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This paper introduces a new family of generalized lambda distributions (GLDs) based on a method
of doubling symmetric GLDs. The focus of the development is in the context of L-moments and
L-correlation theory. As such, included is the development of a procedure for specifying double
GLDs with controlled degrees of L-skew, L-kurtosis, and L-correlations. The procedure can be
applied in a variety of settings such as modeling events and Monte Carlo or simulation studies.
Further, it is demonstrated that estimates of L-skew, L-kurtosis, and L-correlation are substantially
superior to conventional product-moment estimates of skew, kurtosis, and Pearson correlation in
terms of both relative bias and efficiency when heavy tailed distributions are of concern.

1. Introduction

The conventional moment-based family of generalized lambda distributions (GLDs) is often
used in various applied mathematics contexts to model and describe data by a single fun-
ctional form [1, page 5]. Some examples include modeling non-log-normal security price dis-
tributions [2], biological and physical phenomena [3], and solar radiation data [4]. The GLD
is also a popular tool for generating random variables for Monte Carlo or simulation studies.
Some examples include studies in such areas as operations research [5], microarray research
[6], and structural equation modeling [7].

The family of GLDs is based on the transformation [1, page 21], [9, 11], [10, page 127]

ub —(1- u))‘4

q(u) =\ + " ,

(1.1)

where u is uniformly distributed on the interval (0, 1). The parameters A; and A, are location
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Figure 1: A graph of a standardized GLD distribution (a; = 0, a, = 1) based on (1.1) and (1.2). The GLD

has skew of a3 = 3 and kurtosis of as = 65. The solutions for \;,_4 are based on solving the equations in [1,
page 57].

and scale parameters, while 13 and 4 are shape parameters that determine the skew and kur-
tosis of a GLD. The pdf and cdf associated with (1.1) can be expressed as [10, page 127]

- 1
faw (q(w)) = f(u) = <q(u), W)’ (1.2)
Fou (q(u)) = F(u) = (q(u),u), (1.3)

where f : R — R?and F : R — R? are parametric forms of the pdf and cdf with the mappings
u— (x,y) and u — (x,v) with x = q(u), y = 1/q/(1), v = u, and where 1 and u are the regular
uniform pdf and cdf, respectively. It is assumed that 4'(1) > 0 in (1.2) to ensure a valid pdf
that is, the transformation in (1.1) is strictly increasing. An essential requirement for a valid
pdfis that A, A3, A4 in (1.1) all have the same sign [1, page 24]. For more specific details on the
parameter space and conditions related to valid GLDs, see Karian and Dudewicz [1, pages
21-47]. Provided in Figure 1 is an example of a valid GLD pdf based on (1.1) and (1.2).

Symmetric GLDs are produced for the case where A3 = 14 in (1.1) and where the mean
(1), variance (a%), skew (a3), and kurtosis (a4) can be determined from [8]

a; = Ay, (1.4)
2_2/(1+2)L3)—2ﬁ[1+)t3,1+13] 15
th— J\% 7 ( * )
a; =0, (1.6)

6P[1+2X3,1+2A3] —4B[1 + A3, 1 +3A3] —4P[1+ 343, 1+ A3] +2/(1 + 443)
ay =
A

. 1)

Numerical solutions for A, and A3 in (1.5) and (1.7) can be found in [1, Appendix B], which are
associated with standardized GLDs (i.e., a1 = A1 =0, a% = 1). Note that the term S in (1.5) and
(1.7) represents the complete beta function where the arguments cannot be negative. As such,
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Az =0.6614363, A\r = —0.2267675,6 = 1/+/2m, a1 = 0.188, ap = 1.224

Skew: az =3 Kurtosis: ay = 65
as 95 C.L SE ay 95 C.L SE
2.031 2.0151,2.044 0.0078 9.555 9.362, 9.735 0.0973
L-Skew: 13 = 0.214271 L-Kurtosis: 74 = 0.175547
T 95 C.L SE Ty 95 C.L SE
0.2119 0.2114, 0.2125 0.0003 0.1742 0.1737,0.1747 0.0002

Figure 2: A graph of a double GLD distribution based on (1.2) and (1.8). The values of A, and Az were
determined based on the equations for a3 and a4 in the appendix. The values of 73 and 74 were determined
based on (2.10) and (2.11) in Section 2. The estimates (a34; T34) and bootstrap confidence intervals (C.Ls)
were based on resampling 25,000 statistics. Each sample statistic was based on a sample size of n = 250.

for the kth moment to exist then we must have A3 > -1/k [8, 9, 11]. Thus, the condition
A3 > —1/4 ensures that the first four moments exist.

We propose a new family of asymmetric GLDs based on a technique referred to herein
as doubling symmetric GLDs. More specifically, a family of double GLDs can be created by
selecting a pair of constants (A2, Az) and transforming separately for u <1/2and u > 1/2 as
follows:

<uM -(1- u)“) forO<u< 1
, for u< =,
(6)L£22’)‘£) 2

<u*k -(1- u))”‘>
(6)LR227)‘R)

g(u) = (1.8)

1
, for = <u<l,
or 5 <u

where 1, (Ag) is the nonzero shape parameter for the left (right) side of a distribution and
6 is the (positive) parameter that determines the height of the double GLD at u = 1/2. Pro-
vided in Figure 2 is an example of a double GLD pdf based on (1.2) and (1.8). Inspection of
Figures 1 and 2 clearly indicates that these two GLDs are markedly different even though both
distributions have the same values of skew (a3 = 3) and kurtosis (a4 = 65). Note that the val-
ues of A, and Mg in Figure 2 were determined based on the equations for a3 and a4 given in
the appendix.

Conventional moment-based estimators (e.g., @3 4) have unfavorable attributes insofar
as they can be substantially biased, have high variance, or can be influenced by outliers. For
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example, inspection of Figure 2 indicates, on average, that the estimates of a34 are only
67.70% and 14.70% of their associated population parameters. Note that each estimate of @34
in Figure 2 was calculated based on samples of size n = 250 and the formulae currently used
by most commercial software packages such as SAS, SPSS, and Minitab, for computing skew
and kurtosis.

L-moment-based estimators, such as L-skew (73) and L-kurtosis (74), have been intro-
duced to address the limitations associated with conventional moment-based estimators [12,
13]. Specifically, some of the advantages that L-moments have over conventional moments
are that they (a) exist whenever the mean of the distribution exists, (b) are nearly unbiased for
all sample sizes and distributions, and (c) are more robust in the presence of outliers. For ex-
ample, the estimates of 734 in Figure 2 are relatively much closer to their respective para-
meters 734 with much smaller standard errors than their corresponding conventional mo-
ment-based analogs @34. More specifically, the estimates of 734 that were simulated are, on
average, 98.89% and 99.23% of their parameters.

In the context of multivariate data generation, the methodology has been developed
for simulating symmetric (or asymmetric) GLDs based on (1.1) with specified Pearson corre-
lation structures [2, 14]. This methodology is based on conventional product moments and
the popular NORTA (NORmal To Anything, [15]) approach, which begins with generating
multivariate standard normal deviates. However, the NORTA approach is not without its
limitations. Specifically, one limitation arises because the Pearson correlation is not invariant
under nonlinear strictly increasing transformations such as (1.1). As such, the NORTA ap-
proach must begin with the computation of an intermediate correlation (IC) matrix, which is
different than the specified correlation matrix between the GLDs. The purpose of the IC
matrix is to adjust for the effect of the transformation in (1.1) such that the resulting GLDs
have their specified skew, kurtosis, and Pearson correlation matrix.

Two additional limitations associated with the NORTA approach in this context are
that solutions to an IC matrix may neither (a) exist in the range of [-1, +1] as the absolute
values of the ICs must be greater than (or equal to) their specified Pearson correlations nor (b)
yield a positive definite IC matrix albeit the specified Pearson correlation matrix is positive
definite [16]. Further, these two problems can be exacerbated when heavy tailed distributions
are involved in the computation of ICs as functions performing numerical integration can
more frequently either fail to converge or yield incorrect solutions. In contradistinction, it
has been demonstrated in the context of the L-correlation that the limitations associated with
the NORTA approach are less pronounced because the solution values of an IC matrix are in
closer proximity to their specified (positive definite) L-correlation matrix [17].

In view of the above, the present aim is to derive the double GLD family of distri-
butions based on (1.8) in the contexts of L-moment and L-correlation theory. Specifically, the
purpose of this paper is to develop the methodology and a procedure for simulating double
GLDs with specified L-moments and L-correlations. The primary advantages of the proposed
procedure are that estimates of L-skew, L-kurtosis, and L-correlation are less biased and more
efficient.

The remainder of this paper is organized into four sections. The next section provides a
summary of univariate L-moment theory and the derivations of the system of equations and
boundary conditions for generating double GLDs with specified values of L-skew and L-kur-
tosis. The section thereafter introduces the coefficient of L-correlation and the equation is sub-
sequently derived for determining ICs for specified L-correlations between double GLDs. The
steps for implementing the proposed L-moment procedure are subsequently described. A
numerical example and results of a simulation are also provided to confirm the derivations
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and compare the new L-moment-based procedure with the conventional product-moment-
based procedure. In the last section, the results of the simulation are discussed.

2. Methodology
2.1. Preliminaries

Let Xy,...,Xj,..., X, be iid random variables each with continuous pdf f(x), cdf F(x), order
statistics denoted as X;., < --- < Xj.;, < --- < X;.5, and L-moments defined in terms of
either linear combinations of (a) expectations of order statistics or (b) probability weighted
moments (f;). For the purposes considered herein, the first four L-moments associated with
Xj.n are expressed as [13, pages 20-22]

A1 = E[X31:4] = fo, 2.1)
Ao = 3E[Xaa~ X1.2] = 21 ~ i, (22)
A3=%E[X3;3—2X2;3+X1;3] =6f, — 6p1 + Po, (2.3)
Ay = }LE[X4:4 —3X3.4 +3X2.4 — Xq:4] = 2063 — 306, + 1231 - Py, (2.4)

where the f; are determined from
pi= [x(FC) s, @5)

where i =0,...,3. The coefficients associated with f; in (2.5) are obtained from shifted ortho-
gonal Legendre polynomials and are computed as shown in [13, page 20].

The L-moments A; and A; in (2.1) and (2.2) are measures of location and scale and are
the arithmetic mean and one-half the coefficient of mean difference, respectively. Higher-
order L-moments are transformed to dimensionless quantities referred to as L-moment ratios
defined as 7, = A,/A; for r > 3, and where 73 and 74 are the analogs to the conventional
measures of skew and kurtosis. In general, L-moment ratios are bounded in the interval -1 <
T, < 1 as is the index of L-skew (73) where a symmetric distribution implies that all L-moment
ratios with odd subscripts are zero. Other smaller boundaries can be found for more specific
cases. For example, the index of L-kurtosis (74) has the boundary condition for continuous
distributions of [18]

1
<7 <1 (2.6)

2.2, L-Moments for Double GLDs

The family of double GLDs, associated with (1.8), based on L-moments is less restrictive than
the family based on conventional moments insofar as we may consider the nonzero
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parameters of A, Az > —1 for any distribution with finite k order L-moments rather than
Az, Az > =1/k for the kth-order conventional moment to exist. This advantage is attributed to
Hosking’s Theorem 1 [12] which states that if the mean (A1) exists, then all other L-moments
will have finite expectations.

As such, the family of double GLDs can be derived in the context of L-moments by de-
fining the probability weighted moments based on (2.5) in terms of g(u) in (1.1) and the regu-
lar uniform pdf and cdf as

1/2 1
pi = q(u, Az, 6)uidu + j q(u, Az, 5)uidu. (2.7)
0 1/2

Integrating (2.7) fori = 0,1,2,3 and using (2.1)—(2.4) yields

_ ks AR _
A= 6(11+ )i)zmﬂ " 5(12+ AR)lzuR’ 28)
As-2 -2
M= 5 +23M 2) 52 +23)LR a2y (29)
5= {12(2M - 2*%) +61% (5 + 2% (e — 1) + )LR) + 23, (5 + 2% (e — 1) + AR>
+ Ay (49 — (11)2% 1+ (112 A =605 — A3 -2 (1 + AR) 2+ AR) (3 + )LR))
+ )z ((11)2*1+1 — 49 + (3)24%2 4 (2M+1 - 5))%(6 + AR)) } /
{26+ 123 +42) (2% (1 + 42) @+ o) + 24 (1 + dr) 2+ x)) |,
(2.10)

Ty = {(1 +./\£)(2+.)L£)(1 +J\R)(2+)LR)

222 (M -2)(Az - 1) 2% (A - 2)(Ag - 1)
X QT+A2)2+A2)B+Ao)(d+Lp) * 1+A)2+Ag)(B+ Ag) (4 + Ag) /

{2“(1 +A2)(2+A0) + 2% (1 + Ar) (2 + AR)}.
2.11)

Thus, given specified values of 73 and 74, (2.10) and (2.11) can be numerically solved for the
corresponding values of A, and Az. Note that the values of L-skew (73) and L-kurtosis (74) in
(2.10) and (2.11) are independent of the value of 6 selected in (1.8). Further, inspection of
(2.10) and (2.11) indicates that interchanging values for the parameters A , and Az reverses the
direction of 73 and has no effect on 7.

For the special case of A, = A the double GLD is symmetric where 73 = 0 in (2.10) and
74 in (2.11) will simplify to the expression

_(A2=2)(A2-1)
T 02 +3) s+ 4) (212
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Figure 3: Graph of the region for feasible combinations of (absolute value) L-skew |73 and L-kurtosis 74.
A double GLD will lie in the area above the curve graphed in the |73| and 74 plane.

Differentiating (2.12) with respect to 1, and equating the resulting expression to zero and
solving for A, yields a minimum value of L-kurtosis of

min(7y) = 12-5v6 _ -0.010205. . ., (2.13)
12 +5v6

where A, = Az = v/6-1. As such, using (2.10) and (2.11) with 1, = v/6-1and Ax € (-1,/6-1),
provided in Figure 3 is a graph of the region for feasible combinations of 73 and 74 for double
GLDs. Feasible combinations of 73 and 74 for (2.10) and (2.11) will lie in the region above the
curve graphed in the |73, 74 plane of Figure 3.

Provided in Figure 4 are some examples of various double GLDs. These distributions
are used in the simulation portion of this study in Section 4. The next section begins with an
introduction to the L-correlation.

3. The L-Correlation for Double GLDs

The coefficient of L-correlation (see [19]) is introduced by considering two random variables
Y; and Yj with continuous distribution functions F(Y;) and F(Yy), respectively. The second
L-moments of Y; and Y} can alternatively be expressed as

Az (Yj) =2Cov(Y;, F(Y5)), (3.1)
As(Yi) = 2Cov(Ye, F(Y)). (3.2)

The second L-comoments of Y; toward Yy and Y} toward Y; are

Ao (Y}, Yi) = 2Cov (Y}, F(Ya)), (33)
Ar(Yie, ;) = 2Cov (Yi, F(Y))). (3.4)



az = 2.7
ay = 87.4

73 =0.15
T4 = 0.2

A,=0.20674
Ag = -0.234946

az =-1.38
ay = 5.67

T3 = -0.15
74 =0.15

Ay =-0.129488
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74 =0.15

Ay =0.277973
Ar = —0.0832948

az =0.295
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73 = 0.05
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Ay =0.36626
Az =0.129777
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Figure 4: Four asymmetric double GLDs with their conventional and L-moment parameters of skew (a3)
and L-skew (73), kurtosis (a4), and L-kurtosis (74), and corresponding shape parameters for (1.8). Note

that the height of each distribution is 6 = 1/+/2r.
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As such, the L-correlations of Y; toward Y and Yi toward Y; are expressed as

MY )
rl]k - A2 (Y]) ’ (35)

B A (Y, Yj)
=A%) o

The L-correlation in (3.5) or (3.6) is bounded such that -1 < nik <1 where a value of ik =1
(njx = —1) indicates a strictly increasing (decreasing) monotone relationship between the two
variables. In general, we would also note that 7% # ;.

In the context of the L-moment-based double GLD, suppose it is desired to simulate
T distributions of the form in (1.8) with a specified L-correlation matrix and where each dis-
tribution has its own specified values of 73 and 74. Let Z, ..., Zr denote standard normal var-
iables where the distribution functions and bivariate density function associated with Z; and
Z are expressed as

zj —w?

(D(z]-) = PI'{Z]' < Z]‘} = f (23;)*1/2 exp{ T] }dw]', (37)
Zk _wz

D(zx) = Pr{Zx < 2} = f (2r) 712 exp{ Tk}dwk, (3.8)

fik = (2.71'(1 - sz'k>1/2>_1 exp{—(2<l - p]zk>>71 <z]2 + zi - Zp]'ijZk> } (39)

Using (3.7), it follows that the jth double GLD associated with (1.8) can be expressed as
q;(®@(z;j)) because ®(z;) ~ U(0,1). As such, using (3.5), the L-correlation of g;(®(z;)) toward
qr(D(zk)) can be evaluated using solved values of A, and A, for g;(®(z;)), a specified inter-
mediate correlation (IC) pjx in (3.9), and the following integral expressed as

ik = 2\/37Hi°°xj (4 (0(2)), L2y, A, ) ) D (z) it zjz (3.10)

The double GLD in (3.10) is standardized by a linear transformation such that it has a mean
of zero and one-half the coefficient of mean difference equal to that of the unit-normal dis-
tribution as

xi(9(®(2)), A2, %, ) ) = &(a;(@(2)), Az, Ax,) ~ A1), (3.11)

where A; is the mean from (2.8) and ¢ is a constant that scales A; in (2.9) and in the denom-
inator of (3.5) to 1/+/or as

. 64(1 + M) (2 + )u]-) (1 + )‘R]) (1 * )‘Rf> ) (3.12)

2'%; (1 +)ugj><2 +)L£j>\/7r+2)‘1f (1 + )L]aj> (1 +/\R].>\/E
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®@; = CDF[NormalDistribution[0, 1], Z;];

@, = CDF[NormalDistribution[0,1], Zk];

As = 0.2779733598283232;

Az = —0.08329479143312762;

qo = (@ = (1= ®))*)/ (A x 252742/ /);

gr = (@ = (1- @))%/ (g x 26/274% //);

(* Standardizing constants A; from Eq. (2.8) and ¢ from Eq. (3.12)*)

Xz =28qz—M);

Xr =§(qr — M1);

(* Intermediate Correlation *)

pjk =0.395685;

Needs[“MultivariateStatistics’”]

fjx = PDF[MultinormalDistribution[{0,0},{{1,pjx }. {pjx, 1}} 1.1 Z;, Zk }];

(¥ Compute the specified L-correlation *)

njx = 2+/m*NIntegrate[Piecewise[{{ Xz, ®; < 0.5}, {Xg, ®; > 0.5}}] x Dx x fix,
{Z;,-10, 10}, { Zx, -10, 10}, Method — MultiDimensional]

0.40

Algorithm 1: Mathematica source code for computing intermediate correlations for specified L-correla-
tions. The example is for distribution j = 3 towards distribution k = 4 (734) in Figure 4. See also Table 3(b).

Analogously, the L-correlation of gx(®(zx)) toward gq;(®(z;)) is expressed as
+00
e = zﬁ” % (qk(@(2), Az, Ar))D(2)) fixdzidz;. (3.13)

Note for the special case that if g;(®(z;)) in (3.10) and gx(®(zx)) in (3.13) have the same
parameters that is, A 2; = Ap, and .)LR/. = Az, then 77jx = 7. Provided in Algorithm 1 is source
code written in Mathematica [20] that implements the computation of an IC (pjx) based on
(3.10). The details for simulating double GLDs with specified L-correlations are described in
the next section.

4. The Procedure and Simulation Study

To implement the procedure for simulating double GLDs with specified L-moments and L-
correlations we suggest the following six steps.

(1) Specify the L-moments for T transformations of the form in (1.8), that is, g1 (®(z1)),
..., gr(®(zr)) and obtain the solutions for the parameters of A 2; and Az ; by solving
(2.10) and (2.11) using the specified values of L-skew (73) and L-kurtosis (74) for
each distribution. Specify a T x T matrix of L-correlations (7jx) for q;(®(z;)) toward
qr(D(zx)), wherej <k e ({1, 2,..., T}.

(2) Compute the (Pearson) intermediate correlations (ICs) pjx by substituting the solu-
tions of A»; and Mg, from Step (1) into (3.10) and then numerically integrate to solve
for pj (see Algorithm 1 for an example). Repeat this step separately for all T(T-1)/
2 pairwise combinations of correlations.
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(3) Assemble the ICs into a T x T matrix and decompose this matrix using a Cholesky
factorization. Note that this step requires the IC matrix to be positive definite.

(4) Use the results of the Cholesky factorization from Step (3) to generate T standard
normal variables (Z;, ..., Z7) correlated at the intermediate levels as follows:

Zy =anVi

Zy = anpVi +anVs

(4.1)
Z]' = ale1 +a2]-V2+~--+a,-]-Vi+~~+a]-]-V]-

ZT=alTV1+a2TV2+---+aiTVi+---+a]-TV]-+-~+aTTVT,

where Vi, ..., Vr are independent standard normal random variables and where a;;
represents the element in the ith row and the jth column of the matrix associated
with the Cholesky factorization performed in Step 3.

(5) Substitute Z, ..., Zr from Step (4) into the following Taylor series-based expansion
for the standard normal cdf [21]:

1 73 z° 77
D(Z;) = <§> +¢(Z]-){zj+?1+ (3"5) + (3.5]'7) +} (4.2)

where ¢(Z;) denotes the standard normal pdf and where the absolute error associ-
ated with (4.2) is less than 8 x 1071°.

(6) Substitute the regular uniform deviates, ®(Z;), generated from Step (5) into the T
equations of the form in (1.8), as noted in Step (1), to generate the double GLDs
with the specified L-moments and L-correlations.

To demonstrate the steps above and evaluate the proposed procedure, a comparison between
the new L-moment and conventional product moment-based procedures is subsequently des-
cribed. Specifically, the distributions in Figure 4 are used as a basis for a comparison using the
specified correlation matrices in Table 1 where both strong and moderate levels of correlation
are considered. Tables 2 and 3 give the solved IC matrices for the conventional moment- and
L-moment-based procedures, respectively. See Algorithm 2 for the algorithm and an example
for computing ICs for the conventional procedure. Tables 4 and 5 give the results of the Chol-
esky decompositions on the IC matrices, which are then used to create Z;, ..., Z; with the
specified ICs by making use of the formulae given in (4.1) of Step (4) with T = 4. The values of
Zi,...,Z4 are subsequently transformed to ®(Z;), ..., D(Z,) using (4.2) and then substituted
into equations of the form in (1.8) to produce g1 (®(Z1)), ..., ga(®(Zy)) for both procedures.

In terms of the simulation, a Fortran algorithm was written for both procedures to ge-
nerate 25,000 independent sample estimates for the specified parameters of (a) conventional
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®@; = CDF[NormalDistribution[0,1], Z;];
@, = CDF[NormalDistribution[0,1], Zk];
Az, = 0.2779733598283232;
Ag; = —0.08329479143312762;
Az, =0.3662599069298994;
Az, = 0.1297771263080004;
Az,
G, = (@7 — (1= @))*)/ (g, x2¥27 ) /),
!
gr, = (@7 — (1-@)") / (e, x 27275 / /);
G, = (@ = (1= D)%)/ (g, x 20275 / ),
o, = (@ = (1 - D)%)/ (e, x 292745/ ),
(* Standardizing constants a; and a, from Equation (A.2) in the Appendix *)
Xz =(qz; — 1))/ ar;
Xr; = (qr; —a1;)/ a2;;
Xz, = (qe — )/ a0
Xz, = (qr, — 1)/ az;
(* Intermediate Correlation x*)
ij = 0.406786,’
Needs[“MultivariateStatistics””]
fjx = PDF[MultinormalDistribution[{0,0},{{1,0jx},{pjx, 1}}1.{Z;, Zk}];
(* Compute the specified conventional Pearson correlation *)
p;fk = Nintegrate[Piecewise[{{X s, ®; < 0.5}, {Xr,, @; > 0.5}}]xPiecewise[{{Xz,, Ok <
0.5}, { X, ®r > 0.5}}] x fix, {Z;, 10, 10}, {Zx, -10, 10}, Method — MultiDimensional]
0.40

Algorithm 2: Mathematica source code for computing intermediate correlations for specified conventional
Pearson correlations. The example is for distributions j = 3 and k = 4 (p3,) in Figure 4. See also Table 2(b).

Table 1: Specified correlation matrices for the distributions in Figure 4.

1 2 3 4
1 1
2 0.70 1
3 0.70 0.70 1
4 0.85 0.70 0.70 1
(b)
1 2 3 4
1 1
2 0.40 1
3 0.50 0.40 1
4 0.60 0.50 0.40 1

skew (a3), kurtosis (ay), and Pearson correlation (p;.‘k) ; (b) L-skew (73), L-kurtosis (74), and
L-correlation (7x). The estimates of 734, were based on samples of size n = 250 and the
estimates of 77jx were based on sample sizes of n = 25 and n = 1000. The estimates for a3 4 were
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Table 2: Intermediate correlations for the conventional moment procedure.

(a)

1 2 3 4
1 1
2 0.815469 1
3 0.728537 0.762929 1
4 0.899099 0.741935 0.709597 1
(b)
1 2 3 4
1 1
2 0.441594 1
3 0.527660 0.429990 1
4 0.636315 0.527047 0.406786 1
Table 3: Intermediate correlations for the L-moment procedure.
(@)
1 2 3 4
1 1
2 0.686456 1
3 0.686456 0.694980 1
4 0.841013 0.694980 0.695427 1
(b)
1 2 3 4
1 1
2 0.387335 1
3 0.485840 0.395135 1
4 0.585468 0.494609 0.395685 1
Table 4: Cholesky decomposition for the conventional moment procedure.
(@)
an =1 app = 0.815469 a3 = 0.728537 ais = 0.899099
0 axp = 0.578801 a = 0.291689 ay = 0.015133
0 0 az = 0.619800 azs = 0.080932
0 0 0 ay = 0.429933
(b)
an =1 arp = 0.441594 a3 = 0.527660 as = 0.636315
0 ax = 0.897215 ay = 0.219544 apy = 0.274242
0 0 aszz = 0.820594 asg = 0.013185
0 0 0 ay = 0.720917

based on Fisher’s k-statistics, that is, the formulae currently used by most commercial soft-
ware packages such as SAS, SPSS, and Minitab, for computing indices of skew and kurtosis
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Table 5: Cholesky decomposition for the L-moment procedure.
(a)
an =1 arp = 0.686456 a3 = 0.686456 a4 = 0.841013
0 ayp =0.727171 ay = 0.307710 azy = 0.161807
0 0 az = 0.658857 azy = 0.103693
0 0 0 ay = 0.505730
(b)
an = a;p = 0.387335 a;3 = 0.485840 a4 = 0.585468
0 a =0.921939 ay = 0.224475 az; = 0.290515
0 0 az = 0.844731 azy = 0.054488
0 0 0 ay = 0.754890

(where a3 4 = 0 for the standard normal distribution). The formulae used for computing esti-
mates for 734 were Headrick’s equations (2.4) and (2.6) [22]. The estimate for p;fk was based
on the usual formula for the Pearson product-moment of correlation statistic and the estimate
for 77;x was computed based on (3.5) using the empirical forms of the cdfs in (3.1) and (3.3).
The estimates for p%, and 7k were both transformed using Fisher’s z' transformation. Bias-
corrected accelerated bootstrapped average estimates, confidence intervals (C.I.s), and stand-
ard errors were subsequently obtained for the estimates associated with the parameters (a3 4,
T34, Z:;;k, zy,.) using 10,000 resamples via the commercial software package Spotfire S+ [23].
The bootstrap results for the estimates of z’p;_k and z;, were transformed back to their original

metrics. Further, if a parameter (P) was outside its associated bootstrap C.I., then an index of
relative bias (RB) was computed for the estimate (E) as RB = ((E — P)/P) x 100. The results
of the simulation are reported in Tables 6, 7, 8, 9, 10, 11 and are discussed in the next section.

5. Discussion and Conclusion

One of the advantages that L-moment ratios have over conventional moment-based esti-
mators is that they can be far less biased when sampling is from distributions with heavy
tails [13, 19]. Inspection of the simulation results in Tables 6 and 7 clearly indicates that this
is the case. Specifically, the superiority that estimates of L-moment ratios (73, 74) have over
their corresponding conventional moment-based counterparts (as, as) is obvious. For exam-
ple, with samples of size n = 25 the estimates of skew and kurtosis for Distribution 1 were, on
average, only 64.07% and 10.22% of their associated population parameters, whereas the esti-
mates of L-skew and L-kurtosis were 98.6% and 99.35% of their respective parameters. It is
also evident from comparing Tables 6 and 7 that L-skew and L-kurtosis are more efficient esti-
mators as their standard errors are substantially smaller and more stable than the convention-
al moment-based estimators of skew and kurtosis.

Presented in Tables 8, 9, 10, 11 are the results associated with the conventional Pear-
son and L-correlations. Overall inspection of these tables indicates that the L-correlation is
superior to the Pearson correlation in terms of relative bias. For example, for strong correla-
tions (n = 25) the relative bias for the two heavy tailed distributions (i.e., distributions 1 and
2) was 8.66% for the Pearson correlation compared to only 1.17% for the L-correlation. Fur-
ther, for large sample sizes (n = 1000), the L-correlation bootstrap C.Ls contained all of
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Table 6: Skew (a3) and Kurtosis (a4) results for the conventional moment procedure. Results are based on
a sample size of n = 250.

Dist Parameter Estimate 95% Bootstrap C.I. Standard error Relative bias %
1 az =2.70 1.73 1.72,1.75 0.0078 -35.92
ay =874 8.93 8.75,9.12 0.0939 -89.78
’ a3 =-1.38 -1.23 -1.24,-1.22 0.0039 -10.87
ay =5.67 3.78 3.71,3.85 0.0360 -33.33
3 az = 0.883 0.824 0.819, 0.829 0.0026 -6.68
ay =2.55 2.04 2.01,2.08 0.0185 -20.00
4 az = 0.295 0.292 0.291, 0.294 0.0008 -1.02
ay = -0.232 -0.227 -0.231, -0.224 0.0018 -2.16

Table 7: L-skew (73) and L-kurtosis (74) results. Results are based on a sample size of n = 250.

Dist Parameter Estimate 95% Bootstrap C.I. Standard error Relative bias %
1 73 =0.15 0.1479 0.1473,0.1484 0.0003 -1.40
74 = 0.20 0.1987 0.1982, 0.1991 0.0002 -0.65
5 73 = -0.15 -0.1487 -0.1492, -0.1483 0.0002 -0.87
74 =0.15 0.1494 0.1490, 0.1497 0.0002 -0.40
3 73 =0.10 0.0992 0.0988, 0.0996 0.0002 -0.80
74 =0.15 0.1497 0.1494, 0.1501 0.0002 —
4 73 = 0.05 0.0498 0.0495, 0.0501 0.0002 —
74 = 0.10 0.1002 0.0999, 0.1004 0.0001 —

Table 8: Correlation (strong) results for the conventional moment procedure.

(a) n=25
Parameter Estimate 95% Bootstrap C.I. Standard error Relative bias %
P, =0.70 0.7606 0.7597,0.7615 0.00111 8.66
pi; =0.70 0.7277 0.7263, 0.7291 0.00146 3.96
P14 =085 0.8854 0.8847, 0.8858 0.00130 4.16
P55 =070 0.7290 0.7279, 0.7300 0.00113 4.14
p5,=0.70 0.7209 0.7198, 0.7220 0.00116 2.99
P35, =0.70 0.7120 0.7108, 0.7134 0.00136 1.71
(b) n=1000
Parameter Estimate 95% Bootstrap C.I. Standard error Relative bias %
Py, =0.70 0.7067 0.7063, 0.7071 0.00038 0.96
P13 =0.70 0.7036 0.7033, 0.7039 0.00030 0.51
Py =0.85 0.8562 0.8560, 0.8565 0.00054 0.73
P55 =0.70 0.7014 0.7012, 0.7016 0.00020 0.20
Pyy =0.70 0.7010 0.7008, 0.7012 0.00020 0.14

P, =070 0.7005 0.7002, 0.7006 0.00020 0.07




16 ISRN Applied Mathematics

Table 9: Correlation (strong) results for the L-moment procedure.

(a) n=25

Parameter Estimate 95% Bootstrap C.I. Standard error Relative bias %
112 =0.70 0.7082 0.7068, 0.7097 0.00148 1.17

mz =0.70 0.7078 0.7064, 0.7093 0.00149 1.11

714 = 0.85 0.8554 0.8546, 0.8562 0.00151 0.64

123 = 0.70 0.7091 0.7077,0.7105 0.00146 1.30

124 = 0.70 0.7090 0.7076, 0.7104 0.00147 1.29

1134 = 0.70 0.7097 0.7083, 0.7111 0.00148 1.39

(b) n = 1000

Parameter Estimate 95% Bootstrap C.I. Standard error Relative bias %
112 = 0.70 0.7000 0.6998, 0.7002 0.00023 —

ms = 0.70 0.7002 0.7000, 0.7004 0.00023 —

114 = 0.85 0.8502 0.8500, 0.8503 0.00022 —

123 = 0.70 0.6999 0.6997, 0.7002 0.00022 —

124 = 0.70 0.7005 0.6998, 0.7003 0.00022 —

134 = 0.70 0.7001 0.6999, 0.7003 0.00021 —

Table 10: Correlation (moderate) results for the conventional moment procedure.

(a) n=25
Parameter Estimate 95% Bootstrap C.I. Standard error Relative bias %
P, =040 0.4207 0.4187, 0.4227 0.00123 5.18
P13 =0.50 0.5265 0.5244, 0.5285 0.00142 5.30
P, =0.60 0.6308 0.6292, 0.6324 0.00135 5.13
P55 =0.40 0.4178 0.4156, 0.4197 0.00126 4.45
P34 = 0.50 0.5165 0.5146, 0.5183 0.00127 3.30
P35, =040 0.4103 0.4081, 0.4125 0.00134 2.58
(b) n = 1000
Parameter Estimate 95% Bootstrap C.I. Standard error Relative bias %
Py, =040 0.3906 0.3903, 0.3910 0.00020 -2.35
P15 =0.50 0.5029 0.5026, 0.5033 0.00025 0.58
pi, = 0.60 0.6035 0.6032, 0.6039 0.00026 0.58
Py = 0.40 0.4005 0.4001, 0.4007 0.00018 0.13
P35, =0.50 0.5006 0.5003, 0.5009 0.00019 0.12
pay = 040 0.4003 0.3999, 0.4006 0.00020 0.08

the population parameters, whereas the Pearson correlation C.I.s contained none of the para-
meters. It is also noted that the variability of the L-correlation appears to be more stable than
that of the Pearson correlation both within and across the different conditions.

In summary, the new L-moment-based procedure is an attractive alternative to the
traditional conventional moment-based procedure. In particular, the L-moment-based double
GLD procedure has distinct advantages when distributions with heavy tails are used. Finally,
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Table 11: Correlation (moderate) results for the L-moment procedure.

(a) n=25

Parameter Estimate 95% Bootstrap C.I. Standard error Relative bias %
112 = 0.40 0.4084 0.4061, 0.4109 0.00148 2.10
3 = 0.50 0.5073 0.5051, 0.5095 0.00149 1.46
114 = 0.60 0.6080 0.6061, 0.6098 0.00150 1.33
123 = 0.40 0.4083 0.4060, 0.4107 0.00145 2.08
124 = 0.50 0.5094 0.5073, 0.5116 0.00147 1.88
734 = 0.40 0.4089 0.4066, 0.4112 0.00142 2.23

(b) 1 = 1000
Parameter Estimate 95% Bootstrap C.I. Standard error Relative bias %
M2 = 0.40 0.4000 0.3996, 0.4004 0.00023 —
m3 = 0.50 0.5002 0.4999, 0.5005 0.00023 —
114 = 0.60 0.6002 0.5999, 0.6005 0.00022 —
723 = 0.40 0.3997 0.3994, 0.4001 0.00022 —
124 = 0.50 0.5001 0.4998, 0.5004 0.00022 —
734 = 0.40 0.4000 0.3996, 0.4003 0.00021 —

we note that Mathematica Version 8.0.1 [20] source code is available from the authors for im-
plementing both the conventional and new L-moment-based procedures.

Appendix

System of Conventional Moment-Based Equations for Double GLDs

,,,,,

1/2

1
Ur = q(u, Ay, 6) du + f q(u, Az, 6)" du. (A1)
0 1/2

The mean, variance, skew, and kurtosis are in general (e.g., [24])

a] = |y,
o = p2 =
-3 +2u8
- (13 #2;5121 1) , (A2)
Hy
g = (= o = 3485 + 12gnaps - 6p1)
; .

Hs

In terms of the double GLD in Figure 2, setting 6 = 1/+/2x in (A.1) for the unit normal
distribution, the moments associated with the location and scale parameters in (A.2) are

R O 1—2M+2AR—1
TRV ey T2 )
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(/14202 -2B(1/2,1+ 2,1+ A2))
- 812

H2

ad'® (1/1+2Ar +2B(1/2,1+ A, 1+ 1))
+
812

~ I3/2F(AR)
8Ax[(3/2 + \z)

and the moments related to skew and kurtosis are as follows:

- (3)8"4B(1/2,1+ Ap, 1+ 2@)”3/2
16v2X3,
(3)212A 2T (20 2)H2F1Reg(~Az, 1+ 20 2,2+ 20 2,1/2) 5,
- Jr
16v215,

LT3 L, (BR)/(1430)
16v213 16v213
~ (3)8%B(1/2,1+ Ag, 1+ 21z) Ry
16v213
N (3)2'* \zT'(20g)H2FIReg (-Ag, 1+ 2\, 2+ 21z, 1/2) 5,
Jr
16v2A5

7

__2Metq? o oMeog2  2Medr?f(1/2,14 0, 14+3)0)
AL +4h,)  AL(1+4dR) AL

Ha

2Metr28(1/2,1+ 30,1+ As)  2%%472(1/2,1 + Ag, 1+ 3Mg)
- 24 i A4
L R

(3)2"*°72B(1/2,1 + 2\, 1 + 2Ag) . MR- 72B(1/2,1+ 3Mg, 1+ Az)

A% A&

. 3r°PT(1+20g) 2372 T(Ag)T(1 + 3Az)
64151 (3/2 + 2Ag) L2 +4)r)

.\ (3)2%4470521'(1 + 21 ) H2F1Reg(-2A 2, 1 + 24 4,2 + 214, 1/2)
AL ’

(A.3)

(A4)

(A.5)

where H2F1Reg( ), I'( ), and p( ) are the regularized hypergeometric, gamma, and incom-

plete beta functions, respectively.
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