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ABSTRACT

GRAPH THEORETIC FRAMEWORK BASED COOPERATIVE CONTROL

AND ESTIMATION OF MULTIPLE UAVS

FOR TARGET TRACKING

MOUSUMI AHMED, Ph.D.

The University of Texas at Arlington, 2012

Supervising Professor: Kamesh Subbarao

Designing the control technique for nonlinear dynamic systems is a significant

challenge. Approaches to designing a nonlinear controller are studied and an exten-

sive study on backstepping based technique is performed in this research with the

purpose of tracking a moving target autonomously. Our main motivation is to ex-

plore the controller for cooperative and coordinating unmanned vehicles in a target

tracking application.

To start with, a general theoretical framework for target tracking is studied

and a controller in three dimensional environment for a single UAV is designed. This

research is primarily focused on finding a generalized method which can be applied to

track almost any reference trajectory. The backstepping technique is employed to de-

rive the controller for a simplified UAV kinematic model. This controller can compute

three autopilot modes i.e. velocity, ground heading (or course angle), and flight path

angle for tracking the unmanned vehicle. Numerical implementation is performed in

vi



MATLAB with the assumption of having perfect and full state information of the

target to investigate the accuracy of the proposed controller. This controller is then

frozen for the multi-vehicle problem.

Distributed or decentralized cooperative control is discussed in the context of

multi-agent systems. A consensus based cooperative control is studied; such consensus

based control problem can be viewed from the algebraic graph theory concepts. The

communication structure between the UAVs is represented by the dynamic graph

where UAVs are represented by the nodes and the communication links are repre-

sented by the edges. The previously designed controller is augmented to account

for the group to obtain consensus based on their communication. A theoretical de-

velopment of the controller for the cooperative group of UAVs is presented and the

simulation results for different communication topologies are shown. This research

also investigates the cases where the communication topology switches to a different

topology over particular time instants. Lyapunov analysis is performed to show sta-

bility in all cases.

Another important aspect of this dissertation research is to implement the con-

troller for the case, where perfect or full state information is not available. This

necessitates the design of an estimator to estimate the system state. A nonlinear

estimator, Extended Kalman Filter (EKF) is first developed for target tracking with

a single UAV. The uncertainties involved with the measurement model and dynamics

model are considered as zero mean Gaussian noises with some known covariances.

The measurements of the full state of the target are not available and only the range,

elevation, and azimuth angle are available from an onboard seeker sensor. A separate

EKF is designed to estimate the UAV’s own state where the state measurement is
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available through on-board sensors. The controller computes the three control com-

mands based on the estimated states of target and its own states. Estimation based

control laws is also implemented for colored noise measurement uncertainties, and the

controller performance is shown with the simulation results.

The estimation based control approach is then extended for the cooperative

target tracking case. The target information is available to the network and a separate

estimator is used to estimate target states. All of the UAVs in the network apply the

same control law and the only difference is that each UAV updates the commands

according to their connection. The simulation is performed for both cases of fixed

and time varying communication topology. Monte Carlo simulation is also performed

with different sample noises to investigate the performance of the estimator. The

proposed technique is shown to be simple and robust to noisy environments.
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CHAPTER 1

INTRODUCTION

Unmanned Vehicles are considered to be a viable alternative option to replace

the repetitive or life threatening tasks which would otherwise be performed by a

human-piloted vehicle. The existing form of unmanned vehicles include Unmanned

Aerial Vehicles (UAVs), Unmanned Underwater Vehicles (UUVs), and Unmanned

Ground Vehicles (UGVs). There are many potential applications of using autonomous

unmanned vehicles in both military and commercial sectors such as surveillance, re-

connaissance, rescue and fire protection, underwater exploration, space exploration,

atmospheric data acquisition, homeland security such as coast and border patrol.

Modern UAVs are using in many applications such as the U.S. Department of Energy

uses Altus UAVs in climate research to studying cloud interaction with the earths

solar and thermal radiation to heat or cool the earth [1], Aerosonde UAVs and the

UAVs of the same family are used for meteorological, environmental observations,

and surveillance operation, and Global Hawk, Predator, and Dark Star are used for

military missions in many applications. The role of UAVs has remarkably increased

over the last decade due to its technological advances of on-board level of autonomy.

The level of autonomy decides the potential use of UAVs in practical scenarios and

there is critical need for additional research and development to maximize its capa-

bilities. Achieving fully autonomous UAVs is still a big challenge and it involves both

theoretical and practical challenges.

In this study, a theoretical framework and realistic implementation of 3D con-

troller is performed for a cooperating group of Unmanned Aerial Vehicles (UAVs)
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using an advanced nonlinear control technique (backstepping). Designing control

algorithms in 3D environment accounts for many limitations and complexities for

real systems. This research also accounts for the system and measurements being

corrupted by uncertainties or the cases with limited state information knowledge

about the target is known which necessitates to develop the estimation algorithms

and achieve the robust performance of controller even under noisy environments. An

extensive and thorough study is performed in this chapter which includes the current

state, and existing technologies for UAVs, and the methods studied in the literature

related to path following and guidance problem, cooperative guidance and control ap-

proach for multiple UAVs, measurement uncertainties involved with UAVs, and the

available estimation techniques studied for state estimation of UAVs to appropriately

handle these uncertainties.

1.1 General Description of Guidance Laws for UAVs for Path Following and Target

Tracking

Over the recent years many approaches have been studied by researchers for

UAV guidance and control systems. Solving such problems for nonlinear systems is

much more challenging as compared to linear systems, and still a less explored area for

UAVs. Lyapunov vector field approach is one of the well known guidance techniques

for UAVs studied by several researchers [2–9] in recent years. In [2, 3], vector fields

are constructed based on the Lyapunov stability theory and with the use of these

vector fields circular loiter attractors are generated for path tracking. In [4], the

control laws are developed for a group of unmanned aircrafts based on the Lyapunov

guidance vector field approach in coordinated standoff tracking application. In [6],

the vector field approach is used for path following of Miniature Air Vehicles (MAVs)

in 2D, where the velocity and altitude of fixed-wing MAV is kept constant. The

2



control laws are developed which generate course commands for straight and circular

path following of MAVs. A similar approach is then employed in [7] for curved path

following of MAVs. This work demonstrates the practical limitation on choosing

higher ground speed which significantly increases the turning radius and makes it

difficult to follow any arbitrary curved path. An appropriate choice on the feedback

gains is necessary for this particular scenarios.

The principle of Voronoi diagram is used to develop a path planner in [5] which

generates way-point paths through the obstacles and a trajectory smoother is used

to smooth dynamically through the corners of the path. A combination of tangent

vector field guidance, and Lyapunov vector field guidance is proposed in [10] to track

a target by cooperative UAVs where the problem is solved as an optimal control

problem.

Proportional Navigation (PN) based guidance law has been applied for large

classes of engagement geometries. Different variants of PN based guidance laws can be

found the literature such as Ideal Proportional Navigation (IPN), Pure Proportional

Navigation (PPN), True Proportional Navigation (TPN), and Optimal Guidance Law

-an of which perform well for non-maneuvering targets. In TPN, the commanded

acceleration is applied perpendicular to Line of Sight (LOS). The closed-form solution

using TPN law was first proposed in 11 for the the case with constant velocity target in

a plane. It showed that a missile intercepts a target if the initial conditions lie within

a determined circle. In PPN, the commanded acceleration is applied perpendicular

to the velocity vector of the missile. A unified approach is proposed in [12] where all

these different guidance laws are special kinds of the proposed guidance laws.

A proportional based guidance, and dynamic inversion based control laws are

proposed in [13] for highly maneuvering trajectory-tracking UAV. In [14], a novel

algorithm is proposed for 3D path generation and tracking of UAVs. The path gen-
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eration is developed based on Dubins ideas and the tracking algorithm is developed

based on the line of sight algorithm. Vehicle kinematics is represented based on the

Serret-Frenet formulation expressed in terms of path parameters and designed the

guidance law for UAVs to follow the desired path by simultaneously correcting the

course angle and course track angle to zero. A nonlinear H∞ missile guidance law is

developed in [15] based on the dissipative theory, the guidance laws works better as

compared to APN when the target acceleration is unknown or poorly estimated.

Feedback linearization is also used to design the guidance scheme for nonlinear

systems [16–18]. A guidance scheme is developed via feedback linearization technique

for pursuer evader engagement scenario in [18]. The derivative of line of sight rate

along both pitch and yaw direction are forced to zero by feeding back the line of sight

and rate of line of sight which can be viewed as a regulator problem. A novel composite

based guidance law is proposed in [17] where nonlinear inversion based guidance law

for flight angles during initial phase of engagement, and a feedback linearization based

guidance law using LOS rates for the pursuer to navigate along LOS till achieve

interception during terminal phase of flight. For both cases, it requires less pursuer

acceleration than PN based guidance law.

The backstepping technique pioneered by Kokotovic [19] is another nonlinear

control technique recently studied by researchers [20–22]. Backstepping technique

designs the controller by synthesizing the appropriate Lyapunov function. It starts

with the desired virtual control inputs and then backs out the controller recursively

to obtain the actual control input. As compared with the feedback linearization tech-

nique, it offers more flexibility and the form of the designed closed loop system does

not necessarily need to be linear. The control law to compute the roll rate command

for a small UAV in 2 − D is designed based on the backstepping approach in [21].

The backstepping approach is also studied in [20] for nonlinear trajectory tracking
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with fixed wing UAVs in 2−D case. In [22], the guidance law synthesizes the high-

gain backstepping and variable structure method for missile-target 2−D engagement

problem. In [23], control laws for Autonomous Underwater Vehicle (AUV) are devel-

oped based on backstepping technique. [23] also uses similar approach to design the

path following controller for underactuated surface vessel. The ship kinematics are

expressed in terms of the path parameter based on Serret-Frenet formulation. Back-

stepping techniques applied to nonlinear 3−D problem are relatively less studied so

far. We apply the backstepping technique to design the 3 − D nonlinear guidance

controller for UAVs.

1.2 Cooperative Path following and Target Tracking

The coordinated and cooperative control of multi-agent systems is increasingly

receiving attention in many applications since it offers significant advantages over a

single system in terms of cost, efficiency, and robustness. Applications include for-

mation control of robots [24–26], aerospace vehicles [27–30], constellation of satellites

[31, underwater vehicles [32–34], distributed sensor networks [35], flocking [36, 37],

swarming [38] etc. Some examples are shown in Fig. 1.1, and Fig. 1.2.

There are two main broad categories of information sharing in cooperative path

planning application: 1) centralized information - where each agent sends informa-

tion to centralized agent which plan all waypoints for all agents and 2) Distributed

information sharing -where each agents shares the information between the neighbor-

ing agents and reach to a common agreement which is called consensus. Distributed

and decentralized control strategies are used in many scenarios to obtain a common

objective in a cooperative way. One of the prerequisites is cooperation and coor-

dination of the agents. The consensus based strategies for cooperative control of

multiple agents has been widely discussed in [39–43]. Algebraic graph theoretic tools
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(a) (b)

Figure 1.1. Multi-agent systems (a) Flock of birds (Courtesy: Nature), and (b) Blue
Angels (Courtesy: US NAVY).

(a) (b)

Figure 1.2. Multi-agent systems (a) F-6 System (Courtesy: DARPA), and (b) Swarm
of Robots.

are used to describe the inter vehicle communication. Graph Laplacian matrices are

used to define the communication structure, known as algebraic graph connectivity.

The communication between the agents or vehicles may be fixed or time varying.

In [40], the consensus algorithms are developed in the context of linear continuous

and discrete-time vehicle systems. A method for the decentralized information flow

between the vehicles is developed in [42] and formation stability is also proved.

In systems and control problems, the properties of Graph Laplacian matrix

are very important, notably the second smallest eigenvalue of Laplacian is a critical

parameter for systems stability requirements. [44] investigated to obtain the best posi-
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tional configuration of the network so to maximize this eigenvalue for state-dependent

Laplacian.

In real missions, the communication exchange between the agents may be dy-

namic for example, the communication between the vehicles may drop or new com-

munication links may appear. The control strategies should be developed so they

adapt to account for the effects of such dynamically changing communication topolo-

gies. The communication networks with switching topologies and time delays are

addressed in [41] and introduce disagreement function into the Lyapunov function

and showed the convergence analysis. In [45], the cooperative control laws for the

case of static and time-varying communication topology between the neighboring

agents are proposed. They also investigate the quantized communication between

the agents such as uniform and logarithmic quantization and find the convergence

characteristics. The concept of graph theory and Lyapunov stability is used for the

formation control of nonholonomic mobile robots in [24]. A decentralized control

methodology is developed in [33] for stable synchronization of rigid body networks.

State feedback and output feedback controllers are proposed which ensure the team

to move asymptotically along the desired trajectory.

However, most of these works are applied to linear problems and there exist

significant complexities when applied to nonlinear problems. Owing to the promising

application of cooperative multi-agent system in many scenarios, we investigate and

develop consensus based control strategies for a cooperative group of multiple UAVs

with nonlinear dynamics and limited state information.

1.3 Measurement Uncertainties

There are many uncertainties involved with UAV system such as wind gusts,

measurement noises, weight, center of gravity locations and airspeed variations, and
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uncertainty in UAV model parameters (for example stability and control derivatives).

The accuracy of measurement sensors is very important factor which directly in-

fluences the controller tracking performance. The true state information about the

target is not possible to be known precisely in practice. There are two situation arises

and need to be considered for successful extraction of available information: 1) the

measurements are corrupted by external disturbances, and 2) limited no. of sensors

are available or restricted by limited bandwidth. Estimation tools are often required

for state estimation of the system when the system or measurements are corrupted

by noise and when complete information is unavailable. Successful estimation de-

pends on how effectively it can extract the information from noisy measurements.

Estimation techniques have been widely studied by numerous researchers in many

applications such as vision based estimation and target tracking [46], multi-agent

consensus problem [47–50], aerodynamic parameter estimation [51], relative position

and attitude estimation for docking mission of spacecraft [52], and orbital rendezvous

[53].

A rich literature on different types of estimation techniques can be found such as:

consensus filter and distributed Kalman filter used for sensors network [35,54], particle

filter in ballistic target tracking [44], Unscented Kalman Filter (UKF) and Distributed

Particle Filter (DPF) for autonomous navigation of UAVs [55], Monte Carlo filters

used in target tracking and wireless communications [56], and Extended Kalman Filter

(EKF) used for vision based state estimation and target tracking for cooperative UAVs

[46]. The estimator we used in this paper is an Extended Kalman Filter (EKF), a

widely used nonlinear Kalman filter which shows reasonably good performance for

Gaussian noise statistics. It provides approximately an optimum Kalman filter which

estimates the state closer to the true value. The detailed mathematical description of

this type of EKF can be found in [49]. The nonlinear dynamics is usually linearized
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about some known priori state and Kalman filter equations are developed to estimate

the state with reasonable accuracy.

For ballistic target tracking [44], a particle filter based estimation is designed

under radar glint noise, which arises from interference between two or more reflections

from the target surface and results to noisy angle measurements. The effect of glint

noise can be significant when it closes to the target. The characteristics of noise

distribution is modeled as non-Gaussian type in this case. A comparative result is

shown with the EKF, and it is concluded that the higher accuracy can be obtained

with increasing the particle numbers used in the simulation. However, it increases the

computational cost significantly, and a therefore a trade-off is necessary in real-time

implementation.

An effective controller and estimator design is essential for successful target

tracking. In the present study, we design the controller for cooperative UAVs and

then combine with the estimation technique (EKF) while adapting the system to

measurement uncertainties and finally accomplish the cooperative target tracking.

1.4 Target Tracking by UAVs

Target tracking is one of the important tasks performed by UAVs in many

applications. The use of UAVs for commercial applications is still a big challenge

complicated by constraints it has during flights to maintain coordination with air

traffic control, its effective operation during take off, and landing, and to avoid col-

lisions with other planes in air or other environmental obstacles. In real scenarios,

it is not always possible to obtain the full information of the target trajectory. Our

primary motivation is to design guidance laws and control algorithms for UAVs so

as to continuously track a target for cases with complete or partial knowledge of the
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target UAV. We employ a backstepping like technique to design the control laws for

UAVs which offers a simplified way to achieve tracking for general defined trajectory.

1.5 Target Tracking by Cooperative UAVs

The benefits of using cooperative UAVs are many, can be used to accomplish

tasks in dangerous environments instead of sending out human operators. For mul-

tiple UAVs mission, although it requires to have extra sensors, extra communication

devices, synthesize information from different sources, and recognize trusted source,

and redundancy, a greater efficiency, and accuracy can be achieved if we can utilize

and coordinate information effectively between the UAVs. It is very much possible

to reduce operational costs by implementing tasks cooperatively and using a coordi-

nation by using smaller and cheaper UAVs rather than larger more expensive ones.

Using more than one UAV in many cases help us to achieve greater benefits in real

missions. We employ cooperating UAVs for applications such as border patrol, search

and rescue, surveillance, communications relaying, and mapping of hostile territory.

1.6 Organization of the Dissertation

The ultimate objective of this study is to design and implement control laws for

cooperative UAVs and show robust performance in simulation. The overall picture of

the proposed approach is shown in Fig. 1.3.

The governing equations of motion considered for Chaser UAVs, and Target

UAV are described in Chapter 2. Chapter 2 also includes mathematical preliminaries

of control theory, probability, and statistics which will be utilized throughout this

dissertation.
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The initial approach of this study is to design backstepping like control laws

for target tracking with a single UAV. The detailed derivation of the mathemati-

cal formulation is described in Chapter 3. Three control laws for speed, flight path

angle, and heading angle are designed and the simulation results are shown for the

case with complete target information as it is obtained by sensors. A investigation

is also performed when only partial target information is known, and an indirected

information is available from on board sensors or using on board seeker antenna. An

extended Kalman filter is then utilized to extract the information to estimate the full

state information of target UAV, and a separate Kalman filter is utilized to estimate

its own states if the state measurements are corrupted by uncertainties. The con-

trol system is then synthesized using the estimated state information of the target

and UAV’s own state and we investigate the target tracking performance. We con-

sider two different cases when the measurements are corrupted by: 1) White Noise

uncertainties, 2) Colored noise uncertainties which are described in section 3.2, and

3.3, respectively. To include more accurate measurement information available for

UAVs, the measurement noise covariance is described as a function of the pseudo

range distance between the target and chaser which integrates target information in

a way to get better target measurements as it approaches the target. The mathemat-

ical formulation is discussed in section 3.4, and the simulation results are shown for

measurements with these varying colored noise uncertainties.

In Chapter 4, we discuss the cooperative target tracking problem. For a co-

operative group of N UAVs, the control laws for target tracking are designed. The

cooperative behavior is highly restricted to the communication structure or informa-

tion exchange between the UAVs and target information is passed externally into the

network by pinning it at least one node of the network. An EKF estimator is designed

to estimate the state of the target UAV with the assumption of having only range,

11



Figure 1.3. Flow Chart of the problem.

azimuth, and elevation angle measurements from a ground based sensor or from on-

board seeker antenna. There are N EKF estimators incorporated for N UAVs to

estimate their own states. For simplicity, we also ignore the uncertainties involved

with the communication information between the UAVs. The mathematical develop-

ment and implementation is discussed in detail for both complete target information

in section 4.1 and partial target information with fixed and switching topologies in

section 4.2.

Finally, Chapter 5 summarizes this research findings and concludes with the

directions for future work.

12



1.7 Limitations to the Present Framework

The present study addresses the solution using backstepping-like advanced-

nonlinear control technique for target tracking with UAVs. The proposed framework

is limited to the assumption of point-mass UAV model. A general framework of

the controller is integrated with the navigation system for point-mass UAVs. The

full benefits of using backstepping approach can be realized by implementing a fully

described UAV model including vehicle geometric and environmental constraints. A

practical implementation on real hardware platform is also essential to understand

and extend our theoretical innovations and discussions to the next level.

One broad aspect of this approach can be seen from the present study, we can

utilize the benefits of using distributed control approach by synthesizing information

from the neighboring UAVs to track the target coordinately and cooperatively. In the

present study, all UAVs are sharing all state information to the neighboring UAVs.

For cooperative case, the sensors involved for sending information to neighboring

UAVs are considered to be perfect i.e. without losing any information. For a more

realistic case, all UAVs may not share or send same information to other UAVs. A

sensor fusion approach can be utilized by fusing information from different sensors

with different sensing capabilities to track the moving target. The work presented in

this dissertation has not addressed sensor fusion aspect.

The proposed framework can also be easily extended to the development of

formation control strategies where multiple UAVs can maintain a specific formation

while tracking the target. Finally, the present study brings the ideas of using back-

stepping like approach and distributed control algorithms together and proposes a

novel architecture for nonlinear systems which can be viewed as a basic foundation

for target tracking application in 3D space.
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1.8 Summary of Contributions

This research aims to develop and verify a cooperative controller and estimator

for multiple UAVs in a target tracking application. Vehicle cooperation is constructed

based on the graph theoretic approach and backstepping technique is then applied to

develop control commands for the guidance controller.

The significant contributions of this dissertation are summarized below:

• Mathematical formulation and numerical implementation of a 3 −D guidance

controller for target tracking with a single UAV (complete target information)

• Mathematical formulation and implementation of estimation based guidance

laws, and control for target tracking with a single UAV (Partial Target Infor-

mation)

• Mathematical formulation and numerical implementation of 3 − D guidance

laws and control for a cooperative group of UAVs for different type communi-

cation structure: fixed (time-invariant) and switching (dynamically changing)

topologies where complete target information is available

• Mathematical formulation and numerical implementation of estimation based

guidance laws, and control for target tracking with a cooperative group of UAVs

(Partial Target Information) for fixed and switching topologies
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CHAPTER 2

MATHEMATICAL DESCRIPTION OF THE SYSTEM

2.1 Governing Equations of Motion

We consider point mass assumptions for UAV model: flat earth approximation,

the velocity vector, reference line of the UAV, drag and thrust forces are collinear,

and the lift force is orthogonal to the velocity vector vg. Therefore, the states of the

model are: vehicle position (x, y, z) in Inertial reference frame, magnitude of the

velocity vector vg, course or ground heading angle χ and flight path angle γ. Ground

Heading angle, χ is the angle between the projection of the velocity vector onto the

x − y plane and the x axis whereas flight path angle, γ is the angle between the

velocity vector vg and its projection onto the x − y plane. Therefore, we get the

following kinematic equations for point mass UAV model:

ẋ = vg cos γ cosχ

ẏ = vg cos γ sinχ

ż = vg sin γ

v̇ = c1(vcg − vg)

γ̇ = c2(γc − γ)

χ̇ = c3(χc − χ) (2.1)

For simplicity, the first order dynamics models are assumed for the speed, flight

path angle and the course angle dynamics. c1, c2, and c3 (> 0) are the time constants

associated with the dynamics. The magnitude of the speed is : vg =
√

(ẋ2 + ẏ2 + ż2)

There are three control inputs into the model: vcg, γ
c, χc are the commanded speed,
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Figure 2.1. 3D Representation of UAV.

flight path angle and course angle that are computed by the controller.

We consider another representation of the kinematic equation for a point mass

chaser UAV taken from [57] where a five state model is described and the velocity is

kept constant. But in our case, we include first order dynamics for velocity the same

way as described for UAV model in case 1. Therefore, the kinematic equations for

UAV can be written as:

ẋ = vg cos γ cosχ

ẏ = vg cos γ sinχ

ż = vg sin γ

v̇g = c1(vcg − vg)

χ̇ =
g

vg
tanφη

γ̇ =
g cos γ

vg
(η − 1) (2.2)
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where the magnitude of velocity vg =
√

(ẋ2 + ẏ2 + ż2), χ is the heading angle, and γ

is the flight path angle or pitch angle, g is the gravitational acceleration, φ is the roll

angle and η is the load factor.

We can write the following equations from three dimensional missile engagement

geometry [57]:

χ̇ =
g

vg
tanφη =

ah
vg cos γ

(2.3)

γ̇ =
g cos γ

vg
(η − 1) =

av
vg

(2.4)

Using the above two equations, we can determine the roll angle φ, and load factor η

if we know the horizontal and vertical acceleration components of UAV.

η =
av

g cos γ
+ 1

φ = tan−1

(
ah

ηg cos γ

)
(2.5)

For simplicity, we consider the following expression for heading angle, and the flight

path angle dynamics. In this research, the particular objective is to design control

laws for commanded velocity vcg, horizontal acceleration ach, and vertical acceleration

acv so as to track a moving target.

ẋ = vg cos γ cosχ

ẏ = vg cos γ sinχ

ż = vg sin γ

v̇g = c1(vcg − vg)

γ̇ =
acv
vg

χ̇ =
ach

vg cos γ
(2.6)
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2.2 Target UAV Model

We assume that the desired reference trajectory is generated from dynamics of

a ‘virtual reference vehicle’, as summarized below:

ẋr = vgr cos γr cosχr

ẏr = vgr cos γr sinχr

żr = vgr sin γr (2.7)

where, (xr, yr, zr), vgr, γr and χr denote the reference position, velocity, flight

path angle and course (ground track) angle respectively. vgr, γr and χr are specified

function of time ∈ C∞. The reference ground speed can be expressed as vgr =√
(ẋ2

r + ẏ2
r + ż2

r ). For a rich range of trajectories, vgr, χr and γr could be arbitrary

functions of time. In this dissertation, for target trajectory, we will use the similar

kind of dynamics as chaser either Eq. (2.1) or Eq. (2.6) with specified known control

inputs.

2.3 Measurement Model

The measurement model for the target UAV in 3D space is taken as of the

following form:

ỹrk = hrk(Xrk) + vrk (2.8)

where hr(Xr(t), t) = [rrk, φrk, θrk]
T is the discrete function vector and vrk is the

noise vector associated with the measurement uncertainties. The discrete-time mea-

surements for range rrk, azimuth φrk, and elevation angle θrk are assumed to be
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available from a ground based sensor or from on-board seeker antenna and are of the

following form:

rrk =
√
x2
rk + y2

rk + z2
rk + vrrk

φrk = tan−1 yrk
xrk

+ vφrk

θrk = sin−1 zrk
rrk

+ vθrk (2.9)

For the chaser UAV, we consider 6 states discrete-time measurements are available

from on-board sensors, namely GPS + IMU.

ỹk = h(Xk) + vk (2.10)

where h(Xk) = [xk, yk, zk, vgk, γk, χk]
T

2.4 Mathematical Preliminaries

In this section, we briefly discuss and summarize some mathematical concepts

and tools which will be required to develop the theoretical content of this dissertation.

The mathematical definitions, theorems (without proof), and lemma are discussed

based on [49,58–61].

Definition. Norm of Vector:

Norm is defined as the measure of the length of a vector. The norm of vector x

denoted by ||x|| which can be defined as a norm if it has the following properties [60]:

1. ||x|| ≥ 0 ∀ x and ||x|| = 0 if and only if x = 0

2. ||x|| = |α|||x||, for any real α

3. ||x1 + x2|| ≤ ||x1||+ ||x2|| for every x1, and x2 (Triangular Inequality)

Definition. Induced (Matrix) Norm

The norm of a Matrix A ∈ Rm×n is defined as ||A|| = supx 6=0
||Ax||
||x|| (Induced Norm).

20



Table 2.1. Commonly used Vector and Matrix Norms

Type Vector Norm Matrix Norm

1-norm ||x||1 =
∑n

i=1 |xi| ||A||1 = maxj
∑n

i=1 |aij|
2-norm ||x||2 = [

∑n
i=1 |x2

i |]
1/2 ||A||2 = max singular value of A

Infinity-norm ||x||∞ = maxi |xi| ||A||∞ = maxi
∑n

j=1 |aij|

Definition. Lp Norm

For functions of time, define the Lp norm as:

||x||p ,

(∫ ∞
0

|x(τ)|pdτ
)1/p

for p ∈ [1,∞) and say that x ∈ Lp when ||x||p exists (i.e. when ||x||p is finite). The

L∞ is defined as

||x||∞ , supt≥0 |x(t)|

where x ∈ L∞ when ||x||∞ exists. x(t) can be a scalar or a vector function. If x is

a scalar function, then |.| denotes the absolute value. If x is a vector function in Rn

then |.| denotes any norm in Rn.

Lemma. Hölder’s Inequality

If p, q ∈ [1,∞], and 1
p

+ 1
q

= 1, then f ∈ Lp, g ∈ Lq imply that fg ∈ L1 and

||fg||p ≤ ||f ||p||q||q

When p = q = 2, the Hölder’s inequality becomes the Schwartz inequality, i.e.,

||fg||2 ≤ ||f ||2||q||2

Lemma. Minkowski Inequality

For p ∈ [1,∞] and f, g ∈ Lp imply that f + g ∈ Lp and

||f + g||p ≤ ||f ||p + ||g||p
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Lemma. Barbǎlat’s Lemma

If f, ḟ ∈ L∞ and f ∈ Lp for some p ∈ [1,∞), then f(t) → 0 as t → ∞. If

limt→∞
∫ t

0
f(τ)dτ exists and is finite, and f(t) is a uniformly continuous function,

then limt→∞ f(t) = 0.

Lemma. Schwartz Inequality

|xTy| ≤ ||x||||y||

The triangle inequlity is the direct consequence of the Schwartz inequality.

Matrix definiteness

A real symmetric matrix A ∈ Rn×n is said to be positive semi-definite if xTAx ≥ 0

for all x and positive definite if xTAx > 0 for all x 6= 0. Matrix A is said to be

negative semi-definite if −A is positive semi-definite, and negative definite if −A is

positive definite. It is called indefinite when no definiteness can be determined. For

symmetric positive semi-definite matrix A the eigenvalues and singular values are the

same. For any symmetric positive definite matrix A, the following inequality holds

true:

σmin(A)||x||2 ≤ xTAx ≤ σmax(A)||x||2

where σmax(A), σmin(A) are the maximum and minimum eigenvalues of A respectively.

2.5 Stability of Systems

Lyapunov stability analysis is the most useful and well known technique for

nonlinear systems. There are two methods to analyze the systems: 1) Lyapunov’s

Direct Method, and 2) Lyapunov Indirect Method. Some important definitions are

need to be described first [58]:
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Definition. Stability

We consider systems described by ordinary differential equations of the form

ẋ = f(t, x), x(t0) = x0 (2.11)

where x ∈ Rn, f : τ × B(r) → R, τ = [0,∞) and B(r) = {x ∈ Rn| |x| < r where

r ∈ R+}. We assume that f is of such nature that for every x0 ∈ B(r) and every

t0 ∈ R+ Eq. 2.11 possesses one and only one solution x(t; t0, x0).

Definition. Equilibrium Points

A state xe is said to be an equilibrium state (or equilibrium point) of the system

if once x(t) is equal to xe it remains at xe for all future time which implies that

f(t, x∗) ≡ 0, ∀t ≥ t0.

Definition. Stable in the sense of Lyapunov

The equilibrium state xe is said to be stable (in the sense of Lyapunov) if for arbitrary

t0 and ε > 0, there exists a δ(ε, t0) such that |x0−xe| < δ implies |x(t; t0, x0)−xe| < ε

for all t ≥ t0.

Definition. Asymptotically Stable

The equilibrium state xe is said to be asymptotically stable if (1) it is stable, and (2)

there exists a δ(t0) such that |x0 − xe| < δ(t0) implies limt→∞ |x(t; t0, x0)− xe| = 0.

Definition. Exponentially Stable

The equilibrium state xe is exponentially stable if there exists an α > 0 , and for

every ε > 0 there exists a δ(ε) > 0 such that |x(t; t0;x0) − xe| ≤ εe−α(t−t0) for all

t ≥ t0 whenever |x0 − xe| < δ(ε).

Definition. Uniformly Bounded

The solutions of 2.11 are uniformly bounded if for any α > 0 and t0 ∈ R+, there

exists a β = β(α) independent of t0 such that if |x0| < α, then |x(t; t0;x0)| < β for

all t ≥ t0.
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Definition. Ultimately Uniformly Bounded

The solutions of 2.11 are uniformly ultimately bounded (with bound B) if there exists

a B > 0 and if corresponding to any α > 0 and t0 ∈ R+, there exists a T = T (α) > 0

(independent of t0) such that |x0| < α implies |x(t; t0;x0)| < B for all t ≥ t0 + T .

Definition. Class K function

A continuous function φ : [0, r]→ R+ (or a continuous function φ : [0,∞)→ R+) is

said to belong class K, i.e. φ ∈ K if

1. φ(0) = 0

2. φ is strictly increasing on [0, r] (or on [0,∞))

Definition. Class KR function

A continuous function φ : [0,∞)→ R+ is said to belong class KR, i.e. φ ∈ KR if

1. φ(0) = 0

2. φ is strictly increasing on [0,∞)

3. limr→∞ φ(r) =∞

Definition. Positive/Negative Definite Function

A function V (t, x) : R+ × B(r) → R with V (t, 0) = 0, ∀ t ∈ R+ is positive definite

if there exist a continuous function φ ∈ K such that V (t, x) ≥ φ(|x|), ∀ t ∈ R+,

x ∈ B(r) and some r > 0. V (t, x) is called negative definite if −V (t, x) is positive

definite.

Definition. Positive/Negative Semidefinite Function

A function V (t, x) : R+×B(r)→ R with V (t, 0) = 0, ∀ t ∈ R+ is positive semidefinite

if there exist a continuous function φ ∈ K such that V (t, x) ≥ 0, ∀ t ∈ R+, x ∈

B(r) and some r > 0. V (t, x) is called negative semidefinite if −V (t, x) is positive

semidefinite.

Definition. Decrescent Function

A function V (t, x) : R+ × B(r) → R with V (t, 0) = 0, ∀ t ∈ R+ is said to be
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decrescent if there exist a continuous function φ ∈ K such that |V (t, x)| ≤ φ(|x|),

∀ t ∈ R+, x ∈ B(r) and some r > 0.

Definition. Radially Unbounded Function

A function V (t, x) : R+ × Rn → R with V (t, 0) = 0, ∀ t ∈ R+ is said to be

radially bounded function if there exist a continuous function φ ∈ KR such that

|V (t, x)| ≥ φ(|x|) ∀x ∈ Rn and t ∈ Rn.

Lyapunov Direct Method

Theorem. Suppose there exists a positive definite function V (t;x) : R × B(r)→ R

for some r > 0 with continuous first-order partial derivatives with respect to x, t, and

V (t; 0) = 0 ∀t ∈ R+. Then the following statements are true:

1. If V̇ ≤ 0, then xe = 0 is stable.

2. If V is decrescent and V ≤ 0, then xe = 0 is u.s.

3. If V is decrescent and V < 0, then xe is u.a.s.

4. If V is decrescent and there exist ϕ1, ϕ2,ϕ3 ∈ K of the same order of magnitude

such that

ϕ1(|x|) ≤ V (t, x) ≤ ϕ2(|x|), V̇ (t, x) ≤ −ϕ(|x|)

for all x ∈ B(r) and t ∈ R+, then xe = 0 is exponentially stable.

In the above theorem, the state x is restricted to be inside the ball B(r) for some

r > 0.

Theorem. Assume that Eq. 2.11 possesses unique solutions for all x0 ∈ Rn. Suppose

there exists a positive definite, decrescent and radially unbounded function V (t, x) :

R+×Rn → R+ with continuous first-order partial derivatives with respect to t, x and

V (t, 0) = 0 ∀t ∈ R+. Then the following statements are true:

1. If V̇ < 0, then xe = 0 is u.a.s. in the large.

25



2. If there exist ϕ1, ϕ2, ϕ3 ∈ KR of the same order of magnitude such that

ϕ1(|x|) ≤ V (t, x) ≤ ϕ2(|x|), V̇ (t, x) ≤ −ϕ(|x|)

then xe = 0 is e.s. in the large. Statement (i) of Theorem is also equivalent to

that there exist ϕ1, ϕ2 ∈ K, and ϕ3 ∈ KR such that

ϕ1(|x|) ≤ V (t, x) ≤ ϕ2(|x|), V̇ (t, x) ≤ −ϕ(|x|), ∀x ∈ Rn

Theorem. Assume that Eq. 2.11 possesses unique solutions for all x0 ∈ Rn. If there

exists a function V (t, x) defined on |x| ≥ R (where R may be large) and t ∈ [0,∞)

with continuous first-order partial derivatives with respect to x, t and if there exist

ϕ1, ϕ2 ∈ KR such that

1. ϕ1(|x|) ≤ V (t, x) ≤ ϕ2(|x|)

2. V̇ ≤ 0 for all |x| ≥ R and t ∈ [0;∞) then the solutions are bounded. If in

addition there exists ϕ3 ∈ K defined on [0,∞) and

3. V̇ ≤ − ϕ3(|x|) for all |x| ≥ R, and t ∈ [0;∞) then the solutions are u.u.b.

Lemma. Let, f, V : [0,∞)→ R, then

V̇ = −αV + f, ∀ t ≥ t0 ≥ 0

implies that

V (t) = e−α(t−t0)V (t0) +

∫ t0

t

e−α(t−t0)f(τ)dτ, ∀ t ≥ t0 ≥ 0

for any finite constant α

Lyapunov Indirect Method Let xe = 0 be an equilibrium state of Eq. 2.11 and

assume that f(t, x) is continuously differentiable with respect to x for each t ≥ 0.

Then in the neighborhood of xe = 0, a Taylor series expansion of function f can be

written as

ẋ = f(t, x)

= A(t)x+ f1(t, x) (2.12)
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where A(t) = ∆f |x=0 is referred to as Jacobian matrix of f evaluated at x = 0 and

f1(t, x) represents the remaining terms in the series expansion.

Theorem. Assume that A(t) is uniformly bounded and that

lim
x→0

sup
t≥0

|f1(t, x)|
|x|

Let ze be the equilibrium of

ż(t) = A(t)z(t) (2.13)

The following statements are true for the equilibrium xe = 0 of Eq. 2.12

1. If ze = 0 is u.a.s then xe = 0 is u.a.s

2. If ze = 0 is unstable then xe = 0 is unstable

3. If ze = 0 is u.s or stable, no conclusions can be drawn about the stability of

xe = 0.

Lemma. Convergence: If a real function W(t) satisfies the inequality [61]

Ẇ + αW (t) ≤ 0 (2.14)

where α is a real number. Then

W (t) ≤ W (0)e−αt

Definition. Invariant Set

A set Ω ∈ Rn is invariant with respect to Eq. 2.11 if every solution of Eq. 2.11

starting in Ω remains in Ω for all t.

Theorem. LaSalle’s Invariance Principle

Assume that Eq. (2.11) possesses unique solutions for all x0 ∈ Rn. Suppose there

exists a positive definite and radially unbounded function V (x) : Rn → R+ with

continuous first-order partial derivative with respect to x and V (0) = 0. If
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1. V̇ ≤ 0 ∀x ∈ Rn

2. The origin x = 0 is the only invariant subset of the set ω = x ∈ Rn|V̇ = 0

then the equilibrium xe = 0 of Eq. 2.11 is asymptotically stable in the large.

2.6 Probability Concepts and Statistics

The preliminary concepts of random process, stochastic random process, and

probability concepts are summerized in this section based on [62,63].

The outcomes of a random experiment can not be defined in advance. The set of

all possible outcomes of an experiment is called sample space denoted by S of the

experiment. An event E is a subset of sample space S and is said to occur if the

outcome is the element of an element of that subset. We can define the Probability

on events. For each event E of the sample space S, P (E) is the probability of event

E if it satisfies the following three conditions:

1. 0 ≤ P (E) ≤ 1

2. P (S) = 1

3. For any sequence of mutually exclusive events E1, E2, . . . i.e. that events

EnEm = φ when n 6= m, then P (
⋃∞
n=1En) =

∑∞
n=1 P (En)

Stochastic Random Process

A stochastic random process is simply a collection of random vectors defined on the

same probability space. It is denoted as X = X(t), t ∈ T where X(t) is the state

of the process at time t and T is the index set. If T is countable then it is called

discrete-time stochastic process, and if T is continuum, it is called as continuous-time

process [62].

Stationary and Non-stationary Random Processes

A random process is called stationary if the parameters of the probability model of
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the process such as mean, variance, power spectral composition, and higher order

moments of the process are time invariant. If a random process doesn’t meet the

time-invariant property of parameters, it is called non-stationary.

Definition. Probability Distribution Function, F(x)

The distribution function or cumulative distribution function of the random variable

X is defined for any real number x by

F (x) = P (X ≤ x)

= P{X ∈ (−∞, x)}

For discrete random variable X,

F (x) =
∑
y≤x

P (X = y)

Definition. Probability Density Function, f(x)

For continuous-time process, it is defined by

f(x) =
dF

dx

and it is non-negative f(x) ≥ 0, and the integral of the pdf in the range ±∞ is unity

i.e. ∫ ∞
−∞

f(x)dx = 1

For any set B,

P{X ∈ B} =

∫
B

f(x)dx

Definition. Probability Mass Function, p(x)

For a discrete random variable X, probability mass function p(x) of X is defined by:

p(x) = P (X = x)
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The p(x) is positive for all countable numbers of values of x. Therefore, we can wrtie

p(xi) > 0, i = 1, 2, 3, . . .

p(x) = 0, all other values of x

The sum of p(xi) all values of xi is 1 i.e.

∞∑
i=1

= 1

Definition. Expected value or Mean

The expected value or average value of a discrete random variable x is described by

the first moments of x denoted by

µ =
∑
j

x(j)p(x(j))

Similarly we can write for discrete random vector x

Definition. Variance

The expected value or average value of a discrete random variable x is described by

the second moments of x

σ2 =
∑
j

(x(j)− µ)2p(x(j))

where p(x) is the probability mass function, and σ is the standard deviation i.e. the

square root of the variance.

Definition. Autocorrelation Function

The autocorrelation, or autocovariance is another characteristic of a stochastic process

which describes the general dependency of x(t) with its value at a short time later,

x(t+ τ).

Rxx(τ) = E[xk(t)xk(t+ τ)]
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Definition. Power Spectral Density Function

Power spectral density describes how the energy of fluctuations is distributed as func-

tion of frequency. The PSD can written in terms of autocorrelation function as:

Sxx(f) =

∫ ∞
−∞

Rxxe
−j2πfτdτ

where Sxx(f) is two-sided PSD function (since the frequency range is −∞ ≤ f ≤ ∞)

One-sided PSD function can be written as:

Gxx(f) = 2Sxx(f)

The unit of Gxx(f) is (unit of x)2/unit of f .

Gaussian Random Variables

A most commonly used distribution for state estimation is Gaussian noise distribu-

tion. The probability density function for Gaussian distribution is

p(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2

White Noise

A white noise is defined as an uncorrelated random noise process with equal power at

all frequencies. Theoretically, a random white noise has infinite power at all frequen-

cies in the range of −∞ to +∞. In practice, we consider band limited white noise

with a flat power spectral density which covers the frequency range of a limited band

width.

The autocorrelation function of a continuous-time white noise with variance σ2

is a dirac delta function which is only nonzero at τ = 0 (xk(t) and xk(t+τ) are totally

uncorrelated ∀τ > 0) i.e.

Rxx(τ) = E [xk(t)xk(t+ τ)]

= Aδ(τ)
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Figure 2.2. PSD function for white noise.

The two-sided power spectral density (PSD) of a white noise can be obtained by

taking the Fourier Transform of the following equation:

Sxx(f) =

∫ ∞
−∞

Rxx(τ)e−j2πfτdτ = A

The PSD function for white noise is constant in terms of frequency as shown in Fig.

2.2.

Colored Noise

We can generate the colored noise by propagating the first order differential equation

with band limited white noise input.

ẋ+Bx =
√
Bw (2.15)

The autocorrelation function for white noise input is Rww(τ) = Aδ(τ) and the single

sided PSD for w is Gww(f) = 2A. For piecewise constant w with time increment T

denoted by wk, we can write the solution of the above differential equation as:

xk+1 = e−BTxk +
1− e−BT√

B
wk
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The autocorrelation function can be shown for this case:

Rxx(τ) =
A

2
e−B|τ |

which is exponentially correlated autocorrelation function. Rxx(τ) decays faster with

smaller time constant (1/B) i.e. larger value of B. If Rxx(τ)→ 0 as τ →∞, it implies

that the noises are uncorrelated i.e. zero mean.

The one-sided PSD function can be derived as:

Gxx(f) =
2AB

B2 + (2πf)2

2.7 Numerical Integration Techniques

The most commonly used numerical integration technique is Runge-Kutta (R-

K) method and many variants of R-K methods are available in the literature. We

used different solvers to simulate the first order shaping filter equation and generate

the colored noise. For all cases, we get very much consistent results. Therefore, we

will be used ODE45 solver in MATLAB for the rest of simulation of this dissertation.

To be consistent with the general notation of first order differential equation

(ODE), consider the following form of ODE:

ẋ = f(x, t) (2.16)

with the initial condition of x(t0) = x0. We can use either of these approaches to

solve the above equation.

n-order Runge-Kutta (RK) Method

The general solution form for n-order RK method is as follows:

xk+1 = xk + α1k1 + α2k2 + . . . + αnkn

k1 = hf(tk, xk)

kj = hf(tk + cjh, xk +

j−1∑
i=1

ajiki)
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where h is the step size, and the coefficients of αj, cj, aji are chosen so that xk

simulates its solution to order hn+1 i.e. x(tk) = xk +O(hn+1).

Classical Fourth-Order RK Method

The most widely used solution for 4th order R −K method is of the following form

[64]:

xk+1 = xk +
1

6
(k1 + 2k2 + 2k3 + k4)

k1 = hf(tk, xk)

k2 = hf(tk +
h

2
, xk +

k1

2
h)

k3 = hf(tk +
h

2
, xk +

k2

2
h)

k4 = hf(tk + h, xk + k3h)

For stochastic differential equation, we simulate the first order shaping filter equation

for piecewise constant white noise w at a certain time step.

R-K Integrator for Time Varying Stochastic Differential Equations

Kasdin [65] proposed a 4th order R-K solution for more general case of Ito nonlinear

stochastic differential equation:

dX

dt
= F (X(t, ζ), t) +G(X(t, ζ), t)w(t, ζ) (2.17)

The solution of xk+1 for linearized version of the above equation is proposed as [66]:

xk+1 = xk + α1k1 + α2k2 + . . . + αnkn

k1 = hF (tk, xk) + hG (tk, xk)w1

kj = hF

(
tk + cjh, xk +

j−1∑
i=1

ajiki

)
+ hG

(
tk + cjh, xk +

j−1∑
i=1

ajiki

)
wj

where wi identically distributed noise with variance qiQ/h, where Q is the spectral

density of the input white noise w of Eq. 2.17. The details of determining the

coefficients αi, aj, ci, and qi can be found in [66].
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ODE45 Solver in MATLAB

In MATLAB, integration solver ode45 mainly combines the 4th order method and 5th

order RK method [67] and it is very similar to classical 4th order RK method which

is mentioned above. It uses the adaptive step size and at each step it chooses the

step size to achieve the desired accuracy. In many practical applications, the ODE45

routine is quite a good solver to apply as a first try.

lsim in MATLAB

In MATLAB, lsim is used to simulate the time response of continuous or discrete

Linear Time Invariant (LTI) Systems to arbitrary inputs. We provide the input as

the random white noise vector w which is equally space of time steps with the first

order system state space representation or transfer functions.

Simulation Results Using Different Solvers

The solution of Eq. (2.15) using different solvers as mentioned above are provided

in this section. The band limited white noise w is generated for one-sided PSD with

amplitude A = 5 for N = 1024 sample points and w is then used as input into Eq.

(2.15). The simulation is performed for B = 2 in each case. The simulation results

using lsim/ode45 solver, classical 4th RK/ode45 solver, classical RK/RK-solution pro-

posed by Kasdin [65] are shown in Fig. 2.3, Fig. 2.4, and Fig. 2.5 respectively. The

band limited white noise and colored noise using lsim is shown in Fig. 2.8 and the

corresponding PSD function is shown in Fig. 2.6. The associated colored noise PSD

function plots from using different solvers are shown in Fig. 2.7, 2.8, and 2.9.
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Figure 2.3. Solution of First Order Shaping Filter Equation using lsim and ODE45
solver.

Figure 2.4. Solution of First Order Shaping Filter Equation using ODE45 solver and
RK-direct.
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Figure 2.5. Solution of First Order Shaping Filter Equation using RK-Kasdin and
RK-Direct.

Figure 2.6. PSD for white noise and colored noise (using lsim solver).
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Figure 2.7. PSD for colored noise (using lsim and ode45 solver).

Figure 2.8. PSD for colored noise (using ode45 and RK-Direct).
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Figure 2.9. PSD for colored noise (using RK-Direct and RK-Kasdin).

Figure 2.10. Colored noise and low band width white noise with time.
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CHAPTER 3

CONTROL LAWS FOR TARGET TRACKING WITH A SINGLE UAV

In this chapter, we describe the mathematical formulation of backstepping like

control laws for a single UAV for the following cases (a) perfect target state informa-

tion in section 3.1; (b) partial target state information with measurements corrupted

by white noises in section 3.2; (c) partial target state information with colored noise

measurement uncertainties in section 3.3; and (d) varying measurement error covari-

ance as the UAV approaches the target in section 3.4.

3.1 Backstepping based Control Laws (Complete Target Information)

A backstepping like recursive control technique is applied to design the control

laws for UAV. First, the stable position error dynamics are specified and the desired

virtual control laws are designed for groundspeed vdg , flight path angle γd, and ground

heading angle χd so as to make the position error zero. In the next step, the same

technique is recursively applied for synthesizing the control laws for ground-speed vcg,

flight path angle γc, and ground heading angle χc. In this section, two different sets

of combination of target and chaser UAV model are considered and the corresponding

control laws are derived. The detailed mathematical formulation is shown only for

set 1, and the results listed for set 2.

Case 1: Target Model Eq.(2.7) - Chaser Model Eq. (2.1)

In this case, we specify similar type kinematic model used for target and chaser UAV.

For the target model we used Eq. (2.7), and for the chaser model Eq. (2.1). Control
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Figure 3.1. Target Tracking for a single UAV.

laws are designed for a single UAV by specifying the stable error dynamics and the

control commands are backed out for velocity, flight angle, and course angle.

Theorem (Main Result). Given the reference trajectory obtained from Eq. (2.7) and

the actual dynamics of the UAV in Eq. (2.1), the following guidance laws ensure that

‖x− xr‖, ‖y − yr‖ and ‖z − zr‖ → 0 and all other signals are bounded.

vcg = vg −
1

c1

[
− cos γ(−v̇d1 + λ1ṽ1)− sin γ(−v̇d2 + λ2ṽ2)

]
γc = γ − 1

c2vg

[
sin γ(−v̇d1 + λ1ṽ1)− cos γ(−v̇d2 + λ2ṽ2)

]
χc = χ− 1

c3

(−χ̇d + λ3χ̃) (3.1)

where vcg, γ
c and χc represent the commanded ground speed, flight path angle and

ground heading angle of the UAV, respectively, v1, v2, v
d
1 , v̇

d
1 , v

d
2 , v̇

d
2 , χ̇

d are non-

linear functions that depend upon the reference target states and the state tracking

errors and ṽ1 = v1 − vd1 , ṽ2 = v2 − vd2 and χ̃ = χ− χd.

Proof. We derive the control laws from a Lyapunov construction using a backstepping

like approach. Let, v1 = vg cos γ and v2 = vg sin γ. Thus, vg =
√
v2

1 + v2
2 and the
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flight path angle γ = tan−1(v2
v1

). Using these equations, the actual dynamics is then

recast as follows,

ẋ = v1 cosχ

ẏ = v1 sinχ

ż = v2 (3.2)

Now we introduce virtual control signals namely, vd1 , χd and γd that will enable

exponential tracking of the target trajectory. The position tracking errors are defined

as, ex = x − xr, ey = y − yr and ez = z − zr. The time derivative of these position

tracking errors are ėx = ẋ − ẋr, ėy = ẏ − ẏr and ėz = ż − żr accordingly. For

exponentially stable position tracking error dynamics i.e,

ėx = −α1ex

ėy = −α2ey

ėz = −α3ez

where α1 > 0, α2 > 0 and α3 > 0 user specified constants. We can then derive the

desired virtual control signals vd1 , vd2 and χd to be,

vd1 cosχd = −α1ex + ẋr

vd1 sinχd = −α2ey + ẏr

vd2 = −α3ez + żr

From the above we obtain the following desired virtual control signals for exponen-

tially stable position tracking error dynamics,

vd1 =
√

(−α1ex + ẋr)2 + (−α2ey + ẏr)2

vd2 = −α3ez + żr

χd = tan−1

(
−α2ey + ẏr
−α1ex + ẋr

)
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The commanded vehicle speed, flight path angle and the course angle are then

derived by ensuring asymptotically stable off-manifold dynamics as shown later. Hav-

ing obtained the desired virtual control signals, we then denote the off-manifold errors

as ṽ1 = v1 − vd1 , ṽ2 = v2 − vd2 and χ̃ = χ − χd. The off-manifold dynamics for the

above is then obtained as follows:

˙̃v1 = v̇1 − v̇d1

˙̃v2 = v̇2 − v̇d2

˙̃χ = χ̇− χ̇d

Now,

v̇1 = (−vg sin γ)γ̇ + v̇g cos γ

= −v2γ̇ + v̇g cos γ (3.3)

v̇2 = (vg cos γ)γ̇ + v̇g sin γ

= v1γ̇ + v̇g sin γ (3.4)

and thus,

˙̃v1 = v̇1 − v̇d1

= −v2c2(γc − γ) + c1(vcg − vg) cos γ − v̇d1

= −c2 v2δγ + c1 v1
δvg
vg
− v̇d1

where γ̇ and χ̇ are substituted from Eq. (2.1) and δγ = γc − γ and δvg = vcg − vg.

Similarly we obtain,

˙̃v2 = v̇2 − v̇d2

= c2 v1(γc − γ) + c1(vcg − vg) sin γ − v̇d2

= c2 v1δγ + c1 v2
δvg
vg
− v̇d2
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Finally the off-manifold error dynamics for ṽ1 and ṽ2 can be written as, ˙̃v1

˙̃v2

 =

 −v2 v1

v1 v2


 c2δγ

c1
δvg
vg

+

 −v̇d1
−v̇d2

 (3.5)

The control objective is then to ensure that ṽ1 and ṽ2 → 0 as t → ∞. Notice

the guidance objective based on this off-manifold dynamics is achieved by appropriate

assignment of γc, vcg. Breaking away from the strict backstepping paradigm, we

prescribe the desired off-manifold error dynamics to be, ˙̃v1 = −λ1ṽ1 and ˙̃v2 = −λ2ṽ2.

Now the control laws are obtained from Eq. (3.5) as follows, c2δγ

c1
δvg
vg

 = − 1

vg

 − sin γ cos γ

cos γ sin γ


 −v̇d1 + λ1ṽ1

−v̇d2 + λ2ṽ2


Therefore, the control signal for the ground speed tracking is

vcg = vg −
1

c1

[
cos γ(−v̇d1 + λ1ṽ1) + sin γ(−v̇d2 + λ2ṽ2)

]
(3.6)

and the control signal for the flight path angle tracking is

γc = γ − 1

c2vg

[
− sin γ(−v̇d1 + λ1ṽ1) + cos γ(−v̇d2 + λ2ṽ2)

]
(3.7)

Similarly, for the course angle (ground track) tracking,

χc = χ− 1

c3

(−χ̇d + λ3χ̃) (3.8)

Note, λ1 > 0, λ2 > 0 and λ3 > 0 are user chosen control gains that govern the

off-manifold error dynamics.

The expressions for the v̇1
d,v̇2

d and χ̇d can be derived from the following:

vd1 =
√

(−α1ex + ẋr)2 + (−α2ey + ẏr)2

vd2 = −α3ez + żr

χd = tan−1

(
−α2ey + ẏr
−α1ex + ẋr

)
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and thus,

v̇d1 = (−α1ex + ẋr)(−α1v1 cosχ+ ẍr + α1ẋr) + (−α2ey + ẏr)(−α2v1 sinχ+ ÿr + α2ẏr)

v̇d2 = −α3v2 + z̈r + α3żr

χ̇d =
1

vd1

[
cosχd(−α2v1 sinχ+ ÿr + α2ẏr)− sinχd(−α1v1 cosχ+ ẍr + α1ẋr)

]
(3.9)

Note, when vd1 = 0, χ̇d is not defined. However, vd1 = 0 ⇒ (−α1ex + ẋr) = 0 and

(−α2ey + ẏr) = 0. Note, if the target maneuver is along the z axis (a straight line

trajectory), then χ̇d can reach unreasonably high values when the position errors in

x and y → 0. To avoid these singularities from affecting the control law, we modify

the χ̇d signal as follows,

χ̇d =
vg
vg vd1

[
cosχd(−α2v1 sinχ+ ÿr + α2ẏr)− sinχd(−α1v1 cosχ+ ẍr + α1ẋr)

]
=

vg
vd1

( 1

vg

[
cosχd(−α2v1 sinχ+ ÿr + α2ẏr)− sinχd(−α1v1 cosχ+ ẍr + α1ẋr)

])
=

1

κ
χ̇dm (3.10)

where κ =
vd1
vg

and χ̇dm = 1
vg

[
cosχd(−α2v1 sinχ+ ÿr+α2ẏr)− sinχd(−α1v1 cosχ+ ẍr+

α1ẋr)
]
. Thus, χ̇d is implemented as χ̇d = χ̇dm when ‖vd1‖ ≤ ε (ε << 1 is a specified

tolerance). Note, χ̇dm doesn’t contain any singularity. Thus the control law for course

angle tracking is modified to,

χc = χ− 1

c3

(−χ̇dm + λ3χ̃) (3.11)

when ‖vd1‖ ≤ ε which is in turn translated to a maximum desired course angle rate

constraint. Note, when ‖vd1‖ = ε, (−α1ex + ẋr)
2 + (−α2ey + ẏr)

2 = ε2. Thus the

implementation of the control laws checks this condition to determine the maximum

desired course angle rate constraint. The condition is quite easy to check since it is

based only on the reference trajectory and the position errors in the horizontal plane.
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The closed loop stability of the controller is verified through a Lyapunov sta-

bility analysis. To that effect, let’s choose a candidate Lyapunov function as below.

W =
1

2
(ṽ2

1 + ṽ2
2 + χ̃2 + ex

2 + ey
2 + ez

2)

The time derivative of W is

Ẇ = ṽ1
˙̃v1 + ṽ2

˙̃v2 + χ̃ ˙̃χ+ exėx + eyėy + ez ėz

When ‖vd1(0)‖ > ε, using the control laws described above, it can easily be shown

that the time derivative of the Lyapunov function candidate is

Ẇ = −λ1ṽ
2
1 − λ2ṽ

2
2 − λ3χ̃

2 − α1ex
2 − α2ey

2 − α3ez
2

Thus the errors asymptotically converge to the residual set (−α1ex + ẋr)
2 + (−α2ey +

ẏr)
2 = ε2. If the reference trajectory is a straight line along z direction, ẋr = 0 and

ẏr = 0 and the errors are bounded in e2x
a2

+
e2y
b2

= 1 where a = ε
α1

and b = ε
α2

. Note,

that the errors can be made arbitrarily small by using sufficiently large values of α1

and α2.

From above, it is clear that except for the special case mentioned above expo-

nential stability can be obtained using the designed guidance laws. Thus, ṽ1, ṽ2, χ̃,

ex, ey and ez all go to zero as t → ∞. Thus, x → xr, y → yr, z → zr, v1 → vd1 ,

v2 → vd2 and χ→ χd. Since ex and ey → 0, χd → tan−1
(
ẏr
ẋr

)
i.e. χd → χr and hence

χ → χr. Notice, that since ex, ey → 0, vd1 →
√
ẋ2
r + ẏ2

r , i.e. vd1 → vgr sin γr. Also,

since ez → 0, vd2 → vgr cos γr. Thus, v1 → vgr sin γr and v2 → vgr cos γr. It can now be

trivially shown that vg → vgr and γ → γr. Thus the guidance objective is achieved.

Also for the special case mentioned above, it is shown that the errors can be

made arbitrarily small with an appropriate choice of the control gains. The trajecto-

ries are uniformly ultimately bounded in this case.
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Case 2: Target Model Eq. (2.7) - Chaser Model Eq. (2.6)

Theorem (Main Result). Given the reference trajectory obtained from Eq. (2.7) and

the actual dynamics of the UAV in Eq. (2.6), the following guidance laws ensure that

‖x− xr‖, ‖y − yr‖ and ‖z − zr‖ → 0 and all other signals are bounded.

vcg = vg −
1

c1

[
−v̇dg + λvg ṽg

]
ach = vg cos γ(−λχ χ̃+ χ̇d)

acv = vg(−λγ γ̃ + γ̇d) (3.12)

We apply the similar technique as described for case 1 to get the following desired

virtual control inputs for vdg , γ
d, and χd:

vdg =
√

(−α1ex + ẋr)2 + (−α2ey + ẏr)2 + (−α3ez + żr)2

χd = tan−1

(
−α2ey + ẏr
−α1ex + ẋr

)
γd = tan−1

(
−α3ez + żr√

(−α1ex + ẋr)2 + (−α2ey + ẏr)2

)

= tan−1

(
P

Q

)
(3.13)

where P , −α3ez + żr, and Q ,
√

(−α1ex + ẋr)2 + (−α2ey + ẏr)2. We can deter-

mine the derivatives of vdg , χ
d and γd from Eq. (3.13) as required by the actual inputs:

v̇dg =
1

vdg
((−α1ex + ẋr)(−α1vg cos γ cosχ+ α1ẋr + ẍr)

+(−α2ey + ẏr)(−α2vg cos γ sinχ+ α2ẏr + ÿr)

+(−α3ez + żr)(−α3vg sin γ + α3żr + z̈r))

χ̇d =
(−α2vg cos γ sinχ+ α2ẏr + ÿr)(−α1ex + ẋr)

(−α1ex + ẋr)2 + (−α2ey + ẏr)2

−(−α2ey + ẏr)(−α1vg cos γ cosχ+ α1ẋr + ẍr)

(−α1ex + ẋr)2 + (−α2ey + ẏr)2
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Table 3.1. Parameters used in simulation

Parameter α1 α2 α3 c1 c2 c3 λ1 λ2 λ3

Case 1 1 1 1 10 10 10 2 2 2

Case 2 2 2 2 10 10 10 2 2 2

γ̇d =
ṖQ− PQ̇
P 2 +Q2

where

Ṗ = −α3vg sin γ + α3żr + z̈r

Q̇ =
(−α1ex + ẋr)(−α1vg cos γ cosχ+ α1ẋr + ẍr)√

(−α1ex + ẋr)2 + (−α2ey + ẏr)2

+
(−α2ey + ẏr)(−α2vg cos γ sinχ+ α2ẏr + ÿr)√

(−α1ex + ẋr)2 + (−α2ey + ẏr)2

Simulation Case Studies

A curved path trajectory for the target UAV is generated. The initial conditions

for the target trajectory are: xr(0) = 100 m, yr(0) = 100 m, zr(0) = 100 m,vgr =

10 m/s, γr(0) = 8◦, χr(0) = 8◦. The control inputs for target UAV: case 1 : vcgr =

12 m/s, achr = 0.2 m/s2, and acvr = 0.2 m/s2, and case 2: vcgr = 10 m/s, γcr = 0 deg/s,

and χcr = 20 deg/s. The initial conditions of the chaser actual vehicle are: x(0) =

50 m, y(0) = 50 m, z(0) = 50 m, vg(0) = 8 m/s, γ(0) = 10◦, χ(0) = 10◦. The

actuator constants and other gain parameters are listed in Table 3.1 for both cases.

The chaser UAV successfully achieves tracking of target UAV for both cases as we

can see from Fig. 3.2, and 3.7. All the tracking errors reach to zero with time as we

see from Fig. 3.3, Fig. 3.4, Fig. 3.5, and 3.6 for case 1, and Fig. 3.8, Fig. 3.9, Fig.

3.10, and 3.11 for case 2.
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Figure 3.2. XYZ motion with time in 3D space (Case 1).

Figure 3.3. X, Y, and Z Position with time (Case 1).
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Figure 3.4. Velocity, Flight path, and Heading angle with time (Case 1).

Figure 3.5. Position Tracking Error with time (Case 1).
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Figure 3.6. Velocity, Flight path, and Heading angle error with time (Case 1).

Figure 3.7. XYZ motion with time in 3D space (Case 2).
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Figure 3.8. X, Y, and Z Position with time (Case 2).

Figure 3.9. Velocity, Flight path, and Heading angle with time (Case 2).
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Figure 3.10. Position Tracking Error with time (Case 2).

Figure 3.11. Velocity, Flight path, and Heading angle error with time (Case 2).
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Figure 3.12. Tracking of a straight line trajectory.

We generate the results for some other general defined target trajectories with

chaser dynamics described in Eq. (2.1), and target dynamics Eq. (2.7) is similar to

chaser Eq. (2.1) with specified known control inputs. Target tracking is shown for the

trajectories such as straight path at constant altitude in Fig. 3.12, circular path in

Fig. 3.13, and, helical path as shown in Fig. 3.14. We can easily see that the controller

works well for all these cases but tuning of the gains are required accordingly.

For the rest of the dissertation, we consider the chaser dynamics as described

in Eq. (2.1) and the target dynamics in Eq. (2.7) as similar to chaser dynamics in

Eq. (2.6) with specified known control inputs for vcgr, a
c
hr, and acvr.
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Figure 3.13. Tracking of a circular trajectory.

Figure 3.14. Tracking of a helical trajectory.
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3.2 Estimation based Control laws for a single UAV (Partial Target Information

with White Noise Uncertainties)

In this section, an estimation based control laws for a single UAV is devel-

oped and implemented in MATLAB to show robust performance of the controller in

target tracking. We assume that the target full state information is not available

to the chaser. However, an indirect measurements for range, azimuth angle, and

elevation angle are available from on-board sensors. We can synthesize these state

measurements in an Extended Kalman Filter (EKF) and estimate the target’s 6 state

measurements. An EKF provides the optimal estimates of the system states syn-

thesizing available measurements assuming a priori known statistical models for the

system and measurement noises. Fig. 3.15 shows an overview of our design approach

to develop an estimation based control laws for UAV. The standard EKF equations

for both cases are developed in this section based on reference [49]:

Continuous-Discrete EKF for Target state estimates

We consider the discrete-time measurement model Eq. (2.8) which is affected by the

measurement noise uncertainties assumed to be zero-mean Gaussian white noise with

known covariance. Therefore, the measurements for range, azimuth, and elevation

angle are:

rrk =
√
x2
rk + y2

rk + z2
rk + vrrk

φrk = tan−1

(
yrk
xrk

+ vφrk

)
θrk = sin−1

(
zrk
rrk

+ vθrk

)
(3.14)

where vrrk, vφrk, vθrk are the measurement noises in range, azimuth, and elevation

angle measurements respectively at k time step. We also consider that the dynamic

model for target UAV is corrupted by white noise uncertainties with known covari-
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Figure 3.15. Estimation based Target Tracking.

ance. The continuous-time state model and the discrete-time measurements for ref-

erence UAV can be written as follows :

Ẋr(t) = fr(Xr(t),ur(t), t) + Gr(t)wr(t)

ỹrk = hr(Xrk) + vrk (3.15)

where Xr = [xr, yr, zr, vgr, γr, χr]
T is the state vector; ỹrk is the measurement

vector; wr = [0, 0, 0, ωvgr, ωγr, ωχr]
T is ∼ N(0,Qr(t)) which means that it is

zero-mean normally distributed white noise vector with the process noise covariance

Qr(t) = E{wr(t)w
T
r (t)}; vrk = [vrrk, vφrk, vθrk]

T is ∼ N(0,Rrk) with measurement

noise covariance Rrk as defined by Rrk = E{vrkvTrk}. We further assume that the

process noise and the measurement noise are uncorrelated i.e. E{wr(t)v
T
rk} = 0.
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The nonlinear continuous-time vector function fr(Xr(t),ur(t), t) is expressed as:

fr(Xr(t),ur(t), t) =



vgr cos γr cosχr

vgr cos γr sinχr

vgr sin γr

vcgr − vgr

acvr
vgr

achr
vgr cos γr



(3.16)

where ur(t) =
[
vcgr, a

c
hr, a

c
vr

]T
. The nonlinear discrete-time function vector in the

measurement model is: hr(Xk) = [rrk, φrk, θrk]
T .

The Kalman gain of the EKF is:

Krk = P−rkH
T
rk(X̂

−
rk)
[
Hrk(X̂

−
rk)P

−
rkH

T
rk(X̂

−
rk) + Rrk

]−1

The update equations for the state and covariance are:

X̂+
rk = X̂−rk + Krk[ỹrk − hr(X̂

−
rk)] (3.17)

P+
rk = [I−KrkHrk(X̂

−
rk)]P

−
rk (3.18)

The estimated state propagation is governed by:

˙̂
X(t) = f(X̂r(t),ur(t), t)

and the estimation error covariance is propagated using:

Ṗr(t) = Fr(X̂r(t), t)Pr(t) + Pr(t)Fr(X̂r(t), t)
T

+Gr(t)Qr(t)Gr(t)
T (3.19)

where Gr(t) = [03×3 I3×3]T , and I is the Identity matrix.
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Assume, fr, and hr function vectors are locally differentiable. We can determine

the state Jacobian matrix Fr(X̂r(t), t) = ∂fr
∂Xr
|X̂r(t)

as:

Fr(X̂r(t), t) =

 03×3 Frd1

03×3 Frd2


where

Frd1 =


cos γ̂r cos χ̂r −v̂gr sin γ̂r cos χ̂r −v̂gr cos γ̂r sin χ̂r

cos γ̂r sin χ̂r −v̂gr sin γ̂r sin χ̂r v̂gr cos γ̂r cos χ̂r

sin γ̂r v̂gr cos γ̂r 0



Frd2 =


−1 0 0

0 0 0

0 0 0


and the measurement Jacobian matrix Hk(X̂r(k)) = ∂hr

∂Xr
evaluated at X̂rk as:

Hrk(X̂
−
rk) =


xr
rr

yr
rr

zr
rr

0 0 0

− yr√
x2r+y

2
r

xr√
x2r+y

2
r

0 0 0 0

− xrzr

r2r

√
x2r+y

2
r

− yrzr

r2r

√
x2r+y

2
r

√
x2r+y

2
r

r2r
0 0 0


We can write the output estimate equation as: ŷrk = hr(X̂rk).

The estimator above will synthesize, x̂r, ŷr, ẑr, v̂gr, γ̂r, χ̂r. Additional deriva-

tives that are needed are obtained by simply augmenting the filter state vector or

using a “dirty-derivative” approximation [68].
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The following state equations are used to determine the target state estimates and

its derivatives:

z̈d = ażd + bz

ż = cżd + dz

The transfer function relates the output ż(s) to input z(s) as:

H(s) =
qs+ r

s+ p

where q , d, r , (cb− ad), and p , −a, and a < 0, b > 0, c > 0, and d > 0.

Continuous-Discrete EKF for chaser UAV state estimation

For the chaser UAV state estimation, we consider the nonlinear continuous state

model Eq. (2.1) which is affected by the process noises and a discrete measurement

model Eq. (2.10) which is affected by the measurement white noises as follows:

Ẋ(t) = f(X(t),u(t), t) + G(t)w(t),

ỹk = h(Xk) + vk, vk ∼ N(0,Rk) (3.20)

where w(t) ∼ N(0,Q(t)), X = [x, y, z, vg, γ, χ]T is the state vector of the chaser,

wk = [0, 0, 0, ωvg, ωγ, ωχ]T is the process noise vector and vk = [vx, vy, vz,

vvg, vγ, vχ]T is the measurement noise vector, associated with the known covariances

Q(t) and Rk respectively.
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f(X(t),u(t), t) for the chaser UAV is expressed as:

f(X(t),u(t), t) =



vg cos γ cosχ

vg cos γ sinχ

vg sin γ

c1(vcg − vg)

c2(γc − γ)

c3(χc − χ)


The measurements for the chaser are assumed to be available from an on-board GPS

+ IMU + Air speed sensor unit: h(Xk) = [x, y, z, vg, γ, χ]Tk . The matrix G(t)

is the similar to Gr(t). The Extended Kalman Filter for the chaser is derived in a

similar way as the target. The Kalman gain is given by

Kk = P−k HT
k (X̂−k )

[
HT
k (X̂−k )P−k Hk(X̂

−
k ) + Rk

]−1

The update equations for the state and covariance:

X̂+
k = X̂−k + Kk(ỹk − h(X̂−k ))

P+
k = [I−KkHk(X̂

−
k )]P−k

The predicted estimate state propagation is:

˙̂
X(t) = f(X̂(t),u(t), t)

The error covariance propagation is:

Ṗ(t) = F(X̂(t), t)P(t) + P(t)FT (X̂(t), t) + G(t)Q(t)GT (t)

The Jacobian matrix F(X̂(t), t) = ∂f
∂X
|X̂(t) is given as:

F(X̂(t), t) =

 03×3 Fd

03×3 diag([−c1, − c2, − c3])


61



wherein

Fd =


cos γ̂ cos χ̂ −v̂g sin γ̂ cos χ̂ −v̂g cos γ̂ sin χ̂

cos γ̂ sin χ̂ −v̂g sin γ̂ sin χ̂ v̂g cos γ̂ cos χ̂

sin γ̂ v̂g cos γ̂ 0


The jacobian matrix can be written as: Hk(X̂

−
k ) = I6×6. We can get the estimated

states of the target using the output estimate equation ŷk = X̂k.

Simulation Case Study

We simulate a scenario for following design parameters: c1 = 100, c2 = 100, c3 =

100, α1 = 1, α2 = 1, α3 = 1, λ = 50, λ2 = 50, λ3 = 50. The simulation was run

for 20 seconds and the data were updated ∆t = 0.05 seconds interval i.e. the update

rate is 20Hz. The controller continuously updates three control commands based on

the estimated target and chaser UAV states. The transfer function used to calculate

estimated target state derivatives is:

H(s) =
0.1s+ 55

s+ 50

The simulation results shows that tracking is achieved with quite good approximation.

The parameters used for the target UAV and chaser UAV are as follows: The

truth model of target UAV is obtained for the following initial conditions: vgr(0) =

10 m/s, γr(0) = 12◦, χr(0) = 12◦, xr(0) = 100 m, yr(0) = 100 m, zr(0) = 100 m, and

for specified known control inputs: vcgr = 12 m/s, achr = 0.2 m/s2, acvr = 0.2 m/s2.

The variances and standard deviation of noises associated with the sensors for target

and chaser measurements are listed in Table 3.2, and 3.3.

The initial guess of the estimated states of reference trajectory are: vgre(0) =

11 m/s, γre(0) = 17◦, χre(0) = 17◦, xre(0) = 105 m, yre(0) = 105 m, zre(0) = 105 m.
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Figure 3.16. Position Tracking Errors (true-estimated) with 3− σ bounds for Target
UAV.

Figure 3.17. Velocity, Flight Path Angle, and Heading Angle Errors (true-estimated)
with 3− σ bounds for Target UAV.
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Table 3.2. Variances and Standard Deviations of measurement noises used in simu-
lation (Target)

Parameter r φ θ

σ2 1 m2 2e−4 rad2 2e−4 rad2

σ ±1 m ±0.01 rad (±0.57 deg) ±0.01 rad (±0.57 deg)

Table 3.3. Variances and Standard Deviations of measurement noises used in simu-
lation (Chaser)

Parameter x y z vg γ χ

σ2 1 m2 1 m2 1 m2 1 (m/s)2 2e−4 rad2 2e−4 rad2

σ ±1 m ±1 m ±1 m ±1 m/s ±0.01 rad ±0.01 rad

(±0.57 deg) (±0.57 deg)

The true model of chaser UAV is obtained for the following conditions: vg(0) =

8 m/s, γ(0) = 10◦, χ(0) = 10◦, x(0) = 50 m, y(0) = 50 m, z(0) = 50 m, and for the

estimated state: vge(0) = 9 m/s, γe(0) = 15◦, χe(0) = 15◦, xe(0) = 55 m, ye(0) =

55 m, ze(0) = 55 m. The initial covariance for the reference and chaser vehicle is

chosen to be the same i.e. P0 = I6×6 where I is an identity matrix. The covariance

of process noise for the target: Qr(t) = diag([1, (0.57π/180)2, (0.57π/180)2]) and

for chaser: Q(t) is the same as target. The covariance matrix of the measurement

noises for target and chaser are: Rrk = diag([1, (0.57π/180)2, (0.57π/180)2]) and

Rk = diag([1, 1, 1, 1, (0.57π/180)2, (0.57π/180)2]), respectively.

Fig. 3.16, 3.17 and 3.18 shows the performance of the EKF which gives

the best estimate of target true state. Fig. 3.19 shows the true and estimated target

measurements - it validates the filter performance to estimate target states. Fig. 3.20,

and Fig. 3.21 shows the performance of the filter with 3− σ error bounds and from
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Figure 3.18. The true and estimated state of the reference vehicle.

Figure 3.19. True and Estimated Target Measurements.
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Figure 3.20. Position Tracking Errors (True-Estimated) with 3−σ bounds for Chaser.

Figure 3.21. Velocity, Flight path, and Heading angle Errors (True-Estimated) with
3− σ bounds for Chaser.

66



Figure 3.22. The estimated chaser trajectory tracks the true target trajectory.

Fig. 3.22, we see that the estimated XYZ motion of the chaser trajectory tracks the

target UAV as expected.
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3.3 Estimation based Control laws for a single UAV (Partial Target Information

with Colored Noise Uncertainties)

In this section, a continuous-discrete EKF is implemented when the measure-

ments and process noises are corrupted by colored noise uncertainties. Colored noise

is propagated by solving first order differential equation with band limited white noise

as an input into it. We can write the augmented system including the colored noise

dynamics and design the EKF to estimate the augmented state.

EKF for Target State Estimation with Colored Noise Uncertainties

For target state estimation, an EKF is designed which can estimate the states when

the measurements are corrupted by non-white noise measurement uncertainties. Three

measurements (range (r), azimuth angle (φ), and elevation angle (θ)) of target are

available to the chaser and the associated noise vector is vrk. The non-white mea-

surement noise vector vrk can be generated by the following first-order shaping filter

equation which is driven by zero-mean band limited white noise:

Żr = frf (Zr) + ϑrfwrf , wrf (t) ∼ N(0,Qrf (t))

vrk = hrf (Zrk) + νrfk, νrfk ∼ N(0,Rrfk) (3.21)

where, Zr = [zrr, zφr. zθr]
T , fzr = [−brr, −bφr, −bθr]T , ϑrf = diag

(
[
√
brr,

√
bφr,
√
bθr]
)
,

hrf = Zrk, all b’s are positive constants.

The state and measurement equations for the augmented system are as follows:

Ẋra = fra(Xra(t),ur(t), t) + Gra(t)wra(t), wra(t) ∼ N(0,Qra(t))

ỹrk = hrk(Xrk) + vrk

= hr(Xrk) + hrf (Zrk) + νrfk

= hra(Xrak) + νrfk (3.22)
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where, Xra = [Xr Zr]
T , fra = [fr frf ]T , Gra =

 Gr 06×3

03×3 ϑrf

, wra = [wr wrf ]
T ,

and hra(Xrak) = hrk(Xrk) + hrf (Zrk)

Assume that wr, and wrf are uncorrelated i.e. the process noise covariance matrix

Qra(t) for the augmented system can be written by

Qra(t) = E

 wr

wrf

[ wT
r wT

rf

]

=

 Qr 0

0 Qrf

 (3.23)

The measurement covariance matrix associated with the augmented measurement

model:

E
[
νrfkν

T
rfk

]
= Rrfk (3.24)

We can write the Kalman Filter equations in a similar way as mentioned in Eqn.

(3.5-3.9) for the augmented system i.e.

Krak = P−rak HT
rak(X̂

−
rak) [HT

rak(X̂
−
rak) P−rak Hrak(X̂

−
rak) + Rrak]

−1 (3.25)

The update equations for the state and covariance:

X̂+
rak = X̂−rak + Krak(ỹrk − hra(X̂

−
rak)) (3.26)

P+
rak =

[
I−KrakHrak(X̂

−
rak)
]

P−rak (3.27)

The state estimate propagation is:

˙̂
Xra(t) = fra(X̂ra(t),ur(t), t) (3.28)
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The error covariance propagation is:

Ṗra(t) = Fra(X̂ra(t), t)Pra(t) + Pra(t)F
T
ra(X̂ra(t), t)

+Gra(t)Qra(t)G
T
ra(t) (3.29)

For the augmented system, the Jacobian matrices are given below:

The state Jacobian matrix Fra(X̂ra(t), t) = ∂fra
∂Xra
|X̂ra(t) which becomes as follows:

Fra =

 Fr 03×3

06×6 Frf


where, Frf = diag ([−brr, − bφr, − bθr])

The measurement Jacobian matrix Hak(X̂rak) = ∂hra
∂Xrak

|X̂rak
can be expressed as:

Hrak(X̂
−
rk) = [Hrk Hrfk] where, Hrfk = I3×3.

EKF for Chaser State Estimation with Colored Noise Measurement Un-

certainties

The chaser state measurements are considered to be corrupted by colored noise uncer-

tainties. For the chaser state, six state measurements are available from sensors, and

six first order shaping filters are utilized to generate the colored noise uncertainties

and added these in the measurement model.

Ż = ff (Z) + ϑfwf , wf (t) ∼ N(0,Qf (t))

vk = hf (Zk) + νfk, νfk ∼ N(0,Rfk) (3.30)

where, Z = [zx, zy, zz, zvg, zγ, zχ]T , ff = [−bx, −by, −bz, −bvg, −bγ, −bχ]T ,

ϑf = diag
(
[
√
bx,

√
by,
√
bz,
√
bvg,

√
bγ,

√
bχ]
)
, hf = Zk, and all b’s are positive

constants.
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We can write the augmented state and measurement equations for the chaser

are as follows:

Ẋa = fa(Xa(t),u(t), t) + Ga(t)wa(t), wa(t) ∼ N(0,Qa(t))

ỹk = ha(Xak) + νfk (3.31)

where, Xa = [X, Z]T , fa = [f , ff ]
T , Gra =

 Gr 06×3

03×3 ϑf

, wa = [w, wf ]
T , and

ha(Xak) = h(Xk) + hf (Zfk).

The Kalman Filter equations for chaser can be written as follows:

Kak = P−ak HT
ak(X̂

−
ak) [HT

ak(X̂
−
ak) P−ak Hak(X̂

−
ak) + Rak]

−1 (3.32)

Update equations for the state and covariance are:

X̂+
ak = X̂−ak + Kak(ỹk − ha(X̂

−
ak)) (3.33)

P+
ak = [I−KakHak(X̂

−
ak)]P

−
ak (3.34)

State estimate propagation is:

˙̂
Xa(t) = fa(X̂a(t),u(t), t) (3.35)

Error covariance propagation is:

Ṗa(t) = Fa(X̂a(t), t)Pa(t) + Pa(t)F
T
a (X̂a(t), t)

+Ga(t)Qa(t)G
T
a (t) (3.36)

The state Jacobian matrix is: Fa(X̂a(t), t) = ∂fa
∂Xa
|X̂a(t) which becomes as follows:

Fa =

 F 03×3

06×6 Ff


71



Table 3.4. Variances of process noises used in simulation (Target)

Parameter Value Unit

σ2
vgr 1 (m/s)2

σ2
γr (0.65π/180)2 rad2

σ2
χr (0.65π/180)2 rad2

σ2
zrr 4 m2

σ2
zφr (0.65π/180)2 rad2

σ2
zθr (0.65π/180)2 rad2

where, Ff = diag ([−bx, − by, − bz, − bvg, − bγ, − bχ]).

The measurement Jacobian matrix is: Hak(X̂ak) = ∂hak
∂Xak
|X̂ak

which can be written as:

Hak(X̂
−
k ) = [Hk Hfk], where Hfk = I6×6.

Simulation Results

The simulation results for target tracking with a single UAV are shown in figures

3.23-3.35. All tracking errors are within 3 − σ bounds. The controller gains used

in simulation: α1 = 1, α2 = 1, α3 = 1, λvg = 50, λχ = 50, λγ = 50. The

actuator constants are: c1 = 100, c2 = 100, c3 = 100. The variances associated

with target measurements noises are: σ2
r = 4 m2, σ2

φ = (0.65π/180)2 rad2, and

σ2
θ = (0.65π/180)2 rad2. The initial error covariance for target is Pr0 = 10 I9×9, and

for chaser P0 = 10 I12×12. The process noise covariance matrix Qra(t) for target is

calculated using Eq. (3.23). The following matrices are needed to calculate Qra(t),

and the simulation is executed for the listed parameters in Table 3.4:

Qr(t) = 2 diag
(
[σ2
vgr, σ

2
γr, σ

2
χr]
)

Qrf (t) = 2 diag
(
[σ2
zrr, σ

2
zφr, σ

2
zθr]
)

For chaser, the parameters used in simulation are tabulated in Table 3.5. The
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Table 3.5. Variances of process noises used in simulation (Chaser)

Parameter Value Unit

σ2
vg 1 (m/s)2

σ2
γ (0.65π/180)2 rad2

σ2
χ (0.65π/180)2 rad2

σ2
zx 2 m2

σ2
zy 2 m2

σ2
zz 2 m2

σ2
zvg 1 (m/s)2

σ2
zγ (0.65π/180)2 rad2

σ2
zχ (0.65π/180)2 rad2

following matrices are needed to calculate the process noise covariance Qa.

Q(t) = diag
(
[σ2
vg, σ

2
γ, σ

2
χ]
)

Qf (t) = diag
(
[σ2
zx, σ

2
zy, σ

2
zz, σ

2
zvg, σ

2
zγ, σ

2
zχ]
)

The measurement noise covariance matrices used in EKF for target and chaser:

Rrk = 0.75 diag
(
[4, (0.65π/180)2, (0.65π/180)2]

)
Rk = 0.75 diag

(
[2, 2, 2, 1, (0.65π/180)2, (0.65π/180)2]

)

73



Figure 3.23. The true and estimated state of target vehicle.

Figure 3.24. The true and estimated state of target vehicle.
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Figure 3.25. Position Errors with 3− σ bounds.

Figure 3.26. Velocity, flight path, and heading angle error with 3− σ bounds.
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Figure 3.27. Target True, and Estimated Measurements.

Figure 3.28. Measurements Error (true-estimated) with 3− σ bounds.
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Figure 3.29. Measurements Error (true-estimated) with 3− σ bounds.

Figure 3.30. Measurements Noise.
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Figure 3.31. True Target and Estimated Chaser (Position).

Figure 3.32. True Target and Estimated Chaser (vg, γ, χ).
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Figure 3.33. Estimated Target and Estimated Chaser (Position).

Figure 3.34. Estimated Target and Estimated Chaser (vg, γ, χ).
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Figure 3.35. Estimation based Target Tracking in 3D.
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3.4 Range Dependent Covariance for Target Measurements

In practice, the error covariance matrix for measurements is not constant all

over time. To implement a more realistic scenario for target tracking, we include the

following variance function for target range measurement:

σ2
r = a2(r − a1)2 + a0 (3.37)

where a0 > 0, a1 > 0 a2 > 0, and r is the distance between the target and chaser.

The above function in Eq. (3.37) is utilized in [69] to represent the variance of

range measurement noise. It implies that the error variance is getting smaller as the

chaser closes to the target and when it reaches to the target it has minimum error

variance a0 (known as “sweet spot”). The variances for azimuth angle, and elevation

angle can also be affected and it is more feasible assumption that the measurements

affected by noises will reduce as it comes closer to the target. Likewise, the variances

for azimuth, and elevation angle can be written as follows:

σ2
φ = αφ

(
a2(r − a1)2 + a0

)
σ2
θ = αθ

(
a2(r − a1)2 + a0

)
(3.38)

where αφ > 0, and αθ > 0. The covariance matrix for target measurement becomes

R = diag([σ2
r σ

2
φ σ2

θ ]). If the parameters are chosen as a0 = 1 m2, a1 = 1 m2,

a2 = 0.0024 m2, αφ = 0.01(rad/m)2, αφ = 0.01(rad/m)2, and r varies from 0 to 100

m, we can easily see from Fig. 3.36 that the variances for range, azimuth angle, and

elevation angle become minimum at r = 1 m.

Simulation Results

The simulation is performed for the case when the measurements are cor-

rupted by white noise uncertainties. The parameters are chosen to calculate the

variances for range, azimuth angle, and elevation angle as: a0 = 1 m2, a1 = 1 m2,
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Figure 3.36. Variances with range.

a2 = 0.0024 m2, αφ = 1e−5 (rad/m)2, αφ = 1e−5 (rad/m)2. The initial posi-

tion of target UAV and chaser UAV: Xr(0) = [100 m, 100 m, 100m]T ,X(0) =

[50 m, 50 m, 50 m]T . Therefore, the initial range vector: ~r0 = [50 50 50]T ,

and its magnitude is |r0| = 86.6 m. The initial variances for range, azimuth an-

gle, and elevation angle measurement noise: σ2
r = 18.9 m2, σ2

φ = 0.62 deg2, and

σ2
θ = 0.62 deg2 i.e. the standard deviations are σr = ±4.34 m, σφ = ±0.79 deg,

and σθ = ±0.79 deg. The simulation runs for 30 seconds. The process noise covari-

ances for target and chaser are: Qr(t) = diag([1 (m/s)2, 3.28 deg2, 3.28deg2]), and

Q(t) = diag([1e−3 (m/s)2, 3.28 deg2, 3.28 deg2]) respectively. From Fig. 3.37-3.47, it

is seen that the chaser achieves satisfactory tracking performance with varying target

measurement noise variances. Fig. 3.48 shows the target measurement noise variances

with time, and we can easily see that the variances are decreasing with time. At 30th

seconds the variances become: σ2
r = 1.02 m2, σ2

φ = 0.03 deg2, and σ2
θ = 0.03 deg2.
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Figure 3.37. The true and estimated position state of target vehicle.

Figure 3.38. The true and estimated speed, flight path, and heading angle of target
vehicle.
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Figure 3.39. Position Errors with 3− σ bounds.

Figure 3.40. velocity, flight path, and heading angle error with 3− σ bounds.
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Figure 3.41. Target True, and Estimated Measurements.

Figure 3.42. Target Measurements Error.
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Figure 3.43. True Target and Estimated Chaser (Position).

Figure 3.44. True Target and Estimated Chaser (vg, γ, χ).
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Figure 3.45. Estimated Target and Estimated Chaser (Position).

Figure 3.46. Estimated Target and Estimated Chaser (vg, γ, χ).
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Figure 3.47. Estimation based Target Tracking in 3D.

Figure 3.48. Target Measurement Noise Variance with time.
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CHAPTER 4

CONTROL LAWS FOR TARGET TRACKING WITH COOPERATIVE UAVS

In this section, we describe general terminologies of algebraic graph theory in

section 4.1 [70]; derive the control laws for a cooperative group of UAVs with complete

target information and the simulation results are shown in section 4.2 for fixed and

switching topology case; and derive and implementation of estimation based control

laws with partial target information for fixed and switching topology case in section

4.3.

4.1 General Description of Dynamic Graph

Consider a network of multiple UAVs which are connected through a commu-

nication topology. The local communication between the vehicles is represented by

a dynamic graph G(t). Consider a dynamic graph G(t) = (V, E(t)) where V is the

nonempty finite set of nodes V = {1, 2, . . . . . . , n} and E(t) are a set of edges

E ⊆ V × V . Each of the vehicles is represented by a node and their interaction be-

havior is represented by an edge. The edges are represented by an adjacency matrix

which represents the interactions among the vehicles. The adjacency matrix of the

graph G is expressed as, A = [aij] where aij is graph edge weight, defined by aij = 1

if (νi, νj) ∈ E and aij = 0 otherwise. Here, edge eij = (νi, νj) means that node νj

can obtain information from node νi. Therefore, node νi is considered as the parent

node whereas νj is the child node. The set of neighbors of an agent or a node νi is

represented by Ni = {νj : (νj, νi) ∈ E} i.e. the set of nodes with arcs which enter to

νi as can be shown via Fig. 4.1.
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Figure 4.1. A Dynamic Graph.

A directed graph (or digraph) is for more specific cases where the flow of information

may be unidirectional. A graph is said to be undirected if there exists both ways

information exchange from νi to νj and νj to νi for which A is symmetric. A directed

tree graph is said to have a spanning tree if and only if there exists a node having

a path to every other node i.e. a leader node. A graph is strongly connected if and

only if νi, and νj are connected for all distinct nodes νi, νj ∈ G irrespective of the

orientation of the edges which implies that it has a directed spanning tree.

Graph Laplacian matrix L is a widely used term to represent the graph structure

of a network in the literature which holds important properties depending on the

communication. It is defined as, L = D − A where D is a valency matrix. The

diagonal elements of D = [dij] are the row sums of adjacency matrix A expressed

as dii =
∑Ni

j aij. Each diagonal term dii represents the number of neighbors of

node νi which is its in-degree. L has exact one zero eigenvalue with associated right

eigenvector 1n if and only if the associated directed graph has a directed spanning

tree and rest of the eigenvalues are in the open right half plane. L is symmetric and

positive semi-definite for balanced graph i.e. in-degree and out-degree for all nodes

are the same, for example an undirected graph.
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The communication topology may be fixed and time varying. For fixed or time-

invariant communication, the adjacency matrix A is constant i.e. aij are constant

over time. If the topology changes to a new topology after a certain time interval,

it is said to be dynamically changing or switching topology. These situations may

arise in cases where limited information or new information may be available from

the neighboring vehicles after a certain time interval. A group of graphs is said to be

strongly connected if the union of graphs is strongly connected [71]. The group has

a spanning tree if the union of graphs has a spanning tree.

The following matrix definitions will be needed throughout the present study:

Definition. Irreducible and Reducible Matrix

A nonnegative matrix A ∈ Rn×n is said to be irreducible if there does not exist a

permutation matrix P such that PAP T is block triangular, otherwise it is reducible

matrix. For example, a reducible Matrix can be formed as.

PAP T =

 ∗ 0

∗ ∗


A graph G is strongly connected if and only if the adjacency matrix A is irreducible.

Definition. Row Stochastic Matrix

A nonnegative matrix A ∈ Rn×n (A ≥ 0) with all its row sums equal to +1 is called

a row stochastic matrix.

Definition. Doubly Stochastic Matrix

A nonnegative matrix A ∈ Rn×n (A ≥ 0) with all its row and column sums equal

to +1 is called a doubly stochastic matrix.

The maximum eigenvalue of a stochastic matrix is 1.
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Definition. SIA

A row stochastic matrix is indecomposable and aperiodic (SIA) [72] if

Q = lim
n→∞

An

exists and all the rows are the same.

According to Lemma 2.6 in [70], for the directed graph with having a directed

spanning tree, e−Lt for all t ≥ 0 is row-stochastic matrix with positive diagonal

entries and it also satisfies 1Tnv = 1 and LTv = 0, then e−Lt → 1nv as t → ∞,

where v is the left eigen vector associated with zero eigenvalue of L. For the strongly

connected graph, L is a irreducible matrix. According to the corollary mentioned

in [40], if the directed graph has a directed spanning tree, the row stochastic A

matrix is indecomposable and aperiodic (SIA), that is, limm→∞ Am → v, where v

satisfies AT v = v and 1Tv = 1, where v is nonnegative. Let, SA = {A1, A2, . . . Al}

be a set of row stochastic matrices with positive diagonal entries. If the union of the

directed graphs of Ai has a spanning tree, the matrix product
∏l

i=1 Ai is SIA [70].

According to Lemma 2.27 [70], if the union of directed graphs Ḡ = {G1, G2, . . . , Gn}

has a directed spanning tree, and Li is the graph Laplacian matrix associated with

each directed graph Gi where each Li is a row stochastic matrix, then matrix product

e−L1∆1e−L2∆2 . . . e−Ln∆n is SIA.
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4.2 Control Laws for Cooperative UAVs (Complete Target Information)

In this section, cooperative control laws are initially designed for multiple UAVs

with complete target state information. For each UAV, all state information are

available from its on-board sensors (GPS+IMU). The present study is addressed for

different types of communication topologies (fixed, and time varying case).

Cooperative Control Laws with fixed topology (Complete Target Informa-

tion)

Consider a team of N UAVs which are connected through a fixed interaction

topology (G). We consider the dynamics Eq. (2.1) for each vehicle i:

ẋi = vgi cos γi cosχi

ẏi = vgi cos γi sinχi

żi = vgi sin γi

v̇gi = c1i(v
ic
g − vgi)

γ̇i = c2i(γ
ic − γi)

χ̇i = c3i(χ
ic − χi) (4.1)

A pinning control technique introduced in [73], is used whereby the target vehicle is

pinned into a subset of the network. In this study, the reference trajectory information

is made available into the group by pinning it into at least one node of the network.

The connectivity in this case is represented by matrix B. This is a diagonal matrix

defined by B = [bij] where the diagonal element bii is the pinning gain and bii > 0 for

at least one node i. For the target UAV, the kinematic equations described in Eq.

(2.6) is used in this study.
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Define the errors for each vehicle as follows:

exi =

Ni∑
j=1

aij(xj − xi) + bi(xr − xi)

eyi =

Ni∑
j=1

aij(yj − yi) + bi(yr − yi)

ezi =

Ni∑
j=1

aij(zj − zi) + bi(zr − zi) (4.2)

where i = {1, 2, . . . , N}. It can also be expressed in the following form:

ex = −(L + B)(x− xr1)

ey = −(L + B)(y − yr1)

ez = −(L + B)(z− zr1) (4.3)

where L = [lij] is the graph Laplacian matrix expressed as: L = (D − A), and

1N×1 is a vector where each element is 1. The matrix D = [dij] is the diagonal

matrix. The diagonal elements of D are the row sums of adjacency matrix A ex-

pressed as dii =
∑Ni

j aij. Each diagonal term dii represents the number of neighbors

of node νi which is its in-degree. Position vectors are: xN×1 = [x1, x2, . . . , xN ]T ,

yN×1 = [y1, y2, . . . , yN ]T , and zN×1 = [z1, z2, . . . , zN ]T .

Theorem (Main Result). Given the reference trajectory in Eq. (2.6) and the actual

dynamics for each of the UAVs in Eq. (4.1) and a fixed time-invariant communication

topology (G) among the vehicles, the following guidance laws ensure that the tracking
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errors, ‖xi − xr‖, ‖yi − yr‖, ‖zi − zr‖ and ‖vgi − vgr‖, ‖γi − γr‖, ‖χi − χr‖ are all

uniformly ultimately bounded (UUB), where i = {1, 2, . . . . . . , N}.

vicg = vgi −
1

c1i

[
−v̇dgi + λvgi evgi − bii vgr

]
γic = γi −

1

c2i

[
−γ̇di + λγi eγi − bii γr

]
χic = χi −

1

c3i

[
−χ̇di + λχi eχi − bii χr

]
(4.4)

When the reference states are constants, the tracking errors asymptotically converge

to zero for all initial conditions if G is strongly connected i.e. the graph has a directed

spanning tree.

Proof. The desired vehicle dynamics for each vehicle is as follows:

ẋi = vdgi cos γdi cosχdi

ẏi = vdgi cos γdi sinχdi

żi = vdgi sin γ
d
i (4.5)

where i = {1, 2, . . . , N}, vdgi, γdi , and χdi are three control commands (to be deter-

mined later) that will be used to generate the desired speed, flight path angle and

heading angle.

The error dynamics can be written in compact form as:

ėx = −(L + B)(ẋ− ẋr1)

ėy = −(L + B)(ẏ − ẏr1)

ėz = −(L + B)(ż− żr1) (4.6)
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Assuming a single integrator like dynamics in each “position” channel, i.e. ẋ = ux,

ẏ = uy, and ż = uz, we arrive at the following control law for position tracking based

on the local neighborhood feedback:

ux = αxex + (L + B)ẋr1

uy = αyey + (L + B)ẏr1

uz = αzez + (L + B)żr1 (4.7)

where αx, αy and αz are diagonal positive definite gain matrices of appropriate di-

mension. It is to be mentioned that if the graph is strongly connected then (L + B)

is positive definite. We can derive the following desired values:

vdgi =
√

(uxi)2 + (uyi)2 + (uzi)2

γdi = tan−1

(
uzi√

(uxi)2 + (uyi)2

)

χdi = sin−1

(
uyi
uxi

)
(4.8)

Now the errors in the vg, γ, and χ are defined as,

evg = vg − vdg

eγ = γ − γd

eχ = χ− χd (4.9)

where vg = [vg1, vg2, . . . , vgN ]T , γ = [γ1, γ2, . . . , γN ]T , and χ = [χ1, χ2, . . . , χN ]T .

The dynamics for the off-manifold variables that guarantee exponential stability is

assumed as:

ėvgi = −λvgi evgi

ėγi = −λγi eγi

ėχi = −λχi eχi (4.10)
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The gains, λvgi, λγi, λχi are positive user specified values. The derivatives of vdgi, γ
d
i ,

and χdi are then derived as:

v̇dgi =
u̇xiuxi + u̇yiuyi + u̇ziuzi

vdgi

γ̇di =
1

(vdgi)
2

[
u̇zi ((uxi)

2 + (uyi)
2)− uzi (uxiu̇xi + uyiu̇yi)√

(uxi)2 + (uyi)2

]

χ̇di =
u̇yi cosχdi√

(uxi)2 + (uyi)2
− u̇xi sinχ

d
i√

(uxi)2 + (uyi)2
(4.11)

Note, the computation of the derivatives of vdgi, γ
d
i , and χdi requires us to compute the

derivatives of the control signals from the position control loop namely derivatives of

uxi, uyi and uzi. From Eq. (4.7) we calculate these derivatives as follows,

u̇x = αxėx + (L + B)ẍr1

u̇y = αyėy + (L + B)ÿr1

u̇z = αzėz + (L + B)z̈r1 (4.12)

Note, the implementation of the control loops for position tracking requires uxi,

uyi, and uzi and the velocity level tracking is achieved through the derivatives of

uxi, uyi and uzi. Also, the control laws are derived for tracking of a reference tra-

jectory prescribed in terms of the position variables only. In this formulation, the

consensus for the speed, flight path angle and heading variables is not included ex-

plicitly. If we desire the latter, the desired error dynamics in Eq. (4.10) is modified

as follows,

ėvg = −λvg evg + (L + B)vgr1

ėγ = −λγ eγ + (L + B)γr1

ėχ = −λχ eχ + (L + B)χr1 (4.13)
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where λvg, λγ, and λχ are diagonal positive definite control gain matrices of appro-

priate dimension. Using Eq. (4.1), and Eq. (4.13) we can finally derive the control

laws as follows:

vicg = vgi −
1

c1i

[
−v̇dgi + λvgi evgi − bii vgr

]
γic = γi −

1

c2i

[
−γ̇di + λγi eγi − bii γr

]
χic = χi −

1

c3i

[
−χ̇di + λχi eχi − bii χr

]
(4.14)

To prove the closed loop stability of the entire system, we select a Lyapunov function

candidate as follows:

W =
1

2

(
eTvgevg + eTγ eγ + eTχeχ + eTxex + eTy ey + eTz ez

)
(4.15)

Then, the time derivative of W is

Ẇ = eTvgėvg + eTγ ėγ + eTχ ėχ + ex
T ėx + ey

T ėy + ez
T ėz (4.16)

Using the guidance laws described above in Eq. (4.13), and Eqs. (4.6), (4.7), the

time derivative of the Lyapunov function candidate can be written as:

Ẇ = eTvgėvg + eTγ ėγ + eTχ ėχ + ex
T ėx + ey

T ėy + ez
T ėz

= eTvg (−λvgevg + (L+B)vgr1) + eTγ (−λγeγ + (L+B)γr1)

+eTχ (−λχeχ + (L+B)χr1) + ex
T (−αx(L+B)ex − (L+B)(L+B − I)ẋr1)

+ey
T (−αy(L+B)ey − (L+B)(L+B − I)ẏr1)

+ez
T (−αz(L+B)ez − (L+B)(L+B − I)żr1)

As mentioned earlier, if the graph has a directed spanning tree, (L + B) is positive

definite. If we denote σ as the minimum singular value of (L+B) , σ as the maximum
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singular value of (L+B), λvg, λγ, λχ,αx, αy, and αz as the smallest eigenvalue of λvg,

λγ, λχ, αx, αy, and αz respectively, we can derive as follows:

Ẇ ≤ −λvg ‖evg‖2 + σ‖ evg‖ ‖vgr1‖ − λγ ‖eγ‖2 + σ‖ eγ‖ ‖γr1‖

−λχ ‖eχ‖2 + σ‖ eχ‖ ‖χr1‖ − αx σ ‖ex‖2 + σ σi ‖ex‖ ‖ẋr1‖

−αy σ ‖ey‖2 + σ σi ‖ey‖ ‖ẏr1‖ − αz σ ‖ez‖2 + σ σi ‖ez‖ ‖żr1‖

Where, σi is the maximum singular value of (L+B−I). We also note that the reference

trajectory (target trajectory) is bounded, i.e ‖vgr1‖ ≤ vgr,max,‖γr1‖ ≤ γr,max, ‖χr1‖ ≤

χr,max, ‖ẋr1‖ ≤ xdr,‖ẏr1‖ ≤ ydr, ‖żr1‖ ≤ zdr then

Ẇ ≤ −λvg ‖evg‖2 + σ vgr,max ‖evg‖ − λγ ‖eγ‖2 + σ γr,max ‖eγ‖

−λχ ‖eχ‖2 + σ χr,max ‖eχ‖ − αx σ ‖ex‖2

+σ σi xdr ‖ex‖ − αy σ ‖ey‖2 + σ σi ydr ‖ey‖

−αz σ ‖ez‖2 + σ σi zdr ‖ez‖

≤ −β‖s‖2 + r ‖s‖

Define, P = diag
(
λvg, λγ, λχ, αx σ, αy σ, αz σ

)
where β is the minimum

singular value of P .

Also, r = ‖ [σ vgr,max, σ γr,max, σ χr,max, σi xdr, σi ydr, σi zdr] ‖ and s =

[‖evg‖ ‖eγ‖ ‖eχ‖ ‖ex‖ ‖ey‖ ‖ez‖]T . Clearly the Lyapunov function derivative is

of the form,

Ẇ ≤ −2β W + r
√

2W

Therefore,

√
W ≤

√
W (0) exp (−β t) +

r

β
(1− exp (−β t)) ≤

√
W (0) +

r√
2β

Eq. (4.15) can also be written in the following form:

W =
1

2
||s||2
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Thus,

‖s‖ ≤ ‖s(0)‖+
r

β

Remarks:

• When the consensus states are constant, i.e. xr , yr, . . . = constant, r = 0 and

we see that for the graph which has a directed spanning tree, all vehicles in the

formation reach the same consensus (desired state).

• When the desired reference states are not constant but have bounded derivatives

up to order 2, the trajectory tracking errors are bounded. The tracking errors

can be made arbitrarily small using a high values of the control gains β.

• For the directed graph having a directed spanning tree, the system is asymp-

totically stable (i.e. bounded-input and bounded tracking errors) which im-

plies that, if the target states and its derivatives (up to 2 order) are uniformly

bounded, so all tracking errors are uniformly bounded.

Cooperative Control Laws with Switching Topology (Complete Target In-

formation)

We consider a scenario where the communication between the UAVs switches to a

new topology as the information updates over certain time instants. It may create

new or lose connections with the neighboring UAVs within an effective range of de-

tection. We investigate the consensus of UAVs in cases for which, all UAVs meet the

target tracking objective.

For this purpose, we consider the following graph connectivity over certain

switching instants t = {t0, t1, . . . , tk} as shown in Fig. 4.2 are: Ḡ = {G1, G2, . . . , Gk}.

Therefore, the graph Laplacian matrix is: L̄ = {L1, L2, . . . , Lk} and the gain ma-

trix is: B̄ = {B1, B2, . . . , Bk} throughout the consecutive switching instants. We
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Figure 4.2. Switching Instants.

can prove the following theorem for the consensus in case of switching topology using

the similar arguments as in [40]:

Theorem (Main Result). The control laws as described in Eq. (3.1) achieves target

tracking asymptotically with uniformly ultimately bounded (UUB) tracking errors for

the graph connectivity of Ḡ = {G1, G2, . . . , Gk} over infinitely uniformly bounded

non-overlapping switching time instants t = {t0, t1, t2, . . . , tk} provided that the

union of the graphs over the switching instants has directed information flow having

a spanning tree.

Proof. We can write the total error for a particular switching instant say, kth instant

ξk = [ex, ey, ez, evg, eγ, eχ]Tk

We consider the total error dynamics for the entire system at kth instant:

ξ̇k = −Λkξk + Υkqk (4.17)

where Λk, and Υk are the block diagonal matrices in the following form:

Λk = diag [αxk(Lk + Bk) αyk(Lk + Bk) αzk(Lk + Bk) λvgk λγk λχk]

Υk = diag [(Lk + Bk)(Lk + Bk − I) (Lk + Bk)(Lk + Bk − I) (Lk + Bk)(Lk + Bk − I)

(Lk + Bk) (Lk + Bk) (Lk + Bk)]

where each diagonal block is a square matrix having dimension N × N , Lk + Bk

represents the communication topology for the graph connection at kth instant. We
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consider the same graph connection topology in x, y and z position states. λvgk

is a diagonal matrix having speed control gains in each diagonal terms for each ve-

hicle at kth instant. Similarly, we can define the controls gain matrices λγk, and

λχk for flight path angle, and heading angle at kth instant. Furthermore, define

qk = [ẋr1 ẏr1 żr1 vgr1 γr1 χr1]T .

For a particular switching interval ∆t1 = t1 − t0 as shown in Fig. 4.2, we get

from Eq. (4.17),

ξ(t1) = e(−Λ1∆t1)ξ(t0) +

∫ t1

t0

Υ1 e
(−Λ1τ) q1dτ

For the interval ∆t2 = t2 − t1, we can get:

ξ(t2) = e(−Λ2∆t2)ξ(t1) +

∫ t2

t1

Υ2 e
(−Λ2τ) q2dτ

= e(−Λ2∆t2)e(−Λ1∆t1)ξ(t0) + e(−Λ2∆t2)

∫ t1

t0

Υ1 e
(−Λ1τ) q1dτ +

∫ t2

t1

Υ2 e
(−Λ2τ) q2dτ

For the interval ∆t3 = t3 − t2, we can get:

ξ(t3) = e(−Λ3∆t3)e(−Λ2∆t2)e(−Λ1∆t1)ξ(t0) + e(−Λ3∆t3)e(−Λ2∆t2)

∫ t1

t0

Υ1 e
(−Λ1τ) q1dτ

+e(−Λ3∆t3)

∫ t2

t1

Υ2 e
(−Λ2τ) q2dτ +

∫ t3

t2

Υ3 e
(−Λ3τ) q3dτ

Similarly, we can easily show that the error becomes at kth time instant as,

ξ(tk) = e(−Λk∆tk)e(−Λk−1∆tk−1) . . . . . . e(−Λ1∆t1)ξ(t0)

+e(−Λk∆tk)e(−Λk−1∆tk−1) . . . . . . e(−Λ2∆t2)

∫ t1

t0

Υ1 e
(−Λ1τ) q1dτ

+e(−Λk∆tk)e(−Λk−1∆tk−1) . . . . . . e(−Λ3∆t3)

∫ t2

t1

Υ2 e
(−Λ2τ) q2dτ + . . . . . .

+e(−Λk∆tk)

∫ tk−1

tk−2

Υk−1 e
(−Λk−1τ) qk−1dτ +

∫ tk

tk−1

Υk e
(−Λkτ) qkdτ
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ξ(tk) = e
−

k∑
j=1

(Λj∆tj)

ξ(t0) + e
−

k∑
j=2

(Λj∆tj)
∫ t1

t0

Υ1 e
(−Λ1τ) q1dτ

+e
−

k∑
j=3

(Λj∆tj)
∫ t2

t1

Υ2 e
(−Λ2τ) q2dτ + . . . . . . . . .

+e(−Λk∆tk)

∫ tk−1

tk−2

Υk−1 e
(−Λk−1τ) qk−1dτ +

∫ tk

tk−1

Υk e
(−Λkτ) qkdτ

ξ(tk) ≤ ‖e
−

k∑
j=1

(Λj∆tj)

ξ(t0)‖+ ‖e
−

k∑
j=2

(Λj∆tj)
∫ t1

t0

Υ1 e
(−Λ1τ) q1dτ‖

+‖e
−

k∑
j=3

(Λj∆tj)
∫ t2

t1

Υ2 e
(−Λ2τ) q2dτ‖+ . . . . . . . . .

+‖e(−Λk∆tk)

∫ tk−1

tk−2

Υk−1 e
(−Λk−1τ) qk−1dτ‖

+‖
∫ tk

tk−1

Υk e
(−Λkτ) qkdτ‖

ξ(tk) ≤ ‖e
−

k∑
j=1

(Λj∆tj)

‖‖ξ(t0)‖+ ‖
∫ t1

t0

e
−

k∑
j=2

(Λj∆tj)

Υ1 e
(−Λ1τ)dτ‖‖q1‖

+‖
∫ t2

t1

e
−

k∑
j=3

(Λj∆tj)

Υ2 e
(−Λ2τ)dτ‖‖q2‖+ . . . . . . . . .

+‖
∫ tk−1

tk−2

e(−Λk∆tk)Υk−1 e
(−Λk−1τ)dτ‖‖qk−1‖+ ‖

∫ tk

tk−1

Υk e
(−Λkτ)dτ‖‖qk‖

For each switching interval, the reference trajectory is bounded, i.e. ‖q1‖ ≤ q1r,max,

‖q2‖ ≤ q2r,max . . . . . . . . . ‖qk‖ ≤ qkr,max. If we denote, σ1 as the minimum

singular value of Λ1, σ2 as the minimum singular value of Λ2, . . . . . . . . ., σk for

Λk, we can then denote κ1k as the minimum singular value of e
−

k∑
j=1

(Λj∆tj)

, κ2k as the

minimum singular value of e
−

k∑
j=2

(Λj∆tj)

, . . . . . . . . ., κk for e−(Λk∆tk). Furthermore,
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we denote, ρ1 as maximum singular value of Υ1, ρ2 is the maximum singular value of

Υ2, . . . . . . . . ., ρk for Υk.

‖ξ(tk)‖ ≤ ‖e
−

k∑
j=1

(Λj∆tj)

‖‖ξ(t0)‖+ ‖e
−

k∑
j=2

(Λj∆tj)

‖‖Υ1‖ ‖
∫ t1

t0

e(−Λ1τ)dτ‖‖q1‖

+‖e
−

k∑
j=3

(Λj∆tj)

‖‖Υ2‖ ‖
∫ t2

t1

e(−Λ2τ)dτ‖‖q2‖+ . . . . . . . . .

+‖e(−Λk∆tk)‖‖Υk−1‖‖
∫ tk−1

tk−2

e(−Λk−1τ)dτ‖‖qk−1‖

+‖Υk‖ ‖
∫ tk

tk−1

e(−Λkτ)dτ‖‖qk‖

≤ κ1k‖ξ(t0)‖+ κ2k ρ1 µ1 q1r,max + κ3k ρ2 µ2 q2r,max + . . . . . . . . .

+κk ρk−1 µk−1 q(k−1)r,max + ρk µk qkr,max

≤ κ1k‖ξ(t0)‖+ S1 + S2 + . . . . . . . . . + Sk

≤ κ1k‖ξ(t0)‖+
k∑
j=1

Sj

where µ1 is the maximum singular value of the integrated term
∫ t1
t0
e(−Λ1τ)dτ , and

so on. Since the reference trajectory states and its derivative up to second order in

each particular switching instant are bounded, each term of
k∑
j=1

Sj can be significantly

reduced at the expense of higher control gains (i.e. maximum eigenvalue of Λi). For

the group having a directed spanning tree (i.e. the union of these directed graphs

across each interval has a directed spanning tree), κ1k is an exponentially reducing

term. Therefore, we can easily show that the tracking errors are uniformly ultimately

bounded (UUB) if the target states and the derivatives up to order 2 are bounded.

Simulation Case Studies

The simulation results are shown for two cases: 1) Fixed Topology, and 2)

Switching Topology.
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Case 1: Fixed Topology (Complete Target Information)

We simulate for the following two scenarios of graph connections as shown in

Fig. 4.3. The target trajectory is pinned into UAV 1 for both cases.

Topology 1: A strongly connected digraph G1 with 3 UAVs is considered as shown

in Fig. 4.3a. The adjacency matrix A1 for this case is:

A1 =


0 0 1

1 0 0

1 1 0


The graph Laplacian matrix is obtained as:

L1 =


1 0 −1

−1 1 0

−1 −1 2


Since the target UAV is pinned into the UAV 1, we can write the matrix B as:

B =


1 0 0

0 0 0

0 0 0


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The actuator constants and gains for each UAV are:
c1 = 10, c2 = 10, c3 = 10, α1 = 2, α2 = 2, α3 = 2, λvg = 2, λγ = 2, λχ = 2.

(a) (b)

Figure 4.3. Cooperative Tracking for Multiple UAVs: Different fixed Communication
Topology (a) Graph G1 , and (b) Graph G2.

The parameters for the target trajectory: vgr(0) = 15 m/s, vcgr = 12 m/s,

achr = 0.2 m/s2, acvr = 0.2 m/s2, χr(0) = 12◦, xr(0) = 100 m, yr(0) = 100 m,

zr(0) = 100 m. The actual vehicles are initialized with the following values: for

UAV1: x1(0) = 40 m, y1(0) = 60 m, z1(0) = 70 m, vg1(0) = 8 m/s, γ1(0) = 8◦,

χ1(0) = 8◦; for UAV2: x2(0) = 50 m, y2(0) = 80 m, z2(0) = 90 m, vg2(0) = 10 m/s,

γ2(0) = 13◦,χ2(0) = 13◦; and for UAV3: x3(0) = 60 m, y3(0) = 100 m, z3(0) = 110 m,

vg3(0) = 12 m/s, γ3(0) = 18◦, χ3(0) = 18◦.

The simulation results for the communication topology 1 are shown in Fig. 4.4-4.8

where all UAVs reach consensus and track successfully the target trajectory.

Topology 2: Consider, a group of 4 UAVs having the digraph G2, which is strongly

connected as shown in Fig. 4.3b. The adjacency and graph Laplacian matrices can

be written as:
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Figure 4.4. Target and 3 Chaser UAVs trajectories for Topology 1.

Figure 4.5. Position States with time for 3 UAVs with Topology 1.

107



Figure 4.6. Speed, Flight Path, and Heading angle for 3 UAVs with Topology 1.

Figure 4.7. Position Tracking Errors for 3 UAVs with Topology 1.
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Figure 4.8. Speed, Flight Path, and Heading Errors for 3 UAVs: Topology 1.

A2 =



0 0 1 0

1 0 0 0

0 1 0 1

1 0 0 0


L2 =



1 0 −1 0

−1 1 0 0

0 −1 2 −1

−1 0 0 1


The simulation results for the communication topology 2 are shown in Fig. 4.9-

4.13. We can see that 4 UAVs achieve cooperative target tracking successfully as

expected.

Case 2: Switching Topology (Complete Target Information)

First, we consider for 3 UAVs where the communication topology switches to

a new topology at every 5 seconds and these are: G1 → G2 → G3. The simulation

run time is 15 seconds. The adjacency matrices for the graphs {G1, G2, G3} are
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Figure 4.9. Target and 4 Chaser UAVs trajectories for Topology 2.

Figure 4.10. Position States with time for 4 UAVs with Topology 2.
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Figure 4.11. Speed, Flight Path, and Heading angle for 4 UAVs with Topology 2.

Figure 4.12. Position Tracking Errors for 4 UAVs with Topology 2.
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Figure 4.13. Speed, Flight Path, and Heading Errors for 4 UAVs with Topology 2.

respectively:

A1 =


0 0 1

1 0 0

1 1 0

 , A2 =


0 1 1

1 0 0

1 0 0

 , A3 =


0 0 1

1 0 0

0 1 0


For all switching instants, the target vehicle is pinned into the vehicle 1 for all networks

i.e. the gain matrices are the same for all cases. For this particular case, we consider

the graphs at each interval as strongly connected graphs i.e. at each interval it has

a directed spanning tree. From Fig. 4.16, 4.17, and 4.18, we can easily see that all

UAVs reach consensus of cooperative tracking since the union of three graphs has a

directed spanning tree.
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(a) (b) (c)

Figure 4.14. Cooperative Tracking for 3 UAVs with Switching Topologies (a) Graph
G1, (b) Graph G2, and (c) Graph G3.

(a) (b) (c)

Figure 4.15. Cooperative Tracking for 4 UAVs with Switching Topologies (a) Graph
G1, (b) Graph G2, and (c) Graph G3.

We also consider a group of 4 UAVs as shown in Fig. 4.14 where the adjacency

matrices for each switching interval are considered as follows:

A1 =



0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0


, A2 =



0 0 0 0

0 0 0 1

0 1 0 0

1 0 0 0


, A3 =



0 0 0 0

1 0 0 0

0 1 0 1

0 1 0 0


Each of the topologies at each interval has a directed spanning tree. We can easily

verify with the simulation results as shown in Fig. 4.19, 4.20, and 4.21 that the

consensus of target tracking is achieved successfully as long as the union of the graphs

over the interval has a directed spanning tree.
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Figure 4.16. XYZ motion for 3 UAVs with switching topology.

Figure 4.17. Position Tracking Errors with switching topology for 3 UAVs.

114



Figure 4.18. Speed, Flight Path, and Heading tracking errors with switching topology
for 3 UAVs.

Figure 4.19. XYZ motion for 4 UAVs with switching topology.
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Figure 4.20. Position Tracking Errors with switching topology for 4 UAVs.

Figure 4.21. Speed, Flight Path, and Heading tracking errors with switching topology
for 4 UAVs.
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4.3 Estimation based Control Laws for Cooperative UAVs (Partial Target Informa-

tion)

In this section, an estimation based cooperative control laws is designed for fixed

topology and switching topologies when the target full information is not available.

Assume, each UAV sends it’s own full state information to the neighboring UAVs

depending on its connectivity to other UAVs, and perfect communication is available

(i.e. there is no communication drop out/corruption by uncertainties between the

UAVs). The simulation results are shown for 3 UAVs.

Estimation Based Cooperative Control Laws with Fixed Topology

A similar EKF is designed to estimate the target estimates as described in

Chapter 3. For N cooperative UAVs, there are N no. additional EKF needed to

calculate its own states.

Continuous-Discrete EKF for Each Chaser State Estimation

We consider N individual estimators for N chaser UAVs of the network. The

measurements for each chaser are assumed to be available from its own on-board

(GPS + IMU + Air speed) sensor unit and these are: position xi, yi, zi, velocity vgi,

flight path angle γi, course angle χi. For each chaser state estimation, we take the

nonlinear continuous-time state model which is affected by the process noise, and the

discrete measurement model which is affected by the measurement noise, where all

these noises are assumed to be zero-mean Gaussian with known covariances:

Ẋi(t) = fi(Xi(t),ui(t), t) + Gi(t)wi(t), wi(t) ∼ N(0,Qi(t))

ỹik = hi(Xik) + vik, vik ∼ N(0,Rik) (4.18)

where i = 1, 2, 3, . . . N , Xi = [xi, yi, zi, vgi, γi, χi]
T is the state vector of chaser i,

wik = [0, 0, 0, ωvgi, ωγi, ωχi]
T is the process noise vector with known covariance Qi(t)

and vik = [vxi, vyi, vzi, vvgi, vγi, vχi]
T is the measurement noise vector with known
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covariance Rik. The expression of function vector fi(Xi(t),ui(t), t) used in Eq. 4.18

is:

fi(Xi(t),ui(t), t) =



vgi cos γi cosχi

vgi cos γi sinχi

vgi sin γi

c1i(v
c
gi − vgi)

c2i(γ
c
i − γi)

c3i(χ
c
i − χi)



(4.19)

The measurement function vector for chaser i is: hi(Xik) = [xi, yi, zi, vgi, γi, χi]
T
k .

For simplification, we consider the matrix Gi(t) is the same as the target.

The EKF equations are developed for each chaser we derived in a similar way as

described in Chapter 3 which are:

Kalman gain:

Kik = P−ik HT
ik(X̂

−
ik) [HT

ik(X̂
−
ik) P−ik Hik(X̂

−
ik) + Rik]

−1 (4.20)

The update equations for the state and covariance:

X̂+
ik = X̂−ik + Kik(ỹik − hi(X̂

−
ik)) (4.21)

P+
ik = [I−KikHik(X̂

−
ik)]P

−
ik (4.22)

The predicted estimate state propagation is:

˙̂
Xi(t) = fi(X̂i(t),ui(t), t) (4.23)

The error covariance propagation is:

Ṗi(t) = Fi(X̂i(t), t)Pi(t) + Pi(t)F
T
i (X̂i(t), t) + Gi(t)Qi(t)G

T
i (t) (4.24)
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The Jacobian matrices are:

Fi(X̂i(t), t) =

 03×3 F1i

03×3 F2i


where

F1i =


cos γ̂i cos χ̂i −v̂gi sin γ̂i cos χ̂i −v̂gi cos γ̂i sin χ̂i

cos γ̂i sin χ̂i −v̂gi sin γ̂i sin χ̂i v̂gi cos γ̂i cos χ̂i

sin γ̂i v̂gi cos γ̂i 0


and F2i = diag ([−c1i − c2i − c3i])

Hik(X̂
−
ik) = I6×6

The output estimate equation is:

ŷik = hi(X̂ik) (4.25)

The controller will exploit the estimation of target state estimator and chasers state

estimators and update the control commands for each chaser at each time step based

on their connectivity.

Simulation Results

We consider a cooperative group of 3 UAVs and the communication of the UAVs

used in the simulation is shown in Figure 4.22. The target UAV is pinned into UAV

1. The adjacency matrix of the network is:

A1 =


0 0 0

1 0 0

0 1 0


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Figure 4.22. Graph Topology for Cooperative UAVs.

We simulate the model for 20 seconds with time step of T = 0.05 sec. The

simulation results show that the estimated states of chaser UAVs track the estimated

state of the target UAV successfully. The following design parameters are used in the

simulation to obtain the good results: c1i = 100, c2i = 100, c3i = 100, α1i = 5, α2i =

5, α3i = 5, λvgi = 5, λγi = 5, λχi = 5 where i = 1, 2, 3.

We used the following parameters for generating the truth model of Target

UAV: vgr(0) = 10 m/s, γr(0) = 10◦, χr(0) = 12◦, xr(0) = 100 m, yr(0) = 100 m,

zr(0) = 100 m, vcgr = 12 m/s,achr = 0.2 m/s2,acvr = 0.2 m/s2.

The initial guess of the estimated states of target trajectory are: vgre(0) = 11 m/s,

γre(0) = 35◦, χre(0) = 5◦, xre(0) = 102 m, yre(0) = 102 m, zre(0) = 102 m. The

performance of EKF for Target UAV are shown in Fig. 4.25 and 4.26. The states

errors are within 3− σ bounds as shown in Fig. 4.25.

We consider the following initial conditions for chaser UAVs to obtain the

truth model: x1(0) = 90 m, y1(0) = 90 m, z1(0) = 90 m, vg1(0) = 11 m/s, γ1(0) =

12◦, χ1(0) = 12◦, x2(0) = 50m, y2(0) = 50m, z2(0) = 50m, vg2(0) = 11m/s, γ2(0) =
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Figure 4.23. Flow Chart for Cooperative Target Tracking of 3 UAVs.

10◦, χ2(0) = 10◦, x3(0) = 60m, y3(0) = 30m, z3(0) = 30m, vg3(0) = 12m/s, γ3(0) =

12◦, χ3(0) = 12◦.

The initial conditions for the estimated states: xe1(0) = 102 m, ye1(0) =

102 m, ze1(0) = 102 m, vge1(0) = 12 m/s, γe1(0) = 17◦, χe1(0) = 17◦, xe2(0) =

52 m, ye2(0) = 52 m, ze2(0) = 52 m, vge2(0) = 12 m/s, γe2(0) = 15◦, χe2(0) =

15◦, xe3(0) = 62 m, ye3(0) = 32 m, ze3(0) = 32 m, vge3(0) = 13 m/s, γe3(0) =

17◦, χe3(0) = 17◦. The initial covariance for the target UAV is P0 = I6×6 and for

chaser UAVs, it is considered to be the same for simplicity i.e. Pi0 = (I6×6), where I

is an identity matrix.

The covariance of process noise for the target and chaser UAV are:
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Figure 4.24. Errors (true-estimated) with 3− σ bounds for Target UAV.

Figure 4.25. Errors (true-estimated) with 3− σ bounds for Target UAV.
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Figure 4.26. True and Estimated Target Trajectory.

Qr(t) = diag ([1 (m/s)2, 0.65 deg2, 0.65 deg2]) and Q(t) is considered to be the

same for all chasers. The covariance matrix of the measurement noises for the target

and chaser UAV are:

Rrk = diag ([1 m2, 0.65 deg2, 0.65 deg2]) and

Rik = diag ([1 m2, 1 m2, 1 m2, 1 (m/s)2, 0.65 deg2, 0.65 deg2]).

The performance of EKF for target state estimation is shown in Fig. 4.25

and 4.26 which provides the best estimate of target true states. The estimated target

states are within 3− σ error bounds as shown in Fig. 4.25. Fig. 4.27 and 4.29 show

the performance of the controller and estimators for cooperative UAVs. All UAVs

achieve consensus of target tracking under noisy environments. The estimated states

of each chaser are successfully tracking the estimated states of target UAV as shown

in Fig. 4.27. The 3− σ error bounds are shown for 3 chasers in Fig. 4.30, Fig. 4.31,

and Fig. 4.32 respectively.
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Figure 4.27. Estimated Cooperative Chasers track the estimated Target UAV.

Figure 4.28. Tracking Errors (estimated target-estimated chaser).
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Figure 4.29. Tracking Errors (estimated target-estimated chaser).

Figure 4.30. Errors (true-estimated) with 3− σ bounds for chaser 1.

125



Figure 4.31. Errors (true-estimated) with 3− σ bounds for chaser 2.

Figure 4.32. Errors (true-estimated) with 3− σ bounds for chaser 3.
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Target Tracking for Cooperative UAVs with Switching Topology (Partial

Target Information)

In this section, an estimation based cooperative target tracking for the switching

topology scenario is simulated when the partial target information is available to the

UAVs. The simulation is performed for the same scenario as it is considered for

3 cooperative UAVs in Chapter 3 for switching topology case. Consider, partial

target information is available to at least one node of the network. The simulation

results are shown in Fig. 4.33-4.38. The filter performance provides reasonably good

approximation about the target state, and the controller provides satisfactory tracking

performance as long as the union of the graphs has a directed spanning tree.

Figure 4.33. Estimated Cooperative Chasers track the estimated Target UAV.
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Figure 4.34. Position Tracking Errors (estimated target-estimated chaser).

Figure 4.35. Speed, Flight Path, and Heading angle Tracking Errors (estimated
target-estimated chaser).
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Figure 4.36. Errors (true-estimated) with 3− σ bounds for chaser 1.

Figure 4.37. Errors (true-estimated) with 3− σ bounds for chaser 2.
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Figure 4.38. Errors (true-estimated) with 3− σ bounds for chaser 3.
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CHAPTER 5

SUMMARY, CONCLUSIONS, AND FUTURE WORK

5.1 Summary, and Conclusions

The major contribution of this research is to design a simplified cooperative

control algorithms for multiple UAVs from the dynamics and control point of view,

that can be applied to a target tracking application in 3D environment. A primary

foundation of the control strategies for a point mass UAV with nonlinear dynamics

is developed based on backstepping like approach and then extended for cooperative

group of UAVs. Inter-vehicle communication, accuracy of sensor devices, and group

control strategies are critical factors for cooperative control problem. We address

these three critical factors for UAVs in the context of target tracking application.

The cooperation between the UAVs is represented using algebraic graph tools, and

a cooperative control technique is designed for multiple UAVs which computes three

control commands (velocity, flight path angle, and course angle) while guaranteeing

asymptotic tracking of a target UAV. An estimation based controller is then inte-

grated to achieve robust performance with measurements or sensor uncertainties. We

summarize the main research findings and results as below:

1. A backstepping based controller is derived for target tracking with a single

UAV and demonstrated with the numerical simulation results for several de-

fined target trajectory. The controller is derived for two different UAV models

and the tracking performance is shown for each case. The control laws pro-

posed in this dissertation guarantees the asymptotic stability, the convergence

of tracking-error is ultimately uniformly bounded if the target trajectory and its
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derivatives are bounded upto order 2. The controller shows satisfactory tracking

performance which can be used to track any arbitrary defined trajectory.

2. Estimation based controller is designed for the case when the limited state

information about the target is available. A nonlinear estimator is included to

estimate the target states by synthesizing the target range, azimuth angle, and

elevation angle measurements; and a separate estimator is integrated to estimate

UAV states. Estimation based controller is designed for white and colored noise

measurement uncertainties. For both cases, the controller achieves tracking

successfully and all tracking errors are bounded within 3− σ. For colored noise

uncertainties, the tracking is achieved at the expense of computational cost since

it increases the system’s state description. An investigation is also performed

when the noise variances for target measurements are function of range.

3. A cooperative controller is derived for target tracking with multiple UAVs. A

consensus-like cooperation is developed based on the graph theoretic formula-

tion, and then backstepping like technique is utilized to design the controller.

Lyapunov stability analysis is performed and it shows that the controller shows

asymptotic tracking convergence with bounded target. Simulation results are

provided to demonstrate the efficacy of the proposed approach for different

types of graph topologies with perfect state information about the target: fixed

time-invariant and switching topology

4. Estimation based cooperative controller is derived and implemented for multi-

ple UAVs when the partial target information available to the network. The

estimator is designed for white noise uncertainties and simulate for two differ-

ent graph topology: fixed time-invariant and switching topology. The nonlinear

estimator performs well with limited or corrupted state information knowledge.
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5.2 Future Work

Several potential extensions of this research can be possible based on the con-

tributions stated in this dissertation. We implemented control strategies for a point

mass UAV model; further extension of this research can be applied for a more realistic

UAV model which is well described and design the controller with including vehicle

and environmental constraints into it.

The communication between the UAVs may be interrupted/lost due to exter-

nal disturbances/potential threats which can be fixed or dynamically changing. In

some cases, the target behavior may become very wild for example environmental

hazardous- cyclone, hurricane. An investigation can be performed in this context by

including highly maneuvering target with highly unpredictable target state. We may

also include switched target model, and design the controller for UAV, and suggest

the feasible technique to track the target in such cases. Careful design is required to

address the proper coordination of UAVs so that it can achieve the objective even if

some communications fail.

Additionally, there are some other issues such as communication time delays,

collision avoidance techniques should be accounted for to maximize group capabilities.

A further investigation can also be directed to design the appropriate estimator with

the more realistic UAV model including non-Gaussian noise characteristics.
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