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ABSTRACT 
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Supervising Professor:  Dr. Brian Dennis  

Over the years Galerkin finite element method along with its variants has been 

used to solve incompressible and compressible Navier-Stokes equations. The Galerkin 

method which is more suited for self-adjoint type system of equations like in solid 

mechanics and heat conduction struggles when applied to non self-adjoint type systems 

like one encountered in fluid dynamics. Velocity and pressure variables have to be 

approximated using functions which belong to different spaces and must satisfy the 

tough LBB condition. 

The least-squares finite element method (LSFEM), which is based on 

minimizing the l2-norm of the residual, has many attractive advantages over Galerkin 
 iii



finite element method (GFEM). It is now well established as a proper approach to deal 

with the convection dominated fluid dynamic equations. The least-squares finite 

element method has a number of attractive characteristics such as the lack of an inf-sup 

condition and the resulting symmetric positive system of algebraic equations unlike 

GFEM. However, the higher continuity requirements for second-order terms in the 

governing equations force the introduction of additional unknowns through the use of 

an equivalent first-order system of equations or the use of C1
 continuous basis functions. 

These additional unknowns lead to increased memory and computing time requirements 

that have limited the application of LSFEM to large-scale practical problems, such as 

three-dimensional compressible viscous flows.  

A simple finite element method is proposed that employs a least-squares method 

for first-order derivatives and a Galerkin method for second order derivatives, thereby 

avoiding the need for additional unknowns required by a pure LSFEM approach. When 

the unsteady form of the governing equations is used, a streamline upwinding term is 

introduced naturally by the least-squares method. Resulting system matrix is always 

symmetric and positive definite and can be solved by iterative solvers like pre-

conditioned conjugate gradient method. The method is stable for convection-dominated 

flows and allows for equal-order basis functions for both pressure and velocity. The 

stability and accuracy of the method are demonstrated with preliminary results of 

several benchmark problems solved using low-order C0 continuous elements.  
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CHAPTER 1 

INTRODUCTION 

 

Problems in physics and engineering generally can be modeled through a 

system of partial differential equations. In general, the partial differential equations 

cannot be solved analytically; therefore a numerical method is required to obtain 

solutions. Early work on numerical solution of partial differential equations can be 

traced to the use of finite difference methods in 1940s. Difficulties and frustration 

associated with using finite difference methods on more difficult and geometrically 

challenging problems inspired the development of finite element methods (FEM).  

1.1 Finite Element Methods: Historical Background 

In mid-1950s, engineers began to solve continuum problems in elasticity using 

small, discrete “elements” to describe the overall behavior of simple elastic bars. Hence 

the finite element method was introduced into aircraft industry. However the credit to 

coin the term finite element for these discrete “elements” goes to Clough [1]. Since then 

finite element methods has emerged as one of the most powerful numerical methods 

devised so far. Its widespread acceptance in the field of science and engineering is due 

to its attractive attributes like ease in negotiating complex geometries, the consistent 

treatment of the differential-type boundary conditions, easy programmability and most 

importantly the sound mathematical foundations. Due to its versatility and rich
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mathematical basis, it soon spread from the structural mechanics, its original field of 

application to non-structural areas like heat conduction, electromagnetism and fluid 

mechanics etc. Earliest application of FEM to field problems like heat conduction, 

irrotational fluid flow involving Laplace and Poisson equations were done by 

Zienkiewicz et al [2] and Oden [3]. Heat transfer problems with complex boundaries are 

discussed in details by Huebner [4].  

In the past, finite element method was synonymous with Galerkin finite element 

method (GFEM). GFEM which is based on method of weighted residuals was highly 

successful in solid/ structural mechanics, the field of its origin. GFEM worked equally 

well in other situations like heat conduction that is governed by diffusion type 

equations. The reason for this success was, when applied to problems governed by self-

adjoint elliptic or parabolic partial differential equations, GFEM leads to symmetric 

stiffness matrices. In such cases the difference between finite element solution and the 

exact solution is minimized with respect to the energy norm. Practically Galerkin 

formulation is optimal in problems governed by self-adjoint equations. In such cases, 

there exists a quadratic functional the minimum of which corresponds to satisfying the 

partial differential equation governing the problem. For example, in structural 

mechanics the equilibrium position of a structure corresponds to the minimum of the 

quadratic functional expressing the total potential energy of the structure. Similarly in 

heat conduction, the thermal equilibrium achieved by solving the Laplace or Poisson 

equation actually corresponds to the minimum of the quadratic functional expressed in 

terms of thermal flux which is representation of the total energy of the system at that 
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moment. This success of GFEM in above mentioned fields provided strong case for its 

use in fluid dynamics. Similar success was expected in fluid dynamics too. 

1.2 Introduction of Finite Element Methods into Fluid Mechanics 

1.2.1 Early Problems with Convective Terms in Fluid Mechanics 

Finite element methods were introduced to fluid mechanics with great 

expectations in 1970s. The great expectation that the significant success of GFEM in 

structural dynamics and heat conduction problems would be replicated in fluid 

dynamics did not realize. Early application of finite element technique to viscous fluid 

flow was given in 1971 by Baker [5]. Finite element methods make use of a spatial 

discretization and a weighted residual formulation to reach a system of equations. 

GFEM is the most widely used among these weighted residual formulations, where 

weight and interpolation functions are identical. But in fluid dynamics, convection 

operators present in the non-Lagrangian formulation of the governing equations render 

the system of equation non-symmetric and the best approximation property in energy 

norm which made GFEM a success in structural mechanics is lost. Consequently, 

solutions to non self-adjoint fluid dynamic problems by GFEM are often corrupted by 

spurious node to node oscillations. This problem has motivated the development of 

alternatives to the GFEM which preclude oscillations without requiring mesh or time-

step refinement.  

1.2.2 Upwind Differencing 

It is well known that the GFEM gives rise to central difference type 

approximation of the differential operator, leading to instability. This lead to the first 
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alternative formulation in early 1970s that tried to reproduce in the finite element 

context the effect of upwind differencing used in finite difference context to stabilize 

the oscillatory results by a central difference scheme. The upwind derivative of the 

convective term introduces a numerical dissipation, in addition to the physical 

dissipation. It was however noticed that the upwind treatment of the convective term 

leads to excessively dissipative results. This not fully satisfactory approach paved the 

way for more convincing finite element procedures. 

An initial upwind FEM was presented by Christie et al. [6] for the one 

dimensional convection-diffusion equation, by modifying weighting functions to 

achieve the upwind effect. Essentially, the element upstream of a node is weighted more 

heavily than the element downstream of a node. This method was later generalized to 

the two dimensional case by Heinrich et al. [7]. Since the modified weighting function 

is used, it no longer remains the same as the interpolating function. Therefore these 

formulations fall in the category of Petrov-Galerkin methods, where weighting 

functions and interpolating functions are from different spaces. Hughes [8] in 1978 

suggested that the upwind effect can also be achieved through a modification of the 

numerical quadrature for the convective term. Hughes and Atkinson [9], using a 

different approach, derived an optimal upwind from a variational principle, 

demonstrating that upwind methods can be developed from a firm theoretical basis. 

Many other researchers like Heinrich and Zienkiewicz [10], Griffiths and Mitchell [11] 

gave successful upwind formulations. Most of these upwind formulations give exact 

solutions for one-dimensional problems but when generalized to multi-directional flow 
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situations some of these formulations are far from optimal. They generate solutions that 

exhibit excessive diffusion in perpendicular to flow direction. Thus there was a need for 

more refined upwind schemes. 

1.2.3 The Streamline Upwind Petrov-Galerkin Formulation 

The extension to multidimensional domains of the concept of modified 

weighting functions is not easy. The crucial issue is that the diffusion should be added 

in the flow direction only, and not transversely. The reason is that the convective 

transport takes place along the streamlines and adding diffusion transversely to the flow 

leads to overly diffusive results because of excessive crosswind diffusion. Brooks et al. 

[12] in 1982 came up with Streamline Upwind Petrov-Galerkin (SUPG) formulation, 

where the added dissipation has anisotropic nature, acting just in flow direction. This is 

achieved through standard Galerkin weighting functions by adding a streamline upwind 

perturbation, which acts just in the flow direction. This method successfully 

incorporates streamline upwind concept, which precludes the possibilities of excessive 

crosswind diffusion while eliminates artificial diffusion that plagues many upwind 

schemes by consistent Petrov-Galerkin formulation. The method is easy to implement 

and does not require higher order weighting functions. Johnson [13] and Nävert [14] 

constructed multi-dimensional version of SUPG for advection diffusion. The SUPG 

method provided by Brooks et al. [12] was generalized to hyperbolic systems of 

conservation laws by Hughes et al. [15] with emphasis of high speed flows with shocks. 

SUPG is an excellent method for problems with smooth solutions, but introduces 

localized oscillations about sharp internal and boundary layers. Hughes et al. [16] added 
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a discontinuity capturing term that provides additional control over gradients, but this 

was restricted to scalar convection-diffusion equation. Later in Hughes et al. [17] the 

discontinuity capturing term was generalized to multidimensional systems. 

1.3 Finite Element Methods for Navier-Stokes Equations 

When it comes to finite element methods for solving incompressible viscous 

flows, most of the methods developed over the decades are based on velocity-pressure 

formulations because of its simpler boundary conditions and easy extension to three-

dimensions. Most commonly used velocity-pressure formulations are mixed Galerkin 

method, the penalty method and the segregated method.  

1.3.1 The Mixed-Galerkin Method 

In mixed Galerkin method, lack of diffusive term in the continuity equation 

makes the advective-diffusive Navier-Stokes system of equations an incomplete 

parabolic one and has so-called singular behavior. This singularity stems from the fact 

that pressure is not one of the unknowns in the continuity equation. The continuity 

equation is a kinematic constraint instead of an equal-footing governing equation such 

as momentum equations [18]. Pressure is the Lagrange multiplier of the system. In 

order to construct a solution, pressure (the Lagrange multiplier), and the velocities (the 

solution of the governing equations) should be defined in different function spaces. 

Zienkiewicz and Wu [19] explained the numerical manifestation of this 

singularity on the basis of the structure of the linear algebraic system of the discretized 

flow equations. The block in the global coefficient matrix corresponding to momentum 
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equations is usually positive definite. Whereas the block corresponding to continuity 

equation has null diagonal, that makes the overall global matrix singular.  

Importantly, for compressible flows, there are additional unknowns like 

temperature and density. Pressure now is related to temperature and density through the 

equation of state, and thereby can be eliminated from the flow equations. This is 

common practice in high speed compressible flow computations. For low speed 

compressible flows, however pressure fluctuation rather than the pressure itself, 

becomes the unknown and equation of state becomes a reciprocal correlation between 

temperature and density [20]. Pressure (fluctuation) is no longer directly related to 

them. Therefore pressure (fluctuation) can not be eliminated from the list of unknowns. 

Similar to incompressible flows, pressure (fluctuation here) does not appear in 

continuity equation and the singularity problem emerges again. 

Various methods were developed to overcome this singularity problem. One 

way is to ensure that the coefficient matrix with null diagonal sub matrix is not singular. 

Only certain combinations of approximation functions for velocities and pressure ensure 

that. These combinations must satisfy the Ladyzhenskaya-Babuška-Brezzi (LBB) 

condition for the existence of solutions [21, 22]. Although for two dimensional 

problems quite a few such combinations are available, most of these combinations are 

tough to implement. For three dimensional problems, this difficulty becomes even more 

severe. Another difficulty is that the matrix associated mixed-Galerkin method is non-

symmetric due to presence of convection terms in the Navier-Stokes equations and 

non-positive definite due to uncoupled nature of incompressibility constraint. 
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Therefore direct solvers like Gaussian elimination rather than iterative solvers like pcg 

method have to be applied. 

1.3.2 The Penalty Method 

In the penalty method, pressure is pre-eliminated by penalizing the continuity 

equation. Considerable saving in computation time and memory can be achieved since 

only velocities are involved. Pressure is recovered by using the perturbed mass-

conservation equation. This recovered pressure may exhibit oscillations due to ill-

conditioning of pressure matrix. Another disadvantage is that for small values of 

penalty parameter there may be loss of accuracy and for large values the scheme may 

not converge at all. 

1.3.3 The Segregated Method 

The segregated method [23, 24] adopts a well-known SIMPLE-type algorithm. 

Since computation of velocity and pressure are decoupled, considerable saving in 

computation time and memory ca be effected. But the pressure values computed may be 

inaccurate due to lack of proper pressure boundary conditions for pressure correction 

equation.  

1.4 The Least-Squares Finite Element Method 

Least squares finite element method (LSFEM) recently developed by Jiang et al. 

[25-27] seems to overcome these difficulties by providing a symmetric positive definite 

system of equations and freedom from meeting LBB condition. However, higher 

continuity requirements for second-order terms in the governing equations force the 

introduction of additional unknowns by use of an equivalent first-order system of 



 

 8

equations or the use of C1
 continuous basis functions. These additional unknowns lead 

to increased memory and computing time requirements that have limited the application 

of LSFEM to large-scale practical problems, such as three-dimensional compressible 

viscous flows.  

1.5 The Proposed Least-Squares/Galerkin Split Finite Element Method 

A novel and simple finite element method is proposed in this work that employs 

a least-squares method for first-order derivatives and a Galerkin method for second 

order derivatives, thereby avoiding the need for additional unknowns required by a pure 

LSFEM approach. This method doesn’t need to satisfy the LBB condition. Galerkin part 

of the method exploits the benefit of integration by parts. When the unsteady form of 

the governing equations is used, a streamline upwinding term is introduced naturally by 

the least-squares method. Resulting system matrix is always symmetric and positive 

definite and can be solved by iterative solvers like pre-conditioned conjugate gradient 

method. The method is stable for convection-dominated flows and allows for equal-

order basis functions for both pressure and velocity. The stability and accuracy of the 

method are demonstrated with preliminary results of several benchmark problems 

solved using low-order C0 continuous elements [28]. The method has been successfully 

applied to incompressible flows and results have been accepted for publication [29]. 

1.6 Layout of the Dissertation  

The novel finite element method proposed in this thesis is essentially based on 

Galerkin finite element methods (GFEM) and least-squares finite element methods 

(LSFEM) which are sub categories of the broader method of weighted residuals. 
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Chapter 2 discusses method of weighted residuals with emphasis on Galerkin and least 

squares finite element methods, both explained in the context of one dimensional 

applications. Chapter 3 contains the formulation of the proposed least-squares/ Galerkin 

split finite element method (LSGSFEM) explained on convection diffusion equation. 

This chapter also contains stability analysis for LSGS method, application to convection 

diffusion benchmarks and results. Chapter 4 contains formulation of LSGSFEM for 

incompressible Navier-Stokes equations and the results from its application to standard 

benchmark problems. Chapter 5 contains LSGS formulation for incompressible 

buoyancy-driven flows with Boussinesq-approximation and results from natural 

convection benchmark. Chapter 6 contains high speed compressible flow formulation of 

LSGSFEM and results from few benchmarks. Future works are discussed in Chapter 7 

followed by a brief summary in chapter 8. 



 

 

 
CHAPTER 2 

FINITE ELEMENT METHODS: SOME FUNDAMENTALS  

 

2.1 Introduction 

Finite element methods originated from structural engineering or solid 

mechanics where it was realized that it was a form of Rayleigh-Ritz problem. The 

relation between these two methods comes from considering the variational form of a 

problem. For example, the solution u(x) of the Euler equation 

)()()()()( xfxuxq
dx

xduxp
dx
d

=+⎟
⎠
⎞

⎜
⎝
⎛−  (2.1) 

also corresponds to minimum of quadratic functional [30] 

                                         (2.2) [ ]dxxuxfxuxqxuxpuF ∫ −+′=
1

0

22 )()(2))()(())()(()(

Therefore, instead of solving for the differential equation (2.1) to determine u(x), an 

alternative but equivalent solution would be the u(x) which minimizes the functional of 

(2.2). The idea in Rayleigh-Ritz problem above is to approximate the solution by a 

finite number of functions ∑= m
i ii (x)Nqu(x)  and to determine the unknown coefficients 

qi, which minimize the functional of (2.2).  

 In finite element methods the solution is also approximated by a finite number 

of functions which are typically local in nature as opposed to global functions used in 

Rayleigh-Ritz approach above. Generally in finite element methods the integral form 
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(which is called the Galerkin formulation) rather than functional form is obtained 

through which the problem is reduced to a system of algebraic equations which could be 

solved numerically. Important connection between the Rayleigh-Ritz method and the 

finite element method was made when it was realized that the integral form of the finite 

element method was exactly the same as the functional form used in the Rayleigh-Ritz 

method.  

 This relation between the finite element method and the Rayleigh-Ritz method 

was very significant as it provided the finite element method a sound mathematical 

foundation. Initially this relation also proved somewhat misleading by implying that a 

functional form is needed to formulate the problem. This is, actually, not the case, as we 

don’t need functional form but need integral formulation which can be effected in a 

very general way using the method of weighted residuals (MWR). 

2.2 Method of Weighted Residuals 

Method of weighted residuals (MWR) existed as an approximation technique 

for obtaining approximate solutions to linear and nonlinear partial differential equations 

even before the development of the finite element methods. It offers means to formulate 

the finite element equations.  

Application of MWR mainly involves two steps. The first step is to assume the 

general functional behavior of the dependent field variable in some way as to satisfy the 

given differential equation and the boundary conditions. This approximation function, 

when substituted into the differential equation and boundary conditions results in some 



 

error called residual. This residual is required to vanish in some average sense over the 

entire solution domain. 

The second step is to solve the equation (or equations) resulting from the first 

step and thereby specialize the general functional form to a particular function, which 

then becomes the approximate solution sought.  

To describe the method of weighted residuals, let us consider a problem where 

we want to determine an approximate functional representation for a field variable u 

governed by the differential equation 

L(u) – f = 0     (2.3) 

in the domain Ω bounded by surface Г, on which proper boundary conditions are 

prescribed. The function f is a known function of independent variables. It is assumed 

that the exact solution u(x, t) can accurately be represented by the approximate solution 

of the form 

∑+=
m

i
ii0 xNtx,tx, )(ˆ)()(~ uuu      (2.4) 

where Ni(x) are analytic functions called the trial (or expansion) functions, m the 

number of degrees of freedom,  are the m unknown coefficients and  is 

selected to satisfy the initial and boundary conditions. Substitution of the approximate 

solution (2.4) into equation (2.3) produces a non-zero residual, R 

iû )(0 tx,u

      L(u~ ) – f = R       (2.5) 
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The MWR seeks to determine the m unknown  in such a way that the residual 

R over the entire domain tends to zero. This is accomplished by forming a weighted 

average of the error and specifying that this weighted average vanishes over the solution 

domain. We choose m linearly independent weighting functions w

iû

i and then impose a 

condition that 

,0dd]f)~([ ii =Ω∫=Ω−∫ ΩΩ RwuLw   i = 1, 2,…………m      (2.6) 

then the weighted residual wiR tends to zero in some sense and it is from this 

expression that the technique gets its name MWR. The nature of the scheme is 

determined by the choice of the expansion function Ni(x) and the weighting function wi. 

A list of important computational methods derived by different choices of the weighting 

functions is given in the following table.  

Table 2.1 Various Choices of Weighting Functions and the Methods Produced 
 

Weighting Function, wj(x) Method 
wj(x) = δ(x – xj) Collocation 

⎩
⎨
⎧

Ω
Ω

=
j

j

inside
inside

)(
0
1

xjw  
)Subdomain(

volumeFinite
 

j
j x

u
Rw ˆ)(
∂
∂

=  Least-squares 

wj(x) = xj Method of moments 
wj(x) = Nj(x) Galerkin 

wj(x) = Ψj(x)     (≠Nj(x)) Petrov-Galerkin 
 

The MWR that is used the most to derive finite element method is Galerkin or Bubnov-

Galerkin method, in which weighting functions are chosen to be same as the 
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approximating functions, i.e. wj(x) = Nj(x). There are many other choices in which 

wj(x) ≠ Nj(x), these methods are called Petrov-Galerkin methods. One of the Petrov-

Galerkin methods is more famous as Least-squares method in which
j

j x
u
Rw ˆ)(
∂
∂

= . A 

brief introduction of the two of the methods which are important constituents of the 

LSGS method follows. 

2.2.1 The Galerkin Finite Element Method 

 Galerkin formulation has been explained by considering the Poisson equation 

here, which arises in many areas like irrotational fluid flow, steady state heat 

conduction etc. Poisson equation in one-dimension is 

   0f
dx

ud
2

2

=+≡L(u)        (2.7) 

in domain Ω = { x | 0 < x < 1} with boundary conditions: u(0) = g
D
 and Ng(1)

dx
du

= . 

The boundary condition g
D
 specifies a condition on the solution and is referred to as 

Dirichlet (or essential) boundary condition, whereas the boundary condition 

Ng(1)
dx
du

= specifies a condition on the derivative of the solution and is referred to as 

Neumann (or Natural) boundary condition. 

 In Galerkin method, the weighting functions are chosen to be the same as the 

approximating functions i.e. wj(x) = Nj(x). We first approximate the unknown exact 

solution u(x) by , which has the form (x)u~
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    i
m

1i i xN uu ˆ)(~ ∑= =       (2.8) 

Where Ni is the element interpolation function and m is the number of nodes per 

element. Applying a weighting function to the equation (2.7) and casting it in integral 

form gives  

  ∫ =⎥
⎦

⎤
⎢
⎣

⎡
+2

1

x
x 2

2

i 0dxf
dx

ud(x)N
~

      (2.9) 

where x1 and x2 are the end points of the line element . Integration by parts is applied to 

above equation to obtain 

 0d)()(
d

d
d

~d
d

~d
=∫+∫− xxNxfdx

x
N

xx
N 2

1

2

1

2

1

x
x i

x
x

i

x

x
i

uu               (2.10) 

This equation is the weak form of equation (2.9). The solution u(x) must have C1 

continuity in the original boundary value problem (2.7) as must  in the Galerkin 

integral of equation (2.9), but in the weak form (2.10), the continuity requirement on 

 is C

(x)u~

(x)u~ 0. Also the integration by parts has brought the natural boundary condition into 

the formulation. Using the definition (2.8), we have 

  { }ei
i

m
1i

i

x
N

x
N

x
uuu ˆ

d
dˆ

d
d

d

~d
⎥⎦
⎥

⎢⎣
⎢=∑= =                (2.11) 

 where  is the column vector of the nodal unknowns of the element. Now the weak-

form becomes  

{ }eû

  { } 21,ixNf
x

Ndx
x

N
x
N 2

1

2

1

2

1

x
x i

x

x

i

ex
x

i ==∫+=∫ ⎥⎦
⎥

⎢⎣
⎢ 0d

d

~dˆ
d

d
d
d uu            (2.12) 
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The first term on the RHS is the boundary condition term, and applied at global level 

once the matrix system is assembled over full domain. So at element level we have 

system of equation as  

    [ ]{ } { }ee feuke =ˆ      (2.13) 

Where [ ] dx
x

N
x
Nke 2

1

x
x

i∫ ⎥⎦
⎥

⎢⎣
⎢=

d
d

d
d  and { } xNffe 2

1

x
x i

e d∫= are the element stiffness matrix and 

the element force vector respectively. In the present one-dimensional case with linear 

element ( i.e. m = 2) we have 

 [ ] dx

x
N

x
N

x
N

x
N

x
N

x
N

x
N

x
N

ke 2

1

x
x

2212

2111

∫
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

 and  { }  respectively. x
Nf
Nf

fe 2

1

x
x

2

1e d∫
⎭
⎬
⎫

⎩
⎨
⎧

=

The element stiffness matrix [ke] and vector {fe} are assembled to get the global stiffness 

matrix and force vector. During the assembly of the matrices the natural boundary 

condition terms 
xd

~du  in the equation (2.12) cancel at all interior nodes of the domain, 

leaving only the natural boundary conditions to be specified at the end nodes. 

2.2.2 The Least-Squares Finite Element Method 

Least-squares finite element method is one of the methods of weighted residuals 

in which weight function is taken as
j

j x
u
Rw ˆ)(
∂
∂

= . In other words l2-norm of the 

residual is minimized in this method. Consider the one dimensional transient advection 

equation given as: 
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0)UV(
t

U
=∇⋅+

∂
∂ r

      (2.13) 



 

where  is the property being convected at a velocity VU
r

 with and  as its 

components in 

vu, w

yx, and z  directions respectively. Before application of the finite 

element method in space, the time derivative of (2.13) is discretized with a simple 

backward-Euler method. 

0UV
∆t

UU 1n
n1n

=∇⋅+
− +

+ r
     (2.14) 

In the least-squares approach, the l2-norm of the differential equation is minimized with 

respect to unknown coefficients over the solution domain, Ω . Applying the l2-norm to 

(2.14) and minimizing the functional with respect to Un+1 leads to the weak statement. 

{ } { } { } { } { }

{ } { } { } { }∫ ⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅+

=∫ ⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅+⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅+ +

Ω
n

T

1n
Ω

T

dΩU
∆t
NN)V(

∆t
N

UdΩN)V(
∆t
NN)V(

∆t
N

r

rr

        (2.15) 

where the row vector{  contains the basis functions N}N j used to approximate the 

solution over the domain as { } { }UNUxNzyxU T

j
jj == ∑ )(),,( . 

The weak statement can be expanded and written in matrix form 

{ } { }n1nTT U
∆t

[M]U[K]VV∆t)[C]([C]
∆t

[M]
⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ +++ +

rr
             (2.16) 

where the individual matrix contributions are given by 

{ }{ }

{ }{ }
[ ][ ]∫

∫
∫

Ω

Ω

Ω∇∇=

∇⋅=

Ω=

dNNK

dΩNVNC

dNNM

T

T

T

][

][

Ω
)(][

r
                 (2.17) 
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Equation (2.16) clearly shows that the resulting system of equations is 

symmetric, a quality that is not achievable for Galerkin finite element methods or even 

finite difference or finite volume methods. In addition, one can notice an upwind 

diffusion term that is implicit to the least-squares approach. The upwind diffusion is 

often useful for smoothing non-monotone solutions that occur before and after any 

sharp gradients that appear in the flow direction. These advantageous features of 

LSFEM have been well exploited for generating adaptive grid in order to capture 

shocks. A least-squares method based moving-node grid adaptation technique was used 

by Taghaddosi et al [31] to capture shocks in inviscid transonic and supersonic flows. 

The advantageous features of LSFEM with adaptive grids were used by Xue and Liao 

[32] to capture shocks while solving Burgers equations. Cai and Liao [33] also used 

LSFEM for grid generation on moving domains. Fleitas et al [34] demonstrated the 

need for a properly over determined system of equations in the context of LSFEM. 

They used overlapping elements with mesh free concept to create enough residual 

equations to achieve a properly over determined system of equations.  There are no 

tunable parameters in the LSFEM approach, such parameters often appear in stabilized 

Galerkin methods and are difficult to determine in general. 
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CHAPTER 3 

THE LEAST-SQUARES GALERKIN SPLIT FINITE ELEMENT  
METHOD: A NOVEL METHOD 

 

3.1 Introduction 

The least-squares finite element method (LSFEM), due to several attractive 

characteristics such as lack of an inf-sup condition and the resulting symmetric positive 

system of algebraic equations etc., is now well established as a proper approach to deal 

with the convection dominated fluid dynamic equations. However, problems arising due 

to the higher continuity requirements for second-order terms in the governing equations 

have limited the application of LSFEM to large-scale practical problems, such as three-

dimensional compressible viscous flows.  

A simple finite element method is proposed that employs a least-squares method 

for first-order derivatives and a Galerkin method for second order derivatives, thereby 

avoiding the additional unknowns required by a LSFEM approach. When the unsteady 

form of the governing equations is used, a streamline upwinding term is introduced 

naturally by the component least-squares method. Resulting system matrix is always 

symmetric, positive definite and can be solved by iterative solvers like pre-conditioned 

conjugate gradient method. The method is stable for convection-dominated flows and 

allows for equal-order basis functions for both pressure and velocity. The method is 

described below in the context of one-dimensional convection-diffusion equation  
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   0TkT.V
t
T 2 =∇−∇+
∂
∂ r

      (3.1) 

Here T is the property being transported by the equation, k the thermal conductivity. 

The numerical difficulty with this equation (unstable solutions, asymmetric matrix) is 

due to the presence of first order of first order terms. Therefore one way of avoiding 

these difficulties was to solve first order terms using LSFEM for half of the time step 

and then solve for second order terms using Galerkin method in the second half of the 

time step. This gave the split time formulation that preceded the current LSGS 

formulation. 

3.2 The Split Time Preliminary Formulation 

This formulation was based on actually splitting the time derivative into two 

halves and solving first and second order terms in the governing equation separately 

using LSFEM and GFEM respectively. To explain this, consider the convection-

diffusion equation (3.1), which after first order splitting in time can be written as 

TkTV
∆t

TT
∆t

TT 2
nnn1n 2

1
2
1

∇+∇⋅−=
−

+
− +++ r

      (3.2) 

and we can write  

0Tk
∆t

TT 2
nn 2

1

=∇−
−+

         (3.3) 

0TV
∆t

TT 2
1n1n

=∇⋅+
− ++ r

         (3.4) 

as the diffusion and convection steps respectively. Galerkin method applied to diffusion 

equation gives 
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Ω

+
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TTw 2
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      (3.5) 

After applying integration by parts to second order terms and θ-discretization we get 

   ∫ =
⎟
⎟

⎠

⎞

⎜
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⎝

⎛
∇∇−+∇∇+⎟
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TTw nn
nn

2
12

1

   (3.6) 

Galerkin method uses same basis for weighting and approximating functions i.e. we can 

write and final variational form can be written as ∑=∑= i iii ii NTTNTw   and  

[ ] [ ] { } [ ] [ ] { }n
D

n
D TKkθ1

∆t
MTKkθ

∆t
M

2
1

⎟
⎠
⎞

⎜
⎝
⎛ −+=⎟

⎠
⎞

⎜
⎝
⎛ + + )(    (3.7) 

Similarly the convection equation (3.4) can be θ-discretized as  

  0TVθ1TVθ
∆t

TT
2
12

1

n1n
n1n

=∇⋅−+∇⋅+
− ++

++ rr
)(     (3.8) 

and after applying LSFEM , it can be written as 

 

[ ] ( ) { }

[ ] { }2
1n

D
TT

2

1n
D

T2T
2

TKvvθ)(1θC
∆t
θ)(1C

∆t
θ

∆t
M

TKvvθCC
∆t
θ

∆t
M

+

+

⎟
⎠
⎞

⎜
⎝
⎛ −−

−
−+

=⎟
⎠
⎞

⎜
⎝
⎛ +++

][][][

][][][

rr
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  (3.9) 

In these equations 

[ ] { }{ } dΩN.VNC
Ω

T

∫ ∇=
r

 (3.10a) 

                                                            (3.10b) 
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Equations (3.7) and (3.9), due to assumption that
2

TTT
n1n

n 2
1 +
=

+
+ , can be combined to 

form a single equation which for θ = 1 can be written as 

     [ ] ( ) { } { }n
D

1n
DUP

2T TK
2
∆tkMTK

2
∆tkK∆tCC∆tM ⎟

⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ ++++ + ][][][][][][                 (3.11) 

But the assumption made above is not very sound as it is not necessary that 2
1nT + is 

simple mean of 1+nT and nT always. Therefore more robust formulation was constructed 

which is named least-squares Galerkin split finite element method. 

3.3 The Least-Squares/Galerkin Split Finite Element Formulation 

In the context of numerical difficulties caused by the first order terms in 

convection equation it has been seen that LSFEM produces a symmetric system of 

equations that yields a stable solution. Therefore, in LSGS formulation we apply the 

LSFEM to these terms only to determine the proper weighting function to apply to the 

full equation or to determine the Euler-Lagrange formulation which is equivalent to 

Galerkin method applied to a modified differential equation.  First let us discretize time 

derivative and use θ-discretization for 1st order spatial derivative in model equation 

(3.1) as 

   ( ) n1n
n1n

T.Vθ1T.Vθ
∆t

TT
∇−=∇+

− +
+ rr

              (3.12) 

Application of LSFEM to above transient convection equation yields 

{ } { }( ) { } { }( ) { }
{ } { }( ) { } { }( ) { }nT

1nT

TdΩN.V∆tθ1NN.Vθ∆tN

TdΩN.Vθ∆tNN.Vθ∆tN

)()()(

)()(

Ω

Ω

∇−−∫ ∇+

=∇+∫ ∇+ +

rr

rr

            (3.13) 

and Euler-Lagrange equation in matrix form for this weak statement becomes 
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22T
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             (3.14) 

where matrices [M], [C] and [KUP] are defined in (3.10). This is equivalent to a 

stabilized Petrov-Galerkin formulation using the weight function 

  { } { }N.Vθ∆tN ∇+
r

                 (3.15) 

Applying this weight function to the residual of the original equation (3.1), we get 

{ } { }( ) { } { } { }( ) { }
{ } { }( ) { } { } { }( ) { }nT2
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∫
∫ +

rr

rr

        (3.16) 

Integrals involving second order derivatives are resolved using integration by parts and 

subsequent terms still having second order terms are neglected. Above integrals lead to 

the final form of the LSGS formulation for transient convection-diffusion equation 
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When we have θ = 1, we get fully implicit scheme 
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and for θ = 1/2 , we get semi-implicit time accurate formulation 
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The element stiffness matrix produced by preliminary split time formulation (3.11) and 

the SLGSFEM (3.18) are characteristically the same, except for factor of 2 in last term 
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which does not change the behavior of the system. Therefore the stability analysis for 

split formulation in the following section is also valid for LSGSFEM.    

3.3.1 Stability Analysis of LSGS Method 

 Stability analysis has been carried out on the equivalent split time formulation as 

it produces characteristically the same element stiffness matrix as LSGS formulation. 

We first compute the component amplification factors (see Appendix A) G1 and G2 for 

diffusion and convection step respectively with the help of table 3.1 of reference [35]. 

The overall amplification factor then is   

ξ/2sinC2θsinξCiθ1
ξ/2sinCθ)2(1sinξCθ)i(11

ξ/2sind4θ1
ξ/2sindθ)4(11GGG

2

2

2

2

21 ++
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⋅
+
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For Euler backward Scheme, θ = 1, So 

  1G
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1
ξ/2sin4d1

1G
22

≤
++

⋅
+

= stabilityFor,  

                 (3.21) 
( ) ( ) 1sinξCξ/2sinC21

1sinξCiξ/2sinC21
222

2

≥++

≥++⇒

after simplification the stability condition becomes   

  ( ) 0ξ/2cosξ/2sinC 22 ≥+                 (3.22) 

which is always true, Therefore backward Euler scheme is unconditionally stable. 

Similarly, for θ = 1/2, the Crank-Nicolson scheme, equation (3.20) becomes 

  ( )
( )/2cosξi/2sinξCsinξsi1

cosξosisinξinCsinξsi1G
++
+−

=  

  For stability |G| ≤ 1, this leads to stability condition as 
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 ( ) ( )/2cosξi/2sinξCsinξsi1cosξosisinξinCsinξsi1 ++≤+−          (3.23) 

which is always true, therefore Crank-Nicolson scheme is also unconditionally stable. 

3.4 Application of LSGS Method to Convection-Diffusion Benchmarks 

The LSGSFEM has been validated by solving a couple of following two-dimensional 

convection-diffusion benchmark problems.    

3.4.1 Benchmark Problems 

 3.4.1.1    Transient Solute Transport Problem 

The first problem is of evaluating transient solute transport in a two-dimensional semi-

infinite isotropic porous medium (half plane) with a step change in concentration along 

the inlet during one-dimensional flow. Solute transport in porous media, a phenomenon 

of practical importance in engineering, agriculture and hydrology takes place by 

advection and dispersion. This benchmark problem was taken from a work by Leij and 

Dane [36]. Transport in a homogenous and isotropic medium during one dimensional 

steady state flow with two-dimensional diffusion is given by  

   0
y
CD

x
CD

x
Cu

t
C

2

2

T2

2

L =
∂
∂

−
∂
∂

−
∂
∂

+
∂
∂              (3.4.1) 

where C is the solute concentration, t the time, u the pore water velocity, DL and DT are 

the coefficients of longitudinal and transverse diffusion respectively. The solution 

domain is a half plane with x ≥ 0 and other boundaries at infinity. The domain and the 

boundary conditions and initial conditions are shown in Fig. 1.  

Problem was solved on a 25×20 uniform mesh in a rectangular domain measuring 50 

cms in length and 20 cms in width. The porous medium with following arbitrary 
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transport properties: DL = 25cm2/d, DT = 5cm2/d and u = 50 cm/d was considered. All 

concentrations were expressed as dimensionless concentration, C with maximum value 

of 1 on positive y-axis and 0 on negative y-axis. 

 

(0,0) 

C(0,y,t) = 1 

C(0,0,t) = 0.5 

C(0,-y,t) = 0 

∂C/∂y = 0 
∂C/∂x = 0 

∂C/∂y = 0 

u, x 

y 
 

 

 

 

 

        

Initial Condition: C(x,y,0) = 0 

 Fig. 3.1     Domain of advection-diffusion of solute in a half plane 

3.4.1.2   Double Glazing Problem 

Second problem is a simple model of finding temperature distribution inside a 

cavity with recirculating wind and with one of the walls hot. The wind recirculating 

inside is given by ( ) ( )( 22 y12xx12yV −−−= , )r
. The problem taken from [37], is solved 

inside a square domain with side 2 units with 50×50 clustered mesh. The problem was 

also solved using standard Galerkin method and results were compared. The coefficient 

of thermal conductivity k = 1/200 was used. 

3.4.1 Mathematical Formulation 

 3.4.2.1    Transient Solute Transport Problem 

Equation (3.4.1), after θ-discretization can be written as 
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Let us take the advection part (first order terms) only: 
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The least-squares treatment to it gives: 
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resulting in  following variational form of Euler-Lagrange equation 
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which has following equivalent Galerkin formulation 
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Now we simply add the left out second order terms of (3.4.2) in equation (3.4.6)  
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Effectively now GFEM is being applied to a modified equation which is stabilized after 

least-squares treatment to the first order terms. After applying integration by parts, we 

get the matrix form of the equation system 
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 3.4.2.2    Double Glazing Problem 

 This problem was solved using LSGSFEM and GFEM. The model equation to 

solve is standard convection diffusion equation 

  0TkTV
t
T 2 =∇−∇⋅+
∂
∂ r

               (3.4.9) 

LSGS formulation of this problem, on the lines similar to that in previous section leads 

to following matrix system of equations for backward Euler method (θ = 1) 

 [ ] [ ] [ ]( ) [ ] [ ]( ){ } [ ] [ ]( ){ }nT1n
UP

2
D

T TC∆tMTK∆tK∆tkCC∆tM +=++++ +        (3.4.10) 

Since the problem was also solved using Galerkin method, the Galerkin formulation for 

backward Euler method (θ = 1) is  

  [ ] [ ] [ ]( ){ } [ ]{ }n1n
D TMTK∆tkC∆tM =++ +            (3.4.11) 
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3.4.2 Results and Discussion 

 3.4.3.1   Transient Solute Transport Problem 

 The LSGS scheme was run for t = 0.25 d, 0.50 d, 0.75 d, 1 d, 1.25 d and all the 

way to steady state. Steady state was considered when l2-norm of residual reached a 

tolerance level of 1E6. Time step of ∆t = 0.001 d was used. Results are presented in Fig. 

3.2 and 3.3. Transient solutions at the times stated above are shown in Fig. 3.2. The 

invasion of solute into the medium at y > 0 and the subsequent flattening of the solute 

front in both directions can be observed. The dimensionless concentration at the end of 

the domain (x = 50 cm) was recorded at t = 0.75 d, 1 d, 1.25 d and steady state. These 

profiles along with the analytical solution profiles are compared in Fig. 3.3. Analytical 

solution profiles were digitally scanned from reference [36]. 

 3.4.3.2   Double Glazing Problem 

 Steady state results for this benchmark were obtained using LSGS and Galerkin 

method. In both the cases time step size, ∆t = 0.001 was used. Results from this 

benchmark are shown in Fig. 3.4. Three dimensional surface plots, contour plots and 

temperature profiles along sections through x = 0.5 and y = 0.5 and the clustered mesh 

used are presented in Fig. 3.4. Excellent agreement between LSGS results and Galerkin 

results can be seen. 
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    Time = 1.25 d      Steady-state 

Fig. 3.2 Dimensionless concentration distribution of the solute using LSGS method at 
various times. 
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Fig. 3.3 Comparison of dimensionless concentration distribution computed using  
LSGS method with analytical solution at x = 50 cm. (○ LSGS, ⎯ analytical [36]) 
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       Fig. 3.4 Results from double glazing benchmark (○ LSGSFEM, ⎯ Galerkin FEM) 



 

 

 
CHAPTER 4 

LEAST-SQUARES/GALERKIN SPLIT FINITE ELEMENT METHOD FOR 
INCOMPRESSIBLE FLOWS 

 

4.1 Introduction 

Most of the finite element methods developed for incompressible viscous flows 

over the past few decades are based on the velocity-pressure formulation due to its 

simpler boundary conditions and ease of extension to three dimensions. Detailed 

discussions about these can be found in references [37-39]. The velocity-pressure 

formulation is implemented mainly through the segregated method, the penalty method, 

and the mixed Galerkin method.  

In the segregated method [23, 24], a SIMPLE-type finite difference algorithm 

decouples velocity and pressure iterations and achieves considerable computational 

efficiency, however the computed pressure is often inaccurate due to lack of proper 

pressure boundary conditions for the pressure correction equation.  

In penalty method, the continuity equation is penalized in order to pre-eliminate 

pressure which is then recovered by using the perturbed conservation of mass equation. 

However the pressure recovered exhibits oscillations due to ill-conditioning of the 

pressure matrix. Also, the penalty method is inaccurate for small values of penalty 

parameter and for very large values it sometimes may not converge at all due to ill-

conditioning of the system matrix.  
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In the mixed Galerkin method, different basis functions are used to interpolate 

the velocity and pressure in order to satisfy the restrictive Ladyzhenskaya-Babuska-

Brezzi (LBB) condition for the existence of the solution [21, 22]. The basis function 

pairs that satisfy the LBB condition can be difficult to determine and implement. Also 

the system matrices turn out to be asymmetric and indefinite, which rules out the use of 

PCG-type iterative methods to directly solve the system of equations. 

Recently, an alternate approached based on the least-squares finite element 

method has been gaining popularity [25-27]. This approach has many attractive 

advantages over the Galerkin finite element method (GFEM) and its variants and has 

established itself as a better approach for non-self adjoint systems, such as those 

governing fluid mechanics.  

The least-squares finite element formulation doesn’t need to satisfy the difficult 

LBB condition and always results in a symmetric positive system of algebraic equations 

unlike GFEM. However, as the method does not employ integration by parts, high-order 

terms may be present in the weak statement. Thus the continuity requirements for 

second-order terms in the governing equations force the introduction of additional 

unknowns by use of an equivalent first-order system of equations or the use of C1 

continuous basis functions. These additional unknowns lead to increased memory and 

computing time requirements that have limited the application of LSFEM to large-scale 

practical problems, such as three-dimensional compressible viscous flows.  
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The least-squares/Galerkin split finite element method proposed here is both 

simple and effective for solving the incompressible Navier-Stokes equations. The 

method proposed here employs a least-squares method for first-order derivatives and a 

Galerkin method for second order derivatives, thereby avoiding the need for additional 

unknowns required by a pure LSFEM approach. Only the primitive variables u, v and p 

need to be solved for, in the two dimensional problems using the proposed method 

whereas LSFEM needs one additional unknown that is introduced in order to get the 

equivalent first order system [25-27]. In three dimensions LSFEM would require three 

additional unknowns whereas the proposed method still requires only the primitive 

variables. This is one of the attractive features of the proposed method. 

When the unsteady form of the governing equations is used, a streamline 

upwinding term is introduced naturally by the least-squares method. The method is 

stable for convection-dominated flows and allows for equal-order basis functions for 

both pressure and velocity. In addition, the resulting system of equations is always 

symmetric and is solved using the conjugate gradient method with standard pre-

conditioners. Non-linear terms are treated effectively by linearization in time. The 

stability and accuracy of the method have been demonstrated with preliminary results of 

few benchmark convection-diffusion and incompressible flow problems solved using 

low-order C0 continuous elements [28, 29].  

4.2 LSGS Formulation for Incompressible Navier-Stokes Equations 

Incompressible laminar fluid flow is governed by Navier-Stokes equation, 

which in non-dimensional unsteady form in two dimensions is given as: 
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Here first equation is the continuity and other two are momentum equations. V is the 

velocity field with u and v as its x and y components respectively, p the pressure and Re 

is the Reynolds number. By discretizing spatial derivative using θ-method and the 

unsteady terms using Euler backward differences 
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and linearization in time gives matrix form of the system 
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where U = (u, v, p)T is the vector of unknowns, the operator L  is given as 
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and the right hand side vector f is given as 
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Where is the velocity field vector at previous time step and I, an m×m identity 

matrix, m being number of nodes per element. The residual vector is given as  

nV
r

fU 1n −= + L  R  (4.6)  

The residual is minimized using a suitable weighting operator that comes from LSFEM 

applied to Euler’s equations. As explained in chapter 3, section 3.4, we first apply 

LSFEM to first order terms and get the variational form of Euler-Lagrange equation. 

This E-L form has an equivalent Galerkin form. Once we find the Galerkin form, we 

simply add the left out second order terms of the NS equations and apply Galerkin 

method to complete modified equation. For linear elements it is equivalent as treating 

the weighted residual of (4.6) with weighting operator S as 

∫ =−Ω
+ 0dΩfUN 1nT )()( LS    (4.7) 

Where S is obtained from taking first order terms of governing equations i.e. Euler 

equation part given by 
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Introducing the finite element approximation 

1n
i

m

i
i

1n
h

1n UNUU +++ ∑=≈   (4.9) 

where m is the number of nodes per element and Ni is the element shape function 

associated with ith node. Substituting the approximation into the weak formulation in 

(4.7) leads to linear algebraic equations 
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[K]{Un+1} = {F} (4.10) 

where global stiffness matrix [K] and the vector {F} result from assembling the element 

stiffness matrices and vectors respectively given by 

.dΩ f)N(fe;dΩ )N ()N(ke
ee Ω

T
ijΩ

T
i ∫=∫= SLS  Full form of ke and fe is 

given in Appendix B. Weighting operator S ensures split treatment to first order terms 

and second order terms in the governing equation. Thus, the first order term are treated 

like LSFEM and the second order viscous terms get treated similar to GFEM. Integrals 

containing second order terms are resolved the Galerkin way through integration by 

parts. Subsequent terms containing second order derivatives are dropped, as is the 

standard practice [35] to ignore computationally expensive higher order derivatives for 

linear elements. 

4.3 Benchmark Problems 

The LSGS method described above has been tested by solving few steady flow 

benchmarks (θ = 1) and an unsteady time accurate problem (θ = 1/2). Steady flow 

problems include plane Poiseuille flow and classical benchmark problems of the driven 

cavity flow and the backward-facing step flow. The plane Poiseuille flow for which 

analytical solution is available has been included in order to study convergence as well. 

Transient flow past rectangular cylinder was solved as unsteady benchmark. 

4.3.1 Plane-Poiseuille Flow 

  A plane-Poiseuille flow is a flow between two parallel plates in the presence of 

pressure gradient. The plates can be stationary or moving. All three cases: plates fixed 
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and 0,
dx
dp

<  top plate moving with U0 ≠ 0 and 
dx
dp  being either <0 or >0 were 

simulated. A uniform 20×20 mesh with bilinear elements was used inside a unit square 

domain. A quick convergence study was carried out by running the code on coarse 

uniform meshes comprising of 4, 6, 8 and 10 elements along the side of the square 

domain. 

The boundary conditions:  u = 0, v = 0 on bottom surface, v = 0, p = pout at the 

outlet, u =0 or U0, v = 0 on the top surface and v = 0, p = pin at the inlet were applied. 

Analytical solution for plane Poiseuille flow with stationary plates and with upper plate 

moving with velocity U0 is given by ⎟
⎠
⎞

⎜
⎝
⎛ −−=

2
yb

dx
dp

µ
yu(y)   and 

⎟
⎠
⎞

⎜
⎝
⎛ −−=

2
yb

dx
dp

µ
y

2b
yUu(y) 0  respectively. Here 2b is the gap between the plates and U0 

is the velocity of the upper surface. Problem was solved for 
ν
U2bRe 0= = 100. 

4.3.2 Lid-Driven Cavity Flow 

The classical lid-driven cavity flow problem continues being investigated since 

some pioneering works providing accurate benchmark solutions were published decades 

ago [41, 42]. More recent work by Bruneau and Saad [43] is particularly noteworthy, 

where he provided comprehensive results for the driven cavity problem upto Re = 

10000 and accurately localized the first Hopf-bifurcation. The domain is a unit square 

with three surfaces stationary and top surface moving. The mesh used comprised of 
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50×50 non-uniform bilinear elements (Fig. 4.1a) with the smallest element, a square 

with side = 0.002 at four corners similar to ref. [25].  

The boundary conditions are as follows: u = v = 0 on sides and bottom surfaces, 

u = 1, v = 0 on top-lid and p = 0 at the center of the bottom surface. Computations were 

carried out for Reynolds numbers ranging from 100 to 10000. 

4.3.3 Backward Facing Step Flow 

Flow over a two-dimensional backward-facing step is another standard test 

problem that has been investigated experimentally and computationally by numerous 

researchers. Experimental work by Armaly et al [44], computational work by Sohn [45] 

and Gartling [46] are among the few important ones. The configuration chosen here is 

similar to one used by Gartling. The aspect ratio of the step (h) to the overall cross-

sectional width in present study is 1:2 and the total length in the horizontal direction is 

60h. A fully developed parallel flow with parabolic profile given by u(y) = 24y (0.5-y) 

is specified at the inlet 0≤ y ≤0.5. This produces a maximum inflow velocity, umax= 1.5 

and an average inflow velocity, uavg= 1.0. The outflow boundary condition assumed a 

parallel flow, i.e. v = 0 and p = 0. The boundary conditions at outlet come actually from 

the hybrid boundary condition applied in his benchmark by Gartling, which is v = 0 and 

0
x
u

Re
2p =

∂
∂

+− . Since outlet at x = 60h from the step is far enough to assume a parallel 

uniform flow with fully developed parabolic profile that allows us to have p = 0 at the 

outlet. After getting the solution, pressure field was adjusted such that the pressure was 

zero at the step corner. For non-dimensional form of Navier-Stokes equations and fixed 
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geometry, Re is the only non-dimensional parameter of interest and it is defined by 

uavg2h/ν. Simulation was carried out for Reynolds numbers of 200, 300, 400, 500, 600, 

700 and 800.  

Flow simulation especially at Re = 800 is very interesting since some 

researchers like Kaiksis [47], Runchal [48] and others argued that flow at this Re was 

unsteady and exhibited chaotic behavior. Later studies by Gartling [46] and Torczynski 

[49] proved that flow at this Re was steady. Torczynski found out that Kaiksis et al got 

unsteady and chaotic results since the flow was under-resolved with the grid they used.  

In the present study a 32×252 non-uniform bilinear mesh was used. Mesh 

details and the boundary conditions are shown in Fig. 4.1b and 4.1c. The mesh was 

clustered in vertical direction near upper and lower surfaces and at the centerline. In 

horizontal direction 100 elements were used before x = 5 and clustered towards the step 

in such a way that worst element aspect ratios occurring on the upper and the lower 

walls ranged from 1.3 to 16.8. Uniform mesh comprising of 102 elements were used 

thereafter from 5 to 20 such that the worst element aspect ration was kept close to 16.8. 

Thereafter uniform mesh with the aspect ratio of around 24 was used with 50 elements. 

4.3.4 Unsteady Flow past Rectangular Cylinder 

Two-dimensional unsteady flow past rectangular cylinder is a popular 

benchmark problem. We considered a cylinder with an aspect ratio (length/width) of 

two. For this geometry, previous researchers [50, 51] have found that the Strouhal 

number (St), which is non-dimensional frequency of vortex shedding, monotonically 

increases in the range 60 < Re < 400 from ≈ 0.10 to  ≈ 0.17. 
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Computational domain was a rectangular box of size 10 × 27 (Fig. 4.1d). An 

unstructured mesh having 4074 quadrilateral elements (4190 nodes) was used. Mesh 

was constructed very fine on the cylinder and in the wake behind in order to capture the 

boundary layer and subsequent vortex shedding. Simulation was carried out for 

Reynolds numbers of 80, 150 and 300 using time step sizes of 0.0004 and 0.001.   

4.4 Results and Discussion 

Steady state results were reached by time marching. Non-linear terms were 

linearized in time using simple successive substitution. Resulting linear system of 

equations was solved using pre-conditioned conjugate gradient (pcg) method using 

diagonal pre-conditioner and sparse matrix storage. A pcg-tolerance of 10-7 or 

maximum pcg iterations of 8000 was used inside each time step and an overall tolerance 

of 10-6 for l2-norm of residual was used as convergence criterion throughout. Driven 

cavity flow at Re = 100, 400 and 1000 was solved using ∆t = 0.01 all starting from zero 

initialization in order to study the variation of pcg-iterations as the solution progressed 

towards convergence (Fig 4.2a). The pcg iterations required at each time step quickly 

declined as the solution progressed towards convergence. The total number of pcg 

iterations can be greatly reduced by using more sophisticated pre-conditioner like block 

pre-conditioner and faster convergence can be achieved. Reduced integration using one 

point Gaussian quadrature was used to evaluate the element matrices. 

4.4.1 Plane-Poiseuille Flow 

Three cases of plane Poiseuille flow: flow driven by favorable pressure gradient 

between two stationary surfaces, flow driven by moving upper surface in the presence 
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of favorable/adverse pressure gradient were simulated at Re = 100. Coarse meshes as 

described in the previous section were used to study convergence. Convergence plots 

for horizontal velocity and pressure are shown in Fig 4.2b. The horizontal velocity 

shows a quadratic convergence whereas pressure converges with a slope of ≈ 1.5. Fully 

developed velocity profiles for the three cases of plane-Poiseuille flow are compared 

with the analytical results in Fig. 2c. The velocity profiles from the study match the 

analytical solutions very well. 

4.4.2 Lid-Driven Cavity Flow 

Computations for this benchmark were carried out at Reynolds numbers of 100, 

400, 1000, 3200, 5000, 7500 and 10000. The initial conditions used for Re = 100 are 

u(x,y,0) = v(x,y,0) = 0. Converged solution from this case was used as the initial input 

for next Reynolds number and so on. The results are presented in Figs. 4.3 to 4.10. Plots 

for streamlines, pressure contours, vorticity contours and velocity vectors are displayed. 

The streamlines, vorticity contours and vortex locations and dimensions for all 

Reynolds numbers compare well with those of Ghia et al [41] except the vortex at lower 

right corner at   Re = 10,000 which compares favorably rather with that of Jiang [25]. 

The pressure contours compare well with those of Jiang [25] and Sohn et al [45]. 

Horizontal and vertical velocity profiles through the geometric center of the cavity are 

shown in Fig. 4.10. These profiles agree well with the published results. 

4.4.3 Backward Facing Step Flow 

Computations were carried out for Re = 200, 300, 400, 500, 600, 700 and 800 

for this benchmark. Initial guess of u = v = 0 is used for Re = 200, the converged 
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solution for Re = 200 is used as initialization for Re = 300 and so on. Results have also 

been compared with the experimental results from Armaly’s work although he used 

slightly different dimensions. Computed results (streamlines, pressure and vorticity 

contours) are presented in Figs. 4.11 and 4.12. Since few phenomena of interest occur 

downstream of x = 10, plots only show contours up to this location. The results compare 

well with that by Gartling [46]. The reattachment length of the recirculation zone 

behind the step and the location of separation and reattachment of recirculation zone on 

the upper wall are compared with published experimental and computational results in 

Fig. 4.12. The cited published results were optically scanned from the literature 

available [25, 44]. Here x1 is the reattachment location of the main vortex behind the 

step, x4 is the separation location and x5 is the reattachment location of the recirculating 

zone on the upper wall. The length of the main recirculating zone behind the step 

matches well with both experimental [44] as well as computational results [25] for 

smaller Re. At higher Reynolds numbers it agrees more with computational and less 

with the experimental results. The lengths for the recirculating zone on the upper wall 

match well with the experimental results for smaller Reynolds numbers and 

computational results at higher Reynolds numbers. The differences with the 

experimental results at higher Reynolds number cases may be attributed to three-

dimensional effects of the experiments. 

4.4.4 Unsteady Flow past Rectangular Cylinder 

Computations were carried out for Re = 80, 150 and 300. Reynolds number was 

effectively 1/ν as reference velocity and length both were unity.  Boundary conditions 
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were as follows: u = U∞, v = 0 on top and bottom surfaces of the domain, p = 0 at the 

mid-point of the exit, u = U∞, v = 0 at the inlet and no slip condition on the cylinder 

surface. Different values of time step size, ∆t = 0.001 and 0.0004, with under-relaxation 

parameter of 0.9 for pressure were used. Results from the study are listed in table 4.1 

and Figs 4.13-4.15. Pressure contours, streamlines and variation of the vertical velocity 

recorded at a downstream location in 1.5< x < 2.0 are shown for ∆t = 0.0004. The 

streamline patterns show vortex shedding downstream of the cylinder. The vortex 

shedding frequency is sensitive to time step size. In the case of Re = 80, it is hard to get 

sustained vortex shedding as the flow settles to a steady solution for relatively bigger 

values of ∆t. The Strouhal number, St, which is non-dimensional frequency of vortex 

shedding, was computed from the period of vortex shedding T. Table 4.1 shows 

computed St compared with published results. 

4.5 Conclusions

The proposed least-squares/Galerkin split finite element method has been 

successfully applied to incompressible flow benchmark problems. Both steady and 

transient benchmarks have been solved using C0-continuous elements and results 

compare very well with the standard published literature. 

Table 4.1 Strouhal Numbers for Unsteady Flow past Rectangular Cylinder 

Re Present Study Computations [51] Experiments [50] 

80 0.1263 0.113 0.10 – 0.12 

150 0.1322 – 0.1643 0.122 – 0.126 0.13 – 0.15 

300 0.1577 – 0.1732 0.126 – 0.137 0.15 – 0.17 
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Fig. 4.1 Meshes and the boundary conditions for the incompressible flow 
benchmarks: (a) Mesh for driven cavity flow, 50×50 bilinear elements; (b) 
Boundary conditions for the backward-facing step flow; (c) Mesh for the 
backward-facing step flow, 32×252 bilinear elements; (d) Unstructured mesh for 
flow over rectangular cylinder, 4074 elements. 
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Fig. 4.2 Variation of pcg iterations with time (driven cavity flow) 
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Fig. 4.3 Convergence plots for velocity and pressure (Poiseuille flow) 
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Fig. 4.4 Velocity profiles for plane-Poiseuille flow: (—Analytical, ∆,О,    LSGSFEM) 
∆: Flow with Utop = 1, Ubot = 0 and dp/dx > 0,     О: Flow with Utop = Ubot = 0 and 
dp/dx<0, : Flow with Utop = 1, Ubot = 0 and dp/dx<0. 
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Fig. 4.5 Driven cavity flow results using LSGSFEM at Re = 100: 
(a) Streamlines, (b) Pressure contours, (c) Vorticity contours, (d) Velocity vectors 
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   (c)                    (d)    

Fig. 4.6 Driven cavity flow results using LSGSFEM at Re = 400: 
(a) Streamlines, (b) Pressure contours, (c) Vorticity contours, (d) Velocity vectors 
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Fig. 4.7 Driven cavity flow results using LSGSFEM at Re = 1000: 
(a) Streamlines, (b) Pressure contours, (c) Vorticity contours, (d) Velocity vectors 
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Fig. 4.8 Driven cavity flow results using LSGSFEM at Re = 3200: 
(a) Streamlines, (b) Pressure contours, (c) Vorticity contours, (d) Velocity vectors 
 

 

 
 51



 

 

 

 

 

 

 

 

 

 

 
 

(a)               (b)   
 

 

 

 

 

 

 

   (c)                   (d)   

Fig. 4.9 Driven cavity flow results using LSGSFEM at Re = 5000: 
(a) Streamlines, (b) Pressure contours, (c) Vorticity contours, (d) Velocity vectors 
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Fig. 4.10 Driven cavity flow results using LSGSFEM at Re = 7500: 
(a) Streamlines, (b) Pressure contours, (c) Vorticity contours, (d) Velocity vectors 
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   (c)             (d)   

Fig. 4.11 Driven cavity flow results using LSGSFEM at Re = 10000: 
(a) Streamlines, (b) Pressure contours, (c) Vorticity contours, (d) Velocity vectors 
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Fig. 4.12 Velocity profiles along lines through geometric center for driven cavity flow  
(a) y-velocity profiles, (b) x-velocity profiles (—LSGSFEM, ∆ Ghia et al [41] ) 
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Fig. 4.13 Contour plots for backward-facing step flow using LSGSFEM at Re = 200: 
(a) Streamlines, (b) Pressure contours and (c) Vorticity contours 

  
 

 

 

 

 

 
 

Fig. 4.14 Contour plots for backward-facing step flow using LSGSFEM at Re = 400: 
(a) Streamlines, (b) Pressure contours and (c) Vorticity contours 

 
 
 

 

 

 

 

 
Fig. 4.15 Contour plots for backward-facing step flow using LSGSFEM at Re = 600: 
(a) Streamlines, (b) Pressure contours and (c) Vorticity contours
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Fig. 4.16   Contour plots for backward-facing step flow using LSGSFEM at Re = 800: 
(a): Streamlines, (b): Pressure contours and (c): Vorticity contours 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.17 Computed reattachment/separation length Vs Reynolds number for  

   backward facing step flow: Comparison with published results 
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Fig. 4.18 Results for unsteady flow past rectangular cylinder at Re = 80: 
(a) Instantaneous streamlines and vertical velocity contours, (b) Pressure contours, 
(c) Variation of vertical velocity at x/L ≅ 1.5 from trailing edge 
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Fig. 4.19 Results for unsteady flow past rectangular cylinder at Re = 150: 
(a) Instantaneous streamlines and vertical velocity contours, (b) Pressure contours, 
(c) Variation of vertical velocity at x/L ≅ 1.5 from trailing edge 
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         (c)  

Fig. 4.20 Results for unsteady flow past rectangular cylinder at Re = 300: 
(a) Instantaneous streamlines and vertical velocity contours, (b) Pressure contours, 
(c) Variation of vertical velocity at x/L ≅ 1.5 from trailing edge 
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CHAPTER 5 

LEAST-SQUARES/GALERKIN SPLIT FINITE ELEMENT METHOD APPLIED TO 
BUOYANCY-DRIVEN INCOMPRESSIBLE FLOWS 

 

5.1 Introduction 

The buoyancy-driven flow in a square cavity with differentially heated walls is 

one of the least pursued areas in finite element methods, although it has been an 

extensively explored area in finite difference methods. Physics involved in the 

buoyancy-driven flow inside a square domain has relevance to a variety of practical 

problems such as nuclear reactor insulation, ventilation of rooms, solar energy 

collection, crystal growth in liquids and convective heat transfer associated with boilers 

and electronics etc. Buoyancy-driven flows have added complexity in form of coupling 

between transport properties of the flow and the thermal fields. Internal flow problems 

like one being discussed are more complex compared to external flows due to the fact 

that unlike the external flows where flow outside the boundary layer can be considered 

unaffected by boundary layer, over here the flow outside the boundary layer forms a 

core surrounded by boundary layers on the four walls. The confined core and 

surrounding boundary layer interact and this interaction causes added complexity 

especially at higher Rayleigh numbers (Ra) and larger temperature differences [51-53].  

Davis [55] used a false transient approach based on a stream function-vorticity finite 

difference method employing forward difference and second order central difference for 
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time and space derivatives respectively to solve natural convection in a square cavity 

within the Boussinesq approximation. 

Chenoweth and Paolucci [56] investigated the steady state flow in rectangular 

cavities with large temperature differences between vertical isothermal walls of 

rectangular cavities. They used transient form of the flow equations, simplified for low 

Mach numbers.  

Vierendeels et al [57] solved full Navier-Stokes equations for low speed 

compressible flows to simulate buoyancy-driven flow inside a square domain without 

resorting to Boussinesq approximation or low Mach number approximation. The low 

Mach number stiffness was tackled by appropriate discretization and local pre-

conditioning. Their study employing multigrid provides benchmark solutions for the 

thermally driven flows in a square cavity. 

Recently lattice Boltzmann method which is based on discrete lattice kinetic 

theory has gained tremendous popularity as an alternative to traditional numerical 

methods like finite difference, finite elements and finite volume methods for solving the 

fluids problems. Some of the noteworthy works relevant to present study are those of 

Chen et al [58], Eggels and Somers [59] and more recently by Dixit and Babu [60] to 

name a few.   

Li Q Tang [61] solved time dependent Navier-Stokes equations for an 

incompressible constant property fluid in Boussinesq approximation using least-squares 

based V-p-ω-T-q formulation. He obtained results for buoyancy-driven flow in a square 

cavity in Ra-range of 103-106. The solution vector had seven variables. In three 
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dimensional problems it would have been a vector of eleven unknowns. This is the main 

reason that limited the application of the LSFEM in practical fluid dynamics problems.  

In the LSGS formulation used here, only the primitive variables of velocity, 

pressure and temperature are solved for and an equal-order basis function is used for all 

of them meaning no LBB condition to be satisfied. Resulting system matrix is 

symmetric and positive definite and can be solved by iterative solvers like pre-

conditioned conjugate gradient (pcg) method. The intent of this part of study is to test 

and validate the proposed LSGSFEM by simulating the complex buoyancy-driven flow 

inside a square domain with differentially heated vertical sides. 

5.2 Mathematical Formulation 

5.2.1 Governing Equations 

This study assumes a Newtonian fluid with constant properties except density in 

body force term of the momentum equation. We considered time-dependent 

incompressible flow with thermal convection. The Boussinesq-approximation relates 

the density changes to the temperature changes and thereby couples temperature-field 

with the flow-field. The governing equations for the thermal convection flow using 

conservation of mass, momentum and energy can be written as: 
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with boundary conditions:  

no slip condition on the walls. 0
y
TTy)T(L,,Ty)T(0, CH =
∂
∂

== and  on top and bottom walls 

(Fig. 5.1). Here u and v are the velocity components in x and y directions respectively. 

The density is denoted by ρ, pressure by p and T is the temperature. Symbols ν and α 

are for the kinematic viscosity and the thermal diffusivity respectively. TH and TC are 

temperatures at the hot and the cold walls respectively, L the length of the square 

domain and β the coefficient of thermal expansion. The equations were non-

dimensionalized as follows: 
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where variables with etc.uy,x ′′′ and are the non-dimensionalized variables. With these 

non-dimensional variables we get the following non dimensional form of the governing 

equations where ' has been dropped for the sake of clarity. 
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And the boundary conditions are: 
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u = v = 0 on all four walls. 0
y
TTy)T(1,,Ty)T(0, CH =
∂
∂

== and  on top and bottom walls. 

Here Pr and Ra are the dimensionless numbers called Prandtl number and Rayleigh 

number respectively. These are given as: 2

3
CH

ν
PrL)TTgβ

Ra
α
νPr

−
==

(
and  respectively. 

5.2.2 Least-Squares/Galerkin Split Formulation for Buoyancy-Driven Flow 

LSGS method is based on time-dependent formulation of Navier Stokes 

equations. Time derivatives are discretized using Euler backward differences as:   

t
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and non-linear terms are linearized in time to get the matrix form of the system  

fU 1n =+ L  (5.4) 

where U = (u, v, p, T)T is the vector of unknowns, the operator L   is given as  
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and the vector f is given as 
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here nV
r

 is the velocity vector at the previous time level and I is an m×m identity matrix, 

m being the number of nodes per element. The residual vector is given as  

fU   1n −= +LR  (5.7)  

The residual is minimized using a suitable weighting operator that comes from 

LSFEM applied to the first order terms in the governing equations. LSFEM gives a 

symmetric system of equations and the inherent streamline upwinding term provides 

stability. The weighting operator for LSGS method,S , therefore is taken from LSFEM 

applied to inviscid part of governing equations as 
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Hence minimizing of the residual in (5.7) using the weighting operator in (5.8) leads to 

following weak form for LSGSFEM 

0dΩ f) - U (N) ( 1n
Ω

T =∫ +LS   (5.9)  

Introducing the finite element approximation 

1n
i

m

i
i

1n
h

1n UNUU +++ ∑=≈  (5.10) 

where m is the number of nodes per element and Ni is the element shape function 

associated with ith node. Substituting the approximation into the weak formulation in 

(5.9) leads to linear algebraic equations 

[K]{Un+1} = {F} (5.11) 
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Global stiffness matrix [K] and the vector {F} result from assembling the element 

stiffness matrices and vectors respectively given by 

.dΩ f)N (fe;dΩ )N ()N(ke Ω
T

ijΩ
T

i ∫=∫= ee
SLS       (5.12) 

The element stiffness matrix, ke and the element load vector, fe are given in full form in 

Appendix C. Integrals are evaluated using Gaussian quadrature. The weighting operator 

ensures split treatment to first order terms and second order terms in the governing 

equation. Thus, the first order term are treated like LSFEM and the second order 

viscous terms get treated similar to GFEM. Integrals containing second order terms are 

resolved the Galerkin way through integration by parts. Subsequently, terms containing 

second order derivatives are dropped, as explained in previous chapter. 

S

5.3 Computation of Derived Variables 

Variables like vorticity, stream function and Nusselt number are computed from 

the solution as post-processing products. The method of obtaining these quantities is 

described in this section. 

5.3.1 Vorticity, ωz

Vorticity at each node was computed by using the definition of vorticity,           

ω = ∇ × V. For two dimensional cases it becomes  

y
u

x
vωz ∂

∂
−

∂
∂

=  (5.13)  

A variable X can be expanded using the basis set {N} as , where n is the 

number of nodes per element and N

iXNX
n

i
i∑=

i and Xi are the element shape function and the value 

of variable X respectively associated with ith node. We can write (5.13) as  

 67



 

y
uN

x
vN

ωN iiii
izi ∂

∂
−

∂
∂

=                                                                  (5.14) 

Applying Galerkin method to (5.14) gives the system of equations 
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Which is solved to get values of vorticity at each node. No boundary condition is 

specified. 

5.3.2 Stream Function, ψ

Stream function was computed from the relation  
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where anticlockwise circulation is taken as positive ψ and clockwise circulation as 

negative ψ. Finite element expansion with the help of basis set {N}for the variables ψ, u 

and v similar to that in previous section and application of Galerkin method gives the 

system of equations 
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Integral involving second order term is treated by Green’s theorem and the resulting 

boundary term is ignored because of no slip condition on all the four walls. The system 

of equations resulting, that needs to be solved in order to get nodal values of ψ is 
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5.3.3  Nusselt Number, Nu 

Nusselt number, Nu is the ratio of convection heat transfer to fluid conduction 

heat transfer under the same conditions. Davis [55] in his paper computed average Nu 

throughout the cavity, on the vertical midplane and on the vertical hot wall on the right 

side. On the hot wall he also computed maximum and minimum Nusselt numbers along 

with their locations. Component of Nu in x-direction averaged over a vertical plane is 

 dy
x
TuTdy(x,y)qNu

1

0

1

0 xx ∫∫ ⎟
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⎛

∂
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−==                                              (5.19)  

The component of heat flux in x-direction, qx(x,y) was computed in a similar way using 

relation 
x
TuTy)(x,q
∂
∂

−=x  and Galerkin treatment to it as before, gives 
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Once Nux is computed, overall average Nusselt number, uN  is computed as  

 dxNuuN
1

0 x∫=                                                                     (5.21) 

Similarly other values of Nusselt numbers can be computed.  Integrals in (5.19) and 

(5.21) were computed using Simpson’s method. To get more accurate values, the nodal 

values of integrand were first interpolated to finer resolution using cubic spline method. 

5.4 Results and Discussion 

Computations were carried out in the Rayleigh number range of 103 – 106 and 

value of Prandtl number, Pr was taken as 0.71 which is the value for air at room 

temperature. Davis [55] used uniform meshes with 10, 20 and 40 element per side for 
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Ra = 103 and 104 and 10, 20, 40, 60 and 80 element-meshes for Ra = 105 and 106. He 

also used Richardson extrapolation in order to get the exact solution. Uniform meshes 

with 10, 20 and 40 elements per side for Ra = 103; 20, 30, 40 and 60 element-meshes 

for Ra = 104; 20, 30, 40, 60 and 80 element-meshes for Ra = 105 and 40, 50, 60, 80 and 

100 element-meshes for Ra = 106 were used in present study. Gaussian quadrature with 

one-point reduced integration was used to compute the integrals. A time step size, ∆t = 

0.001 was used for Ra = 103 – 105, whereas for highly nonlinear case of Ra = 106, time 

step ∆t = 0.0005 with under relaxation factor of 0.6 was used. For all the cases a 

tolerance of 10-9 or maximum of 8000 iterations were used for pcg-iterations at each 

time step. An external tolerance of 10-6 for l2-norm of residual was used as stopping 

criterion. Results in form of tables and contours have been compared with the 

benchmark results by Davis [55]. Contour plots for stream function, horizontal and 

vertical velocity components, temperature and vorticity are presented in Figs 5.2-5.6. 

Contours match well with those by Davis [55]. The streamline contours are fully anti-

symmetric with respect to the center of the cavity and for lower Rayleigh numbers 

maximum value of stream function occurs at the center of the cavity. For higher 

Rayleigh numbers there are two maxima on both sides of the center. Various other 

parameters computed similar to those computed by Davis are listed in Tables I-IV. 

These values are compared with those obtained by Davis on uniform 40×40 and 80×80 

meshes. It should be noted that Davis used a finite difference method that was first 

order in time and second order in space. The definition and nomenclature for the 

quantities compared in the table are same as those by Davis [55], which are: 
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mid
ψ   Magnitude of the stream function at the center of the cavity 

axm
ψ   Magnitude of the maximum value of stream function (also its location) 

umax  Maximum horizontal velocity on vertical mid-plane (also its y-location) 

vmax  Maximum vertical velocity on horizontal mid-plane (also its x-location) 

uN   The average Nusselt number throughout the cavity 

21Nu    The average Nusselt number on the vertical mid-plane of the cavity 

0Nu    The average Nusselt number on the vertical hot surface of the cavity 

maxNu    The maximum value of local Nusselt number on the vertical hot surface  

minNu    The minimum value of local Nusselt number on the vertical hot surface  

To obtain more accurate values for these quantities and their locations, the node 

point data were first interpolated using a cubic-spline interpolation to a finer resolution. 

The values thus computed were further refined using Richardson extrapolation: 
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where

                                                           (5.22)  

Here h is given by 1/N, and N is the number of elements in one direction in the 

finest mesh and is the value for next finest mesh used for a particular Rayleigh 

number case (see tables 5.1-5.4). The computed value of α gives roughly the order of 

convergence. Convergence plots for u

h′

max and vmax are shown in Fig. 5.7. The slopes of 

the plots average around 2, which is expected as umax and vmax are the primary solution 
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variables. Convergence rates for derived variables like stream function and Nusselt 

numbers are less than quadratic. The pcg iterations required at each time step quickly 

declined as the solution progressed towards convergence. The variation of pcg iterations 

for the Ra-range tested was recorded for 40×40 mesh run at ∆t = 0.001. A typical plot is 

shown in Fig. 5.8. The figure also shows the total number of pcg-iterations to reach the 

converged solutions. The results listed in tables 5.1-5.4 show the correct trend and the 

extrapolated values are close to benchmarks values by Davis [55]. 

5.5 Conclusions  

Complex buoyancy-driven flow in a square cavity with differentially heated 

vertical walls and Boussinesq approximation has been solved using least-

squares/Galerkin split finite element method (LSGSFEM) that employs a least-squares 

method for first-order derivatives and a Galerkin method for second order derivatives, 

thereby avoiding the need for additional unknowns required by pure a LSFEM 

approach. This method has inherent streamline upwinding term and allows for equal-

order basis functions for velocity, pressure and temperature thereby avoids LBB 

condition. Non-linear terms are treated by linearization in time. Results were obtained 

using low-order C0 continuous elements and compare well with the standard published 

results. 
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Table 5.1 Comparison of Results for Buoyancy-Driven Flow at Ra = 103

 Mesh 
size mid

ψ  max
ψ
x, y 

umax
z 

vmax
x uN  21Nu 0Nu  maxNu  minNu

0.1 1.1866 
 - 3.884 

0.822 
3.949 
0.171 

1.1095 
 

1.1152 
 

1.1137 
 

1.4965 
0.128 

0.6898 
0.999 

h' = 0.05* 1.1764 
 - 3.697 

0.814 
3.748 
0.178 

1.1131 
 

1.1135 
 

1.1175 
 

1.5033 
0.091 

0.6930 
0.999 

LSGS 
Method 

h = 0.025* 1.1739 
 - 3.657 

0.813 
3.706 
0.178 

1.1139 
 

1.1129 
 

1.1184 
 

1.5052 
0.09 

0.6937 
0.999 

Extrapolated solns 1.173 - 3.646 
0.813 

3.695 
0.178 1.114 1.113 1.118 1.506 

0.09 
0.6939 
0.999 

Benchmark 
solutions 

Davis [55] 
1.174 - 3.649 

0.813 
3.697 
0.178 1.118 1.118 1.117 1.505 

0.092 
0.692 

1 

*see extrapolation equation (5.22) 
 
 
 

Table 5.2 Comparison of Results for Buoyancy-Driven Flow at Ra = 104

 

 Mesh 
Size mid

ψ  max
ψ
x, y 

umax
z 

vmax
x uN  21Nu 0Nu  maxNu  minNu

0.1 5.1953 - 16.863 
0.825 

20.178 
0.119 2.2026 2.2223 2.2266 3.4471 

0.0161 
0.6020 
0.999 

h' = 0.05* 5.1479 - 16.588 
0.825 

19.856 
0.118 2.2029 2.2148 2.2300 3.4521 

0.157 
0.6043 
0.999 

LSGS 
Method 

h = 0.025* 5.1316 - 16.495 
0.825 

19.724 
0.118 2.2028 2.2114 2.2311 3.4532 

0.155 
0.6050 
0.999 

  5.1200 - 16.429 
0.825 

19.634 
0.118 2.2027 2.2090 2.2318 3.4540 

0.153 
0.6052 
0.999 

Extrapolated solns 5.1162 - 16.408 
0.825 

19.598 
0.118 2.2026 2.2064 2.2319 3.4543 

0.152 
0.6054 
0.999 

Benchmark 
solutions 

Davis [55] 
5.071 - 16.178

0.823 
19.617
0.119 2.243 2.243 2.238 3.528 

0.143 
0.586 

1 

*see extrapolation equation (5.22) 
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Table 5.3 Comparison of Results for Buoyancy-Driven Flow at Ra = 105

 

 Mesh 
Size mid

ψ  max
ψ  
x, y 

umax
z 

vmax
x uN  21Nu 0Nu  maxNu  minNu

0.05 9.6258 10.2281 
0.3, 0.65 

40.665 
0.857 

75.259 
0.067 4.244 4.310 4.295 6.817 

0.14 
0.794 
0.967 

30.03&  9.4705 10.0099 
0.3, 0.644 

39.039 
0.860 

70.264 
0.064 4.275 4.332 4.341 6.847 

0.106 
0.840 
0.982 

LSGS 
Method 

0.025 9.4183 9.9319 
0.3, 0.625 

38.480 
0.86 

68.846 
0.064 4.281 4.337 4.361 6.873 

0.105 
0.847 
0.999 

 
h' = 

60.01& * 9.3817 9.8743 
0.3, 0.617 

38.088 
0.86 

68.071 
0.064 4.287 4.341 4.376 6.916 

0.103 
0.850 
0.999 

 h = 
0.0125* 9.3690 9.854 

0.300, 0.615
37.953 
0.861 

67.761 
0.064 4.289 4.343 4.381 6.926 

0.101 
0.851 
0.999 

Extrapolated solns 9.353 9.8268 
289, 0.614

36.783 
0.86 

67.458 
0.64 4.291 4.344 4.386 6.960 

0.098 
0.852 

1 
Benchmark 

solutions 
Davis [55] 

9.111 9.612 
0.285, 0.601

34.73 
0.855 

68.59 
0.066 4.519 4.519 4.509 7.717 

0.081 
0.729 

1 

*see extrapolation equation (5.22) 
 
 

Table 5.4 Comparison of Results for Buoyancy-Driven Flow at Ra = 106

 

 Mesh 
size mid

ψ  max
ψ  
x, y 

umax
z 

vmax
x uN 21Nu 0Nu  maxNu  minNu

0.025 16.845 17.3750 
0.15, 0.55 

69.063 
0.842 

238.535 
0.038 8.655 8.673 8.619 16.464 

0.068 
0.905 
0.98 

0.02 16.728 17.1730 
0.16, 0.55 

68.303 
0.845 

230.296 
0.038 8.673 8.705 8.664 16.613 

0.057 
0.973 
0.999 

LSGS 
Method 

60.01&  16.663 17.1005 
0.15, 0.55 

67.892 
0.847 

226.419 
0.038 8.682 8.713 8.684 16.603 

0.05 
1.031 
0.991 

 h' = 
0.0125* 16.598 17.0051 

0.15, 55 
67.488 
0.848 

223.870 
0.038 8.691 8.726 8.705 16.588 

0.047 
1.042 
0.999 

 h = 0.01* 16.568 16.962 
0.15, 0.540

67.303 
0.849 

222.465 
0.038 8.695 8.732 8.715 16.621 

0.046 
1.045 
0.999 

Extrapolated solns 16.511 16.9046 
0.150, 0.539 66.982 220.86 8.702 8.737 8.729 16.809 

0.044 
1.047 
0.999 

Benchmark 
solutions 

Davis [55] 
16.32 16.75 

0.151, 0.547
64.63 
0.850 

219.36 
0.0379 8.800 8.799 8.817 17.925 

0.0378 
0.989 

1 

*see extrapolation equation (5.22) 
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Fig. 5.1 Computational domain and the boundary conditions for buoyancy-driven flow  
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  (c)      (d) 
 

Fig. 5.2 Contour maps of stream function ψ : (a) Ra = 103; contours at -1.1739 
(0.1174) 0, (b) Ra = 104; contours at -5.1199 (0.5112) 0, (c) Ra = 105; contours at 
-9.7780, -8.80 (0.9778) 0, (d) Ra = 106; contours at -16.49, -14.84 (1.649) 0 

 

 

 76



 

 

 

 

 

 

 

 

    

 

(a)      (b) 

 

 

 

 

 

 

 

   (c)      (d) 

Fig. 5.3 Contour maps of temperature T: (a) Ra = 103, (b) Ra = 104,  (c) Ra = 105,    
(d) Ra = 106 contours at 0.0 (0.1) 1.0 for all. 
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(a)      (b) 

 

 

 

 

 

 

 

   (c)      (d) 

Fig. 5.4 Contour maps of horizontal velocity u: (a) Ra = 103; contours at -3.6478 
(0.72956) 3.6478, (b) Ra = 104; contours at -16.440 (3.2880) 16.440, (c) Ra = 105; 
contours at -43.0 (8.6) 43.0, (d) Ra = 106; contours at -135.756 (27.151) 135.756 
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   (a)      (b) 

 

 

 

 

 

 

 

   (c)      (d) 

Fig. 5.5 Contour maps of vertical velocity v: (a) Ra = 103; contours at -3.7058 
(0.74116) 3.7058, (b) Ra = 104; contours at -19.640 (3.928) 19.640, (c) Ra = 105; 
contours at -68.2 (13.64) 68.2, (d) Ra = 106; contours at -221.31 (44.262) 221.31 
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   (a)      (b) 

 

 

 

 

 

 

 

   (c)      (d) 

Fig. 5.6 Contour maps of vorticity ω: (a) Ra = 103; contours at -32.352 (8.354) 
51.19, (b) Ra = 104; contours at -124.10 (54.84) 424.3, (c) Ra = 105; contours at    
-600 (322.0) 2600, (d) Ra = 106; contours at -3165.8 (1827.14) 15105.6 
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Fig. 5.7 Convergence-rate plots: (a) umax  (b) vmax

 Ra = 103, ∆ Ra = 104,   Ra = 105 and   Ra = 106
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Ra = 106, n = 1709, p = 5.88×105
 

Ra = 105, n = 849, p = 1.99×105

Ra = 104, n = 1143, p = 1.94×105 

 
 
 
 
 
 

Ra = 103, n = 1490, p = 1.87×105
 
 
 
 
 
 
 
 
 
 

 
Fig. 5.8 A typical convergence plot using 40×40 mesh (l2-norm of residual → 10-6) 
n : number of time steps,  p : number of pcg-iterations 
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CHAPTER 6 

LEAST-SQUARES/GALERKIN SPLIT FINITE ELEMENT METHOD FOR 
COMPRESSIBLE FLOWS 

 

6.1 Introduction 

The search for stabilized methods for compressible flows started in 1970s and 

first significant contribution in that direction came from Brooks and Hughes [12], 

though applied to convection-diffusion and incompressible Navier-Stokes equations, 

was called SUPG (Streamline Upwind Petrov-Galerkin) method. The SUPG method is a 

residual based upwinding technique (hence variationally consistent), aimed at 

stabilizing Galerkin finite element methods based on equal order interpolations. The 

effect of the SUPG terms on the equation is to transform the original Galerkin method 

into a physics-adaptive Petrov-Galerkin formulation. Later Tezduyar and Hughes [62, 

63] developed the first finite element compressible flow formulation based on 

conserved variables. A more robust formulation was needed to capture shock waves in 

compressible flows. Michel Mallet along with Hughes and Mizukami [64] developed 

shock capturing operators.  Le Beau [65] revisited the original SUPG formulation for 

compressible flows and developed shock capturing operators in conserved variables. 

Shakib in his thesis published in [66, 67] gave second stabilized method to 

achieved popularity, namely, Galerkin/least-squares or GLS method.  Ken Jansen [68-

70] developed entropy consistent formulation and was first to apply GLS to turbulent 
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compressible flows. This idea was extended to k-∈ turbulence model by Guillermo 

Hauke [71]. He generalized stabilized compressible flow methods to an arbitrary set of 

variables. He also used physical variables in transonic flows with shocks and thereby 

dispelled myths from the finite difference literature that only conserved variables were 

appropriate for capturing the shocks.  

Over the years, significant progress has been made in the field of compressible 

flows. These include time-accurate local time-stepping techniques [72], large scale 

parallel 3D computations [73-75], unified formulation for compressible and 

incompressible flows [76] and shock capturing with multi-scale spatial discretization 

[77] etc. to name a few.   

The LSGS formulation described in previous chapters has inherent streamline 

upwinding term. In this section LSGS formulation based on primitive variables of (ρ, u, 

v, T)T has been used to solve a couple of benchmark problems in supersonic and 

transonic flow. 

6.2 Mathematical Formulation 

6.2.1 Governing Equations 

The complete Navier-Stokes equations governing an unsteady, compressible, 

viscous laminar flow are given as: 
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Since the governing equations above are in (ρ, u, v, p)T form, we need to reformulate 

above equations and get non-dimensionalized equations in (ρ, u, v, T)T form. Using the 

following non-dimensionalization parameters: 
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Here variables with ′ on top are non-dimensional variables. After non-dimensionalizing 

and reformulating the governing equations in (ρ, u, v, T)T can be written similar to 

Bristeau [78] as: 

( ) ( )

( ) ( )

( ) ( )VF
ρRe
1

y
T

x
T

ρRePr
γ

y
v

x
uT1γ

y
Tv

x
Tu

t
T

f
y
v

x
u

y3
1

y
v

x
v

ρRe
1

y
T1γ

y
ρ

ρ
T1γ

y
vv

x
vu

t
v

f
y
v

x
u

x3
1

y
u

x
u

ρRe
1

x
T1γ

x
ρ

ρ
T1γ

y
uv

x
uu

t
u

0
y
v

x
uρ

y
ρv

x
ρu

t
ρ

2

2

2

2

y2

2

2

2

x2

2

2

2

∇+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

−+
∂
∂

+
∂
∂

+
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

−+
∂
∂

−+
∂
∂

+
∂
∂

+
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

−+
∂
∂

−+
∂
∂

+
∂
∂

+
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

 (6.3) 

For convenience the ′ symbol atop non-dimensional variables has been dropped from 

the governing equations. In the equations above Re and Pr are the similarity parameters 
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the Reynolds number and the Prandtl number given as 
µ

ρ LU∞∞  and 
k
C pµ

 respectively. 

Here k is the thermal conductivity, µ the viscosity and Cp the specific heat at constant 

pressure, for the fluid. F(∇V) is the non-dimensional energy dissipation term given by: 
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6.2.2 Least-Squares/Galerkin Split Formulation for Compressible Flows 

LSGS method is based on time-dependent formulation of Navier Stokes 

equations. Using Euler backward differences for time derivatives as  
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The energy-dissipation term, F(∇V) in the equation (6.3) was linearized in time as  
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where terms with n  are evaluated at the previous time level. Now with Euler-

backward discretization for spatial derivative and linearizing rest of non-linear terms in 

time we get the matrix form of the system  

fU 1n =+ L  (6.7) 

where U = (ρ, u, v, T)T is the vector of unknowns, the operator L  is given as 
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f the right hand side vector (see Appendix D) and nV
r

is the velocity field vector at 

previous time step, I an m×m identity matrix, m being number of nodes per element and 

N is the basis function set. The residual vector is given as  

fU 1n −= + L  R  (6.9)  

The residual is minimized using a suitable weighting operator that comes from LSFEM 

applied to first order terms of the governing equations. As explained in section 3.4, we 

get the equivalent Galerkin form the Euler-Lagrange formulation resulting from 

application of LSFEM to first order portion of the governing equations.  Once we find 

the Galerkin form, we add the left out second order terms of the NS equations and apply 

Galerkin method to complete equation. For linear elements it is equivalent as treating 

the weighted residual of (6.9) with weighting operator S as 

∫ =−Ω
+ 0dΩfUN 1nT )()( LS  (6.10) 
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Where is obtained from taking first order terms of governing equations (see 

Appendix D). Introducing the finite element approximation 

S

1n
i

m

i
i

1n
h

1n UNUU +++ ∑=≈  (6.11) 

where m is the number of nodes per element and Ni is the element shape function 

associated with ith node. Substituting the approximation into the weak formulation in 

(6.10) leads to linear algebraic equations 

[K]{Un+1} = {F} (6.12) 

Global stiffness matrix [K] and the vector {F} result from assembling the element 

stiffness matrices and vectors respectively given by 

.dΩ f)N(fe;dΩ )N ()N(ke
ee Ω

T
ijΩ

T
i ∫=∫= SLS   (6.13) 

Detailed derivation of the elements of the matrix ke and vector fe and the introduced 

constants a, b, c and d is given in Appendix D. Weighting operator ensures split 

treatment to first order terms and second order terms in the governing equation. Thus, 

the first order term are treated like LSFEM and the second order viscous terms get 

treated similar to GFEM. Integrals containing second order terms are resolved the 

Galerkin way through integration by parts. Subsequent terms containing second order 

derivatives are dropped, as is the standard practice [35] to ignore computationally 

expensive higher order derivatives for linear elements. 

S

6.3 Compressible Benchmark Problems 

Test problems of steady supersonic laminar viscous flow over a flat plate and 

over NACA0012 airfoil were explored. 
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6.3.1 Supersonic Viscous Flow over a Flat Plate 

This test case originally solved by Carter [79], is extensively used to test the 

performance of the schemes for a viscous supersonic flow over flat plate. This problem 

consists of a Mach 3 flow over the plate at a Reynolds number of 1000 based on the 

length of the plate. The Prandtl number, Pr is taken as 0.72. The boundary conditions 

used are as follows: 

ρ = 1.0, u = 1.0, v = 0, T = T∞ = ( ) 21
1

∞− Mγγ
 at the inlet and top boundary. On the 

segment in front of the plate v = 0. On the plate surface u = v = 0 and T = Ts  was used 

and no boundary conditions were applied at the exit. The temperature of the plate is 

assumed constant and equal to 
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                                                    (6.14) 

Fig. 6.2a shows the structured mesh used in the analysis with 7623 nodes with 7448 

bilinear quadrilateral elements. This mesh is clustered in such a way as to have enough 

layers of nodes in the boundary layer.  

6.3.2 Flow over NACA 0012 Airfoil 

Laminar viscous flow was simulated over a NACA 0012 airfoil in subsonic, 

transonic and supersonic Mach number regime. In the first case, subsonic flow at M∞ = 

0.5 was simulated at an angle of attack, α of 0° at a Re = 2000. In second case transonic 

flow at M∞ = 0.8, α = 10° at Re = 500 was simulated. In third case flow at M∞ = 1.2, α = 

0° at Re = 1000 was tried. An unstructured mesh (Fig. 6.4) consisting of 57191 
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quadrilateral elements and 57799 nodes was used. Mesh was constructed very fine on 

the surface in order to capture boundary layer.   

6.3.2.1 Boundary Conditions  

Transonic and supersonic viscous flows over NACA0012 airfoil are considered. 

For these flow regimes, the Navier-Stokes equations form a mixed parabolic-hyperbolic 

set of partial differential equations. The different types of boundary conditions in these 

cases are discussed below. 

6.3.2.1.1 Subsonic Flow 

Boundary conditions are normally determined by performing one dimensional 

characteristic analysis normal to the boundary. The sign of the Eigen values determine 

what conditions may be specified. Subsonic inflow typically has three Eigen values 

(wave speeds) directed into the domain and one having negative slope is directed out of 

the domain. Therefore three variables may be specified and one must be extrapolated.  

 At the subsonic inflow boundary, the boundary conditions therefore are imposed 

by specifying the velocity components and the static temperature. Pressure (or density) 

is generally extrapolated. 

 At the subsonic outflow boundary ( ), however, situation is completely 

reversed. Three wave speeds are directed out of the domain and one is directed into the 

domain. Three variables therefore must be extrapolated and one be specified. Generally 

u, v, w and T are extrapolated and density or pressure is specified. 

+
∞Γ

 On the body surface, boundary conditions for viscous flows are much simpler 

than those for inviscid flows. At the surface the no-slip, isothermal boundary condition 
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is applied. The no-slip condition is implemented simply by specifying appropriate 

essential boundary conditions for the momentum components of the equation system. 

The isothermal boundary condition is implemented as  

  ( )
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⎛ −
+= ∞∞

2

2
11 MTT γ   (6.15) 

6.3.2.1.2  Supersonic Flow 

 A supersonic flow has all four characteristics directed into the flow domain. 

Therefore all the four state variables need to be specified. 

 The situation at the supersonic outflow boundary is exactly opposite, where all 

the characteristics are directed out of domain. Therefore all the state variables must be 

extrapolated. 

 At the body-surface the boundary conditions are the same as in subsonic flow. 

6.3.2.2       Boundary Conditions for the Test Case 

 Based on the discussion above, following boundary conditions were applied for 

the test case of flow over NACA0012 airfoil (see Fig 6.1). 
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Fig. 6.1 Typical domain and boundaries for flow over an airfoil 
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In finite element methods Neumann boundary conditions are implemented by not 

specifying any boundary conditions. 

6.4 Results and Discussion 

6.4.1 Supersonic Viscous Flow over a Flat Plate  

Mach 3 viscous flow over a flat plate was simulated. Results are shown in Figs. 

6.2 and 6.3. Pressure distribution along the plate is compared with that from Carter 

[79] in Fig. 6.2b. Mach number and pressure contours are displayed in Figs 6.2c and 

6.2d. Variation of the dependent variables at the exit plane is compared with Carters 

results in Figs 6.3. Carter’s results for grid size 0.025 along with the similar solutions 
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for comparison were digitally scanned from reference [79]. Reasonably good agreement 

with the published results can be observed.  

6.4.2 Flow over NACA 0012 Airfoil  

 Flow over the airfoil was simulated in subsonic, transonic and supersonic Mach 

numbers. Fig. 6.5 presents subsonic results at M∞ = 0.5, α = 0° at Re = 2000. Mach 

number and pressure contours followed by Cp-distribution on the airfoil surface are 

displayed. The pressure distribution compares well with the published results [90] 

although they are for a Re = 5000. Results from transonic flow at M∞ = 0.8, α = 10° at 

Re = 500 are shown in Fig 6.6 in comparison with Tang’s results [91]. Reasonably good 

agreement can be observed. The supersonic results at M∞ = 1.2, α = 0° at Re = 1000 

from are shown in Fig 6.7. The transonic results do not show clear presence of local 

normal shock as the highest local Mach number is around a low 1.13. Mach and 

pressure contours for supersonic case clearly show formation of bow shock upstream of 

the airfoil. 

6.5 Conclusions 

Least-squares/Galerkin split finite element method that treats first order terms the least 

squares way and second order terms the Galerkin way has been successfully applied to 

compressible flow problems of flow over flat plate and flow over a NACA 0012 airfoil 

in subsonic, transonic and supersonic Mach number regimes. A density, velocity, 

temperature formulation in non-conservative form was used. C0-continuous elements 

for ρ, u, v and T was used. Reasonably good results have been achieved.  
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Fig. 6.2 Results for supersonic laminar viscous flow over a flat plate using LSGS finite 
element method (M = 3.0, Re = 1000 based on plate length): (a) Mesh used (7623 nodes, 
7448 elements), (b) Pressure distribution on the wall, (c) Pressure contours, (d) Mach contours  
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Fig. 6.3 Computed variables at the exit plane, results using LSGS method 
(⎯ Similar solutions, ⎯ Carter [79], symbols LSGS method) 

 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Fig 6.4 Mesh used for Flow over NACA0012 Airfoil 
(57191 quadrilateral elements, 57799 nodes) 
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Fig 6.5 Result plots for subsonic flow over NACA0012 airfoil, (M∞= 0.5, α = 0º and 
Re = 2000): (a) Mach number contours, (b) pressure contours, (c) Cp-distribution    
(⎯ LSGS Method, О Mavriplis [90] at Re = 5000)  
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Fig 6.6 Result plots for subsonic flow over NACA0012 airfoil, (M∞= 0.8, α = 10º 
and Re = 500): (a) Mach number contours, (b) pressure contours, (c) Cp-
distribution (― LSGS Method, О Tang [91])  
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Fig 6.7 Result plots for subsonic flow over NACA0012 airfoil, (M∞= 1.2, α = 0º and 
Re = 1000): (a) Mach number contours, (b) pressure contours, (c) Cp-distribution 

 



 

 

 

CHAPTER 7 

FUTURE AREAS OF RESEARCH 

   

7.1 Introduction 

This chapter contains discussion on a few among many possible areas in which 

work described in previous chapters can be extended. We have considered 

incompressible flow problems at low to moderate Reynolds numbers and Mach 

numbers ranging from subsonic to supersonic. LSGS Method can be applied to flow 

case of vanishingly small Reynolds number, where the viscous forces are much larger 

than the inertial forces. This interesting flow is called Stokes flow. The fact that there 

exists exact solution for the Stokes problem can be exploited to carry out convergence 

study for LSGSFEM.  

Presence of significant temperature differences in the flow field makes the flow 

compressible even at negligible Mach number. The area of low speed compressible 

flows which is very important in heat transfer problems is a relatively neglected area in 

FEM. The LSGS method can be applied to simulate Natural convection flows where 

low Mach number approximation greatly simplifies the governing equations.  

All the benchmark problems simulated in present thesis were laminar flow 

problems at low to moderate Reynolds numbers. As the Reynolds number increases 

above a critical value, flow becomes turbulent and we must use Governing equations 
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with turbulence terms. Majority of the flows of practical importance are turbulent flows. 

LSGS method can be developed for turbulent flows. 

In the thesis the system of linear equations was solved using pre-conditioned 

conjugate gradient method. The number of inner iterations depends on the type of pre-

conditioner used. We used diagonal pre-conditioner, which is the simplest and crude 

pre-conditioner. The performance of the method can be greatly enhanced by using more 

sophisticated and efficient pre-conditioner. In the following segments above mentioned 

works will be explained in more detail. 

Majority of the practical problems are three-dimensional, therefore the next 

logical step would be to extend the LSGS method to 3D applications. 

7.2 Few Possible Future Areas of Research 

7.2.1 Application of LSGS Method to Stokes Flow 

Flow of a fluid in the limit of vanishingly small Re, where the viscous forces are 

much larger than the inertial forces is called Stokes Flow. It assumes that the flow is 

low speed, so that the convective effects can be neglected. It is also known as ‘Creeping 

Flow’. It is a limiting case of Navier-Stokes flow and given as 
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The variables are non-dimensionalized and Re is the Reynolds number. Applying LSGS 

method to above equations gives following Euler-Lagrange form of equations 
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x-momentum: 
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y-momentum: 
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We have exact solution for the Stokes problem. One such exact solution is for 

polynomial divergence –free velocity-pressure field studied by Oden and Jacquotte [80] 
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Since we have exact solution for Stokes problem, This aspect can be exploited for 

convergence study of LSGS method. 

7.2.2 Application of LSGS Method to Low Speed Compressible Flows 

Natural convection flows, despite being low speed flows are compressible due to 

temperature and density variation. These buoyancy-driven flows, especially two-

dimensional cases have been the subject of intense study over last few decades. It has 
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been extensively explored in finite differences and finite volume methods less so in 

finite element methods. Buoyancy-driven flow inside a square domain serves as model 

for many practically important real life applications. For example strong heat radiation 

inside chemical and nuclear reactors causes low speed compressible flows.  

Many researchers have studied buoyancy-driven flows inside a square cavity 

with differentially heated vertical side walls. Studies by Davis [55], Chenoweth [56] are 

important in this regard. Other important works are those by Tang [61] and Yu [20] who 

used LSFEM to solve natural convection flow inside a square domain.  

LSGS Method can be applied to solve natural convection flow inside a square 

domain using low Mach number approximation which greatly simplifies the governing 

equations. The governing equations for time-dependent two-dimensional compressible 

viscous flow with thermal convection can be written in non-dimensional form as: 

ρv
Fr2

1)M(γ
y
v

x
u

Re3
1)M2(γ

x
v

y
u

2
1

y
v

x
u

Re
1)M(γ2

y
T

x
T

PrRe
1

y
pv

x
pu1)M(γ

y
Tv

x
Tu

t
Tρ

ρ
Fr2

1
y
v

x
u

y3
1

y
v

x
v

Re
1

y
p

y
vv

x
vuρ

t
vρ

y
v

x
u

x3
1

y
u

x
u

Re
1

x
p

y
uv

x
uuρ

t
uρ

0
y
v

x
uρ

y
ρv

x
ρu

t
ρ

222

2222

2

2

2

2
2

2

2

2

2

2

2

2

2

∈
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂−

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂−

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

∈
−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

∞∞

∞

∞

   (7.6) 

 102



 

and the equation of state after considering pressure p as sum of mean background 

pressure p  and small variation  i.e. p̂ ppp ˆ+= p such that = ρ∞RT∞, the background 

pressure can therefore be dropped from spatial derivatives. With this interpretation of 

pressure we get non-dimensional form of the equation of state as: 

TMp ργ =+ ∞
2ˆ1  (7.7) 

Appropriate boundary conditions have to be applied. . The symbol ∈ is the temperature 

difference parameter given as 
CH

CH

TT
TT

T
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=

∆
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∞2
−

. This also means that reference 

temperature can be taken as the mean of temperatures at the two walls. The symbols 

M∞, Pr, Re and Fr are the dimensionless numbers called Mach number, Prandtl number, 

Reynolds number and Froude number respectively. These are given as: 
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 respectively. Here Ra, 

Rayleigh number is another dimensionless number associated with the heat transfer 

within the fluid and assumes importance here due to buoyancy-driven convection. The 

Rayleigh number, given as 
να

32 gLRa ∈
=  is the ratio of the buoyancy force to the 

viscous force in a medium. Thermal diffusivity, α and ratio of specific heats, γ are given 

as 
v

p

p C
and

C
k

==
∞

γ
ρ

α
C

 respectively. Now we apply low Mach number 

approximation. For very low speeds M∞ ≈ 0, therefore all the terms in the governing 
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equations (7.6) and (7.7) containing M∞ can be dropped and the simplified governing 

equations become: 
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with equation of state now taking form, 

T
1

=ρ   (7.9) 

From equation (7.9), we have T
T

∂−=∂ 2

1ρ , which along with equation (7.9) can be 

used to eliminate ρ from the governing equations and after some rearrangements we can 

write them in the final form as: 
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LSGS method can easily be applied to above equations simplified using the low Mach-

number approximation 
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7.2.3 Application of Turbulence Modeling on LSGS Method 

 A flow can be classified as laminar or turbulent. Below a critical Reynolds 

number (depending on the particular flow conditions and geometry), the flow is laminar 

and remains smooth and regular. At this critical value called ‘critical Reynolds number’ 

flow enters a transition region in which the instabilities begin to appear. These 

instabilities cause turbulence as the Reynolds number increases further.  

 Turbulence has various important consequences such as increased skin friction, 

delay in flow separation, increased heat and mass transfer etc. In principle, turbulent 

solutions may be obtained from the unsteady Navier-Stokes equations. However, with 

the exception of few simple flows this would require a very fine grid and vast 

expenditure of computational resources. Instead, average values for the unknown 

variables are sought, by means of time (or Reynolds) averaged Navier-Stokes equations. 

These contain additional terms, which are modeled by further equations either algebraic 

of differential.  

 7.2.3.1     Reynolds Averaged Navier-Stokes Equations 

We wish to obtain time-averaged values of unknowns, ignoring the fluctuations 

caused by turbulent effects. Hence we split the unknowns (e.g. u) into two parts 

 uuu ′+=                                                                            (7.11) 

where u  is either the time average 
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2
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                                                          (7.12) 

for a suitable time-scale Τ , or ensemble average 
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which is obtained by repeating the transient process many times. Here ui(t) denotes the 

measured value of u at time t in the ith experiment. These two averaging techniques are 

generally equivalent for most of the turbulent flow cases. It follows that for the 

fluctuating term , u′

  0=′u                                                                        (7.14) 

This type of averaging is adequate for incompressible flows, but for compressible flows, 

the resulting averaged equations contain some complex terms which can be avoided by 

using Favre averaging, where the unknowns are weighted by the density. In this case 

  ''~ uuu +=  (7.15) 

where  is Favre average u~

  ∫
+

−
= 2

T

2
TT

t

t
duttu ττρ

ρ
)()(1)(~  (7.16) 

or in ensemble form, 
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We may also write (from 7,16) 

  
ρ
ρutu =)(~    (7.18) 

Using the conservative form of the Navier-Stokes equations, we wish to rewrite the 

equations in terms of the averaged quantities pTevu ~ and~,~,~,~,ρ . This is done by 

averaging the entire equation then simplifying. For example the continuity equation 
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becomes   

  ( ) 0, =+ iit uρρ  (7.19) 

where “,t” and “,i” denotes partial differentiation by t and xi respectively. Making use of 

(7.18) this can be written as 

  ( ) 0~
,, =+ iit uρρ                                                                       (7.20) 

No new term is introduced in continuity equation, but this is not the case in other 

equations due to the presence of the non-linear terms. The Reynolds averaged 

momentum equations 

 ( ) ( ) 0)( ,, =−++ jijijjiti VSpuuu
r

µδρρ                                     (7.21) 

where µ is the molecular viscosity and kkijijjiij uuuVS ,,, 3
2)( δ−+=

r
 after rearranging 

terms becomes 

 ( ) ( ) ( ) 0~~~~~~
,,, =−+′′′′++ jijjijjijiti VSpuuuuu µδρρρ       (7.22) 

introducing the Reynolds stress tensor uui ′′′′~~ρ  which has to be modeled. Similarly 

Reynolds averaged energy equation may be written as 
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This introduces more extra terms to be modeled. We are now faced with the well known 

closure problem - six equations  and many more unknowns to be determined, including 

the four (in 2D) components of Reynolds stress tensor and the turbulent flux terms 

appearing in (7.23).  
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A common approach is to make the assumption about the Reynolds stress tensor that it 

may be described in the same way as molecular viscous effects (the eddy viscosity 

hypothesis [82]), so that 

  ( ) ijijTji KVSuu δρµρ
3
2~~~ +−=′′′′   (7.24) 

where µT is the eddy viscosity and the turbulent kinetic energy K is defined by 

  iiuuK ′′′′= ~~
2
1   (7.25) 

Similarly the eddy diffusivity hypothesis assumes that the turbulent fluxes are 

proportional to the gradient of the mean values, so for example 
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T

T
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With the help of above we can write momentum and energy equations as 
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The turbulent Prandtl number PrT is a constant and the turbulent thermal conductivity is 

defined by  

  
T

T
vT ck

Pr
µγ=   (7.29) 
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This set of equations (7.20), (7.27) and (7.28) now only require additional modeling of 

the turbulent kinetic energy K and the eddy viscosity µT. Turbulence models which 

approximate these values are categorized by the number of additional differential 

equations they consist of. The most common types are zero, one, two equation models, 

but all models contain several constants which need to be empirically determined, by 

measuring quantities experimentally involving simple turbulent flows.  

 7.2.3.2     Types of Turbulence Models 

 This section contains discussion of the models used to obtain the eddy viscosity 

µT and the turbulent kinetic energy K, which are then used in the Reynolds averaged 

Navier-Stokes equations.  

7.2.3.2.1    Zero-Equation Models 

 Models in this category use only algebraic expressions to approximate the 

turbulent quantities. Typically the eddy viscosity is modeled as 

  TTT ulρµ =   (7.30) 

where lT is the turbulent length scale and uT is the turbulent velocity scale, which are 

obtained from local mean flow quantities. It is common to rewrite the Reynolds-

Averaged Navier-Stokes equations so that the term Kρ
3
2  appearing in (7.26) and (7.27) 

is absorbed into the definition of pressure and the diffusive term involving K is no 

longer present.  

 This type of model is more suited for flow near the wall, where diffusive effects 

dominate, since transport effects are ignored. One early model is that of Cebeci and 
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Smith [82], which splits the boundary layer into two regions, and defines the eddy 

viscosity for each region separately. One disadvantage of this model is the need to 

locate the boundary layer in order to determine the length scale in the outer region. The 

Baldwin-Lomax model [83] avoids this need, instead using the distribution of the 

vorticity to obtain the length scale. 

 For high Re flows which remain attached to the wall, these models produce 

good results, but can not accurately predict highly separated flows and turbulence in the 

wake. Since they are essentially algebraic models, they are computationally 

inexpensive, but require turbulent length and velocity scales. This requires the 

knowledge of the distance of each point from the wall surface (y) which is easily 

available when using structured mesh, but not when the mesh is unstructured. 

Mavripilis [84] introduced a method for using Baldwin-Lomax model with unstructured 

meshes by generating lines normal to the wall and interpolating solution values from the 

unstructured mesh points onto the normal mesh lines in order to obtain the necessary 

length scales. 

7.2.3.2.2    One-Equation Models 

 One-equation models, like algebraic models, make the approximation of (7.30) 

but in this case the turbulent velocity scale is usually defined to be 

  KuT =    (7.31) 

where the turbulent kinetic energy K is found from a transport equation. It is common to 

introduce the turbulence dissipation rate ε to indirectly represent lT, via the following 

equation 
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ε

2
3

KClT =     (7.32) 

for some constant C. The one-equation model of Wolfshtein [85] consists of a p.d.e. 

with K as unknown, with the length scale being determined in terms of y, the distance 

from the wall. Jansen et al [86] used the Norris-Reynolds model within the context of 

Galerkin least-squares finite element method. 

 All the models mention so far approximate the length scale in terms of y, hence 

are less suitable for unstructured mesh. In general, one equation models can cope with a 

wider range of flows than the algebraic models, although at extra expense, and some 

models like Baldwin-Barth model [87] have the ability to be used on unstructured 

meshes with relative ease. 

7.2.3.2.3 Two-Equation Models 

 Two-equation models eliminate the need to find the velocity and the length 

scales and instead rely on two transport equations to obtain values from which Tµ  may 

be found. The most common model is K-ε model where the two equations involve K 

and ε, the rate of dissipation of turbulent kinetic energy. The eddy viscosity is then 

determined from 

  
ε

ρµ
2KCT =  (7.33) 

The standard K-ε model is generally applicable in regions of fully developed turbulence, 

but not near wall boundaries. There are two ways of overcoming this. A low Reynolds 

number model incorporates extra terms into the ε equation, and redefines the eddy 

viscosity near walls. This approach requires particularly fine grid near the wall. The 
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second idea is to either employ a separate simplified model or impose logarithmic wall 

laws near the wall (a high Re model). 

 K-ε model by Jones and Launder [88] is one of the well known two-equation 

models. It can either be used as a low Re-model or can be simplified and used as high 

Re-model.  

 The advantages of two-equation models such as K-ε model are that they are 

applicable to a wide range of flows, and have been in use for over twenty years, so that 

their uses and limitations are well understood. However they are more difficult to 

implement than zero and one-equation models. Because they don’t require length scales 

to be determined algebraically from wall distances, K-ε models can be used on 

unstructured grids. 

7.2.4 Extension of LSGSFEM to 3D Applications 

 Only 2-d problems have been considered, but majorities of the practical 

problems are 3-d problems. Extension of LSGS method to 3-d should not be difficult 

although it would be a little complex. 

 The Navier-Stokes equations in 3-d are very similar to the 2-d version, with an 

additional momentum equation. The Various terms in the equation now have an 

addition term coming due to the third dimension. For example, the energy dissipation 

term in equation (6.4) in chapter 6 now becomes 
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where V = (u, v, w)T now. 

 In 2-d, we use triangles and quadrilaterals to form unstructured meshes, in 3-d it 

is going to be the tetrahedral and hexahedral elements. In 2-d we used Gaussian 

integration over the element-area, in 3-d it has to be carried out over the volume of the 

element. The assembly of the global stiffness matrix and the load vector remains the 

same.  

 So in principle, application to 3-d remains relatively simple, although the 

process would be far more expensive as we would be dealing with huge number of 

nodes. Parallel computation would be a required for 3-d applications.   

 7.2.5 Incorporation of a More Sophisticated Pre-Conditioner 

 The Pre-conditioned Conjugate Gradient solver was used with diagonal pre-

conditioner. Diagonal pre-conditioner is the simplest and crudest of pre-conditioners. 

The performance of the method and convergence greatly depends on the pre-conditioner 

used. With more sophisticated pre-conditioner like block pre-conditioner would greatly 

enhance the performance of the method. 
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CHAPTER 8 

SUMMARY 

 

In this thesis we presented a novel yet simple finite element method for 

incompressible and compressible Navier-Stokes equations. This method treats the first 

order terms in the governing equations the least-squares way and the second order 

derivative terms the Galerkin way by exploiting the benefits of integration by parts. The 

way it is formulated, it tends to combine the positives of both the least-squares method 

and Galerkin method and get rid of the negative aspects of them. The method is 

unconditionally stable for fully implicit and semi-implicit formulation. The stability 

analysis of the method has been done on the split time formulation, the precursor of 

LSGSFEM. This was possible because both the formulations give the same element 

stiffness matrices except for one term which has division by 2 which does not affect the 

stability characteristics.   

 When the unsteady form of the governing equations is used, a streamline 

upwinding term is introduced naturally by the least-squares method. The method is 

stable for convection-dominated flows and allows for equal-order basis functions for 

both pressure and velocity. In addition, the resulting system of equations is always 

symmetric and is solved using the conjugate gradient method with sparse matrix 

storage and standard pre-conditioners. Non-linear terms are treated effectively by 
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linearization in time. The stability and accuracy of the method have been demonstrated 

with preliminary results of few benchmark convection-diffusion and incompressible 

flow problems solved using low-order C0 continuous elements [28, 29] 

 The method has been amply validated for both incompressible and compressible 

flow regimes. In incompressible flow regime both steady as well as transient problems 

have been simulated and results compare very well with the published results. Apart 

from that method has been successfully applied to simulate the complex natural 

convection flow with Boussinesq approximation.  

 But few aspects need to be improved. Firstly, we have used a very simple and 

crude pre-conditioner. A more sophisticated pre-conditioner like block pre-conditioner 

would greatly enhance the convergence characteristics. So far we have applied 

LSGSFEM to two-dimensional problems at low to moderate Reynolds numbers. Most 

of the practical problems are three-dimensional and at high Reynolds numbers. 

Therefore the next logical direction for the method would be to incorporate turbulence 

modeling and application to 3D problems. 
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Let us first consider the diffusion equation  
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where d is the diffusion number given as 
2x
tk

∆
∆ , and 1ii1i

2 TT2TT −+ +−=δ . Using table 3.1 

of reference [35], equation (2) can be written as  

  n2n2 T)2/sind)1(41(T)2/sind41( 2
1

ξθ−+=ξθ+ +        (3) 

Amplification factor is given as 

  
2/sind41

2/sind)1(41
T

TG
2

2

n

n

1

2
1

ξθ+
ξθ−+

==
+

         (4) 

Similarly for the convection equation we have, for a linear case: 

   0
2
1

1

=∇+
∆
−

+
+

Ta
t
TT

n
n

          (5) 

θ-discretization and subsequent treatment lead to 

  

0
x

)TT(t)1(a
x

)TT(taTT

0
x

T)1(a
x

Ta
t
TT

2
1n2

1n

2
1n

2
12

1n

1ii
1n

1i
1n

i1n

n1n1n

=
∆
+

∆θ−+
∆
+

∆θ+−

=
∂

∂
θ−+

∂
∂

θ+
∆
−

++
+

+

−
+
−

+
+

+++

 

 117



 

  0)TT(
2

C)1()TT(
2
C)TT( 2

1
2
12

1n n2n1n21n1n =δ−δ
θ−

+δ−δ
θ

+− +++++
+

     (6) 

Where C is CFL number given by 
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Again with the help of Table 3.1, ref [35] equation (6) can be written as 
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For Euler backward Scheme, θ = 1, So 
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which after simplification the stability condition becomes   
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  ( ) 02/cos2/sinC 22 ≥ξ+ξ                    (11) 

Which is always true, Therefore backward Euler scheme is unconditionally stable. 

Similarly, for θ = 1/2, the Crank-Nicolson scheme, equation (9) becomes 
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Therefore the stability condition is 
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Which is always true, therefore Crank-Nicolson scheme is also unconditionally stable.
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The Governing equations for two-dimensional incompressible laminar flow is given by 
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From chapter 4, after discretizing spatial derivative using θ-method and the unsteady 

terms using Euler backward differences we write the weak form of the system as 

∫ =−Ω
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Where  and S  are the governing equation operator and weighting operator 

respectively given by 
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and which is obtained from taking first order terms of governing equations i.e. Euler 

equation part given by 
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Introducing the finite element approximation 
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Where m is the number of nodes per element and Ni is the element shape function 

associated with ith node. Substituting the approximation into the weak formulation in 

(B2) leads to linear algebraic equations 

[K]{Un+1} = {F} (B6) 

Global stiffness matrix [K] and the vector {F} result from assembling the element 

stiffness matrices and vectors respectively given by 
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The Governing equations for two-dimensional buoyancy-driven incompressible laminar 

flow in non-dimensional form is given by 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂

+
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

2

2

2

2

2

2

2

2

2

2

2

2

y
T

x
T

y
Tv

x
Tu

t
T

PrTRa
y
v

x
vPr

y
p

y
vv

x
vu

t
v

y
u

x
uPr

x
p

y
uv

x
uu

t
u

0
y
v

x
u

 (C1) 

with boundary conditions described in chapter 5. After discretizing unsteady terms and 

spatial derivative terms using Euler backward method the weak form of the system is 

∫ =−Ω
+ 0dΩfUN 1nT )()( LS  (C2) 

Where  and L S  are the governing equation operator and weighting operator 

respectively given by 
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The weighting operator S  is obtained by taking first order terms of governing 

equations and f in (C2) is the right hand side vector given by 
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Where m is the number of nodes per element and Ni is the element shape function 

associated with ith node. Substituting the approximation into the weak formulation in 

(C2) leads to linear algebraic equations 

[K]{Un+1} = {F} (C7) 

Global stiffness matrix [K] and the vector {F} result from assembling the element 

stiffness matrices and vectors respectively given by 
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The element stiffness matrix ke is given as 
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The element load vector, fe, each element of which is a 4×1 column vector is given as 
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The governing equations for compressible flows in (ρ, u, v, T)T form can be written 

similar to Bristeau [78] as: 
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where F(∇V) is the energy dissipation term, which in two dimensions is given by 
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Using Euler backward differences for time derivatives as  
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where terms with n  are evaluated at the previous time level. Using backward Euler 

discretization and linearizing rest of non-linear terms in time we get the matrix form of 

the system  

fU 1n =+ L  (D5) 

where U = (ρ, u, v, T)T is the vector of unknowns, the operator L  is given as 
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and the right hand side vector f is given as {ρn, un, vn, Tn}T. where nV
r

is the velocity field 

vector at previous time step, I an m×m identity matrix, m being number of nodes per 

element. The residual vector is given as 

fU 1n −= + L  R  (D7)  
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The residual is minimized using a suitable weighting operator that comes from LSFEM 

applied to first order terms of the governing equations. As explained in section 3.4, we 

get the equivalent Galerkin form the Euler-Lagrange formulation resulting from 

application of LSFEM to first order portion of the governing equations.  Once we find 

the Galerkin form, we add the left out second order terms of the NS equations and apply 

Galerkin method to complete equation. For linear elements it is equivalent as treating 

the weighted residual of (D7) with weighting operator S as 

∫ =−Ω
+ 0dΩfUN 1nT )()( LS  (D8) 

Where is obtained from taking first order terms of governing equations i.e. Euler 

equation part given by 

S

( )

( )

( )

( )

( )

( )
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

∇⋅+
∂
∂

−
∂
∂

−
∂
∂

−

∂
∂

−∇⋅+

∂
∂

−

∂
∂

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

−
∂
∂

−
∂
∂

−

∂
∂

−

∇⋅+
∂
∂

−

∂
∂

∇⋅+

=

n

n

n

n

V∆tI
xρ

∆tc
y3ρ

∆t4b
y

T1γ∆t

y
1γ∆tV∆tI

x
1γ∆t0

0
y

∆tρ

yρ
∆tc

x3ρ
∆t4a

x
T1γ∆t0

0
yρ

T1γ∆t

V∆tI
xρ

T1γ∆t
x

∆tρV∆tI

r

r

r

r

ReRe

ReRe

S

 (D9) 

 131



  

where a, b, c and d  are the simplifying constants introduced. These are given as 
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where Reynolds number and  the Prandtl number given as µLUρ ∞∞  and kCµ p  

respectively. Introducing the finite element approximation 

1n
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m

i
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h

1n UNUU +++ ∑=≈  (D11) 

where m is the number of nodes per element and Ni is the element shape function 

associated with ith node. Substituting the approximation into the weak formulation in 

(D8) leads to linear algebraic equations 

[K]{Un+1} = {F} (D12) 

Global stiffness matrix [K] and the vector {F} result from assembling the element 

stiffness matrices and vectors respectively given by 

 .dΩ f)N(fe;dΩ )N ()N(ke
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ke is the element stiffness matrix given by 
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where each  is itself a 4×4 matrix with i = 1, . . 4 and j = 1, . .  4. These are given as ijk
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and the RHS vector is  
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