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This paper introduces the Tukey family of symmetric h and asymmetric hh-distributions in
the contexts of univariate L-moments and the L-correlation. Included is the development of a
procedure for specifying nonnormal distributions with controlled degrees of L-skew, L-kurtosis,
and L-correlations. The procedure can be applied in a variety of settings such as modeling
events (e.g., risk analysis, extreme events) and Monte Carlo or simulation studies. Further, it is
demonstrated that estimates of L-skew, L-kurtosis, and L-correlation are substantially superior
to conventional product-moment estimates of skew, kurtosis, and Pearson correlation in terms of
both relative bias and efficiency when heavy-tailed distributions are of concern.

1. Introduction

The conventional moment-based Tukey families of h (or the g-and-h and Generalized Pareto)
distributions (e.g., [1–3]) are often used in various applied mathematics contexts. Some
examples includemodeling events associated with operational risk [4], extreme oceanic wind
speeds, [5], common stock returns [6], solar flare data [7], or in the context of Monte Carlo or
simulation studies, for example, regression analysis [8].

The family of h-distributions is based on the transformation

q(Z) = Z exp

(
hZ2

2

)
, (1.1)

where Z ∼ i.i.d. N(0, 1). Equation (1.1) produces symmetric h-distributions where the
parameter h controls the tail weight or elongation of any particular distribution and is
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positively related with kurtosis. The pdf and cdf associated with (1.1) are expressed as in
[3, equations (12), (13)]

fq(Z)
(
q(z)

)
= f(z) =

(
q(z),

φ(z)
q′(z)

)
, (1.2)

Fq(Z)
(
q(z)

)
= F(z) =

(
q(z),Φ(z)

)
, (1.3)

where f : � �→ �2 and F : � �→ �2 are the parametric forms of the pdf and cdf with the
mappings z �→ (x, y) and z �→ (x, v) with x = q(z), y = φ(z)/q′(z), v = Φ(z), and where
φ(z) and Φ(z) are the standard normal pdf and cdf, respectively. It is assumed that q′(z) > 0
in (1.2) to ensure a valid pdf, that is, the transformation in (1.1) is strictly increasing, which
requires h ≥ 0. Further, if q(Z) in (1.1) has a valid pdf where the k-th order moment exists
(for k = 1, 2, . . .), then h must be bounded such that 0 ≤ h < 1/k. That is, a distribution will
not have a first moment (or mean) for h ≥ 1 [2, 3].

The variance (α2
2) and kurtosis (α4) of a distribution associated with (1.1) can be

determined from [3, Equations (32), (36)]

α2
2 =

1

(1 − 2h)3/2
,

α4 = 3(1 − 2h)3
(

1

(1 − 4h)5/2
+

1

(2h − 1)3

)
,

(1.4)

where the mean (α1) and skew (α3) of a distribution are both zero.
One of the extensions of (1.1)–(1.3) is the two parameter hh family of distributions

introduced by Morgenthaler and Tukey [2]. More specifically, the hh family includes
asymmetric distributions with heavy tails based on the transformation

q(Z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
Z exp

(
hLZ2

2

)
, for Z ≤ 0,

Z exp

(
hRZ2

2

)
, for Z ≥ 0,

(1.5)

where hL(hR) is the parameter for the left (right) tail of a distribution. The properties of
the transformation in (1.5) are the same as those associated with (1.1). However, the tails
of hh distributions have to be considered separately as they are weighted differently that is,
in general, hL /=hR. For example, Figure 1 gives an example of an hh-distribution based on
matching the values of α3 and α4 associated with a noncentral Student t(df=5, δ=1) distribution.
The values of hL and hR in Figure 1 were computed by simultaneously solving (A.3) and
(A.4) in the appendix.

Conventional moment-based-estimators (e.g., α̂3, α̂4) have unfavorable attributes
insofar as they can be substantially biased, have high variance, or can be influenced by
outliers. For example, inspection of Figure 1 indicates, on average, that the estimates of α̂3

and α̂4 are only 78.83% and 42.81% of their associated population parameters. Note that
each estimate of α̂3 and α̂4 in Figure 1 were calculated based on sample sizes of n = 250
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0.1

0.2

0.3

0.4

hL = 0.00679, hR = 0.17106
−1−2

Skew: α3 = 1.266 Kurtosis: α4 = 10.32
α̂3 95% C.I. SE α̂4 95% C.I. SE
0.9980 0.9877, 1.0083 0.0052 4.418 4.312, 4.518 0.0533

L-Skew: τ3 = 0.1110 L-Kurtosis: τ4 = 0.1937
τ̂3 95% C.I. SE τ̂4 95% C.I. SE
0.1096 0.1091, 0.1102 0.0003 0.1930 0.1926, 0.1934 0.0002

Figure 1: Graph of an hh-distribution based on matching the conventional moments of a noncentral
Student t(df=5, δ=1) distribution. The values of hL and hR were determined by solving equations (A.3) and
(A.4) in the appendix. The estimates (α̂3,4; τ̂3,4) and bootstrap confidence intervals (C.I.s) were based on
resampling 25,000 statistics. Each sample statistic was based on a sample size of n = 250.

and the formulae currently used by most commercial software packages such as SAS, SPSS,
and Minitab for computing skew and kurtosis.

However, L-moment-based estimators such as L-skew and L-kurtosis have been
introduced to address some of the limitations associated with conventional estimates of skew
and kurtosis [9, 10]. Specifically, some of the advantages that L-moments (or their estimators)
have over conventional moments are that they (a) exist whenever themean of the distribution
exists, (b) are nearly unbiased for all sample sizes and distributions, and (c) are more robust
in the presence of outliers. For example, the estimates τ̂3 and τ̂4 in Figure 1 are relatively
much closer to their respective parameters with much smaller standard errors than their
corresponding conventional moment based analogs (α̂3, α̂4). More specifically, the estimates
of τ̂3 and τ̂4 that were simulated are, on average, 98.74% and 99.64% of their parameters.

In the context of multivariate data generation, the methodology has been developed
for simulating h-(or g-and-h) distributions with specified Pearson correlation structures [11,
pages 140–148] [12]. This methodology is based on conventional product moments and the
popular NORTA [13] approach, which begins with generating multivariate standard normal
deviates. However, the NORTA approach is not without its limitations. Specifically, one
limitation arises because the Pearson correlation is not invariant under nonlinear strictly
increasing transformations such as (1.1). As such, the NORTA approach must begin with
the computation of an intermediate correlation (IC)matrix, which is different than the specified
correlation matrix between the nonnormal h-distributions. The purpose of the IC matrix is to
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adjust for the nonnormalization effect of the transformation in (1.1) such that the resulting
nonnormal distributions have their specified skew, kurtosis, and specified correlation matrix.

Some additional consequences associated with NORTA in this context are that it (a)
requires numerical integration to compute solutions to ICs between h-distributions—unlike
the more popular power method [11] which has a straight-forward equation to solve for the
ICs between distributions [11, page 30] and (b) may yield solutions to ICs that are not in
the range of [−1,+1] as the absolute values of ICs must be greater than (or equal to) their
specified Pearson correlations [14]. Further, these two problems which can be exacerbated
when h-distributions with heavy tails are used as functions performing numerical integration
will more frequently either fail to converge or yield incorrect solutions to ICs.

In view of the above, the present aim is to derive the h and hh families of distributions
in the contexts of L-moment and L-correlation theory. Specifically, the purpose of this paper
is to develop the methodology and a procedure for simulating nonnormal symmetric h
and asymmetric hh distributions with specified L-moments and L-correlations. Some of the
advantages of the proposed procedure are that ICs (a) can be solved directly with a single
equation, that is, numerical integration is not required and (b) cannot exist outside the range
of [−1,+1] as it is shown that the absolute value of an IC will be less than (or equal to) its
associated specified L-correlation.

The remainder of the paper is outlined as follows. In Section 2, a summary of
univariate L-moment theory is provided and the derivations of the systems of equations
for the h and hh distributions are provided for modeling or simulating nonnormal
distributions with specified values of L-skew and L-kurtosis. In Section 3, the coefficient of
L-correlation is introduced and the equations are subsequently derived for determining ICs
for specified L-correlations between nonnormal h or hh distributions. In Section 4, the steps
for implementing the proposed L-moment procedure are described. A numerical example
and results of a simulation are also provided to confirm the derivations and compare the new
procedure with the traditional or conventional moment-based procedure. In Section 5, the
results of the simulation are discussed.

2. Methodology

2.1. Preliminaries

Let X1, . . . , Xj , . . . , Xn be iid random variables each with continuous pdf f(x), cdf F(x), order
statistics denoted as X1:n ≤ · · · ≤ Xj:n ≤ · · · ≤ Xn:n, and L-moments defined in terms of
either linear combinations of (a) expectations of order statistics or (b) probability-weighted
moments (βi). For the purposes considered herein, the first four L-moments associated with
Xj:n are expressed as [10, pages 20–22]

λ1 = E[X1 : 1] = β0,

λ2 =
1
2
E[X2 : 2 −X1 : 2] = 2β1 − β0,

(2.1)

λ3 =
1
3
E[X3 : 3 − 2X2 : 3 +X1 : 3] = 6β2 − 6β1 + β0, (2.2)

λ4 =
1
4
E[X4 : 4 − 3X3 : 4 + 3X2 : 4 −X1 : 4] = 20β3 − 30β2 + 12β1 − β0, (2.3)
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where the βi are determined from

βi =
∫
x{F(x)}if(x)dx, (2.4)

where i = 0, . . . , 3. The coefficients associated with βi in (2.4) are obtained from shifted
orthogonal Legendre polynomials and are computed as shown in [10, page 20] or in [15].

The L-moments λ1 and λ2 in (2.1) are measures of location and scale and are the
arithmetic mean and one-half the coefficient of mean difference (or Gini’s index of spread),
respectively. Higher-order L-moments are transformed to dimensionless quantities referred
to as L-moment ratios defined as τr = λr/λ2 for r ≥ 3, and where τ3 and τ4 are the analogs to
the conventional measures of skew and kurtosis. In general, L-moment ratios are bounded in
the interval −1 < τr < 1 as is the index of L-skew (τ3)where a symmetric distribution implies
that all L-moment ratios with odd subscripts are zero. Other smaller boundaries can be found
for more specific cases. For example, the index of L-kurtosis (τ4) has the boundary condition
for continuous distributions of [16]

(
5τ23 − 1

)
4

< τ4 < 1. (2.5)

2.2. L-Moments for Symmetric h-Distributions

The family of h-distributions based on the method of L-moments is less restrictive than the
family based on conventional method of moments as described in the previous section to the
extent that we may consider the h parameter on the interval 0 ≤ h < 1 for any distribution
with finite k-order L-moments rather than 0 ≤ h < 1/k for the kth-order conventional
moment to exist. This advantage is attributed to Hosking’s Theorem 1 [9]which states that if
the mean (λ1) exists, then all other L-moments will have finite expectations.

We begin the derivation for symmetric h-distributions in the context of L-moments by
defining the probability-weighted moments based on (2.4) in terms of q(z) in (1.1) and the
standard normal pdf and cdf as

βi =
∫+∞

−∞
q(z){Φ(z)}iφ(z)dz. (2.6)

Integrating (2.6) for i = 0, 1, 2 gives

λ1 = 0, (2.7)

λ2 = −
√
2√

π(h − 1)
√
2 − h

, (2.8)

λ3 = τ3 = 0. (2.9)
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The fourth L-moment λ4 (and τ4) is subsequently derived in terms of the expectations
of order statistics as in (2.3) by making use of the following expression for standard normal-
based expectations and for n = 4 as [17]

E
[
q(Z)j:4

]
=

1
4

(
3

j − 1

)∫∞

0

(
q(z)ϕ(z)[1 + Ψ(z)]j−1[1 −Ψ(z)]4−j

−[1 −Ψ(z)]j−1[1 + Ψ(z)]4−j
)
dz,

(2.10)

where ϕ(z) = 2φ(z) and Ψ(z) = 2Φ(z) − 1 are the pdf and cdf of the folded unit normal
distribution at z = 0, respectively. The relevant expansions of the polynomial in (2.10) are

E
[
q(Z)3 : 4

]
= −E[q(Z)2 : 4

]
=
(
3
2

)
(I1 − I3),

E
[
q(Z)4 : 4

]
= −E[q(Z)1 : 4

]
=
(
1
2

)
(3I1 + I3),

(2.11)

where the expectations in (2.11) is linear combinations associated with the integrals denoted
as I1 and I3. The specific expressions for I1 and I3 are

I1 = δ · λ2 =
⎛
⎝−(h − 1)

√
1 − h

2

⎞
⎠ ·

(
−

√
2√

π(h − 1)
√
2 − h

)
=

1√
π
, (2.12)

I3 =
∫∞

0
q(z)ϕ(z)[Ψ(z)]3dz, (2.13)

where it is convenient to use δ in (2.12) to standardize I1 (λ2) to the unit normal distribution.
Equation (2.13)may be integrated by parts based onΨ′(z) = ϕ(z), ϕ′(z) = −ϕ(z)z, and noting
that Ψ(0) = 0 and limz→+∞ϕ(z) = 0. As such, we have

I3 = 3
∫∞

0
ξ(z)ϕ(z)[Ψ(z)]2dz, (2.14)

where the expression ξ(z) is

ξ(z) = −
∫
δq(z)ϕ(z)dz =

exp
{
(1/2)(h − 1)z2

}√
2 − h√

π
. (2.15)
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Let us first consider the expression [Ψ(z)]2 in (2.14), which can be expressed as

[Ψ(z)]2 =
2
π

[∫z

0
exp

{
−1
2
u2
}
du

]2
=

2
π

∫∫z

0
exp

{
−1
2

(
z21 + z22

)}
dz1dz2

= 1 − 4
π

∫π/4

0
exp

{
−1
2
z2sec2θ1

}
dθ1.

(2.16)

Substituting (2.16) into (2.14) and, using Lichtenstein’s Theorem [18], and integrating first
with respect to z yield

√
π

∫∞

0
ξ(z)ϕ(z)2 exp

{
−1
2
z2sec2θ1

}
dz =

√
4 − 2h√

2
√
2 − h + sec2θ1

. (2.17)

Using (2.17), the integral in (2.14) is expressed as

I3 =
3√
π

{
1 − 4

π

∫π/4

0

√
4 − 2h√

2
√
2 − h + sec2θ1

}
dθ1 =

3√
π

−
12 tan−1

[
(h − 4/h − 2)− 1/2

]
π3/2

. (2.18)

Hence, using (2.3) and (2.11) and (2.12), L-kurtosis can be expressed as

τ4 = 6 −
30 tan−1

[
(h − 4/h − 2)− 1/2

]
π

, (2.19)

where 0 ≤ h < 1. Whence, it follows that we have a convenient closed formed solution for the
parameter h as

h = 3 − sec
[
π

15
(τ4 − 6)

]
. (2.20)

Equation (2.19) has a lower limit of τ4 ≈ 0.1226 (h = 0) that is equivalent to the normal
distribution and an upper limit (τ4 → 1; h → 1) that is equivalent to the Cauchy or t(df=1)
distribution. Figure 2(d) gives an example of a symmetric h-distribution with L-kurtosis (τ4)
of a logistic distribution.

2.3. L-Moments for Asymmetric hh-Distributions

The derivation of the L-moments for asymmetric hh-distributions associated with (1.5)
begins with determining the probability-weighted moments βi in (2.6) by separately
evaluating and summing two integrals as

βi = ILi(hL) + IRi(hR) =
∫0

−∞
q(z, hL){Φ(z)}iφ(z)dz +

∫+∞

0
q(z, hR){Φ(z)}iφ(z)dz. (2.21)
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0.1

0.2

0.3

0.4

τ3 = 0.1161
τ4 = 0.195758

hL = 0.009868
hR = 0.205398

α4 = 40
α3 = 2

−3 −1−2

(a)

2 4

0.1

0.2

0.3

0.4

α3 = 1
α4 = 15

τ3 = 0.05004
τ4 = 0.210839

hL = 0.103308
hR = 0.187388

−4 −2

(b)

1 2 3

0.1

0.2

0.3

0.4

α3 = 0.5
α4 = 3

τ3 = 0.041025
τ4 = 0.175084

hL = 0.050701
hR = 0.125102

−3 −1−2

(c)

0.1

0.2

0.3

0.4

τ4 = 0.160173
τ3 = 0

α4 = 1.2
α3 = 0

h = 0.065226

1 2 3−3 −1−2

(d)

Figure 2: Three asymmetric hh-distributions (a)–(c) and one symmetric h distribution (d) with their
conventional and L-moment parameters of skew (α3) and L-skew (τ3), kurtosis (α4) and L-kurtosis (τ4),
and corresponding shape parameters for (1.5) and (1.1).
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As such, using (2.1) and (2.21), it is straight-forward to obtain β0, β1, and the first two L-
moments as

λ1 =
1√

2π(hL − 1)
+

1√
2π(1 − hR)

,

λ2 =

√
2 − hL +

√
2 − hR − hL

√
2 − hL − hR

√
2 − hR√

2π(hL − 1)(hR − 1)
√
(hL − 2)(hR − 2)

.

(2.22)

In terms of deriving λ3 and λ4, it is convenient to consider β2 in (2.2) as

β2 = IL2(hL) + IR2(hR) = IL2(hL) +
(
−IL2(hR) +

λ2(hR)
2

)
, (2.23)

where λ2(hR) can be obtained from (2.8). Thus, it is only necessary to determine IL2(hL) as

IL2(hL) =
∫0

−∞
q(z, hL){Φ(z)}2φ(z)dz =

∫0

−∞

z√
2π

exp

{
(hL − 1)z2

2

}
{Φ(z)}2dz

=
1√

2π(hL − 1)

∫0

−∞
{Φ(z)}2d exp

{
(hL − 1)z2

2

}

=
1√

2π(hL−1)

⎡
⎣{Φ(z)}2exp

{
(hL − 1)z2

2

}∣∣∣∣∣
0

−∞
−
∫0

−∞

1√
2π

exp

{
(hL − 2)z2

2

}
2Φ(z)dz

⎤
⎦

=
−1

4
√
2π(1 − hL)

+
2√

2π
√
2 − hL(1 − hL)

∫0

−∞

√
2 − hL√
2π

exp

{
− (2 − hL)z2

2

}
Φ(z)dz.

(2.24)

If we let X ∼ N(0, 1/(2 − hL)) and ∼N(0, 1), where X and Y are independent such that
(X/

√
2 − hL, Y ) jointly follow the standard bivariate normal distribution, then the integral in

the last part of (2.24) is

∫0

−∞

√
2 − hL√
2π

exp

{
− (2 − hL)z2

2

}
Φ(z)dz

= Pr{X < 0, Y < X}

= Pr

{
X√
2 − hL

< 0, Y <
√
2 − hL

X√
2 − hL

}

=
1
4

⎛
⎜⎝1 −

2cot−1
(√

2 − hL
)

π

⎞
⎟⎠,

(2.25)
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where we are calculating the proportion of area between the y-axis and the line y =
x(
√
2 − hL) as a sector because the independent standard normal bivariate density has

rotational symmetry about the origin. Combining terms from (2.24) and (2.25) yields

IL2(hL) =
1

4(1 − hL)
√
2π

⎡
⎢⎣ 2√

2 − hL

⎛
⎜⎝1 −

2 cot−1
(√

2 − hL
)

π

⎞
⎟⎠ − 1

⎤
⎥⎦. (2.26)

Hence, given (2.26) and (2.19), we can solve for β2, β3, and subsequently obtain the
expressions for L-skew (τ3) and L-kurtosis (τ4) as

τ3 =
{
12
√
2 − hL(hR − 2)(hR − 1)cot−1

(√
2 − hL

)
− π(hL − hR)(hL − 2)(hR − 2)

−12
√
2 − hR(hL − 2)(hL − 1)cot−1

(√
2 − hR

)}/
{
2π
√
(hL − 2)(hR − 2)

(
hL
√
2 − hL −

√
2 − hL −

√
2 − hR + hR

√
2 − hR

)}
,

τ4 =

⎧⎨
⎩6π

(
hR
√
(hL − 4)(hL − 2)(hL − 1)(hR − 2) − 2

√
(hL − 4)(hL − 1)

−hL(hL − 3)
√
(hL − 4)(hL − 1) −

√
(hL − 4)(hL − 2)(hL − 1)(hR − 2)

)

+ 30(hL − 1)

√
(hL − 4)(hL − 2)(hR − 2)

hL − 1
(hR − 1)tan−1

⎛
⎝
√
1 +

2
hL − 4

⎞
⎠

+30(hL − 2)
√
(hL − 4)(hL − 1)(hL − 1) tan−1

⎛
⎝
√
1 +

2
hR − 4

⎞
⎠
⎫⎬
⎭
/

{
π
√
(4 − hL)(2 − hL)(1 − hL)

(
hL
√
2 − hL −

√
2 − hL −

√
2 − hR + hR

√
2 − hR

)}
.

(2.27)

Thus, given specified values of τ3 and τ4, (2.27) can be numerically solved for the
corresponding values of hL and hR. Figures 2(a), 2(b) and 2(c) provides some examples of
various hh-distributions, which are used in the simulation portion of this study in Section 4.

3. L-Correlations for the h and hh-Distributions

The coefficient of L-correlation (see [19]) is introduced by considering two random variables
Yj and Yk with distribution functions F(Yj) and F(Yk), respectively. The second L-moments
of Yj and Yk can alternatively be expressed as

λ2
(
Yj

)
= 2Cov

(
Yj, F

(
Yj

))
, (3.1)

λ2(Yk) = 2Cov(Yk, F(Yk)). (3.2)
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The second L-comoments of Yj toward Yk and Yk toward Yj are

λ2
(
Yj, Yk

)
= 2Cov

(
Yj, F(Yk)

)
, (3.3)

λ2
(
Yk, Yj

)
= 2Cov

(
Yk, F

(
Yj

))
. (3.4)

As such, the L-correlations of Yj toward Yk and Yk toward Yj are expressed as

ηjk =
λ2
(
Yj, Yk

)
λ2
(
Yj

) , (3.5)

ηkj =
λ2
(
Yk, Yj

)
λ2(Yk)

. (3.6)

The L-correlation in (3.5) or (3.6) is bounded such that −1 ≤ ηjk ≤ 1, where a value of ηjk = 1
(ηjk = −1) indicates a strictly increasing (decreasing) monotone relationship between the two
variables. In general, we would also note that ηjk /=ηkj .

In the context of L-moment symmetric h-distributions (0 ≤ h < 1), suppose it is desired
to simulate T distributions based on (1.1) with a specified L-correlation matrix and where
each distribution has its own specified value of τ4. Define q(Zj) and q(Zk) as in (1.1), where
Zj and Zk have Pearson correlation ρjk and standard normal bivariate density of

fjk =
(
2π
(
1 − ρ2jk

)1/2)−1
exp

{
−
(
2
(
1 − ρ2jk

))−1(
z2j + z2k − 2ρjkzjzk

)}
. (3.7)

Using (1.1), (1.3), and (3.5) with the denominator standardized to λ2 = 1/
√
π for the unit-

normal distribution, and (3.7), the L-correlation of q(Zj) toward q(Zk) can be expressed as

ηjk = 2
√
π Cov

(
q
(
zj
)
, Fq(Zk)

(
q(zk)

))
= 2

√
π Cov

(
q
(
zj
)
,Φ(zk)

)
= 2

√
π E

[
q
(
zj
)
Φ(zk)

] − 2
√
πE
[
q
(
zj
)]

E[Φ(zk)]

= 2
√
π

∫∫+∞

−∞
δq
(
zj
)
Φ(zk)fjkdzjdzk − 2

√
πE
[
q
(
zj
)]

E[Φ(zk)],

(3.8)

where δ is the standardizing term in (2.12). Integrating (3.8) yields

ηjk = ρjk

√√√√ 2 − hj

2 + hj

(
ρ2
jk
− 2
) (3.9)

given that E[q(zj)] = 0 and E[Φ(zk)] = 1/2. Analogously, the L-correlation of q(Zk) toward
q(Zj) is

ηkj = ρjk

√√√√ 2 − hk

2 + hk

(
ρ2
jk
− 2
) . (3.10)
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From (3.9), the intermediate correlation (IC) ρjk can be determined by simply
evaluating

ρjk = ±
√
2
√
hjη

2
jk
− η2

jk√
hjη

2
jk
+ hj − 2

(3.11)

for a specified value of ηjk and a given value of hj from (2.20). Given ρjk from (3.11), the
L-correlation ηkj can be determined by evaluating (3.10) using the solved value of hk. Note
the special case of where hj = hk, in (3.9) and (3.10), then ηjk = ηkj .

Remark 3.1. Inspection of (3.9) indicates that ηjk = ρjk when either (a) q(Zj) is standard
normal that is, hj = 0, (b) ρjk = 0, or (c) ρjk = 1.

Remark 3.2. If the IC is such that 0 < |ρjk| < 1 and 0 < hj < 1 in (3.9), then we have the
inequality

0 <
∣∣ρjk∣∣ < ∣∣ηjk∣∣ < 1, (3.12)

as from inspecting (3.9) it is evident that [(2 − hj)/(2 + hj(ρ2jk − 2))]1/2 > 1. Thus, solutions to
ICs cannot exist outside the range of [−1,+1].

The extension of determining ICs for asymmetric hh-distributions is analogous to the
method described above for h-distributions, where (1.5) is standardized and subsequently
integrated as in (3.8) to obtain

ηjk =
1
2
ρjk

√√√√ 2 − hLj

2 + hLj

(
ρ2
jk
− 2
) +

1
2
ρjk

√√√√ 2 − hRj

2 + hRj
(
ρ2
jk
− 2
) , (3.13)

ηkj =
1
2
ρjk

√√√√ 2 − hLk

2 + hLk

(
ρ2
jk
− 2
) +

1
2
ρjk

√√√√ 2 − hRk

2 + hRk
(
ρ2
jk
− 2
) , (3.14)

where it is straight-forward to see that if hLj = hRj (or hLk = hRk), then (3.13) or (3.14)
simplifies to (3.9) or (3.10) for the case of symmetric h-distributions. The IC in (3.13) is
determined by substituting the specified L-correlation (ηjk) and the solved values of the
parameters hLj and hRj (from (2.27)) into the left- and right-hand sides of (3.13), respectively,
and then numerically solving for ρjk. We would also note that Remarks 3.1 and 3.2 also apply
to (3.13) and (3.14).

4. The Procedure and Simulation Study

To implement the procedure for simulating hh- (or h-)distributions with specified L-
moments and specified L-correlations, we suggest the following five steps.
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(1) Specify the L-moments for T transformations of the form in (1.5), that is,
q(Z1), . . . , q(ZT ) and obtain the parameters of hLj and hRj by solving equations
(2.27) using the specified values of L-skew (τ3) and L-kurtosis (τ4) for each
distribution. Specify a T × T matrix of L-correlations (ηjk) for q(Zj) toward q(Zk),
where j < k ∈ {1,2, . . . , T}.

(2) Compute the (Pearson) intermediate correlations (ICs) ρjk by substituting the
specified L-correlation ηjk and the parameters of hLj and hRj from step (1) into the
left- and right-hand sides of (3.14), respectively, and then numerically solve for ρjk.
Repeat this step separately for all T(T − 1)/2 pairwise combinations of correlations.

(3) Assemble the ICs into a T × T matrix and decompose this matrix using a Cholesky
factorization. Note that this step requires the IC matrix to be positive definite.

(4) Use the results of the Cholesky factorization from step (3) to generate T standard
normal variables (Z1, . . . , ZT ) correlated at the intermediate levels as follows:

Z1 = a11V1,

Z2 = a12V1 + a22V2,

...

Zj = a1jV1 + a2jV2 + · · · + aijVi + · · · + ajjVj ,

...

ZT = a1TV1 + a2TV2 + · · · + aiTVi + · · · + ajTVj + · · · + aTTVT ,

(4.1)

where V1, . . . , VT are independent standard normal random variables and where aij

represents the element in the i-th row and the j-th column of the matrix associated
with the Cholesky factorization performed in step (3).

(5) Substitute Z1, . . . , ZT from step (4) into T equations of the form in (1.5), as noted in
step (1), to generate the nonnormal hh-distributions with the specified L-moments
and L-correlations.

To demonstrate the steps above and evaluate the proposed procedure, a comparison between
the new L-moment and conventional moment-based procedures is subsequently described.
Specifically, the distributions in Figure 2 are used as a basis for a comparison using the
specified correlation matrices in Table 1 where both strong and moderate levels of correlation
are considered. Tables 2 and 3 give the solved ICmatrices for the L-moment and conventional
moment-based procedures, respectively. Note that the ICs for the conventional procedure
were computed by adapting the Mathematica source code in [12, Table 1] for (1.5). Tables
4 and 5 give the results of the Cholesky decompositions on the IC matrices, which are then
used to create Z1, . . . , Z4 with the specified ICs by making use of the formulae given in (4.1)
of step 4 with T = 4. The values of Z1, . . . , Z4 are subsequently substituted into equations of
the form in (1.5) to produce q(Z1), . . . , q(Z4) for both procedures.

In terms of the simulation, a Fortran algorithm was written for both procedures
to generate 25,000 independent sample estimates for the specified parameters of (a)
conventional skew (α3), kurtosis (α4), and Pearson correlation (ρ∗

jk
); (b) L-skew (τ3), L-

kurtosis (τ4), and L-correlation (ηjk) based on samples of sizes n = 25 and n = 1000. The
estimates for α3,4 were based on Fisher’s k-statistics that is, the formulae currently used by
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Table 1: Specified correlation matrices for the distributions in Figure 2.

(a)

1 2 3 4
1 1
2 0.70 1
3 0.70 0.70 1
4 0.85 0.70 0.70 1

(b)

1 2 3 4
1 1
2 0.40 1
3 0.50 0.40 1
4 0.60 0.50 0.40 1

most commercial software packages such as SAS, SPSS, andMinitab for computing indices of
skew and kurtosis (where α3,4 = 0 for the standard normal distribution). The formulae used
for computing estimates for τ3,4 were Headrick’s Equations (2.3) and (2.5) [15]. The estimate
for ρ∗jk was based on the usual formula for the Pearson product-moment of correlation
statistic, and the estimate for ηjk was computed based on (3.13) using the empirical forms of
the cdfs in (3.1) and (3.3). The estimates for ρ∗

jk
and ηjk were both transformed using Fisher’s

z′ transformation. Bias-corrected accelerated bootstrapped average estimates, confidence
intervals (C.I.s), and standard errors were subsequently obtained for the estimates associated
with the parameters (α3,4, τ3,4, z

′
ρ∗
jk
, z′ηjk) using 10,000 resamples via the commercial software

package Spotfire S+ [20]. The bootstrap results for the estimates of z′ρ∗
jk

and z′ηjk were

transformed back to their original metrics. Further, if a parameter (P) was outside its
associated bootstrap C.I., then an index of relative bias (RB) was computed for the estimate
(E) as RB = ((E − P)/P) × 100. The results of the simulation are reported in Tables 6, 7, 8, 9,
10, and 11 and are discussed in the next section.

5. Discussion and Conclusion

One of the advantages that L-moment ratios have over conventional moment-based
estimators is that they can be far less biased when sampling is from distributions with
more severe departures from normality [10, 19]. And inspection of the simulation results in
Tables 6 and 7 clearly indicates that this is the case. That is, the superiority that estimates
of L-moment ratios (τ3, τ4) have over their corresponding conventional moment-based
counterparts (α3, α4) is obvious. For example, with samples of size n = 25, the estimates of
skew and kurtosis for Distribution 1were, on average, only 32.4% and 4.2% of their associated
population parameters, whereas the estimates of L-skew and L-kurtosis were 87.9% and
96.10% of their respective parameters. It is also evident from comparing Tables 6 and 7 that
L-skew and L-kurtosis are more efficient estimators as their standard errors are significantly
smaller than the conventional-moment-based estimators of skew and kurtosis.

Presented in Tables 8, 9, 10, and 11 are the results associated with the conventional
Pearson and L-correlations. Overall inspection of these tables indicates that the L-correlation
is superior to the Pearson correlation in terms of relative bias. For example, for moderate
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Table 2: Intermediate correlations for the conventional moment procedure.

(a)

1 2 3 4
1 1
2 0.726 1
3 0.722 0.715 1
4 0.881 0.717 0.707 1

(b)

1 2 3 4
1 1
2 0.424 1
3 0.521 0.414 1
4 0.626 0.515 0.405 1

Table 3: Intermediate correlations for the L-moment procedure.

(a)

1 2 3 4
1 1
2 0.689 1
3 0.689 0.685 1
4 0.843 0.685 0.691 1

(b)

1 2 3 4
1 1
2 0.389 1
3 0.488 0.386 1
4 0.588 0.485 0.392 1

correlations (n = 25), the relative bias for the two heavy-tailed distributions (i.e., distributions
1 and 2) was 6% for the Pearson correlation compared with only 2.5% for the L-correlation.
It is also noted that the variability of the L-correlation appears to be more stable than that of
the Pearson correlation both within and across the different conditions.

In summary, the new L-moment-based procedure is an attractive alternative to
the traditional conventional-moment-based procedure. In particular, the L-moment-based
procedure has distinct advantages when distributions with large departures from normality
are used. Finally, we note that Mathematica Version 8.0.1 [21] source code is available from
the authors for implementing both the conventional and new L-moment-based procedures.

Appendix

System of Conventional Moment-Based Equations for Tukey
hh-Distributions

The equations for the mean (α1), variance (α2
2), skew (α3), and kurtosis (α4) for conventional

moment-based hh-distributions are given below without the details of their derivation. We
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Table 4: Cholesky decompositions for the Conventional moment procedure.

(a)

a11 = 1 a12 = 0.726 a13 = 0.722 a14 = 0.881
0 a22 = 0.687 a23 = 0.277 a24 = 0.112
0 0 a33 = 0.633 a34 = 0.062
0 0 0 a44 = 0.455

(b)

a11 = 1 a12 = 0.424 a13 = 0.521 a14 = 0.626
0 a22 = 0.906 a23 = 0.213 a24 = 0.275
0 0 a33 = 0.827 a34 = 0.025
0 0 0 a44 = 0.729

Table 5: Cholesky decompositions for the L-moment procedure.

(a)

a11 = 1 a12 = 0.689 a13 = 0.689 a14 = 0.843
0 a22 = 0.725 a23 = 0.291 a24 = 0.145
0 0 a33 = 0.664 a34 = 0.104
0 0 0 a44 = 0.508

(b)

a11 = 1 a12 = 0.389 a13 = 0.488 a14 = 0.588
0 a22 = 0.921 a23 = 0.213 a24 = 0.278
0 0 a33 = 0.846 a34 = 0.0543
0 0 0 a44 = 0.758

Table 6: Skew (α3) and Kurtosis (α4) results for the conventional moment procedure.

(a) n = 25

Dist Parameter Estimate 95% Bootstrap C.I. Standard error Relative bias %

1 α3 = 2 0.649 0.638, 0.659 0.0056 −67.6
α4 = 40 1.677 1.64, 1.72 0.0200 −95.8

2 α3 = 1 0.305 0.293, 0.317 0.0060 −69.5
α4 = 15 1.73 1.69, 1.76 0.0175 −88.5

3 α3 = 0.5 0.248 0.239, 0.257 0.0048 −50.4
α4 = 3 0.97 0.95, 1.00 0.0128 −67.7

4 α3 = 0 0.0056 −0.0024, 0.0140 0.0042 —
α4 = 1.2 0.624 0.606, 0.643 0.0095 −48.0

(b) n = 1000

Dist Parameter Estimate 95% Bootstrap C.I. Standard error Relative bias %

1 α3 = 2 1.612 1.597, 1.627 0.0077 −19.4
α4 = 40 11.41 11.11, 11.72 0.1542 −71.5

2 α3 = 1 0.834 0.823, 0.845 0.0057 −16.6
α4 = 15 7.68 7.50, 7.87 0.0962 −48.8

3 α3 = 0.5 0.477 0.472, 0.481 0.0021 −4.6
α4 = 3 2.65 2.61, 2.70 0.0223 −11.7

4 α3 = 0 −0.0003 −0.0023, 0.0018 0.0011 —
α4 = 1.2 1.166 1.158, 1.175 0.0046 −2.83
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Table 7: L-skew (τ3) and L-kurtosis (τ4) results.

(a) n = 25

Dist Parameter Estimate 95% Bootstrap C.I. Stand. error Relative bias %

1 τ3 = 0.110610 0.09724 0.09574, 0.09897 0.00082 −12.1
τ4 = 0.195758 0.1882 0.1869, 0.1893 0.00061 −3.9

2 τ3 = 0.050040 0. 04361 0.04193, 0.04534 0.00086 −12.8
τ4 = 0.210839 0.2038 0.2026, 0.2050 0.00060 −3.3

3 τ3 = 0.041025 0.03726 0.03592, 0.03883 0.00074 −9.2
τ4 = 0.175084 0.1723 0.1713, 0.1734 0.00054 −1.6

4 τ3 = 0 0.0008 −0.0007, 0.0021 0.00070 —

τ4 = 0.160173 0.1591 0.1582, 0.1602 0.00050 —

(b) n = 1000

Dist Parameter Estimate 95% Bootstrap C.I. Stand. error Relative bias %

1 τ3 = 0.110610 0.1101 0.1098, 0.1104 0.00014 −0.46
τ4 = 0.195758 0. 1955 0. 1953, 0.1958 0.00010 —

2 τ3 = 0.050040 0.0498 0.04946, 0.050041 0.00015 —

τ4 = 0.210839 0.2106 0.2104, 0.2109 0.00010 —

3 τ3 = 0.041025 0.04086 0.04062, 0.04109 0.00012 —

τ4 = 0.175084 0.1750 0.1748, 0.1751 0.00010 —

4 τ3 = 0 −0.00003 −0.00027, 0.00015 0.00011 —

τ4 = 0.160173 0.1602 0.1600, 0.1603 0.00010 —

Table 8: Correlation (strong) results for the conventional moment procedure.

(a) n = 25

Parameter Estimate 95% Bootstrap C.I. Standard error Relative bias%

ρ∗12 = 0.70 0.725 0.724, 0.727 0.0015 3.57

ρ∗13 = 0.70 0.723 0.722, 0.724 0.0014 3.29

ρ∗14 = 0.85 0.873 0.873, 0.874 0.0013 2.71

ρ∗23 = 0.70 0.718 0.716, 0.719 0.0014 2.57

ρ∗24 = 0.70 0.718 0.717, 0.719 0.0014 2.57

ρ∗34 = 0.70 0.712 0.710, 0.713 0.0014 1.71

(b) n = 1000

Parameter Estimate 95% Bootstrap C.I. Standard error Relative bias%

ρ∗12 = 0.70 0.7024 0.7021, 0.7027 0.00030 0.34

ρ∗13 = 0.70 0.7025 0.7023, 0.7028 0.00027 0.36

ρ∗14 = 0.85 0.8535 0.8532, 0.8536 0.00037 0.41

ρ∗23 = 0.70 0.7010 0.7008, 0.7013 0.00024 0.14

ρ∗24 = 0.70 0.7013 0.7011, 0.7015 0.00024 0.19

ρ∗34 = 0.70 0.7005 0.7003, 0.7007 0.00021 0.07
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Table 9: Correlation (strong) results for the L-moment procedure.

(a) n = 25

Parameter Estimate 95% Bootstrap C.I. Standard error Relative bias%

η12 = 0.70 0.710 0.708, 0.711 0.0015 1.40

η13 = 0.70 0.709 0.708, 0.711 0.0015 1.34

η14 = 0.85 0.856 0.855, 0.857 0.0015 0.71

η23 = 0.70 0.708 0.706, 0.709 0.0015 1.10

η24 = 0.70 0.707 0.706, 0.709 0.0015 1.01

η34 = 0.70 0.708 0.707, 0.710 0.0014 1.20

(b) n = 1000

Parameter Estimate 95% Bootstrap C.I. Standard error Relative bias%

η12 = 0.70 0.7014 0.7012, 0.7016 0.00022 0.20

η13 = 0.70 0.7016 0.7014, 0.7018 0.00022 0.23

η14 = 0.85 0.8511 0.8509, 0.8512 0.00022 0.13

η23 = 0.70 0.7002 0.6999, 0.7004 0.00022 —

η24 = 0.70 0.7003 0.7001, 0.7005 0.00022 0.04

η34 = 0.70 0.7004 0.7002, 0.7006 0.00021 0.06

Table 10: Correlation (moderate) results for the conventional moment procedure.

(a) n = 25

Parameter Estimate 95% Bootstrap C.I. Standard error Relative bias%

ρ∗12 = 0.40 0.424 0.422, 0.427 0.0014 6.00

ρ∗13 = 0.50 0.522 0.520, 0.524 0.0014 4.40

ρ∗14 = 0.60 0.624 0.622, 0.626 0.0013 4.00

ρ∗23 = 0.40 0.416 0.414, 0.418 0.0013 4.00

ρ∗24 = 0.50 0.516 0.514, 0.518 0.0013 3.20

ρ∗34 = 0.40 0.410 0.408, 0.412 0.0013 2.50

(b) n = 1000

Parameter Estimate 95% Bootstrap C.I. Standard Error Relative Bias%

ρ∗12 = 0.40 0.4020 0.4016, 0.4023 0.00024 0.50

ρ∗13 = 0.50 0.5022 0.5018, 0.5025 0.00024 0.44

ρ∗14 = 0.60 0.6023 0.6020, 0.6026 0.00024 0.38

ρ∗23 = 0.40 0.4005 0.4001, 0.4008 0.00021 0.12

ρ∗24 = 0.50 0.5010 0.5007, 0.5013 0.00021 0.20

ρ∗34 = 0.40 0.4003 0.4000, 0.4006 0.00020 0.08
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Table 11: Correlation (moderate) results for the L-moment procedure.

(a) n = 25

Parameter Estimate 95% Bootstrap C.I. Standard error Relative bias%
η12 = 0.40 0.410 0.408, 0.412 0.0015 2.50
η13 = 0.50 0.509 0.507, 0.511 0.0015 1.80
η14 = 0.60 0.610 0.608, 0.611 0.0015 1.67
η23 = 0.40 0.407 0.404, 0.409 0.0015 1.75
η24 = 0.50 0.507 0.505, 0.509 0.0015 1.40
η34 = 0.40 0.408 0.406, 0.410 0.0014 2.00

(b) n = 1000

Parameter Estimate 95% Bootstrap C.I. Standard error Relative bias%
η12 = 0.40 0.4013 0.4010, 0.4017 0.00022 0.32
η13 = 0.50 0.5017 0.5014, 0.5020 0.00022 0.34
η14 = 0.60 0.6016 0.6014, 0.6019 0.00022 0.27
η23 = 0.40 0.3999 0.3995, 0.4002 0.00022 —
η24 = 0.50 0.5004 0.5001, 0.5007 0.00022 0.08
η34 = 0.40 0.4003 0.3999, 0.4006 0.00021 —

would note that we derived (A.1)–(A.4) based on the formulae given in Headrick et al. [3,
equations (16)–(18)].

α1 =
1√

2π(hL − 1)
+

1√
2π(hR − 1)

, (A.1)

α2
2 =

C

2
=
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