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This paper derives a procedure for determining the expectations of order statistics associated with
the standard normal distribution (Z) and its powers of order three and five (Z3 and Z5). The
procedure is demonstrated for sample sizes of n ≤ 9. It is shown that Z3 and Z5 have expectations
of order statistics that are functions of the expectations for Z and can be expressed in terms of
explicit elementary functions for sample sizes of n ≤ 5. For sample sizes of n = 6, 7 the expectations
of the order statistics for Z, Z3, and Z5 only require a single remainder term.

1. Introduction

Order statistics have played an important role in the development of techniques associated
with estimation [1, 2], hypothesis testing [3, 4], and describing data in the context of L-
moments [5, 6]. In terms of the latter, L-moments are based on the expectations of linear
combinations of order statistics associated with a random variable X. Specifically, the first
four L-moments are expressed as

λ1 = E[X1:1],

λ2 =
1
2
E[X2:2 −X1:2],

λ3 =
1
3
E[X3:3 − 2X2:3 +X1:3],

λ4 =
1
4
E[X4:4 − 3X3:4 + 3X2:4 −X1:4]

(1.1)
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or more generally as

λr =
1
r

r−1∑

j=0
(−1)j

(
r − 1
j

)
E
[
Xr−j:r

]
, (1.2)

where the order statistics X1:n ≤ X2:n ≤ · · · ≤ Xn:n are drawn from the random variable X.
The values of λ1 and λ2 are measures of location and scale and are the arithmetic mean and
one-half the coefficient of mean difference (or Gini’s index of spread), respectively. Higher-
order L-moments are transformed to dimensionless quantities referred to as L-moment ratios
defined as τr = λr/λ2 for r ≥ 3, and where τ3 and τ4 are the analogs to the conventional
measures of skew and kurtosis. In general, L-moment ratios are bounded in the interval −1 <
τr < 1 as is the index of L-skew (τ3)where a symmetric distribution implies that all L-moment
ratios with odd subscripts are zero. Other smaller boundaries can be found for more specific
cases. For example, the index of L-kurtosis (τ4) has the boundary condition for continuous
distributions of [7]

5τ23 − 1
4

< τ4 < 1. (1.3)

Headrick [8] derived classes of standard normal-L-moment-based power method
distributions using the polynomial transformation

p(Z) =
m∑

i=1

ciZ
i−1, (1.4)

where Z ∼ i.i.d. N(0, 1). Setting m = 4 (m = 6) gives the third- (fifth-) order class of
power method distributions. The shape of p(Z) in (1.4) is contingent on the values of
the constant coefficients ci. For the larger class of nonnormal distributions associated with
m = 6, the coefficients are computed from the system of equations given in Headrick ([8,
Equations (2.8)–(2.13)] for specified values of L-moment ratios (τ3,...,6). In general, λ1 and λ2
are standardized to the unit normal distribution as

λ1 = c1 + c3 + 3c5 = 0,

λ2 =
(4c2 + 10c4 + 43c6)

4
√
π

=
1√
π
.

(1.5)

The pdf and cdf associated with (1.4) are given in parametric form as in [8, Equations
(1.3) and (1.4)]

fp(z)
(
p(z)

)
= f(z) =

(
p(z),

φ(z)
p′(z)

)
,

Fp(z)
(
p(z)

)
= F(z) =

(
p(z),Φ(z)

)
,

(1.6)

where f : � �→ �2 and F : � �→ �2 are the parametric forms of the pdf and cdf with the
mappings z �→ (x, y) and z �→ (x, v) with x = p(z), y = φ(z)/p′(z), v = Φ(z), and where
φ(z) and Φ(z) are the standard normal pdf and cdf, respectively. For further details on the
distributional properties associated with power method transformations see [9, pages 9–30]
and [8] in terms of conventional moment and L-moment theory, respectively.
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Figure 1: Graphs of the three standard normal-based power method distributions pt(Z) in (1.7) and their
values of L-skew (τ3) and L-kurtosis (τ4).

Of concern in this study are three power method distributions related to (1.4) and (1.5)
as

pt(Z) = c2tZ
2t−1, where if

⎧
⎪⎪⎨

⎪⎪⎩

t = 1, c2 = 1, c4 = 0, c6 = 0,
t = 2, then c2 = 0, c4 = 2/5, c6 = 0,
t = 3, c2 = 0, c4 = 0, c6 = 4/43,

(1.7)

and thus p1(Z) = Z, p2(Z) = (2/5)Z3 and p3(Z) = (4/43)Z5. Note that these power
method distributions are symmetric and imply that c1,3,5 = 0 in (1.4). The graphs of the pdfs
associated with the distributions in (1.7) are given in Figure 1 along with their values of L-
skew and L-kurtosis.Wewould point out that the importance of these distributions was noted
by Stoyanov [10, page 281], “. . .power transformations [such as p2(Z) and p3(Z)] can be



4 ISRN Applied Mathematics

considered as functional transformations on random data, usually called Box-Cox transfor-
mations. Their importance in the area of statistics and its applications is well known.”

The standard normal distribution p1(Z) in (1.7) is the only case of the three distri-
butions considered that is moment determinant. That is, p2(Z) and p3(Z) have the so-called
classical problem of moments insofar as their respective cdfs have nonunique solutions (i.e.,
they are moment indeterminant, see [10–12]). However, as pointed out by Huang [12], p2(Z)
and p3(Z) are determinant in the context of order statistics moments.

The derivation of the expected values of single order statistics associated with p1(Z) in
terms of explicit elementary functions has been attempted by numerous authors (see [13–
17]). As indicated by Johnson et al. [18, pages 93-94] these attempts fail to give explicit
expressions in terms of elementary functions for the expected values of order statistics with
sample sizes of n > 5. However, Renner [19] provides a technique for expressing the expected
values of order statistics associated with p1(Z) for n = 6, 7 based on a single power series.

There is a paucity of research on the expectations of order statistics associated with
p2(Z) and p3(Z) in the context of explicit elementary functions. Thus, what follows in
Section 2 is the development of an approach for determining the expected values of the
order statistics for p2(Z) and p3(Z), which is based on a generalization of Renner’s [19]
discussion in the context of p1(Z). In Section 3, some specific evaluations of the generalization
are provided to demonstrate the methodology.

2. Methodology

The expected values of the order statistics associated with (1.7) can be determined based on
the following expression [20, page 34]:

E
[
p(Z)j:n

]

= n2−n
(
n − 1
j − 1

)∫∞

0
pt(z)ϕ(z)

(
[1 + Ψ(z)]j−1[1 −Ψ(z)]n−j − [1 −Ψ(z)]j−1[1 + Ψ(z)]n−j

)
dz,

(2.1)

where pt(z) is defined as in (1.7) and ϕ(z) = 2φ(z) and Ψ(z) = 2Φ(z) − 1 are the pdf and
cdf of the folded unit normal distribution at z = 0. Table 1 gives a summary of some specific
expansions of the polynomial in (2.1) for sample sizes of n = 1, . . . , 9, which are applicable to
all three distributions related to pt(z). Inspection of Table 1 indicates that we have in general
(a) E[p(Z)j:n] = −E[p(Z)n+1−j:n], (b) the median E[p(Z)j:n] = −E[p(Z)j:n] = 0, and (c) the
E[p(Z)j:n] are linear combinations of the integrals I2r−1 for r = 1, 2, . . ., with only odd
subscripts appearing as only odd powers of Ψ(z) appear in the polynomial expansions
associated with (2.1). As such, I2r−1 in (2.1) can be expressed as

I2r−1 =
∫∞

0
pt(z)ϕ(z)[Ψ(z)]2r−1dz. (2.2)

Equation (2.2)may be integrated by parts as

I2r−1 = (2r − 1)
∫∞

0
qt(z)ϕ(z)2[Ψ(z)]

2r−2
dz, (2.3)
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Table 1:General expressions for the expected values of the order statistics for pt=1,2,3(Z) in (1.7) and sample
sizes of n = 1, . . . , 9. I2r−1 denotes an integral in (2.1)where r = 1, . . . , 4.

Sample size (n) Expected value

1 E[pt(Z)1:1] = −E[pt(Z)1:1] = 0

2 E[pt(Z)2:2] = −E[pt(Z)1:2] = I1 = 1/
√
π

3 E[pt(Z)2:3] = −E[pt(Z)2:3] = 0
E[pt(Z)3:3] = −E[pt(Z)1:3] = (3/2)I1 = 3/(2

√
π)

4 E[pt(Z)3:4] = −E[pt(Z)2:4] = (3/2)(I1 − I3)
E[pt(Z)4:4] = −E[pt(Z)1:4] = (1/2)(3I1 + I3)

5
E[pt(Z)3:5] = −E[pt(Z)3:5] = 0
E[pt(Z)4:5] = −E[pt(Z)2:5] = (5/2)(I1 − I3)
E[pt(Z)5:5] = −E[pt(Z)1:5] = (5/4)(I1 + I3)

6
E[pt(Z)4:6] = −E[pt(Z)3:6] = (15/8)(I1 − 2I3 + I5)
E[pt(Z)5:6] = −E[pt(Z)2:6] = (15/16)(3I1 − 2I3 − I5)
E[pt(Z)6:6] = −E[pt(Z)1:6] = (3/16)(5I1 + 10I3 + I5)

7

E[pt(Z)4:7] = −E[pt(Z)4:7] = 0
E[pt(Z)5:7] = −E[pt(Z)3:7] = (105/32)(I1 − 2I3 + I5)
E[pt(Z)6:7] = −E[pt(Z)2:7] = (21/8)(I1 − I5)
E[pt(Z)7:7] = −E[pt(Z)1:7] = (7/32)(3I1 + 10I3 + 3I5)

8

E[pt(Z)5:8] = −E[pt(Z)4:8] = (35/16)(I1 − 3I3 + 3I5 − I7)
E[pt(Z)6:8] = −E[pt(Z)3:8] = (21/16)(3I1 − 5I3 + I5 + I7)
E[pt(Z)7:8] = −E[pt(Z)2:8] = (7/16)(5I1 + 5I3 − 9I5 − I7)
E[pt(Z)8:8] = −E[pt(Z)1:8] = (1/16)(7I1 + 35I3 + 21I5 + I7)

9

E[pt(Z)5:9] = −E[pt(Z)5:9] = 0
E[pt(Z)6:9] = −E[pt(Z)4:9] = (63/16)(I1 − 3I3 + 3I5 − I7)
E[pt(Z)7:9] = −E[pt(Z)3:9] = (63/16)(I1 − I3 − I5 + I7)
E[pt(Z)8:9] = −E[pt(Z)2:9] = (9/16)(3I1 + 7I3 − 7I5 + 3I7)
E[pt(Z)9:9] = −E[pt(Z)1:9] = (9/32)(I1 + 7I3 + 7I5 + I7)

where q1(z) = 1, q2(z) = (2/5)(z2 + 2) and q3(z) = (4/43)(z4 + 4z2 + 8), for p1(z), p2(z), and
p3(z), respectively. Note that Ψ(0) = 0 and limz→+∞ϕ(z) = 0. Evaluating (2.3) for r = 1 gives
a coefficient of mean difference of

I1 =
∫∞

0
qt(z)ϕ(z)2dz =

1√
π

(2.4)

for all pt(z) in (1.7), which is consistent with the specification in (1.5) and given in Table 1.
The expression [Ψ(z)]2r−2 in (2.3) can be expressed as

[Ψ(z)]2r−2 =
(
2
π

)r−1[∫z

0
exp
{
−1
2
u2
}
du

]2r−2
(2.5)

or analogously as a double integral over �2 as

[Ψ(z)]2r−2 =
(
2
π

)r−1[∫∫z

0
exp
{
−1
2

(
z21 + z22

)}
dz1dz2

]r−1
. (2.6)
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Using (2.6), let z2 = z1 tan θ1 and thus dz2 = z1sec2θ1dθ1. Further, let z21 + z22 = z21sec
2θ1. As

such, the region of integration will be reduced to one-half of the area of the original rectangle
associated with (2.6). Thus, we have

[Ψ(z)]2r−2 =
(
2
π

)r−1 [
2
∫π/4

0

∫z

0
exp
{
−1
2

(
z21sec

2θ1
)}

dz1
(
z1sec2θ1dθ1

)]r−1

=
(
4
π

)r−1 [∫π/4

0

{∫z

0
exp
{
−1
2

(
z21sec

2θ1
)}

z1dz1

}
sec2θ1dθ1

]r−1
.

(2.7)

Subsequently, setting z21 = w in (2.7), where z1dz1 = dw/2, gives

[Ψ(z)]2r−2 =
(
4
π

)r−1[∫π/4

0

{∫z2

0
exp
(
−1
2
wsec2θ1

)
dw

2

}
sec2θ1dθ1

]r−1

=
(
4
π

)r−1
⎡

⎣
∫π/4

0

{
1
2
· exp

(−(1/2)wsec2θ1
)

−(1/2)sec2θ1

}z2

0

sec2θ1dθ1

⎤

⎦
r−1

,

(2.8)

and hence

[Ψ(z)]2r−2 =
(
4
π

)r−1[∫π/4

0

(
1 − exp

{
−1
2

(
z2sec2θ1

)})
dθ1

]r−1
. (2.9)

Expanding (2.9) yields

[Ψ(z)]2r−2 = 1 +

{
r−1∑

k=1

(−1)k
(
r − 1
k

)(
4
π

)k ∫π/4

0
· · ·
∫π/4

0
exp

{
−1
2
z2

k∑

i=1

sec2θi

}
dθ1 · · ·dθk

}
,

(2.10)

where the subscript i runs faster than k. For example, if r = 4, then (2.10)would appear more
specifically as

[Ψ(z)]2r−2 = 1 −
(
r − 1
1

)(
4
π

)∫π/4

0
exp
{
−1
2
z2sec2θ1

}
dθ1

+
(
r − 1
2

)(
4
π

)2∫∫π/4

0
exp
{
−1
2
z2
(
sec2θ1 + sec2θ2

)}
dθ1dθ2

−
(
r − 1
3

)(
4
π

)3∫∫∫π/4

0
exp
{
−1
2
z2
(
sec2θ1 + sec2θ2 + sec2θ3

)}
dθ1dθ2dθ3.

(2.11)
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Substituting (2.10) into (2.3) and initially integrating with respect to z (Lichtenstein,
[21]) yields

√
π

∫∞

0
qt(z)ϕ(z)2 exp

{
−1
2
z2

k∑

i=1

sec2θi

}
dz = gt

(
sec2θi

)
, (2.12)

where the specific forms of gt(sec2θi), which are associated with pt(z), are

g1
(
sec2θi

)
=

√
2

(
2 +
∑k

i=1 sec2θi
)1/2 ,

g2
(
sec2θi

)
=

2
√
2
(
5 + 2

∑k
i=1 sec

2θi
)

5
(
2 +
∑k

i=1 sec2θi
)3/2 ,

g3
(
sec2θi

)
=

4
√
2
(
3 + 4

(
2 +
∑k

i=1 sec
2θi
)
+ 8
(
2 +
∑k

i=1 sec
2θi
)2)

43
(
2 +
∑k

i=1 sec2θi
)5/2 .

(2.13)

Equations (2.13) can be more conveniently expressed as

gt
(
sec2θi

)
= g1

(
sec2θi

)
− ht

(
sec2θi

)
, (2.14)

where the specific forms of ht(sec2θi) are

h1

(
sec2θi

)
= 0, (2.15)

h2

(
sec2θi

)
=

√
2
(∑k

i=1 sec
2θi
)

5
(
2 +
∑k

i=1 sec2θi
)3/2 , (2.16)

h3

(
sec2θi

)
=

√
2
(
11
∑k

i=1 sec
4θi + 28

∑k
i=1 sec

2θi + 22
∑

i<j sec
2θisec2θj

)

43
(
2 +
∑k

i=1 sec2θi
)5/2 (2.17)

andwhere
∑

i<j in (2.17) indicates summing over all k(k−1)/2 pairwise combinations. Hence,
the integral in (2.3) can be expressed as

I2r−1 =
2r − 1√

π

(
1 +

{
r−1∑

k=1

(−1)k
(
r − 1
k

)(
4
π

)k ∫π/4

0
· · ·
∫π/4

0
gt
(
sec2θi

)
dθ1 · · ·dθk

})
, (2.18)
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and subsequently substituting (2.14) into (2.18) gives

I2r−1

=
2r − 1√

π

(
1+

{
r−1∑

k=1

(−1)k
(
r − 1
k

)(
4
π

)k∫π/4

0
· · ·
∫π/4

0

(
g1
(
sec2θi

)
−ht

(
sec2θi

))
dθ1 · · ·dθk

})
.

(2.19)

The integral associatedwith g1(sec2θi) in (2.19) cannot be expressed in terms of explicit
elementary functions for k > 1, which also implies r > 2 and sample sizes of n > 5 in Table 1.
As such, we will consider the approximating function g∗

1(sec
2θi) as

g∗
1

(
sec2θi

)
=
(
2k/2
) k∏

i=1

1

(2 + sec2θi)
1/2

, (2.20)

where

∫π/4

0
· · ·
∫π/4

0
g1
(
sec2θi

)
dθ1 · · ·dθk =

∫π/4

0
· · ·
∫π/4

0
g∗
1

(
sec2θi

)
dθ1 · · ·dθk

=

⎧
⎨

⎩
tan−1

(
1/

√
2
)
, k = 1,

0, k −→ ∞.

(2.21)

Thus, for finite k > 1 we have

∫π/4

0
· · ·
∫π/4

0
g1
(
sec2θi

)
dθ1 · · ·dθk =

∫π/4

0
· · ·
∫π/4

0
g∗
1

(
sec2θi

)
dθ1 · · ·dθk + εk

=
(
tan−1

(
1√
2

))k

+ εk,

(2.22)

where εk is the remainder term required for k > 1 and where ε1 = 0 for r = 1, 2 and n ≤ 5.
Thus, using (2.22), (2.19) can be expressed as

I2r−1

=
2r − 1√

π

({
1 +

r−1∑

k=1

(−1)k
(
r − 1
k

)(
4
π

)k

×
(((

tan−1
(

1√
2

))k

+ εk

)
−
∫π/4

0
· · ·
∫π/4

0
ht

(
sec2θi

)
dθ1 · · ·dθk

)})
.

(2.23)

The remainder terms εk>1 in (2.23) can be solved by using (2.3), (2.15), (2.23), and the
error function Erf [22], where Erf would replace Φ(z) in (2.3) where Ψ(z) = 2Φ(z) − 1. More
specifically, Table 2 gives the values of εk for k = 1, . . . 12, 25, and 50 with 40-digit precision.
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Table 2: Computed values of the remainder term εk associated with (2.23). The values were computed
with 40-digit precision.

Sample size (n) Integral Remainder term

1, . . . , 5 I1, I3 ε1 = 0.0
6, 7 I5 ε2 = 0.03140698829552010270731937950881276500595
8, 9 I7 ε3 = 0.05156068650031409787170392919312656858246
10, 11 I9 ε4 = 0.05900198710355817149868423817928465212298
12, 13 I11 ε5 = 0.05808975458203638968882522593413660371348
14, 15 I13 ε6 = 0.05274763616761422221709626523935998463539
16, 17 I15 ε7 = 0.04559236574104643530748593758544745949676
18, 19 I17 ε8 = 0.03815223895234453779274127861572423887877
20, 21 I19 ε9 = 0.03122205691467168489718556870682270636055
22, 23 I21 ε10 = 0.02514855254614865670209122288596241803047
24, 25 I23 ε11 = 0.02002429921405354560405588075438666460570
26, 27 I25 ε12 = 0.01580928681263632398753707685232879723154
...

...
...

52, 53 I51 ε25 = 0.00057455597453332805073409074487236584232
...

...
...

102, 103 I101 ε50 = 0.00000099193614769461065745252616987082859

Table 3: Expected values of order statistics for p1(Z) = Z for n = 4, 5.

E[p1(Z)3:4] = − 3√
π

+
18tan−1(1/

√
2)

π3/2
= 0.29701138 . . .

E[p1(Z)4:4] =
3√
π

− 6tan−1(1/
√
2)

π3/2
= 1.02937537 . . .

E[p1(Z)3:5] = 0

E[p1(Z)4:5] = − 5√
π

+
30tan−1(1/

√
2)

π3/2
= 0.49501897 . . .

E[p1(Z)5:5] =
5√
π

− 15tan−1(1/
√
2)

π3/2
= 1.16296447 . . .

Table 4: Expected values of order statistics for p2(Z) = (2/5)Z3 for n = 4, 5.

E[p1(Z)3:4] = − 3
√
2

5π3/2
+ E[p1(Z)3:4] = 0.14462665 . . .

E[p2(Z)4:4] =
√
2

5π3/2
+ E[p1(Z)4:4] = 1.08017028 . . .

E[p2(Z)3:5] = 0

E[p2(Z)4:5] = −
√
2

π3/2
+ E[p1(Z)4:5] = 0.24104442 . . .

E[p2(Z)5:5] =
1√

2π3/2
+ E[p1(Z)5:5] = 1.28995174 . . .

Inspection of Table 2 indicates that the (positive) remainder term achieves a maximum at ε4
and thereafter tends to zero as k increases (i.e., εk → 0 for k > 4).



10 ISRN Applied Mathematics

Table 5: Expected values of order statistics for p3(Z) = (4/43)Z5 for n = 4, 5.

E[p3(Z)3:4] = − 77

43
√
2π

3/2
+ E[p1(Z)3:4] = 0.069615569 . . .

E[p3(Z)4:4] =
77

129
√
2π

3/2
+ E[p1(Z)4:4] = 1.10517397 . . .

E[p3(Z)3:5] = 0

E[p3(Z)4:5] = − 385

129
√
2π

3/2
+ E[p1(Z)4:5] = 0.11602594 . . .

E[p3(Z)5:5] =
385

258
√
2π

3/2
+ E[p1(Z)5:5] = 1.35246098 . . .

Table 6: Expected values of order statistics for p1(Z) = Z for n = 6, 7.

E[p1(Z)4:6] =
150ε2
π5/2

− 30tan−1(1/
√
2)

π3/2
+
150tan−1(1/

√
2)

2

π5/2
= 0.20154683 . . .

E[p1(Z)5:6] = − 15
2
√
π

− 75ε2
π5/2

+
60tan−1(1/

√
2)

π3/2
− 75tan−1(1/

√
2)

2

π5/2
= 0.64177503 . . .

E[p1(Z)6:6] =
15

2
√
π

+
15ε2
π5/2

− 30tan−1(1/
√
2)

π3/2
+
15tan−1(1/

√
2)

2

π5/2
= 1.26720636 . . .

E[p1(Z)4:7] = 0

E[p1(Z)5:7] =
525ε2
2π5/2

− 105tan−1(1/
√
2)

2π3/2
+
525tan−1(1/

√
2)

2

2π5/2
= 0.35270695 . . .

E[p1(Z)6:7] = − 21
2
√
π

− 210ε2
π5/2

+
105tan−1(1/

√
2)

π3/2
− 210tan−1(1/

√
2)

2

π5/2
= 0.75737427 . . .

E[p1(Z)7:7] =
21

2
√
π

+
105ε2
2π5/2

− 105tan−1(1/
√
2)

2π3/2
+
105tan−1(1/

√
2)

2

2π5/2
= 1.35217837 . . .

We would note that the approach taken here to determine ε2 is analogous to Renner’s
[19] approach of developing a power series for this value. That is, the remainder term ε2
in Table 2 is also the value approximated in [19] for p1(Z). Further, we would note that
extending the approach in [19] for computing the remainder terms for k > 2 would become
computationally burdensome.

To demonstrate (2.23) more specifically, if r = 4 and t = 2 in (1.7), then the integral I7
associated with p2(Z) would appear as

I7 =
2r − 1√

π

{
1 −
(
r − 1
1

)(
4
π

)((
tan−1

(
1√
2

))
−
∫π/4

0
h2

(
sec2θi

)
dθ1

)

+
(
r − 1
2

)(
4
π

)2
(((

tan−1
(

1√
2

))2

+ ε2

)
−
∫∫π/4

0
h2

(
sec2θi

)
dθ1dθ2

)

−
(
r − 1
3

)(
4
π

)3
(((

tan−1
(

1√
2

))3

+ ε3

)
−
∫∫∫π/4

0
h2

(
sec2θi

)
dθ1dθ2dθ3

)}
.

(2.24)
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Table 7: Expected values of order statistics for p2(Z) = (2/5)Z3 for n = 6, 7.

E[p2(Z)4:6] =
√
2

π3/2
− 10

√
2tan−1(3

√
3/2/7)

π5/2
+ E[p1(Z)4:6] = 0.06475951 . . .

E[p2(Z)5:6] = − 2
√
2

π3/2
+
5
√
2tan−1(3

√
3/2/7)

π5/2
+ E[p1(Z)5:6] = 0.32918688 . . .

E[p2(Z)6:6] =
2
√
2

π3/2
−
√
2tan−1(3

√
3/2/7)

π5/2
+ E[p1(Z)6:6] = 1.48210471 . . .

E[p2(Z)4:7] = 0

E[p2(Z)5:7] =
7

2
√
2π

3/2
− 35tan−1(3

√
3/2/7)√

2π5/2
+ E[p1(Z)5:7] = 0.11332914 . . .

E[p2(Z)6:7] = − 7
√
2π

3/2
+
14
√
2tan−1(3

√
3/2/7)

π5/2
+ E[p1(Z)6:7] = 0.41552998 . . .

E[p2(Z)7:7] =
7

2
√
2π

3/2
− 7tan−1(3

√
3/2/7)√

2π5/2
+ E[p1(Z)7:7] = 1.65986717 . . .

Table 8: Expected values of order statistics for p3(Z) = (4/43)Z5 for n = 6, 7.

E[p3(Z)4:6] =
10
√
3

43π5/2
+

385

129
√
2π3/2

− 1925
√
2tan−1(3

√
3/2/7)

129π5/2
+ E[p1(Z)4:6] = 0.02045216 . . .

E[p3(Z)5:6] = − 5
√
3

43π5/2
− 385

129
√
2π3/2

+
1925

√
2tan−1(3

√
3/2/7)

129
√
2π5/2

+ E[p1(Z)5:6] = 0.16381284 . . .

E[p3(Z)6:6] =
√
3

43π5/2
+

385

129
√
2π3/2

− 385tan−1(3
√
3/2/7)

129
√
2π5/2

+ E[p1(Z)6:6] = 1.59019061 . . .

E[p3(Z)4:7] = 0

E[p3(Z)5:7] =
35
√
3

86π5/2
+

2695

516
√
2π3/2

− 13475tan−1(3
√
3/2/7)

258
√
2π

5/2
+ E[p1(Z)5:7] = 0.03579128 . . .

E[p3(Z)6:7] = − 14
√
3

43π5/2
− 2695

258
√
2π3/2

+
2695

√
2tan−1(3

√
3/2/7)

129π5/2
+ E[p1(Z)6:7] = 0.21502146 . . .

E[p3(Z)7:7] =
7
√
3

86π5/2
+

2695

516
√
2π3/2

− 2695tan−1(3
√
3/2/7)

258
√
2π5/2

+ E[p1(Z)7:7] = 1.81938546 . . .

3. Evaluations

Tables 3–5 give evaluations for the expected values of the order statistics for p1(Z), p2(Z),
and p3(Z) in (1.7), which are based on (2.23) and the general formulae given in Table 1 for
sample sizes of n = 4, 5. Inspection of Tables 4 and 5 indicates that the expected values for
p2(Z) and p3(Z) are all expressed in terms of elementary functions and are also functions of
the expectations associated with p1(Z) in Table 3.

Presented in Tables 6, 7, and 8 are the evaluations for all three distributions in (1.7)
for samples of sizes n = 6, 7 where the expectations of the order statistics for p1(Z), p2(Z), and
p3(Z) are all expressed in terms of explicit elementary functions and a single remainder term.
Tables 9 and 10 give the expected values of the order statistics associated with the standard
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Table 9: Expected values of order statistics for p1(Z) = Z for n = 8.

E[p1(Z)5:8] = −210ε2
π5/2

+
980ε3
π7/2

− 210tan−1(1/
√
2)

2

π5/2
+
980tan−1(1/

√
2)

3

π7/2
= 0.15251439 . . .

E[p1(Z)6:8] =
546ε2
π5/2

− 588ε3
π7/2

− 84tan−1(1/
√
2)

π3/2
+
546tan−1(1/

√
2)

2

π5/2
− 588tan−1(1/

√
2)

3

π7/2
= 0.47282249 . . .

E[p1(Z)7:8] = − 14√
π

− 462ε2
π5/2

+
196ε3
π7/2

+
168tan−1(1/

√
2)

π3/2
− 462tan−1(1/

√
2)

2

π5/2
+
196tan−1(1/

√
2)

3

π7/2

= 0.85222486 . . .

E[p1(Z)8:8] =
14√
π

+
126ε2
π5/2

− 28ε3
π7/2

− 84tan−1(1/
√
2)

π3/2
+
126tan−1(1/

√
2)

2

π5/2
− 28tan−1(1/

√
2)

3

π7/2
= 1.42360030 . . .

Table 10: Expected values of order statistics for p1(Z) = Z for n = 9.

E[p1(Z)5:9] = 0

E[p1(Z)6:9] = −378ε2
π5/2

+
1764ε3
π7/2

− 378tan−1(1/
√
2)

2

π5/2
+
1764tan−1(1/

√
2)

3

π7/2
= 0.27452591 . . .

E[p1(Z)7:9] =
1008ε2
π5/2

− 1764ε3
π7/2

− 126tan−1(1/
√
2)

π3/2
+
1008tan−1(1/

√
2)

2

π5/2
− 1764tan−1(1/

√
2)

3

π7/2
= 0.57197078 . . .

E[p1(Z)8:9] = − 18√
π

− 882ε2
π5/2

+
756ε3
π7/2

+
252tan−1(1/

√
2)

π3/2
− 882tan−1(1/

√
2)

2

π5/2
+
756tan−1(1/

√
2)

3

π7/2

= 0.93229745 . . .

E[p1(Z)9:9] =
18√
π

+
252ε2
π5/2

− 126ε3
π7/2

− 126tan−1(1/
√
2)

π3/2
+
252tan−1(1/

√
2)

2

π5/2
− 126tan−1(1/

√
2)

3

π7/2

= 1.48501316 . . .

normal distribution p1(Z) for sample sizes of n = 8 and n = 9, respectively. We would
also note that Mathematica [22] software is available from the authors for implementing the
methodology.
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