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ABSTRACT

HYDROLOGICAL VISUALIZATION AND ANALYSIS SYSTEM AND

DROUGHT RELATED FEATURE SELECTION BASED ON

SECTIONAL CORRELATION MEASUREMENT

PIRAPORN JANGYODSUK, M.S.

The University of Texas at Arlington, 2012

Supervising Professor: Jean Gao

Because of the larger data storage and the faster computational power, com-

puter can process and store much finer resolution data. Aside from data analysis,

data visualization is also an important task to understand the data. In this work, the

Hydrological Visualization and Analysis System is developed to help both hydrolo-

gists and local people view and examine the high resolution hydrological data. Then,

this data is analyzed to determine which variables are related to the change of drought

condition in Arlington, Texas. A new correlation measurement method called sec-

tional correlation is proposed and used as an objective function of the drought related

feature selection. The proposed sectional correlation algorithm has good performance

in terms of computational efficiency and the accuracy. The result error is quite low,

about 2% of the range of value.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Computer has been used to help analyze and visualize the data from many fields

such as Medical, Biology, Geology, Hydrology, etc. Since the computer storage has be-

come larger and larger, and the computational power is much faster than in the early

age, the data can be computed and kept in finer resolution. Recently, a new 30-year

historical hydrological data set has been produced from the Office of Hydrologic De-

velopment in the National Oceanic and Atmospheric Administration (OHD-NOAA).

This data set has 32 hydrological variables in finer spatial and temporal resolution

which has advantage over other data sets in terms of detail and accuracy.

This work uses the available data to provide two contributions. First, the

Hydrological Visualization and Analysis System (or HyVAS) has been developed to

visualize this data set and made available to hydrologists, local organizations, and

people in the West Gulf River Forecast Center (WGRFC) area. This visualization

is designed to be interactive so users can easily manipulate the visualized data as

interested. Many pros and cons from other visualization applications are considered

before this system is decided to be a web-application.

Because this data set is a spatio-temporal data. The visualization can be done

in two ways, space (area) and time. The spatial visualizations are mostly done by

plotting a map (2D). In some variables such as soil moisture, and soil temperature,

the data is sub-categorized into four layers. Thus, another dimension, which is the
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depth, also needs to be visualized. For these variables, the data can be displayed in

3D.

Temporal visualization is simply done by plotting time series onto a graph. This

graph is also flexible to manipulate and interact for easier data understanding.

The second contribution is the data analysis which is focused on drought con-

dition. This analysis is which hydrological variables are related to the change of

drought condition in Arlington, Texas. The forward feature selection is applied to

select the variables. Then, the measurement of how good the selected features are

must be defined. The correlation measurement is chosen to do this job but some

drawbacks in popular methods are found so these methods cannot be used. Thus, a

new correlation measurement algorithm called sectional correlation is proposed and

is used as the objective function of the drought related feature selection.

1.2 Thesis Overview

The rest of this thesis is organized into two chapters.

Chapter 2 provides the information of the Hydrological Visualization and Anal-

ysis System (HyVAS). It starts by describing the hydrological data used in this work.

Then, the HyVAS is introduced. Its architecture, data-flow, and functions of the five

visualization tools are explained. It also shows how the 2D and 3D visualization are

computed and displayed on a web browser.

Chapter 3 focuses on analysis of the correlation between the hydrological data

and five drought indices. First, two current problems in sectional correlation mea-

surement and in noise detection in time series motif discovery are identified. It covers

some widely used correlation measurement algorithms and their drawbacks. After

that, it introduces a new algorithm for sectional correlation measurement. The new

feature selection method based on the proposed sectional correlation is presented. In

2



the last section, the experimental results and explanations for sectional correlation

and the drought related feature selection is mentioned.
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CHAPTER 2

HYDROLOGICAL VISUALIZATION AND ANALYSIS SYSTEM

2.1 Introduction

Visualization is an important tool to find spatial and temporal relationship in

numerical data. The purpose of this web-application, the Hydrological Visualization

and Analysis System (HyVAS), is visualizing and also analyzing the historical hydro-

logical data from the Office of Hydrologic Development in the National Oceanic and

Atmospheric Administration (OHD-NOAA). This web-application is hoped to help

the hydrological community view the data and find the relationship, trend, hidden

pattern, or any useful information in this data.

2.2 Related Works

There are many applications for hydrological data visualization, such as Hy-

droDesktop [1], ArcGIS [2], and GISHydro [3].

The major advantage of the HydroDesktop is that it has been developed since

2009 and more recent data is available via the CUAHSI Hydrologic Information Sys-

tem. Its purposes are downloading, visualizing, and analyzing hydrologic and climate

data from the CUAHSI-HIS. The drawback is its OS and environment dependent.

It must be run on Windows XP or Windows 7. For other operating system, this

application must be run on a Windows emulator. Furthermore, the .NET Framework

is required. This installation process might be frustrating.

The ArcGIS is commercial software from Esri. There are many advantages over

other applications. It also has been developed for a long time. The current version

4



is 10.1. Many useful functions have been added. It’s widely used around the world.

Many organizations also provide data in ArcGIS format or .shp. The main drawback

is the license fee. Thus, the local users cannot afford this application for leisure

use. Another disadvantage is that its function cannot be modified to serve the users’

interest.

The GISHydro has two versions, the web version and the software version.

Both of them are free to use. They have been developed since 1997. The purpose

of the GISHydro is to help engineers analyzing watershed in Maryland area. The

disadvantage of the software version is its dependent on ArcView or ArcGIS platform.

For the web version, it also needs a plug-in called Citrix before accessing to the

GISHydro web server.

The HyVAS is developed to eliminate all the applications’ flaws mentioned

above. The first advantage of HyVAS over others is that because it’s a web-based

application, it doesn’t need an installation. Also, it is platform independent so that it

can be used on any OS. In addition, no license fee is needed. The only recommendation

is to use it in Google Chrome to get all the functions provided.

Another advantage of the HyVAS is its data set. This data set has finer spatial

and temporal resolution than others which provides more accurate information for

users who interest in small areas like in state, county, or city level. This can help the

local hydrological organizations view and manage their water supplies.

Finally, this system provides both spatial and temporal visualization while

most of others provide only spatial functions. Besides, the HyVAS provides 3D-

visualization that is lacked in many other web-based hydrological applications. The

3D Trend of Soil Moisture Range Tool in the HyVAS provides 3D-maps with soil

depth which will help users see trend or relationship of the data between soil layers.

5



2.3 Methodology

The HyVAS has three tools for spatial visualization and two tools for temporal

visualization. The method for spatial visualization is rendering a colored map based

on the value in each geographical position. For the temporal visualization, a time

series created from all 30-years data at a certain geographical position is displayed.

In this section, the data set will be introduced first. The overall architecture will be

discussed, then each of the five visualization tools will be brought up.

2.3.1 Data Set

The hydrological data used in this work is kept in HRAP (Hydrologic Rainfall

Analysis Project) coordinate system [4] which is another coordinate system used

within the National Weather Service. It can be converted to and from the geographic

coordinate system (latitude and longitude).

HRAPX =

(
Earth Radius

Grid Length
× (1 + sin(sdlat))× cos(lat)

(1 + sin(lat))
× sin(lon)

)
+ 401

(2.1)

HRAPY =

(
Earth Radius

Grid Length
× (1 + sin(sdlat))× cos(lat)

(1 + sin(lat))
× cos(lon)

)
+ 1601

(2.2)

where lat is latitude in radians, lon is longitude in radians, and sdlat is the standard

latitude in radians.

gi =

(
Earth Radius

Grid Length
× (1 + sin(sdlat))

)2

(2.3)

rr = (HRAPX − 401)2 + (HRAPY − 1601)2 (2.4)

latitude = arcsin

(
gi− rr
gi+ rr

)
× rad2deg (2.5)
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longitude = 270 + sdlon− arctan

(
HRAPY − 1601

HRAPX − 401

)
× rad2deg (2.6)

where sdlon is the standard longitude, sdlat is the standard latitude, and rad2deg is

the conversion from radians to degrees.

This data set has 32 variables, as shown in Table 2.1, in high spatial resolution

(4×4 km2. per cell) and also in high temporal resolution (every 6 hours from January

2, 1979 to December 31, 2008). This spatial coverage is all the states in the US except

Alaska and Hawaii.

Table 2.1: 32 Variables of the OHD-NOAA’s hydrological data set

Variable Layer Description
1 accmax 1 Maximum water equivalent since snow began to accu-

mulate, mm
2 adimpc 1 Additional impervious area water content, mm
3 evap 1 Actual evapotranspiration, mm per dt
4 liqw 1 Liquid water storage, mm
5 lzfpc 1 Lower zone primary free water content, mm
6 lzfsc 1 Lower zone supplemental water content, mm
7 lztwc 1 Lower zone tension water content, mm
8 pevap 1 Potential evapotranspiration, mm per dt
9 rain 1 Rainfall forcing, mm per dt
10 rmlt 1 Rain plus melt dept, mm
11 runoff 1 Surface flow component, mm per dt

12-15 smliq 1-4 Unfrozen volumetric soil moisture at Noah defined lay-
ers

16 sndpt 1 Snow depth, mm
17 snow 1 Snowfall forcing, mm per dt
18 snowfrac 1 Snow cover fraction, dimensionless

19-22 soilm 1-4 Total volumetric soil moisture at Noah defined layers
23-26 soilt 1-4 Soil temperature at Noah defined layers

27 subflow 1 Subsurface flow component, mm per dt
28 swe 1 Snow water equivalent, mm
29 tem 1 Air temperature forcing, C
30 twe 1 Total water equivalent, mm
31 uzfwc 1 Upper zone free water content, mm
32 uztwc 1 Upper zone tension water content, mm

7



Figure 2.1: West Gulf River Forecast Center (WGRFC) Area

Although the data covers all the US, this system provides the spatial visual-

ization only in the West Gulf River Forecast Center (WGRFC) area for better and

faster rendering result. The WGRFC (see Figure 2.1) includes Texas, Oklahoma,

New Mexico and some part of Arizona, Utah, Colorado, Kansas, Missouri, Arkansas,

and Louisiana. From all 32 variables, this current system focuses only on the soil

moisture (soilm) because this variable is important in monitoring and possibly pre-

dicting the drought condition. Anyway, other variables can be added to the system

later.

2.3.2 Overall Architecture

In order to keep the system simple and not redundant, all five tools in the

HyVAS share the same architecture which covers the database, data-flow, and web-

interface.

2.3.2.1 Database

The data is kept in .mat format which can be read and written by MATLAB.

Thus, this system uses MATLAB as its database. The reason that common relational

8



databases, such as MySQL, MS SQL, and Oracle, are not chosen is that one of the

tools, which is the 3D Trend of Soil Moisture Range Tool, needs to process Region

Connecting Algorithm which can be done faster in MATLAB. Another reason is to

safe time retrieving data from a common database and sending data to MATLAB by

keeping the data in the format ready for MATLAB to process. For other four tools,

a common database can be used but it will cause redundant to the system. To make

the system’s database simple and non-redundant, MATLAB is chosen for this task.

2.3.2.2 Data-Flow

The common technologies used in data flow of all tools are HTML, JavaScript,

Ajax, PHP[5], and MATLAB. The data flow (see Figure 2.2) starts when the web-

application receives input data from the user. It sends a request for data via Ajax

to a PHP page which triggers the MATLAB using a system command. After that,

the MATLAB reads the requested data and writes it to a CSV file. Then, the PHP

page reads the CSV file and sends the requested data back to the web-interface.

Finally, the web-interface keeps that data locally for graphic visualization rendering

by JavaScript.

2.3.2.3 Web-Interface

The five tools in the HyVAS can also be categorized based on the graphic

rendering modes into 2D and 3D Graphic Visualization Tools.

1. 2D Graphic Visualization Tools

The tools in this category are Average Soil Moisture Map Tool, Full Time Series

Tool, and Time Series Comparison Tool. The visualization part of these tools,

which are 2D map and graph, are rendered by HTML5-Canvas elements ([6],

[7]). For rendering a map, each HRAP cell is represented by a colored rectangle.
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Figure 2.2: Data-flow of the HyVAS

The color map is displayed beside the map to provide interpretation of the map.

In a graph rendering, two axis and title are drawn first. Then, the temporal

data is sorted chronologically and plotted on the pre-rendered graph. These

tools have the same set of visualization-aid functions as following,

• Zoom: The map/graph can be zoomed in and out in eight levels. JavaScript

is used to re-render the map/graph to the bigger or smaller size while the

display size is fixed. When a graph is zoomed, its two axis are also ex-

panded and shrunk accordingly.

• Pan: When the map/graph is zoomed in, it can be pan to any area of

interest but limited within the WGRFC area. When the map/graph is

zoomed-in, the rendered map/graph size is bigger than the display size.

Then, the display box can be moved around by JavaScript to show different

parts of the map/graph. When a graph is panned, its two axes are also

move accordingly. To move the display box, the JavaScript changes the

10



Figure 2.3: Pan by changing top and left margin

left and top margin of the display box as in Figure 2.3. This move process

is done without graphic re-rendering so it is fast and smooth.

• Information Tool-tip: If this function is enabled, the relevant information

of that map point or time series will be displayed on a tool-tip. Because

the data shown in the tool-tip has already been computed to show in the

Information box, JavaScript only activates the tool-tip to appear on the

screen.

2. 3D Graphic Visualization Tools

The tools in this category are 4-Layer-Soil Moisture Maps Tool, and 3D Soil

Moisture Trend Tool. These tools’ visualization parts, which are 3D maps and

stacks of four maps, are rendered by a WebGL library called three.js ([8], [9]). In

a map rendering, each HRAP cell is represented by four vertices and a rectangle

face. First, four vertices are put onto 3D coordinate. Then, the rectangle face

with a color that represented that cell value range is put on those vertices. The

common set of visualization-aid functions are as following,
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• Zoom: The map can be zoomed in and out in by the zoom-in and zoom-

out buttons, and also by dragging mouse up or down. JavaScript is used

to move the 3D map closer/further to the user so that it appears big-

ger/smaller. Because re-rendering is not required, this function is very

efficient and smooth.

• Rotate: The map can be rotated in all three axis by six buttons (two

buttons for each axis) and also by dragging mouse. JavaScript is used to

control the 3D map rotation. Also, no re-rendering is needed.

• Area Selection: This allows users to select the area of their interest. Only

the selected area will be visualized. This function helps reducing the data

retrieving time and the graphic rendering time when user is interested in

some specific area.

2.3.3 Average Soil Moisture Map Tool

The purpose of this tool is spatially visualizing average soil moisture value in

the WGRFC area by coloring each geographical position (HRAP cell) based on its

soil moisture value. The range of soil moisture value and its color is displayed in

Figure 2.4. For example, if the soil moisture value at HRAP cell (100,100) is 0.2315,

the color of that cell is bright yellow. The average soil moisture value is calculated

from

soilm =

4∑
i=1

soilmi × depthi
4∑

i=1

depthi

, (2.7)

where soilm is the average soil moisture value, soilmi is the soil moisture at level i,

and depthi is the depth (cm.) of that soil layer (see Table 2.2). This tool helps users

compare and find trend of soil moisture between regions of the WGRFC area.
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Table 2.2: Depth of soil at each layer

Layer Depth (cm.)
1 0 - 10
2 10 - 40
3 40 - 100
4 100 - 200

Figure 2.4: Ranges of soil moisture value and their represented color

Figure 2.5: Average Soil Moisture Map of January 2, 1979

13



To use this tool, the user chooses the date of interest in the Step 1 box (Figure

2.5). Then, the colored average soil moisture map is displayed at the center of the

web-application. After that, the user can use visualization-aid tools in the Tools box

to enable information tool-tip, zoom in, zoom out, pan, and view full map as described

in the Web-Interface section. To provide the numerical information and help the user

easily pinpoint any location of interest, when the mouse moves over any point in the

map, the geographic coordinate, the HRAP coordinate, and the soil moisture value

of that point is shown in the Map Information box. In addition, when the user’s only

interested in some specific ranges of value, the ranges can be chosen or discarded by

checking or unchecking color map checked boxes in the Step 2 box (Figure 2.5).

2.3.4 4-Layer Soil Moisture Maps Tool

This tool is for spatially visualizing all four layers of soil moisture value. Four

maps are rendered at the same time. They are stacked on top of the other based on

the order of layer. The soilm1 map is on top, then the soilm2 map and so on. The

bottom one is the soilm4 map. The user needs to choose one map to visualize at a

time. The benefit is that when the user wants to change to other layer, it can be

done easily without re-retrieving data and re-rendering map. This tool helps users

compare and find trend of soil moisture between regions of the WGRFC area and

also between layers.

The usage starts in the same process as the Average Soil Moisture Map Tool

by choosing the date of interest. Then, four colored maps representing four layers of

soil are displayed in transparent at the center of the web-application. The user can

choose the layer to visualize by clicking on that layer. As a result, that chosen layer

map will become a solid colored map and the others will be disappeared. After that,

the user can use visualization-aid tools at the bottom left of the maps to rotate in
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Figure 2.6: 4-Layer of Soil Moisture Maps on January 2, 1979

X, Y, or Z axis, zoom in, zoom out, re-select visualized layer, and re-select the area

of interest. This tool also provides the ability to use mouse dragging to zoom and

rotate the maps. In addition, when the user can choose or discard any range of soil

moisture value by checking or unchecking color map checked boxes in the Step 2 box

(Figure 2.6).

2.3.5 3D Trend of Soil Moisture Range Tool

The motivation of this tool is for analyzing and visualizing the trend or rela-

tionship of a specific soil moisture range between layers. The maps are also stacked

in the same manner as in the 4-Layer of Soil Moisture Maps Tool but, in this tool,

only one range of soil moisture is displayed at a time. This tool helps users compare

and find trend of soil moisture between layers.

To use this tool, the user needs to choose the date and the soil moisture range of

interest. Then, four colored maps representing four layers of soil are displayed at the
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Figure 2.7: 3D Trend of the 0.10 - 0.15 Soil Moisture on January 2, 1979

center of the web-application but these maps show only one color that representing

the selected range (See Figure 2.7). The available visualization-aid tools are the

same as those in the 4-Layer Soil Moisture Maps Tool.

Region Connecting Algorithm

In order to visualize the relationship or trend of a range of soil moisture value

between adjacent layers, rectangle sides are put to connect the top layer edges to the

bottom layer edges. This process creates a prism-like object which two bases (regions)

are not required to have the same shape or area. See example in Figure 2.8.

The region connecting algorithm (in Table 2.3) works as following,

1. First, regions must be extracted from each layer.

• The cells that have value out of the selected range are not considered so

that the 3D map is not too busy and is easy to understand.
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Figure 2.8: Example of connected pentagon region to octagon region

• Region label is assigned to each cell. The cells in the same region have the

same number. This labeling process helps the algorithm to later identify

which pair of regions are overlapped to each other.

• To reduce the processing and rendering time, some small regions which

size is less than 25 cells, are discarded.

2. Then, for every pair of connected layer, connect the regions from the top layer

to the bottom.

• Find top and bottom regions that are overlap to each other more than 30%

of the smaller region. For example, the top layer region has 100 cells and

the bottom has 50 cells. If the overlap size is 15 cells, these two regions

are connected. If the overlap size is less than 15 cells, this connection is

discarded.

• Extract edges from those regions. Edge is represented by a list of points.

Thus, the starting point of each edge must be determined.

• A greedy algorithm is applied to match points from two edges from the

top layer and the bottom layer. Although the greedy algorithm might not

yield the best match, it is fast enough for web-application and the result

is not needed to be optimal.
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• Put a side, i.e. a rectangle face, connecting top layer region to the bottom

layer region. In this step, the connected regions are presented as a prism-

like object.

Table 2.3: The Summarized Region Connecting Algorithm

For each soil moisture layer (4 layers) {
Cut out the HRAP cells that are out of the user’s specified range
Put the adjacent within-range-cells to the same region
Assign a number to each region
Drop regions that have less than 25 cells

}
For each pair of connected layers (3 pairs) {

For each region on the top layer {
Find overlap regions in the bottom layer
For each overlapping region {

Extract edge cells of those regions from both layers
Determine a starting cell in both layers
Use greedy algorithm to match top layer’s edges to the bottom
Put a rectangle face to connect the top to the bottom layer

}
}

}

2.3.6 Full Time Series Tool

The purpose of this tool is to temporally visualize the average soil moisture value

for up to five specific HRAP cells at a time. This tool retrieves the chronologically

sorted 30 years-data, and plot a time series. This should help users visualize and

find the monthly/seasonal/annual trend hidden in the historical data. In addition, it

helps visualize some statistic properties, such as mean and variant of the data at the

specified HRAP cell.
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Figure 2.9: Full Time Series Visualization Tool

The usage of this tool is a bit complicate because of many location selection

methods. In the Step 1 box (Figure 2.9), there are five ways to choose an HRAP cell

as following,

• By clicking directly on the input map

• By specifying a geographic coordinate (latitude and longitude)

• By specifying an HRAP coordinate (X-axis and Y-axis position)

• By selecting a city name from the database

• By using a Google API called Geolocation to get the user’s current geographic

coordinate

After choosing locations, the mini-map and the coordinate in both systems are

shown in the Step 2 box (Figure 2.9) to summarize the information of the selected

locations. The user can also remove the selected locations by clicking the bin button.

If the total number of selected locations is less than five, more location(s) can be

added. The available visualization-aid tools are enabling information tool-tip, zoom-
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Figure 2.10: Time Series Comparison Tool

ing in, zooming out, panning, and viewing full graph. When the information tool-tip

function is enabled, a horizontal line and a vertical line, which are crossing at the

mouse pointer, appear on the graph to help users better view the graph information.

Furthermore, when the mouse moves over any point in the graph, the numerical in-

formation, i.e. the average soil moisture value, date and year, are provided in the

Time Series Information box.

2.3.7 Time Series Comparison Tool

This tool is for visually comparing the similarity of two average soil moisture

time series/sub-sequences. These two time series/sub-sequences can be from the same

or different HRAP cell and date.

The usage of this tool is almost the same as that of the Full Time Series Tool.

In the Step 1 box (Figure 2.10), besides the five location selection methods, the

start/end date selection are provided for users to cut a sub-sequence from the 30
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years-time series. The coordinate in both systems and the chosen period are displayed

in the Step 2 box (Figure 2.10) to summarize the information about the displayed

time series/sub-sequences. The user can also remove the selected locations by clicking

the bin button and re-select a new one. This tool provides two sets of visualization-

aid tools for each time series/sub-sequence. The visualization-aid tools are the same

as those in the Full Time Series Tool. Each time series/sub-sequence can be zoomed

in, zoomed out and move on top of the other for similarity comparison.

2.4 Future Work

The Hydrological Visualization and Analysis System is still in infant stage.

There are lots of adjustments and expansions can be applied. Other 32 variables will

be added. Area scope of this system can be expanded to view wider area or shrank

to small level like state, county, or city. More tools and visualization-aid functions

can also be added to serve both hydrologists and local users. It can also be modified

for locally use in any organization. The only current limitation is that this system

needs to be run on Google Chrome because it needs WebGL in 3D rendering. This

limitation is hoped to be removed soon in a new version of browsers or by applying

plug-ins to browsers.

2.5 Conclusion

In this work, we developed a web-based system that provides spatial and tem-

poral visualization tools. It’s aimed to help the hydrological community to visualize

the new data set, OHD-NOAA data set, without a complicated process of program

installation or any OS dependence. This system has many advantages over other

works. It provides both spatial and temporal visualizations. It’s environment in-
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dependent. It’s more flexible to add more functions and data set than commercial

programs. Moreover, it provides both 2D and 3D visualization.
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CHAPTER 3

DROUGHT RELATED FEATURE SELECTION BASED ON SECTIONAL

CORRELATION MEASUREMENT

3.1 Introduction

The purposes of this work are 1) to propose a new correlation measurement

algorithm based on regression called sectional correlation measurement, and 2) to

find the best subset of variables which are related to the drought condition by using

the sectional correlation measurement as the objective function. The second purpose

also provides a contribution to the hydrological community. The hydrologists can

focus only on the selected variables when they predict the future drought condition.

Usually, the correlation is measured between all pairs of two random variables.

In some cases, the correlation happens only in some part/subset of the data. Many

correlation measuring methods such as the Pearson correlation coefficient, Spearman’s

Rank, correlation coefficient, Jackknife correlation coefficient, and Semi-Partial Cor-

relation, cannot find this type of correlation. For example, the Pearson correlation

coefficient cannot find the partial correlation between time series A and B and also

between time series A and C in Figure 3.1.

In time series data, correlation and similarity measurement can be seen as the

same thing because their goal is to find if the two compared time series have the same

shape or not. So this sectional correlation can be applied to solve problems in time

series/sub-sequences comparison, and motif discovery.

This rest of the paper is organized into 4 sections. In Section 2, we introduce the

data set used in the experiment and the problem description in Section 3. Section 3
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Figure 3.1: Partial time series correlation example, (a) Time series-A, (b) Time
series-B, (c) Time series-C and ρA,B = 0.0991 and ρA,C = -0.0574

summarizes three current problems which motivate the proposed correlation method

and the related works in each problem. Then in Section 4, we describe the sectional

correlation algorithm and also how to apply it to the feature selection. Section 5

provides the experimental results. The final section concludes this paper.

3.2 The OHD-NOAA Data Set

The data set used in this work is the hydrological data set from the Office of

Hydrologic Development in the National Oceanic and Atmospheric Administration.

This data set has 32 variables in high spatial resolution (4×4 km2. per cell) and also

in high temporal resolution (every 6 hours from January 2, 1979 to December 31,

2008). This data coverage is all the states in the US except Alaska and Hawaii.

Although the data covers all the US, this work focus only on the 10×10 cell2 area

around Arlington, Texas. We also use lower temporal resolution, which is reduced

from 6-hours to daily, to reduce the computational cost. Another reason is that the

HyVAS also uses this resolution to reduce data transferring and graphic rendering

cost. Thus, in order to keep the system’s consistency and just in case that this

algorithm might be integrated to the HyVAS, this algorithm use the same resolution

as the HyVAS.
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Table 3.1: 32 Variables of the OHD-NOAA’s hydrological data set

Variable Layer Description
1 accmax 1 Maximum water equivalent since snow began to accu-

mulate, mm
2 adimpc 1 Additional impervious area water content, mm
3 evap 1 Actual evapotranspiration, mm per dt
4 liqw 1 Liquid water storage, mm
5 lzfpc 1 Lower zone primary free water content, mm
6 lzfsc 1 Lower zone supplemental water content, mm
7 lztwc 1 Lower zone tension water content, mm
8 pevap 1 Potential evapotranspiration, mm per dt
9 rain 1 Rainfall forcing, mm per dt
10 rmlt 1 Rain plus melt dept, mm
11 runoff 1 Surface flow component, mm per dt

12-15 smliq 1-4 Unfrozen volumetric soil moisture at Noah defined lay-
ers

16 sndpt 1 Snow depth, mm
17 snow 1 Snowfall forcing, mm per dt
18 snowfrac 1 Snow cover fraction, dimensionless

19-22 soilm 1-4 Total volumetric soil moisture at Noah defined layers
23-26 soilt 1-4 Soil temperature at Noah defined layers

27 subflow 1 Subsurface flow component, mm per dt
28 swe 1 Snow water equivalent, mm
29 tem 1 Air temperature forcing, C
30 twe 1 Total water equivalent, mm
31 uzfwc 1 Upper zone free water content, mm
32 uztwc 1 Upper zone tension water content, mm

3.3 Current Problems

In this section, we illustrate three problems and their related works in correla-

tion measurement and time series similarity measurement.

3.3.1 Correlation of a Random Variable to a Section of the Other Random Variable

We found that some time series in hydrology like the daily rainfall or snowfall

time series, which we call event-time series in the rest of this paper, have unique

characteristics as following,
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Figure 3.2: Examples of event-time series (a) Rain, and (b) Snow

1. Most of the data are zeros when the event does not occur, i.e. no rain or snow.

Mode(TSi) = 0, ∀i ∈ {1...length of the time series} (3.1)

where TS is a time series

2. All values are non-negative because when event occurs, the value always more

than zero. Thus the minimum value is zero.

Min(TSi) = 0, ∀i ∈ {1...length of the time series} (3.2)

where TS is a time series

3. Each event occurs only in a short period of time comparing to the length of the

time series. Each event starts when the value starts to be above zero and ends

when the value becomes zero again. For example, see Figure 3.2, the average

length of rainfall events are 3.11 days and the average length of snowfall events

are 1.78 days.

This unique shape is worth being emphasized because one third of all variables

are rainfall-like-time series. Besides, at the time that an event does not occur, the

impact from other variables can be seen easier. From Figure 3.3(a) and 3.3(b), it
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Figure 3.3: Example of partial time series correlation (a) Change of soil moisture,
and (b) Evapotranspiration

can be seen that the bottom part of the change of soil moisture time series, the below

0 part, has a periodic pattern like the evapotranspiration time series. The Pearson

correlation between these 2 time series is -0.0046, so it cannot capture this correlation

because the impact from the event-time series is much higher.

3.3.2 Noise in Time Series or Sub-sequence Deters the Normalization Result

Also, the two most familiar similarity measurement methods are Euclidean

distance-based and Dynamic Time Warping-based. The latter is more robust be-

cause it can find the best match (lowest distance between the 2 random variables)

by repeating some data points. All pairs of data points in the compared time series

or sub-sequences are considered. Before the similarity measurement can be done,

two time series or sub-sequences must be normalized. Problem will occur if one of

them has highly distant noises. These noises alter the normalization results and make

these time series or sub sequences slightly difference in every pair of data points. As

a result, both similarity measurement, Euclidean distance and DTW, appear to have
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Figure 3.4: Example of the noise effect to the similarity measurement (a) The
original time series, and (b) The time series after removing noise

high value which means these compared time series are not similar even though, these

two without noises are totally similar.

To illustrate the noise problem above, we provide an example in Figure 3.4.

The first point in the original time series can be considered as noise because it appears

to be out of range from other data points. Then, another time series, as shown in

Figure 3.4(b), is created by copying the original time series but the first point has

the same value as the second point. The mean and the standard deviation of these

time series are slightly different as shown in Table 3.2. After normalized both time

series, the similarity between these two time series is measured. The result distance

is quite high (9.8865) though, without noise, these time series appears to be similar.

Table 3.2: Mean and standard deviation comparison

Time Series Mean Std.
With noise 0.2898 0.0312

Without noise 0.2901 0.0298
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Figure 3.5: Example of the Spearman correlation and non-linear relationship

The Pearson correlation coefficient is the most popular correlation measurement

because it has low computational cost and it is easy to understand. Obviously because

of is simplicity, it can only detect the linear relationship between two variables. Also,

it uses all data points so it cannot detect highly distant noise.

Another widely used correlation is the Spearman’s rank correlation coefficient

[10]. This method is not limited only to the linear relationship like the Pearson

correlation coefficient. (See Figure ??) In the highly distant noise case, the Spearman

correlation coefficient can detect the correlation better than the Pearson because it

uses rank of data instead of real value. Although it seems better than the Pearson,

it cannot determine which data point is the highly distant noise.

The other widely used rank correlation is the Kendall rank correlation coefficient

(or Kendall’s tau coefficient) [11]. This method can detect the sectional correlation

because it measures the similarity of the data ordering. Unfortunately, it cannot

detect the range of section. Also, it cannot find the highly distant noise.
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The Jackknife correlation [12] seems to solve the highly distant noise by repeat-

ing the calculation of the correlation coefficient, each time removing one value, then

averaging the results. This algorithm is only resistant to one highly distant noise.

Another drawback is its high computational cost.

Another interesting correlation coefficient is the semi-partial correlation (also

called part correlation) [13]. This correlation measurement is used to find the corre-

lation between a variable and the other variable after the effect of the third has been

removed. In the other word, we also focus on the correlation between two variables

but one of them has an effect from the third variable which cannot be controlled in

the experiment. For example, for students in a specific high school as an experimental

group, we want to find the correlation between sex and the choice of college. The

choice of college might also be affected by the students’ SAT score. Thus, the SAT

score variable must be removed from the choice of college variable before correlation

calculation. This method is almost like what we need to find but the difference is that

we focus on finding if the SAT score variable is partially (or sectional) correlated to

the choice of college or not. As such, this correlation measurement cannot be applied

to our work.

In summarize, we need another correlation algorithm that

• Able to find a sectional correlation, i.e. a correlation between a time series and

a section of other time series

• Able to remove noise(s) from a time series for better result in similarity mea-

surement

3.3.3 Drought Related Feature Selection

In this work, we also focus on how to find the best subset of variables that,

in combination, can determine how the drought condition change in each day with
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minimized error. We cannot simply choose the set of variables based on its sectional

correlation score. Some variables are correlated to the the same range of target time

series.

Feature selection methods can be categorized into three groups, filter methods,

wrapper methods, and embedded methods. In filter methods, each feature similarity

or related score is computed before the learning process [14], [15]. Two popular filter

scores are correlation [16], [17] and mutual information [18]. The drawback of this

method is that it possible that some uncorrelated variables with help from other

variable can be correlated to the target variable. Another disadvantage is it tends to

choose redundant variables, i.e. it selects the two or more variables that are correlated

to each other.

In wrapper methods [19], [20], the algorithm searches for possible subset first.

Then each subset of features is evaluated based on the prediction accuracy. Even

though the prediction performance is usually better than that of the filter methods,

the major disadvantage of these methods is the computational cost is usually high.

Another reason this method is not used in our work is that it is prone to over-fitting.

The last one is the embedded methods [21], [22]. In these methods, features are

searched and selected in the process of model learning. Each model is then evaluated

in cross-validation step. The model (feature subset and weight) with best evaluation

score is then chosen. Our chosen method falls into this type. The reasons we choose

this are 1) it is less prone to over-fitting, 2) it is less computational expensive than

wrapper methods, and 3) we can applied our proposed sectional correlation to this

method as the objective function, i.e. the function for evaluating how good a model

is.

Mostly, feature selection methods are based on greedy algorithm which can be

categorized into forward or backward. The difference is the number of features at
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the start of the process. The forward feature selection starts with an empty set of

feature and one feature is added to the subset in each round. On the other hand, the

backward feature selection starts with a full set of features and one feature is removed

in each round, for example the SVM-RFE (Support Vector Machine based Recursive

Feature Elimination Method) [23].

Branch and bound method [24] is also used to search for the best feature sub-

set. This method guarantees the globally optimal result if the objective function or

criterion satisfies monotonicity. Because of the monotonicity, the algorithm can re-

ject some sub-optimal subsets without any actually evaluation. Unfortunately, our

objective function is not monotonic which makes the results to be not optimal. Also,

if the monotonic property is not hold, this algorithm still can be used but it has more

computational cost than the greedy algorithm. Thus, we did not apply this method

to our algorithm.

We choose the forward feature selection method because it has an advantage

over the other in terms of computational cost. In backward feature selection, the

larger size of subset must be processed. On the other hand, the forward feature

selection starts with smaller size of subset.

In summarize, our method is the forward-embedded feature selection method.

The objective function is proposed sectional correlation score.

3.4 Methodology

3.4.1 Sectional Correlation Measurement

The purpose is to find the correlation between two time series. Most of the

correlation calculations reflect two-way relationship between the two compared time

series while this proposed method reflects one-way relationship so we need to define
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Figure 3.6: Example of target and input time series used in the Methodology
section (a) The change of soil moisture time series, and (b) The evapotranspiration

time series

the two compared times series as the input time series and the target time series. The

algorithm matches the input time series to a part/range of the target time series that

causes the correlation coefficient to be the highest value. This algorithm then returns

the Pearson correlation coefficient of that matched parts along with the upper and

lower bound of the part/range of the target time series. We provide an example along

with the algorithm description for better understanding of how this works.

The change of soil moisture time series, as shown in Figure 3.6(a), is used as

the example target time series. This is created using

Ci = SMi − SMi−1, (3.3)

where C is the change of soil moisture time series, SM is the soil moisture time series,

and i = [1 ... length of the time series]

And the input time series is the evapotranspiration time series as shown in Figure

3.6(b). Visually, the evapotranspiration time series seems to be correlated to the

bottom part of the change of soil moisture time series. This proposed algorithm will
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be used to find exact range and the correlation coefficient between that part of the

target time series and the input time series. The algorithm processes as the following

steps,

1. Two types of time series must be treated different based on its relevance.

• For event time series, such as rainfall and snowfall, only the data points

that have value more than zeros will be considered.

considered index = iTSi > 0, ∀i ∈ {1...length of the time series} (3.4)

where iTS is the input time series

• For non-event time series, all data points should be considered.

considered index = ∀i ∈ {1...length of the time series} (3.5)

The Evapotranspiration time series is a non-event time series so all data points

will be used.

2. The Support Vector Regression is used to match the input time series to the

target time series. The SVR training data is the input time series and the

SVR target data is the target time series. Then, the SVR tries to predict the

target time series using the input time series. Thus, the the prediction result

can determine the range of the target time series that maximize the correlation

coefficient.

3. The upper and lower bound of the correlated part of the target time series are

calculated by

upper bound = max(predition value) (3.6)

lower bound = min(predition value) (3.7)

The result range of the change of soil moisture value is [-0.0020 -0.000022].
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Figure 3.7: The result from Support Vector Regression (a) The predict time series,
(b) The correlated input time series, and (c) The correlated target time series

4. Calculate the section scale by

Section Scale =
upper bound− lower bound

max(target value)−min(target value)
, (3.8)

5. Cut out some data points in the target time series that have value out of the

correlated part.

correlated index = (TSi ≥ lower bound) && (tTSi ≤ upper bound) (3.9)
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where ∀ i ∈ considered index from equation 3.4 or 3.5

and tTS is the target time series

correlated iTS = iTSi, ∀i ∈ correlated index (3.10)

where iTS is the input time series

correlated tTS = tTSi, ∀i ∈ correlated index (3.11)

where tTS is the target time series The correlation between evapotranspiration

and change of soil moisture time series can be seen in Figure 3.7(b) and 3.7(c)

respectively.

6. Calculate the Pearson correlation score from those data point.

ρPCC−Section =
COV (X, Y )

σXσY
, (3.12)

where where ρ is the Pearson Coefficient Coefficient, X = correlated iTS and

Y = correlated tTS

7. Calculate the sectional correlation by

SectionalCorrelation = ρSection × Section Scale, (3.13)

8. Finally, the algorithm returns the Sectional Correlation, upper bound, and lower

bound.

3.4.2 Feature Selection: Using Partial Correlation as the Objective Function

The purpose of this algorithm is to find a subset of variables that related to the

target variables. The key idea is using the forward feature selection method which

objective function is the sectional correlation score to find the set of features/variables

which can be combined to match the target variable. We also use 10-fold cross-

validation to avoid over-fitting problem. The algorithm can be breakdown into n

steps as following,
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1. Split the data into training and testing data

2. Split the training data into 10 parts. Use the first to ninth parts for training

and the tenth part for validating

3. Calculate sectional correlation score of each variable to the target variable. Keep

the variable with the highest score to the pool of selected variables.

4. Repeat the step 3 but add all the previous selected variables to the sectional

correlation calculation. Stop the repetition when the sectional correlation score

stops increasing.

5. Calculate the sectional correlation score of the chosen variables to the target

variable using the validating data.

6. Repeat the step 3-5 nine times using the ninth, eighth, seventh, and so on for

validating and the rest for training.

7. Choose the subset of variables that has the highest sectional correlation score.

8. Test the selected subset by using Support Vector Machine to regress the step 1

training data of the chosen variables to the target variable.

9. Use the regression model to construct a target variable from the step 1 testing

data of the chosen variables.

10. Calculate the Root Mean Square Error (RMSE) between the regression result

and the testing data.

3.5 Experimental Results

3.5.1 Sectional Correlation of 32 OHD-NOAA Variables to Drought Indices

The proposed algorithm is applied to find how much the 32 OHD-NOAA vari-

ables correlated to the change of other 6 variables, average soil moisture (layer 1-4)

and five drought indices, which are the soil moisture anomaly (SMA), Standard Pre-
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cipitation Index (SPI) 3, 6, 9, and 12 months. The calculation of the SMA and SPI

can be found in [25] and [26] respectively. The algorithm tells 1) sectional correla-

tion score, 2) the section, i.e. range of the target variable, that is the most similar

to the variable, 3) the Pearson correlation coefficient between the the compare vari-

ables to the detected section of the target variable. We present the result for all

the OHD-NOAA variables sorted from the highest sectional correlation score to the

lowest.

As in Table 3.3 and 3.4, the result orders of variables are not the same. The

reason behinds this is that non-event typed data are more similar to the section [-

0.0011, 0] which is a small range compared to the range of the change of soil moisture.

If the Pearson correlation coefficient between this section of the soil moisture change

and the variable s really high, such as evap, pevap, and tem, the sectional correlation

will be high. The result shows that this algorithm can solve the sectional correlation

problem by finding that evap has high correlation to the [-0.0020, 0.000019] section

of soil moisture change.

The results below obviously show that the increasing of all the drought indices

is highly correlated to liqw, rain, rmlt, runoff, subflow, and uzfwc. On the other hand,

the variables that related to the decreasing of drought indices are not obvious.
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Table 3.3: The sectional correlation between Averaged Soil Moisture Change and
the 32 variables in descending order

Variable Sectional Corr. Section Pearson Corr.
(Section)

rain 0.616600 -0.000787 to 0.041529 0.704512
uzfwc 0.453488 -0.000666 to 0.033339 0.644780
rmlt 0.348147 -0.000714 to 0.033507 0.491885

subflow 0.254435 -0.000842 to 0.019655 0.600197
runoff 0.034703 -0.000625 to 0.015308 0.105308
evap -0.030911 -0.001992 to -0.000018 -0.757297

pevap -0.012105 -0.001298 to -0.000091 -0.484697
soilt1 -0.006736 -0.001066 to -0.000008 -0.307758
soilt3 -0.006704 -0.001016 to 0.000139 -0.280572
lzfpc -0.006499 -0.001327 to 0.000018 -0.233539
soilt2 -0.006337 -0.001043 to -0.000087 -0.320498
soilt4 -0.004883 -0.001013 to 0.001733 -0.085967
soilm1 0.004316 -0.001423 to 0.000149 0.132765
smliq4 0.004194 -0.001057 to 0.002241 0.061487
soilm4 0.004194 -0.001057 to 0.002241 0.061487
smliq1 0.003925 -0.001406 to 0.000134 0.123276
snow 0.003280 -0.000601 to 0.006008 0.023991
liqw 0.003177 -0.000622 to 0.007505 0.018900

accmax 0.003115 -0.000625 to 0.002814 0.043794
smliq3 -0.002744 -0.001067 to 0.000019 -0.122137
soilm3 -0.002710 -0.001061 to 0.000023 -0.120958

tem -0.002525 -0.001068 to 0.005706 -0.018023
snowfrac 0.002246 -0.000628 to 0.000131 0.143049

swe 0.002180 -0.000612 to 0.003630 0.024844
twe 0.002158 -0.000604 to 0.003757 0.023925

sndpt 0.001915 -0.000606 to 0.002384 0.030961
uztwc 0.001606 -0.001050 to -0.000359 0.112392
lztwc -0.000991 -0.000965 to -0.000300 -0.071986
lzfsc -0.000480 -0.000987 to -0.000602 -0.060224

adimpc 0.000256 -0.000719 to -0.000516 0.060970
soilm2 -0.000227 -0.000869 to -0.000296 -0.019176
smliq2 -0.000211 -0.000861 to -0.000290 -0.017890
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Table 3.4: The Pearson correlation coefficient between Averaged Soil Moisture
Change and the 32 variables in descending order

Variable Pearson Corr.
rain 0.7202

uzfwc 0.6340
subflow 0.5784

rmlt 0.5205
smliq1 0.3809
soilm1 0.3806
lzfsc 0.3232

uztwc 0.3196
runoff 0.1199
pevap -0.1190
tem -0.1035

smliq2 0.0903
soilm2 0.0902
soilt1 -0.0844

adimpc 0.0784
soilt4 -0.0778
soilt3 -0.0775
soilt2 -0.0753

accmax 0.0377
liqw 0.0325
snow 0.0324

snowfrac 0.0308
lzfpc -0.0259
lztwc -0.0247
twe 0.0239
swe 0.0232

sndpt 0.0199
soilm3 -0.0170
smliq3 -0.0170
Smliq4 -0.0168
soilm4 -0.0168
evap -0.0046
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Table 3.5: The sectional correlation between Soil Moisture Anomaly (SMA) Change
and the 32 variables in descending order

Variable Sectional Corr. Section Pearson Corr.
(Section)

rain 0.191556 -0.007169 to 0.320463 0.572737
rmlt 0.123601 -0.006195 to 0.273381 0.433080
uzfwc 0.077683 -0.005509 to 0.189988 0.389252

subflow 0.028043 -0.006572 to 0.090444 0.283157
runoff 0.026271 -0.005188 to 0.204315 0.122837
evap -0.004374 -0.013031 to -0.000597 -0.344606

pevap -0.002191 -0.008989 to -0.000752 -0.260532
soilt1 -0.001673 -0.007643 to -0.000855 -0.241447
liqw 0.001430 -0.005206 to 0.037460 0.032820
soilt2 -0.001377 -0.007718 to -0.001325 -0.211081
tem -0.001376 -0.007873 to 0.000311 -0.164659

soilm1 0.001119 -0.010015 to 0.003034 0.084015
smliq1 0.001112 -0.009928 to 0.003181 0.083113
soilt3 -0.000994 -0.007342 to -0.001537 -0.167769
snow 0.000959 -0.004599 to 0.025468 0.031257
soilt4 -0.000898 -0.007498 to -0.001612 -0.149449

accmax 0.000660 -0.004679 to 0.009958 0.044139
lzfsc 0.000373 -0.005596 to 0.008065 0.026729

sndpt 0.000332 -0.004686 to 0.009947 0.022233
smliq4 -0.000216 -0.006832 to -0.003934 -0.072845
soilm4 -0.000216 -0.006832 to -0.003934 -0.072845
lzfpc -0.000206 -0.007885 to -0.003579 -0.046885

soilm3 -0.000199 -0.006966 to -0.003954 -0.064731
lztwc -0.000198 -0.006609 to -0.003987 -0.074149
twe 0.000191 -0.005039 to 0.016850 0.008568

smliq3 -0.000189 -0.006925 to -0.003929 -0.061691
swe 0.000163 -0.004618 to 0.014894 0.008172

snowfrac 0.000148 -0.004860 to -0.000432 0.032757
uztwc 0.000116 -0.009689 to -0.002265 0.015309
smliq2 -0.000081 -0.006056 to -0.004684 -0.058112
adimpc -0.000061 -0.005907 to -0.004533 -0.043200
soilm2 -0.000054 -0.005934 to -0.004727 -0.043443
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Table 3.6: The sectional correlation between Standard Precipitation Index-3 Months
(SPI3) Change and the 32 variables in descending order

Variable Sectional Corr. Section Pearson Corr.
(Section)

smliq1 0.001184 -0.044666 to 0.025251 0.206464
soilm1 0.001167 -0.043389 to 0.026321 0.204064
lzfsc -0.000503 -0.113098 to 0.010251 -0.049713
evap -0.000445 -0.024685 to 0.018285 -0.126130
uztwc 0.000390 -0.012467 to 0.020024 0.146311
soilm2 0.000318 -0.019462 to 0.016714 0.107177
rain 0.000242 -0.084454 to -0.000189 0.035064

adimpc 0.000230 -0.011558 to 0.017245 0.097476
smliq2 0.000216 -0.017765 to 0.014513 0.081430
rmlt 0.000142 -0.079751 to 0.006073 0.020140

subflow -0.000106 -0.133745 to 0.004728 -0.009305
uzfwc -0.000091 -0.075682 to 0.007675 -0.013274

accmax 0.000082 0.005131 to 0.049675 0.022318
tem -0.000074 -0.017383 to 0.010009 -0.032791
snow 0.000059 -0.007034 to 0.007596 0.049052
twe 0.000047 -0.000279 to 0.005690 0.096248
swe 0.000045 -0.004708 to 0.007787 0.043823

sndpt -0.000026 -0.007037 to 0.007341 -0.022338
runoff -0.000022 0.000275 to 0.001858 -0.169761
pevap -0.000022 -0.002480 to 0.005464 -0.033393

snowfrac 0.000020 -0.001599 to 0.015525 0.014075
liqw 0.000017 -0.004915 to 0.007261 0.017280
soilt2 -0.000012 -0.009930 to 0.007750 -0.008373
lzfpc -0.000008 -0.008252 to 0.004877 -0.007452
soilt4 -0.000008 -0.010186 to 0.007980 -0.005101
lztwc 0.000007 -0.006417 to 0.008814 0.005597

smliq3 0.000006 -0.007864 to 0.009230 0.003967
soilt3 -0.000005 -0.009641 to 0.006205 -0.003666
soilm3 0.000005 -0.009017 to 0.008750 0.003176
smliq4 0.000004 -0.009125 to 0.008655 0.002699
soilm4 0.000004 -0.009125 to 0.008655 0.002699
soilt1 -0.000001 -0.014970 to 0.009738 -0.000445
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Table 3.7: The sectional correlation between Standard Precipitation Index-6 Months
(SPI6) Change and the 32 variables in descending order

Variable Sectional Corr. Section Pearson Corr.
(Section)

evap -0.000513 -0.014620 to 0.009245 -0.218319
soilm1 0.000403 -0.022067 to 0.011630 0.121586
smliq1 0.000391 -0.021283 to 0.010848 0.123603
soilm2 0.000386 -0.014371 to 0.008279 0.173056
smliq2 0.000385 -0.013256 to 0.008938 0.176402
lzfsc -0.000377 -0.064102 to 0.005038 -0.055385

adimpc 0.000267 -0.009533 to 0.007962 0.155166
rain 0.000201 -0.044527 to -0.000089 0.045963
rmlt 0.000191 -0.041310 to 0.001251 0.045504

smliq3 0.000186 -0.012779 to 0.005653 0.102512
lzfpc -0.000183 -0.013599 to 0.006556 -0.092379

soilm3 0.000183 -0.012494 to 0.005938 0.100863
smliq4 0.000174 -0.011195 to 0.007045 0.096839
soilm4 0.000174 -0.011195 to 0.007045 0.096839
uzfwc -0.000160 -0.042310 to 0.002821 -0.036140

subflow -0.000150 -0.059057 to 0.001465 -0.025130
lztwc 0.000087 -0.006833 to 0.005254 0.072801
runoff -0.000057 -0.004286 to 0.016172 -0.028286
pevap -0.000051 -0.003040 to 0.002864 -0.086958
liqw 0.000041 0.003416 to 0.010921 0.055726
snow -0.000040 -0.008057 to 0.005448 -0.030010
swe 0.000029 0.003404 to 0.013956 0.028013

uztwc -0.000026 -0.006002 to 0.006191 -0.021887
twe 0.000022 -0.000644 to 0.012327 0.016917

sndpt 0.000020 0.003140 to 0.016190 0.015255
soilt3 -0.000014 -0.001544 to 0.000268 -0.080020

snowfrac -0.000008 0.002215 to 0.003589 -0.060510
accmax 0.000008 0.004149 to 0.013910 0.007983

tem -0.000005 -0.003516 to 0.000995 -0.010139
soilt2 -0.000002 -0.003642 to 0.000688 -0.005522
soilt1 -0.000002 -0.002241 to 0.001147 -0.006029
soilt4 -0.000002 -0.001152 to -0.000867 -0.063009
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Table 3.8: The sectional correlation between Standard Precipitation Index-9 Months
(SPI9) Change and the 32 variables in descending order

Variable Sectional Corr. Section Pearson Corr.
(Section)

evap -0.000540 -0.013133 to 0.008252 -0.218330
rain 0.000329 -0.048778 to 0.004502 0.053463
lzfsc -0.000262 -0.028119 to 0.000736 -0.078404

smliq1 0.000231 -0.014764 to 0.007941 0.087838
soilm1 0.000216 -0.014132 to 0.008573 0.082107
smliq2 0.000211 -0.011272 to 0.007639 0.096639
uzfwc -0.000162 -0.025846 to 0.000092 -0.053927

subflow -0.000139 -0.031726 to -0.001210 -0.039273
soilm2 0.000124 -0.008813 to 0.005616 0.074577
rmlt 0.000094 -0.019743 to -0.001050 0.043719

accmax 0.000089 0.004569 to 0.050182 0.016853
liqw 0.000063 0.000775 to 0.013172 0.044202
swe 0.000062 0.004234 to 0.013456 0.057991
twe 0.000059 0.004625 to 0.013530 0.057539

soilm3 0.000055 -0.004962 to 0.001415 0.075150
pevap -0.000055 -0.002755 to 0.003528 -0.075796
smliq4 0.000052 -0.005704 to 0.000660 0.071201
soilm4 0.000052 -0.005704 to 0.000660 0.071201
soilt2 -0.000046 -0.002671 to 0.004510 -0.055272
lztwc 0.000045 -0.003291 to 0.001550 0.080996
sndpt 0.000042 0.002444 to 0.017639 0.024147
runoff -0.000032 -0.002798 to 0.008540 -0.024356
soilt4 -0.000022 -0.001309 to 0.002225 -0.054160
uztwc 0.000019 -0.004118 to 0.003999 0.020577
soilt3 -0.000018 -0.001908 to 0.002776 -0.032909
snow 0.000017 0.000529 to 0.005610 0.029044
soilt1 -0.000017 -0.002203 to 0.004252 -0.022626
tem -0.000015 -0.000630 to 0.000347 -0.130390

adimpc 0.000014 -0.004885 to 0.004383 0.013296
lzfpc -0.000010 -0.004895 to 0.004591 -0.009511

snowfrac 0.000003 0.001413 to 0.006940 0.005426
smliq3 0.000001 -0.003678 to 0.002611 0.001637
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Table 3.9: The sectional correlation between Standard Precipitation Index-12
Months (SPI12) Change and the 32 variables in descending order

Variable Sectional Corr. Section Pearson Corr.
(Section)

smliq1 0.000431 -0.012397 to 0.006616 0.185879
soilm1 0.000420 -0.012450 to 0.006562 0.180795
lzfsc -0.000278 -0.024245 to 0.001519 -0.088522

smliq2 0.000236 -0.009408 to 0.003897 0.145220
soilm2 0.000233 -0.009031 to 0.004275 0.143491
subflow -0.000219 -0.048983 to 0.002044 -0.035137

lzfpc -0.000176 -0.008378 to 0.003599 -0.120168
smliq4 0.000165 -0.007611 to 0.002744 0.130825
soilm4 0.000165 -0.007611 to 0.002744 0.130825
rain 0.000138 -0.035433 to 0.002190 0.030025

smliq3 0.000133 -0.007251 to 0.003153 0.104578
adimpc 0.000133 -0.005523 to 0.003877 0.115462
soilm3 0.000111 -0.006750 to 0.004316 0.082361
evap -0.000106 -0.007073 to 0.004669 -0.073702
rmlt 0.000090 -0.019916 to -0.001438 0.039713

accmax 0.000062 0.002541 to 0.027747 0.020036
soilt1 -0.000061 -0.005380 to 0.001889 -0.068365
tem -0.000057 -0.006178 to 0.001823 -0.058012

soilt2 -0.000050 -0.003191 to 0.001731 -0.083785
uzfwc 0.000045 -0.024914 to -0.001673 0.015909
uztwc 0.000037 -0.003100 to 0.000942 0.074033
soilt3 -0.000029 -0.002057 to 0.000947 -0.079545
soilt4 -0.000023 -0.002243 to 0.001956 -0.045390
runoff -0.000023 -0.000592 to 0.005469 -0.031013
lztwc 0.000020 -0.004023 to 0.001402 0.030734
snow 0.000019 -0.014456 to 0.003948 0.008340
sndpt 0.000017 0.004718 to 0.005980 0.109514
twe 0.000017 0.004442 to 0.005956 0.090287
swe 0.000003 0.004206 to 0.009591 0.005180

pevap -0.000003 -0.002209 to -0.000764 -0.015618
snowfrac 0.000000 0.002802 to 0.003448 0.003679

liqw 0.000000 0.004095 to 0.004129 0.000000
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3.5.2 Feature Selection

In this work, we focus on finding which variables related to change of the drought

indices which are used to determine the drought condition. Thus, the target variables

used in the experiment are the change of drought indices.

The result shows that rain, smliq1 and soilm1 obviously play the key role in

mitigating the drought condition, i.e. it is related to the increase of the drought

index. Evap is the key factor in decrease of most the drought index. Other important

decreasing factors are smliq-n, soilm-n, and soilt-n where n is the layer number from

1 to 4.
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Table 3.10: The selected variables and their weights that related to the Averaged
Soil Moisture Change

Selected Variable Weight
rain 0.9879
evap -0.0438
rmlt -0.0291
swe 0.0162
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Figure 3.8: Soil moisture’s reconstruction result
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Table 3.11: The selected variables and their weights that related to the Soil
Moisture Anomaly (SMA) Change

Selected Variable Weight
rain 0.3364
evap -0.0144

subflow 0.0539
pevap 0.0022
smliq3 -0.2078
smliq4 0.2033
liqw 0.0233
twe 0.0021
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Figure 3.9: Soil moisture anomaly’s reconstruction result
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Table 3.12: The selected variables and their weights that related to the Standard
Precipitation Index-3 Months (SPI3) Change

Selected Variable Weight
smliq1 0.0057

twe 0.0739
lzfsc -0.0034
liqw 0.0212
snow 0.0025

adimpc 0.0013
sndpt -0.0473
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Figure 3.10: SPI-3’s reconstruction result
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Table 3.13: The selected variables and their weights that related to the Standard
Precipitation Index-6 Months (SPI6) Change

Selected Variable Weight
Lzfsc -0.0013
Liqw 0.0095

Smliq1 0.0020
Swe 0.0338
Rmlt 0.0004
Evap -0.0019
Sndpt -0.0232
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Figure 3.11: SPI-6’s reconstruction result
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Table 3.14: The selected variables and their weights that related to the Standard
Precipitation Index-9 Months (SPI9) Change

Selected Variable Weight
Evap -0.0023
Sndpt -0.0028

Subflow 0.0030
Accmax 0.0074
Soilt1 -0.0005
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Figure 3.12: SPI-9’s reconstruction result
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Table 3.15: The selected variables and their weights that related to the Standard
Precipitation Index-12 Months (SPI12) Change

Selected Variable Weight
Soilm1 0.0025
Twe 0.0053

Soilt4 -0.0009
Lzfsc -0.0013

Accmax 0.0073
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Figure 3.13: SPI-12’s reconstruction result
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Then, the drought indices are re-calculated using its previous value and the

regression of the selected variables to the drought indices change. We use the Support

Vector Regression in the regression process.

Reconstructed TSi = Original TSi−1 +Regression resulti, ∀i ∈ I (3.14)

where TS is a time series and I = {1 ... length of the time series}.

Table 3.16: The target time series reconstruction result

Target Variable RMSE Range of Value Error Compared to Range(%)
Soil moisture 0.0019 0.2 to 0.4 0.95

SMA 0.0270 0 to 1 2.70
SPI-3 0.3620 -8.6 to 6.4 2.41
SPI-6 0.2812 -6.9 to 3.6 2.68
SPI-9 0.2550 -6.9 to 3.1 2.55
SPI-12 0.2471 -6.1 to 3.1 2.69

The result in Table 3.16 shows that the regression of the variables from the

feature selection to the drought indices change, in combination with the previous

drought index value, can be used to calculate the current drought index value with

small error. Thus, these chosen variables are key variables to determine how and how

much the drought index change from the previous value.
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3.6 Conclusion

We developed a new correlation measurement algorithm that can find a sectional

correlation and also helps identifying highly distant noises in data. This algorithm

finds the similar section of the target data and the compared data by regression which

we choose the Support Vector Regression to do the job. This sectional correlation

algorithm can be applied to time series motif discovery to create a robust any-length

motif discovery algorithm.

In addition, this sectional correlation is used as an objective function in the

forward feature selection to find the variables in OHD-NOAA hydrological data set

that are related to how the drought condition change from one day to the next. This

feature will be further analyzed and might be useful in drought prediction later.
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APPENDIX A

DROUGHT INDICES CALCULATION
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In this appendix, the calculation of two drought indices used in this work are

presented.

A.1 Soil Moisture Anomaly’s Calculation

In this method, the factor that used to determine drought is the soil moisture.

The idea is to compare the given soil moisture with the historical data and use its

position in the distribution to determine how severe the drought is. The calculation

procedure is the following steps.

1. From 30 years historical soil moisture data, reshape it into a matrix as in Figure

A.1.

2. Create 365 distributions for each Julian day by collecting data of the same

Julian day in 30 years.

3. To have more data for creating distribution, time window is used. In this work,

time window size is 49 days which means the data that falls in between ± 24

days of that Julian day are used to create the distribution. For example, the

data for creating a distribution of the day-50 is as in Figure A.2.

4. If the drought condition of the day-x is interested, put the soil moisture of

that day into the according distribution. Then use its percentile position to

Figure A.1: Reshape the historical soil moisture data
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Figure A.2: Data used for creating the distribution of day-50

Figure A.3: How to determine the drought severity from the percentile

determine the drought severity. See Figure A.3 for ranges of percentile value

and their drought severity.

A.2 Standard Precipitation Index’s Calculation

In this method, the factor that used to determine drought is the rainfall value.

The idea is to compare the given rainfall value with the previous n-months data

where n in this work are 3, 6, 9, and 12. Then use its position in the distribution

to determine how severe the drought is. The calculation procedure is the following

steps.

1. Create distributions for each day in the data set from the previous 30×n days

rainfall data. For example, the data for creating a distribution of the day-301

is as in Figure A.4.

Figure A.4: Data used for creating the distribution of day-301
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Figure A.5: Example of CDF Matching method

Figure A.6: How to determine the drought severity from the z value

2. The z value in the standard normal distribution is needed to determine the

drought condition but the result rainfall distribution is usually not a normal

distribution. The CDF matching method must be used to map from a rainfall

value to z value. For example, the rainfall value 0.267 can be mapped to CDF

value of 0.5. The the CDF value is used to map to z value by inverse normal

distribution. The result z value is 0. (See Figure A.5)

3. Then the z value is available to determine the drought severity as in the Figure

A.6.
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