
ESTREAM: AN INTEGRATION OF EVENT AND STREAM

PROCESSING

by

VIHANG GARG

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2005

To my Family, Friends and my advisor.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Dr. Sharma Chakravarthy, for

giving me an opportunity to work on an interesting and challenging Estream system and

constantly providing me guidance and support throughout the duration of this thesis.

I am also grateful to Dr. Gautam Das and Dr. Jung-Hwan Oh for serving on my

committee. I would like to thank Raman Adaikkalavan and Balakumar Kendai for helping

me throughout the design and implementation of this work. I also thank Vamshi Pajjuri,

Sunit Shrestha, Dhawal Bhatia, Srihari Padmanabhan and all friends in ITLAB for their

invaluable help and advice during the course of development of this system.

This work was supported, in part by NSF (grants IIS-0123730, ITR 0121297 and

IIS-0326505).

Last but not the least i would thank my parents Mr. Mahesh Kumar Garg and

Mrs. Chhaya Garg, my brother Tarang and my fiancee Deepti for their constant love and

support. Without their encouragement and endurance, this work would not have been

possible.

November 4, 2004

iii

ABSTRACT

ESTREAM: AN INTEGRATION OF EVENT AND STREAM PROCESSING

Publication No.

VIHANG GARG, M.S.

The University of Texas at Arlington, 2005

Supervising Professor: Sharma Chakravarthy

Event and stream data processing models have been independently researched ex-

tensively and are utilized in diverse application domains. Advanced applications require

both event and stream processing, which is currently not supported in the same system.

Although there are a number of similarities and differences between them, a synergistic

integration of their strengths will be better than the sum of their parts.

In this thesis, we present EStream, an integrated event and stream processing

system for monitoring changes on stream computations and for expressing and processing

complex events on continuous queries (CQs). We introduce attribute-based constraints

for reducing uninteresting events that are generated from CQs. We discuss the generalized

specification of CQs, complex events, and rules. We also discuss stream modifiers, a

special class of stream operators for computing changes over stream data.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

LIST OF FIGURES . ix

Chapter

1. INTRODUCTION . 1

1.1 EStream Applications . 1

1.2 Motivation . 1

1.3 Motivating Examples . 3

1.3.1 Car ADN . 3

1.3.2 Network Fault Management . 6

1.4 Contributions . 7

2. RELATED WORK . 9

2.1 Data Stream Management Systems . 9

2.1.1 Aurora . 9

2.1.2 STREAMS . 10

2.1.3 The COUGAR Sensor Database System 11

2.1.4 Fjord: Architecture for Queries Over Streaming Senor 13

2.2 Event Processing Systems . 14

2.2.1 ODE . 14

2.2.2 SAMOS . 15

2.2.3 Sentinel or LED . 16

2.3 Event and stream integration systems . 17

v

2.3.1 HiFi . 17

2.3.2 Tiny DB . 18

2.3.3 Financial applications . 19

2.4 Summary . 19

3. THE MAVSTREAM AND THE LOCAL EVENT DETECTOR (LED) 21

3.1 MavStream . 21

3.1.1 Operators . 22

3.1.2 Instantiator . 23

3.1.3 Scheduler . 24

3.1.4 MavStream Server . 25

3.1.5 Data Flow computational model 26

3.2 Local Event Detector . 27

3.2.1 Event types supported by LED 28

3.2.2 Parameter Context . 31

3.2.3 Rule Priority . 32

3.2.4 LED Computational Model . 32

3.3 Data Flow Model Vs. Event Detection Graph 33

3.3.1 Inputs and Outputs . 33

3.3.2 Event Operators and Stream Operators 34

3.3.3 QoS Support . 34

3.3.4 Reusability . 35

3.4 Summary . 35

4. DESIGN . 37

4.1 Issues . 39

4.1.1 Event as a Single Tuple or a Collection of Tuples 39

4.1.2 Event and Continuous Query Definition and Mapping 40

vi

4.1.3 How shall the two models be integrated 40

4.1.4 Address Space Issue . 41

4.2 Continuous Event Query (or CEQ) . 41

4.3 Masks . 43

4.3.1 Where to add masks . 44

4.4 Integration Design . 46

4.4.1 Event Generator (EG) Interface 46

4.4.2 Consumer/Producer Approach . 51

4.4.3 Rules and Composite event Generation 53

4.5 The Integrated Model . 55

4.5.1 Continuous Query (CQ) Processing Stage 56

4.5.2 Coupling Event and Stream Processing 56

4.5.3 Event Processing Stage that Detects Events 57

4.5.4 Rule processing stage . 57

4.6 Future Queries . 57

4.7 Summary . 58

5. STREAM SERVER EXTENSIONS . 59

5.1 Stream Modifiers . 59

5.1.1 Non-Windowed Stream Modifiers 62

5.1.2 Windowed Stream Modifiers . 62

5.2 XFilter operator . 65

5.3 Group By Operator . 65

5.4 Summary . 67

6. IMPLEMENTATION . 68

6.1 Input Processor . 69

6.1.1 CEQ . 70

vii

6.1.2 Query plan generator . 72

6.1.3 Event container . 73

6.2 Rule and Event Manager . 74

6.3 Query Processor . 74

6.3.1 Event Generator Operator and Masks 74

6.4 Stream Modifiers and XFilter operators 80

6.4.1 Instantiator extensions . 80

6.4.2 Operator Data . 81

6.5 GroupBy Operator: . 81

6.5.1 Algorithm . 82

6.5.2 Issues in using the JAVA HashTable: 83

6.6 Future Queries . 85

6.7 Summary . 86

7. CONCLUSION AND FUTURE WORK . 87

REFERENCES . 89

BIOGRAPHICAL STATEMENT . 95

viii

LIST OF FIGURES

Figure Page

3.1 MavStream Architecture . 22

3.2 MavStream Computational Model . 26

3.3 LED Architecture . 27

3.4 LED:Event Detection Graph Model . 33

4.1 EventGenerator Operator . 50

4.2 Producer/Consumer buffer approach . 52

4.3 Event Generator Operator . 53

4.4 Four Stage Integrated Model . 55

6.1 EStream Architecture . 69

6.2 Input Processor . 70

6.3 Events generated with and without masks. 78

6.4 Average action execution latency . 78

6.5 Stream Modifiers and XFilter . 80

6.6 GHashTable design . 85

ix

CHAPTER 1

INTRODUCTION

1.1 EStream Applications

Data intensive applications such as network monitoring, financial applications,

enemy intrusion detectors, RFID processing, temperature monitoring, etc., are emerg-

ing. They have a continuous, unpredictable and unbounded flow of data, referred to as

streams. These applications can be classified as monitoring applications, as they monitor

complex conditioned from multiple data streams and combine the events generated by

them in order to take some actions. For example, financial applications are interested

in monitoring the stock feeds from different feeds for detecting predefined scenarios with

respect to share prices to detect an opportunity for trading. Likewise network monitoring

applications are interested in monitoring packets generated by the network containing

information of the state of the network to detect conditions which may indicate a mal-

function or congestion in a telecommunication network and then take corrective measures.

There are many other potential applications of EStream, which want to detect complex

event compositions consisting of simple events based on conditions computed over stream

data.

1.2 Motivation

A significant of research has been done in the field of data stream management sys-

tems (or DSMSs) recently. A number of architectures as well as techniques for optimizing

stream processing – from scheduling strategies [1, 2, 3] to load shedding [4, 5] – have

1

2

been developed. A number of issues have been addressed from architecture [6, 7, 8, 9, 10],

recovery, distributed processing to Quality of service [4, 5, 11].

Similarly, event processing has received a lot of attention in the last decade. Analy-

sis of polling and event based (or asynchronous) systems have concluded that event based

systems are more appropriate for monitoring applications. A number of techniques and

architectures [6, 7, 8, 9, 10] for condition monitoring have been developed. Several event

processing languages for specifying composite events have been proposed and triggers

have been successfully incorporated into relational databases. Different computational

models [12, 13, 14, 15, 16] for event processing such as Petri nets [13, 16], extended au-

tomata [17, 18, 19] and event graphs [12, 14, 20] have been proposed and implemented.

Various event consumption modes [12, 13, 14, 15, 16] have been explored.

Although both of these approaches are extremely useful in their individual domains,

we argue that neither of them makes a complete system for addressing some real world

scenarios that have come about due to advances in technology. A large class of non-

traditional applications such as process control, threat assessment and analysis, air traffic

control, computer integrated manufacturing, and cooperative problem solving often need

to react(often subject to timing constraint) to a variety of conditions defined on processed

sensor data. Hence there is a critical need for integrating a generic capability for DSMSs

which is able to detect events on continuous queries, has a well defined semantics, is

efficient and can be tailored to the needs of DSMSs. By integrating an expressive event

processing system with stream processing, we argue that the events thus defined for

continuous queries are not constrained to the limited event types such as insert, delete

and update but can be on any event for which a continuous query can be defined. For

example, an attribute value can be monitored from multiple stock feeds and opportunities

for program trading can be identified based on the correlation of stock prices within a

3

sector (e.g., buying shares of an oil company if the share prices of the other oil companies

constantly and significantly rise relative to it, over some period of time).

The current DSMSs are passive. They either rely on operating system events

[21, 22], or on the user application to continuously check for the conditions (or polling

for conditions) on the output stream [23, 24] to become true. Polling wastes resources,

which are of crucial concern in sensor applications as sometimes microcomputers, used for

processing sensors have limited power resources. It also transfers the onus of determining

the frequency of polling to the user or application developer. Polling frequency is likely to

be dependent on a variety of parameters such as frequency of update, timeliness (the time

window within which the condition needs to be detected) etc., and hence the integration

of the event and stream processing will not only increase the application domain of stream

processing but also transfer the complexity of monitoring event from the user application

to the EStream system.

1.3 Motivating Examples

1.3.1 Car ADN

In a car accident detection and notification system, each expressway in an urban

area is modeled as a linear road, and is further divided into equal-length segments (e.g.,

5 miles). Each registered vehicle on an express way is equipped with a sensor and reports

its location periodically (say, every 30 seconds). Based on this location stream data, we

can detect a car accident in a near-real time manner. If a car reports the same location (or

with speed zero mph) for four consecutive times, followed by at least one car in the same

segment with a decrease in its speed by 30% during its four consecutive reports, then it is

considered as a potential accident. Once an accident is detected, the following life saving

actions may have to be taken immediately: i) notify the nearest police/ambulance control

4

room about the car accident, ii) notify all the cars in 5 upstream segments about the

accident, and iii) notify the toll station so that all cars that are blocked in the upstream

for up to 20 minutes by the accident will not be tolled.

Every car in the express way is assumed to report its location every 30 seconds

forming the primary input data for the above example. The format of car location data

stream (i.e., CarLocStr) is given below:

CarLocStr(

timestamp, /* time stamp of this record */

car_id, /* unique car identifier */

speed, /* speed of the car */

exp_way, /* expressway: 0..10 */

lane, /* lane: 0, 1, 2, 3 */

dir, /* direction: 0(east), 1(west) */

x-pos); /* coordinates in express way */

CarSegStr is the car segment stream (or the input CarLocStr stream), but with

the location of the car replaced by the segment corresponding to the location. Query

shown below produces the CarSegStr from the CarLocStr stream.

SELECT timestamp, car id, speed, exp way, lane, dir,

(x-pos/5 miles) as seg FROM CarLocStr;

Detecting an accident in the above example has three requirements, and they are:

(1) IMMOBILITY: checking whether a car is at the same location for four consecutive

time units i.e., over a 2 minutes window, in our example, as the car reports its location

every 30 seconds. (2) SPEED REDUCTION: finding whether there is at least one car

that has reduced its speed by 30% or more during four consecutive time units. and

(3) SAME SEGMENT: determining whether the car that has reduced its speed (i.e., car

5

identified in (2)) is in the same segment and it follows the car that is immobile (i.e., car

identified in (1)). Immobility of a car can be computed using CQs that are supported by

the current data stream processing systems as shown below:

SELECT car id, AVG(speed) as avg speed

FROM CarLocStr [2 minutes sliding window]

GROUP BY car id

HAVING avg speed = 0;

Similarly speed reduction can also be computed with some extensions in stream

processing. The cars that are found in requirements (1) and (2) are from the same seg-

ment can be readily determined in an event processing model using a sequence operator.

Notifications or life saving actions have to be taken once the cars are identified, which

is not supported by current stream processing model. As the cars that are identified

in requirement (3) can be separated by more than 4 time units, it requires an efficient,

meaningful and less redundant manner for notifications. In other words, number of times

the accident is reported should be kept to a minimum. The above can be done effi-

ciently using the current event processing models, but not the current stream processing

model. Although JOIN operator can be used to compute it, the number of reports is not

minimized.

As illustrated above with an example, all the above requirements strongly call for

an integrated model. Furthermore, the second and third requirements pose challenges

for synthesizing an integrated model. We will later illustrate how the above can be

specified elegantly and be computed efficiently using the integrated model proposed and

the prototype is developed as part of this thesis.

6

1.3.2 Network Fault Management

In telecommunication network management, Network Fault Management (NFM)

[25] is defined as the set of functions that (a) detect, isolate, and correct malfunctions in a

telecommunication network, (b) compensate for environmental changes, and (c) maintain

and examine error logs, accept and act on error detection notifications, trace and identify

faults, carry out sequence of diagnostic tests, correct faults, report error conditions, and

localize and trace faults.

A telecommunication network is a multi-layered system with each layer performing

specific NFM functions. Each network element (NE) in the multi-layered network reports

the status of each of its components and the status of its environment (e.g., temperature)

periodically (e.g., every 5 minutes). These status and alarm messages from each NE, each

operation system (OS), and each link are continuously collected in a network operation

center (NOC) to be further analyzed by experts to detect and to isolate faults. Once

a fault is identified, sequences of actions such as generation of alarms need to be taken

locally and remotely.

Currently, for each independent NFM system, due to the large volume of messages

continuously reported by each NE and the complex message processing requirements, it

is impossible to employ a traditional database management system (DBMS) plus trigger

mechanisms as the data processing paradigm for NFM. Current NFM systems have to

hard code their data processing logic (or queries) and specific monitoring rules (or ECA

rules) in the system. As a result, various filters, pattern languages, regular expressions

are employed to find their interesting alarm messages and group those messages into

multiple subgroups based on various criteria. These subgroups are finally presented to

experts to diagnose root causes or route to an event correlation system to identify causes

automatically. Once the causes are identified, a ticket is placed to a trouble ticket system

to trace the problem and have corresponding engineers fix it. There are several major

7

shortcomings of these legacy systems. First, current systems have difficulty adapting

to new requirements from their customers because of the hard-coded queries. To add a

new query or to add a new monitoring rule, the system has to be reconfigured partially.

Second, current systems are very complicated, and their performance is poor because

there is almost no query optimization. Third, there is no standard interface or language

such as SQL to access those systems, which makes them hard to use and manage. Finally,

it is difficult to integrate different NFM systems at different layers because of the hard-

coded queries and different implementation techniques.

As there is a dramatic growth in both the volume of message stream and the

number of interesting alarms, there is an increasing demand to process and manage

message streams for these applications. This motivates us to present a generic solution

for NFM by the integration of stream and event processing to process message stream

and monitor alarms on the stream computation. The query specification for stream can

be extended for the integrated system to define message processing queries along with

events or alarms. The various scheduling strategies for stream processing will optimize

the queries and improve performance. The same generic integrated solution can applied

to all NFMs with different queries defined as per the need of users. It will be simple to

integrate such NFMs systems if required at a later time.

1.4 Contributions

In this thesis, we summarize the characteristics and architecture of both threads

of work to set the stage for understanding the differences and similarities. We then

discuss the issues for the integration of the two computation models and extension to the

continuous query definition specification to include event and rule definition capability.

We introduce masks in order to extend current stream computation model to reduce

the number of uninteresting events generated. We then discuss the alternatives of an

8

integrated architecture and finally propose the integrated system. We introduce stream

modifiers, a class of stream operators for computing changes over stream data. Finally,

we discuss other extensions made to the stream processing system.

CHAPTER 2

RELATED WORK

Our work is closely related to the two threads of work, event processing [12, 26,

27, 28, 13, 29, 14, 30, 17, 31, 20, 32] and stream processing [6, 33, 7, 8, 9, 34]. In this

chapter we will discuss the systems developed on these two independent streams of works

with respect to the limitations and capabilities required for their integration. Then we

will discuss the systems which have tried to do a similar integration. To the best of our

knowledge there is no such system that does a complete integration hence we will discuss

systems which are based on the concept of detecting events over data streams.

2.1 Data Stream Management Systems

Most of the stream processing systems have nearly the same computational model,

the data flow model and hence the computation done for processing queries is more or

less same. They differ slightly with respect to inputs the systems accept, the type of

queries supported, the system architecture and the optimization done for providing the

quality of service requirements.

2.1.1 Aurora

Aurora’s [35] prime functionality is to process streams based on the configuration

set by the application administrator. Aurora is a data flow system and uses the primitive

box and arrow representation. Tuples flow from source to destination through the oper-

ational boxes. Aurora’s query algebra supports seven primitive operations, some of the

important ones being select, aggregate, split, union and resample. This architecture sup-

9

10

ports continuous queries for real-time processing, views, and ad-hoc queries. It maintains

historical storage in order to support ad hoc queries. All these query types are supported

using the same set of operational blocks. Input in Aurora is through a GUI. Input begins

at the top of the hierarchy and makes use of the zoom capability to further assist in the

design. Quality of Service is associated with the output. It is specified in terms of a

two-dimensional graph that specifies the output in terms of several performance-related

and quality-related services. It is the QoS that determines how resources are allocated

to the processing elements along the path of query operation. Aurora has dynamic op-

timization policies, which change the data flow computation graph (or network) at run

time to improve the performance. Optimization is based on the types of queries running

in the system. It does not optimize the whole network at once rather it does in parts,

by considering a portion of the network at a time. Aurora has a Storage Management

module, which takes care of storing all the required tuples for its operation. It is also

responsible for queue management. Scheduler is designed to cater the needs of a large-

scale system with real time response requirements. Scheduler deals with operators unlike

Eddies [36] that deals with tuples for scheduling.

2.1.2 STREAMS

In STREAMS (Stanford Stream Data Management System) [10, 37] A modified

version of SQL has been chosen for the query interface. It allows the user to specify sliding

window queries in SQL with an explicit referral to timestamps. It assumes that with

explicit timestamps, tuples will be delivered in an increasing order. It supports logical and

physical windows. Logical windows are expressed in terms of tuples and physical windows

are expressed in terms of timestamps. STREAMS [10, 37] support continuous queries but

have not addressed the issue of ad-hoc queries. The system generates a query execution

plan on the registration of a query that is run continuously. Query execution plan is

11

nothing but a set of operators connected by queues. Operators make use of synopsis

(an internal data structure) to store intermediate results. System memory is distributed

dynamically among the synopsis, intermediate queues in query plans, buffers handling

incoming data streams and a cache for disk-resident data. Operators in STREAMS

adhere to the update and computeAnswer model wherein an operator reads data from

its input queue, updates the synopsis structures and writes results to its output queues.

Operators are adaptive and take care of the dynamically changing stream characteristics

such as stream flow rates, and the number of concurrently running queries. They can

produce approximate answers based on the available memory. STREAMS [10, 37] has

a central scheduler that has the responsibility for scheduling operators. The scheduler

dynamically determines the time quantum of execution for each operator. Period of

execution may be based on time, or on number of tuples consumed or produced. Different

scheduling policies are being experimented.

2.1.3 The COUGAR Sensor Database System

COUGAR is specifically targeted to meet the requirements of sensor-based appli-

cations. The system is based on the characteristics of sensor and their applications.

Some of the major challenges facing the COUGAR system are account for the failures

of sensor and its communication, uncertainty of sensor data and distributed execution

of query without global knowledge of the sensor network. COUGAR focuses on a dis-

tributed approach toward query processing wherein the workload determines the data

that needs to be extracted from the sensors. COUGAR is based on the Cornell univer-

sity’s PREDATOR [23, 24] object relational database system. Sensor data is considered

as a combination of stored data and sensor data. Stored data is represented as relations

and sensor data is represented as time series data based on a sequence model. Long run-

ning sensor queries are supported by this system. Sensor queries are defined as an acyclic

12

graph of sequence and relational operators. In COUGAR , signal-processing functions

are represented as Abstract Data Type (ADT) functions. Sensor ADT’s are defined for

sensors of the same type (e.g. temperature sensor, seismic sensor, etc). Public inter-

face to an ADT corresponds to the signal processing function supported by a type of

sensor. Sensor queries are SQL like queries with a little modification wherein ADT can

be included in the SELECT or WHERE clause of the query. Query processing takes

place on a database front end whereas the signal-processing functions are executed on

the sensor nodes involved in the query. On each sensor a lightweight query execution

engine is responsible for executing signal processing functions and sending data back to

the front end. COUGAR assumes that there are no modifications to the stored data

during query execution which is guaranteed using Two Phase locking. COUGAR also

mentions the need of event integration as a topic of research to be addressed but does

not provide any details on it. In order to support monitoring event based queries they

provide long-running queries which polls the sensor data after the periodicity defined in

the query.

Consider the following example query in COUGAR:

SELECT AVG(R.Concentration)

FROM ChemicalSensor R

WHERE R.loc IN region

HAVING AVG(R.concentration) > T

DURATION (now, now+3600)

EVERY 10;

This query checks for the concentration of the chemical every 20 seconds and out-

puts the tuples, which have average concentration above a threshold. There is a delay of

10 seconds for the query and as a result, to provide real time response we need an event

which will trigger the moment the concentration goes above the threshold.

13

2.1.4 Fjord: Architecture for Queries Over Streaming Senor

Fjord [9] is sensor data processing architecture for data intensive sensor-based ap-

plications. It provides a low-level database engine support required for sensor centric

data-intensive systems. The main focus of the system is to provide an efficient, adaptive

and power sensitive infrastructure. This system supports the Berkeley Highway lab to

monitor traffic conditions with the help of sensors that are deployed on Bay Area free-

ways. Fjord’s operators export an iterator like interface and are connected together via

local piper or wide area queues. It provides support for integrating streaming data that

is pushed into the system with disk-based data that is pulled into the system. Each ma-

chine involved in the query runs a single controller in its own thread. Controller accepts

message to instantiate operators, connect local operators via queues to other operators

that may be running locally or remotely. Queues also export an iterator like interface

irrespective of whether the operators are local or remote. This way it makes the operator

ignorant of the nature of their connection to remote machine. Each query has its own

thread, which is multiplexed between local operators via procedure calls in case of a pull

base architecture or via a special scheduler that also controls the input and output of data

through the operators. Operators are the primary functional unit of the system. Each

operator owns a set of input and output queues. It reads data from the input queue, per-

forms the required operations and directs them to the output queue. No processing takes

place in the queues. Stale data are discarded from queues based on the requirements of

the applications. It supports non-blocking operators such as selection and projection and

blocking operators such as join and aggregate. A main memory symmetric hash join has

been implemented which maintains a hash table for each relation. Window based oper-

ations are supported for blocking operators. Considering the nature of streams, Fjord

provides an optimization by combining multiple queries. This way a significant amount

of computation and memory can be shared thereby improving the overall performance

14

of the system. Sensory proxy is a prime component of this architecture. It acts as an

interface between the system and the sensors over which the user will pose the queries. It

shields the sensor from having to deliver data to hundreds of interested users. It adjusts

the sampling rate of the sensor based on the current condition of the system thereby

preserving the battery life of the sensor, which is one of its prime advantages. It can

also direct the sensors (smart sensors) to aggregate samples in a predefined way thereby

reducing the data communication.

2.2 Event Processing Systems

The event processing systems, on the other hand have different computational mod-

els such as the Event Detection Graph (EDG), Petri Nets and Finite Automaton. All the

computational models have certain restrictions and capabilities. In this section a system

based on each event computational model is discussed with respect to its architecture

and the capability to be integrated with a stream processing system in a manner that it

does not significantly affect the QoS of stream processing, which are tuple latency and

memory utilization.

2.2.1 ODE

Ode [38, 17] is a database system and environment based on the object paradigm.

The database is defined, queried and manipulated using the database programming lan-

guage O++, which is an upward compatible version of C++. Ode provides active be-

havior by the incorporation of constraints and triggers [38, 17]. Constraints and triggers

are defined declaratively within a class definition and consist of a condition and action.

Constraints are used for maintaining object consistency and are applicable to all in-

stances of the class in which they are declared. Triggers, on the other hand, are used

for other purposes and are applicable only to those instances of the class in which they

15

are declared. The computational model for ODE is an extended finite automaton for

composite event detection and triggering of constraints and triggers. The extended au-

tomaton makes a transition at the occurrence of each event in the history like a regular

automaton and in addition handles attributes of the events to compute a set of relations

at the transition. The drawback of finite automata as the computational model is that

for each event occurrence each constraint and trigger has to be evaluated, i.e., each finite

automaton constructed has to be checked to see if there are any transitions. In case of

the event and stream integrated architecture where each stream tuple is converted to

an event, it leads to excessive checking, which introduces delay in detecting the event

and hence is not suited as it will not optimize tuple latency, an essential requirement of

stream processing. In this implementation a suite of finite automatons are generated if

an attribute is specified, for each unique value of the attribute. For detection of such an

event all the automatons should be satisfied. This further increases the tuple latency and

also memory utilized. There is also no specification of priority in the case of constraints

and triggers and they seem to be activated in an arbitrary manner due to which events

with priority cannot be defined.

2.2.2 SAMOS

The combination of active and object-oriented characteristics within one, coherent

system is the overall goal of SAMOS (Swiss Active Mechanism Based Object- Oriented

Database System). Samos [39] addresses event specification and detection in the context

of active databases. The computational model for SAMOS is modified colored Petri Nets

called SAMOS Petri Nets to allow flow of information about the event parameters in

addition to the occurrence of an event. Memory utilization for SAMOS is increased in case

of primitive events participating in more than one composite events, (e.g., in E=(E1;E2)

and in EE=(E1,E3)). To represent the Petri Nets for the two composite events, E1 has

16

to be duplicated. The duplication of Petri Nets equal to the number of common event

expressions that E1 participates in. Since all duplicates must also be represented in the

data structure this might lead to excessive storage requirements thus increasing memory

utilization. In Samos only the chronicle context is supported. To implement contexts a

different Petri net has to be generated. If contexts are introduced in Petri Nets then they

cannot be built unless the context information is specified beforehand. Petri Nets also

do not support explicit and temporal events. The limited capability of event detection

and excessive memory utilization are the drawbacks of integrating this system with the

stream system.

2.2.3 Sentinel or LED

Sentinel [40, 41, 42, 43, 44] is an integrated active DBMS incorporating ECA rules

using the Open OODB Toolkit from Texas Instruments. Event and rule specifications

are seamlessly incorporated into the C++ language. The computation model for Sentinel

is an Event Detection Graph (EDG). Any method of an object class is a potential prim-

itive event. The event occurs either at the beginning of the method or at the end of the

method. Composite events are defined by applying a set of operators to primitive events

and/or composite events. Events and rules are specified in a class definition. In addi-

tion, Sentinel supports events and rules that are applicable to a specific object instance

alone. In that case, events and rules are specified within the program where the instance

variables are declared. This ability to declare events and rules outside a class allows com-

position of events across classes. It can be recalled that a significant drawback of Ode was

that a composite event could only be composed of events within the same class but not

from different classes. This is because Ode does not support event definitions outside the

class. Sentinel overcomes this drawback by allowing event definitions outside the classes

too. The parameters of a primitive event correspond to the parameters of the method

17

declared as the primitive event and other attributes, such as the time of occurrence of the

event. The processing of a composite event involves not only its detection, but also the

computation of the parameters associated with the composite event. The parameters of

the event (primitive or composite) are passed onto condition and action portions of a rule

thus avoiding the drawback of ODE, which requires the creation of a separate automaton

for the different attributes. The parameters associated with the detection of an event can

be different in different contexts. Sentinel supports all the four parameter contexts spec-

ified in HiPAC namely, recent, chronicle, continuous and cumulative contexts. An event

can trigger several rules, and rule actions may raise events that can trigger other rules.

Sentinel supports multiple rule executions, nested rules execution as well as prioritized

rule executions. Out of the three coupling modes (immediate, deferred and detached)

specified in HiPAC, Sentinel currently supports immediate and deferred modes of rule

execution.

Such implementation which uses an event detection graph which is similar to the

data flow model of stream processing is ideal for the integration. It also minimizes space

by sharing the same event node in the graph for creating multiple composite events thus

eliminating the drawback of SAMOS. Events can be detected in multiple contexts using

the same graph representation. The integration of an event and a stream processing is

best suited with such a system.

2.3 Event and stream integration systems

2.3.1 HiFi

HiFi generates simple events out of receptor data at its Edges [45, 46] and provides

the functionality of complex event processing on these Edges [45, 46]. It addresses the

issue for generating the simple events by Virtual Devices [45], which interact with the

18

heterogeneous sensors to produce application level simple events. Then complex event

processing can be done on these simple events to correlate into a sophisticated application

level event. An application of this system to a library scenario is also described.

Although this system is a step in the right direction for the detection of events

over sensor data, it does not define and detect events over stream queries. The events

detected at Edges are simple events and cannot be defined over the result of the data

preprocessed by a Continuous Query [47]. Example of events that could be detected by

this system are simple events such as

1. ”The book with ID 10 is on the shelf”

2. ”The person with ID 7 is leaving the library”

3. ”The book with ID 4 is being checked out”.

2.3.2 Tiny DB

TinyDB has Event Based Queries [21, 22], which is processing of events over stream

queries. They address the need for event processing over stream processing is essential.

The aim of implementing event here was to save power of the microprocessors as it is

a push based mechanism which saves the process of constantly polling for events. The

events are initiated by low-level lying operating system events. Events are interrupt lines,

which are raised on the processor or sensor readings going above or below some threshold.

Events have to be explicitly defined and then registered with the Query.

This research is a step towards providing event capability for stream processing but

does not integrate a complete event processing system. It lacks the capability of complex

event processing and rule specification.

19

2.3.3 Financial applications

Financial applications like streambase [48], Apama [49], GemStone [50], etc., are

systems which are used for mining for patters in data streams and raising events when

some financial scenarios are detected. They also provide the capability of complex event

processing over simple events. These systems are developed for a specific application

domain and do not allow the user to evaluate stream queries on sensor data using the

database operators. It provides a dashboard to the user to define financial scenarios to

be mined in the input streams. It detects patterns and process events but does not span

detection of events over events detected for other queries.

2.4 Summary

In this chapter we have discussed the various systems for stream processing. All the

systems follow the same data flow model, where the data flows through the operators and

may differ slightly with respect to the optimization done for stream processing and the

way the query is posed to the system. The event processing on the other hand has various

computational models such as Petri Nets, EDG and finite automaton and significantly

differ with respect to the way the events are detected. Complex event detection on same

primitive events may also require duplication of the computational model with respect to

Petri Nets and finite automaton. For checking of conditions over the event attributes in

the finite automaton model a separate automaton had to be constructed which increases

space and time required to detect the event, which are both crucial for stream processing

applications. Various modes for rule processing like immediate and chronicle are also not

supported by all the models. In the computational model for Sentinel, the event detection

graph is very similar to the data flow model and it supports the stream requirements for

optimizing memory and time better than the other systems. Later, we overview some

20

systems which do event processing on sensor data. All these systems lack a complete

stream capability and they simply do event processing on sensor data. TinyDB on the

other hand does not implement a complete event processing capability to detect complex

events and process rules.

CHAPTER 3

THE MAVSTREAM AND THE LOCAL EVENT DETECTOR (LED)

The MavStream, a data stream processing system and the LED, an event process-

ing system are both homegrown systems and implemented in Java. In this chapter we

will explain the two systems with respect to their architecture, functionality and the

computational model, to lay the background before we address the design issues for the

integration of these two systems in the next chapter. We also analyze the relationship

between the generic stream processing data flow model on which MavStream is based

and the Event Detection Graph (EDG) model, on which LED is based.

3.1 MavStream

MavStream is being developed for processing continuous queries over streams.

MavStream is modeled as a client-server architecture in which client accepts input from

the user, transforms it into a form understood by a server and sends the processed input

to the server based on predefined protocols. MavStream is a complete system wherein a

query, submitted by the user, is processed at the server and the output is returned back

to the application. The various components are shown in Figure 3.1.

The MavStream server, upon receiving the query from the client, constructs the

query plan object for that query, instantiates and executes the query and returns the

outputs of the query to the application.The output is sent to the Run-Time Optimizer

also. The Run-Time Optimizer frequently checks the QoS requirements for the query

with respect to the actual output. If the QoS Specifications are not satisfied then the

query takes measures to bring the output in line with the specified QoS. This is done

21

22

Instantiator

Scheduler

User
Input

Alternate
Plan

Generator

Run Time
Optimizer

User O/P

S1 S2 Sn

O O

O

O O

Input
Processor

Data Streams

MavStream
SERVER

Feeder

Figure 3.1 MavStream Architecture

by either changing the scheduling policy or by load shedding. It is also possible to

generate an alternate plan to satisfy the QoS Specifications. The client provides graphical

user interface to pose queries to the system. It sends the complete query along with

the QoS requirement from user specifications to the server over a predefined protocol.

Communication between client and server is command driven and protocol oriented.

3.1.1 Operators

Query processing in a traditional DBMS is not designed to produce real-time re-

sponse to queries over high volume, continuous, and time varying data streams. The

processing requirements of real time data streams are different from traditional applica-

tions and demand a re-examination of the design of conventional operators for handling

23

long running queries to produce results continuously and incrementally. Blocking opera-

tors (an operator is said to be blocking if it cannot produce output unless all the input

is available) such as aggregates and joins may block forever on their input as streams

are potentially unbounded. A window concept has been introduced to convert the com-

putation of blocking operator into a non-blocking one. Tuples are processed by these

blocking operators till a window is elapsed and output is produced. Operators have one

or sometimes more input and one output queue. The operators are implemented as indi-

vidual threads which are scheduled by the scheduler to optimize QoS requirements. The

operators are suspended by the scheduler thread when the time quantum is elapsed or

when they do not have any more tuples to process.

3.1.2 Instantiator

Instantiator has the responsibility of initializing and instantiating streaming op-

erators and their associated buffers on accepting user queries from the client. Client’s

query is converted into a plan object, which is a sequence of operator nodes represented

as a operator tree, where every node describes an operator completely. The query plan

object is used as input by the instantiator. Instantiator traverses the plan object in a

bottom-up fashion and instantiates all the operators and associates buffers between them.

Every operator is an independent entity and expects predicate condition in a predefined

form. Instantiator populates the operator instances with the predicate conditions defined

in the query plan object. It also associates a scheduler with the operator to facilitate

communication for scheduling. Instantiator does not start the operator and it only does

the necessary initialization.

24

3.1.3 Scheduler

Scheduling is done at an operator level since it is not meaningful to schedule at tuple

level as the number of tuples in entering the system is potentially unbounded and tuple-

level granularity results in too much of overhead. Scheduler schedules operators based

on its state and priority. The optimization of the query depends upon the scheduling

strategy selected by the scheduler. Following are the scheduling strategies supported in

MavStream:

1. Round-Robin: In this scheduling strategy, all the operators are assigned the same

priority (time quantum). Scheduling order is decided by the ready queue. This

policy is not likely to dynamically adapt to quality of service requirements as all

operators have the same priority. However, there is no starvation in this approach.

2. Weighted round-robin: Here different time quanta are assigned to different opera-

tors based on their requirements. Operators are scheduled in round robin manner

but some operators may get more time quantum over others. For example, oper-

ators at leaf nodes can be given more priority as they are close to data sources.

Similarly, Join operator, which is more complex and time consuming, can be given

higher priority than non-leaf Select.

3. Path capacity scheduling: Schedules the operator path which has the maximum

processing capacity as long as there are tuples present in the base buffer of the

operator path or there exists another operator path which has greater processing

capacity than the presently scheduled operator path. This strategy is good for

attaining the optimum tuple latency.

4. Segment scheduling: Schedule the segment which has the maximum memory re-

lease capacity as long as there are tuples present in the base buffer of the segment

or there exists another segment which has greater memory release capacity than

25

the presently scheduled segment. This strategy is good for attaining less memory

utilization.

5. Simplified segment scheduling: It uses the same segment strategy but the segment

construction algorithm is different. Instead of breaking operator path into many

segments, we break the operator path into only two segments. This strategy takes

slightly more memory than the segment strategy resulting in reduced tuple latency.

3.1.4 MavStream Server

MavStream server is a TCP Server which listens on a chosen port. It is respon-

sible for executing user query, converting a plan object into a query instantiation and

processing it to give the desired output. It provides integration and interaction of vari-

ous modules such as Instantiator, operators, buffer manager and scheduler for efficiently

producing the correct output. It provides details of available streams and schema def-

initions to clients so that they can pose relevant queries to the system. It also allows

new streams to be registered with the system. It initializes and instantiates operators

constituting a query and schedules them. It also stops a query, which in turn stops all

operators associated with the query on receiving command for query termination. Some

of the commands supported by the server are given below:

• Register a stream.

• Receive a query plan object.

• Start a query.

• Send all streams to the client.

• Stop a query.

26

Figure 3.2 MavStream Computational Model

3.1.5 Data Flow computational model

This model is generic for stream processing with slight variations from one system

to another. As suggested by the name, the data flows through the system from one

operator to another until the entire query is processed. Each operator uses both the pull

mechanism to retrieve tuples from its input queue(s). We will explain this model with

the following example.

SELECT * from S1,S2,

WHERE S1.Attribute1=S2.Attribute1;

In figure 3.2 the tuples from streams S1 and S2 are sequentially ordered (either

by timestamp or sequence number). The tuples flow upwards in the Query tree and the

result is produced in the output buffer. The intermediate buffers hold the tuples till

they are consumed, which is similar to the buffers of Aurora [35]. In MavStream we do

not support snapshot queries. Some systems like [9, 35] may support snapshot queries

by maintaining a synopsis at the operators or the buffers. All the operators execute

as individual threads and have to be scheduled only when tuples are present in their

27

LED

Event

Detector

Application

LED Buffer

Event

Detection

Graph

Figure 3.3 LED Architecture

input queue. Various scheduling strategies [1] such as Chain scheduling [51], Segment

scheduling [52, 1], path capacity scheduling [52, 1], etc., have been studied. The queries

are scheduled in a way to optimize the memory utilization (since it is a main memory

system) and/or tuple latency (since it supports real time response).

3.2 Local Event Detector

The Java LED is based on ECA (event-condition-action) rule paradigm. A rule

consists of:

1. Event: occurrence of interest such as data-manipulation-events, clock events and

external notification events.

2. Condition: can be a simple or a complex query.

3. Action: specifies the operations that are to be performed when the event occurs

and the corresponding conditions evaluate to true.

The major components of LED are shown in the figure 3.3:

28

The application explicitly defines the events using the APIs provided by the ECAA-

gent. The EDG is constructed for the user defined events. When the events are raised

by the applications, an event object is created and placed in the LED buffer. LED is

a single threaded application. It consumes one event object at a time from the notify

buffer and raises the primitive events defined on it. The primitive events detected are

propagated upwards in to EDG to detect complex events defined on them. The event

detector thread also executes all the rules defined on the event that are raised and only

then returns to the LED buffer to consume more events. Event Detection is based on

time based semantics. When simple events are detected a timestamp is attached to them.

The complex event detection is implemented on the timestamps of the constituent events.

3.2.1 Event types supported by LED

1. Primitive Events: An event is an occurrence of interest at a specific point in time.

Primitive events are the elementary occurrences and are classified into domain-

specific, explicit and temporal events. Domain-specific events are specific to ap-

plication domain. For example, a database domain-specific event may occur when

a tuple is updated, inserted or deleted, in object-oriented systems events can be

related to methods and each invocation or method call can be an event occurrence.

Explicit events are explicitly defined by an application and raised by the user. The

parameters of the explicit event are also specified by the user. Temporal events

correspond to absolute and relative temporal events. The absolute temporal event

is an event associated with an absolute value of time. For example, 11 A.M. on

October 28, 2005 is an absolute event. The relative temporal event corresponds to a

specific point on the time line, which is an offset from another time point (specified

either as absolute or as an event).

29

2. Composite Events: A composite event is an event that is composed of primitive

events and/or other composite events by applying Snoop [53, 54] event operators

such as OR, AND, SEQUENCE, NOT, etc. In other words, the constituent events

of a composite event can be primitive events and/or previously defined composite

events.

Event Operators: The event operators are used to construct composite events.

Some of these event operators and their semantics are described briefly in the

following section. The upper case letter E, which represents an event type, is a

function from the time domain on the Boolean values. The function is given by E

(t) =True if an event type E occurs at time point t, False otherwise

• OR (V): Disjunction of two events E1 and E2 denoted by E1 V E2 occurs

when either E1 occurs or E2 occurs. Formally,(E1 V E2) (t) = E1(t) V E2(t)

• Conjunction AND (Λ): Conjunction of two events E1 and E2, denoted by

E1 Λ E2 is applied when E1 and E2 both occurs (in any arbitrary order).

Formally, (E1 Λ E2)(t) = (E1(t1) Λ E2 (t)) or ((E1(t) Λ E2(t1)) and t1 ≥ t.

• Sequence (<<): The sequence of two events E1 and E2, denoted by E1 <<

E 2 occurs when E1 happens before E2. That is, the timestamp of occurrence

of E1 is less than the timestamp of occurrence of E2. Formally,(E1 << E2)(t)

= E1 (t1) << E2 (t) and t1<t

• NOT (¬): The not operator, denoted by ¬(E2)[E1, E3] detects the non-

occurrence of the event E2 in the closed interval formed by E1 and E3.

¬(E2)[E1, E3](t) = (E1(t1) Λ E2(t2) Λ E3(t)) and t1 ≤ t2 ≤ t

• Aperiodic Event Operators (A, A*): The Aperiodic operator A is used to

express the occurrence of an aperiodic event in the half-open interval formed

by E1 and E3. There are two variants of this event specification. The non-

cumulative variant of an aperiodic event is expressed as A(E1, E2, E3) where

30

E1, E2 and E3 are arbitrary events. The event A is signaled each time E2

occurs during the half-open interval defined by E1 and E3. A can occur zero

or more times. Formally, A (E1, E2, E3) (t) = E1(t1) Λ E2(t2) Λ E3(t))

and (t1 < t2 ≤ t or t1 ≤ t2 < t) There are situations when a given event is

signaled more than once during a given interval (e.g., within a transaction),

but rather than detecting the event and firing the rule every time the event

occurs, the rule has to be fired only once. To meet this requirement, there

is an operator A* (E1, E2, E3) that occurs only once when E3 occurs and

accumulates the occurrences of E2 in the half-open interval formed by E1

and E3. This constructor is useful for integrity checking in databases and for

collecting parameters of an event over an interval for computing aggregates.

For example, the highest or lowest stock price can be computed over an interval

using this operator. Formally,

A*(E1, E2, E3) (t) = (E1 (t1) Λ E3 (t)) and t1 < t In this formulation,

E2 is not included because the occurrence of the composite event A* which

coincides with the occurrence of E3 is not constrained by the occurrence of

E2. However, the parameters of A will contain the parameters of E2.

• Periodic Event Operators (P, P*): The periodic operator, denoted by P

(E1, [t], E3) is used to express a periodic event that repeats itself within a

constant and finite amount of time. The event P is signaled for every amount

of time t in the half-open interval (E1, E3]. Formally, P (E1, [TI], E3) (t) =

(E1(t1) Λ E3(t2)) and t1 < t2 and t1 + x * TI = t for some 0 < x < t and

t2 ≤ t where TI is a time specification.

31

3.2.2 Parameter Context

Four parameter contexts - recent, chronicle, continuous and cumulative, were in-

troduced to provide a mechanism for capturing meaningful application semantics and

reduce the space and computation overhead for the detection of using the semantics de-

scribed above. The contexts are defined by using the notions of initiator and terminator

for events. An event that initiates the occurrence of a composite event is termed the

initiator of the composite event. An event that completes the detection of a composite

event is denoted as the terminator of the composite event. For example, a composite

event (E1; E2; E3) has E1 as initiator and E3 as terminator.

1. Recent: In the recent context, the most recent occurrence of the initiator (when

there are multiple instances of the same event) for the detection of event is used.

When the event occurs, the event is detected and all the occurrences of events that

cannot be initiators of that event in the future are deleted. In this context, not

all occurrences of a constituent event will be used in detecting a composite event.

Furthermore, an initiator of an event will continue to initiate new event occurrences

until a new initiator occurs.

2. Chronicle: In the chronicle context, the initiator-terminator pair is unique for

an event occurrence. The oldest initiator is paired with the oldest terminator for

each event. When an event occurs, the occurrences of the events used for detecting

it are deleted. The event occurrence can be used at most once for computing the

parameters of the composite event.

3. Continuous: In the continuous context, each initiator of an event starts a separate

detection of that event. A terminator event occurrence may detect one or more

occurrences of the same event. The initiator and terminator are discarded after an

event is detected.

32

4. Cumulative: In the cumulative context, all occurrences of an event type are

accumulated as instances of that event until the event is detected. When the event

occurs, all the occurrences that are used for detecting that event detection are

discarded.

3.2.3 Rule Priority

In addition to the parameter context, there is also a priority assigned to each rule.

The default priority of a rule is a priority of 1. The priority increases with the increase

in the numerical value. That is, 2 has a higher priority than 1, 3 is a higher priority

than 2 and so on. Rules of the same priority are executed concurrently and rules of a

higher priority are always executed before rules of a lower priority. It is possible that

a rule raises events that in turn could fire more rules. This results in a cascaded rule

execution. Furthermore, rules can be specified either in the immediate coupling mode or

the deferred coupling mode. Both priority and coupling mode of a rule have to be taken

into account for scheduling the rule for execution.

3.2.4 LED Computational Model

LED uses an event graph for detecting composite events as shown in Figure 3.4.

Each node in the event graph represents either a primitive event or a composite event.

Primitive event nodes are leaf nodes from which composite event nodes are constructed.

The primitive event node contains an instance-based multiple rule list and an event

subscriber list, while the composite event node contains only one rule subscriber list

and one event subscriber list. An instance-rule list is a collection of rule subscriber

lists for classes and instances. The rule subscriber list and event subscriber list keep

the associated rules and composite events, respectively. The event signature HashTable

provides references to the primitive event nodes. When a primitive event occurs, it is

33

IBM

MSFT

null

an Instance
-
rule list

Event Signature
HashTable

Event Subscriber

Rule Subscriber

Primitive Event Node
 Composite Event Node

Pointer to Event Node
Rule Node

Figure 3.4 LED:Event Detection Graph Model

notified to the leaf node and the occurrence is propagated to the internal nodes similar

to a data-flow computation.

3.3 Data Flow Model Vs. Event Detection Graph

In this section we will discuss the two computational models and the reasons for

choosing these models for the integration of event and stream processing.

3.3.1 Inputs and Outputs

Inputs (or data sources) to an event processing model are a sequence of events (or

event histories) ordered by their time of occurrence. Most event sequences considered

by event processing models are generated by system clock, etc. The input rate of an

event sequence is not assumed to be very high or even bursty. The outputs of event

operators form event sequences, which are ordered by their occurrence timestamps. On

34

the other hand, inputs to the data stream applications are data streams. Input tuples in

a data stream can be ordered by an attribute and not necessarily by a timestamp (e.g.,

sequence id of a TCP packet in a TCP packet stream) as in the case of event sequences.

Thus, conceptually, both the models have similar inputs and outputs. However, the data

sources in data stream processing model are mostly external sources with high input rates

and highly bursty input model, where as the data sources in event processing model are

mainly internal ones with relatively low input rates.

3.3.2 Event Operators and Stream Operators

Event operators are not quite different from the operators supported by current

stream processing models. Event operators are mainly used to express and define the

computation on events (or event objects) and to reduce the number of output events

through consumption modes, and they solely use the timestamp of an event for detecting

composite events. The attributes of the event are passed as Parameters but they are only

used in the computation of rules (checking for condition and action part of a rule). On the

other hand, current stream processing operators are mostly modified relational operators,

which focus on how to express and define the computation on the tuple attributes.

3.3.3 QoS Support

The notion of QoS is not present in the event processing literature. Although, there

is some work on real-time events and event showers, event processing models do not sup-

port any specific QoS requirements. Typically, in the event processing model, whenever

an event occurs it is detected or propagated to form a composite event. Thus, events are

detected based on the best-effort method. The EDG is based on operators and compute

sets of histories rather than instances (as in case of Petri Nets and extended automata)

and hence the same operator node could be reused for defining multiple complex events

35

instead of creating a separate node if the operator participates in detecting more than

one composite nodes. This model does the checking of the conditions on event attributes

in the rules which can be defined separately for an event node hence for taking multiple

different actions on different values, the same event node could be reused unlike finite

automaton. This reusability of operator nodes saves both time and memory than the

other event processing models and supports the QoS requirements of Stream processing.

3.3.4 Reusability

The EDG and data flow model are exactly the same, except that EDG works

on different set of assumptions (timestamps and non-burst inputs). The EDG model

supported the domain where the rate at which events generated were limited, so whenever

a primitive event is detected it is propagated higher up in the EDG and only when all

events dependent on it are detected, the next primitive event raised will be detected

by the event detector. In stream processing, the number of events generated are large

so to seamlessly integrate event and stream processing, this delay introduced between

detection of two primitive events can be avoided by pipelining the detection of events

at each level of the EDG by introducing buffers/queues between event nodes. The same

buffer/queue that is used in the data flow model for stream processing can be reused

for this purpose and also the scheduling and load shedding strategies can be reused to

optimize the processing of EDG when it is pipelined.

3.4 Summary

In this chapter, we have discussed the architecture of MavStream and its various

components. We have also discussed the main components of the Local Event Detector.

We have explained the computational model of both the systems, which follow the same

graph design with stream tuples and events propagating from the leaf to the root nodes for

36

each of the models, respectively. We also analyzed the relationship between the generic

stream processing data flow model and the Event Detection Graph (EDG) model, on

which these systems are implemented. Both the computational models complement each

other. The inputs and outputs of both the models are ordered. Although operators of

event processing currently perform on timestamps, yet can easily be extended to attribute

based semantics, similar to stream operators. Extensions to event side such as pipelining

of event detection in EDG can be easily done by reusing the components of stream side

such as scheduler, load shedder, buffer management, etc. In the next chapter we present

the design of the integration of the two systems.

CHAPTER 4

DESIGN

In this chapter we discuss the design of the EStream system. We first highlight

the issues for generation of event for stream tuples followed by the discussion of exten-

sions to the continuous query specification to include ECA (event, condition and action)

rules. We further discuss a concept of attribute based constraints on generation of events.

Finally, we discuss the approaches for the integrated architecture and elaborate on our

design.

Consider the car ADN example illustrated in Section 1.3, which we use to explain the is-

sues that arise for integrating the stream and the event processing systems. The accidents

will be detected when the conditions for i) IMMOBILITY, ii) SPEED REDUCTION,

and iii) SAME SEGMENT are satisfied. We have already seen that condition 1 can be

expressed as a continuous query on the stream side. The continuous query that detects

whether the car has been stopped can be represented as

Immobile:

SELECT carId, Xpos, count(*)

FROM CarLocStr [2min sliding window]

WHERE true

GROUP BY carId, Xpos

HAVING count(*) > 3;

This query will group the tuples based on the carId and position (Xpos). Since cars

produce tuples every 30 sec, this query will count the number of times for which a car is

in the same position for at least three consecutive tuples or 90 seconds.

37

38

Condition 2 can also be represented in the stream side if the stream side has some

operator in addition to the RDBMS operators, which can evaluate complex conditions

on stream attributes. We have introduced XFILTER which is similar to SELECT and

can not only evaluate conditions with syntax: Attribute Operator Constant, but can also

evaluate conditions such as Attribute1 Operator Attribute2 on a single tuple. The full

description of this operator is given in the next chapter. The query which will calculate

whether the car has reduced its speed by more than 30 percent can be represented in

SQL as:

Decrease

SELECT CarId ,Xpos, MIN(speed) as min_Speed, MAX(Speed) as max_Speed

FROM CarLocStr [2min sliding window]

WHERE True

GROUP BY CarID;

HAVING min_Speed < (.7*max_Speed);

In our implementation GROUP BY operator is implemented without the HAVING

condition. HAVING can be evaluated as a separate SELECT or XFILTER operator,

which evaluates on the output tuples produced by the GROUP BY operator and does

filtering on the attribute-based conditions which are specified in the HAVING clause.

The above query can be represented by a GROUP BY and an XFILTER operator with

the XFILTER operator consuming the tuples produced by the GROUP BY and filtering

tuples based on the condition given in the HAVING clause.

The SPEED REDUCTION is calculated by computing minimum and maximum

speeds of each car in a time window of 2 minutes and applying the condition that each

car’s minimum speed is less than 70 percent of the maximum speed. In real world this

implies that a car following the car that has stopped, may have come to a halt or has

made a lane change to pass through.

39

Detection of condition 3 need be done in the event side by implementing a composite

event with a sequence operator semantics. This operator will only detect the event when

condition 2 happens after condition 1. Once a car is detected to have lowered its speed

after another car that has stopped, an event gets triggered and in the rule associated with

the event, condition 3 can be checked (i.e., whether both cars are in the same segment

or not). This complex query requires computation at both event and stream side and in

order to design a system that will be able to compute this query, several issues have to

be addressed. Some of the issues are:

1. Whether an event shall be generated for each tuple or for a group of tuples?

2. How will the system raise the right event for a stream tuple when there are multiple

queries executing in the stream side and multiple events created in the event side?

3. How shall the two models be integrated?

4. Should both systems be in the same address space or different address space?

4.1 Issues

All issues raised for the integration of the stream and event processing will be

addressed in this section. We then discuss the approaches and design of our integrated

system.

4.1.1 Event as a Single Tuple or a Collection of Tuples

Each generated event has a timestamp attached with it. Operators such as SE-

QUENCE, NOT etc., which correlate events, are implemented on the event timestamp.

Similarly, each stream tuple also has a timestamp or a sequence ID associated with it

and stream operators such as JOIN, AGGREGATE etc., use this attribute to evaluate

results and implement the various window concepts. The output stream tuples are or-

dered on timestamp or sequence ID. If the stream processing has to be extended with

40

event processing then timestamp information for each tuple should be maintained. In

case we detect a single event for a group of tuples then the timing of each individual

tuple will be lost and each tuple will be assigned the timestamp of the group. The event

operators will not be able to detect complex events such as SEQUENCE, NOT at the

tuple granularity; hence it is essential to detect each tuple as an event. In the Car ADN

example, if we detect an event for a group of cars that have stopped (Immobile) and a

group of cars with decreased speeds (Decrease) then we will not be able to detect if a car

in one group decreases its speed after another car in the other group that has stopped.

Instead, we will only be able to detect when a group of cars has decreased speed after a

group of cars that has stopped.

4.1.2 Event and Continuous Query Definition and Mapping

There should be a mapping of which event to raise for each stream tuple as there

may be more than one event defined and more than one CQs executing. The mapping

should uniquely identify which tuple shall raise which event on the event side. The query

and the event associated with it should be uniquely identified. In our event model, each

event can be uniquely identified by an event name. If we add a unique identifier to each

query then there can be a mapping of the query identifier to the event name which will

uniquely identify the events that need to be notified when the CQ produces an output

tuple. This mapping should persist and should be visible for event generation.

4.1.3 How shall the two models be integrated

Integration of the stream and event computational models is possible if the output

produced by stream can be consumed by the EDG as input. This can be addressed by

calling APIs of event side for creation of event objects for stream tuples whenever events

need to be generated on them. Event objects thus created can be enqueued in the LED

41

buffer for their detection in the EDG. The attributes and values of stream tuples should

also be passed to the event side as rule conditions have to be evaluated on them. API

calls can also be made for insertion of stream attribute values in the event object at the

time of its creation. This is done only for primitive events as the attributes and values

for composite events are automatically obtained from the constituent primitive events.

4.1.4 Address Space Issue

Communication between event and stream sides is required for the integration of

the computational models. Event APIs need to be called for i) Creation of EDG for

events defined on the CQs, ii) generation of event objects for output tuples of CQs, and

iii) passing of stream attributes and values as event attributes and values.

If both the systems are in separate address spaces then some IPC (Inter Process

Communication) is required for calling the APIs and marshalling and unmarshalling will

be needed for passing of attribute values of stream tuples to the event side. If tuples

produced by stream processing on which events have to be generated are large then

overhead introduced by IPC will be significant, which will lead the system to slow down.

Due to this reason we run both systems in the same address space.

4.2 Continuous Event Query (or CEQ)

We need to have a way to specify continuous queries, a way to specify events and

rules, and a combination there of. The user should also have the privilege of defining

both the CQ and the events together. Such queries which have both event and stream

definition are referred in this thesis as Continuous Event Queries (or CEQs). If CEQ

allows for the independent specification of events and continuous queries and provide a

mechanism to associate events with pre-defined continuous queries then we can provide

maximum flexibility. This way the CEQ specification can be used for i) defining CQs and

42

associated events along with their mapping, ii) defining only events (both primitive and

composite) and their mapping with predefined CQs, and iii) defining only CQs without

event specifications.In CEQ specifications the query name is given as the query identifier

and association of the query name and event name is given as the mapping. The car

ADN example can be represented by a generic CEQ specification as;

CREATE CQ Immobile AS

SELECT carId, Xpos, count(*)

FROM CarLocStr [2min sliding window]

WHERE true

GROUP BY carId, Xpos

HAVING COUNT(*) > 3;

CREATE CQ Decrease AS

SELECT CarId ,Xpos, MIN(speed) as min_Speed, Max(Speed) as max_Speed

FROM CarLocStr [2min sliding window]

WHERE True

GROUP BY CarID;

HAVING min_Speed < (.7*max_Speed);

CREATE PRIMITIVE EVENT EImmobile on Immobile

CREATE PRIMITIVE EVENT EDecrease on Decrease

CREATE COMPOSITE EVENT EAccident on

EImmobile SEQUENCE EDecrease

DEFINE RULE AccidentNotify,

Immediate On EAccident

43

Condition is EImmobile.segment == EDecrease.segment

Action is

• Notify all cars in upstream

• Notify toll station so that waiting cars are not extra tolled

• Notify nearest police about the accident

In the above example, the continuous event query has been defined with both the

CQ and event specification. Continuous queries are named (as Immobile and Decrease)

and the query name has been used as the query identifier. The Events EImmobile,

EDecrease are defined on the queries by using query names Immobile and Decrease.

The composite event EAccident is defined using named primitive events EImmobile

and EDecrease.

4.3 Masks

In most of the current event processing systems, events are raised for generic hap-

pening of interest (e.g., stock object is updated) and conditions further check for specific

details using the parameter of the event (e.g., does the stock belong to chip manufactur-

ing group). In Sentinel [40, 41, 42, 43, 44], instance level events permit a limited check

on the instance of an object on which an event is generated (and not its attribute values).

This approach leads to the generation of a large number of events and the conditions to

take specific actions are checked after the events are detected and processed. This leads

to excessive generation of events and waste of processing to filter events based on event

parameters. Masks provide a mechanism by which attribute-based constraints can be

applied to the generation of events from the output of CQs for reducing uninteresting

events. This was not possible in Sentinel [40, 41, 42, 43, 44] as events were generated by

the underlying system which meant that filtering had to be incorporated in the underly-

ing system over which we have no control. LED did not do that as it meant processing

44

the event based on parameters before applying the event semantics at every node. In ES-

tream, as events are generated by a CQ it is possible to apply a mask that filters a generic

event into different types of events. For example, events belonging to different lanes for

the car ADN example can be automated. As another example, events for specific stocks

(or categories of stocks) can be generated from the same generic event. Masks provide

a powerful mechanism in reducing the number of events generated, especially when the

events are coupled with stream processing. The question is to analyze the best place for

adding the mask. As it can be added either on the event processing side or on the stream

processing side we need to discuss the pros and cons of both.

Definition 1 (Masks) are Condition on the attributes of the event operator node that

are checked before the event is detected.

CREATE EVENT PRIMITIVE Ename ON Es MASK maskCondition

ES is a named CQ or a CREATE CQ statement.

maskCondition is a condition defined on the attributes of an event.

Masks types:

• Primitive masks: Masks defined on the primitive event nodes.

• Composite masks: Masks defined on the composite event node.

4.3.1 Where to add masks

Since masks help generate only interesting events (by filtering uninteresting events)

in the integrated model, it is best to place them at an earlier stage than event processing.

The primitive masks can be pushed down to the stream side. Before we generate an

event from the stream tuple we evaluate the mask conditions on the attributes of stream.

The tuples which do not satisfy the masks do not generate any events whereas those

that satisfy generate events. Those tuples/objects are converted into event objects and

pushed into the LED buffer. The composite mask has to be checked at the composite

45

node itself since a complex mask condition defined on the attributes of two or more of

the constituent events and hence cannot be checked until the corresponding constituent

events are detected. In this thesis, we support only primitive masks since the composite

masks require attribute based computations in the event which is not currently supported.

The primitive masks can be supported if they are evaluated on the stream side as it

supports attribute based computations on tuples.

For example, if in the car ADN (Section 1.3) example, we have to detect accidents

only on HOV lanes, we can perform that in two ways. The first and computation intensive

way is to add an additional condition in the rule AccidentNotify of the complex event

EAccident.

DEFINE Rule AccidentNotify,

IMMEDIATE On EAccident

CONDITION EImmobile.segment = EDecrease.segment &&

EDecrease.Lane = "HOV" && EImmobile.Lane = "HOV"

ACTION is

In the computation intensive way, events are generated for cars in all the lanes.

Composite event EAccident is also detected and AccidentNotify will be evaluated for

all detections of composite events. Action is taken for those tuples which satisfy the

condition of the rule and the rest of the tuples are dropped at this stage.

Masks filter the generation of uninteresting events for stream tuples whereas conditions

only check whether a rule should be executed or not. Although decision for rule execution

can be taken, in principle, after application of a condition, it is a round about way of

filtering events. Hence masks is preferred to other ways of filtering.

The second and elegant way is to define masks on the primitive event EImmobile

and EDecrease.

CREATE PRIMITIVE EVENT EImmobile on Immobile

46

MASK Lane = "HOV"

CREATE PRIMITIVE EVENT EDecrease on Decrease

MASK Lane = "HOV"

By defining the masks on the two primitive events we evaluate the conditions on

the stream side itself even before we raise the events. This filters a lot of uninteresting

event generation.

4.4 Integration Design

We have discussed the issues for the integration of event and stream processing,

introduced CEQs and described the concept of masks. In this section we elaborate on

the design of the integration of event and stream models.

4.4.1 Event Generator (EG) Interface

The event generator (or EG) interface provides for the conversion of a stream output

into an event object for facilitating the integration of the two models. This interface is

responsible for generation of event objects for stream tuples produced by the query. An

EG interface persists the mapping of events that are to be generated for the respective

queries. It also persists the masks or attribute based constraints defined on the stream

tuple attributes for reducing uninteresting generation of events. This interface generates

event objects for only those tuples whose masks evaluate to true. The design for the

EG interface is such that an application may also consume the output of a CQ directly

before events are generated on it.

Functions of the event generator are given below.

• Generation of event objects for ouput of named CQs.

• Populating the attribute values of event with the attribute values of stream tuples.

• Passing the event object to the LED buffer for the event detector to detect it.

47

The issues of the alternatives for the design of the EG interface as a separate

integration module or as an operator are discussed below.

1. Event Generator as an Integration Module

This design has the EG interface is as a separate integration module but within

the same address space. The EG integration module should accept tuples from all

CQs apply masks and generate events on them. This architecture has the following

issues.

(a) Since the interface is responsible for mapping the CQs with event nodes and

for converting the stream tuples into the event objects, the integration module

should have the information of CQ identifier and the mapping for the events

associates with it. It should also have the output schema of each query so that

it can populate the parameter of event object with tuple attribute values. This

could be done by sending the query information such as the query identifier

and event mapping and the output schema to the integration module whenever

a new event is defined on a CQ.

(b) As the integration module receives output tuples from multiple queries so

for each tuple, the query name should be attached to uniquely identify the

corresponding event to be raised for the tuple.

(c) Each output tuple should be enqueued to the integration module. It could be

done either by having a resident logic in the output buffer of each query to

send the output tuple after attaching the query name to uniquely identify it,

or by polling the output buffers of all the queries.

Although this alternative had the advantages of a layered approach in which the

stream or the event system could be replaced with a similar system at a later stage

without much modification, it had several disadvantages.

48

(a) Since the integration module is implemented as a separate module, it should

have some buffer capability for queuing tuples produced by all CQs before

events are generated for them. The integration module should execute as a

separate thread responsible for consuming stream tuples from its buffer and

producing event objects. The problem with this design is that the integration

module thread will continue to execute even when there are no tuples produced

by the query on which events are to be generated. Thus important CPU

resources are wasted, which is crucial for DSMS applications.

(b) For each tuple to be enqueued to the integration module there is an overhead

of attaching the query name.

(c) The events whose mask evaluate to false will be dropped in the integration

module which could have been dropped at an earlier stage.

2. Event Generator as an operator

In this architecture the event generator is implemented as a stream operator. This

implementation eliminates the drawbacks of the earlier approach and is considered

for integration. Here the event generator operator thread is scheduled by the stream

scheduler and is suspended whenever there are no tuples in the input queues. The

EG operator is attached to each CQ as the root operator. This eliminates the need

for attaching the query name for each tuple to uniquely identify the query. The

EG operator design automatically gets the tuples produced by the CQ and here

the notification of CQ output is not required. With this design of the EG interface

the mask evaluation is done at the root operator of each query and tuples will be

dropped at the lowest level in the integration model or at the place where they are

produced.

Design

49

(a) Each CQ has this operator as the root operator. The tuples from the query

are fed into the event generator operator if events are defined on the query.

Otherwise, the tuples are dropped from the input buffer of the event generator

operator. This saves the operator from getting scheduled by the scheduler as

it will never have tuples to be processed if it does not have any events defined

on it.

(b) The output of the CQ is produced by the child operator of the event generator

and is directly fed to the application, bypassing the event generator. This

avoids any increase in tuple latency for those applications which directly want

to consume the output of the CQ.

(c) This operator implementation is capable of modifying the mask and defining

new masks at run time (i.e., the time the query is executing). This is possible

since the stream server has control over the operator thread and with the help

of monitors, the server can synchronize this operator to update the masks

defined or add new masks and events.

(d) Event generator stores the mapping of the mask and event names. Whenever

any mask is evaluated to be true the corresponding event name are used to

raise the events in LED. Once the masks are evaluated to true, the event object

is constructed for the tuple and the attribute values of the stream tuple are

inserted into the event object.

(e) One of the major components of event generator evaluation is the condition

evaluator. FESI (Free Ecma Script Evaluator which is a powerful utility that

can perform many functions in Java, condition evaluation being one of them),

a java-based tool that provides the functionality of condition evaluation was

selected for the purpose of condition evaluation. A lot of effort is required to

build a flawless and efficient condition evaluator that can take in any valid

50

EG

S1
S2

J1

Event

Name n

Mask n

…
…

Event

Name 1

Mask1

CEQ

Mapping

Condition

Evaluator

LED
EStream

LED

Buffer

Figure 4.1 EventGenerator Operator

condition and return whether the output is true or false. Hence a decision was

made to use the existing condition evaluators available for free.

FESI’s condition evaluator works in the following way.

• It takes in a condition that needs to be evaluated.

• It also requires the operand values in order to evaluate the condition on

the tuples.

• It returns true or false on evaluating the condition.

One of the initial requirements is to make sure that the condition string is not

processed each time a tuple is evaluated. To achieve this, operands are separated

out from the condition string and their position is obtained from the schema. The

mapping of tuple value and its operands was done using the operand position

information. Eventually, the condition evaluation is made simple and efficient.

The Figure 4.1 shows the event generator as the root operator of a continuous

query to generate events and enqueue in the LED buffer.

51

4.4.2 Consumer/Producer Approach

This design proposed the idea of having a separate producer/consumer buffer as-

sociated with each query in which the EG operator can enqueue event objects to be

consumed directly by the event detector of LED.

The problem with this approach is that when multiple CQs are executing, the LED

has only one event detector thread to consume event objects from all producer/consumer

buffers. In event processing the composite event operators such as SEQUENCE, NOT,

etc., require the events to be consumed by the event detector in the relative time order

in which they were raised. When there are multiple producer/consumer buffers and the

event objects are enqueued in them as and when the CQ produces the output, the event

detector thread cannot determine which buffer to consume the next event from to preserve

the chronological order of all the event tuples that have been produced. The order in

which the events are consumed from the producer/consumer buffer will thus define the

final chronological order of the event detection and the actual event detection sequence

may be lost. In event processing, the time of event generation (i.e., the order of event

generated) is critical. Although events are generated from separate and independent

streams, the relationship between them is through the timestamp. In the car ADN

example, if two streams are being processed from two lanes (or from two sides) of the

same highway, slowing down on traffic in one direction (or lane) can be correlated with

the other only if they are happening at the same time, otherwise they would correspond

to independent happenings, which have no correlation.

In Figure 4.2, we have three CQs with a consumer/producer buffer for each. We

assume that the event detector consumes events using a round robin algorithm. Event

Eoi(tk) is the ith event in the buffer with global timestamp tk, which was attached

to the event when it was raised. The event detector first consumes Eo1t1 from Con-

sumer/Producer buffer Cp2. The next object Eo1t3 is consumed from Cp3, followed by

52

Application

EStream

EG1

Q2

Cp3

Eo1{t3}

Producer/Consumer

Buffer

Continuous Queries

EG2
 EG3

Cp1

Eo1{t2}

Cp2

Eo1{t1}

Event

Detector
 LED

Q1
 Q3

Figure 4.2 Producer/Consumer buffer approach

the event object Eo1t2. The final sequence of the event is Eo1t1, Eo1t3, Eo1t2. The

events are not detected in the chronological order in which they were raised. The events

are produced by the CQs based upon the characteristics of continuous queries (e.g., win-

dow parameter) and the arrival rate of the stream. Since the output tuples are not

produced at a constant rate, there can be no specific order that can be applied to the

event detector consumer thread such that the events that are consumed from multiple

producer/consumer buffers are in a chronological order. We do not consider this ap-

proach as this is more of a global timestamp problem and our architecture has a single

LED buffer as shown in Figure 4.3. The order in which the EG operators enqueue events

in the LED buffer will be the order in which they will be detected. We assume that

the timestamp of an event detection is closely related to the time at which the tuples in

the stream arrive at the processor. We assume that QoS requirements produce the same

kind of delay (or lag) in the events produced. If there is very large discrepancy between

53

EStream

immobile

decrease

LED

Event

Detector

EG

EG

Application

LED Buffer

Figure 4.3 Event Generator Operator

the arrival time of tuples and the detection of the events then that will affect the overall

accuracy of the system.

4.4.3 Rules and Composite event Generation

Primitive and composite events, as well as rules are generated in the EStream

server as part of the ECAAgent object. The event detection algorithm used in LED are

not modified. The event object contains all the parameters of the event which can be

accessed by the condition and action portion of the rule.

1. Rule Creation

The rules consist of a condition and action as described in the section. EStream

server has the capability of associating the rules to already defined events. This

dynamic association of rules is possible if the input for the rule has all the informa-

tion required to uniquely identify events on which the rule has to be created. The

input to the rule creation is as Follows:

Rule Info:

• Rule Name

54

• Event Name

• Condition

• Action

Each rule is created with a unique name given by the user. In the car ADN

example, the rule called ”AccidentNotify” is created . Using the event name the

APIs of LED are invoked to create the rule. The rule has the condition and action

specified by the class name and the method signature. EStream does not allow

dynamic modification of rules. This is because the condition and action that have

to be associated with rules are implemented as methods of classes and the class

loader of JAVA does not allow dynamic JAVA classes to be added at runtime.

2. Composite Events:

The composite event creation is allowed only when its constituent primitive events

are already defined. We have also introduced a concept of Future Queries defined in

Section 4.6, which are executed at a later time than the time they are defined. If a

composite event has to be created with two primitive events, one of which is created

on a query that is already defined and the other on a future query, then its creation

has to be delayed till the time the future query is instantiated and primitive events

defined on it are created. The composite event definition specification has a unique

name assigned to each composite event. The EventType is ”Composite” and the

operator can be any operator supported by LED namely AND, OR, NOT, etc.

• Event Name

• Event Type

• Operator

• EventName1,EventName2,EventName3

In the car ADN example the composite event is created with name EAccident and

the SEQUENCE operator in the EImmobile and Edecrease events.

55

E
3

E
1

E
2

J

2

J
1

S
2
 S

3

S
1
 S

4

Stage 3:

Event Processing

C Q

Processing

Stream
2
 Stream
3

Stage 4:
Rule Processing

S
ta

g
e

1:

C
on

tin
uo

us

Q
ue

ry
 P

ro
ce

ss
in

g

Stream
i
 - Incoming Streams

S
k
 - Stream Operators

J
l
 - Join Operators

R
q
 - Rules

E
p
 - Event Nodes

G
r
 - Event Generator

LDET - LED Thread

Rule 1
 Rule 2
 Rule n
...
 Rule 1
 Rule 2
 Rule n
...

Stream
1
 Stream
4

G
1
 G

2

LEDT
���
�
���
�
���
�
���
�
��	
	

�
�

�
����������
Mask
Buffer
 Notify Buffer

Stage 2:

Event Generation

Figure 4.4 Four Stage Integrated Model

4.5 The Integrated Model

The integrated model developed after integration of the two systems has the fol-

lowing parts:

1. CQ processing stage.

2. Coupling stream output with event processing system.

3. Event processing stage that is used for detecting events.

4. Rule processing stage, used to check conditions and to trigger predefined actions

once the events are detected.

56

The seamless nature of our integrated model is due to the compatibility of the

chosen event processing model (i.e., an event detection graph) with the model used for

stream processing.

4.5.1 Continuous Query (CQ) Processing Stage

This stage processes normal CQs, where it takes streams as inputs, and outputs

computed continuous streams. In case an event is defined on the CQ, the output goes to

the next stage of the integrated model through the event generator node, else the root

node of the CQ directly outputs the results to the application. The scheduling strategies

and other QoS delivery mechanisms (such as load shedding) can be applied at this stage.

This stage has some basic stream operators such as Select, Project, Join and Aggregate.

As Group By operator is an essential operator to fully implement the DBMS queries on

stream data, it has been implemented to increase the computational power of the stream

processing. A new class of operators called stream modifiers (Section 5.1) is added on the

stream side to preprocess the data before the events are generated. The stream modifiers

are responsible for computing the change in the values of some attributes between two

states of the data stream. The stream modifiers are supported both as a windowed and

as a non windowed operator. Another operator called XFILTER is also implemented.

This stage is extended to process future queries as well.

4.5.2 Coupling Event and Stream Processing

CQs output data streams in the form of tuples. These continuous queries are

associated with an event type and an optional mask in this stage. This operator can

take any number of masks and for each mask, a different event tuple/object is created

and sent to LED buffer. This stage supports multiple events with multiple masks to be

defined for one query. Masks can be modified while the query is executing. The stream

57

tuples are converted into event tuples and inserted into the event object which is to be

processed in next stage.

4.5.3 Event Processing Stage that Detects Events

This is the stage in which the event objects are consumed from the LED buffer and

the event nodes are notified. The detection of one event may propagate to the parent

node in the event graph. The detection of events is done in various consumption modes

defined. When all the events are detected for each event object and rules are processed,

the event detector consumes the next event from the LED buffer.

4.5.4 Rule processing stage

The rule processing stage is responsible for checking of canned conditions and

taking corresponding actions if they evaluate to true. EStream gives the capability of

dynamically adding rules to the events that are already defined. The LED component of

EStream supports the processing of rules defined on the events once they are detected.

The actions that may be taken can be arbitrary or coded to choose from a canned set of

actions such as sending an email notification, sending a message on the PDA or sending

an alarm.

4.6 Future Queries

The Stream side has been extended to process queries which will be instantiated

and scheduled at a future time, such CQs are called Future Queries. The future queries

are defined with a future time at which they have to be started and stopped. When a

future query definition is received by EStream server, temporal events are created using

the same LED used for event generation. Temporal events are created with the start and

end times of the future query and the query is stored in the EStream server. At the start

58

time, an event is generated which notifies the EStream server that the future query should

start. The query is then instantiated and started. When the end query event is raised,

the query is stopped and the EStream server has to be purged with the constructs of the

query. In the continuous query processing, one issue is that the tuples may be buffered

at the intermediate queues associated with the query and so the query should not be

stopped until those tuples are processed. To take care of this when the FQ stop time is

reached the leaf operators are sent an endQuery tuple which will only be propagated to

the root operator when all the buffered tuples are processed. When the root operator

receives endQuery tuple it notifies the EStream server to delete the information stored

for the FQ. For removing the constructs of the query from the scheduler, the scheduler

thread is locked and then the query operators are removed.

4.7 Summary

In this chapter, we addressed the issues of the design of an integrated system that

supports both of event and stream processing. We introduced CEQ specification to

define events, conditions and actions along with CQs. We discussed masks for filtering

of uninteresting events. We proposed the design alternative for integration of the stream

and the event processing systems and the reasons for choosing a specific alternative. We

further discussed the generation of composite events and rules and then presented our

four stage integrated model.

CHAPTER 5

STREAM SERVER EXTENSIONS

In this chapter, we introduce Stream modifiers and the other extensions to the

stream server such as GROUP BY and XFILTER operators which improve the compu-

tational power of stream processing.

5.1 Stream Modifiers

Operators in MavStream were primarily defined from relational operators (win-

dowed versions) such as Select, Project, Join and aggregate operators. In many real

word scenarios, it becomes necessary to compute various changes on the output of stream

processing before it is sent to event processing. A new class of operators called stream

modifiers is introduced for CQs in order to extend the computation of current stream

processing to capture the changes of interest in an input data stream and generate events

on the modified input streams. For example, a stock monitoring CEQ can be defined to

monitor the live stock feed of a share and sell shares if the price of shares increases by

more than 20 percent. Computation for the increase in the price of the share between

successive tuples of the stock feed is not possible by using the current stream operators

(e.g., Select, Project, Join, etc.,). Hence, stream modifiers can be used to modify the

price attribute of the stream to the change of price between two successive tuples. The

modified stream can be used for event generation with a mask defined to check if the

price change is more than 20 percent. The action of the event can be to make the trans-

action of selling shares and receiving payment. In this section we introduce the detailed

semantics of stream modifiers functions, their input and output and the algorithms to

59

60

compute them. Before we introduce the detailed semantics of a stream modifier, we need

to introduce some notations:

Let a tuple be represented as: (A1, A2, · · · , An), where n is the total number of attributes

in the stream schema. e.g., (CarId, Speed, Direction, Lane) = {1, 45, East, 3}

Definition 2 (SubTuple Ti (A1, · · · , Am)) is represented by the values of attributes

A1, · · · , Am for the ith state/tuple of data stream. If m is equal to n then Ti represents

the complete stream tuple.

For example, T1(CarId, Speed) for the data stream can be represented as {1, 45}, as-

suming the tuple defined above is the first tuple of the stream.

Definition 3 (State function Si(Aj)) represents value of the j th attribute in ith tuple

of the stream.

Definition 4 (Stream Modifier) A stream modifier is defined as a function to com-

pute changes (i.e., relative change of an attribute) between two consecutive tuples/states

of its input stream. A stream modifier is denoted by M(< A1, A2, · · · , Am > [, P <

pseudo >][, O|N]), where M is called modifier function that computes a particular kind

of change. < A1, A2, · · · , Am > are the parameters required by the modifier function M

on which the change is to be computed, m is less than or equal to n. In the following

P < pseudo >, following the parameters, defines a pseudo value for M function in order

to prevent underflow. The O|N part is called modifier profile, which determines whether

the oldest values or the latest values of the sub-tuple shall be given as output. If O is

specified, the oldest values are output or the latest values are output if N is specified. The

modifier profile is optional and the default is O.

A family of stream modifiers could be defined using the above definitions. Cur-

rently, we have implemented the following three commonly used stream modifiers in our

system. In the following definitions, [] indicates optional parameters.

61

1. ADiff() is used to detect absolute changes over two consecutive states. It returns

absolute change of the values of attributes (A1, A2, · · · , Am), and SubTuple for the

rest of the attributes based on the modifier O|N profile. It is formally defined for

case O as follows:

ADiff((A1, A2, · · · , Am >)[O])

= (si+1(A1)−si(A1)
si(A1)

· · · si+1(Am)−si(Am)
si(Am)

) + Ti(Am+1, Am+2, · · · , An))

2. RDiff() is used to detect the relative changes over two consecutive states. It returns

relative change of the values of attributes (A1, A2, · · · , Am), and SubTuple for the

rest of the attributes based on the modifier O|N profile. It is formally defined for

case N as follows:

RDiff((A1, A2, · · · , Am >)[N], P < pseudo >)

= (si+1(A1)−si(A1)+pseudo

si(A1)+pseudo
· · · si+1(Am)−si(Am)+pseudo

si(Am)+pseudo
) + Ti+1(Am+1, · · · , An))

3. ASlope() is used to compute the slope ratio of two attributes over two consecutive

states. It returns the slope ratio of the values of attributes Av, Aw, and SubTuple

for the rest of the attributes based on the modifier O|N profile. It is formally

defined for case O as follows:

ASlope((Av, Aw)[O], P < pseudo >)

= (si+1(Av)−si(Av)+pseudo

si+1(Aw)−si(Aw)+pseudo
+ Ti(Ax))

Where 1 ≤{v, w, x} ≤ n and x 6= {w, v}

62

Event generation may be done directly on the modified input stream or on modified result

of a continuous query, so the modifier design should be flexible to support its use either

ways. Hence, we have designed the modifier as an operator, which can accept either

the input of a stream directly or the output of a continuous query. The specifications

of stream modifiers defined above is for non-windowed modifiers which compute change

between successive tuples of a stream but sometimes events need to generated for changes

computed over intervals. The above stock example can be extended to sell shares if the

price of shares continuously rises for 1 hour, monitored in intervals of 5 min. Here, change

needs to be computed between the tuples that arrive at the start and at the end of the 5

minute window. Windowed stream modifiers have been introduce to address this issue.

Design of both non-windowed as well as windowed modifiers in given below in detail.

5.1.1 Non-Windowed Stream Modifiers

These modifiers do not support intervals and directly produce the change between

two consecutive tuples. The modifiers are active till the time events need to be generated

and stop themselves if event generation is not required. Synopsis of a single tuple is

kept, which is incrementally updated whenever an output is produced. The algorithm 1

explains non-windowed stream modifiers.

5.1.2 Windowed Stream Modifiers

The windowed stream modifiers compute the changes between the first tuple and

the last tuple of the window. The windowed implementation of the stream modifier can

be placed anywhere in the stream query. The CQ window specifications for the stream

server assumes that the operator’s window specification is the same as that of the query.

If the windowed stream modifiers are implemented with this restriction then the entire

query has to be defined on window specifications of the stream modifiers. Since the

63

Algorithm 1 Non-Windowed Stream modifier

while current tuple timestamp < end time of event generation do

if first tuple then

tuple synopsis equals current tuple

continue while loop

end if

compute change between tuple synopsis and current tuple

output the modified tuple

update tuple synopsis with current tuple

end while

stop modifier

stream modifiers produce one tuple per window, all operators in the query will be forced

to process one tuple per window if windowed stream modifier are implemented at the leaf

level. In such case, the entire concept of windowed operators is lost. Hence for windowed

stream modifiers, we need a concept of a separate window specification which is given as

an input to the operator when it is defined. The windowed stream modifier is denoted by

M(< A1, A2, · · · , Am > [, P < pseudo >][, O|N], windowSpecs), where the window specs

define the begin and the end time of the window. The design also supports overlapped

windows and hence maintain a three tuple synopsis,

1. First tuple synopsis: stores the first tuple of the current window.

2. Last tuple synopsis: stores the last tuple of the current window.

3. Overlap first tuple synopsis: stores the first tuple of the overlap window.

The algorithm 2 explains the non-windowed stream modifiers. The current tuple time

stamp is compared with the end time of event generation and the operator stops if the

former is less than the later. The first tuple for each window is stored in first tuple

64

synopsis and the last tuple synopsis is overwritten with every input. When the tuple

with timestamp greater than the window bound arrives, the change is computed using

first tuple synopsis and last tuple synopsis. In order to handle overlapping windows,

overlap tuple synopsis is maintained for the first tuple of the overlapped window.

Algorithm 2 Windowed Stream modifier

while current tuple timestamp < end time of event generation do

if tuple timestamp is within current window bounds then

if first tuple then

update first tuple synopsis with current tuple

continue while loop

end if

update the last tuple synopsis with current tuple

if current tuple timestamp is greater than next begin window time then

update Overlap first tuple synopsis with current tuple

end if

else

compute change for current window using first tuple synopsis and last tuple syn-

opsis

update first tuple synopsis with Overlap first tuple synopsis

end if

end while

stop modifier

We have defined the algorithms of both windowed and non-windowed modifiers and

in the next section we describe other operator extensions of the stream server.

65

5.2 XFilter operator

This operator can evaluate any complex condition on the attributes of the stream.

This operator does not change the schema of input tuples but outputs tuples which satisfy

the condition. This can be called an extended SELECT operator. The input to this

operator is an attribute-based condition and the list of attributes on which the condition

is defined. This operator uses the FESI Ecma Condition Evaluator for evaluation of the

complex conditions. XFilter maps the attributes over which the condition is defined, to

the position in input stream and evaluates complex conditions on it. The tuple is output

or filtered depending on whether the condition evaluator evaluates the condition on the

tuple attributes to true or not.

5.3 Group By Operator

This is a window aggregate Group By operator which integrates the capability of

performing aggregate operations on the groups formed over the group by attributes and

produces output incrementally after every window is processed. This operator supports

all the window specifications for MavStream namely overlapping or landmark windows,

disjoint windows etc.

Requirements:

1. The Group By operator should support window based operations.

2. It should produce results incrementally and continuously that are consumed by

higher operators (if any).

3. It expects input to be ordered by timestamp for window computation and detection

of window and CQ termination and also produces output in timestamp order.

4. It should support all the aggregate operators such as Count, Min, Max, Sum etc.

66

Syntax of Group By

SELECT Aggregate Operator1 [ColumnName1] · · ·

Aggregate Operatorn [ColumnNamen]

ON stream name

Group By attribute list

The Group By operator accepts as input, the list of attributes over which grouping shall

be done, list of aggregate operators and their respective attributes on which aggregation

shall be done.

HAVING Condition in Group By: In our implementation Having is not an

integral part of Group By and is implemented as a Select or a Xfilter operator on the

output of Group By. This design saves the complexity of incorporating a separate Having

condition in the Group By operator and uses the other stream operator to filter tuples

from the output of Group By. This is addressed with an example:

The query below represented in SQL for evaluating Group By can have the Having

condition implemented as a separate Select on the Group By operator output.

SELECT carId, Xpos, count(*)

FROM CarLocStr [2min sliding window]

WHERE true

GROUP BY carId, Xpos

HAVING count(*) > 3

This query works exactly as the query given above with

the HAVING condition replaced by a SELECT operator.

SELECT * From

67

(SELECT carId,Xpos,count(*)

FROM CarLocStr [2 min sliding window]

WHERE true

GROUP BY carId,Xpos

) as tempTable

WHERE count(*) >3;

The issues faced in the implementation of the Group By are explained in the fol-

lowing chapter.

5.4 Summary

In this chapter, we discussed a class of operators called stream modifiers to extend

computation on the stream side before generation of events. We also introduced Group

By and XFilter operators to increase the computational power of stream processing.

CHAPTER 6

IMPLEMENTATION

EStream, as shown in Figure 6.1, is implemented by integrating the Local Event

Detector into the MavStream server. Both the systems are homegrown, implemented in

Java and run in the same address space. EStream consists of an extended Continuous

Event Query (CEQ) input processor, an instantiator, a query/operator scheduler, a query

processor, an event generator, a rule and event manager, an event detector, a runtime

optimizer and a load shedder. The user submits the CEQ event generator (or EG)with

each query. The ECA part of CEQ is given to the rule and event manager, which

generates the computational model for the events. The rule and event manager then

defines rules on the event nodes specified in the CEQ. The query scheduler schedules

the query which is executed by the query processor. At runtime the event generator is

responsible for raising events which are enqueued in the LED buffer as event objects.

The event detector consumes the event objects from the LED buffer and detects the

corresponding events. For each detected event, the conditions defined on it are checked

and actions are taken if the corresponding conditions evaluate to true. The runtime

optimizer monitors the QoS and if the user defined performance metric is not met then it

dynamically changes the scheduling strategy associated with the stream computational

model.

In this chapter we explain the implementation of the input processor, which accepts

the CEQ definitions from the user. We further give the implementation of the rule and

event manager, which creates event nodes and rules for the user ECA definitions. We

then discuss the implementation of the extensions to the query processor as well, which

68

69

Instantiator

Scheduler

User

Input

Rule and

Event Manager

Run
 -
Time

Optimizer

User

O/P

S1

S2

Query Processor

Input

Processor

Data Streams

Feeder

S1
 S2

J1

EG

LED

LED Buffer

Event

Detector

EStream

Server

Figure 6.1 EStream Architecture

generates events and checks masks before generating events. Finally, we elaborate on the

implementation of stream modifiers and other extensions such as Group By operator and

future queries.

6.1 Input Processor

The input processor in Figure 6.2 accepts the CEQs from the user as an input

file. The input file is parsed by Input File Parser which splits the information of CQs

and the events and rules. The CQ definitions are given to the query plan generator for

generating query plans and the event and rule definitions are given to the event container

to be temporarily stored before they are defined. Query plan is an object generated by

the system for a CQ given by the user. Once the query plans are instantiated and the

event generator operators are attached to each query, the event container can be accessed

70

Event Container

EStream

Server

Input File

Parser

QPO
 Generator

Events and Rules

CQ

Definition

QPO

Figure 6.2 Input Processor

to define events and rules. In this section, we have explained the implementation of CEQ

input file, the query plan generator and the event container data structure. Important

methods of the query plan generator class and the data structure for event container are

also described.

6.1.1 CEQ

The continuous event query provides the capability of defining events, rules and

continuous queries. CEQ supports CQs to be defined as future queries with start and

end times. CEQ specifications are such that any definition can be given alone as well as

together. To provide this capability the definitions for rules and events should contain

enough information to uniquely specify the CQ on which events and rules should be

created. It also provides the capability to modify the masks associated with events and

deleting rules associated with events. The specification of CQs, events, masks and rules

are provided to the system through an input file. The user can give his input in the form

of an ASCII file which will be parsed and analyzed by EStream server. Eventually this

input file will be generated by a Graphical User Interface. Following is the list of headers

which can be defined in the input file:

71

• CQ Definition

• Event Info

• Rule Info

• Modify Mask

• Delete Rule

Each header has a format in which the input should be defined. The input file can

have multiple definitions for the same header in a single file.

1. CQ definition: The MavStream functionality has been extended to include web

enabled GUI for query specification. The GUI generates an ASCII file of the user

input. This ASCII file can either be generated using the GUI or can be manually

written as a parameter delimited file. The CQs are defined by giving the stream

operators and the information required for instantiating each stream operator. The

CQ specification also requires the user to give the association between operators to

form a query tree.

2. Event Info:The event information is defined under the Event Info header. This can

be used to define both primitive as well as composite events. Primitive events are

attached to a query name to uniquely identify the query with which the respective

events are associated. Each event can be defined with an optional mask. In case

a composite event is defined then the query name should not be given and the

operator and event names on which the composite event is created have to be

defined.

• Event Name

• CQ Name

• Event Type

• Mask

• Operator

72

• EventName1,EventName2,EventName3

3. Rule Info: Rules for the events have to be defined under the Rule Info header. A

rule has a rule name associated with it, a condition and an action. The condition

and action are predefined methods which could be associated with the event.

• Rule Name

• Event Name

• Condition

• Action

4. Modify Mask: The modify mask option can be used to modify a mask defined

on the event continuous query. The mask can be modified by defining the input to

uniquely identify the previous mask and giving a new mask condition. The server

updates the mask with the new condition defined.

• CQ Name

• Event Name

• New Mask

5. Delete rule: This option allows the user to delete some conditions and actions

associated with an event (primitive or composite). The system will drop the rule

associated with the event. This becomes useful when there is more than one rule

defined on the event and at a later stage one wants to drop a rule.

• Event Name

• Rule Name

6.1.2 Query plan generator

This query plan generator generates a query plan and gives it to the server. Each

operator definition is populated in a data structure called operatorData. The opera-

torData is wrapped in an OperatorNode that has references to the parent and child

73

operators. The query plan stores the operatorNode for the root operator and is given

to the server for instantiation. Since the OperatorNode has references, the server can

access all the OperatorNodes of the query. The query plan generator is implemented as

the QueryPlanGenerator class. The methods that create the query plan are as follows:

1. CreateOperatorDataInfo: This method is responsible for the creation of oper-

ator data from the user input.

2. CreateOperatorNodeInfo: This method is responsible for the creation of the

operator node by wrapping the operatorData and associating the parent and child

information with it.

3. CreateQueryPlan: This method calls the above two methods for the creation of

the query plan.

6.1.3 Event container

The event container temporarily stores the information regarding events and rules

until they can be created, following the creation of the CQ. This is implemented in the

ECADefinitionContainer data structure. The ECADefinitionContainer can be described

as

1. CompositeEventInfo: This HashTable stores the information of composite events

defined by the user.

2. PrimitiveEventInfo: This HashTable stores the information of primitive events

defined by the user. Optimization is done by mapping the primitive event defini-

tions based on the query name on which the events have to be defined. This design

avoids the event generator to be locked multiple times when more than one events

are defined on a query which is already executing.

3. Rule info: This HashTable stores all the rule definitions given by the user.

74

6.2 Rule and Event Manager

This is responsible for creation of the events and rules. Since both LED and event

and rule manager are in the same address space, the APIs of LED can be called for

creation of event nodes and associating rules on the event nodes created. It accesses the

event container for getting the definitions of the events and rules and creates the event

nodes for the ECA part of the CEQ defined by the user. Creation of the events is done

in an order such that primitive events are created first then composite events and finally

the rules are defined on them.

6.3 Query Processor

The query processor has the implementation of all operators. In this section, we

give the implementation of the event generator operator and masks. The implementation

of the other operators is given in the following sections.

The event generation for each CQ is done by the event generator operator which is

attached as the root operator of each query after it is instantiated. The event generator

operator executes in the query processor. Stream tuples are fed to the event genera-

tor operator where they are compared against available masks and then converted into

event objects. Attributes of the stream tuples are inserted as event attributes and event

objects are put into the LED buffer. This is implemented by making extensions to the

query processor and the instantiator by implementing the event generator operator and

associating it before every query is scheduled.

6.3.1 Event Generator Operator and Masks

The main issues for the event generator operator were dynamic addition of masks

and persisting the query to event mapping for evaluating masks using the condition

75

evaluator and generating event. The hashtable for storing the masks and the cases for

addition of masks are described below.

MaskAndEventHandle HashTable: Stores the mask condition and eventHandle

key value pair, which is accessed to obtain the reference of the event nodes when a mask

is evaluated to be true.

Adding events and Masks: There may be various cases for the addition of events

and masks. It should be noted that in the EDG model, the case where a single mask

will generate two events will never occur for the same event generator. This is because

the event node can be shared to create complex events instead of creating another event

with the same mask. If new conditions and actions are to be added then a separate rule

is defined on the same event node.

• The event does not have a mask defined: Here the eventHandle is added with

a mask condition as ”true”. The eventHandle associated with the event is added

to the MaskAndEventHandle HashTable with a true mask condition.

• Modification of Mask: The user can also modify mask at the operator execution

time by giving event name and the new mask. This operator will lock itself and

access the mask for the corresponding event name and update the HashTables.

The algorithm 3 explains the implementation of the event generator operator. The

condition evaluator evaluates the masks on each incoming tuple and drops the tuples

whose masks evaluate to false. If a mask condition evaluation is successful then the

corresponding event associated with the mask is raised. Since the tuples here are assumed

to be ordered by timestamp or a sequence number, we can check if the ordering attribute

of the tuples is greater than the end query, and if it evaluates to true, the operator is

stopped.

The checking of masks before event generation significantly reduces the number of

events generated. The more the selectivity of the mask, the more will be the number of

76

Algorithm 3 Event Generator Operator

if no tuples in input buffer then

Suspend operator and Notify scheduler

{ Semaphore implemented to add mask}

if mask is to be added or modified then

Lock the operator

end if

if tuple timestamp is ≥ endQuery then

stop operator

else

Check all the mask conditions

if mask is true then

Raise the corresponding event

end if

end if

end if

events filtered. The experiment below gives the improvement by the implementation of

masks for a CEQ.

The experiment was run on a machine with a single Xeon processor, 2.4GHz , 1GB

RAM and Red Hat Linux 8.0 as the operating system. The data set for performance

evaluation is a modified version of the dataset used by the Stanford Stream project

[10, 37]. The data is stored in our database that is modified to generate synthetic data

stream. This synthetic data stream is fed to this system using the feeder module, where

the delays between tuples follow Poisson distribution.

77

In this experiment, a CEQ is executed with and without masks to observe the

performance difference. Time difference at which the rule associated with the query

evaluates to true and the time at which the event was generated is measured and is

named as the action execution latency. The experiment is run for a datasets of 2000

tuples, 10,000 tuples and 30,000 tuples. The data rate is 100 tuples/sec. The scheduling

strategy used is path capacity scheduling[52, 1]. The buffer is unbounded. The query

that is evaluated is

CREATE CQ AUTOMATEDMONITOR AS

SELECT * from CarLocStr

WHERE carId > 100

CREATE EVENT " ResidentialSpeedingTicket" on AUTOMATEDMONITOR

MASK "true"

CREATE RULE " SpeedingTicket"

CONDITION Speed > 30

ACTION "CalculateTicketBasedOnZone"

The query named AUTOMATEDMONITOR is to monitor the speed of cars which

are public cars with CarId > 100 to be within the speed limit in the Residential area. If

the speed of the car increases by 30mph then a ticket event ”ResidentialSpeedingTicket”

will be generated and the owner will be mailed the ticket.

In the Figure 6.3 and Figure 6.4, we observe that with the application of masks

the number of events generated is considerably reduced thus reducing the traffic in the

LED buffer. This also prevents the event detector to consume event objects from the

LED buffer and drop them at the rule evaluation time. With the application of masks

only those events whose rules evaluate to true are generated. This result in a decrease

78

Events generated with and without masks

0

5000

10000

15000

20000

25000

30000

35000

2000
 10000
 30000

Size of data set

N
o

. o
f

ev
en

ts
 g

en
er

at
ed

Without Masks

With Masks

Figure 6.3 Events generated with and without masks.

Average action execution latency

0

0.5

1

1.5

2

2000
 10000
 30000

Size of data set

T
im

e
(M

ill
is

ec
o

n
d

s)

With Masks

Without Masks

Figure 6.4 Average action execution latency

79

of the average event execution latency for various data sets and can be seen from the

Figure 6.4.

Many classes have been created and extended for this implementation. Some of

the major classes and their methods are explained below

1. EventGenerator: This class is responsible for storing the masks and the Even-

tHandles which are raised once the mask condition is satisfied by the stream tuple.

The masks and Events are stored in the

(a) addMaskAndEventHandle: This accepts the mask and eventHandle associated

with the mask. This is responsible for populating the above HashTables.

(b) runOperator : This method implements the abstract method for super class

Operator. This method is executed by the scheduler whenever the event gen-

erator operator is scheduled. Masks are checked in this method, event objects

are created and corresponding events are raised in this method.

2. EventOperatorLock This class is responsible for locking the event generator op-

erator if the query execution has started. It is essential to lock the event generator

in case masks have to be modified or new events have to be added to already

executing CQs.

(a) getLockToAddMask:This synchronized method sets the semaphores in the Event-

Generator.

(b) releaseLock: This method releases the lock of the EventGenerator.

3. GenerateEvent: This class makes the API calls to the LED for creation of the

events. Events once generated have an eventHandle with which they can be refer-

enced.

(a) generatePrimitiveEvent: This method generates primitive events and returns

an eventHandle associated with the event.

80

Figure 6.5 Stream Modifiers and XFilter

(b) generateCompositeEvents: This method generates composite event and also

returns eventHandle. It accepts the names of constituent events, the name of

the event that shall be created and the operator on which the event will be

created.

6.4 Stream Modifiers and XFilter operators

The stream modifiers and XFilter are implemented as operators. All the operators

extend from the parent abstract class Operator as seen in the Figure 6.5. Other than

implementing these operators as classes, extensions had to be done to integrate these new

operators with the server. Extensions are done to the instantiator for instantiating these

operators and also to the data structure called operatorData which stores the parameters

of the operator and is used for creating query plan. Extensions done to the data structure

and instantiator are explained below.

6.4.1 Instantiator extensions

The instantiator has been extended for implementing these operators. Separate

methods have been written to instantiate each operator. These methods create an object

81

of the operator and populate the operator object with the parameters given by the user.

The methods are given below:

• InstantiateAdiff

• InstantiateWAdiff

• InstantiateRdiff

• InstantiateWRdiff

• InstantiateSlope

• InstantiateWSlope

• InstantiateXFilter

6.4.2 Operator Data

This data structure is extended with the following constructs to store the input of

the user before the operators are instantiated:

1. GroupByAttributes: This is a vector of the attributes on which Group By op-

erator is to be grouped.

2. XFilterAttributes: This stores the vector of attributes on which XFILTER has

to evaluate the condition.

3. ModifierAttributes: This stores attributes of the modifier in a vector.

4. ModifierProfile: This stores the modifier profile integer which represents whether

the SubTuple should contain the old or the new state.

6.5 GroupBy Operator:

Group By is created by extending the operator class. It has a window concept and

is a blocking operator. It supports various aggregate functions of Sum, Aggregate, Count,

etc., implemented as methods within the operator. In this section we have discussed the

82

algorithm for Group By operator and the issues in using a HashTable implementation of

JAVA for this operator.

6.5.1 Algorithm

Some data structures are introduced before giving the algorithm. The operator

maintains groups for each window in a HashTable called GHashTable. Each group of

the GHashTable has a GroupHandle (GH) attached to it. First we describe the data

structures and then we discuss the algorithm.

1. GHashTable: Stores all the tuples in the current window hashed by the values

in their grouping attributes. Each bucket in HashTable stores the tuple in the

following form. (< T1, t1 >), (< T2, t2 >) · · · (< TN, t3 >), where Ti represents

the ith tuple and t1, t2· · · tn represent the tuple timestamps. This operator uses

two GHashTables which are described below:

• currentGHashTable: This HashTable is used to construct the groups for

the current window.

• overlapGHashTable: This HashTable is used to temporarily store the tuples

while the groups are constructed for the overlap part of the next window.

In case the operator processes disjoint windows then this HashTable will be

empty.

2. GroupHandle, GH(one for each group): Stores the output tuple of each group

and the maximum timestamp (GH.maxTS) among all the tuples in the group.

The overview of 4 is given below:

• Tuples read from the stream, are inserted into the corresponding group in the

currentGHashTable whose values match the values of Group By attributes in the

tuple.

83

• Those tuples whose timestamp is greater than the start time of next window are

grouped in currentGHashTable as well as OverlapGHashTable.

• When tuple timestamp is greater than the current window bounds then the groups

in currentGHashTable are processed. Aggregate operators are then computed on

each group in currentGHashTable.

• GH is computed for each group which is sorted based on the timestamp of each

GH.

• The sorted lists of GH are given as output for each window. The currentGHashTable

is purged and contents of overlapGHashTable are put in the currentGHashTable.

The tuples are processed for the next window in similar manner until the end query

is reached.

• In case of disjoint window, overlapGHashTable is not maintained and grouping is

done in currentGHashTable.

6.5.2 Issues in using the JAVA HashTable:

To implement the groups by JAVA HashTable class, each bucket in the table should

represent a group. In JAVA, if two key value pairs with the same key are inserted into the

HashTable then they are hashed to the same bucket. If the bucket already contains some

value for the same key then JAVA overwrites the value with last value hashed. Hence, if

we have multiple tuples in a window with same values for attributes on which we have

decided to do Group By, then only the last tuple will be stored as the rest of them will be

overwritten. To avoid this problem, we have implemented our own HashTable in which

if the same key and different value tuples are inserted then all the values associated with

the key get stored in a vector inside the bucket to which they are hashed. It is also

possible in JAVA that more than one key may be hashed to the same bucket. This can

be avoided by associating each bucket with a list of Vectors representing different groups

84

Algorithm 4 Group By Operator

if current tuple timestamp < End Query then

if current tuple timestamp is within current window bounds then

Group the tuple in currentGHashTable

if current tuple timestamp > next begin window time then

Group tuple in overlapGHashTable

end if

else

Apply aggregate operators on groups in currentGHashTable.

Sort GH obtained for each group based on timestamp.

Output the sorted GH List.

Exchange the currentGHashTable and overlapGHashTable.

Clear the overlapGHashTable.

end if

else

stop operator

end if

being hashed to the same bucket. Each vector in the list contains tuples for only one

group. In the Figure 6.6, Group By is done on first two attributes of the stream. Two

tuples are hashed to the same bucket as they have the same key. In GHashTable the

first two tuples are inserted in the vector for Group1. We assume that third tuple may

also be hashed into the same bucket. Although the bucket is the same, the key is not

the same so a new group (Group 2) is created to insert the third tuple.

Sum,Max,Min,Count and Average: These methods compute the aggregate values

for each group when the window for the group is elapsed.

85

Group

Vectors

GroupBy

Attributes

Group 1
 Group 2

4
West
40
5

4
East
45
1

3
East
45
1

Lane
Direction
Speed
CarID

Group By Attributes

Figure 6.6 GHashTable design

6.6 Future Queries

The future queries are implemented by setting temporal events for the start and

end time of the query. A user query is checked before it is instantiated that whether it

is defined as a future query or not. If it is, then the instantiation is delayed for the time

till the LED temporal event for start time of the query is raised. The class below gives

the implementation of the query as a future query.

It is to be noted that the same local event detector that is integrated with the

MavStream is used for executing future queries. The temporal events supported by the

LED are used for starting the instantiation and execution of a CQ. Events for starting

and stopping the CQs are generated in the same LED.

1. FutureQueryGenerateEvent: This class calls the API of the LED for generating

the event for the future query.

• SetStartEvent: This method accepts a time at which the query is to be sched-

uled and query name as the query identifier. It sets the temporal event for the

start of the query. The action part of the rule defined for the event calls the

method for instantiating and scheduling the query at the query start time.

86

• SetEndEvent: This method accepts a time at which the query is stopped and

the query name as query identifier. It sets the temporal event for stopping

the query. The action part of the rule defined for the event calls the method

for stopping the query and deleting query constructs.

6.7 Summary

In this chapter we discussed the extensions to various modules of EStream sys-

tem. We first discussed the input processor and the CEQ implementation. Then we

explained the extensions to query processor with the query generator and masks. We

further elaborated on the implementation of stream modifiers, XFILTER and Group By

operators.

CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis, we have addressed the design and implementation of EStream, a

system that supports the need of advanced applications that require not only stream

processing but also event processing. We have given an integrated model to enhance the

current stream processing data model horizontally and vertically to combine event and

stream processing systems:

1. To detect composite event patterns through enhanced continuous queries with event

processing component. Query specification extensions provides a way to define

stream queries, a way to define events and rules and a combination there of.

2. To perform complicated computations (i.e., capture complicated change patterns)

through a set of named continuous queries with a family of stream modifiers. Win-

dowed stream modifiers with seperate window specifications are introduced to com-

pute change in the stream state over windows.

3. To filter uninteresting events based on user defined attribute-based conditions. Mul-

tiple events can be generated from the same stream by defining unique constraints.

4. To define and execute a large number of rules.

5. Extend the stream computational model with stream operators and provide support

for future queries.

Future work can be in the area of event detection. EStream detects events on point

based semantics, where when one primitive event is detected, all composite events and

rules associated with the it are also detected and then only the next primitive event

will be detected. Event detection can be extended to support interval based semantics,

87

88

where event model can be extended with queues and event detection with scheduler to

avoid this bottle neck. EStream supports attribute-based constraints on event detection

only for primitive events and complex events can be defined using operators based only

on time-based semantics. The current event processing model can be extended with

attribute-based semantics to support attribute-based constraints on complex event and

also complex event operators which evaluate on attribute-based semantics. Semantic win-

dow [55] can also be implemented on the stream side to enhance the window specifications

of stream processing.

REFERENCES

[1] Q. Jiang and S. Chakravarthy, “Scheduling Strategies for Processing Continuous

Queries over Streams,” in Proc. of BNCOD, Jul. 2004.

[2] B. Babcok et al., “Operator scheduling in data stream systems,” The VLDB J.,

vol. 13, pp. 333–353, 2004.

[3] D. Carney et al., “Operator Scheduling in a Data Stream Manager,” in Proc. of

VLDB, Sep. 2003.

[4] N. Tatbul et al., “Load Shedding in a Data Stream Manager,” in Proc. of VLDB,

Sep. 2003.

[5] B. Babcock, M. Datar, and R. Motwani, “Load Shedding for Aggregation Queries

over Data Streams,” in Proc. of ICDE, Mar. 2004.

[6] Q. Jiang and S. Chakravarthy, “Data Stream Management System for MavHome,”

in Proc. of ACM SAC, Mar. 2004.

[7] D. Abadi et al., “Aurora: A New Model and Architecture for Data Stream Manage-

ment,” VLDB Journal, vol. 12, no. 2, Aug. 2003.

[8] J. Chen et al., “NiagaraCQ: A Scalable Continuous Query System for Internet

Databases,” in Proc. of SIGMOD, 2000.

[9] S. Madden and M. J. Franklin, “Fjording the Stream: An Architecture for Queries

over Streaming Sensor Data,” in Proc. of ICDE, 2002.

[10] R. Motwani et al., “Query Processing, Resource Management, and Approximation

in a Data Stream Management System,” in Proc. of CIDR, Jan. 2003.

[11] A. Das, J. Gehrke, and M. Riedewald, “Approximate Join Processing over Data

Streams,” in Proc. of SIGMOD, 2003.

89

90

[12] S. Chakravarthy et al., “Design of Sentinel: An Object-Oriented DBMS with Event-

Based Rules,” Information and Software Technology, vol. 36, no. 9, pp. 559–568,

1994.

[13] S. Gatziu and K. R. Dittrich, “Events in an Object-Oriented Database System,” in

Proceedings of Rules in Database Systems, Sep. 1993.

[14] A. P. Buchmann et al., Rules in an Open System: The REACH Rule System. Rules

in Database Systems, 1993.

[15] S. Chakravarthy and D. Mishra, “Snoop: An Expressive Event Specification Lan-

guage for Active Databases,” Data and Knowledge Engineering, vol. 14, no. 10, pp.

1–26, Oct. 1994.

[16] S. Gatziu and K. R. Dittrich, “SAMOS: An Active, Object-Oriented Database Sys-

tem,” IEEE Quarterly Bulletin on Data Engineering, vol. 15, no. 1-4, pp. 23–26,

Dec. 1992.

[17] D. L. Lieuwen, N. H. Gehani, and R. Arlein, “The Ode Active Database: Trigger

Semantics and Implementation,” in Proc. of ICDE, Mar. 1996, pp. 412–420.

[18] N. H. Gehani, H. V. Jagadish, and O. Shmueli, “Event Specification in an Object-

Oriented Database,” in Proc. of SIGMOD, San Diego, CA, June 1992, pp. 81–90.

[19] N. H. Gehani and H. V. Jagadish, “Ode as an Active Database: Constraints and

Triggers,” in Proc. of VLDB, Sep. 1991, pp. 327–336.

[20] H. Engstrom, M. Berndtsson, and B. Lings, “Acood essentials,” University of

Skovde, Tech. Rep., 1997.

[21] S. R. Madden et al., “The Design of an Acquisitional Query Processor for Sensor

Networks,” in Proc. of SIGMOD, 2003.

[22] ——, “TAG: a Tiny AGgregation Service for Ad-Hoc Sensor Networks,” In Proc. of

OSDI, Dec. 2002.

91

[23] P. Bonnet, J. E. Gerhke, and P. Seshadri, “Towards Sensor Database Systems,” in

Proc. of MDM, Jan. 2001.

[24] Y. Yao and J. E. Gehrke, “Query Processing in Sensor Networks,” in Proc. of CIDR,

Jan. 2003.

[25] Q. Jiang, R. Adaikkalavan, and S. Chakravarthy, “NFM i: An Inter-domain Network

Fault Management System,” in Proc. of ICDE, Apr. 2005.

[26] U. Schreier et al., “Alert: An Architecture for Transforming a Passive DBMS into

an Active DBMS,” in Proc. of VLDB, 1991.

[27] O. Diaz, N. Paton, and P. Gray, “Rule Management in Object-Oriented Databases:

A Unified Approach,” in Proc. of VLDB, Sep. 1991.

[28] N. H. Gehani, H. V. Jagadish, and O. Shmueli, “COMPOSE: A System For Com-

posite Event Specification and Detection,” AT&T Bell Laboratories, Tech. Rep.,

Dec. 1992.

[29] A. Kotz-Dittrich, “Adding Active Functionality to an Object-Oriented Database

System - a Layered Approach,” in Proc. of the Conference on Database Systems in

Office, Technique and Science, Mar. 1993.

[30] E. N. Hanson, “The Design and Implementation of the Ariel Active Database Rule

System,” IEEE TKDE, vol. 8, no. 1, 1996.

[31] P. Seshadri, M. Livny, and R. Ramakrishnan, “The Design and Implementation of

a Sequence Database System,” in Proc. of VLDB, 1996, pp. 99–110.

[32] A. Dinn, M. H. Williams, and N. W. Paton, “ROCK & ROLL: A Deductive Object-

Oriented Database with Active and Spatial Extensions,” in Proc. of ICDE, 1997.

[33] S. Babu and J. Widom, “Continuous Queries over Data Streams,” in ACM SIGMOD

RECORD, Sep. 2001.

[34] M. F. Mokbel et al., “PLACE: A Query Processor for Handling Real-time Spatio-

temporal Data Streams,” in Proc. of VLDB, Sep. 2004.

92

[35] H. Balakrishnan et al., “Retrospective on Aurora,” VLDB Journal: Special Issue on

Data Stream Processing, 2004.

[36] R. Avnur and J. M. Hellerstein, “Eddies: Continuously Adaptive Query Processing,”

in Proceedings, International Conference on Management of Data (ACM SIGMOD),

May 2000, pp. 261–272.

[37] A. Arasu et al., “Linear Road: A Stream Data Management Benchmark,” in Proc.

of VLDB, Sep. 2004.

[38] N. Gehani and H. Jagadish, “Ode as an Active Database: Constraints and Triggers,”

in Proc. of VLDB, Barcelona, Spain, 1991, pp. 327–336.

[39] S. Gatziu and K. R. Dittrich, “SAMOS: An active, object-oriented database system,”

IEEE Quarterly Bulletin on Data Engineering, vol. 15, no. 1-4, pp. 23–26, December

1992.

[40] H. Lee, “Support for Temporal Events in Sentinel: Design, Implementation, and

Preprocessing,” Master’s thesis, Database Systems R&D Center, CIS Department,

The University of FLorida, Gainesville, 1996.

[41] S. Chakravarthy et al., “Design of Sentinel: An Object-Oriented DBMS with Event-

Based Rules,” Information and Software Technology, vol. 36, no. 9, pp. 559–568,

1994.

[42] R. K. Honnavalli, “Design and implementation of an event based shop floor control

application on sentinel – an active oodbms,” Master’s thesis, Industrial and Systems

Engineering Department, Aug 1995.

[43] H. Liao, “Global events in sentinel: Design and implementation of a global event

detector,” Master’s thesis, Database Systems R&D Center, CISE, University of

Florida, E470 CSE Building, Gainesville, FL 32611, January 1997.

93

[44] H. Lee, “Support for temporal events in sentinel: Design, implementation, and

preprocessing,” Master’s thesis, Database Systems R&D Center, CISE, University

of Florida, E470 CSE Building, Gainesville, FL 32611, Aug 1996.

[45] S. Rizvi, S. R. Jeffery, S. Krishnamurthy, M. J. Franklin, N. Burkhart, A. Edakkunni,

and L. Liang, “Events on the edge,” in Proceedings, International Conference on

Management of Data (ACM SIGMOD), 2005, pp. 885–887.

[46] O. Cooper, A. Edakkunni, M. J. Franklin, W. Hong, S. R. Jeffery, S. Krishnamurthy,

S. Rizvi, and E. W. 0002, “Hifi: A unified architecture for high fan-in systems.” in

Proc. of VLDB, 2004, pp. 1357–1360.

[47] A. Arasu, S. Babu, and J. Widom, “The CQL Continuous Query Language: Seman-

tic Foundations and Query Execution,” Stanford Technical Report, Oct. 2003.

[48] “Stream processing engine,” Oct. 2005. [Online]. Available:

http://www.streambase.com/www/misc/speintro.html

[49] “Apama’s technology,” April 2005. [Online]. Available:

http://www.apama.com/technology/index.html

[50] “Real Time Event Management in Financial Markets,” 2005. [Online]. Available:

www.gemstone.com/company

[51] B. Brian et al., “Chain: Operator Scheduling for Memory Minimization in Stream

Systems,” in Proc. of SIGMOD, 2003.

[52] V. K. Pajjuri, “Design and implementation of scheduling strategies and their

evaluation in mavstream,” Master’s thesis, Information Technology Laboratory,

CSE Dept., The Univ. of Texas at Arlington, 2004. [Online]. Available:

http://itlab.uta.edu/ITLABWEB/Students/sharma/theses/Vamshi.pdf

[53] S. Chakravarthy, J. D. Yang, and S. Yang, “A formal framework for computing com-

posite events over histories and logs,” University of Florida, E470-CSE, Gainesville,

FL 32611, Tech. Rep. UF-CIS TR-98-017, November 1998.

94

[54] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim, “Composite Events

for Active Databases: Semantics, Contexts, and Detection,” in 20th International

Conference on Very Large Databases (VLDB), 1994, pp. 606–617.

[55] Q. Jiang, R. Adaikkalavan, and S. Chakravarthy, “Towards an Integrated Model

for Event and Stream Processing,” TR CSE-2004-10, CSE Dept., Univ. of Texas at

Arlington, 2004.

BIOGRAPHICAL STATEMENT

Vihang Garg was born in Uttar Pradesh, India, in 1981. He received his B.S. degree

in Computer Science and Engineering from Agra University, India, in 2003. In the Fall

of 2003, he started his graduate studies in Computer Science at The University of Texas,

Arlington. He received his Master of Science in Computer Science and Engineering from

The University of Texas at Arlington, in Dec 2005.

95

