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ABSTRACT 

 

MUTUAL INFORMATION BASED NON-RIGID IMAGE REGISTRATION 

USING ADAPTIVE GRID GENERATION: GPU 

IMPLEMENTATION AND APPLICATION 

TO BREAST MRI 

 

 

Mei Yi Chu, PhD. 

 

The University of Texas at Arlington, 2008 

 

Supervising Professor:  Hua-mei Chen 

 In this dissertation a new approach for non-rigid image registration using mutual 

information is introduced. A fast method for non-rigid registration is developed by adjusting 

divergence and curl of an intermediate vector field from which the deformation field is computed 

using finite difference method. The similarity measure mutual information is employed in the 

gradient-based cost minimization (or mutual information maximization) of the registration. The 

huge amount of data associated with MRI is handled by fully automated algorithm optimized with 

a multi-resolution topology preserving regridding scheme. The adaptive grid system naturally 

distributes more grids to deprived areas. The positive monitor function disallows grid folding and 

provides a mean to control the ratio of the areas between the original and transformed domain. 

The flexibility of the adaptive grid allocation could dramatically reduce processing time with quality 

preserved. Mutual information facilitates robust registration between different image modalities. 

Different types of joint histogram estimation are compared and integrated with the system. The 

whole system is also implemented on GPU which allows efficient parallel computation of vast 



 v 

amount of 3D data in SIMT manner during different procedures. The GPU implementation offers 

up to 221 times speed up in the gradient normalization routine and around 40 times speed up in 

the overall calculation. This scheme is applied on 3D dynamic contrast-enhanced breast MRI, 

which requires the registration algorithm to be non-rigid, contrast-enhanced features preserving 

and within clinical visit time limit. Experiments show promising results and great potential for 

future extension. 
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CHAPTER 1 

INTRODUCTION 

Medical image processing aims to relieve the overwhelming demand of manual 

analysis by radiologists. Image registration, which primarily aligns images from different 

modalities, time or viewing angle to integrate information, is among the most investigated image 

processing techniques. Information on the anatomical structure or pathological changes in 

organs and tissues becomes clearer for speedy examination by radiologists or physicians. 

Image registration is the indispensible to tasks include motion correction – reduction of 

respiratory motion in cardiac imaging; radiotherapy – offsetting the differences in registration of 

planning images acquired pre-treatment and during treatment in external beam radiotherapy; 

motion correction in aligning chest and abdomen images; calculation of the localized dose 

distributions which helps precisely deliver higher doses to be delivered to cancerous tissue 

without harming nearby normal tissue in radiotherapy; detection of osteoarthritis in joints 

imaging; spatial normalization in brain imaging; and dynamic contrast-enhanced MRI – motion 

correction before and after contrast injection and between scans acquired over time in breast 

imaging [13]. 

The adaptive grid generation algorithm in [8] has been proven to be a powerful non-

rigid image registration tool in [9][22][23]. By adjusting the divergence and curl parameters, the 

grids move accordingly. The framework is built with gradient optimization which successfully 

accelerates the similarity measure minimization process. The compressibility-aware monitor 

function is directly related to the input divergence parameter instead of acting as constraints to 

the system. It is born with the ability to control the area or volume changes due to the applied 

geometrical transformation. Setting the ratio to unity resembles the incompressibility of human 

tissues. Yet a simple similarity measure, Sum of Square Difference (SSD) has been considered 

in [9][22][23], which may not be robust enough for some practical applications. To further 



 

2 

expand its capability in clinical applications, an all-purpose similarity measure is desirable. This 

motivates my study to include Mutual Information (MI) as similarity measure in the existing 

framework. MI is robust against noise and different illumination similarity measure [48]. Gradient 

of different MI variation are derived for the optimization scheme. This helps to investigate the 

artifacts brought by different joint histogram estimation methods. The introduction of MI in the 

registration process also increases the complexity of the system. Multi-resolution strategy with 

topology preserving regridding [10] cuts down the registration time which makes it feasible for 

clinical practice. With advanced GPU implementation, the performance of the system 

successfully breaks through all algorithm time bounds. Data intensity and computational 

intensity are instantly relieved. Our algorithm is capable to handle 3D real image data and 

capable to register between difference modalities. The algorithm is validated by synthetic 

motion to compensate the absence of ground truth. The framework is applied to dynamic 

contrast enhanced breast MRI which requires the algorithm to be able to handle local motion of 

soft tissues and contrast enhanced region. This is a positive match with the compressibility-

awareness of adaptive grid generation and robustness of MI. The experiments show promising 

results for the 3D breast MRI. It is possible to include this algorithm in computerized breast 

cancer detection, which is an essential module in the next generation of clinical procedure. 
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CHAPTER 2 

REVIEW OF RELATED WORK 

2.1 Non-rigid Image Registration 

 The goal of image registration is to find the spatial correspondence between two 

images of the same object taken at different time or angle, or from different modalities, or under 

different lighting condition. Rigid image registration corrects global alignment error by universal 

rotation, translation and scaling. Rigid image registration algorithm looks for the best global 

parameters set optimizing a similarity measure in the discrete form of search space. Since most 

human tissues do not undergo rigid transformation in the images, non-rigid image registration is 

commonly researched in medical image processing. Non-rigid image registration gives point-to-

point precision correspondence between the input images. The motion associated with the 

correspondence could be specified by optical flow [16], free-form mode [36], elastic model [6] or 

viscous fluid [12]. Sometimes additional regularization term, penalty term or smoothness 

constraint [7] [34] [36] [37] is required to further control the motion. 

 In the literature, [36] is the pioneer researching on non-rigid image registration using 

mutual information, which proposed a multi-resolution scheme with a core B-spline free form 

deformation model focused on Breast MRI application. The missing gradient derivation in [36] 

was found in [42], where the analytical gradient of the Parzen windows method using B-splines 

was formulated in depth. This is a big advance in using mutual information since gradient is 

necessary for optimization in image registration. Numerous works has been proposed after that. 

To tailor-make the general non-rigid image registration for medial images taken in short time 

period, volume preserving condition should be imposed. Various approaches [34][37] are 

reported to include constraints on the Jacobian of the transformation in addition to the 
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deformation model. Normally, putting more counter-constraints leads to more experimental 

adjustment and complexity to the algorithm.  

2.2 Deformation Method 

 Deformation model defines how one image can be warped to match another with a 

specific type and number of possible transformations. Affine transformation is used in rigid 

transformations. Rigid registration is fast since it involves only global rotation, translation and 

scaling of an image to align with another. Non-rigid registration is relatively slower since it 

requires local deformation thus more degrees of freedom [13].  

 In most existing work, non-rigid transformation is modeled as deformation of physical 

bodies driven by applied forces. As a result, the deformation is determined when the internal 

force is balanced by the external force. Alternatively, a new non-rigid image registration using 

the adaptive grid generation method developed in [8] is reported in [9]. It first constructs a vector 

field which satisfies a div-curl system. After that, local deformation field can be obtained from 

the intermediate vector field constructed earlier. This model is employed in this dissertation to 

solve the non-rigid medical image registration because the monitor function naturally restricts 

the deformation to enforce the incompressibility constraint [34][37].   

2.2.1 Deformation Based Grid Generation    

 The mathematic function of this work, the deformation based grid generation [8] is 

described as follows. 

 The task is to find a mapping function φ1(ξ), given a monitor function f (ξ), such that 

)()(det)( 11 ξξφφ fJ =∇≡     (2.1) 

 To find such a transformation, the following steps were developed in [8]. 

 First, find a vector field V(ξ) that satisfies  

    1)()( −= ξξ fdivV      (2.2) 

 Second, form 
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ftt

V
Vt )1( −+

=      (2.3) 

 then find φ1(ξ) by solving the ODE 

 ]1,0[)(
)(

∈= tV
dt

d
tt

t φξφ
    (2.4) 

where φ1(ξ) = φ(ξ , t) and φ1(ξ) = φ(ξ , t=1). A formal proof of this approach is presented in [28]. 

This profound adaptive grid generation method is actively researched. In [29], data set 

alignment problem is solved by optimal control of a similarity functional subject to a system of 

linear partial differential operators. 

Notice that the solution φ is not unique because only the divergence of the vector field η 

is specified. To obtain an unique η, both of its divergence as well as its curl need to be 

specified. This is known as the Helmholtz’s theorem [20]. The task becomes finding a vector 

field η(x) that satisfies the following div-curl system: 





=×∇
−=∇
)()(

1)()(

xgx

xfx

η
η

     (2.5) 

with null boundary condition η(x)=0 and x∈∂Ω. In 2D, g(x) is a scalar function. In 3D, g(x) is a 

3D vector function specifying the curl of the vector field. 

2.3 Numerical Implementation 

2.3.1 Finite Difference Div-Curl Solver    

 A div-curl system can be decoupled into 2 or 3 Poisson equations [24]. In 3D case, a 

div-curl system is given by 

43
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where f 1 is the scalar monitor function f(), and f 2, f 3 and f 4 are the three components of the curl 

function g(). Assume that f I, i = 1, 2, 3, 4 are at least C1 continuous. Taking the derivative of 
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both sides of each equation with respect to (w.r.t.) x, y, and z and combine the relevant terms, 

three Poisson equations are formed. 

  
3321

2241

1431

FfffU

FfffU

FfffU

xyz
z

zxy
y

yzx
x

≡−+=∆
≡−+=∆
≡−+=∆

     (2.7) 

where 
k

f
f

i
i

k ∂
∂

= . 

 Fast Fourier Transform (FFT) based Poisson equation solver is chosen to solve the 

problem due to its algorithm simplicity and O(N log N) serial time bound. A 3D version is derived 

from the 2D version described in [14].  

2.3.2 ODE Solver    

 A multiple steps Euler’s method is employed in Runge-Kutta method to iteratively 

approximate the displacement field from the intermediate vector field in Equation (2.4). 

2.4 Optimization 

 Optimization process searches for better transformation parameters by exploring their 

impact on the computation of the image similarity metric [13] and greatly determines the 

efficiency of the procedure. Several optimization techniques incorporated in the framework 

include gradient descent method, multi-resolution reduction, pre-calculation and table lookup.  

2.4.1 Gradient    

 Gradient descent method is used to help the optimization converge by finding local 

maxima along the MI versus f i (i=1,2,3,4) curves. To apply the gradient descent method for 

improvement on the iterative algorithm, gradient of the similarity measure SSD with respect to 

(w.r.t.) the control parameters f i are required. 

 The gradient of SSD w.r.t. the input parameter f i can be obtained by applying chain rule 

to the discretized form in 3D [22]: 
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where J=1, 2, 3, 4; f represents the parametric vector; φ denotes the deformation field; ϕ 

denotes the intermediate velocity field; and N(i) and  N(j) denote some neighborhood of grid 

point Ii and  Ij  respectively. The effect of varying Fl value at grid Ij  on kϕ , l = 1,2,3 and K = 

x,y,z, determines the term 
)(

)(
1

j

k
k

IF

I

∂
∂ϕ

and N(j) is its influence domain. This effect is established 

through the inverse filter m-1 of the discrete Laplacian operator [22]. Similarly, the effect of 

varying f J value at grid Ii on Fl , J = 1,2,3,4 and l = 1,2,3, determines the term 
)(

)(1

j
i

j

If

IF

∂
∂

and its 

influence domain N(i). This information can be attained from Equation (2.6). Using finite central 

difference method to approximate the involved derivatives, they can be represented as the 

following 3×3×3 filters. 
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Therefore, the gradient information can be computed through a series of convolutions 

as 
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2.4.2 Multi-resolution 

 Multi-resolution image registration is also known as progressive registration [26]. 

Registration is performed at a series of intermediate stages starting with lower complexity 

transforms and progressively using more complex ones. The process improves the results and 

shortens processing time. It is not unusual to use different types of transforms at each level of 

the multi-resolution pyramid. The coarse-to-fine improvement process increases the 

computational speed, accuracy and robustness. Local deformation of at one resolution level is 

used to initialize the displacement field at the next finer resolution level but the grids are reset to 

regular positions. In the literature, resolution refines in grid density, image resolution, B-spline 

levels and Gaussian pyramid in [18] [26] [31] [36] as non-rigid image registration is usually 

iterative upgrading to search for the best transform parameters. 

2.5 Topology Preserving Regridding 

 The topology preserving regridding is proposed in [10]. A regular d-dimensional 

grid X is defined by  

},...1,1{ ,...

~

1 dlnjxX lljj d =≤≤≡    (2.11) 

where d
jjjj
dd xxx Ζ∈= ),...,(

11...

~

denotes a grid point (node) and nl the size of the grid X along 

the lth dimension. In the same manner, a general grid denoted by ℵ is defined through grid 

points 
d

jjjj
dd xxx Ρ∈= ),...,(

11...

~

. Let RS d →Ζ: and RT d →Ζ:  be two discrete d-

dimensional images, d=2 or 3 and RRT dC →: the continuous version of T. In accordance 

with [12], S is referred to as the data image / volume and T the template image / volume, which 

is a geometrically distorted version of an otherwise ideal template Tideal. Tideal is assumed to be 

perfectly aligned with the data S. The goal of image registration is to find a geometric 

transformation dd RZ →:φ such that the deformed template 

))(())(();( XUXTXTXT CCC +≡≡ φφ    (2.12) 
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Is geometrically aligned with the data S(X), i.e. )())(( XTXT idealC ≡φ , where 

XXXU −= )()( φ denotes the deformation (displacement) field. Notice that the regular grid X 

is deformed into a general grid ℵ through transformation φ  by )(Xφ=ℵ . Regridding is 

defined in non-rigid image registration as the process of reinitializing a general (deformed) grid 

into regular at an intermediate stage of a non-rigid image registration process. 

Let ϕϕϕϕ 11 ...ooo −= nnn  denote the composite transformation using linear 

interpolation. Here each transformation ϕi  is related to the corresponding incremental 

deformation field Ui  through the following relation: 

)()( XUXX ii +=φ      (2.13) 

where X is a regular grid and )(Xiφ  is a deformed grid ℵ∈ . Assume 0det)( ≥∇≡ ϕϕ nnJ  

and 0)( 1 <+ ϕnJ . That is, the topology of the deformed template ))(()()( XTXT nCn ϕ=  is 

preserved but not after concatenating on more incremental transformation φ1+n . When this 

occurs, grids are repaired in the following steps such that )(
^1

ϕ
+n

J  is strictly positive, where 

ϕϕϕϕ 1
^1^1

...ooo
nnn ++

=  and 
^1

ϕ
+n

 denotes the incremental transformation after repairing from 

φ1+n . 

GR_step 1: Obtain the Jacobian determinant )( ϕnJ which is greater than 0. 

GR_step 2: Find the monitor function f and curl function g that result in ϕ1+n . 

GR_step 3: Modify the monitor function f by )),(/max(
^

fJthf nϕ=  

where th is the allowed minimum Jacobian determinant value and the operator max is 

preformed in an element by element fashion. 
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GR_step 4: Construct the repaired transformation 
^1

ϕ
+n

 from 
^

f  and g using the grid 

generation method in section 2.2. 

2.6 Mutual Information 

 Mutual Information (MI) is a similarity measure which quantitatively measures how well 

a transformed reference image matches the template image. The metric is used by the 

optimization process to evaluate the quantitative criterion at various positions in the transform 

parameter search space. For gradient-based optimization schemes, the derivatives of the 

measure with respect to each transform parameter are also required.  

 MI is invariant to changes on lightings, robust to noise, has sharp maxima and 

computational simplicity [36]. Most existing similarity measures for intensity based image 

registration problems depend on a certain specific relationship between the intensities of the 

images to be registered. When images from different sources or sensors are involved in the 

registration, an information theoretic or statistical criterion such as MI is a preferable choice of 

similarity measure [45]. The computation of MI involves joint histogram estimation and the 

global maximization. 

2.6.1 Joint Histogram Estimation 

 Theoretically, MI of two random variables T, R is defined by 

∑=
rt RT

RT
RT rPtP

rtP
rtPRTMI

,

,
, )()(

),(
log),(),(     (2.14) 

where PT(t) and PR(r) are the marginal probability mass functions and PT,R(t,r) is the joint 

probability mass function of T and R: 

 It measures the magnitude of dependence of T and R by computing the distance 

between the joint probability PT,R(t,r) and the probability associated with the case of complete 

independence PT(t)PR(r), by means of relative entropy: 

),()()(),( RTHRHTHRTMI −+=     (2.15) 

where H(T) and H(R) are the entropies of T and R and H(T, R) is their joint entropy: 



 

11 

),(log),(),(

)(log)()(

)(log)()(

,
,

, rtPrtPRTH

rPrPRH

tPtPTH

RT
rt

RT

R
r

R

T
t

T

∑

∑

∑

−=

−=

−=

    (2.16) 

where PT(t) and PR(r) are the marginal probability mass functions and PT,R(t,r) is the joint 

probability mass function of the two images T and R: 

    

∑

∑

∑

=

=

=

f
RTR

r
RTT

rt

RT

rtPtP

rtPtP

rth

rth
rtP

),()(

),()(

),(
),(

),(

,

,

,

,

     (2.17) 

where h is the joint histogram of the image pair with each image have L intensity levels. It is a 

2D matrix given by 



















−−−−

−
−

)1,1(...)1,1()0,1(

......

)1,1()1,1()0,1(

)1,0(...)1,0()0,0(

LLhLhLh

Lhhh

Lhhh

    (2.18) 

 Roughly speaking, mutual information MI is maximum when the joint entropy H(T,R) is 

minimum. It happens when the two images are registered, thus the uncertainty of the joint 

histogram is minimized. 

 2.6.1.1 Two-Steps Method 

 Traditionally, a joint histogram is estimated in two steps. First, the intensity values of the 

reference image R at the transformed positions are calculated, usually by intensity interpolation. 

A simple example of two-steps joint histogram estimation is the nearest neighbor interpolation 

method. The intensity values at transformed position are estimated as the intensity values of the 

nearest neighbors. Another example is tri-linear interpolation in 3D, which the new intensity 

value at each transformed point is evaluated as the tri-linear interpolated value of its eight 
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nearest neighbors. Rounding off to the nearest integer operation is required. Second, the 

corresponding joint histogram entry is incremented by one. Let T denote the template image, R 

denote the reference image, a pixel of position (iT, jT, kT) in T transformed to a possibly non-

integral position (iR, jR, kR) in R. The intensity value at (iR, jR, kR) is interpolated by the neighbor 

pixels (iR’, jR’, kR’).  The joint histogram bin h(T(iT, jT, kT), R(iR, jR, kR)) is increased by one where 

))')(')('()',','((),,( RRRRRRRRRRRR kkjjiikjiRroundkjiR −−−= ∑  (2.19) 

Notice that equation (2.17) shows the 3D operation. In 2D, the k component should be 

removed. 

 The disadvantage of the two-steps approach is that the resulting MI is not smooth due 

to the rounding. Smooth MI leads to better optimization results. In some more advanced two-

steps methods, for example Parzen Windows, B-spline weights summing to one are used to 

update a neighborhood of bins instead of a single bin to yield smoother MI. 

 For comparison purpose, a two-step joint histogram estimation method using Parzen 

windows [42] is included and modified. In the first step, intensities in the reference image are tri-

linearly interpolated at the displaced positions. In the second step, B-splines are used for 

Parzen windowing which determine the weights distributed to neighboring histogram values. 

The joint histogram h(t, r) is updated by adding: 

)),,(()),,(( RRRTTT kjiRrkjiTt −− ββ     (2.20) 

where (t,r) lies in the histogram neighborhood of (T(iT, jT, kT), R(iR, jR, kR)) and R(iR, jR, kR) is 

obtained by tri-linear interpolation of the intensities of the eight nearest pixels: 

)',','()'()'()'(),,(
2',','

RRR
Zkji

RRRRRRRRR kjiRkkjjiikjiR ∑
∈

−−−= τττ  (2.21) 

where τ() denote the triangular function: 







<≤−

≤≤
+
−

=
     otherwise

01 if

   10if

0

1

1

)( x

x 

x

x

xτ      (2.22) 



 

13 

Since t=T(iT,jT,kT), using 1st order B-spline for the first half in the equation (2.20), the 

histogram function h(t,r) is updated by adding 

)),,(( RRR kjiRr −β      (2.23) 

 

 

Figure 2.1 Illustration of two-steps method in 2D. 
 

2.6.1.2 One-Step Method 

 Instead of interpolating new intensity value and updating bins in two steps, weights 

could be used to update the histogram bins determined by the neighborhood pixels directly. 

This is first known as partial volume interpolation (PVI), which was developed for 3D image 

registration. The weights distributed to the voxels in the neighborhood are calculated by a linear 

function of its distance to the transformed position. Usually, closer neighborhood pixels get 

larger weights. Notice that no new intensity values are introduced. Using the same notations in 

(2.19), the histogram bin ))',','(),,,(( RRRTTT kjiRkjiTh  for 3D images is updated by 

adding: 

)'()'()'( RRRRRR kkjjii −−− τττ     (2.24) 

where τ() is the triangular function defined in equation (2.21). 

Neighborhood 
pixels 
(iR’, jR’) 

Transformed 
position 
(iR, jR) 

Reference image R Template image T 

Original 
position 
(iT, jT) 

Intensity  
t = T (iT, jT) 

Intensity  
r = R (iR’,jR’) 

Area  
= weight  
associated  
with  
(iR’, jR’)  
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 To further improve smoothness, generalized partial volume estimation (GPVE) was 

derived in [45]. B-spline kernel functions of 1st, 2nd or 3rd order are used to distribute weights to 

the neighborhood of sizes corresponding to their support. Higher order gives boarder support 

and smoother MI. 1st order GPVE is equivalent to PVI. Let β() denotes the B-spline kernel 

function, the GPVE histogram bin ))',','(),,,(( RRRTTT kjiRkjiTh  for 3D images is updated 

by adding: 

)'()'()'( RRRRRR kkjjii −−− βββ     (2.25) 

where (iR’, jR’, kR’) are the points within the support of the corresponding B-spline kernels. 

 

 

Figure 2.2 Illustration of one-step method in 2D. 
 

2.6.2 Interpolation Induced Artifacts    

 When MI based rigid registration algorithm is tested using an identical image pair with 

slight changes in displacement in vertical or horizontal direction, some periodic patterns, known 

as the interpolation induced artifacts, occur in the PVI MI curve as illustrated in Figure 2.3 [45]. 

This artifact is due to the many of the grid lines may be aligned along that dimension under 

certain geometric transformations. The one-step PVI method gives concave shape artifacts 

Neighborhood 
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(iR’, jR’) 

R 

From T: 
Intensity  
t = T 

Intensity  
r = R (iR’, jR’) 

1st 
order  
support 

2nd 
order  
support 

Transformed 
position 
(iR, jR) 

β (area) = weight 
associated with (iR’, jR’)  

h (t, r) += β (area)  
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caused by simple linear interpolation. Presence of noise in the images further deteriorates 

situation. The root of the artifact in PVI is coming from splitting of a joint histogram entry into a 

few smaller entries. The split increases entropy at non-grid-point thus decreases joint histogram 

value [31]. 

 Using GPVE, the artifacts are dramatically reduced. It is important to obtain a smooth 

MI curve facilitating the optimization procedure.  

 Though interpolation induced artifacts are traditionally discussed only in the context of 

rigid registration, we show that it also affect non-rigid image registration. 

 

Figure 2.3 MI vs. horizontal displacement indicating interpolation artifact in PVI based rigid 
image registration. 

 

2.6.3 Gradient Derivation 

 The derivatives of the image similarity measure with respect to the parameters of the 

transform are essential in the optimization process. Easily computed simple finite differences 

could estimate the derivatives with a significant computation load [48]. It is more desirable to 

obtain the derivatives by automatic differentiation software [21] which applies differential chain-

rule numerically. When automatic differentiation software fails to differentiate due to the implicit 

complicated relationship between the function and its input parameters such as interpolation, 

analytical differentiation is the only choice left, which is exactly our case. 

Gradient of MI calculation was a tedious and erroneous task due to its non-obvious 

relation with the displacement. The derivation of the gradient of MI with respect to the 
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displacement field is inspired by [15][42]. The mathematical errors in [15] are corrected in 

Equations (2.26) to (2.33). The gradient derivation in Chapter 3 is also redefined and corrected 

from [15] to get rid of the ambiguous windows function and its erroneous gradient. Explicit 

histogram function h() and its horizontal and vertical gradient components in 3D are explained 

instead in Chapter 3. 

The template image T is assumed to be constant. The reference image R is re-sampled 

based on the displacement vector u. MI depends solely on the displacement vector. Equation 

(2.14) is rewritten into: 

∑

∑
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   (2.26) 

 The Jacobian of MI is formulated as: 
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 In addition to that, the last term disappears: 
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 Note that the summation of all the changes in the histogram always equals zero. 
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The second term equals zero since probability of template image is constant: 
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0)0(log)(log)(loglog)(
,
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 The last term equals zero too. Again summing up the changes in the histogram results 

in zero: 

0)(
,

=′∑
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trP      (2.31) 

The gradient of MI with respect to displacement vector u is: 
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From Equation (2.14), we have: 
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 Please continue to read Chapter 3 to see how the gradient of specific histogram 

estimation is derived. 

2.7 GPGPU and CUDA Programming 

 Graphics Processor Unit (GPU) is good at compute-intensive, highly parallel 

computation. It was originally designed for graphics rendering only. Due to the fast growing 

development in GPU technology, its power increases sharply every year, whereas CPU power 

increases moderately every year. General-Purpose computation on GPUs (GPGPU) is getting 

more popular and applicable in many areas of research. GPU gives immediate performance 

speed up for most data parallel suitable problems, especially those with high ratio of arithmetic 

operations to memory operations.  

2.7.1 Image Processing using GPU    

 Increasing interests in using GPU is observed in the medical image processing area. In 

[17], the authors were able to obtain a speed up of 44 in learning-based non-rigid multi-modal 

registration. In their work, OpenGL and OpenGL Shading Language (GLSL) were used for GPU 

programming. Their main procedure included Gaussian filtering and joint histogram 
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computation. Separable Gaussian filter was used to process 3D data. Vertex buffer object is 

used to store immediate joint histogram result. Parallel matrix multiplication and summation was 

reported in interactive organ segmentation [19]. GPU was used to compute partial derivatives in 

level-sets for 3D segmentation [27], 10 to 15 times speed up was observed. GPU was also used 

to accelerate tomographic reconstruction in [46]. 

2.7.2 CUDA Programming    

 In older days, OpenGL and DirectX were the only graphics API to communicate with 

GPU. There are more user friendly high level GPGPU programming environments such as 

BrookGPU [2], Sh [4], CUDA [3] and CTM [1]. CUDA is chosen due to its popularity and 

availability of documentation.  

 Compute Unified Device Architecture (CUDA) is a new hardware and software 

architecture for communicating on the GPU as a data-parallel computing device without the 

need of mapping them to a graphics API. The GPU is viewed as a compute device capable of 

executing massive threads in parallel and as a coprocessor to the main CPU. The CPU is 

viewed as the host. CPU has host memory and GPU has device memory. Host memory needs 

to be copied into device memory before GPU execution. An application is executed many times 

by threads independently on different data. A program complied into an instruction set of the 

device called a kernel is downloaded to the device. 

 From the software perspective, a batch of threads is organized as a grid of thread 

blocks. A thread block is a batch of threads that cooperate together efficiently sharing data 

through some fast shared memory and synchronizing their execution to coordinate memory 

accesses. Blocks of same dimension and size that execute the same kernel can be batched 

together into a grid of blocks. Threads in different thread blocks cannot communicate and 

synchronize. The number of concurrent running blocks depends on the parallel capabilities of 

the device. 
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 From the hardware perspective, the GPU is a set of Single Instruction, Multiple Thread 

(SIMT) architecture multiprocessors with on-chip shared memory. A grid of thread blocks is 

executed on the device for execution on the multiprocessors. Each multiprocessor processes 

batches of blocks one batch after the other. A block is processed by only one multiprocessor. 

The number of concurrent running blocks depends on the resources available. The issue order 

of the blocks within a grid of thread blocks is undefined and there is no synchronization 

mechanism between blocks, so threads from two different blocks of the same grid cannot safely 

communicate with each other through global memory during the execution of the grid. 

 CUDA provides a more user-friendly programming environment for data-parallel 

computing than traditional parallel programming. No scheduling is involved. The data-parallel 

code and the thread configuration would handle all parallel processing. The performance of 

GPU depends on the reads and writes manner on the different types of memory, arithmetic 

intensity, the way data is partitioned and the configuration of threads [3]. To maximize the 

performance, the limitations of GPU should be considered and thread configurations should be 

tuned. 

2.8 Breast MRI 

 Early detection of breast cancer is one of the important factors to the cure of the 

disease [25]. Dynamic contrast-enhanced breast MRI is a less invasive tool to detect cancerous 

tissues than traditional surgery. The contrast agent gadolinium dimeglumine is taken by the 

patient prior the imaging process. A time series of MRI are then acquired. Cancerous tissues 

show strong and rapid contrast enhancement, normal tissues show weak or no response. 

Accurate breast cancer detection relies on the classification of subtle pathological changes over 

time [5]. During a substantial imaging period, it is impossible for the patient to hold the breath 

and stay still. Motion correction techniques are used to align the breast MRI sequences to 

compensate the breathing, cardiac and other motions.  
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 Three factors should be considered in the registration of dynamic contrast-enhanced 

breast MRI: softness of breast tissues, contrast-enhanced features and the huge amount of 

high-definition image data. In [36], the local motion is corrected by a free-form deformation B-

splines deformation model and normalized mutual information is used for quality control. The 

correction is controlled by minimization of the cost functional comprising the similarity functional 

and the regularization functional which penalizes smoothness of the deformation field.  This 

regularization term is replaced by an incompressibility constraint for soft tissues in [31]. The 

constraint helps preventing the mutual information driven registration, which is designed to 

minimize intensity inconsistency, from shrinking contrast enhancing features. This is 

implemented by enforcing unity deviations of the Jacobian determinant of the deformation. In 

[18], a multi-resolution optical flow with brightness consistency assumption relaxed and 

subjected to a regularized best-fit within a family of transforms is addressed. A bio-mechanically 

based elastic breast registration was developed [35] to fit the real breast tissues movement by 

using position of skin and muscle surface as the only boundary conditions instead of regulating 

by a smoothness term or regularization term. It leads to the investigation of the possibility of 

other suitable models such as a div-curl system to model the motion. In optical flow algorithm, 

the curl represents the amount of rotation of objects or the camera; the divergence represents 

the rate of approach of objects [40]. 
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CHAPTER 3 

PROPOSED WORK 

3.1 Overview 

 The goal is to properly register the unchanged template image T with the reference 

image R by choosing a set of parameters f and g, which control the deformation. In the 

reconstruction, T(iT, jT, kT) corresponds R(iT+ux, jT+uy, kT+uz), where u = (ux, uy, uz) is the 

displacement field in x, y, and z dimensions respectively. In the div-curl system, divergence f 1 

and curl f 2, f 3, f 4 regulate the intermediate vector field involved in the process. A Runge-Kutta 

method approximates the displacement field from the intermediate vector field. 
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Figure 3.1 Algorithm Overview 
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 A general registration algorithm can be decomposed into three main components: the 

transformation model, the similarity measure and the optimization process [13]. The 

transformation model in use is the div-curl system and Runge-Kutta estimation which takes 

divergence and curl as inputs and output deformation field. The similarity measure is Mutual 

Information (MI) which quantifies the wellness of the registration. The optimization process has 

various components including gradient calculation and multi-resolution. Figure 3.1 illustrates the 

overall procedure. 

3.2 MI Gradient w.r.t. x, y, z Derivation 

 In this section, the derivation of MI gradient of different histogram estimation methods is 

extended from section 2.6 and published in [11]. 

 Intuitively, in GPVE, the change in a displacement u leads to changes in the B-spline 

weights distributed to the histogram entries of the neighboring pixels and thus the joint 

probability mass function. A formal derivation follows. 
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where the notations are same as in Chapter 2. An entry represents the count of all pixels in T 

having intensity value t and all pixels belong to any neighborhood of coordinates (iR, jR, kR) in R 

having intensity value r.  The count may not be an integer due to the weights of B-spline 

spreading throughout neighborhood. Explicitly, the partial derivatives become: 
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 As in [43][44], the differentiation property of B-spline is: 
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where n denotes the order of B-spline kernel in use. 

 Finally, the derivatives are: 
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 (3.4) 

 Values of B-spline function and differentiation of B-spline function are looked up from a 

pre-calculated table to speed up calculation. 

 Similarly, when PVI is in use, the β() function will be replaced by a triangular function τ() 

in Equation (2.22) and the derivative of a triangular function is straight forward. 

 When Parzen window in equation (2.20) is used, the equation (3.4) will become: 
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(3.5) 

This could be understood as the change in a displacement field u leads to changes in its 

weights associated to neighboring pixels and change in its intensity value, thus leads to 

changes in the B-spline weights distributed to the histogram neighboring intensities and finally 

the joint probability mass function. 

3.3 MI Gradient w.r.t. fi Derivation 

 The original gradient calculation proposed in [22] as mention in section 2.4 provides an 

approximation of the gradient values by applying inverse filtering. The choice of choosing a 

suitable mask size for inverse filtering is quite experimental. Convolution with inverse filter is 

slow even FFT is used instead of traditional convolution when data size or filter size is huge. 

Since the inverse filtering of the Laplacian operator is mathematically equivalent to solving 

Poisson equation, the same Poisson FFT solver developed for solving div-curl system replaces 

the presence of inverse filtering.  

)(11 ABABmBAmAB −− ∆=⇔=∆⇔⊗=⇔⊗=     (3.6) 

where ∆-1() denotes the Poisson solver; A is the input and B is the solution to the Poisson 

equation. 

 The gradient equation (2.10) becomes 
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3.4 Multi-resolution Topology Preserving Regridding 

 In this framework, starting with the lowest suitable grid size along with the lowest 

appropriate image size and the lowest feasible intensity level, the algorithm moves to the next 

level once a predefined tolerance is reached. The resultant displacement field in the previous 

level is then interpolated as the initial values in the next level but grids are reset. Initializing in 

coarse-to-fine fashion not only saves time, it also helps avoid local maxima from macro view. 

Using a brute force approach, the complexity of computing a mG×nG×kG (=NG) grid for an image 

of size mI×nI×kI (=NI) is O(NG
 2NI) for each iteration. Due to the analytical derivative of mutual 

information and the use of gradient descent method, the complexity is dramatically reduced to 

O(NI)+ O(NG log NG) for each iteration, a near linear complexity. In Table 3.1, the components in 

the system are analyzed. 

 

  Table 3.1 The complexity of the components in the framework. 
Component Major Operations Complexity 
Div-Curl Calculation Gradient of div, curls in x, y, z direction and FFT 

Poisson Solver  
O(NG log NG) 

Runge-Kutta 
Approximation 

Interpolation to estimate immediate displacement 
field 

O(NG) 

Mutual Information 
Calculation 

Update of histogram bins according to the image 
pixels value; Entropy computation (L: number of 
intensity levels) 

O(NI)+O(L) 

Derivate u∂
∂MI

 
Calculation 

Update of changes in histogram bins O(NI) 

Derivate 

4,3,2,1, =
∂
∂

i
f

MI
i

 
Calculation 

Convolution of u∂
∂MI

 with pre-calculated filters 

O(NG) 

 

 Since all the components are of complexity related to the grid size, image size and 

intensity level, multi-resolution could greatly reduce the complexity with sacrifice in fine 
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accuracy which could be compensated in the next level. This triple multi-resolution scheme is 

used in 2D experiments as shown in Figure 3.2 and only gird refinement is implemented in 3D 

as shown in Figure 3.3. 

 With the introduction of multi-resolution, a simplified version of regridding takes place to 

allow smooth transition of similarity measure during resolution changes. The total displacement 

from the previous resolution is interpolated as the initial displacement in the current resolution. If 

grids are not reset between resolutions, spikes will be observed in MI graph as shown in later 

experimental results. 

 

 

Figure 3.2 Triple-multi-resolution scheme for 2D image registration. 
 

 

Image: 161×129 
Grid: 161×129 
Bins: 256 

Image: 161×129 
Grid: 81×165 
Bins: 256 

Image: 161×129 
Grid: 41×33 
Bins: 128 

Image: 81×65 
Grid: 41×33 
Bins: 128 

Regrid 
Displacement interpolation 

Registration 

Registration 

… 

Regrid 
Displacement interpolation 
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Figure 3.3 Multi-resolution scheme for 3D image registration. 
 

3.5 Compressibility-aware Monitoring 

Many human tissues are elastic and incompressible. To model this characteristic 

correctly in medical imaging, it is highly desirable to allow images of tissues taken within a short 

period of time to locally deform but at the same time its volume remain stable or within a limit. It 

is technically challenging to enforce the volume-stability in existing transformation models. The 

non-rigid registration approach in [34] imposed constraints on the Jacobian and its derivatives 

for noninvertible transformation. In [37], an incompressibility constraint regularized the 

transformation to preserve volume. 

In the adaptive grid generation, the monitor function f is a mean to control the ratio of 

areas between the domains in the transformation. Positive f ensures no folding in the grids. 

Setting monitor function to one ensures incompressibility no matter how much the grid deforms. 

Notice that the required parameter is adjusted directly instead of being a constraint additional to 

the system. The monitor function f is related to the div-curl system that the divergence is set to f 

– 1. In this case, there is no need to adjust f but only the curl function g throughout the 

registration procedure. 

Relaxation of monitor function to fall inside an upper and a lower bound would make 

suitable for other kind of applications. This powerful compressibility-aware algorithm naturally 

 

Grid: 41×33×13 
 

Grid: 81×65×25 
 

Grid: 161×129×49 
 Registration 

Regrid 
Displacement interpolation 

Grid: 21×17×7 
 

Regrid 
Displacement interpolation 

Registration 
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maintains the constant volume without additional constraint or regularization term, which 

matches the requirement of soft tissues modeling. 



 

29 

 

 
CHAPTER 4 

PROPOSED EFFICIENT IMPLEMENTATION USING CUDA 

4.1 Method 

 The complete non-rigid image registration algorithm is re-written from Matlab and C 

code to CUDA code. The CUDA implementation is developed side-by-side comparing on 

resultant values with Matlab execution to ensure accuracy. Originally, only the Poisson FFT 

solver was implemented in CUDA and executed from Matlab. Detailed profiling shows large 

amount of latency in memory copying which offsets the speedup except for a huge problem 

size. This proof of concept envisions the migration of the whole system to CUDA environment 

and the pursuit for speedup.  

 The CUDA implementation architecture is designed for GeForce 8800GTX and its 

specification is shown in Table 4.1. Different GPUs may vary in memory size and parallel 

capability. After input images are read from file, they are stored on the host memory and copied 

to the device memory. All the other computations are working on device memory to avoid 

memory copying time. Before any operation, global memory is allocated for all arrays and 

buffers. They will be re-used for the rest of the program. Reads and writes to global memory are 

kept minimal. Constant memory is used to store B-spline, B-spline gradient lookup table and 

convolution kernels. Shared memory is used within a block whenever possible because 

accessing shared memory is much faster than global memory. Coalesced access to global 

memory is preferred since it is could be ten times faster than un-coalesced reads and writes. 

Quicker device functions for mathematics operations are used when applicable. Usage of 

logical operation is minimal. 3D data are stored in 1D array. All other massive simple arithmetic 

operations not mentioned in the following section are executed in SIMT manner. After every 

calculation is completed, results are copied back to files for analysis. 
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Table 4.1 Nvidia GeForce 8800GTX Specification. 

 

 

 

 

 

 

 

4.1.1 Data Partition    

 Since thread scheduling is automatic, it is important to partition data evenly to keep 

threads occupied at the same time. There are two types of data size defined in the non-rigid 

registration system: image size and grid size. Image size equals the overlap of reference and 

template volume in Figure 4.1. Grid size is not to be confused with the CUDA grid of threads. It 

is the non-rigid grid as mentioned in the algorithm in Figure 4.1. All grids mentioned in the 

following refer to this grid unless specified. Grid size varies from 3×3×3 to full image size. 

 There are mainly four configurations of thread management named as “pixel 1D”, “grid 

1D”, “pixel 3D” and “grid 3D” used throughout the implementation. When the x, y, z position of 

the data does not affect the operation, for example, adding up two 3D volumes, the image data 

of problem size mInIkI is partitioned into 1D block of 192 threads to be processed in CUDA as 

shown in Figure 4.2. Similar arrangement for grids is illustrated in Figure 4.3. When the x, y, z 

position of the data matters, for example, convolution, the data is partitioned into 3D block of 

4×4×6 threads. Problem size is mI, nI, kI in x, y, z-direction respectively. The choice of 192 

threads per block is due to the maximum of 768 active threads per multiprocessor and 128 to 

256 threads per block would give efficient execution. There are 6 threads in the z-direction for 

3D block and 4 threads per x and y direction because there is no 3D grid, only 2D grid for 

Number of Multiprocessors 16 
Global Memory 768MB 
Constant Memory 64KB 
Shared Memory per Block 16KB 
Warp Size (in threads) 32 
Maximum Number of Threads per Block 512 
Maximum Number of Threads in x, y, z dimension 512, 512, 64 
Maximum Number of Grids in each dimension 65535 
Maximum Number of Active Blocks per Multiprocessor 8 
Maximum Number of Warps per Multiprocessor 24 
Maximum Number of Active Threads per Multiprocessor 768 
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thread management in CUDA. One kind of implementation is to handle all z-direction data in 

one block as shown in Figure 4.4. Similar arrangement for grids is illustrated in Figure 4.5. 

 

Figure 4.1 Image size and Grid size of 3D Image 
 

 

Figure 4.2 3D image data lined up as 1D array and form numerous 1D blocks 
 
 

 

Figure 4.3 3D grid data lined up as 1D array and form numerous 1D blocks 
 

… … 

Gird data 

0 1 mGnGkG-1 

Form a 1D block for grids 

… … 

0 1 mInIkI-1 

Form a 1D block for image pixels 

Image pixels 

3D image of size mI, nI, kI 3D grids of size mG, nG, kG 

mG 
nG 

kG 

mI 
nI 

kI 
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Figure 4.4 Image data lined up as 3D arrays and form numerous 3D blocks 
 

 

Figure 4.5 3D grid data lined up as 3D arrays and form numerous 3D blocks 
 

4.1.2 Parallel Program  

 All routines in the system are executed in data parallel manner; data are synchronized 

after each routine. Original algorithm in Figure 3.1 is modified for GPU implementation as 

shown in Algorithm 4.1. Most of the operations are highly parallel elements. The input 

parameters divergence f1 and curl in x-direction f2, curl in y-direction f3 and curl in z-direction f4 

are initialized to 1, 0, 0 and 0 respectively. All gradients are initialized to zeros. Previous mutual 

information value MI old is set to zero in the beginning. 

 Div-curl calculation is a grid-level procedure which consists of gradient computation and 

solving the Poisson equation. It takes the divergence and curls as input and computes the 

Grid data 

mG 

nG 

kG Form a 3D block 
for grids 

Image pixels 

mI 

nI 

kI Form a 3D block 
for image pixels 
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intermediate vector field as output. The gradient of fi w.r.t. x, y, z is simply the difference of the 

next data value and the previous value in x-direction, y-direction or z-direction. In other words, 

calculating the gradient in x-direction for a data value at (i, j, k) involved reading from (i-1, j, k) 

and (i+1, j, k). There are always two reads and one write operation. Using the current simple 

approach, the same input data is always read twice from the global memory. In future, shared 

memory should be used to store the data accessed by the block to reduce the number of reads 

from global memory similar to the efficient separable convolution for 2D convolution using GPU 

presented in [33]. “Grid 3D” thread configuration is used for gradient calculation. The gradients 

of divergence and curl (in x, y, z direction) components are summed up as the input of the 

Poisson equation. A 3D FFT Poisson solver is implemented by simply applying six 1D FFTs and 

a multiplication. In CUDA, CUFFT library is provided for FFT calculation. The challenge in 

applying 1D FFT is to re-order 3D data in consecutive x direction for x-direction FFT, 

consecutive y direction for y-direction FFT and same for z direction FFT. After applying FFT in 

x-direction, y-direction, z-direction, the immediate result is multiplied by the Poisson wave 

numbers. Another round of FFTs in x, y, z direction gives the solution [14]. 

Runge-Kutta method is also a grid-level procedure which takes the intermediate vector 

field from div-curl calculation as input and approximates the intermediate displacement field. 

Main operations in Runge-Kutta are interpolation of intermediate vector field and arithmetic 

update to the displacement field. In tri-linear interpolation, an output value is interpolated by the 

nearest eight neighboring values of the evaluated 3D position. Eight unpredictable reads and 

one write are involved. Multiple reads of the same value from the global memory slow down the 

interpolation operation. There is no straight forward solution for this since the input data is too 

big to fit into the 16KB shared memory and the threads within a block may not read the same 

set of values. “Grid 3D” configuration is used for Runge-Kutta. 

Mutual information joint histogram estimation is a pixel-level procedure. For each pixel 

in the template image, it is compared against the neighborhood of the transformed pixel. If 3rd B-
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spline and GPVE is in use, the neighborhood could be of size 27 to 64. It translates to 27 to 64 

random reads globally from the reference image and the constant B-spline table, 27 to 64 

floating point multiplications and 27 to 64 floating point writes globally to a random histogram 

location. The 256×256 floating point joint histogram is too big to fit into the 16KB shared 

memory. The input image in experiment 161×129×49 is too big to fit in shared memory too. This 

is a bad scenario for SIMT operations since data are not written to predicted locations.  

 
 Algorithm 4.1. 3D Image Registration for images T and R 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Initialize F Parallel (f
1, f2, f3, f4) 

Initialize Gradient Parallel (Gf1, Gf2, Gf3, Gf4)  
MI old = 0 
While tolerance level not reached 
    Set fi'’ to fi - Gf1* tolerance, for i = 1 to 4 
    Synchronize Data () 
    (Vx, Vy, Vz) = Div-Curl Parallel (f

1’, f2’, f3’, f4’) 
    Synchronize Data () 
    (ux, uy, uz) = Runge-Kutta Parallel (f

1’, Vx, Vy, Vz) 
    Synchronize Data () 
    MI = Calculate MI Parallel (T, R, ux, uy, uz) 
    Synchronize Data () 
    If  MI > MI old 
        Set fi to fi’,  for i = 1 to 4 
        Synchronize Data () 
        (Gx, Gy, Gz) = Calculate MI Gradient w.r.t. x,y,z Parallel (T, R, ux, uy, uz) 
        Synchronize Data () 
        (Gf1, Gf2, Gf3, Gf4) = Calculate MI Gradient w.r.t. fi Parallel (Gx, Gy, Gz) 
        Synchronize Data () 
        (Gf1, Gf2, Gf3, Gf4) = Normalize Parallel (Gf1, Gf2, Gf3, Gf4) 
        Synchronize Data () 
    Else 
        Decrease tolerance level 
    End if 
End while 
Output ux, uy, uz 

 

There is a highly concurrent 256-bins-histogram presented in [31]. It is a histogram 

calculation instead of joint-histogram calculation and it handles integer histogram values only. In 
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[38], the authors proposed a GPU based solution for integral joint histogram. Each thread 

maintains a portion of joint histogram instead of a portion of input data. Histogram updates by 

different threads do not coincide. Performance decreases as more histogram bins are used. It is 

impractical in our situation due to floating point and the numerous writes. Scaling down joint 

histogram to 64×64 bins to fit into the 16KB shared memory would probably increase the 

efficiency but dramatically lose accuracy. 

Under the requirements of GPVE, 3rd B-spline and 256×256 joint histogram bins, a N-

threads and N-sub-joint-histograms approach is proposed. These sub-joint-histograms are 

stored in the global memory of the GPU because it is impossible to fit even one of them into the 

16KB shared memory. The input data is partitioned for N possible concurrent threads to 

execute. Each thread processes its share of image data and writes to its sub-joint-histogram. 

After computation of all sub-joint-histograms, they are summed up in parallel as one joint 

histogram. The choice of N equaling 256 is experimental. More sub-joint-histogram may speed 

up but it requires even more global memory for storage. It may not speed up due to more time 

required for summation of sub-joint-histogram. Other procedures in mutual information are 

entropy calculation and summation of 2D histogram to 1D probability density function. The data 

in histogram bins are lined up for 1D block of 192 threads to execute. 

Calculation of gradient of mutual information w.r.t. x, y, z direction is a similar 

procedure as the joint histogram estimation except that the result is always written to a specific 

location. The complexity only remains in the 27 to 64 unpredicted and uncommon reads of 

reference image, B-spline tables and the multiplications. Gradient in x, y and z directions are 

written according to the input location. “Pixel 3D” configuration is used for this operation. 

Calculation of gradient of mutual information w.r.t. input parameters f1, f2, f3 and f4 

consists of convolution of a redistribution filter as shown in Figure 4.6, Poisson solver and 

gradient computation. The redistribution filter concentrates pixel-level gradients to grid-level 

gradients. In the original Matlab implementation, a redistribution filter is applied to the whole 
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input pixel-level gradients and grid-level gradients are then extracted by skipping on the results. 

To further reduce the complexity, separable 1D filter as shown in Figure 4.7 is applied in x, y, z 

direction with skipping pixels. When gradient in x-direction is calculated, filtering is only done at 

skipped x-direction. When gradient in y-direction is calculated, filtering is only done at skipped x 

and y-direction. When gradient in z-direction is calculated, filtering is done at skipped x, y and z-

direction. There is no repeated multiple reads to the same input image. There is always fixed 

number of writes to the result but the number of reads depend on the grid size. Poisson solver 

replaces the inverse filtering method in the original Matlab implementation.  “Grid 3D” 

configuration is used here. 

Normalization of the gradients consists of finding the maximum value and division of 

the maximum value. N-ary search approach is employed. Each thread reads N data at a time, 

compares and stores the bigger values. The problem size decreases by N times each time. It 

will take X reduction steps to finish NX input data. Once the maximum value is obtained, all the 

input values are averaged out in parallel. Other reductions involved problem follows this 

approach. “Grid 1D” configuration is used in this step. 

   

 

Figure 4.6 2D redistribution filter. 
 

: Grid points 

: Grid point in consideration 

: Pixels to be concentrated 
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Figure 4.7 Two separable 1D redistribution filters. 

: Grid points 

: Point in consideration 

: Pixels to be concentrated 

: Points to be calculated 

x-direction concentration 

y-direction concentration 
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CHAPTER 5 

EXPERIMENTAL RESULTS VALIDATION 

5.1 Setup 

 2D experiments are conducted on a Pentium 4 3.2GHz computer with 3GB Ram. The 

whole non-rigid registration system is implemented in Matlab with various routines for 

interpolation, MI calculation and derivatives of MI calculation re-written in C. 3D experiments are 

conducted on the same computer with GPU acceleration and written in CUDA. 

 Details of the dataset can be found in Chapter 6. In the following, input image data are 

originated from a sub-set of the dataset. 

5.1.1 Contrast Enhanced Simulated 2D Image Data    

 Ground truth is required for error measurement but it is impossible to have ground truth 

available in clinical application. Simulation of the deformation yields the ground truth. In the 

simulation, the input image is treated as the reference image R. The template image T is 

simulated from distorting R with 36 control points evenly distributed in a B-spline thin plate 

model [7]. The thin plate model is a fair choice since it is not the same as the registration model. 

The resultant distortion is recorded as ground truth of the displacement field. Optionally, to test 

on efficiency on contrast enhanced images, some random regions in the template image T are 

then arbitrarily adjusted to higher intensity level. In this way, the estimated displacement field 

could be compared with the ground truth. A central slice of size 161×129, which contains the 

right breast, is extracted from the 3D breast MRI at time step 0 is used as input. The initial 

images are shown in Figure 5.1. 

5.1.2 Cropped 2D Image Data    

 A manually cropped central slice of size 161×129, which contains the right breast, is 

extracted out of 3D breast MRI at time step 0 and time step 1. The initial images are shown in 
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Figure 5.2 with the right image as the difference between the rigid transformed reference image 

R and template image T. 

 

Figure 5.1 From left to right: The reference image R, the template image T with simulated 
distortion and contrast-enhanced cancerous regions and the subtracted image between T and 

R. 
 

 

Figure 5.2 From left to right: The reference image R (time step 0), the template image T (time 
step 1) and the subtracted image between T and rigid-transformed R. 

 

5.1.3 Identical 2D Image Data    

 A central slice of size 129×129, which contains the left breast, is extracted out of 3D 

breast MRI at time step 0. Both template image T and reference image R are set to the same 

image. 

5.1.4 Simulated 3D Image Data    

 A  volume of size 161×129×49, which contains the right breast, is extracted out of 3D 

breast MRI at time step 0 and deformed by a B-spline thin plate model specified by 36 control 

points with random displacements d. Ground truth is collected in the transformation.  
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5.1.5 Cropped 3D Image Data   

 A  volume of size 129×129×33, which contains the left breast, is extracted out of 3D 

breast MRI at time step 0 and time step 1 are registered. A smaller volume is used due to the 

low speed of running on Matlab. 

5.2 Error Measurement 

 To validate the accuracy of the algorithm, one of the best methods is to measure the 

correctness of the transformation. The displacement field of the each pixel represents the local 

deformation in non-rigid registration. If ground truth of the displacement field is known, the error 

is calculated from the difference between the ground truth and reconstructed displacement field. 

The area of interest contains only non-background region. Contrast-enhanced regions should 

be excluded if present. 

 Absolute error and warping index are the most common error measuring methods. Let u 

be the ground truth displacement field and u’ be the estimated displacement field, absolute error 

is computed by 'uue −= . Warping index 
2

'uuw −= defined in [41] gives another 

estimate of the error. Often, the average and maximum values denote the overall correctness 

and the worst estimation respectively. 

 The 2D Matlab implementation is first applied on the “Contrast Enhanced Simulated 2D 

Image Data”. No regridding or monitoring is in use. The change in MI and average error are 

recorded in the process. Initially, the input parameters divergence is set to 1 and curls are set to 

0, indicating static velocity field. Our algorithm is able to converge at different resolutions over 

time. As shown in Figure 5.3 and Figure 5.4, MI improves logarithmically with average error 

minimizes gradually. The program proceeds to the next level when the stopping criteria, step 

size getting below a tolerance threshold. When the algorithm jumps from one resolution level to 

another level, spikes are observed in the MI curve and the average error curve. When the 

algorithm iterates more, MI converges to a maximum position whereas average error converges 

to a minimum. These spikes are explained by the interpolation of f and g using previous level 
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results. Without the input f and g from the previous level, the high MI value at the starting point 

of the finest level would not be possible. The program gradually recovers to the previous 

maxima or minima after more iterations or resolution levels. The topology preserving regridding 

in section 2.3 is implemented and results are shown next. Visually, the registration gets better 

as shown in Figure 5.5. Grid and image resolution refine and the contrast-enhanced features 

becomes clearer over time. After the registration, contrast-enhanced features are clearly 

distinguished from the simulated movement as shown in Figure 5.5. No shrinking of these 

features is observed. 

 

Figure 5.3 Changes in mutual information versus iterations. 
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Figure 5.4 Average error versus iterations. 
 

 

Figure 5.5 Top: Deformation grid at different resolution level; Bottom: difference of the 
reconstructed reference image R and the template image T. Grid resolution improves from left 

to right. 



 

43 

 
Table 5.1 A configuration of different resolution levels and corresponding resultant number of 

iterations, mutual information and average error. 
Image Size Grid Size No. of Bins 

(in histogram) 
No. of iterations MI Average Error 

81×65 41×33 128 28 2.7206 2.3199 
161×129 41×33 128 21 2.1058 1.1544 
161×129 81×65 256 41 2.0501 1.2550 
161×129 161×129 256 603 2.2603 0.3211 

 

 Table 5.1 shows the results of a possible configuration under a constant tolerance level 

0.001. The left three columns are the settings in different resolution levels and the right three 

are the results accordingly. Multi-resolution is desirable because the number of iterations and 

the time it takes to reach a certain tolerance level is much less than a finer level. 

 In the zoomed-in Figure 5.6, the smooth reconstructed grid on the right is almost the 

same as the simulated grid. No grid folding is observed. Our algorithm gives almost perfect 

deformation estimation.  

 The resultant divergence and curl are shown in the contrasted Figure 5.7 where white 

implies higher value, gray implies almost zero and black implies negative value. The gradient of 

MI with respect to f and g are shown respectively in Figure 5.7. The gradient of MI with respect 

to displacement field in x and y direction are shown respectively in Figure 5.7. Larger 

divergence and curl values are observed in more distorted areas. Notice that MI is insensitive to 

the simulated cancerous regions and sensitive to the edges and motion areas. 
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Figure 5.6 From left to right: The ground truth of the deformation grid and the reconstructed 
deformation grid. 

 

 

Figure 5.7 From left to right: The resultant divergence (top) and curl (bottom); the gradient of MI 
w.r.t. divergence (top) and curl (bottom); and the gradient of MI w.r.t. displacement in x (top) 

and y (bottom) directions. 
 

 The 3D CUDA implementation is then applied on the “Simulated 3D Image Data”. 

Regridding and compressibility-aware monitoring are in use. During the registration process, the 

difference of ground truth and transformation displacement field is captured in the average 
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warping index. Registration process is given ten chances to improve MI and a maximum of 200 

iterations in each resolution starting from grid distance of 8, 4, 2 and finally 1. Monitor function is 

set to at least 0.9 to disallow shrinking of volumes and allow minor error in real data. Figure 5.8 

shows the changes of average warping index in different iterations of the registration for a 

number of maximum allowed random displacements d. Figure 5.9 shows the corresponding MI 

values achieved. Markers in Figure 5.9 represent the grid resolution refinement using 

regridding. Average warping index is decreasing over time and MI value is increasing for 

different d. This is desirable since the maximization of the similarity measure leads to 

displacements with more accuracy. This validates the correctness of the CUDA implementation. 

Regridding helps average warping index curves reducing and MI curves increasing from one 

resolution to another. Overtime, average warping index of different amount of initial errors were 

able to reach to as low as 0.5 or lower and MI curves were able to converge to a common value 

of 2.3. Only single-multi-resolution scheme of different grid distances 8, 4, 2 and 1 on all 

dimensions is experimented here due to incomplete 3D implementation on the triple-multi-

resolution strategy. 

 These results suggest that MI maximization corresponds to correctness of registration. 

Since compressibility-aware monitoring limits the ability to deform, average warping index and 

MI slow down converging after some iterations. Regridding significantly stimulates the MI 

maximization process with straightly decreasing error across the next resolution level. 

 



 

46 

 

Figure 5.8 Average warping index values at different number of iterations for maximum allowed 
random displacements d=2, 3, 4, 5. Markers indicate grid resolution refinement. 

 

 

Figure 5.9 MI values at different number of iterations for maximum allowed random 
displacements d=2, 3, 4, 5. Markers indicate grid resolution refinement. 

 

5.3 Comparisons on Different Joint Histogram Estimation for Mutual Information 

 The 2D Matlab implementation is applied on the “Identical 2D Image Data” to explore 

the correctness of different histogram estimations. 

 GPVE, PVI and Parzen windows joint histogram estimation methods with gradient 

optimization are implemented and compared for 2D images. In Figure 5.10, the MI and gradient 
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of MI are compared. Two identical images at time step 0 are used as input of the joint histogram 

estimation. One pixel moves in the horizontal direction x from -1.5 to 1.5. The corresponding 

fluctuations in MI and gradient of MI are then recorded. All MI graphs are center at zero 

meaning zero displacement in that point gives maximum MI. The analytical gradient is 

calculated by the previous derivations in the methodology section. The finite difference gradient 

is computed by subtract the previous MI value from the current one. It can be seen that the 

shape of the analytical gradient is very close to the finite difference one. Here, modified PVI 

which uses 3rd order B-spline for initial 20 iterations to overcome its artifacts. In PVI, grid points 

tend to move towards integral positions. If the original version is used, the graph of PVI will not 

move at all since its value at integral position is always greater than at nearby non-integral 

positions.  

 On an average of 50 runs, the table 5.2 shows the time required for each method to 

perform joint histogram estimation and calculation of gradient of mutual information for 129×129 

input images. PVI is the fastest whereas Parzen windows method is the slowest in general. 

 Figure 5.11 shows the difference between reconstructed and original image. Again, the 

difference image obtained by GPVE gives the best contrast of the desired regions. 

 The MI of GPVE, PVI and Parzen windows are on different scale. The percentage 

increase is calculated by this formula: 

%100
 MIInitial -  MI PossibleMaximum

 MIInitial - MI
×

    (4.13) 

where initial MI is the MI before non-rigid registration begins and maximum possible MI is the MI 

when both images are identical. The maximum possible MI for GVPE, PVI and Parzen windows 

are 3.4668, 5.8971 and 4.4995 respectively when the template image T is used as both inputs 

for MI. The graph below shows GPVE gives the largest amount of percentage increase over the 

iterations. PVI stops converging after 250 iterations. 
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Figure 5.10 Comparisons of various methods GPVE (top), PVI (middle) and Parzen Windows 
(bottom) in MI and gradient of MI with respect to displacement in x. The top graph is MI, the 

middle graph is the analytical gradient and the bottom graph is the gradient estimated by finite 
difference. 
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Table 5.2 Time comparison of GPVE, PVI and Parzen windows on joint histogram estimation 
and gradient calculation. 

 Joint Histogram Estimation Gradient of MI 
GPVE 0.02416 s 0.09368 s 
PVI 0.01593 s 0.07322 s 
Parzen Windows 0.03418 s 0.1029 s 

 

 Based on the joint histogram estimation method used in MI, there are several variations 

exist in the literatures. GPVE, PVI and Parzen windows are compared here. When a new 

position is found, the PVI method distributes linear weights to the pixel neighborhood without 

calculating a new intensity value. The GPVE method uses B-spline weights which gives 

smoother updates. In Parzen windows, intensity of new position is bi-linearly-interpolated and 

the new intensity value is distributed to the histogram neighborhood using B-spline weights. 

(There are also other variations of Parzen windows which are excluded in this paper. The 

choice is made due to the simplicity of bi-linear interpolation and smooth histogram update.) 

From the experiment, GPVE method performs the best in term of convergence. The percentage 

increase in MI is the largest among the methods in the experiments. PVI method is the fastest in 

term of computation time but it fails to converge to a higher value over time. It could be 

explained by the tendency of pixels to move to integral positions to achieve better MI. Parzen 

windows method converges over time but it is about 50% slower than GPVE in the joint 

histogram estimation. The converging power of Parzen windows method is much less than 

GPVE method as shown in figure 5.12. It could be concluded that the smoothness of the joint 

histogram estimation function result in different converging behaviors. 

 Gradient of various MI are derived and implemented for use in the gradient descent 

optimization method. From Figure 5.7, the analytical gradients are very close to the finite 

difference one meaning the correctness of the analytical results. The curves of GPVE are 

smooth due to the one-step distribution of 3rd order B-spline weights. PVI method uses bi-linear 

interpolation, thus updates do not spread smoothly to neighbors. The Parzen windows method 
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adapted in this paper uses bi-linear interpolation to calculate the intensity value and B-spline to 

distribute updates in the histogram. It makes the curve partially smooth and partially rough. 

 

 

Figure 5.11 Difference image of template image and reconstructed reference image by GPVE 
(left), PVI (middle) and Parzen windows (right). 

 

 

Figure 5.12 Percentage increase in MI versus number of iterations for GPVE, PVI and Parzen 
windows. 
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5.4 Comparisons on Different Similarity Measures 

 MI with GPVE and Sum of Square Difference (SSD) are compared on performance. In 

MI based registration, GPVE joint histogram estimation, entropy calculation and gradient of MI 

w.r.t. x, y, z and fi are the major operations. In SSD based registration, reference image R is re-

sampled according to the local displacements found. Subtraction with pixels in T followed by 

squaring and summing up yields the SSD. Gradient w.r.t. x, y, z and fi are then computed 

accordingly. GPU implementation is employed. Multi-resolution of grid distance 8, 4, 2, 1 

combined with regridding after each resolution and compressibility-aware monitoring is applied 

to “Simulated 3D Image Data“. Both SSD and MI based are given ten chances of no 

improvement and maximum of 200 iterations per resolution setting. The table 5.3 shows 

required time of an average of 50 runs of the routines on images of size 161x129 x49. The grid 

distance is denoted by h. Smaller h implies denser grids. SSD is undoubtedly faster than MI due 

to its simplicity in calculation and bottom neck in MI calculation using data-parallel approach. 

Figure 5.13 shows the convergence of both SSD and MI over time. The simplified version of 

topology preserving regridding prevents similarity measures from re-bouncing after changing 

resolutions marked by a special icon in the graphs. Figure 5.14 plots the comparison of average 

warping index recorded in both SSD and MI based registration. The trends of graph suggest MI 

graph is able to get to a smaller error value than SSD over number of iterations which suggests 

the reliability of MI on real world data. Although both curves are against the same iterations 

axis, the time consumed in SSD is much shorter than MI. The overall time taken for MI to finish 

this registration is about 30 minutes and the time for SSD is around 1 minute. When tolerance is 

set to a lower value, less iteration occur and less time is consumed. In another experiment, 

tolerance is set to five chances of no improvement and maximum of 50 iterations per resolution, 

MI registration takes 3 minutes and SSD registration takes 15 seconds to finish. The tolerance 

level could be adjusted to acceptable time limitation for practical application. 
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Figure 5.13 SSD and MI vs. number of iterations. Markers show the regridding points. 
 

 MI and SSD are both similarity measures based on the intensity of the image. MI 

measures the similarity of the statistical data of the image. SSD measures directly the difference 

in the pixel values. To maximize MI, both input images should have identical statistical data 

which does not require the input images to be exact in intensity values, which is the case for 

SSD minimization. The advantage of using SSD is of course the speed due to the simplicity of 

the operation. Thanks to the incompressible nature of the div-curl model, when SSD drives the 

pixels to position that minimizes SSD, the monitor function limits the position of the grids to 
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avoid grid folding. It could be deduced from Figure 5.14, average warping index of SSD 

registration will converge to a higher error value than MI due to the possibility of small amount of 

noise presence in real world data. MI can go much lower in error because of its insensitivity to 

lighting and contrast difference. Hence, MI is a more suitable similarity measure for this kind of 

breast MRI. 

 
Table 5.3 Time comparison of MI (GPVE) and SSD operations. 

 Gradient Computation 
 

Basic Computation 
h=8 h=4 h=2 h=1 

MI (GPVE) (in ms) 1180.24 1623.66 1900.05 2048.25 2311.05 
SSD           (in ms) 4.88 12.45 16.34 50.37 210.16 

 

 

Figure 5.14 Comparisons of average Warping Index of SSD and MI vs. number of iterations. 
Markers show the regridding points. 

  

5.5 Comparisons on GPU and CPU Implementation 

In this section, the performance of CPU implementation and GPU implementation are 

examined. The CPU configuration consists of a Pentium 4 3.2GHz computer with 3GB Ram. 

Code is mainly written in Matlab. Mutual information, gradient of mutual information, 

interpolation are written in C. The GPU configuration consists of an Nvidia GeForce 8800 GTX 

processor and the same CPU as coprocessor. The GPU version is completely rewritten in 

CUDA which resembles all the main procedures in the Matlab version. In the following, the 
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maximum number of units handled by GPU per second and the relative GPU to CPU speed up 

are measured and discussed. Specification of GPU is shown in Table 4.1. The “Cropped 3D 

Image Data” is taken as the input. Both implementations are given the problem of same size 

and complexity. 

To measure the processing power of GPU, a metrics similar to GFLOPS/s is computed. 

When problem size increases, GPU performance should be pushed up to peak when most 

threads are non-idle. Figure 5.15 show the maximum number of mega-grids performed by the 

GPU per second (M Gird/s) for specific grid-level operation when total number of girds 

increases. Under the test image of size 129×129×33, parallel version of Runge-Kutta achieves 

around 650 M Grid/s and gradient normalization achieves around 730 M Grid/s. Their 

performance is much better due to their high data independency. Div-Curl calculation can reach 

a maximum of 3.5 M Grid/s due to the relative complicated FFT. Gradient of MI w.r.t. f1, f2, f3, f4 

is at maximum of 2.5 M Grid/s. Its varying performance is due to the mixed grid-level and pixel 

level operations. The grid-level graph does not show the corresponding pixel-level tasks it is 

handling.  Its lower performance value is due to multiple data reads problem described in the 

previous section. Figure 5.16 shows the maximum number of mega-pixels performed by the 

GPU per second (M Pixel/s) for specific pixel-level operation when total number of voxels 

increases. Image interpolation is observed at maximum of 160 M Pixel/s despite its eight reads 

of global memory. Gradient of MI w.r.t. x, y, z has 4 M Pixel/s no matter what image size is 

used. The value for MI calculation is not listed here due to the fixed 256-threads 

implementation. 

Although the running on CPU does not mean running on one thread in GPU, the speed 

up comparison aims to provide an idea of the magnitude of performance increase by switching 

from CPU to GPU. Keeping in mind GPU development grows more rapidly than CPU, an 

investment in a new GPU of similar price to a new CPU is worthy. Table 5.4 shows the recorded 

speed up when the grid size increases. The time required to execute a kernel on CPU is 
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assumed to be roughly proportion to the problem size. Generally, when data size increases, 

threads work more productively, speed up increases. Especially in the normalization of 

gradients, a maximum speed up of 221 is observed. It is due to all input data and output data 

are independently divided among all the threads. Runge-Kutta achieves a speedup of 191. Div-

curl has a speed up of 30. Gradient of MI w.r.t. f1, f2, f3, f4 has a speed up of 42. Again, 

fluctuations are due to mixed grid-level and pixel-level operations present. Figure 5.17 displays 

the data in Table 5.4 in a graph which clearly shows the speed up relationship. Table 5.5 

presents the speed up of pixel-level operations. Due to high data interdependency, MI 

calculation, Gradient of MI w.r.t. x, y, z and image interpolation have a near constant maximum 

speed up of around 4, 170 and 15 respectively. It is very challenging to further improve those 

numbers unless at the algorithm level. This could be extended to a new research topic. Overall, 

the speed up of GPU to CPU for the whole registration process is about 40 times. 
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Figure 5.15 Amount of M Grid/s of data processed by GPU vs. Total Grid Size of Runge-Kutta 
method and gradient normalization. 
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Figure 5.16 Amount of M Pixel/s of data processed by GPU vs. Total Image Size. 
  

Table 5.4 Speed up of GPU to CPU at different resolution levels for grid-level operations. 
Speed up observed Grid Size Total 

No. of 
Grids 

Div-
Curl 

Runge-
Kutta 

Gradient 
Normalization 

Gradient of MI 
w.r.t. fi 

5×5×5 125 3.34 4.72 0.66 9.94 
9×9×9 729 4.79 6.96 1.56 8.40 

17×17×9 2601 10.21 10.76 3.97 26.26 
17×17×17 4913 11.87 10.43 8.07 19.48 

33×33×9 9801 13.21 35.02 15.04 21.53 
33×33×17 18513 16.36 30.86 30.47 26.45 
33×33×33 35937 17.57 59.51 56.68 36.61 
65×65×17 71825 23.08 124.21 94.20 34.21 
65×65×33 139425 24.65 139.75 135.34 41.92 

129×129×33 549153 29.91 190.69 221.15 41.83 
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Figure 5.17 Observed Speed up of GPU to CPU vs. Total Grid Size. 

 

Table 5.5 Speed up of GPU to CPU at different resolution levels for pixel-level operations. 
Speed up observed Image Size Total 

No. of Pixels MI Gradient of MI w.r.t. x, y, z Image Interpolation 
17×17×17 4913 2.44 149.31 9.93 
33×33×33 35937 4.02 163.23 15.94 
65×65×33 139425 4.77 178.90 15.41 

129×129×33 549153 4.20 140.82 15.97 
 



 

59 

5.6 Compressibility-aware Monitoring  

 “Cropped 3D Image Data” is used to demonstrate the power of compressibility-aware 

monitoring mentioned in section 3.5. Jacobian of the transformation with and without monitoring 

are recorded after registering reference image R at time 1 to template image T at time 0 as 

shown in Figure 5.18 and Figure 5.19 respectively. Total image size is 1,017,681 voxels. In the 

experiments, the monitor function is set to greater than 0.9 to disallow shrinking of contrast 

enhanced voxels and allow some errors in real world data. In Figure 5.18, with monitoring, 

Jacobian values always lie above 0.9. In Figure 5.19, without monitoring, Jacobian values could 

even go negative or get extremely big. This suggests uncontrolled volume changes when 

monitoring is absent. 

 As addressed in [34], volume calculation is not a trivial task. A segmentation mask is 

generated according to the contrast difference between the rigid-aligned reference image and 

the template image. This segmentation mask is then used to contain the volume of interest for 

counting changes in volume. Since their segmentation method is a rough approximation, an 

even simpler method is employed here. Four contrast enhanced sub-volumes are hand-picked 

for volume changes observation. If intensity value of a voxel is greater than a specific threshold, 

the voxel is considered part of the sub-volume. Figure 5.20 shows the number of voxels 

included for four different contrast enhanced volumes during different iterations for registering 

template image at time 0 and reference image at time 1. Minor fluctuations are observed but 

generally volume changes are within 10%. This is reasonable since the Jacobian values 

collected in the registration with monitoring are in the range of 0.9 to 1.15. The volume changes 

from without monitoring registration are not collected since hand-picked region may not have 

extreme volume changes to be exhibited. 

 “Simulated 3D Image Data” is experimented to MI and error behavior. In Figure 5.21, 

the MI curve is compared with and without the applying compressibility-aware monitoring. The 

corresponding average warping index is shown in Figure 5.22. From the MI comparison curves, 
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registration without monitoring has more freedom in deformation and is able to obtain higher MI 

value than registration with monitoring. From the average warping index comparison curves, 

though the curves have different convergence shapes, they are able to achieve the same low 

error value at the end. An example of near uniform deformation is shown in Figure 5.23. 

 

Figure 5.18 Jacobian vs. Count for registering reference image at time 1 to template image at 
time 0. 

 

 

Figure 5.19 Jacobian vs Count for registering reference image at time 1 to template image at 
time 0. A number of extreme values are observed. 
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Figure 5.20 Volume changes during different iterations in registering template image at time 0 
with reference image at time 1. 

 

 

Figure 5.21 Comparison on the effect of with and without monitoring on MI vs. no. of iterations. 
Markers show grid refinement points. 
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Figure 5.22 Comparison on the effect of with and without monitoring on average warping index 
vs. no. of iterations. Markers show grid refinement points. 

 

 

Figure 5.23 Deformed grids of near uniform sizes. 
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CHAPTER 6 

EXPERIMENTAL RESULTS USING CLINIC BREAST MRI 

6.1 Overview    

 An optimization framework for non-rigid breast MRI registration is presented. The non-

rigid div-curl system properly models the local deformation in breast tissues. Mutual information 

provides a robust mean to measure similarity in real world situation where there is no guarantee 

in constant illumination and noise condition. The monitor function is naturally aware of the 

incompressibility by limiting the ratio of area of before and after reconstruction to be constant. 

Various optimization techniques facilitate the use at scanner consoles or interactive 

workstations. 

6.2 Setup    

 The dataset used in this experiment is contributed by Dr. Peng at the Department of 

Radiology at The University of Texas Health Science Center at San Antonio. The patient was 

lying when MRI were taken. The original dataset consists of 50 slices of 2D 512×512 breast 

MRI taken at 11 time steps. The whole imaging process takes around 400 seconds. Each time 

step is matched to the actual timeline as shown in Table 6.1. Each MRI contains a slice of two 

breasts and the chest region.  

 
 

Table 6.1 Actual Time for Different Time Steps 
Time 
Step 

0 1 2 3 4 5 6 7 8 9 10 

Actual  
Timeline  

(in s) 

0 84 119 154 190 225 261 296 331 367 402 

 

 All breast image slices are manually cropped to one breast of size 161×129. The 

experiment takes 49 slices as input. These input dimensions are designed for proper grid 
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allocation. There are 11 time steps in the input data. The data volume at time step 0 is 

considered as the template image T and the data volume at time step 1 to 10 are the reference 

images R to be reconstructed. The 3D volumes are globally aligned to time step 0 using mutual 

information based rigid registration. Alignment to image volume at step 0 provides a more 

convenient way for massive contrast enhancement analysis but the enhanced intensity values 

in the reference image may go out of range of the normal 256 levels of intensity value. To solve 

this problem, any voxel with intensity value greater than the maximum intensity value in T is 

considered contrast enhanced. All contrast enhanced voxels are considered registered in MI 

calculation. In order words, the displacements of the contrast enhanced voxels are controlled by 

the similarity of joint histogram of the surrounding non-contrast enhanced voxels of the 

reference image to the template image. In the experiment data, the maximum intensity value of 

the template image was 154. This is called the “MI-Match” method in the following context. SSD 

is another candidate for similarity measure when contrast enhanced regions are considered 

matched. This is called “SSD-Match” in the results. Alternately, input images could be 

normalized first but accuracy would be lost. This is investigated as the “MI-Norm” method.  

 Tolerance level is ten chances of no improvements and maximum of 100 iterations per 

resolution. Multi-resolution scheme of grid distances 8, 4, 2 and 1 with regridding is in use. 

Monitor function is set to be at least 0.9 in compressibility-aware monitoring to allow some real 

world error. 

 GPU computation is applied to the dynamic contrast enhanced 3D breast MRI data. 

Experiments are conducted on the same computer with GPU acceleration and written in CUDA 

as covered in Chapter 5. 

6.3 Results    

 The overall registration results from time steps 1 to 10 are discussed here. Our 

algorithm is able to converge at over time. As shown in Figure 6.1, MI improves straightly as 

time increases in all registration at time steps 1 to 10 in the MI-Match method. 
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The Figure 6.2 shows the contrast difference of the central slice in time step 0 

coordinates before and after registration at different time steps of different methods. The 

reference image R taken at time step 1 to 10 which is reconstructed to register the template 

image T taken at time step 0. The absolute difference between the reconstructed R and T are 

shown in Figure 6.2. Contrast at some regions amplifies a lot where contrast at others remains 

about the same. Some edges of the breast are gone in the after registration images. MI-Match 

and MI-Norm have similar visual results. This implies MI is insensitive to contrast changes in MI-

Norm method and the adaptive grid system is able to allocate grids correctly using the non-

contrast-enhanced region for MI maximization guide in MI-Match. The only concern of MI-Match 

and SSD-Match is when majority of the volume is contrast enhanced region. There may not be 

enough non-contrast regions to quantify the deformation for similarity optimization. This problem 

is exhibited in the SSD-Match visualization where the contrast regions in the center could not be 

correctly identified. 

Figure 6.3 shows the joint histogram of the registration at different time steps in MI-

Match method. Sharper areas along the diagonal indicate better alignment. The joint histograms 

in all time steps condense to the diagonal as registration proceeds. The condensation implies 

registration aligning more voxels over time. The sharp white diagonal shown in registrations at 

time step 2 to 10 are due to contrast enhanced matching assumption for MI-Match discussed in 

the setup. Figure 6.4 shows the joint histogram of the registration at time steps 1 and 2 in MI-

Norm and SSD-Match methods. In MI-Norm method, intensity values are normalized to range of 

0 to 255. The un-continuities resulting in blank vertical and horizontal lines are due to missing 

intensities value after normalization. After time step 1, intensity value range is broadening due 

to presence of contrast enhancement. The matching diagonal moves towards the vertical axis. 

Joint histograms in other time steps are similar. In SSD-Match method, the joint histogram 

graph is normal as higher resolution registration gives sharper diagonal. 
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 MI-Match is the preferred method in the following. The percentage of intensity 

enhancement of every voxel in the 161×129×49 breast MRI are recorded. The top 10,000 

percentage intensity enhancement of the total 1,017,681 is plotted in Figure 6.5. Figure 6.6 

shows the zoomed in top 500 enhancements. The zoomed-in plot gives a vague suggestion for 

possible threshold to distinguish malignant tissues from benign tissues. The threshold value 

chosen from the graph is around 200% beyond time step 2. Figure 6.7 shows the intensity 

enhancement of possible malignant tissues after the threshold was set. This provides an initial 

guess on the cancerous volume.  

The intensity enhancement of four sample points is illustrated in Figure 6.8. Point A and 

B jump dramatically at time step 2 and remain high throughout the curve. Point C and D do not 

exhibit high percentage of increase during the imaging process. Roughly comparing with the 

general contrast agent uptake curve, point A and B are possible lesion tissues whereas point C 

and D are normal tissues. 

 Our algorithm successfully aligned the dynamic contrast-enhanced breast MRI. Motion 

across different time steps is corrected by global rigid and local non-rigid transformation while 

contrast-enhanced features remain the about same size. Corresponding pixels at different time 

steps are then related and intensity increment for every pixel could be found. Different kinds of 

tissues give different responses along the imaging timeline. A model to classify tissues into 

carcinoma, fiber-adenoma, normal tissue, muscle and fat based on the response curves should 

be used after the registration process. Further investigation is required to find an appropriate 

model for classification. 
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Figure 6.1 MI vs. no. of iterations for registrations at time step 1 to 10 of MI-Match. 
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 Time Step 1 Time Step 2 Time Step 3 Time Step 4 Time Step 5 
Before 

After 
(MI- 
Match) 

After 
(MI- 
Norm.) 

After 
(SSD- 
Match) 

 
      
 Time Step 6 Time Step 7 Time Step 8 Time Step 9 Time Step 10 
Before 

After 
(MI- 
Match) 

After 
(MI- 
Norm.) 

After 
(SSD- 
Match) 

 
MI-Match: MI-based registration assuming contrast-enhanced regions as matched. 
MI-Norm: MI-based registration with normalized intensities. 
SSD-Match: SSD-based registration assuming contrast-enhanced regions as matched. 

Figure 6.2 Differences of the central slice before and after registration at different time steps for 
different methods.  
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Figure 6.3 Joint histograms of registration at different time steps of MI-Match.  
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Figure 6.4 Joint histograms of registration at different time steps of MI-Norm (top) and SSD-

Match (bottom).  
 

 

Figure 6.5 Top 10,000 intensity enhancement vs. time steps. 
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Figure 6.6 Top 500 intensity enhancement vs. time steps. 
 
 

 
Figure 6.7 Intensity enhancement of possible malignant tissues after setting a threshold. 
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Figure 6.8 Intensity enhancements of four sample points. Point A and B are possible lesion 
regions. Point C and D are normal tissues. 
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CHAPTER 7 

CONCLUSIONS 

 A new approach to non-rigid image registration using mutual information is presented. 

Adaptive grid generation models the non-rigid deformation by adjusting the divergence and curl 

parameters. Its compressibility-aware monitor function allows flexible control of the 

transformation area or volume ratio. Setting the ratio to unity resembles the incompressibility of 

human tissues. Mutual information (MI) as a similarity measure is robust against noise and 

different illumination similarity measure. Artifacts of different histogram estimations are 

investigated. Gradient of different MI variation are derived for the optimization scheme. Newly 

improved gradient information provides more accuracy in gradient descent optimization 

scheme. Multi-resolution strategy with regridding cuts down the registration time which makes it 

feasible for clinical practice. Our algorithm is well scalable to handle 3D real image data and 

capable to register between difference modalities. The algorithm is validated by simulated 

deformation to compensate the absence of ground truth. The framework is applied to dynamic 

contrast enhanced breast MRI which requires the algorithm to be able to handle local motion of 

soft tissues and contrast enhanced region. This is a positive match with the compressibility-

awareness of adaptive grid generation and robustness of MI. With GPU optimization, the 

performance of the system is pushed to a newer peak. More than 40 times speedup is observed 

in the current configuration. If finer tuning is conducted on an elite GPU, even higher 

performance could be expected. The experiments show promising results for the breast MRI. It 

is possible to include this algorithm in computerized breast cancer detection, which is an 

essential module in the next generation of clinical procedure. 
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CHAPTER 8 

FUTURE WORKS 

 In the future, the GPU implementation could be more fine-tuned to fully utilize all GPU 

resources. Further investigation on data-parallel MI calculation should be well researched. 

Scalable implementation should be prepared for better GPU being manufactured in near future. 

It is possible to extend this work to other contrast enhanced medical images. Currently, 3D 

visualization of the final results has not been completed yet. This work would become a 

powerful clinical tool if incorporated with 3D rendering and model fitting the contrast 

enhancement results.  
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