4 and P5 could potentially interact with

each other and their interaction may trigger certain defects.

5.4.4 Constraint Support

FireEye includes support for constraint handling by generating test cases that are free

of invalid or unwanted combinations of input parameters. We discussed the constraint handling

of strategy of FireEye in chapter 3. A user interface for specifying constraints is provided in

FireEye. The interface allows the specification of constraints involving different types (numeric,

Enum and Boolean), any arity and with any of logical, relational, mathematic and equality

operators. To implement our constraint handling strategy, we define a constraint grammar,

which supports high level input of constraints. FireEye’s constraint grammar supports identifiers,

35

� <Identifier><operator><String Literal>

 e.g Application Server != “Weblogic 8.1”

� <Identifier1> <operator> <Identifier2>

e.g Loan_Amount < Household Income

� <Identifier1><operator1><digits><Implication>

<Identifier2><operator2> <Boolean>

 e.g Loan_Amount > 500,000 => Approved = false

string literals, integer literals, digits, Booleans and operator tokens and a set of classes

generated by JavaCC implements the lexical analyzer and parser for the grammar. The

following texts represent constraints that are valid with respect to our constraint grammar:

We provide an editor that enables the user to enter constraints similar to the ones above and

these constraints are parsed according to the grammar before they are processed by the test

generation engine during test generation.

5.4.5 Coverage Verification

Using this feature, a test set generated by FireEye or supplied by user can be verified for t-way

coverage satisfaction. A 100% coverage is reported if a test set covers all t-way combinations.

5.5 FireEye GUI components

This section describes major GUI windows used to implement FireEye’s functionalities.

5.5.1 Main Window

Fig 15 shows FireEye’s main application window. This window contains menu items

used to invoke other functional windows.

36

 Figure 15: FireEye Main Application Window

Figure 15: FireEye Main Window

 The main window consists of a split pane, a menu bar and a toolbar. The left pane

displays a tree structure that is used to represent system configurations. Multiple systems can

be displayed in the tree and each system is shown as a three-level hierarchy namely: a top

node level, which represents the system, a second node level, which represents parameters,

relations or constraints and a third leaf level, which represents a set of values.

37

 The right pane contains a tabbed pane, which consists of two tabs, namely: Test

Result, shown in figure 15 and statistics shown in figure 16. The test result tab contains a table,

which is used to display a test set for the currently selected system. Each row in the table

represents a test and each column represents a parameter. The statistics tab displays relevant

statistical information about the test set. It contains a graph button and a pane for displaying

graphical results. The growth rate of the test coverage with respect to the tests in the test set

displayed in the Test Result tab can be graphed by clicking on the graph below.

Figure 16: Main Window showing Statistics Tab

5.5.2 New System Window

Fig 17 shows the new system window used to create a new system configuration, edit

an existing system configuration, add relations and add constraints. The new system window

contains a tabbed pane made up of three tabs namely: Parameters, Relations and Constraints.

38

The Parameters tab allows the user to enter a system name, a list of parameters and a list of

values for each parameter.

Figure 17: New System window

The Relations tab is shown in Figure 18, and it allows the user to create parameter groups with

different strengths. The Constraints tab shown in Figure 19 allows the user to enter constraints

as predicate functions. The tester can express constraints involving parameters and operators.

The following operators are supported: logical, relational, equality and mathematical operators,

and the tester can enter constraints involving any number of parameters.

39

Figure 18: New System Window showing Relations Tab

Figure 19: New System Window showing Constraint Tab

40

5.5.3 Build Options Window

The build options window is used to set or modify the build configuration for a current

system. Figure 20 shows the build options window and the following option may be specified

using this window

• Algorithm: This option allows the user to choose which algorithm to be used for test

 generation. The user can choose between IPOG, IPOG-F, IPOG-D, IPOG-F2 and

 Paintball.

• Maxtries: This option is relevant to the paintball algorithm, and specifies the

 number of candidates to be generated randomly at each step.

• Randomize don’t care values: This option when checked, allows all don’t care

 values in the resulting test set to be replaced with a random value.

• Mode: The user can select between scratch or extend, to indicate how the test set

 should be built. Scratch mode specifies that the test set be built from the scratch, while

 extend specifies that the test set should be built by extending an existing test set.

• eProgress: This option is used to enable the display of progress information on the

 console.

Figure 20: Build Option Window

41

CHAPTER 6

EVALUATION AND RESULTS

6.1 Objectives

In this chapter we show some experimental results obtained while investigating the

effect on test suite size, of running IPOG with FC-CS algorithm on a constrained input model

and the effect on execution time, of running IPOG with FC-CS algorithm on a constrained input

model. We ran IPOG with FC-CS on an Intel Pentium 1.73MHz processor with 2GB of RAM

running Windows XP.

6.2 Impact of constraint handling on test suite size

To investigate the impact of IPOG with FC-CS on size of test suite, we generate

random CSP, and compare our result with PICT and IPOG. Table 5 shows a subset of size data

on constrained input models. A random CSP has n variables each with domain size d; and c

number of constraints with arity k, and t satisfying tuples. We chose n between 3 and 6, c

between 1 and 4, k between 1 and 4 and t between 2 and 3. For each n, we generate k values,

where ki represents the size of the domain [ni].

For each subsystem configuration, we run IPOG-Test on the constrained input, we also run

PICT on the constrained and unconstrained input model. We record for each run, 4 test suite

sizes and the result is shown in table 5. Table 5 shows the following data sets:

1. The unconstrained input, model, SUT (n, d[]),d[], represents the array of domain sizes.

2. CSP parameters (c, k, t) added to the SUT to form the constrained input model. The

result of running IPOG on the unconstrained input.

3. The result of running IPOG on the unconstrained input.

4. The result of running PICT on the unconstrained input

42

5. The result of running IPOG with FC-CS on the constrained input.

6. The result of running PICT on the constrained input.

The overall result show a slight variation between the constrained and unconstrained input

when t = 2 but when t = 3, we notice more variation. We can conclude from the results, that

our implementation of IPOG with FC-CS constraint handling strategy produces test suite sizes,

which compares favorably with known existing test tool that supports constraints.

6.3 Impact of constraint handling on execution time

 To investigate the execution time impact of running IPOG with FC-CS on a constrained

input model, we use two classes of CSP’s namely, binary and non-binary. For binary CSP, we

use two system configurations. System A has n fixed to 4 and d varied from 5 to 20, while

System B has d fixed to 15 and n varied from 2 to 10 in increments of 2. In both systems we set

Table 5: Size data comparison of existing tool with IPOG and FC-CS

43

t to 3. Table 6 shows the result of building System A for different d values and Table 7 shows

the result of building System B for different n values.

 Table 6: System A showing time for d between 5 and 20

 Table 7: System B showing time for n between 2 and 10

The result shown in Table 8 and 9, show that the running time of IPOG with FC-CS on binary

CSP depends on the number of variables and the maximum domain size. We performed curve

fitting analysis and extrapolation on the data and conclude that that for binary CSP, the

asymptotic time complexity is bounded by O(n
2
d

k
).

To investigate non-binary CSP with hidden variable encoding, we define 3 system

configurations and each system has n = number of variables, d = maximum domain size, k =

44

arity of constraints, c = number of constraints and e = number of hidden variables. System A

had n = 5, k = 3, c = 3, e = 2 and d is varied between 5 and 15, while System B has n = 5, k = 3,

c = 10, d = 10 and e is varied between 1 and 10 and System C has n = 5, k is varied between 1

and 4, d = 10, c = 3, and e = 1. Table 8, 9 and 10 show the result of running IPOG with FC-CS

on the system configurations with t = 3.

Table 8: Result of System A with d [5 to 15]

Table 9: Result of System B with e [1 to 10]

Table 10: Result of System C with k [1 to 4]

45

We note from the table above that IPOG with FC-CS performs better on non-binary constraints

when the number of satisfying tuples is small. We performed curve fitting analysis on the

execution time data, and the analysis showed that the running time is bounded by O(ekd
k+1

).

46

CHAPTER 7

CONCLUSION

In this thesis we provide a general, scalable and re-implementable solution to the problem of

constraint handling. We describe our algorithmic extension and compare the results produced

by our algorithm with the results from an existing tool. Our constraint handling strategy allows

the entry of constraints at higher level of abstraction, which is a departure form the method of

specifying constraints by existing tools. The resulting size of test suites generated by a

combination of IPOG with FC-CS is comparable with that generated by existing constraint

handling tools and our strategy is effectively integrated into the test generation algorithm and

not through any third party tool.

47

REFERENCES

[1] Myra B. Cohen, Matthew B. Dwyer, Jiangfan Shi, “ Interaction Testing of Highly-

Configurable Systems in the Presence of Constraints”, in Proceedings of the International

Symposium on Software Testing and Analysis, ISSTA 2007

[2] Yu Lei, Raghu Kacker, D. Richard Kuhn, Vadim Okun, James Lawrence, “IPOG: A General

strategy for T-Way software Testing”. In proceeding to the 14th Annual IEEE International

conference and workshops on the Engineering of computer-based systems.

[3] Renee C. Bryce and Charles J. Colburn, “The density algorithm for pairwise interaction

testing” In Software Testing, verification and reliability. 17:159 – 182, 2007

[4] R.C. Bryce and C.J. Colburn, “Prioritized interaction testing for pair-wise coverage with

seeding and constraints”. Journal of Information and Software Technology, 48(10): 960 – 970,

2006

[5] David M. Cohen, “ The AETG System: An Approach to Testing Based on Combinatorial

Design”, In proceeding of the IEEE Transactions on Software Engineering Vol. 23, No 7, July

1997.

[6] IBM alphaworks. IBM Intelligent Test case Handler

[7] http://www.alphaworks.ibm.com/tech/whitch,2008

[8] J. Czerwonka, “Pairwise Testing in real world”, In Pacific Northwest Software Quality

Conference, pages 419 – 430, 2006.

[9] Samaras Nikolaos, Sterqiou Kostas, “Binary encodings of non-binary constraint

satisfaction problems: Algorithms and experimental results,” Journal of Artificial Intelligence

Research, vol. 24, no. 7, pp. 641–684, 2005.

48

[10] F. Bacchus, P. van Beek, “On the conversion between Non-Binary and Binary Constraint

Satisfaction Problems”, in proceeding National Conference on Artificial Intelligence (AAAI-98),

Madison, Wisconsin, 1998.

[11] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 2nd Ed.

Prentice-Hall, 2003.

49

BIOGRAPHICAL INFORMATION

Anthony Opara was born in Nigeria. He received his Bachelor of Science in Computer Science

in 2001 from the University of Nigeria, Nsukka (UNN). In fall 2006 he started his graduate

studies in Computer Science at the University of Texas at Arlington. He received his Master of

Science in Computer Science in July 2008.

