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ABSTRACT

EFFECTIVE AND SECURE USE OF HUMAN RELATION NETWORKS

Na Li, Ph.D.

The University of Texas at Arlington, 2012

Supervising Professor: Sajal K. Das

With the advent of Web 2.0 and advanced techniques of wireless devices (e.g.,

smart phones or iPhones), Online Social Networks (OSNs) and Mobile Social Net-

works (MSNs) are becoming integral part of our lives as two main digital social com-

munities. Data collected from people’s communication on OSNs and MSNs contains

valuable information which makes human relationships more visible as compared to

their existence in our physical world. For instance, the friend list on a user’s profile

page on Facebook clearly tells us the user’s friendships with other users. Moreover,

the short-range wireless communication techniques (e.g., Bluetooth) also enable us to

“sense” human relations in MSNs composed of wireless devices carried by human. On

the one hand, human relation networks can facilitate socially intelligent computing,

for example, the friend recommendation service provided by most of the OSNs; on

the other hand, we must ensure the security in using them to avoid users’ concerns in

OSNs and MSNs. This dissertation addresses four research problems in the effective

and secure use of human relation networks in OSNs and MSNs:

(1) How can OSN owners preserve users’s relation privacy in sharing data with

the third-parties? We model a more realistic attack against users’ relation privacy in
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publishing OSN data, where part of the users may be identified from the published

OSN data. We propose a privacy preservation model, called `-diversity, to protect

users’ relation privacy. Furthermore, we propose three graph-manipulation based

anonymization techniques to convert an arbitrary graph to a graph of `-diversity

with less topology change as compared to the original graph.

(2) How can a third-party analyst efficiently detect a minimum subgraph that

connects a group of target users on OSNs with the minimum number of web accesses

needed for online discovery? Based on the topological properties of human relation

networks on OSNs, we propose two searching techniques which can quickly discover

the subgraph connectivity on OSNs. Furthermore, we observe that users on OSNs

are very well connected as we can find the connectivity of any group of target users

by a small number of web accesses in searching on OSNs.

(3) In MSNs, the approach to inferring a relation between two people is based on

the encountering frequencies of their wireless devices. However, in a malicious wireless

environment, one device can create redundant encountering records by tailgating

another wireless device. The redundant records can be used by the former to launch a

black hole attack to disturb data forwarding. We design a reputation-based framework

guaranteeing the use of reliable relations in data forwarding in MSNs.

(4) Highly active nodes which frequently meet with other nodes in an MSN, also

called high-centrality nodes, are introduced in design of data forwarding protocols;

however, overusing these nodes may cause serious network congestion. To deal with

this issue, we build a framework which effectively spreads the congestion condition at

high-centrality nodes to the entire network by social influence to notify data sources

of the congestion situation so that they can adjust data generation rate to relieve

network congestion.
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CHAPTER 1

INTRODUCTION

We live not only in a physical world but also in a digital world in which mobile

(wireless) communications, social technologies and the Internet are linking people

together and forming one interconnected network. With the advent of Web 2.0 and

advanced techniques of wireless devices (e.g., smart phones or iPhones), Online Social

Networks (OSNs) and Mobile Social Networks (MSNs) are becoming integral part of

our lives as two main digital social communities. Indeed, these technologies have

changed the way we live and interact with others. The number of people surfing

the Internet as well as the amount of time they spend online (via wired or wireless

communications), and the amount of time they are engaged via mobile phones or

smart phones are ever increasing. People’s communication on OSNs and MSNs creates

a valuable information pool containing data that make human relation networks more

visible, even at widely apart geographical distances, as compared to their existence

in our physical world (see in Figure 1.1). For instance, the friend list on a user profile

page on Facebook.com clearly tells us the user’s friendship with others. Moreover,

the short-range wireless communication techniques (e.g., Bluetooth) also enable us

to “sense” human relations in MSNs composed of wireless devices carried by human.

Thanks to the device discovery module embedded in the short-range communication

techniques, a wireless device can record its encountering with other wireless devices.

So for two devices which encounter frequently, most likely, their owners are colleagues

working in the same building.

1



Figure 1.1: OSNs, MSNs, and Human Relaiton Networks

On the one hand, human relation networks can facilitate socially intelligent

computing. As an example, the “friend” recommendation service provided by OSNs

may recommend two users be friends if they have a considerable number of common

friends in their friend lists. Another example is given the topology of the human

relation network sensed by their wireless devices in an MSN, a message created at one

person can be effectively delivered to another person based on the network topology,

using devices’ opportunistic encounters.

On the other hand, using human relation networks also leads to significant

concerns and challenges in both OSNs and MSNs. For example, when OSN owners

share their user data to the third-parties, they should ensure the privacy of users’

sensitive relations will not be exposed. Similarly, there exist problems while using

human relation networks in MSNs. Due to the way human relations are derived in
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MSNs, such as by analyzing the contact/communication frequency of people’s wireless

devices, a fake relation can be easily created by tailgating another wireless device and

collecting redundant contact records. An attacker may take advantage of the fake

relations he creates to attract data in the network and drop them to disfunction the

network. In that case, how to detect reliable relations and leverage them to facilitate

data forwarding in MSNs becomes an issue required to be solved.

1.1 Scope and Contributions of this Dissertation

In this thesis, we particularly study four problems from the perspective of ef-

ficient and secure use of human relation networks in OSNs and MSNs as pictured

in Figure 1.2, which include preserving users’ relation privacy in publishing OSN

data, detecting subgraph connectivity on OSNs solely based on local view, designing

a reputation-assisted data forwarding framework in MSNs, and leveraging social-

influence to handle traffic congestion in MSNs. Part of our work and results in this

dissertation have been published at conferences and journals [44, 43, 42, 41]. In this

section, we briefly state the challenges we are faced with in each of the problems and

highlight our contributions.

1.1.1 Preserving Relation Privacy in Publishing OSNs

As we all know, OSN owners are sharing data collected from their users’ online

activities with the third parties, such as commercial companies or sociologists. The

data collected by the OSNs are valuable for the third parties, because they can further

mine the data to extract valuable information they need. For example, a company

may use the data which form the basis for customer profiles to promote its products

to the customers through an online recommendation system. Or sociologists may

analyze the data to better understand the evolution of the social communities in our
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Figure 1.2: The theme of this dissertation

physical world. However, in the procedure of publishing data to these third-parties, an

OSN owner must ensure that the information which users are not willing to expose

will be preserved, for example relationship privacy. The disclosure of relationship

privacy becomes a growing concern for OSN users who usually want to keep it private.

Nonetheless, it is quite challenging to protect such privacy as it involves multiple users

and thus cannot be simply controlled through individual settings on the OSNs. In

fact, the failure to protect user relationship privacy will cause serious consequences,

not only severely undermining the popularity of OSNs, but also restricting the amount

of data that OSN owners are willing to share with the third-parties. This dilemma

cannot be solved by simply removing users’ relations from the data before publishing.
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Although doing so will completely hide all users’ relations, it will also completely ruin

the data utility to the third parties who usually need the relationship information

contained in the data. For instance, a sociologist who is interested in researching the

evolution of group dynamics cannot glean much practical insight from the published

data without any details about users’ relations. Therefore, the challenge for an OSN

owner in this dilemma is how to satisfy both of the concerns, preserving user privacy as

well as providing useful information to the third parties. In this work, we summarize

our contributions in the following:

• (Problem Novelty) We first propose a novel attack model which is more practical

against users’ relationship privacy in publishing OSN data. Then we define the

`-diversity model for hiding the sensitive relationship between any two users

one of whom can even be identified from the published data.

• (Solution Novelty) We develop three graph-manipulation based anonymization

techniques which can `-diversify any graphs. Two of them publish a subgraph

with `-diversity while the other publishes a supergraph with `-diversity. We not

only prove the correctness of our techniques in `-diversifying an arbitrary graph

but also analyze their time complexity.

• We conduct a comprehensive set of experiments on both synthetic and real-

world social network data sets, and evaluate the performance of our techniques

by measuring the utility loss caused by our anonymization techniques. More-

over, we demonstrate the tradeoff between privacy preservation and utility loss.

1.1.2 Local-View based Subgraph Detection in OSNs

OSNs collect data from their users’ various activities including logging on/off,

adding friends or constructing groups. Part of these data is visible on OSNs, for

example, a friend list is available on each user’s profile web page. The OSN site owners
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can picture the entire network of their users’ friendships, and further develop new

application services, for instance, friend recommendation. However, an interesting

question is how people other than OSN owners can take advantage of the information

provided by OSNs for their diverse purposes. The challenge here is the lack of the

global view of the OSN network due to the limited knowledge available on each

user’s profile page. Apparently, crawling the entire OSN for analysis is not a realistic

approach, considering the time it requires and the dynamic nature of the OSNs.

Besides, nowadays the OSNs limit the number of web accesses from one (or a group

of) IP address(es), which further increases the hardness of gleaning information from

OSNs. Therefore, we need to design more effective and efficient techniques to mine

the OSN graphs which are not fully presented in front of us.

Motivated by the aforementioned question, we study subgraph detection from

the perspective of a third-party analyzer - discovering a small connected subgraph

which pictures users’ relations on OSNs. Here we illustrate two promising applications

which are orthogonal to our subgraph detection in OSNs. First of all, an analyzer

can leverage the online relationship network to plan a successful cocktail party. The

“success” is referred to as having more fun by not only inviting a group of target

people, but also making all attendees acquainted with each other directly or indi-

rectly by inviting additional people. The selection of these additional people comes

across the detection of a small subgraph from an OSN, such as Facebook.com. The

other application of our subgraph detection problem is to facilitate US government

to investigate a known list of terrorists by extracting from an OSN a subgraph which

connects all these known terrorists together.

We should note that it is a profound limit for the third-party analyzers to

conduct subgraph detection in OSNs, as the entire OSN graphs are not accessible

to others than the OSN site owners. Furthermore, in an OSN the information that
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can be used for the third-party analyzers is limited on each user’s profile web page,

which further increases the challenge of detecting a subgraph. For instance, only the

list of friends is visible on a single user’s profile page on the Facebook, or the list

of users that a user trusts and is trusted by are posted on the user’s profile page on

Amazon.com and Epinions.com, therefore, we call them local view. The local view

is available by web querying which is referred to as accessing the profile web page

of a user. A third-party analyzer can get a larger view of the entire OSN relation

netwok by querying more users; however, issuing a query to an OSN is not cost free,

for example, intensively accessing an OSN causes the heavy workload at the OSN

server. Therefore, we need to design efficient and effective techniques for the third-

party analyzer to conduct subgraph detection on OSNs. Our contributions to this

research topic can be summarized as follows.

• (Problem Novelty) We propose a novel problem of detecting subgraph connec-

tivity on OSNs from the perspective of a third-party analyzer. Particularly, we

search for a minimum-size subgraph which covers a group of target users on

an OSN, without knowing the entire OSN graph. Furthermore, we takes into

consideration the cost of web accesses issued for online subgraph detection.

• (Solution Novelty) We design two algorithmic techniques to solve our proposed

problem. Those two techniques, called Unbalanced Multiple-Subgraph (UMS)

and Balanced Multiple-Subgraph (BMS), are designed based on well-known

social network topological properties, such as small-world phenomenon, power-

law distribution of vertex degrees, as well as well-connectivity of vertices of high

degrees.

• (Insightful Experimental Study) We conduct a comprehensive set of experiments

on large-scale real-world OSN data sets, and evaluate the performance of our

algorithms with respect to their effectiveness and efficiency for subgraph detec-
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tion. The experimental study shows the well-connectivity of OSNs is not limited

to vertices of high degree, but for all of users as our proposed techniques, espe-

cially for BMS, can discover the connectivity of any group of arbitrarily selected

vertices through a small number of web accesses to the OSNs.

1.1.3 Reputation-Based Data Forwarding in MSNs

Since the human relation networks formed in MSNs are quite different from

those in OSNs, we are faced with different challenges in using human relation net-

works in MSNs. In our context, an MSN consists of several wireless devices, such

as mobile phones, which are carried by people in our physical community. Each

wireless device records its encounters with other devices, and the records are used

to analyze the relations among people. In such a network, we are particularly keen

on data forwarding depending on the short-range communication (e.g., Bluetooth)

between the mobile devices rather than Short Message Services (SMS). In general, a

wireless device that frequently encounters the destination device indicating the close

relationship between their owners should be a good data forwarder.

Due to the way the human relation is derived in MSNs such as by analyzing

the contact/communication frequency of people’s wireless devices, fake relations can

easily be created by manipulated encounters, for example, by tailgating a wireless

device to collect redundant contact records. With the redundant records, a wireless

mobile device carried by a malicious person (or called an attacker) can exaggerate his

ability of encountering destination nodes so as to attract data. The attempt of the

attacker is to drop data rather than further forward them aimed to disfunction the

network. This type of attack is particularly named Black Hole Attack.

The black hole attack was first noticed in [40]. To counteract arbitrarily bloat-

ing, the Encounter Ticket (ET) is first proposed in [40] as the evidence of node
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encounters. However, a malicious node is still able to exaggerate its ability to meet a

destination by one-time tailgate attack, in which that malicious node collects redun-

dant ETs by tailgating the destination one time, and then moves around the data

source to intercept data. Although the authors in [40] propose a technique to ignore

redundant ETs generated within a short interval, it may not work effectively un-

der multi-tailgate attack, where an attacker moves in and out of the communication

range of the destination to collect valid yet redundant ETs with large intervals. The

reason behind such ineffectiveness is that the data forwarding protocol still depends

on the probability of meeting a destination to evaluate an encounter’s competency of

delivering data.

To deal with this problem, we propose a trust-based framework which can

be flexibly integrated with a large family of existing single-copy data forwarding

protocols in MSNs, aiming at providing comprehensive evaluation to an encounters

ability of delivering data. With the help of our proposed framework, not only black

hole attack but also arbitrarily forwarding attack can be defended against effectively.

Our contributions are briefly summarized as follows.

• Positive Forwarding Message (PFM) is designed as the evidence of the for-

warding behavior of a node. With the help of some fields in PFM, two kinds

of attacks, deliberately dropping data and arbitrarily forwarding data, can be

effectively counteracted.

• A trust-based framework is proposed to assist data forwarding in MSNs, where

we point out the “Self- Trusting” principle in data forwarding in MSNs.

• As a case study, we integrate our trust-based framework with the existing data

forwarding protocol, PROPHET [45]. Through experimental study, we demon-

strate the effectiveness of our framework against black hole attacks as well as
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evaluating some features in our framework, such as stabilization and the effect

of “Self-Trusting”.

1.1.4 Social-Aware Congestion Control in MSNs

In addition to the traditional data forwarding protocols mentioned in the pre-

vious problem, social-awareness has been incorporated into the design of data for-

warding protocols to increase data delivery in opportunistic-encounter based Mobile

Social Networks. The social-aware data forwarding protocols are based on the as-

sumption that the nodes which more frequently meet with others in the network,

namely high-centrality nodes, are more likely to encounter destination nodes, there-

fore, they should be good data forwarders. However, if all of the data traffic is

forwarded towards these high-centrality nodes the number of which usually is limited

in social community, they will get congested soon and thus become the bottleneck of

network communication.

To date, although a multitude of work has addressed congestion control in

MSNs from different angles, varying from migrating data to avoiding transmission

along congested paths, we believe that slowing down the data generation rate at data

sources should be the most robust approach to controlling congestion in MSNs. This

is because even for employing migration-based or avoidance-based approaches, there

always exists a condition where almost all of the nodes are completely congested,

while data sources are unaware of it and still keep high data generation rate. A

couple of techniques of adjusting traffic generation rate at data sources have been

proposed for controlling congestion in our traditional networks, such as the Internet.

The common mechanism of these techniques is to route a control message from a

congested node back to the data source to notify the data source of the congestion at

the node. However, directly applying these techniques to controlling the congestion
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in MSNs is impractical due to the lack of the contemporary path between any pair

of nodes in MSNs. Furthermore, rather than notifying a particular data source, all

data sources should be aware of the congestion at high-centrality nodes in MSNs as if

the high-centrality nodes get congested, the entire network cannot function for data

forwarding. Therefore, an efficient and effective mechanism is called for to control

traffic congestion in MSNs. Our main contribution is to leverage social influence to

spread congestion signal which captures the congestion condition at high-centrality

nodes in the network to notify data sources so as to adjust their data generation rate

to alleviate traffic congestion in the network.

1.2 Organization of Dissertation

Chapter 2 reviews existing literature and provide some necessary background

on a few topics related to the four problems researched in this dissertation. Chap-

ter 3 discusses the privacy preservation in publishing OSN data and propose three

anonymization techniques to defend against the disclosure of user’s relation privacy

in data publishing even when users’ identities may be partially exposed. Chapter 4

addresses efficiently detecting subgraph connectivity of a group of target users based

on local view on OSNs. Chapter 5 researches on how to strengthen the robustness

of human relation networks against black hole attack in MSNs. Chapter 6 discusses

about leveraging social influence to control traffic congestion in MSNs. Finally, some

conclusions are drawn in Chapter 7 along with future work discussion.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter mainly introduces related work to the four research problems to

be addressed by this dissertation. The roadmap of this chapter is as follows. In

Section 2.1 we investigate the existing techniques of preserving users’ relationship

privacy in publishing OSN data and propose a novel taxonomy of these techniques.

In Section 2.2 we discuss some topological properties of social network graphs which

play an important role in designing our techniques of detecting subgraph connectivity

in OSNs from the perspective of a third-party analyst. Additionally, we review some

literature relevant to subgraph detection in Section 2.3. Moreover, we introduce data

forwarding protocols developed for Mobile Social Networks, followed by the discussion

on the classic trust mechanisms in computing in Section 2.5 and many congestion

control mechanisms in the networks in Section 2.6.

2.1 Relation Privacy in Publishing OSNs: A Survey

As online social networks (OSNs) become ubiquitous, more and more third-

party enterprises are exploiting data from OSN websites. An OSN owner can either

publish its collected data directly or provide a search interface, which third parties

can use to issue queries as part of customer research or social experiments. Data can

form the basis for a customer profile, for example, which the company can then use

to promote its products through an online recommendation system.

In serving these third parties, however, an OSN owner must also respect its

network members’ privacy by preventing the disclosure of sensitive information in the
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data it provides. Relation privacy the protection of relationships that the user would

like to remain private is a growing concern because it involves multiple users and

thus cannot be controlled through individual settings. Moreover, such relationships

are clearly foundational to a social network’s success. According to a recent study [10],

a Facebook user has more than 150 friends on average. Not being able to protect the

privacy of these relationships could severely undermine these networks’ popularity

and restrict the amount of data that OSN owners are willing to provide to third

parties.

The solution to this dilemma cannot be the straightforward removal of user

relationships because relationships are often part of the data that third parties want.

Sociologists interested in the evolution of group dynamics, for example, arent likely

to glean much practical insight from OSN data published with no details about user

relationships. Removing all relationship information from the data would certainly

hide the social networks topology and thus protect the user. However, it also severely

limits the datas usefulness to third parties. The challenge for an OSN owner then is

how to satisfy both concerns.

Graphs are commonly used as a tool to present social network data, in which

the vertices represent users and the edges denote relations. Each user’s information

included in his individual profile, such as his preference and affiliation, is categorized

and labeled as vertex attributes. The strength of each relation can be represented by

an edge weight. For example, the weight of a friendship edge between two users in a

social network graph can distinguish two cases: either the two users just know each

other, or they have been good friends for a long time. With the help of the graph

presentation, we define the (relation) private information as the existence of an edge

or a path between two vertices, as well as the sensitive edge weight in social network

graphs.
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There exist substantial literature on protecting user relationship privacy in pub-

lishing online social network data, in which the techniques can be categorized into

two groups based on whether users’ identities will be released in the procedure of

data publishing. Specifically, one group of anonymization techniques preserve rela-

tion privacy by completely hiding users’ identities, and the other group of techniques

are intended to protect relation privacy while users’ identities are released with full

disclosure.

2.1.1 Complete Identity Anonymization

Intuitively, if we remove users’ identities or assign pseudo-identities for them,

although we can see edges in a published graph, we cannot tell who and who have a

relationship. Thus, some research has been focused on preserving users’ relationship

privacy by hiding their identities. In the literature, a wide variety of techniques have

been proposed to preserve users’ identities in published social network graphs, which

can basically be classified into two categories: (i) topology-preserving techniques

and (ii) vertex-classifying and relabeling techniques. The former leverage on graph

modification against topology-based attacks [46, 71, 72, 16, 14, 27, 70], where an

adversary is assumed to master some topological properties of a user, such as its vertex

degree or its neighborhood structure, while the latter preserve users’ identity privacy

by clustering the vertices and relabeling them without any graph manipulation. In

the following, we will introduce these two categories of techniques in detail.

2.1.1.1 Topology Preserving

Knowledge of a user’s topology, such as vertex degree the number of vertices

adjacent to a vertex or neighborhood structure, makes that user and those with whom

he or she interacts vulnerable to topology-based attack. The examples in Figures 2a
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through 2e make it clear that published social networks are not invulnerable to this

kind of attack. In Figure 2.1, for example, if the attacker knows that Alice has two

friends, he can easily identify Alice from the graph, even though he cannot distinguish

Bob from Tom.

Alice Tom

Bob

friendship

Figure 2.1: Naive identity removal

A B

CD

F1

F2

Figure 2.2: Active attack

An active attack [8] can also compromise user identities by actively injecting

dummy users in an OSN. In Figure 2.2, an attacker successfully identifies User D

using this method. After creating two fake user accounts on the OSN, F1 and F2, the

attacker uses the fake accounts to identify real users on the basis of relations between

F1 and F2 and real users. In this case, by knowing the dummy user profile details,

the attacker could first identity F1 and F2 and then identify User D because of D’s

direct association with F1 and F2.

To protect user identities against topology based attacks, researchers have pro-

posed k-anonymity and cluster-generalization techniques.

K-anonymity techniques. Techniques in this category aim to make each

user indistinguishable from at least k C 1 others. The goal of the k-degree anonymity
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Figure 2.3: A failure of 2-degree anonymity

technique is to protect against an adversary who has some knowledge of the target

user [46], which that adversary has gleaned through vertex degrees. On the basis of

the original vertex degrees, the algorithm generates a sequence of revised degrees that

satisfy k-anonymity, in which each vertex has at least k C 1 other vertices with the

same degree. It then generates a new graph based on the revised degree sequence. A

guiding principle for graph generation is to minimize the number of edges that change

from the original graph [46]. These edges represent data utility, and each change in

turn represents a loss of that utility.

The k-neighborhood anonymity technique guards against knowledge not only

from the vertex degree but also from each vertex’s neighborhood topology [71]. As

Figure 2.3 shows, given Ada’s neighborhood structure, an attacker can identify Ada,

although the graph already satisfies 2-degree anonymity. This identification ability

shows the insufficiency of the k-degree anonymity algorithm to thwart an attacker

who knows the user’s neighborhood topology.

The k-neighborhood anonymity technique first extracts and encodes all vertices

neighborhood structures. It then forms groups of vertices with similar neighborhood

codes, ensuring that each group is at least size k. Finally, it anonymizes each group
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by modifying the graph to achieve the same one-hop neighborhood topology, thereby

satisfying k-neighborhood anonymity.

More recent techniques, notably k-automorphism [72] and k-isomorphism [16],

can preserve user identity to an even greater degree. The k-automorphism algorithm

guarantees k-anonymity even against an adversary who could know arbitrary hops in

each users neighborhood. To achieve such a guarantee, the proposed algorithm pro-

duces a supergraph of the original graph that satisfies the k-different match principle.

To illustrate this principle, consider a published network G∗ = (V, E), where

V is the vertex set and E is the edge set. For a subgraph Q = (VQ, EQ), where

VQ j V and EQ j E, the k-different match principle requires the satisfaction of two

conditions. The first is that at least k matches are isomorphic to Q under k different

bijective functions f : VQ → V , which also maps each edge (u, v) ∈ EQ to a unique

edge (f(u), f(v)) ∈ E. The second condition is that, for any two (of the k) matches,

no matching maps the vertex in VQ to the same vertex in V .

The k-automorphism algorithm consists of three steps. Graph partitioning first

partitions the original graph into n blocks (subgraphs) and then clusters these blocks

into m groups, each of which contains at least k blocks. The next step, block align-

ment, makes blocks isomorphic to each other in each group. Finally, block-crossing

edge copying inserts block-crossing edges (if the original graph contains edges across

different isomorphic blocks) into the published graph. As Figure 2.4 shows, the

k-automorphism technique can still allow a breach in relation privacy even when user

identity is completely anonymous. Because an adversary knows that User A has two

friends and User B has three friends, he can infer that the two users are friends in the

social network, although he isnt able to identify them individually. The vulnerability

arises from the lack of structure-diversity for edges in the published graph in this

case, all vertices of degree 2 are fully connected with those of degree 3.
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In contrast, the k-isomorphism algorithm [16] achieves k-secure graph anonymiza-

tion. Thus, an adversary cant determine that two users are linked by a path of (at

most) a certain length with a probability of more than 1/k, even given any subgraph

of the original graph that includes two users of interest. The key technique is to

partition the original graph G into k disjointed subgraphs and then anonymize each

subgraph by inserting or deleting edges to make all k subgraphs isomorphic to each

other.

Cluster generalization. Unlike the k-anonymity based techniques, clustering-

based algorithms [14, 27, 70] use generalization methods to preserve user identity

and structure against topology-based attacks. The techniques first cluster users into

groups according to similarities of their attribute values or neighborhood topologies.

Then, instead of publishing each user’s detailed information, the technique posts a

summary of each group, such as the number of users and internal edges. Figure 2.5

gives an example. A critical drawback of this technique, however, is the loss of data

utility because detailed relationship information is no longer available.
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Figure 2.5: Cluster generalization

2.1.1.2 Vertex Classifying and Relabeling

The second category of techniques to completely anonymize user identities (and

thus preserve the interactions between users and other entities) does not require graph

modifications. Rather, the idea is to group users into classes and then assign a set

of identities to each class, thus aiming to hide users real identities within a class.

Most techniques in this category [11, 18] consider a bipartite graph, as opposed to

an arbitrary graph. The bipartite graph consists of two subsets of vertices one

denoting users and the other representing interactions, such as email, or entities, such

as purchased goods. Edges between the subsets could disclose private information

about the users and interactions in the form of some association.

The constraint on association diversity in each class governs the procedure for

classifying users that is, any two vertices in each class must not share neighbors in

other classes. Without the constraint on association diversity, if two users in a class

happen to be the only ones involved in a specific interaction, that interaction will be

disclosed, although the users’ identities are hidden. Figure 2.6 shows that scenario

for Users 1 and 2. The attacker is convinced that Users 1 and 2 have communicated

through email, although he is not able to determine who’s who. Obviously,
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vertex classifying and relabeling effectively protects user identities without requiring

graph manipulation. However, in a graph in which many users associated with one

interaction, it might not be possible to classify so many users without violating the

association diversity constraint. Moreover, vertex classifying and relabeling would

have to rely on generalization techniques to defend against topology-based attacks.

2.1.2 Completely Disclosing User Identity

In some scenarios, maintaining real user identities in the published graph en-

hances data utility, and the edge weight becomes the sensitive information. For these

scenarios, techniques must protect sensitive edge weights, and techniques based on

manipulating OSN graph models no longer work.

One technique for protecting edge weights is Gaussian randomization multipli-

cation [47], which uses value perturbation to manipulate the original weight of each

edge by an i. i. d Gaussian random variable with mean 1 and variance σ. Because

edge weights are tabular, not relational, data, OSN security engineers can adapt some

existing techniques that the database and data mining communities use to preserve

tabular data privacy.

Another technique models the weighted graph on the basis of the property to

be preserved (shortest paths, minimum spanning trees, and so on), and then reassigns
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the edge weights to obtain an anonymous graph that satisfies the model [21]. The ap-

proach defines a linear property of a graph as one expressible in terms of inequalities

involving linear edge-weight combinations. The desirable model captures the inequal-

ities that the edge weights must obey to preserve the linear property. In other words,

any solution from such a model would ensure the anonymization of edge weights while

preserving the linear property being considered. The technique’s authors also address

how to select solutions that will keep an attacker from inferring even relative edge

weights for example, which two vertices have the largest edge weight. One problem

is deciding which properties third parties will find the most useful and thus which the

OSN owner should preserve before publishing the data.

2.2 Social Network Topological Properties

Note that although human relation networks in OSNs and MSNs are established

in terms of different types of data collected from our digital world, their graphs present

similar topological features of social networks, such as small-world, scale-free and well-

connectivity of nodes of high degrees.

Small-world is one of the well-known social network topological properties,

which was first observed through a series of striking experiments conducted by Stanley

Milgram and his coworkers in the 1960’s [36, 49, 61]. This property is also translated

into “six degrees of separation”, referred to as the idea that everyone is at most six

steps away from any other person on Earth, which indicates the small diameter of so-

cial networks. The small-world property ensures the existence of short path between

any pair of vertices in social network graphs.

A scale-free network is a network with a power-law degree distribution, at least

asymptotically. That is, the fraction P (k) of vertices in the network with k direct

neighbors for large values of k is given as P (k) ∼ k−γ, where γ is a constant typically
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in the range 2 < γ < 3. The power-law degree distribution indicates that the number

of vertices goes down quickly as their degrees go up, moreover, the number of vertices

of highest degree is limited.

The well-connectivity among vertices of high degrees is also a topological prop-

erty of social networks which was discovered by a comprehensive set of experiments

on real-world social network data sets [64].

2.3 Subgraph Connectivity in Graph Mining

Research effort has been made on the topic of subgraph connectivity in the

domain of graph mining. Faloutsos et al. [22] and Tong et al. [60] proposes solutions

for finding a subgraph that connects a set of query nodes in a graph, where the

proximity between nodes is defined depending on the global topology of the graph.

Specifically, they extracted subgraphs including vertices as close to the query nodes

as possible, where the closeness is quantified by the similarity measure between two

vertices. In its subsequent work, Koren et al. [35] redefined the proximity measures

based on “cycle-free effective conductance” (cfec) and proposed some algorithms for

optimizing the cfec measure. Another work by Asur and Parthasarathy [7] suggests

the concept of viewpoint neighborhood analysis to identify neighbors of interest to a

particular source in a dynamically evolving network, associating their measure with

heat diffusion. Cheng et al. [17] investigated the problem of connecting query nodes

in a context-aware framework. They first employed modularity measure to partition

the graph, and then studied the connectivity in both intra-community and inter-

community levels. Kasneci et al. [32] proposed a random walk-based approach to find

informative subgraphs associated with a group of query nodes in entity-relationship

diagrams. Most recently, Sozio et al. [58] addressed the searching for the densest

subgraph containing all query nodes with and without size constraint. However, the
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difference between the above line of research and our work in this dissertation is they

assume the entire graph is given for detecting the subgraph connectivity, which makes

it impossible to detect the subgraph on OSNs for a third-party analyst.

2.4 Data Forwarding in Mobile Social Networks

There has been extensive work in designing data forwarding protocols in MSNs.

Some of them address how to effectively forward data to a single destination node

or a group of nodes pre-known [12, 13, 45, 29]. In this category, a qualified for-

warder is supposed to have stronger competency of successfully delivering data to the

destination node, which has been estimated through the probability of meeting the

destination in the near future. The more possible to meet the destination, the more

competent to deliver data. Some metrics are proposed to predict that probability.

For example, in [29], the role of people in social networks is exploited to estimate the

probability of delivering data. Specifically, a person who actively moves in a commu-

nity is a high-qualified data carrier from the perspective of data delivery, as he has a

higher chance to meet others in the network, including the destination. Some other

protocols leverage the encounter history to predict the delivery possibility. With the

assumption that people’s mobility pattern presents some repetitive features, two peo-

ple who frequently meet before will more likely encounter each other again in the

future. However, most of the existing protocols in this family ignore the difference

between delivering data and meeting the destination in a hostile environment. In a

malicious wireless environment, a adversarial node is motivated to arbitrarily boost

its probability of meeting the destination to intercept data from other nodes, and

then arbitrarily forward or even drop them, aiming at detrimentally degrading the

network performance, which is called black hole attack.
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Thanks to the novel structure of Encounter Ticket (ET) proposed in [40], which

can only be generated based on real node encounters, arbitrarily bloating the ability

of meeting a destination is avoided. However, a greedy node can still boost its times

of meeting a destination node by collecting redundant ETs from one-time tailgate at-

tack. In such an attack, a malicious node launches tailgate only once and then moves

around the data source to intercept data, as illustrated in Fig. 2.7. The authors in

[40] remove redundant ETs by ignoring those with similar generation time. How-

ever, the adversary may mount another kind of attack, where an attacker frequently

moves in and out of the communication range of a destination node to collect non-

redundant ETs and then wanders around the destination node rather than a source

node to intercept data. We call such an attack multi-tailgating attack, as depicted

in Fig. 2.7, which actually has more destructive impact on the network performance

than one-time tailgate attack. Since the technique proposed in [40] still leverages the

possibility of meeting the destination to estimate the delivery competency, it could

not thoroughly counteract the black hole attack under multi-tailgating.

In addition, the authors in [54] propose a mechanism to detect black hole attacks

in the same context. After any pair of nodes exchange data, they create receiving and

forwarding records for each other and keep them in their memory. Then, whenever

they meet again after further forwarding the data, they will validate the history

records from each other to determine whether the black hole attack has been launched

by peers. However, the verification can only be conducted when the same two nodes

meet again, which may not be in a relatively real-time manner especially in MSNs

characterized by long delays and frequent network partitions. Moreover, the authors

did not address how to defend against arbitrarily forwarding data in MSNs. In a

worst case, if a malicious node deliberately forwards data to a node which will never

be able to forward data to others because of its isolation from the network, the
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network performance will be degraded as badly as that under the black hole attack

using the scheme proposed in [54].

More recently, social-awareness has been introduced into the design of data

forwarding protocols in MSNs. Since it’s human beings who carry the mobile devices

as mobile phones roaming in our physical community, the mobility pattern of mobile

devices presents some social community features, for example, the repetitiveness of

daily traveling paths or the active interaction of some popular nodes with other nodes

in the same community. Thus, putting social flavor into the protocol design will be

able to aid data forwarding in MSNs.

A plethora of work has been conducted along this direction. In [30], the authors

designed a protocol, called BubbleRap, addressing data forwarding across multiple

communities. In BubbleRap, each node is labeled with two values to indicate its local

and global popularity. A node’s local popularity is referred to as the node’s centrality

in the local community, while its global popularity denotes its centrality in the whole
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network consisting of multiple communities. BubbleRap first continuously forwards

a data message to its encountered nodes with higher global popularity until meeting

a node existing in the same community as the destination node. Then, the message

is forwarded further to the encounters with higher local popularity till the message

either reaches the destination or is dropped due to the expiration.

Another work, called SimBet, introduced in [19] realized social-aware data for-

warding by designing three metrics based on social analysis of a node’s past interac-

tions as well as a node’s “betweenness” centrality (calculated using ego networks), a

node’s social “similarity” to the destination node, and a node’s tie strength relation-

ship with the destination node.

More recently, PeopleRank algorithm is proposed in [50] for choosing next-hop

data forwarders. PeopleRank is essentially adapted from PageRank, a classic link

analysis algorithm used by the Google Internet search engine, that assigns weights to

webpages to rank its relative importance. By employing this idea, PeopleRank tags

people as “important” when they are linked to many other “important” people in

the social relation graph which is formed by the knowledge (e.g., friendship) publicly

available on online social sites. In evaluating an encounter’s capability of forwarding

data, both a node’s importance and its previous interaction with other nodes are

considered. The assumption behind such evaluation is that nodes socially well con-

nected in online social sites are better suited to forward messages towards any given

destination in MSNs.

2.5 Trust in Computing

Trust-based data routing has been extensively studied in wireless networks, such

as MANETs [5, 9, 59, 65]. As shown in Fig. 2.8, the framework of a Trust Management

System (TMS) basically consists of two components, a Watchdog and a Reputation
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System (RS). The functionality of Watchdog is to monitor the real routing behavior

of a node and then feed that information into RS to update the reputation of that

node. In general, the RS conducts three tasks relevant to reputation: 1) updating

reputation opinion based on the direct observation at the Watchdog (i.e., first-hand

information), 2) integrating reputation by combining the indirect information (i.e.,

second-hand information) from other members with the first-hand information, and

3) aging reputation to refresh first-hand information.

Essentially, these trust-based data routing protocols in MANETs take advan-

tage of contemporary routing paths between a source node and a destination node to

monitor routing behaviors of intermediate nodes along the paths. For example, some

protocols use the Watchdog of a data source node to collect the ACKs of the data sent

out from the source as the evidence of the good routing behavior of intermediate for-

warders. Specifically, the ACKs are generated at the destination node when data are

delivered and then routed back to the data source along the same transmission path

as the data come along to the destination. ACKs demonstrate that the nodes along

the routing path indeed help forward data properly. In MANETs, the delay of the
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ACKs can be ignored because of the assumption on the existence of the contemporary

routing path between the source node and the destination node. Some other protocols

allow the Watchdog to directly monitor wireless channels to check whether or not the

next-hop forwarder forwards data with integrity. The successful channel monitoring

relies on the assumption of the relatively slow mobility of nodes in MANETs. In par-

ticular, if the data message sent out from the next-hop forwarder is exactly the same

as the original one sent out from the previous-hop node (i.e., the Watchdog owner),

the next-hop forwarder is assumed to be a benign node which behaves well for data

forwarding. However, the Watchdog mechanisms developed for MANETs can not be

directly applied to MSNs because of the features of frequent network partitions and

long delays in MSNs. As the contemporary path does not exist any more in MSNs,

neither channel monitoring nor end-to-end ACK works effectively.

2.6 Congestion Control Strategies

Traffic congestion problem has been studied in wireless networks characterized

by long delay and frequent partition. A storage routing protocol was proposed in [56],

where the arrival of data at a congested node invokes the migration of a set of selected

data from the node to a set of its neighboring nodes. The neighbors with the lowest

migration cost are chosen for storing the migrated data, where the migration cost is

referred to as the cost of transmission and storage. For the selection of data to be

migrated, the authors introduced three approaches, picking up data with the oldest

time stamp or data which are queued at the head of the queue, or at the tail of the

queue. The limitation of the proposed routing protocol is there exists a boundary

situation in which data will not be allowed to be migrated further because of the

serious congestion condition at almost all of the nodes in the network.
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In another work [28], the authors defined three states for each node, namely

normal state, congestion adjacent state and congestion state, based on the preset

thresholds of the utilization rate of node storage. Furthermore, such three states

convert to each other based on the utilization rate of storage at each individual

node. A node in congestion adjacent state will notify its neighbors of its congestion

state by broadcasting a control message, which will label the links of that node with

“Half-Hanged”. The selection of a path for data forwarding is intended to avoid Half-

Hanged links. The limitation of the proposed mechanism is that each node’s status

is determined solely by its own storage and bundle forwarding, therefore, it cannot

accurately reflect the congestion occurring in the network. In addition, similar to the

problem existing in migration-based scheme in [56], data sources may keep high data

generation rate, while all other nodes in the network have been congested seriously.

Moreover, the work [52] first noticed the potential vulnerability of social-aware

data forwarding in MSNs. Specifically, a large amount of data traffic is carried by

a fewer nodes typically with high centrality or betweenness. Such bias on traffic

distribution makes the network unsustainable, causing the quick depletion of con-

strained resource on the heavily-used nodes, the potential random failure, or even

attacks against these nodes. To balance traffic distribution over the network, the

authors designed a fair routing protocol [52]. The fairness is achieved by introducing

assortative-based queue control mechanism, where the queue size is defined as social

status, which indicates how useful a node is for data forwarding. Only nodes with

high status can forward data to the nodes with lower status. The social status is

integrated with another metric associated with long-term and short-term interactions

between nodes on their pair-wise encountering. Through their experimental study,

they demonstrated the effectiveness of their protocol on balancing traffic distribution

in MSNs.
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Following [52], some congestion-aware data forwarding strategies have been de-

signed [26, 53]. Firstly, the authors in [26] demonstrated the biased load distribu-

tion towards high-centrality nodes in MSNs by conducting experiments in real-trace

based data sets. Additionally, the authors proposed a congestion control framework

which consists of two components, Forwarding Heuristic and Congestion Control Sys-

tem. The forwarding heuristic evaluates an encountering node by linearly combining

smoothed centrality, neighbor similarity and history-based performance metric. In

addition, two parameters, Receptiveness and Retentiveness, are leveraged in the con-

gestion control framework to evaluate the availability of a node. Although the authors

noticed the social impact in traffic congestion in MSNs, they did not take the impact

into consideration in design of their framework which we, however, consider in our

work.

30



CHAPTER 3

PRESERVING RELATION PRIVACY IN PUBLISHING OSNS

This chapter addresses preserving user’s relation privacy in publishing OSN

data while partial users’ identities may be disclosed. As evidenced by recent work on

de-anonymizing real-world OSNs [51], it is extremely difficult, if not impossible, to

absolutely hide all users’ identities from the OSN data. The fundamental reason is

a user may be willing to publish his/her personal information to the public, through

blog for example, which may be used by an adversary for identifying the user from the

published OSN data. Note that the control on releasing such personal information

is in the hands of individual users rather than OSN owners. Therefore, the critical

challenge for OSN owners to preserve users’ relationship privacy in publishing data

is how to protect relationship privacy even when one of the associated users is iden-

tifiable from the published data. To address this challenge, we adapt the `-diversity

anonymity model which was originally proposed in [48] for preserving the privacy

of tabular data to our context of protecting users’ relationship privacy. Our model

ensures that an attacker is prevented from successfully inferring the existence of a

sensitive relationship between two users with confidence greater than 1/`, even when

one of these two users is identifiable from the published OSN data. In addition, we

consider two schemes for developing the techniques of preserving users’ relationship

privacy: (1) removal-only scheme which only removes edges from the original OSN

graph, and (2) insertion-only scheme which only inserts edges/vertices in to the OSN

graph.
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This chapter is organized as follows. In Section 3.1 we address our proposed re-

lationship privacy problem with respect to attack model, privacy preservation model,

the utility measurement and problem formulation. In Section 3.2, we propose three

heuristic anonymization algorithms for protecting users’ relationship privacy, followed

by a comprehensive experimental study in Section 3.3 to demonstrate our algorithms

performance. Finally, we conclude the chapter in Section 3.4.

3.1 Preliminaries

3.1.1 Attack Model and Privacy Guarantee

A

degree = 1

degree = 4

k = 4

Figure 3.1: 4-degree anonymous graph

degree = 3

degree = 2

ℓ = 4

A

Figure 3.2: 4-diversity anonymous graph

We assume an attacker launches passive attack only by analyzing the published

data, as opposed to active attacks defined in [8]. We do not consider active attacks

in which an adversary can revise the topology of the OSN by creating dummy users

and relationships before data publishing. In our attack model, the attacker attempts
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to compromise the relationship privacy between two target users, to see whether they

have a sensitive relationship or not. The extra knowledge assumed to be equipped

with by the attacker is the number of friends for each of the target users (i.e., the

degree of the vertices corresponding to target users) in the OSN. This is common

information publicly available on many OSN websites, like LinkedIn. Furthermore, in

the worst case one of the target users can even be identified by the attacker based on

some background knowledge which may be collected from the user’s blog. Apparently,

if the attacker can identify both of the target users from the published data, their

relationship will be on the table, in which case we can do nothing to preserve the

relationship.

The work in [46] has discussed how to preserve users’ identity privacy under

the attack model where the vertex degree of a target user is assumed to be available

to the attacker. The authors argued that with the knowledge of a user’s degree, the

attacker may identify the target user even from an identity-removed OSN. To solve

the problem, the k-degree anonymity model was proposed in [46], ensuring that each

vertex shares the same degree with at least k−1 other vertices in the published OSN.

However, such a model is insufficient to guarantee the relationship privacy we are

concerned with in our model. A simple example is illustrated in Figure 3.1, where

nodes are grouped in terms of their degrees. Suppose the attacker is curious about

the relationship between user A and user B. In this 4-degree anonymous graph,

if the attacker only knows user A’s degree and user B’s degree are four and one,

respectively, he cannot successfully infer the existence of their relationship. However,

under our attack model, if the attacker can identify user A somehow, although he

is not able to identify user B solely with the knowledge of user B’s degree, the

sensitive relationship between the two target users has been exposed, due to the full

connection of all vertices of degree one with user A. To defend against such an attack,
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we propose a new privacy anonymization model defined in Definition 3.1.1, adapted

from the `-diversity model which was initially developed in [48] for preserving tabular

data privacy in the fields of databases.

A published network is `-diversity anonymous if and only if given the degrees of

any two users, the attacker cannot infer the existence of a relationship between them

from the anonymized graph with the probability of greater than 1/`, even when one

of them is identifiable from the published social data.

Note that this problem definition is built based on but stricter than k-degree

anonymity. In Definition 3.1.1, first of all, we need to ensure a user cannot be iden-

tified by his/her degree information, which is degree anonymity. One can see if a

set of vertices in the published graph satisfy `-diversity, there must be at least ` ver-

tices sharing a unique degree, which is exactly required by degree anonymity model.

Second, the `-diversity model also ensures the relationship diversity between any two

vertex groups each having vertices of the same degree. A toy example of a 4-diversity

anonymous graph is given in Figure 3.2. In this graph, even when user A is exposed,

the possibility of successfully inferring the relationship between user A and user B is

1/4, given user B’s degree of three.

3.1.2 Utility Measures

As we mentioned in Section1, although completely removing the relationship

information from the OSN data before publishing will protect users’ privacy, it will

significantly ruin the utility of the published data for the third-parties, who often

want the relationship information for their data analysis. In fact, it is the third-

parties who should specify data utility based on their applications, so it is hard for

the OSN site owners to propose a generic metric to measure the utility of data and

its loss caused by anonymization techniques.
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Hence in this paper we use some topological measurements to study the impact

of our proposed anonymization techniques on the utility loss of the published data.

Particularly, we consider the number of edges/vertices removed/inserted in technique

design. In addition, we provide some other measurements, such as the degree distri-

bution and distance distribution between reachable vertices, through our experiments

to be addressed in Section 3.3.

3.1.3 Problem Formulation

Given an arbitrary social network graph, G : 〈V, E〉, we intend to make the

graph `-diversity anonymous by graph-manipulation from two directions, (1) find a

subgraph G′ : 〈V ′, E ′〉, where V ′ = V and E ′ ⊆ E, and (2) create a supergraph

G∗ : 〈V ∗, E∗〉, where V ∗ ⊇ V and E∗ ⊇ E. In addition to the result graph satisfying

`-diversity anonymity, the utility loss should be minimized, which is particularly

quantified in terms of the number of changed vertices/edges changed as compared to

the original graph.

3.2 Social Network Republishing Algorithms

In this section, we will first introduce our insight on `-diversity anonymous

graphs, which places a important role in our algorithm design, and then we will

propose three techniques for anonymizing the users’ relationship privacy in publishing

OSN data. We start with a simple Max-Subgraph-Basic algorithm which is designed

based on the intuition of starting with an empty graph and then gradually adding

back a subset of edges in the original graph without violating `-diversity. We shall

point out the problem of Max-Subgraph-Basic which causes serious utility loss and

motivates us to design an improved algorithm, called Max-Subgraph. Finally, we will
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propose our Min-Supergraph algorithm which belongs to the insertion-only scheme

and constructs an `-diversity supergraph by inserting dummy edges/vertices.

3.2.1 Insight on `-Diversity Anonymous Graph

Given an `-diversity anonymous graph, we know from Definition 3.1.1 that the

number of vertices with a unique degree must not be less than `, that is to say, if we

suppose Va is the set of vertices with degree of da, then |Va| ≥ `. Furthermore, the

second critical point in Definition 3.1.1 - preventing the attacker from inferring the

existence of a relationship between two users with confidence greater than 1/` even

when one of the target users is identified - can be interpreted as the fact that in each

group, the ratio of vertices that share a neighboring vertex to the total vertices in

that group must not be greater than 1/`. Suppose in Va vertices linking to vn (any

vertex in the graph) form a set V ′
a, then |V ′

a/Va| ≤ 1/`.

Now we extend our vision to see what will happen if we further partition ver-

tices which even have the same degree into smaller groups. In particular, we keep

partitioning each group until each smaller group is reduced to be size of |Va?|, where

` ≤ |Va?| < 2`. In such a small group, the second point in Definition 3.1.1 can be

interpreted as |V ′
a?| < 2, which indicates that the `-diversity model does not allow

any two vertices in the same small group to share any vertex. In other words, edges

across any pair of small groups should not share any vertices at their endpoints, which

is exactly the definition of matching in Graph Theory. Matching is referred to as a

set of edges without any common endpoints. We are inspired by this observation in

designing our techniques for preserving OSN users’ relationship privacy.

Note that the observation aforementioned is a sufficient but unnecessary con-

dition to judge whether a given graph is `-diversity anonymous. Specifically, if the

vertices in a graph can be partitioned into small groups each having vertices of the
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Figure 3.3: 2-diversity but not divisible graph

same degree, and also edges across any small groups form a matching, we ensure that

it is an `-diversity anonymous graph, but not all graphs of `-diversity anonymity can

be partitioned into such small groups with the matching property, for example, the

graph shown in Figure 3.3. Since all vertices have the same degree, we can regard

them as one group of size five. Note that each vertex is a common neighbor of two

other vertices. Therefore, in a social network with such a topology, if one user is iden-

tified, an attacker has a chance of 2/4 to infer the relationship between the identified

user and another target one, so it is 2-diversity anonymous. But apparently we can

not split the vertices further into smaller groups of size two or three without violating

the matching property, because in doing so any two vertices in a group will share

a neighbor in the other group, as shown in Figure 3.3. Although the two features,

small group and matching only form a sufficient condition for an `-diversity anony-

mous graph, they at least give us a direction of how to convert an arbitrary graph to

a graph with `-diversity anonymity.
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3.2.2 Max-Subgraph-Basic Algorithm (MaxSubB)

We start by describing Max-Subgraph-Basic (in short, MaxSubB), a simple

version of the subgraph-publishing algorithm. The pseudocode for MaxSubB is given

in Algorithm 1. Given an arbitrary graph, G : 〈V, E〉, the basic idea of the MaxSubB

is to start from a graph with all isolated vertices of degree zero, G0 : 〈V0, E0〉, where

V0 = V and E0 = ∅, and then gradually add back a subset of edges from the original

graph for publishing, while ensuring `-diversity at anytime during the edge-recovery

process. Such a procedure is conducted iteratively, where each iteration consists of

three steps: Matching-based Partitioning, Partition Adjustment, and Edge Recovery,

which are detailed as follows.

Step 1. (Matching-based Partitioning): We first arbitrarily select from the

original graph a maximal matching, which is referred to as a maximal set of edges

without any common endpoints. We start with randomly selecting an original edge,

and then remove its two endpoints and their associated edges from the original graph.

This edge-picking-up procedure continues until no edge is left. Then, all selected edges

form a maximal matching. Based on the matching, all vertices can be partitioned

into at least two groups, which are called “matched” groups, each containing one of

endpoints of each edge in the matching. If there are vertices left unmatched, they

constitute the third group, named “unmatched” group.

Step 2. (Partition Adjustment): Note that all vertices in each of the groups

formed by the maximal matching have the same degree and do not share any neighbor

through the edges in the matching. Thus, the graph formed by the matched edges

will satisfy `-diversity as long as each group contains at least ` vertices. The step

of partition adjustment mainly checks whether the partition formed by the matching

can be adjusted so that all groups have size at least `. If all groups have at least `

vertices, we go to the next step directly. If the unmatched group has a size greater
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than `, but each matched group has less than ` vertices, while the sum of them

has vertices greater than `, we combine the two matched groups into one, and stop

looking for additional matching in it from then on. If the size of the unmatched group

is smaller than `, we may adjust the matching by removing the minimum number of

matched edges such that the number of unmatched vertices is at least `. Note that

at the same time of the adjustment, the number of vertices in each matched group

decreases. Therefore, we need to ensure after the adjustment each matched group has

at least ` vertices, or the union of the two matched groups has vertices not less than

`. In the latter case we merge the two groups into one and stop iteratively checking

additional matching in it. For all other situations, the matching fails and is aborted

without any edge publishing.

Step 3. (Edge Recovery): For each edge maintained in the matching after the

procedure of partition adjustment, we add it back to the graph for publishing. The

previous steps will continue iteratively in each of the groups which are newly formed

and not terminated, until no matching can be found to further split the group into

smaller groups of size not less than `.

To illustrate the process of executing MaxSubB, an example is given in Fig-

ure 3.4(A-D), where ` = 2. Based on a maximal matching {(1,2), (3,4), (5,6),

(7,8)}, all vertices are partitioned into three groups, match1 {v1,v3,v5,v7}, match2

{v2,v4,v6,v8}, and unmatch {v9,v10}, as shown in Figure 3.4(B). Since each group

has at least ` vertices, all edges in the matching are published. For match1 and

match2, because they contain vertices greater than `, we continue look for a maximal

matching in each of them. For match1, all vertices can be matched further, which

leads to another partition, {v1,v3} and {v5,v7}. Furthermore, one more matching is

found between v5 and v7. For match2, since no matching exists, the iteration termi-

nates without additional edges being published. The graph manipulated by MaxSubB
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Figure 3.4: An example for our algorithms

is given in Figure 3.4(D). Note that the procedure of splitting the original vertices

into smaller groups by iteratively matching and partitioning can be presented as the

growth of an upside-down tree which is rooted as the original vertex set. The leaf-

nodes of the tree are groups which have size equal to or greater than `, but are not

divisible by additional maximal matchings. The corresponding tree to the illustrated

example is presented in Figure 3.4(F) without the branches circled in red. Each

leaf-node of the tree forms a set of equal-degree vertices in the graph published by

MaxSubB.
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3.2.2.1 Correctness and Complexity Analysis

Theorem 1. Given an arbitrary graph, its subgraph published by MaxSubB satisfies

`-diversity.

Proof. We will prove Theorem 1 from two aspects of `-diversity anonymity: (1) degree

anonymity - each final group contains at least ` vertices of the same degree, and (2)

relationship diversity - neither of two vertices in a group share a neighboring vertex

in the published graph. One can see that the combination of the two properties

guarantees `-diversity anonymity as defined in Definition 3.1.1.

Degree anonymity: The matching-based partitioning procedure of MaxSubB

guarantees that, starting from the initial all-isolated-vertex graph, each iteration pro-

duces groups with vertices of equal degree. Besides, the step of partition adjustment

assures that each group in the output has at least ` vertices. Therefore, MaxSubB

achieves degree anonymity.

Relationship diversity: We prove each of leaf-node groups formed by MaxSubB

satisfies the relationship diversity by contradiction. Suppose that two vertices in

the same group share a neighbor v, then both of their edges connecting with the

common neighbor must be added at the same iteration when v is separated from

those two vertices by a matching. This contradicts the fact that all added-back edges

in one iteration forms a matching. Thus, all leaf-node groups published by MaxSubB

satisfies the relationship diversity requirement.

Accordingly, the graph finally published by MaxSubB is `-diversity anonymous.

Theorem 2. Given an arbitrary graph of n vertices, the time complexity of MaxSubB

T (n) = O(n2).
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Figure 3.5: Worst case for MaxSubB

Proof. Basically, the complexity of finding a maximal matching is O(|g|2) in a group

with |g| vertices. In the worst case of MaxSubB, all vertices can be matched in

each group, so that each matched group has the maximum vertices to participate the

next iteration of the matching-partitioning procedure. Therefore, this procedure can

be presented in a binary tree, as shown in Figure 3.5. The time complexity of the

MaxSubB can be derived from summing the time consumption on partitioning each

tree-node on all tree levels, as formalized in Equation 3.1, where n is the number of

original vertices.

T (n) =

r=blog2
n
`
c∑

r=0

(
n

2r
)2 × 2r = O(n2) (3.1)

3.2.2.2 Observation for Further Improving MaxSubB

Given a complete graph Gc with 2p` vertices, where p is an arbitrary positive

integer, we consider its maximum `-diversity subgraph Gmax
c` . First, we will introduce

Theorem 3 in the proof of which we present the construction of Gmax
c` . Then we will

compare Gmax
c` with the graph published by MaxSubB with respect to the number of

the published edges, highlighting our observation for further improving MaxSubB to
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more utility of published data which is particularly measured by the number of the

original edges published.

Theorem 3. Any `-diversity graph with 2p` vertices must have edges less than the

total number of edges in Gmax
c` .

Proof. Given an `-diversity graph with 2p` vertices, no vertices can have degree greater

than 2p; otherwise, it requires more than 2p` vertices to form a vertex group of size `

with degree of 2p to meet the `-diversity constraint. Therefore, the maximum possible

number of edges in an `-diversity graph with 2p` vertices is 22p−1`.

Gmax
c` with 2p` vertices can be constructed as follows: first, we divide all ver-

tices into 2p unit groups each consisting of exactly ` vertices; then we find a perfect

matching saturating all vertices in each unit group as well as between any pair of

unit groups. As such, each vertex has two types of edges: one intra-edge connecting

vertices in the same unit group and 2p− 1 inter-edges connecting vertices in different

unit groups. Because all vertices have the same degree of 2p, this graph satisfies `-

diversity with exactly 22p−1` edges. Therefore, Gmax
c` achieves the maximum possible

number of edges, thus reaching an upper bound for all `-diversity graphs with 2p`

vertices.

Given Gc with 2p` vertices, we now compare Gmax
c` with the output graph of Gc

by MaxSubB. For the sake of simplicity, we assume ` to be even, which however is

sufficient to highlight the point from which we could improve MaxSubB. Based on

Gc, MaxSubB conducts a maximum matching saturating all vertices in each iteration

until the size of each group is reduced to `. Since ` is assumed to be even, all `

vertices in each group can be paired up by their edges. Again consider the execution

of MaxSubB as the growth of a tree. In this case, we have a perfectly balanced binary

tree where each level corresponds to one iteration, as depicted in Figure 3.5. Note
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Figure 3.6: An example for the MaxSub algorithm

that the number of edges recovered in each level is always 2p−1`. Thus, the total

number of edges recovered by MaxSubB is 2p−1`p+2p`/2, where 2p`/2 is the number

of edges recovered between vertices in the same group. One can see that the result

graph of MaxSubB has fewer edges than Gmax
c` .

The reason behind the less-than-optimal utility performance of MaxSubB is its

design of never recovering any additional edges between two groups of vertices after

they are split. For example, given the graph published by MaxSubB in Figure 3.4(D),

we could actually find another maximal matching, {(v2,v9), (v6,v10)}, between two

leaf-node groups, {v2,v4,v6,v8} and {v9,v10}. Such a matching leads to an additional

splitting of a leaf-node group, as marked in red circle in Figure 3.4(F), which turns

out to publish one more original edge without violating the `-diversity constraint.
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3.2.3 Max-Subgraph Algorithm (MaxSub)

Motivated by the aforementioned observation, we design our algorithm Max-

Subgraph (MaxSub) which improves upon MaxSubB by publishing more original

edges across the leaf-node groups. The algorithm MaxSub first follows the same

procedure as MaxSubB, and then finds additional maximal matchings across leaf-

node groups in the result graph of MaxSubB to publish more original edges, as shown

in the pseudocode of MaxSub in Appendix 1. Basically, the following three steps are

performed for every pair of leaf-node groups, gi and gj, produced by MaxSubB.

Step 1. (Inter Matching): An arbitrary maximal matching is first selected

between gi and gj subject to one constraint: if some vertices have been matched

together across the two groups previously, they are not considered any more in the

new matching. This constraint guarantees that the finally published edges across

any pair of groups are still a matching, thereby satisfying `-diversity anonymity. An

example is illustrated in Figure 3.6, where ` = 2. Suppose (v2, v10) and (v5, v9) are two

edges published in MaxSubB. So the four vertices would be marked as “unmatched”

vertices, and thus excluded from the new matching between gi and gj.

Step 2. (Partition Adjustment): Based on the new matching, gi and gj are

further partitioned into small groups which contain matched and unmatched vertices,

respectively. Partition adjustment will be conducted by removing edges from the

matching, if necessary, to ensure each newly formed group does not have fewer than

` vertices. As shown in Figure 3.6, due to the matching of two edges (v1, v7) and (v6,

v11), both gi and gj are divided into two small groups. Later on, upon checking the

possibility of publishing edges between gi and another group, say gh, if a maximal

matching is found between gh and the entire group gi after excluding matched vertices

in MaxSubB, we then check each small group in gi to see whether the newly matching

can split the small group further. In our example, three edges, (v1, v15), (v3, v13) and
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(v5, v18), form the new matching between gi and gh. However, since only one vertex

is matched in sgi1 , further splitting sgi1 will violate the constraint of group size in

`-diversity anonymity. Therefore, we abort the edge in the matching. For sgi2 , there

are two edges matched, so we split sgi2 into two smaller groups further. Meanwhile,

vertices in gh are partitioned into two groups.

Step 3. (Edge Recovery): The edges remained in the inter-matching will be

published finally. Then, we repeat Steps 1-3 between any pair of leaf-node groups

formed by MaxSubB.

3.2.3.1 Correctness and Complexity Analysis

Theorem 4. Given an arbitrary graph, its subgraph published by MaxSub satisfies

`-diversity.

Proof. We prove the graph published by MaxSub subject to `-diversity constraint

with respect to degree anonymity and relationship diversity.

Degree anonymity : The starting point of MaxSub is the output of MaxSubB,

where each leaf-node group contains only vertices with the same degree. The inter-

matching step in MaxSub splits the leaf-node groups into smaller groups in each of

which vertices still share the same degree. Furthermore, the size of each smaller group

is at least `. Therefore, the degree anonymity holds for MaxSub.

Relationship diversity : We prove MaxSub could achieve relationship diversity

by contradiction. Suppose two vertices in a smaller group s has a common neighbor

v from another smaller group s′. Since MaxSub only conducts one matching between

any pair of leaf-node groups generated by MaxSubB, one of the two edges must have

been added in MaxSubB. However, this contradicts the design of MaxSub where

vertices of the two leaf-node groups which have been matched together in MaxSubB
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are excluded from any new matching across the two groups. Thus, the result graph

by MaxSub is `-diversity anonymous.

Theorem 5. Given an arbitrary graph of n vertices, the time complexity of MaxSub

T (n) = O(n2).

Proof. Let h be the maximum size of a leaf-node group generated by MaxSubB. The

time complexity for MaxSub to process each pair of leaf-node groups is O(h2). Since

the size of each leaf-node group is at least `, the number of pair-wise matchings

across groups is (n/`)(n/` − 1)/2 at most. Thus, the processing of the output of

MaxSubB takes O(n2 · h2/`2). In addition, since MaxSub leverages MaxSubB as the

first part of the algorithm, its time complexity is O(n2). Consequently, the overall

time complexity of MaxSub is O(n2).

Essentially, the fact of more original edges being published in MaxSub mainly

depends on the success of inter-group matchings. In particular, MaxSub works most

effectively when the leaf-node groups generated by MaxSubB are large, in which more

matchings can be found. This is exactly our observation after applying MaxSubB to

our data sets, as shown in Table 3.1, which we shall further elaborate in Section 3.3.

3.2.4 Min-Supergraph Algorithm (MinSuper)

MinSuper is a two-step algorithm of expanding a graph G to its supergraph of

`-diversity anonymity: 1) forming `-groups, where `-group is referred to as a group of

` vertices without sharing any neighboring vertex in G; 2) normalizing vertex degrees

in each `-group. The pseudocode of MinSuper is given in Algorithm3. To illustrate

MinSuper, we shall use the same example (with ` = 2) as that for MaxSubB and

MaxSub, as shown in Figures 3.4(H-L).
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Step 1. (Forming `-groups): All vertices in G are first sorted in a non-ascending

order of their degrees, as shown in Figure3.4(H). From the first vertex in the ordered

sequence, MinSuper looks for ` vertices with no common neighbors to form an `-group

by checking sequentially and skipping the conflicting ones. If a group includes only

fewer than ` non-conflicting vertices after going through the whole sequence, dummy

vertices with degree of zero are padded into it aiming at ensuring group size not less

than `. In the running example, the final `-groups are listed in Figure 3.4(I).

Step 2. (Normalizing each `-group): Each vertex is first labeled with the dif-

ference between its degree and the maximum vertex degree in its group, as shown

in Figure 3.4(I). Then, dummy edges are inserted across any pair of the `-groups,

particularly between vertices of nonzero degree difference which have not been linked

with any other vertex in each other’s group. Such a constraint in the procedure of in-

jecting dummy edges essentially requires that both original and dummy edges across

any pair of `-groups do not share vertices at their ends, thus meeting the feature of

matching for `-diversity anonymity. For a group which still has at least one vertex

with nonzero degree difference after pairing up with any other group, dummy vertices

and edges will be inserted into the graph for completing the degree normalization in

that group. In particular, dummy edges will be constructed between those dummy

vertices and real vertices of nonzero degree difference aiming at reducing the degree

difference to zero. For example, as shown in Figure 3.4(J), v11 and v12 are created

for normalizing the degrees of v6 and v10. One can see that the procedure of sorting

in the first step ensures that vertices in the same `-group have similar degrees, thus

minimizing the number of dummy edges required for degree normalization.
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3.2.4.1 Correctness and Complexity Analysis

We start by demonstrating the necessity of inserting dummy vertices in Min-

Super to create a supergraph with `-diversity anonymity by Theorem 6.

Theorem 6. Solely relying on the insertion of dummy edges may not work to expand

an arbitrary graph to its `-diversity anonymous supergraph.

Proof. We know that given an `-diversity anonymous graph with α` vertices, no

vertices can have degree greater than α; otherwise, it requires the graph have more

than α` vertices to ensure there are at least ` vertices with a degree greater than α.

Therefore, if an arbitrary graph with α` vertices, G, originally has at least one vertex

of degree greater than α, solely depending on dummy edges will not help to convert

the graph to be `-diversity anonymous.

Theorem 7. Given an arbitrary graph, its supergraph published by MinSuper is `-

diversity anonymous.

Proof. First of all, forming `-groups guarantees the size of each group of `. Secondly,

due to the degree normalization procedure, all vertices in each group share the same

degree. Finally, because of the conflict-checking in forming `-groups as well as the

group-crossing matchings when normalizing vertex degrees in each group, we ensure

no vertices in the same group share any neighboring vertex. Therefore, the graph

published by MinSuper is guaranteed to be `-diversity anonymous.

Theorem 8. The time complexity of MinSuper is O(n3) for a graph of n vertices.

Proof. The time complexity of vertex sorting is O(n log(n)) by Merge Sort Algorithm.

In the worst case of forming `-groups, where each vertex conflicts with all other

vertices in a complete graph, it takes each vertex O(n2) time for checking, and thus

O(n3) for all vertices. For degree normalization, each group requires at worst to check
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all other groups for edge construction. The total number of groups is n in the worst

case of a complete graph, and the checking between any pair of groups requires O(`2).

Therefore, the time complexity of normalizing degrees is O(`2 × n2) ≈ O(n2). As a

result, the time complexity of MinSuper is O(n3).

3.3 Experimental Study

To evaluate our algorithm performance, we conducted a comprehensive set of

experiments on both synthetic and real-world data sets. In this section, we will mainly

discuss utility loss of the published social data caused by our anonymization tech-

niques with respect to both theoretical and empirical measurements. In addition, we

will investigate the impact of social network topology on our algorithm performance.

All of our proposed algorithms, MaxSubB, MaxSub and MinSuper, were implemented

on MATLAB. Besides, we used a software package called Pajek [1] for analyzing the

topological properties of anonymized graphs.

3.3.1 Data Sets

1) Real-World Data sets:

• Co-author graph: The co-authors data set consists of 7955 authors of papers

in database and theory conferences. It is available at the collection of Com-

puter Science Bibliographies (http://liinwww.ira.uka.de/bib-liography). The

co-authors graph is formed by constructing undirected an edge between any

authors who have co-authored papers. Totally, there are 10055 edges in the

graph.

• SIGMOD graph: The data set was crawled from DBLP (http://dblp.uni-

trier.de/xml/) on December 5, 2009, and contains co-authorship information
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for all previous SIGMOD conferences. There are 3791 vertices (i.e., authors)

and 10003 edges (i.e., co-authorships) in the graph.

2) Synthetic Data sets:

• Erdos Renyi Model (ER): ER is a classic random graph model, which ran-

domly constructs edges in the graph to connect nodes. We generated a random

graph with 5000 vertices and the average degree of 5 using the software Pajek

[1], which already implemented the ER model.

• R-MAT Model (R-MAT): We used the R-MAT graph model [15] to generate

another synthetic data set. The basic idea behind R-MAT is to recursively

subdivide the adjacency matrix of a graph into four equal-sized partitions, and

then distribute edges within these partitions with an unequal probabilities, a, b,

c and d. R-MAT can generate graphs characterized by scale-free and small-world

features, the two most important properties for many real-world social networks.

We followed the configuration given in [71], and set the input parameters as

follows, a = 0.45, b = 0.15, c = 0.15 and d = 0.25, to generate social network

graphs with 5000 vertices and the average vertex degree of 5.

3.3.2 Experimental Results

We will analyze the utility loss of the anonymized data in terms of both the-

oretical and empirical measurements: (1) Theoretical measurements - the number of

changed edges/vertices as compared to the original graph. (2) Empirical measure-

ments - the number of pairs of unreachable vertices, the average distance between any

pair of reachable vertices (i.e., the length of the shortest path between each pair of

vertices), the distribution of vertex degrees, and the distance distribution of reachable

vertex pairs.
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3.3.2.1 Theoretical Metrics

Figures 3.7(a-d) show that in our four data sets the number of fake vertices

created by MinSuper is quite small, as compared to the number of the original vertices.

In Figures 3.8(a-d), MaxSub publishes more original edges than MaxSubB does, which

is consistent with our algorithm design - MaxSub is extended from MaxSubB by

returning more group-crossing edges. For MinSuper, as compared to the large number

of the original edges, only a few fake edges are constructed so that the number of

edges in the graphs published by MinSuper is almost the same as the number of

original edges.

In addition, we can also observe from these figures the tradeoff between privacy

preservation and utility loss. Technically, according to Definition 3.1.1, the larger

the ` value, the securer the privacy preservation; however, a larger ` will incur more

utility loss in the published graph, because it blocks the procedure of further splitting

vertices into smaller groups to and prevents more edges from being published. From

Figures 3.8(a-d), one can see the plot of MaxSub decreases slightly with the value

of `. However, the plot of MaxSubB hardly changes with `. The reason is that as

shown in Table 3.1, the average size of a leaf-node group is large, as compared to `,

so that the change of a small ` value will not influence substantially on the matchings

in MaxSub, thus the number of edges being similar. For MinSuper, the plot rises

up with the value of `. This is because a nonconflicting group of a larger size makes

a larger difference between the maximum and minimum vertex degree in the group

greater, which requires more fake edges to be created for degree normalization.
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3.3.2.2 Empirical Metrics

Degree distribution: In Figures 4.5(a-d), the degree distribution of the graph

published by MaxSub is more similar to the distribution of the original graph than

the distribution of the graphs anonymized by MaxSubB is. MinSuper shows the best

result in which its degree distribution almost overlaps with the original distribution.

Average distance between any pair of reachable vertices and the number of pairs

of unreachable vertices : The results relevant to average distance between two vertices

and the number of pairs of unreachable vertices are presented in Figures 3.10(a-d)

and Figures 3.11(a-d), respectively. For data sets of ER, R-MAT and SIGMOD,

not only the average distance but also the number of pairs of unreachable vertices

in the graphs published by MaxSubB is much larger than the two measurements

in the graphs anonymized by MaxSub. For Co-Author data set, although the two

plots for MaxSubB and MaxSub intersect at a certain point in Figure 3.10(c), it does

not indicate that the connectivity of the graph anonymized by MaxSubB is better

than that published by MaxSub with varying ` values after their intersection point.

Because from Figure 3.11(c), one can see the number of pairs of unreachable vertices in

MaxSubB is still much larger than that in MaxSub, which means the poor connectivity

of the graph published by MaxSubB. Consequently, the two metrics, the number of

pairs of unreachable vertices and their average distance, have to be combined together

to evaluate our algorithm performance. For MinSuper, both of the two metrics are

similar to those in the original graphs, which shows a good maintenance on the utility

of publishing data.

Distance distribution: In Figures 3.12(a-d), we can still see that distance distri-

bution of the graphs published by MinSuper presents the best performance, almost

53



2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1
x 10

−3

The parameter of diversity−l

T
he

 r
at

io
 o

f n
od

es
 a

dd
ed

 
to

 th
e 

or
ig

in
al

 n
od

es

(a)

2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1
x 10

−3

The parameter of diversity−l

T
he

 r
at

io
 o

f n
od

es
 a

dd
ed

 
to

 th
e 

or
ig

in
al

 n
od

es

(b)

2 3 4 5 6 7
0

0.002

0.004

0.006

0.008

0.01

The parameter of diversity−l

T
he

 r
at

io
 o

f n
od

es
 a

dd
ed

 
to

 th
e 

or
ig

in
al

 n
od

es

(c)

2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

The parameter of diversity−l

T
he

 r
at

io
 o

f n
od

es
 a

dd
ed

 
to

 th
e 

or
ig

in
al

 n
od

es

(d)

Figure 3.7: The ratio of dummy nodes to the original nodes in MinSuper (a) ER (b)
R-MAT (c) Co-Author (d) SIGMOD

overlapping with that of the original graphs. In addition, the curve of MaxSub is

more similar to the curve of the original graph than that of MaxSubB is.

3.3.3 The Influence of Network Topology

We investigated the influence of social network topologies on our algorithm

performance with respect to two aspects, changing average vertex degree and net-

work scalability. We conducted our experiments on synthetic social network graphs

generated according to R-MAT model [15].
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Figure 3.8: The number of published edges (a) ER (b) R-MAT (c) Co-Author (d)
SIGMOD

3.3.3.1 Average Vertex Degree

In this group of experiments, we created some synthetic data sets based on

R-MAT model. We set n = 3500 and ` = 5, and increased the average vertex degree

from 2 to 16 with the increment of 2. First, one can see from Figure 3.13(a) that

despite the increasing of the average vertex degree, the number of dummy vertices

created in MinSuper is quite small.

In Figure 3.13(b), increasing the average vertex degree leads to enlarging the

difference of the number of edges in the graph anonymized by MinSuper and the
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Figure 3.9: The degree distribution in the anonymized graphs, when `=2 (a) ER (b)
R-MAT (c) Co-Author (d) SIGMOD

number of the original edges. The reason is that given a fixed number of vertices, a

larger average degree implies a vertex shares more neighbors with other vertices, which

leads to a higher possibility for the vertex to conflict with other vertices. Therefore,

in the phase of forming an `-group, more vertices may need to be checked and may

even select vertices of very low degree. In that case, the degree difference in the group

is very large, therefore, more fake edges are needed for degree normalization.

Additionally, as shown in Figure 3.13(b), with the average vertex degree the

plot of MaxSub increases much slower than the plot of the original graphs, which

indicates more utility loss. The reason is although there are more edges in a graph
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Figure 3.10: The average distance of any reachable vertices in the anonymized graphs
(a) ER (b) R-MAT (c) Co-Author (d) SIGMOD

with a higher average vertex degree, since the number of vertices are fixed, and the

topological features of social networks (e.g., small-world, scale-free) are still presented

in the graphs, thus, the result of maximal matching will not be influenced greatly.

Therefore, the plot for MaxSub does not increase so fast as that for the original

graphs. MaxSub performs better than MaxSubB, as we expected.

3.3.3.2 Network Scalability

We set the average vertex degree to 3 and ` to 5, while varying the number

of original vertices from 500 to 7500 with the increment of 500. The number of
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Figure 3.11: The number of unreachable vertex pairs in the anonymized graphs (a)
ER (b) R-MAT (c) Co-Author (d) SIGMOD

fake vertices created for anonymization is quite small, regardless of `, as shown in

Figure 3.14(a).

In Figure 3.14(b), the plots of MinSuper and the original graphs almost overlap,

and with the increasing of the network scalability, the number of edges published by

MaxSub and MaxSubB also increases tangibly, due to the impact of the scalability on

the maximal matchings. Specifically, given an average vertex degree, the larger the

network scalability, the more edges will be involved in the matchings, which leads to

an increase of edges published by MaxSubB and MaxSub. Furthermore, the group-
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Figure 3.12: The distance distribution in the anonymized graphs, when `=2 (a) ER
(b) R-MAT (c) Co-Author (d) SIGMOD
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Figure 3.13: The influence of average node degree (a)The ratio of the dummy nodes
in MinSuper (b) The number of published edges
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Figure 3.14: The influence of the number of original nodes (a)The ratio of the dummy
nodes in MinSuper (b) The number of published edges

crossing matchings in MaxSub will be more effective with larger scalability, and hence

the edges published by MaxSub are more than those published by MaxSubB.

3.4 Summary

In this chapter, we defined a practical attack compromising sensitive relation-

ship privacy from a published (and k-degree anonymized) social network. This attack

motivated us to define an `-diversity privacy guarantee for publishing social network

data. To achieve this privacy guarantee, we developed three graph manipulation

based heuristic algorithms, MaxSubB, MaxSub and MinSuper, each of which either

only deletes edges or only inserts edges/vertices. We conducted a comprehensive set

of experiments on both synthetic and real-world social network data sets to evaluate

our technique performance in terms of both theoretical and empirical utility metrics.

We note that if the intended purpose of social network publishing is to disclose

the empirical measures, then MinSuper is certainly a better approach than MaxSubB

and MaxSub, because it offers more accurate approximations of empirical measures

while achieving the same privacy guarantee. Nonetheless, we would like to note that
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this does not mean MinSuper should always be preferred over MaxSubB and MaxSub.

This is because there are also many applications of social network publishing where

the intended purpose is not to disclose the empirical measures, but to learn the

correlation between edge existence and certain attribute of vertices in the OSNs, for

example, learning rules such as the same affiliation→edge connection with support

of at least 10% and confidence of at least 75%. In this case, MaxSubB and MaxSub

may be more appropriate solutions for data publishing as they guarantee that every

published edge must exist in the original graph, thereby every learned rule holding in

the original graph. In comparison, MinSuper may require the addition of fake edges,

and hence cannot provide a similar guarantee to the accuracy of rules learned.

In fact, our definition of `-diversity can also be applied to cases where the

adversary holds other type of external knowledge except vertex degree, the design

of which will be addressed as future work. Another direction of our future work is

currently in MaxSubB and MaxSub we arbitrarily choose a maximum matching, we

may find a better way to look for a maximal matching such that more original edges

could be published. Of course, this will increase the complexity of our algorithms

which may not be suitable for publishing data from large-scale social networks.
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Algorithm 1: MaxSubB

Input : G(S, Es) - a subgraph of the original graph

Output: EG: published edges, where EG ⊆ Es

begin

1 Find a maximal matching in S forming Smatch1, Smatch2 and Sunmatch

2 if |Smatch1|+ |Smatch2| ≥ 2` then

3 if |Sunmatch| < ` then

4 Adjust the matching

5 if Adjustment succeeds then

6 EG={edges maintained in the matching}

7 if |Sadjust
match1| ≥ ` then

8 MaxSubB(G1, Sadjust
match1) and MaxSubB(G2, Sadjust

match2)

9 else

10 if |Smatch1|+ |Smatch2| ≥ ` then

11 if |Sunmatch| < ` then

12 Adjust the matching

13 if Adjustment succeeds then

14 EG={edges maintained in the matching}
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Algorithm 2: MaxSub

Input : The result graph published by MaxSubB

Output: a heuristic minimum `-diversity anonymous supergraph of G

begin

1 for any pair of leaf-node groups, gi and gj, from MaxSubB do

2 Mark vertices matched between gi and gj by MaxSubB

3 Find a maximal matching among vertices without marks

4 for each SmallGroup sgk in gi and gj do

5 Split sgk into sgmatch
k and sgunmatch

k

6 if sgmatch
k < ` or sgunmatch

k < ` then

7 Adjust the matching for sgk

8 if Adjustment is successful or (sgmatch
k ≥ ` or sgunmatch

k ≥ `)

then

9 Add back edges associated with sgmatch
k in the new matching

10 else

Abort the maximal matching

Table 3.1: Number of leaf-level groups in MaxSubB

Project ER R-MAT Co-Author SIGMOD
Nodes 5000 5000 7955 3791
Groups 22 36 21 39
Average Group size 227 139 379 97
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Algorithm 3: MinSuper

Input : G(V, E) the original graph, and its vertex set T , where T = V

Output: a heuristic minimum `-diversity anonymous supergraph of G

begin

1 Sort vertices in T in the order of their degrees; groupnum = 0

2 while T 6= ∅ do

3 t=next non-grouped node in T ; Remove t from T ; counter = 0;

4 while counter < ` and not reach the end of T do

5 Find a non-conflicting node vnc; Remove vnc from T

6 counter + +

7 if counter == ` then

8 An `-group is formed

9 else

10 An `-group is formed with (`− counter) fake nodes

11 groupnum + +

12 Calculate degree difference ∆dv for each node v

13 for i=1: groupnum− 1 do

14 for j=i : groupnum do

15 Create fake edges across gi and gj

16 if gi still has a set of nodes with nonzero ∆dv, Si then

17 while Si 6= ∅ do

18 s =next node in Si

19 Remove s from Si; Create ∆ds fake nodes

20 Construct ∆ds fake edges linking s with fake nodes
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CHAPTER 4

LOCAL-VIEW BASED SUBGRAPH DETECTION IN OSNS

In this chapter, we mainly address the problem of detecting a small connected

subgraph which covers a group of target users in OSNs from the perspective of a

third-party analyzer. The subgraph connectivity problem has been researched in the

domain of graph mining [22, 60, 35, 32, 58]. Nonetheless, the main difference between

our proposed problem and the above line of research is two-fold: (1) The existing work

addressed subgraph connectivity with the assumption of knowing the topology of the

entire graph; however, we instead consider subgraph detection from the perspective

of a third-party analyzer who only has a local view for a particular user in OSNs.

(2) In addition to the objective considered in the traditional subgraph connectivity

problem - minimizing the discovered subgraph that connects all of the target vertices,

we also care for the cost in searching the subgraph on OSNs, which is specified by

the number of queries (i.e., web accesses) issued in OSNs for the subgraph detection,

as many OSN web sites limit the number of web accesses per IP address per day to

avoid the intense workload at OSN servers.

In addition, there has been some work which researches on efficiently search-

ing on social network graphs when the topologies of the entire graphs are unknown.

Adamic et al. [3, 4] studied searching the shortest path between any two nodes on net-

work graphs with power-law link distributions. They noticed that high connectivity

nodes play an important role in communicating and networking, which is exploited

in design of their searching technique. However, rather than searching for a shortest
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path between a pair of vertices, our work is focused on searching the connectivity of

a target group of vertices in OSNs, which are usually far more than two.

The roadmap of this chapter is as follows. Section 4.1 introduces preliminaries

including system model and problem definition. We propose two searching techniques

in Section 4.2 which seeks a connected subgraph by a small number of queries to link

all target vertices and introduce a heuristic algorithm for detecting a small subgraph

which connects all of the target vertices given the entire graph in Section 4.3. We

combine the techniques to be discussed in Sections 4.2 and 4.3 to solve our LMSD

problem. In Section 4.4, we conduct a comprehensive set of experiments over large-

scale real social network data sets to evaluate the effectiveness and efficiency of our

proposed techniques. Finally, conclusions are drawn in Section 4.5 with some discus-

sions on future research based on our finding.

4.1 System Model and Problem Definition

We model an OSN by an undirected graph, G(V, E), in which the vertex set V

represents users and the edge set E denotes the relationships between users, such as

friendships. In this chapter, we only consider one type of relationships in an OSN for

our model. The procedure of discovering the local view of a user on an OSN through

web access can be modeled as querying a vertex on the OSN graph and responding

with the list of its neighboring nodes. The number of a vertex’s neighbors in the OSN

corresponds to the vertex degree in the OSN graph.

Given the local-view discovery model, the procedure of our subgraph detection

is based on the interaction with the OSN by a sequence of queries. We keep track of

not only vertices already queried but also a list of vertex candidates to be queried in

the near future. A vertex is said to be a candidate when it has not yet been queried

while already seen in the local-view of at least one queried vertex. As more vertices

66



Quiried user

User candidate

Figure 4.1: The procedure of querying
on an OSN

S0

1 2 3

4

10

Figure 4.2: Example of the inefficiency
of UMS

are queried, the third-party analyzer’s view on the OSN graph becomes larger by

stitching the local-views of queried vertices. Figure 4.1 illustrates a generic querying

procedure for our subgraph detection in an OSN.

Given the system model, our local-view based minimum subgraph detection

problem is defined in Problem 1. Note that the LMSD problem requires both the

size of the detected subgraph and the number of queries be minimized, which is hard

to achieve at the same time. To cope with this challenge, we heuristically interpret

the problem in a way of sequentially handling the two concerns. Specifically, we wish

to first discover a connected subgraph on the OSN which contains all target vertices

by querying a small number of vertices, and then detect the minimum subgraph over

the connected subgraph discovered in the first step. The underlying support to the

effectiveness of our interpretation to solve the LMSD problem is if the number of

vertices queried in the first step is small, the size of the finally detected subgraph
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should not be that large. One can see given the connected subgraph discovered in the

first step, the minimum subgraph detection becomes Centralized Minimum Subgraph

Detection problem (CMSD) - given the graph topology, looking for a minimum sub-

graph which connects all target vertices. The CMSD problem is a hard problem as

proved in Theorem 9. The complexity of the CMSD indirectly indicates the hardness

of the LMSD problem, because the former is part of the latter. Based on our afore-

mentioned interpretation, now we can shift our attention from directly solving the

LMSD problem to efficiently searching a connected subgraph which links all target

vertices in the OSN graph by a small number of queries, which will be addressed

particularly in the following section.

Problem 1. Local-view based Minimum Subgraph Detection (LMSD): Given a set of

target vertices S0 in a graph G(V, E) the full topology of which is unknown initially,

find the minimum number of vertices from V \S0 to make all target vertices connected

by querying the minimum number of vertices for local-view discovery.

Theorem

Theorem 9. The Centralized Minimum Subgraph Detection problem (CMSD) is NP-

hard.

Proof. We will prove the NP-hardness of CMSD by a reduction to the Steiner Tree

problem (ST). The definition of ST is : Given an unweighed graph G and a set of

vertices Vt in it, find a tree with minimum number of edges in G, which make any two

vertices in Vt reachable to each other either directly or indirectly via other vertices in

G. As is well known, the ST problem is NP-hard [24]. The decision version of ST is

that given an unweighed graph G(V, E), a set of vertices Vt ⊆ V and an integer k, we

are looking for a tree which involves all vertices in Vt and contains at most k edges

from E. The decision version of CMSD problem is that given an unweighed graph
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G′(V ′, E ′), a set of vertices V ′
t ⊆ V ′ and an integer k′, we are seeking for a subgraph

of G′ which includes all vertices in V ′
t and covers at most k′ vertices from V ′ \ V ′

t .

Now we will demonstrate that there is a solution for ST if and only if there

is a solution for CMSD. Evidently, the vertices in any steiner tree with at most k

edges will be the solution of CMSD, where k′ = k + 1− |Vt|. On the other hand, any

spanning tree of the subgraph found in CMSD will form a steiner tree with at most

k′ + |V ′
t | − 1 edges. Here the spanning tree is referred to as a tree composed of all

the vertices and some (or perhaps all) of the edges of a given graph. Therefore, the

CMSD problem is NP-Hard.

4.2 Social Network Feature Based Searching

The traditional graph searching techniques, such as Depth First Search (DFS) or

Breadth First Search (BFS), can be applied to discovering a subgraph which covers

all target vertices; however, their cost on querying the OSN is non-trivial without

knowing the topology of the OSN graph. Therefore, we are motivated to design more

efficient searching techniques to discover the subgraph connecting all target vertices.

Both of the two techniques we are going to propose in this section start the

searching by querying all target vertices on the OSN graph. Each target vertex

and its corresponding neighboring nodes returned from its query form a subgraph.

At this point, these subgraphs are most likely disjoint with each other due to the

sparse topology of social network graph. Each of the subgraphs has its own set of

vertex candidates which have been “seen” on the OSN graph, while not queried yet.

The initial vertex candidate set of a subgraph aforementioned solely contains the

neighbors of the target vertex in that subgraph. However, a subgraph will grow as

a vertex selected from its candidate set is queried. Now the problem of efficiently

discovering a connected subgraph which connects all target vertices becomes how to
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select vertices to query so that the subgraphs of all target vertices can be merged

into one piece quickly. Apparently, the selection of vertices to query is critical in our

searching. In the following, we will first define a metric to evaluate the importance

of a vertex in searching and then introduce our proposed searching techniques which

are based on the well-known topological properties of social networks to ensure the

efficiency of our searching on OSNs.

4.2.1 The Importance of Vertex Candidates

We see that the efficiency of merging the subgraphs associated with target

vertices is determined by the selection of vertices to query in our searching procedure.

In a dense graph (|E| � |V |), a straightforward criteria to select a vertex candidate is

the number of target vertices which will become reachable after querying the vertex.

A vertex should be queried if it can make more target vertices connected. However,

solely leveraging such a criteria to select a vertex candidate on a sparse graph, such

as social network graphs, may not be sufficient, and may even lead the searching

process to terminate with failure. This is because in a sparse graph it is highly likely

that none of the vertex candidates can directly improve the reachability among target

vertices. Therefore, we need additional measurement to evaluate the importance of a

vertex candidate based on our final goal of merging all of the subgraphs.

Inspired by the critical role of high-degree vertices in searching on social network

graphs, which is discovered in [3, 4], we also prioritize vertex candidates of high degrees

to query in our searching. However, the real degree of a vertex candidate is unknown

until we query it, therefore, we need to predict the degree for each vertex candidate.

We define pre-degree for each vertex candidate, which is referred to as the number

of edges having been seen associated with that vertex upon that status of searching.

For example, in Figure 4.1 the pre-degree of node 3 is two at that time point of
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searching, as we only see its connections with node 1 and node 2. As we query

more vertices which directly connect with node 3, its pre-degree will increase. Given

the measurement to evaluate the importance of vertex candidates, we will detail two

searching techniques in the next subsection to quickly merge the subgraphs of all

target vertices.

4.2.2 Algorithmic Techniques for Subgraph Merging

We propose two algorithmic searching techniques, called Unbalanced Multiple-

Subgraph (UMS) and Balanced Multiple-Subgraph (BMS), to connect the subgraphs of

all target vertices. The main difference between these two techniques is how to decide

the set of vertex candidates from which to choose a vertex to query next. Our delicate

selection of the candidate set plays a critical role in efficiently merging subgraphs,

as its design incorporates the topological properties of social networks. Before we

dive into the details of our techniques, let us first introduce a terminology, subgraph

degree, which is referred to as the maximum degree of vertices already queried in the

subgraph. The subgraph degree critically determines from which subgraph we select

a vertex candidate to query in the next searching step.

4.2.2.1 Unbalanced Multiple-Subgraph(UMS)

Basically, the UMS searching technique consists of three steps:

Step 1. Query all target vertices on the OSN graph and form their subgraphs indi-

vidually.

Step 2. Select the subgraph with maximum subgraph degree as the target subgraph.

Step 3. Query the vertex with the highest pre-degree from the vertex candidate set

of the target subgraph (break tie arbitrarily).
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After querying a vertex, the target subgraph, its vertex candidate set and the

pre-degrees of its vertex candidates are updated according to the return list of neigh-

boring nodes of the queried vertex. If the query results in a subgraph overlapping

with the target subgraph, they will be merged together as the target graph. Corre-

spondingly, their sets of vertex candidates and their sets of vertices already queried

will be merged. Additionally, the pre-degrees of vertex candidates will be updated, if

necessary. The Step 3 will be repeated until the subgraphs of all target vertices are

merged together. The reason we call this algorithm Unbalanced Multiple-Subgraph

Searching is once the target subgraph is determined at the beginning of our search, it

will not be changed as the search goes on, which seems to bias to the subgraph with

maximum degree which is obtained in the Step 1.

Let’s see an example illustrated in Figure 4.3. After querying nodes 1, 2 and 3,

three subgraphs, Subg1, Subg2 and Subg3, are correspondingly formed with degrees

of 2, 1, 3, separately. Based on the maximum degree rule in the UMS searching

technique, Subg3 is chosen as the target subgraph. Node 4 is randomly selected as

the first vertex to query from the candidate set of Subg3 as there are three vertex

candidates with the same degree. Subg3 grows up. Then, node 5 becomes the candi-

date with the highest pre-degree in Subg3, therefore, we query node 5, which leads to

the merging of Subg2 with Subg3. The search continues by querying vertices selected

from the candidate set of Subg3 until Subg1 is also merged with Subg3.

4.2.2.2 Balanced Multiple-Subgraph (BMS)

The inspiration for designing BMS came from our concern over the efficiency

of searching by UMS. One can see in essence UMS prioritizes vertices of high degrees

in searching, which may not be able to efficiently reach out to the target vertices

of low degrees. For example, in Figure 4.2 the subgraphs initialized with the target
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vertices of very low degrees can do nothing but wait for the reaching out of the

subgraph with the maximum degree. However, since the vertices of high degrees in

social networks are well connected as we introduced in Chapter 2, if we could reduce

the degree difference among subgraphs by prioritizing the searching on the subgraphs

of low degrees, the procedure of merging subgraphs should become faster. Based on

this idea, we design the BMS searching technique which also consists of three steps:

Step 1. Query all target vertices on the OSN graph and form individual subgraphs.

Step 2. Select the subgraph with minimum subgraph degree as the target subgraph.

Step 3. Pick up a vertex candidate of the highest pre-degree from the candidate set

of the target subgraph for querying (break tie arbitrarily).
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Similar to UMS, in BMS if querying a vertex leads any subgraphs to overlapping,

they will be merged by combining their vertex candidate sets, and the pre-degrees of

their vertex candidates will be updated. Note after querying a vertex, the subgraph

degree will be updated if the newly queried vertex has a degree higher than the current

degree of that subgraph. One can see that the degree of the target subgraph may be

increased as the search goes on, so that when it becomes greater than the minimum

subgraph degree among all subgraphs, the target subgraph will be reassigned. In our

searching procedure, whenever two subgraphs merge together, the degree of the newly

formed subgraph will be assigned with the larger degree of the two subgraphs. Steps 2

and 3 will be repeated until the subgraphs of all target vertices are connected together.

Unlike UMS, in BMS the target subgraph is dynamically changed to take care of

low-degree subgraphs in our searching procedure, therefore, we call this technique

Balanced Multiple-Subgraph Searching.

Let us run BMS on the toy example we used before for UMS, as shown in

Figure 4.4. Initially, the subgraphs formed by querying target vertices have degrees

of 2, 1, 3, separately. Since Subg2 has the minimum degree, it is defined as the

target subgraph in the first query. Then the only vertex candidate in Subg2, node

4, is queried, which causes the merging of Subg2 and Subg3. The newly merged

subgraph has degree of 3, which is larger than the degree of Subg1, therefore, the

target subgraph is reassigned Subg1. In Subg1, node 5 is selected to query, which

grows Subg1 and increases its degree to 4. At this point, the target subgraph will be

reassigned again. The search continues until all subgraphs are merged. One can see

the difference between our proposed UMS and BMS techniques is how to select the

target subgraph.

Here we stress the unique topological properties of social networks used in

design of BMS to ensure the efficiency of merging the subgraphs of target vertices
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in OSNs. First of all, based on the literature [4], we know that high-degree vertex

based search can reach vertices of highest degree with a few steps of about O(n
γ−2
γ−1 )

in social network graphs, where γ is the exponent of the power law distribution, and

n is the number of vertices in the networks. Therefore, in our search each subgraph

will reach a vertex of highest degree with a few steps of searching. Second, because of

the limited number of vertices of highest degree in scale-free social networks as well as

their well-connectivity, searching multiple subgraphs along high-degree vertices will

let the subgraphs grow towards the vertices of highest degree and merge together.

Third, due to the well-connectivity among not only highest-degree vertices but also

vertices of high degrees, balancing the search to take care of low-degree subgraphs

will speed up the merging of all individual subgraphs associated with target vertices.

Incorporating all of these topological properties in design of BMS ensures its efficiency

of searching.

4.3 Centralized Minimum Subgraph Detection (CMSD)

Given the connected subgraph searched by our aforementioned techniques, we

can solve the LMSD problem by looking for a even smaller subgraph which links all

target vertices in the given subgraph. Considering the association between the CMSD

problem and the Steiner Tree problem (ST) as we discussed in Section 4.1, we apply

a classic approximate ST algorithm proposed in [37] to detect the minimum subgraph

in the subgraph finally merged by our searching techniques on the OSN graph.

There are two main reasons for us to employ the ST algorithm in [37]: (1) It

can guarantee the size of the detected subgraph is no larger than 2(1−1/`) times the

size of the optimal subgraph, where ` is the number of leaves in the optimal tree. (2)

It runs faster with the time complexity |S0||V |2, which is a critical concern when run-

ning algorithms on large-scale OSN data sets. Given an undirected and unweighed
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graph G(V, E) and a set of target vertices S0 ⊆ V , there are four steps to find a

heuristic minimum steiner tree in [37]:

Step 1. Construct the complete undirected graph G1(V1, E1) by creating an edge

between each pair of vertices in S0 with a label of the length of their shortest path

on G.

Step 2. Find the minimal spanning tree T1 of G1.

Step 3. Construct the subgraph Gs of G by replacing each edge in T1 by its corre-

sponding shortest path in G.

Step 4. Find the minimal spanning tree Ts of Gs. Delete from Ts edges with leaves

which are non-steiner points.

4.4 Experimental Study

We evaluate the performance of our proposed techniques of solving the LMSD

problem by a comprehensive set of experiments on large-scale real-world data sets of

OSNs. We first introduce the data sets used in our experiments, and then define the

measurements intended for evaluating our technique performance. We implemented

the algorithms of UMS and BMS as well as the classic heuristic Steiner Tree algorithm

(ST)[37] in Python (including NetworkX 1.5 package).

We conducted multiple groups of experiments for each data set by varying the

number of the target vertices we selected, ranging from 10 to 60 in increments of

10. Furthermore, given a specific size of the target vertex set, we took five trials of

experiments by selecting target vertices uniformly at random from the input graph

associated with each data set.
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4.4.1 Real Data Sets

We chose three data sets for our experimental study. The Facebook data set

[63] is the data crawled from Facebook.com, capturing the friendship between users,

which can be modeled as an undirected graph. The other two data sets, the Epinion

data set [55] and the Slashdot data set [38], are collected in [2]. The Epinion data set

shows the trust relationship between users on the customer review site Epinion.com.

This data set is originally mapped to a directed graph, as the trust relationship is

asymmetric. A user A trusts another user B does not ensure B also trusts A. However,

since we consider undirected graphs in our problem formulation and algorithm design,

we converted this data set to an undirected graph. Specifically, if there originally

exists at least one edge between two vertices, regardless of their direction, we create

an edge between the two vertices in the corresponding undirected graph. The Slashdot

data set contains the friend/foe links between the users of Slashdot, where the links

are also directional. The data set does not distinguish friendship from foeship between

users. Similar to the Epinion data set, we also convert the Slashdot data set to an

undirected graph for our experimental study. In Table 6.1, we list the number of

edges/vertices in the undirected graph of each data set.

Furthermore, since we are concerned with how to connect a group of target

vertices together by searching on an OSN, we need to ensure all of the vertices are

indeed reachable to each other in the OSN graphs, that is to say, the modeled undi-

rected graphs should be connected. Therefore, we pre-processed those original data

sets by extracting the largest connected component from each data set. In Table 6.1,

we also list the number of edges/vertices in the largest component of each data set.

In our experiments we use the largest connected component of each data set as the

input graph for evaluating our algorithms performance. Note that the data sets we
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Table 4.1: Real data sets for our experiments

Date Sets Vertices Edges Largest Component (V, E)
Facebook [63] 63731 817090 (63392, 816886)
Epinion [55] 75888 405740 (75877, 405739)
Slashdot [38] 82168 504230 (82168, 504230)

0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

2.5

3

3.5

4x 10
4

Vertex Degree

T
h

e 
n

u
m

b
er

 o
f 

ve
rt

ic
es

 

 

Facebook
Epinion
Slashdot

Figure 4.5: Degree distribution

will mention in the following mean the processed data sets unless otherwise stated.

4.4.2 Degree Distribution

We plotted the degree distribution for each data set. Figure 4.5 shows the

vertex degree distributions of our OSN graphs almost follow the power-law distribu-

tion, which indicates the limited number of highest-degree vertices, thus ensuring the

merging of individual subgraphs of the target vertices in BMS.

4.4.3 Connectivity of Vertices of High Degrees

To confirm the well-connectivity among vertices of high degrees in OSN graphs,

we further analyze our three data sets. For each data set, we first extracted the
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Figure 4.6: Average distance of reachable vertex pairs

subgraph formed by vertices with a degree more than a threshold and their associated

edges. The threshold ranges from 100 to 600 in increments of 100. To analyze the

connectivity among vertices of high degrees, we derived the number of the connected

components and the average length of the shortest paths (i.e., distance) between any

pair of reachable vertices in each extracted subgraph. From Table 4.2, we can see

that although the number of vertices decreases as the degree threshold goes up, the

vertices of high degrees still almost form a connected component. Furthermore, the

average distance between any reachable pair of vertices is about 2, as shown in Figure

4.6. These results demonstrate the well-connectivity among vertices of high degrees

in our OSN data sets, which ensures the good performance of our BMS technique.

4.4.4 Effectiveness

The effectiveness of our techniques to solve the LMSD problem is evaluated

by the size of the finally detected subgraph. We not only applied the heuristic ST

algorithm [37] to the subgraph finally merged by the searching techniques of UMS
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Table 4.2: Subgraphs of high-degree vertices

≥ Degree 100 200 300 400 500 600
Facebook Vertices 3307 461 106 46 26 11

Components 1 1 1 1 1 2

Epinion Vertices 1684 630 290 147 86 52
Components 2 1 1 1 1 1

Slashdot Vertices 1916 757 235 115 61 39
Components 1 2 2 1 3 3

and BMS, but also ran it on each data set directly in order to compare our local-view

based subgraph detection algorithms with the subgraph detection given the global

graph. For the sake of simplifying our reference to the algorithm applied on the

global graph, we name it the Global Steiner Tree algorithm (GST). Moreover, when

we mention UMS (BMS) in the following discussion, we mean the entire technique

which first uses UMS (BMS) to search a connected subgraph containing all target

vertices by a few queries and then applies ST on the connected subgraph to find the

minimum-size subgraph connecting the target vertices.

From Figures 4.8, 4.10 and 4.12, we can see that the sizes of subgraphs finally

detected by UMS and BMS are fairly acceptable, as compared to the number of target

vertices. Furthermore, the sizes of those detected subgraphs are similar to the size

of those detected by the GST algorithm, which demonstrates the effectiveness of our

techniques to solve the LMSD problem. One may also notice that in some cases

the subgraphs detected by UMS and BMS are even smaller than those discovered by

the GST algorithm. This happens because the heuristic ST algorithm [37] has the

approximation ratio of 2(1− 1/`), thus it is possible for our techniques to discover a

subgraph smaller than the subgraph detected by GST.

In addition to the size of detected subgraphs, we also plotted the number of

queried vertices by BMS in Figures 4.8, 4.10 and 4.12, which is particularly named
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Figure 4.7: The cost for Facebook set

BMS-N. By comparing BMS and BMS-N, we notice that the number of queried

vertices has the same order of magnitude as the size of the subgraph detected by BMS,

which validates our interpretation to the LMSD problem mentioned in Section 4.1 -

a small number of queries will not lead to detecting a large subgraph which connects

all target vertices. It also demonstrates the effectiveness of the BMS technique on

merging individual subgraphs of the target vertices in our searching.

4.4.5 Efficiency

We exploited the number of queried vertices to evaluate the efficiency of our

proposed algorithms. Evidently, issuing a query in an OSN requires the interaction

with the OSN server, thus increasing the workload at the server and also costing time.

Furthermore, nowadays many OSNs have limited the number of web accesses from

one (or a group of ) IP address(es). Therefore, the fewer queries needed for subgraph

discovery the better. We straightforwardly use the number of queried vertices to
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Figure 4.8: The effectiveness for Facebook set
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Figure 4.9: The cost for Epinion set
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Figure 4.10: The effectiveness for Epinion set
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Figure 4.11: The cost for Slashdot set
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Figure 4.12: The effectiveness for Slashdot set

quantify the efficiency of our searching techniques. Figures 4.7, 4.9 and 4.11 compare

the number of the queried vertices in UMS and BMS. However, since the order of

magnitude of the number of queried vertices in UMS is far more than the order of

magnitude of the number of queried vertices in BMS, the bar plot for BMS is not seen

well in the figures. But one can look at the bar plots of BMS-N in Figures 4.8, 4.10

and 4.12, which are exactly the number of vertices queried by BMS. We can see the

BMS technique outperforms the UMS technique. We owe the remarkable efficiency

provided by BMS to our design principle, which delicately balances the degrees of

subgraphs in searching and also leverages the well-connectivity of vertices of high de-

grees. Furthermore, the good performance of BMS on efficiency in turn demonstrates

the well-connectivity among vertices is not limited to high-degree vertices, rather, all

vertices on the OSNs are connected well, as we have found a way to discover the

connectivity of a group of arbitrarily given vertices within a few number of queries in

OSNs.

84



4.5 Summary

In this chapter, we proposed a novel problem of discovering a minimum con-

nected subgraph to a given group of vertices from the perspective of a third-party

analyzer on OSNs, namely local-view based minimum subgraph detection (LMSD).

To solve the LMSD problem, we proposed two searching techniques, called Unbal-

anced Multiple-Subgraph (UMS) and Balanced Multiple-Subgraph (BMS), which are

particularly based on the well-known topological properties of social networks, in-

cluding small-world phenomenon, power-law vertex degree distribution and the well-

connectivity of vertices of high degrees.

Through a comprehensive set of experiments over the large-scale real-world

data sets from OSNs, we evaluated the performance of our proposed techniques. The

BMS technique displays a remarkably good performance, as compared to UMS, which

demonstrates all users on OSNs are well connected on OSNs as we can detect their

connectivity by a small number of vertex queries. We believe that the discovery of

the well-connectivity feature in OSNs will help improve some existing random-walking

based searching techniques [20, 25, 33, 66, 67, 68, 69]. An OSN is so different from

a random graph that searching techniques should be designed based on its unique

topological features to enhance the efficiency of searching.

Furthermore, the design principle in BMS of searching from low-degree sub-

graphs shows great impact on the efficiency in solving the LMSD problem, particu-

larly making the subgraphs of all target vertices merge together quickly in searching.

In fact, given the minimum subgraph detected by our techniques, a lot of applications

can be developed on it, which explores the scope of applications the third parties can

develop in OSNs.
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CHAPTER 5

REPUTATION-BASED DATA FORWARDING IN MSNs

In this chapter, we propose a trust-based framework which can be flexibly inte-

grated with a large family of existing single-copy data forwarding protocols in MSNs,

aiming at providing comprehensive evaluation to an encountering node’s ability of

delivering data and preventing a malicious node from constructing fake relations in

MSNs. With the help of our proposed framework, not only black hole attack but also

the attack of arbitrarily forwarding data can be counteracted effectively.

The remainder of this chapter is organized as follows. Section 5.1 introduces

the network scenario and the assumptions behind our framework. After giving an

overview of our framework in Section 5.2, we first design a control message in Section

5.3, called the Positive Feedback Message (PFM), and then present our proposed

trust-based framework in detail in Section 5.4. Section 5.5 describes the simulation

setup and the analysis of experimental results. Section 5.6 concludes the chapter.

5.1 Network Assumption

1) Scenario: The scenario we are concerned with is a network with several

wireless devices (i.e., nodes) moving in a community, which are either held by people

or fixed on buses. In such a network, data are forwarded in a store-and-forward

manner, in which nodes will not forward data until encountering another node with a

stronger competency of delivering data. Admittedly, multi-copy data transmission is

more robust in wireless network than single-copy transmission, because although one

copy of a data message is lost, other copies may still get delivered to the destination.
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However, in order to demonstrate the disastrous impact of malicious nodes on the

network performance (i.e., delivery rate) in MSNs, we solely consider the single-copy

data transmission, in which each node will remove the data message after forwarding

it to another node.

2) Node capability : Assume nodes have the same capability of computing, com-

municating and storing. Their communication ability is limited by specific wireless

techniques. For instance, through Bluetooth, only when two nodes move into each

other’s communication range (e.g., 10∼100 m) could they detect each other and start

communication. Additionally, in order to secure data transmission over the wireless

network, each node is assigned a unique ID and a pair of public/private keys for en-

crypting and decrypting data, as well as with a public key certificate issued by some

trustable Public Key Infrastructure (PKI).

3) Attack model : Similar to benign nodes in the network, malicious nodes are

assumed to be wireless devices as well, while they may have stronger capability of com-

puting and storing as compared to those benign nodes. Furthermore, malicious nodes

independently mount passive attacks - deliberately dropping or arbitrarily forward-

ing data which they intercepted by bloating their ability of meeting the destination

nodes. Note that active attacks, such as tampering with data, can also be launched

by malicious nodes; however, the traditional cryptographic techniques developed for

wireless networks perform well against those attacks, and hence we will not stress

them here.

5.2 Overview of Trust-Based Framework with PFM

Similar to the traditional Trust Management Systems (TMS), we include a

Watchdog component into our framework. The functionality of the Watchdog em-

bedded at each nodes is to monitor the forwarding behavior other nodes to whom it
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forwards data. In our framework, node A will evaluate node B’s forwarding behavior

in terms of the evidence, Positive Feedback Message (PFM), created by another node,

say node C, to whom node B further forwards the data that is forwarded by node

A. Specifically, after receiving the data, node C generates a PFM destined to node A

with the intention of convincing node A that node B has helped forward data success-

fully. Each node (e.g., node A) who sends out data to its next-hop forwarders keeps

recording for each of those forwarders how many PFMs corresponding to data sent

out have and have not come back using two counters, respectively. In the simplest

case, a forwarder is suspicious, if the corresponding PFM is never received by the

node who forwarded the data message to the forwarder, because there is no positive

evidence to demonstrate the good forwarding behavior of the forwarder. However, in

addition to malicious behaviors, the non-arrival of a PFM possibly results from such

uncertainty in MSNs as network partitions, which will be particularly addressed in

our trust/reputation formulation in Section 5.4.

PFMs, which are collected at the Watchdog and fed into the main body of our

trust-based framework, help form the reputation and trust opinion to another node’s

forwarding behavior in the future. Specifically, at each node, the direct reputation

of the other node’s forwarding behavior is formed based on the two counters used

to record the forwarding behaviors of the latter node. In addition to the direct

reputation evaluation, whenever two nodes meet together, they will exchange their

counting records, which will be used to calculate the indirect reputation. Based

on the direct and indirect information, a trust value will be derived and integrated

with the probability of meeting the destination node to comprehensively evaluate the

forwarding competency of a node.

In the following, we will first introduce the PFM structure in Section 5.3 and

then discuss the main body of our trust-based framework in Section 5.4.
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IDsource IDdestination Seq

IDsender IDforwarder IDreceiver RT Ek-[H(Data Info | PF Info)]FA

Generation Time LifeTime

Figure 5.1: Structure of Positive Feedback Message (PFM)

5.3 Positive Feedback Message (PFM)

As the key part in our Watchdog mechanism, the Positive Feedback Message

(PFM) is designed to demonstrate that a node already truthfully forwarded data to

another node rather than dropping them or arbitrarily forwarding them to a node

with weaker competency of delivering data. In the following, we will first introduce

the structure of PFM and then explain its functionality in detail by an example

illustrated in Fig. 5.2.

5.3.1 Structure of PFM

As illustrated in Fig. 5.1, a PFM consists of three fields: Data Information,

PF Information and Signature of PFM creator. The combination of Data Informa-

tion and PF Information uniquely represents one-hop forwarding behavior of a data

message.

1) Data Information: A data message is specified by the identities of the

source/destination and the message sequence number. In addition, Lifetime and

CreationTime of a data message determine the lifetime of its PFMs. When a data

message expires, its PFMs will be removed from the network to save storage resource.

2) PF Information: PF Information represents a one-hop behavior of a for-

warder identified with IDforwarder. The field of ForwardingAbility (FA) quantifies
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the goodness of the forwarder’s behavior. Specifically, a high value of FA demon-

strates that the data message has been forwarded to a node (i.e., the PFM’s creator)

with more competency of delivering data to the destination. FA is designed to prevent

malicious nodes from arbitrarily forwarding data while still earning good reputation.

Without FA, the destination node of a PFM can not distinguish a desirable forwarding

behavior from a bad one after receiving the PFM.

3) Signature: The Signature of the PFM creator prevents a malicious node,

who attempts to earn reputation of forwarding behavior, from generating fake PFMs

or tampering the original information in PFMs.

5.3.2 An Example of the Functionality of PFM

Essentially, the functionality of PFM is to convince the node who sent a data

message to a forwarder that the forwarder has further forwarded the data message to

a more competent node (i.e., the PFM creator).

To create a PFM, the PFM creator requires some information about the pre-

vious hop forwarding of the corresponding data message. Thus, some information

needs to be attached to the raw data message updated after each forwarding, such as

Sender, Forwarder, Receiver, Receiving Time (RT ) and Sending Time (ST ). Appar-

ently, signature and encryption techniques are required to secure data transmission

and prevent malicious node from tampering the data message. However, the signature

details will not be discussed here, since we mainly emphasize the function of PFM.

An example is given in Fig. 5.2 to illustrate how to generate, forward and verify a

PFM.

Step 1: PFM generation: Upon encountering node A and comparing with

node A’s delivery competency, node S sends the data message to node A who is more

competent for delivering data, meanwhile, node S sets a timer to wait for the arrival
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of the corresponding PFM. Node A carries the data message until meeting another

more competent node, say node B, and then sends it to node B after updating the

fields attached to the raw data message. Once receiving the data message, node B

creates a PFM destined to node S.

Step 2: PFM transmission: The PFM is transmitted over the network by the

global/local epidemic forwarding [62]. Admittedly, PFMs can be regarded as regular

data and forwarded by some existing data forwarding protocols, which will bring in

less overhead than epidemic forwarding [62]. However, since the size of a PFM is quite

small, the epidemic routing will not introduce a large amount of overhead into the

network. Furthermore, many PFMs can be compressed together for one transmission

in practice. Therefore, we simply employ epidemic forwarding for PFM transmission

in our framework.

Step 3: PFM verification: After receiving a PFM, other nodes except node

S will continue to forward it, while node S stops forwarding it further and verifies the

goodness of the forwarding behavior of node A in terms of the FA field. If it is proved

to be a good forwarding, one of the two counters mentioned in the Section 5.2 will

be increased by one. If a bad forwarding is proved, or the timer expires before the

arrival of the PFM, the other counter will be increased by one. These two counters

have a critical influence on updating a forwarder’s reputation.

Compared to the end-to-end ACK mechanism in MANETs, the advantage of

applying PFM is that the feedback of a forwarding behavior comes faster, which is

of primary importance for the reputation updating in MSNs characterized by long

delays and frequent partitions. More specifically, rather than waiting for the arrival of

ACKs generated from the data destination node, intermediate nodes (data senders)

are able to receive PFMs earlier to update the reputations of the next-hop forwarders

in a relatively real-time manner. In addition, for the end-to-end ACK mechanism, if a
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data message is lost on the way to the destination, the reputation of all intermediate

forwarders will be impacted negatively, even though they indeed help with forwarding.

However, in the PFM-based mechanism, the loss of a data message only influences

the reputation of the last forwarder who forwarded the data.

5.4 Our Trust-Based Framework

After introducing the special structure and functions of PFM, we will discuss

the main body of our trust-based framework for data forwarding in MSNs. Techni-

cally, there exist three modules in our proposed framework, Reputation Module, Trust

Evaluation Module and Forwarding Decision Module. The Fig. 5.3 not only compre-

hensively shows the integration of the three modules but also presents some related

events happening in those modules. In the following, we will detail the functions of

these modules and corresponding events that occur in the modules.

5.4.1 Reputation Module

The reputation module focuses on how to exploit the collected information to

derive the reputation of a node for data forwarding. Such information basically in-

cludes the direct observation (i.e., first-hand information) and the indirect observation

(i.e., second-hand information) on an encounter’s historical forwarding behaviors.

• Direct Observation: The direct observation is provided by the Watchdog

component embedded in each node. Specifically, in MSNs, the Watchdog scrutinizes

a forwarder’s forwarding behavior by collecting PFMs which are exploited as the

evidence to demonstrate the effective forwarding behaviors of the forwarder.

Based on the traditional concept in TMS [23], we also exploit the Beta dis-

tribution, Beta(α,β), to estimate the reputation to the forwarding behavior of an

encounter, where α and β count behaviors of good forwarding and bad one (i.e., not
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forwarding or ineffective forwarding), respectively. Specifically, after the sender of a

data message gets the PFM that it is waiting for and further confirms the effective-

ness of that forwarding, α will be increased by one. Otherwise, if the timer times out

before the PFM arrives, or the received PFM indicates the data message has been

forwarded to an incompetent node, β will be increased by one.

Note that even based on direct observation, one node’s evaluation to the other

node’s forwarding behavior should diminish slowly, if it has been a long time since the

former directly observed the forwarding behavior of the latter. The intuition is that

a forwarder may change its forwarding behavior between good and bad over time, so

that the reputation should be aged and evaluated in a real-time manner. Specifically,

at a fixed interval, ∆t, node i updates αdir
ij and βdir

ij by adding the number of the

new forwarding behaviors of node j during ∆t to the old values aged by a factor

wdir, as shown in Equations (5.1) and (5.2), where pij and qij represent the numbers

of good forwarding behaviors and bad ones recorded by the two counters during ∆t,

respectively.

αdir
ij(new) = wdir × αdir

ij(old) + pij (5.1)

βdir
ij(new) = wdir × βdir

ij(old) + qij (5.2)

In practice, αdir
ij and βdir

ij may not exactly reflect the real forwarding behaviors.

For example, it is possible that node j indeed assists with forwarding, but the corre-

sponding PFM is delivered to its destination (i.e., the previous data sender) before

its expiration, which most likely happens in MSNs due to long delay and frequent

network partition. To deal with such uncertainty in evaluating the reputation for

data forwarding, we adopt an approach proposed in [39] which uses the Dempster-

Shafer Belief Theory [57] to quantify the uncertainty of some random variables. We
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refer the readers to [39] for details. Specifically in our context, the two parameters

(αdir
ij and βdir

ij ) are mapped to a tuple (bdir
ij , ddir

ij and udir
ij ), where bdir

ij defines node i’s

belief in node j’s good forwarding behavior in terms of the direct observation, ddir
ij

is the disbelief of a good forwarding, and udir
ij represents the uncertainty of a good

forwarding, subject to the constraint bdir
ij + ddir

ij + udir
ij = 1. The mapping is specified

in Equations (5.3), (5.4) and (5.5), where the meanings of variables are listed in Table

5.1.

bdir
ij =

αdir
ij

αdir
ij + βdir

ij

× (1− udir
ij ) (5.3)

ddir
ij =

βdir
ij

αdir
ij + βdir

ij

× (1− udir
ij ) (5.4)

udir
ij =

12× αdir
ij × βdir

ij

(αdir
ij + βdir

ij )2 × (1 + αdir
ij + βdir

ij )
(5.5)

With the help of the Dempster-Shafer Belief Theory, although we could not

completely avoid the inaccuracy of estimating forwarding reputation, at least the

uncertainty is reduced reasonably.

• Indirect Observation: For the indirect observation, a node will collect

it not only from the currently connecting nodes but also from all nodes it has met

before. Since MSNs are characterized by frequent partition and long delay, fully taking

advantage of the indirect observation will improve the accuracy of the prediction

to a node’s future forwarding behavior. Technically, when two nodes meet, they

exchange their own direct observation on the forwarding behaviors of other nodes

they have encountered previously as indirect observation information, as formalized

in the Equations (5.9), (5.10) and (5.11).
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bind
ij−k = bdir

kj (5.6)

dind
ij−k = ddir

kj (5.7)

uind
ij−k = udir

kj (5.8)

5.4.2 Trust Evaluation Module

When node i meets node j opportunistically, they will comprehensively evaluate

each other’s reputation of forwarding data in terms of the collected direct and indirect

information. They first combine the indirect observation from all nodes encountered

before, and then integrate it with the direct observation to derive the trust value.

1) The combination of indirect observation. Referring to the approaches pro-

posed in [39], node i calculates the indirect reputation of node j by combining the

indirect information collected from each previous encountering node, say node k,

based on Equations (5.9), (5.10) and (5.11).

bind
ij =

∑
k∈Sij

bdir
ik × bind

ij−k

|Sij|
(5.9)

dind
ij =

∑
k∈Sij

bdir
ik × dind

ij−k

|Sij|
(5.10)

uind
ij =

∑
k∈Sij

bdir
ik × uind

ij−k + ddir
ik + udir

ik

|Sij|
(5.11)

2) The integration of direct and indirect observation. To integrate the direct

observation with the indirect information properly, the comprehensive belief, disbelief

and uncertainty can be derived based on Equations (5.12), (5.13) and (5.14), as

proposed in [39].
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bcom
ij = φ1 × bdir

ij + φ2 × bind
ij (5.12)

dcom
ij = φ1 × ddir

ij + φ2 × dind
ij (5.13)

ucom
ij = 1− bcom

ij − dcom
ij (5.14)

φ1 =
γ × uind

ij

(1− γ)× udir
ij + γ × uind

ij − 0.5× udir
ij × uind

ij

(5.15)

φ2 =
(1− γ)× udir

ij

(1− γ)× udir
ij + γ × uind

ij − 0.5× udir
ij × uind

ij

(5.16)

3) The quantification of the trust value. A trust to node j’s future forwarding

behavior at node i is quantified by Equation (5.17), following the literature [31], which

takes uncertainty into consideration.

Tij = bcom
ij + σ × ucom

ij (5.17)

where σ is defined as the relative atomicity, which is based on the principle of insuf-

ficient reasoning: the uncertainty of n atomic states is split equally among these n

states. Without any biased view on the two states, good forwarding or bad forward-

ing, we set σ=0.5 by default. This parameter varies with different scenarios, so it can

be tuned more accurately, given some specific knowledge regarding the network.

5.4.3 Forwarding Decision Module

The forwarding decision module takes two values as an input, the trust to the

forwarding behavior of a node encountered, Mt, and the ability of delivering data (i.e.,

the possibility of meeting the destination), Mf , claimed by the encountering node

itself. The former is the output of the trust evaluation module, and the latter comes

from the existing data forwarding protocols in MSNs, which is popularly estimated
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based on the encountering history or the similarity between the encountering node and

the destination node. In general, our proposed trust-based framework is applicable to

most of the existing data forwarding protocols in MSNs by integrating the trust value

with any pure metrics used to measure a node’s ability of delivering data. However,

we only exemplify the application of our framework to one of the classic protocols

in DTNs, PROPHET [45]. In the following, we will briefly introduce PROPHET

first and then discuss the integration of the trust with the ability of delivering data,

where we will propose the “Self-Trusting” principle and discuss its effect on data

forwarding decision in MSNs.

5.4.3.1 Overview of PROPHET

PROPHET [45] is a data forwarding protocol designed for DTNs, which uses the

encountering history and transitivity to predict the possibility of two node encounter-

ing in the future. PROPHET is based on three important equations, as formulated in

Equations (5.18) (5.19) and (5.20), to update the delivery probability values, which

are introduced in detail as follows.

Node A will update its probability of delivering data to node B by Equation

(5.18), whenever it meets node B.

P (A, B) = P (A, B)old + (1− P (A, B)old)× Pinit (5.18)

where Pinit is an initialization constant, and set to 0.75 in our experiments by following

the experiment configuration in [45].

Similar to the reputation aging applied in our proposed framework, if a pair of

nodes, A and B, do not meet each other for a long time, node A (node B) would
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age its probability of delivering data to node B (node A) by Equation (5.19) with a

constant time interval.

P (A, B) = P (A, B)old × ξk (5.19)

where ξ is the aging constant.

In addition to the probability updated by directly encountering, the delivery

probability also has a transitive property. Specifically, when node A encounters node

B after node B has met node C, node A will update its delivery probability to node

C based on P(A,C) and P(B,C) using Equation (5.20).

P (A, C) = P (A, C)old + (1− P (A, C)old)× P (A, B)× P (B, C)× ζ (5.20)

where ζ is a scaling constant which controls how large the impact the transitivity

value has on the delivery predictability.

Apparently, in PROPHET, a malicious node who arbitrarily claims delivery

probability will be able to intercept data from other nodes. If the malicious node

either drops or arbitrarily forwards the data, it will detrimentally degrade the network

performance.

5.4.3.2 Comprehensive Measurement For Forwarding Data

Essentially, the trust to the encounter’s forwarding behavior, Mt, and the pure

forwarding metric, Mf , are completely different metrics. Because while the trust

evaluation is related to the message transmission over the network, the latter metric

usually represents the chance of meeting the destination, which is determined by the

node mobility pattern. Both of the two metrics are indispensable, so we need to

integrate them properly to evaluate a node’s real forwarding competence.
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Here are two extreme cases in design of the integration of these two metrics.

One is to completely depend on the pure forwarding metric, Mf , however, black hole

attacks can be launched successfully in this case; the other is to solely rely on the

trust value, Mt, but the original intention of data forwarding design in MSNs will be

damaged as data forwarding will not consider any possibility of data delivery. For

the purpose of avoiding these extreme cases, we leverage Equation (5.21) to evaluate

the delivery competency which balances the roles of Mf and Mt.

Comprehensive Competency = Mt ×Mf (5.21)

We notice one property of the trust to data forwarding in MSNs, namely “Self-

Trusting”principle, depicted in Principle 5.4.3.2. Particularly, in design of our in-

tegration function, because a node always completely trusts itself, its Mt is set to

one all the time, such that its comprehensive competency is equal to its pure data

forwarding metric. The result is a node prefers to directly deliver data itself to the

destination, unless it encounters the other node with a much stronger competency

of meeting the destination node. The effect of “Self-Trusting” principle is reflected

into the increased delay of delivering data, which will be particularly discussed in

Section 5.5.

Self-Trusting: Nodes trust themselves more than others in the forwarding

behavior.

After evaluating the encounter’s comprehensive competency, the node or its

encountering node whoever has greater competence will take the responsibility of

carrying data and is expected to successfully deliver the data with a higher probability

in the near future.
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Table 5.2: Parameters used for simulation

Parameters Values
Network Area 1000×1000, 2000×2000, 3000×3000 (m2)
Number of benign nodes 20
Number of malicious nodes 2,6,10,14
Communication Range 25 m
Mobility Pattern RandomWayPoint
Node Speed 0-5 m per second
Message Life Time 30000 s
Data Generation Rate 1 message per 100 s
Simulation Time 860000 s
Seeds 1,2,3
wdir 0.8
∆t 100 s
γ 0.5
Pinit 0.75
ξ 0.98
ζ 0.25

5.5 Experimental study

In this section, we will first introduce our experiment configuration and then

analyze our framework performance against black hole attack, where data are for-

warded based on the PROPHET protocol [45] with(without) integrating with our

framework. The PROPHET protocol with our framework is named as T-PROPHET

in our experimental study. In addition, we will show some experiment results related

to our framework properties, such as its stabilization and the effect of “Self-Trusting”

principle.

5.5.1 Simulation Setup

We implemented our trust-based framework on the Opportunistic Network En-

vironment simulator (ONE) [34], and some parameter values in our experiments are

listed in Table 5.2. In our experiments we created benign and malicious nodes which
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move around in the network with the RandomWayPoint mobility model. The pairs

of data source/destination are selected uniformly at random only from benign nodes

for each message with a fixed generation rate. Given the same simulation time and

a fixed message generation rate, the amount of data totally created is the same for

all of our experiments. In our scenario, malicious nodes launch black hole attack by

intercepting data from other nodes and then dropping them. To simulate the black

hole attack, we assume that each malicious node is able to boost its delivery proba-

bility at the beginning of the network running. Thus, we set a high value of 0.9 to

the probability. Moreover, we replicated each experiment configuration 3 times with

independent seeds. Unless otherwise stated, each result presented hereafter is the

average over the 3 replicas with 0.95 confidence interval.

We conducted two groups of experiments to evaluate our framework: 1) different

attack strength–changing the number of malicious nodes in the network of the size

1000 × 1000 (m2); 2) varying network density–configuring networks of different size

while keeping a fixed number of nodes (20 benign nodes and 6 malicious nodes). All

result analysis in the following subsections comes from the two groups of experiments.

5.5.2 The Ratios of Data Attracted and Delivered

To evaluate the effectiveness of our trust-based framework against black hole

attack, we compare the network performance under PROPHET and T-PROPHET

with respect to the ratios of data attracted and data delivered.

In Fig. 5.4 which presents the results from the first group of experiments by

varying attack strength, we can see under the attack with a particular strength,

the ratio of data attracted in PROPHET is greater than that in T-PROPHET. In

addition, although the ratio of data attracted goes up with the increase of the attack

strength in both of the protocols, the increasing in PROPHET is more tangible and
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much faster as compared to T-PROPHET. Similarly, as shown in Fig. 5.5 relevant to

the second group of experiments with different network sizes, the attraction ratio of

T-PROPHET is smaller than that of PROPHET.

In addition, since the basic functionality of MSNs is to deliver data by oppor-

tunistically pairwise node encounterings, the ratio of data finally delivered is also a

critical metric in evaluating any data forwarding mechanisms in MSNs. In Fig. 5.6,

we can see given a fixed number of malicious nodes, the ratio of data delivered in T-

PROPHET is more than that in PROPHET in general. Note that although the ranges

within which the delivery ratio is estimated to lie in PROPHET and T-PROPHET

overlap a bit when there are two malicious nodes, we confirmed that for each seed, the

delivery ratio of T-PROPHET is still much higher than that of PROPHET. Moreover,

in Fig. 5.7, in the networks with different sizes, the delivery ratio of T-PROPHET is

greater than that of PROPHET.

In summary, based on the experimental study on the ratios of data attracted

and delivered, we could see the T-PROPHET outperforms PROPHET, which demon-

strates the effectiveness of our trust-based framework against black hole attacks in

MSNs with malicious wireless environment.

5.5.3 Framework Stabilization

In this subsection, still using the results from the two groups of experiments

mentioned in the previous subsection, we will discuss the stabilization of our frame-

work, which will indicate whether the damage resulting from black attack is under

control. In our experimental study, we intend to show the change of the ratios of

data attracted and data delivered over time in the experiments. We noticed that the

trend of results under the same network configuration while with different seeds are

similar, therefore, we just selected the results, where seed = 1, for illustration.
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As shown in Fig. 5.8 regarding the first group of experiments, we notice that

the attraction ratio in T-PROPHET keeps going down over time, which indicates

that the number of data attracted is under control; however, the attraction ratio in

PROPHET becomes stable at some point, which means that with more data being

generated, still more data are attracted. The similar trend is illustrated in Fig. 5.9

when we vary the network size in the second group of experiments.

5.5.4 Self-Trusting Effect

As explained in Principle 5.4.3.2, since each node always assigns its trust value

to one, they more trust themselves in the data forwarding behavior, which may lead to

the delay of data delivery. Although in general, MSN is sort of Delay Tolerant Network

(DTN), in which the delay is not a critical concern, we would like to demonstrate the

effect of “Self-Trusting” in our experimental study. Therefore, we plot the delay of

data delivered. In our scenario, the delay of a data message denotes the time period

from message data generation until the message is delivered. Based on the two groups

of experiments, we could see that the average delay of data delivered in T-PROPHET

is larger than that in PROPHET, as shown in both Fig. 5.10 and Fig. 5.11.

5.6 Summary

In this chapter, we focused on data forwarding in MSNs in a malign wireless en-

vironment, where malicious nodes attempt to launch black hole attacks by dropping

or arbitrarily forwarding data. In order to defend against such attacks, we proposed a

trust-based framework, which can be readily integrated with a large family of existing

data forwarding protocols in MSNs, such as PROPHET. We proposed Positive Feed-

back Message (PFM) as the evidence of the forwarding behavior of a node, which is

fed into the Watchdog component in our framework. Additionally, we systematically
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introduced our trust-based framework for data forwarding in MSNs, which compre-

hensively evaluates an encounter’s forwarding ability by integrating its forwarding

reputation and the possibility of meeting the destination node. Through comprehen-

sive experiments, we demonstrated the effectiveness of our proposed framework on

improving the network performance under black hole attacks, and also demonstrated

some features of our framework.
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ferent network sizes
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Figure 5.6: Delivery ratio with differ-
ent attack strengths
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Figure 5.7: Delivery ratio with differ-
ent network sizes
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ferent attack strengths
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CHAPTER 6

SOCIAL-AWARE CONGESTION CONTROL IN MSNs

In recent years, great research effort has been made on controlling traffic con-

gestion in MSNs which are derived from Delay Tolerant Networks (DTNs). The

occurrence of traffic congestion in MSNs is caused by several reasons. In addition

to the ones which have already been researched on traditional networks, such as the

Internet, a unique reason in MSNs is applying the social-aware data forwarding pro-

tocols to facilitate data delivery. In design of such protocols, the nodes which more

frequently encounter with other nodes in the network, namely high-centrality nodes,

will be selected as data forwarders with a higher probability. The intuition behind the

protocol design is since high-centrality nodes in our social community have a higher

chance to meet others, they should also more likely encounter the destination nodes,

thus becoming good candidates for data forwarding. However, if all data traffic is

forwarded towards the high-centrality nodes which usually has a limited number in a

social community, they will get congested soon and become the bottleneck of network

communication.

To date, although a multitude of work has addressed congestion control in

MSNs from different angles, ranging from migrating data to avoiding data transmis-

sion along congested paths, we believe that slowing down the data generation rate

at data sources should be the most robust approach to controlling congestion. This

is because even for applying migration-based or avoidance-based approaches, there

always exists a condition where almost all of the nodes are seriously congested, while

data sources still keep high data generation rates without any awareness of the net-
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work congestion. A couple of techniques have been proposed to control congestion on

the Internet by adjusting traffic generation rate at data sources. The common design

principle of these techniques is to notify a data source of the traffic congestion at

a particular node by routing a control message back along the data transition path

from the congested node. However, directly applying these techniques to controlling

the network congestion in MSNs is impractical due to the lack of the contemporary

path between any pair of nodes which hurdles the end-to-end transmission of a con-

gestion control message. The other aspect of the congestion problem in MSNs, which

is different from the traditional networks is if high-centrality nodes get congested, the

entire network may not function for data delivery. Therefore, instead of notifying

a particular data source of the congestion situation, all data sources in the network

should be aware of it. In this chapter, we propose a novel congestion control frame-

work which leverages social influence to propagate congestion signals to notify all

data sources of the congestion condition at high-centrality nodes in an MSN.

This chapter is organized as follows. Section 6.1 provides an overview of the

basic function and the design principle of our congestion control framework. Sec-

tions 6.2, 6.3 and 6.4 correspondingly introduce the three modules which are com-

posed of our framework, namely self-determination module, signal-collection module

and signal-update module. The experimental study is addressed in Section 6.5, fol-

lowed by a chapter summary in Section 6.6.

6.1 The Overview of Our Congestion Control Framework

As high-centrality nodes in MSNs are the bottleneck of network communica-

tion in social-aware data forwarding protocols, we care more about the congestion

condition at these nodes. This is different from the congestion concern in the conven-

tional networks where congestion control mechanisms focus on each individual node
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to ensure them not to get congested. The essence in design of our congestion con-

trol framework is to notify all data sources of the occurrence of traffic congestion at

high-centrality nodes so that they can adjust their data generation rate to alleviate

the network congestion. The challenge in our design is how to make data sources

aware of the network congestion in a more real-time manner in MSNs characterized

by long delay and frequent partition. Moreover, once the congestion is relieved at

high-centrality nodes, data sources should also be notified quickly so as to raise their

data generation rate back aimed to guarantee the network throughput.

A straightforward approach is to let high-centrality nodes create and flood con-

trol messages over the entire network to notify data sources of the dynamics of the

congestion situation. Apparently, this naive mechanism requires to introduce a large

number of control messages into the network. Furthermore, if the information carried

by a control message is static, it cannot synchronize with the real network congestion

condition, such that it is still possible to notify a data source with an out of date

control message.

In order to cope with the aforementioned challenge, we propose a congestion

control framework which leverages social influence to spread congestion condition

at high-centrality nodes to explicitly warn data sources. Specifically, we define a

congestion signal of binary value for each node and make the nodes carry their signals

and propagate them over the network. A signal is intended to indicate the congestion

condition at high-centrality nodes and its value is updated periodically at individual

nodes based not only on a node’s local determination on traffic congestion but also

on the signals collected from other nodes it encountered. Basically, our proposed

framework is composed of three modules, self-determination module, signal-collection

module and signal-update module, as shown in Figure 6.1. Our framework is designed

to control traffic in a distributed manner to fit the features of MSNs of long delay
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Figure 6.1: Our congestion control framework

and frequent partition. Our framework can be built upon any existing social-aware

forwarding protocols in MSNs to balance network throughput and traffic congestion.

In the following sections, we will detail the function of each of the three modules in

our framework. Note we divide the network lifetime into epoches with the same time

interval in our framework design and experimental study.

• In the self-determination module, each node determines its own congestion con-

dition in each epoch based on its buffer usage and the number of data forwarded

to it by its encountering nodes.

• In the signal-collection module, each node collects the congestion signals from

other nodes when it encountered.

• In the signal-update module, each node takes its self-determination on its local

congestion situation and the signals collected from its encounters as input to

comprehensively estimate the network congestion at hight-centrality nodes and

update the signal value at the end of each epoch. The data generation rate at

data sources will be adjusted in accordance with their updated signals.
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6.2 Self-determination Module

In the self-determination module, each node determines its congestion condition

according to its local data traffic. The output of this module is a binary value which

will be fed into the signal-update module to derive a new congestion signal value

which can more accurately capture the network congestion condition at centrality

nodes. The self-determination module produces the output at the end of each epoch

before the signal updating proceeds.

A straightforward idea of determining a node’s congestion situation is based

on its buffer usage, calculating the ratio of the time period when the node’s buffer

is full to the time interval of an epoch. However, this approach may not effectively

demonstrate a node’s congestion condition. An extreme example is suppose a node has

a full buffer over the entire epoch in MSNs. However, since none of its encountering

nodes intend to forward data to the node, the node is not congested. Therefore, solely

leveraging the buffer usage at a node does not suffice to accurately estimate the traffic

congestion at the node.

Before we start to introduce our approach to determining a node’s congestion

condition, let us first clarify the model for buffering data at individual nodes. We

assume when data is forwarded to a node with a full buffer, the message with the

oldest time stamp in the buffer will be dropped. Similarly, if new data is created at a

data source node which no longer has buffer room, the oldest data in the buffer will

be removed for storing the new data. We assume all data have the same size through

our discussion in this chapter.

sself i =
numf i

numsi

(6.1)
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In the module, node i maintains two counters, numsi and numf i. numsi records

the total number of data forwarded to node i from other nodes as well as the data

created at node i itself. numf i records the number of data dropped at node i due

to its full buffer. We define sself i to represent node i’s self-evaluation on congestion

condition based on Equation 6.1. The value of sself i directly derived from Equation 6.1

is in the range [0,1], but we convert it to a binary value to prepare for the procedure

of information aggregation in the signal-update module. Specifically, we preset a

threshold value α: if sself i > α, we set sself i to 1, indicating the node is congested;

otherwise, it is assigned 0, showing the normal traffic condition at node i.

6.3 Signal Collection Module

The main function of the signal-collection module is for each node to collect

information from its encountering nodes, including their congestion signals and their

centralities, which will be used for signal aggregation in the signal-update module.

The procedure of collecting signals happens whenever two nodes move into each

other’s communication range. They exchange their signals as well as their centralities

and then store them locally. One can see the overhead introduced by the information

exchange is trivial as only one piece of such information is exchanged between any

two encountering nodes. Furthermore, the amount of the exchanged information is

small, which can be represented by 1 + lg(n− 1) bits. Suppose there are n nodes in

the network, then the maximum centrality of a node is n−1. Therefore, 1+ lg(n−1)

bits are enough for presenting the exchanged information, where 1 bit for the conges-

tion signal and the lg(n− 1) bits for node centrality. Furthermore, as the nodes will

exchange Hello messages when they meet to build their communication connection,

the light information of 1 + lg(n− 1) bits can piggy-back on the Hello message.
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The node centrality is calculated at individual nodes in a distributed manner to

fit the features of MSNs of long delay and frequent partition, and it is updated peri-

odically. We employ the CWindowCentrality approach [29] to calculate the centrality

for each node, in which the number of unique nodes seen by a node within a time

unit is used to approximate the node centrality. We derive the final centrality for a

node by averaging its centralities within a couple of consecutive time units. Note the

period of updating node centrality is not necessarily the same as the epoch. When

two nodes encounter, they simply exchange their centralities which are recalculated

at the end of the last period.

6.4 Signal Update Module

The signal-update module is the core of our congestion control framework as it

controls the dynamics of congestion signals which is intended to represent the network

congestion condition at high-centrality nodes. This module functions at the end of

every epoch, helping each node update its signal based not only on the node’s local

determination on traffic congestion but also on the congestion signals collected from

its encountering nodes in the current epoch. The signal-update procedure essentially

aggregates all collected information together to derive a more accurate signal to cap-

ture the network congestion condition. In this section, we will first detail the design

of our signal updating module and then address how the updated signal will impact

data generation rates at data sources.

6.4.1 Procedure of Updating Signals

We employ Influence Theory [6] to model the signal-update procedure. The

influence model is a tractable mathematical representation of random, dynamical

interactions on networks. Specifically, an influence model consists of a network of
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nodes, each with a status that evolves over the time. The evolution of the status at a

node is based on an internal Markov chain, but with transition probabilities depending

not only on the current status of that node but also on the statuses of the neighboring

nodes. The influence among the nodes occur probabilistically, starting once a change

of status at one node alters the transition probabilities of its neighbors, which then

alter those of their neighbors, and so on. The design of our signal updating procedure

is based on the intuition that the congestion signal carried by an encountering node

with a higher centrality should influence more on a node’s estimation for the network

congestion in MSNs. In the following, we will first briefly introduce the basics of

Influence Theory, particularly focusing on Binary Influence Model and then discuss

our model of updating congestion signal.

6.4.2 Binary Influence Model

In the binary influence model, each node has a binary status. Mathematically,

the status of node i at time point k is si[k], either 0 or 1. At each time point k, the

statuses of all nodes form a binary vector s[k]. In addition, an n×n stochastic matrix

M is built in the model, called the network influence matrix, where n is the number

of nodes in the network. The matrix presents the probability of a node’s status being

impacted by other nodes and is constructed according to the graph Γ(M), called the

network influence graph, which shows the influence among nodes in the network. In

Γ(M), if node i has an influence on node j, there is a directed edge pointing to node

j from node i, labeled a weight which indicates the amount of influence node i exerts

on node j. The total amount of the influence received by any node is equal to the

sum of incoming edge weights, which is required to be one in the model to make M a

stochastic matrix. See the example in Figure 6.2, which shows the mapping between

the influence network graph and the influence matrix. Given the influence matrix
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Figure 6.2: An example of the binary influence model

and the status vector for all nodes in the network at a time point k, we can derive at

time point k + 1 the possibility of the status vector for all nodes in the network by

using Equation 6.2. s[k]×M is a vector of probabilities of any node updating its status

to 1, on which the classic probability function Bernoulli is applied for generating a

status for each node.

s[k + 1] = Bernoulli(s[k]×M) (6.2)

6.4.3 Signal Update Model

Our sinal-updating model is based on the binary influence model. In our model,

each node is in one of the two possible statuses at each discrete-time instant, congested

or normal, which is represented by 1 and 0, respectively. Here we emphasize again

that the status of a node does not indicate the congestion situation at that node,

instead, it presents the congestion condition at hight-centrality nodes in the entire

network.

In MSNs, one node can influence the other node only when they encounter

each other, therefore, we build the network influence graph based on the records of
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nodes’ encountering history. Specifically, at the end of each epoch, the signal-update

module pictures the influence graph for each node according to their encountering

records which occurred in that epoch. Each record is associated to two edges with the

opposite direction in the influence graph, showing the mutual influence between two

nodes. In addition, we create a self-loop edge for each node in the graph, indicating

how the current status of the node impacts its status in the next epoch. There are

two unique features of our modeled influence graph, dynamic and local. Due to the

mobility of nodes in MSNs, a node’s encountering nodes vary in different epochs,

which leads to the dynamic change of the influence graph. Moreover, because of the

features of long delay and frequent partition in MSNs, each node can picture only

part of the influence graph which is formed by the nodes that directly impact it. An

example is illustrated in Figures 6.3 and 6.4. Suppose the graph in Figure 6.3 is the

global influence graph, then the two graphs shown in Figure 6.4 are the local influence

graphs associated with node 1 and node 2, respectively.

After constructing the topology, the next step to draw an influence graph is

to weigh the edges based on the amount of influence that one node exerts on the

other node. The essence of our design is since the bottleneck in the social-aware data

forwarding protocols in MSNs is the nodes with high-centrality, the congestion signals

carried by these nodes should have a greater influence on other nodes’ inferring the

network congestion condition. Therefore, we associate edge weights with the node

centralities. In this chapter, we equate the node centrality with the node degree, and

from now on we use them interchangeably.

The detailed procedure of deriving the weight for an edge is given as follows.

First of all, we define a node set Qi for each node i, including all of node i’s en-

countering nodes in the epoch as well as node i itself. Second, by Equation 6.3, we

normalize the node degree for any node q in Qi, which was collected along with node
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Figure 6.3: An example of a full influence graph

q’s congestion signal in the signal-collection procedure. Evidently, the higher the cen-

trality of a node, the larger its fc(·, i) value. Additionally, the sum of fc(·, i) for all

nodes in Qi is equivalent to one. Therefore, fc(·, i) can be used to reflect the amount

influence any node in Qi can exert on node i. We define a vector with all fc(·, i),

which is called node i’s influence vector.

fc(q, i) =
dq∑

j∈Qi
dj

(6.3)

where q is any node in Qi and dq is node q’s degree.
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Figure 6.4: The analysis of two nodes

Let’s see the example again which is illustrated in Figures 6.3 and 6.4. Suppose

in the network node 2 and node 4 met first, and then node 1 encountered node 2,

followed by node 1 seeing node 4. Note the sequence of node encounterings does

not make any difference in the topology of the influence graph, while it impacts the

information collected at individual nodes, such as the encountering node’s centrality.

For example, node 1’s degree was 2 when it met node 2; however, it became 3 when

it saw node 4. Therefore, the centralities which node 1 provided to node 2 and node

4 are different. If we change the sequence, the centralities node 1 provides to node

2 and node 4 may also be different, which leads to the difference in calculating the

edge weights in the influence graph. In the two tables displayed in Figure 6.4, the

two columns of d and the influence to node 1(node 2) respectively list the degree of

the encountering nodes observed locally and their influence to node 1(node 2) after

the degree normalization.
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In additional to the local influence graph, each node has a local status vector

s[k]. The value of s[k] at node i includes not only the signals collected from its

encountering nodes but also si[k] which is equal to sself i - the binary value output

from node i’s self-evaluation module as we discussed in Section 6.3. Note that s[k] at

different nodes may have different sizes as it is determined by the number of nodes a

node encountered. Suppose a node encountered 4 other nodes in one epoch, the size

of its s[k] is 5 after considering the node itself. Given s[k] and the influence graph,

the possibility of updating a node’s signal to “congested” can be derived by the

multiplication of the two vectors, s[k] and the influence vector, rather than s[k]×M

in Equation 6.2. In our example, node 1 has a probability of 7/14 to generate a signal

in congestion status while node 2 has a chance of 7/16.

6.4.4 Impact of Signal Updating

A data source will adjust its data generation rate in terms of its updated con-

gestion signal. We set an initial rate for all data sources. If the congestion signal at a

data source is 0, the data generation rate is the same as the initial value; otherwise,

the rate is cut in half of the previous rate. Formula 6.4 shows the data generation

rate of any data source in the tth epoch. We can see if a data source has signal of 1 for

a number of consecutive epochs, the data generation rate will decrease exponentially.

But whenever a data source gets its congestion signal back to 0, its generation rate

will become the initial assignment.

rt =

 r0, signal = 0

rt−1

2
, signal = 1

(6.4)
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Table 6.1: Parameters for experimental study

Parameters Values
data generation interval 400s
message size 20K
buffer size 2M
Message TTL infinity
time unit for centrality 7200s
number of time units to average centrality 3
interval for updating centrality 600s
epoch interval 5000s
threshold for determining self-congestion 0.1

6.5 Experimental Study

To verify our social-influence based congestion control framework, we imple-

mented it on ONE [34](a DTN simulator). Additionally, we coded a simple social-

aware data forwarding protocol, in which the criteria of choosing a next forwarder

is to first check whether the encountering node has a higher probability of meeting

the destination, and if not, then check its centrality which is calculated based on the

CWindowCentrality [29]. We conducted experiments on two real trace data sets:

• In Infocom 05, the devices were distributed to approximately fifty students at-

tending the Infocom student workshop. Participants belong to different social

communities (depending on their country of origin, research topic, etc.). How-

ever, they all attended the same event for 4 consecutive days and most of them

stayed in the same hotel and attended the same sections.

• In Cambridge 05, the authors used Intel iMotes to collect the data. The iMotes

were distributed to students of the University of Cambridge and were pro-

grammed to log contacts of all visible mobile devices. The number of devices

that were used for this experiment is 12. This data set covers 5 days.
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Figure 6.7: Cambridge05 - The number of data delivered
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Figure 6.8: Infocom05 - Average delay

The parameters of the network configuration and their corresponding values are

listed in Table 6.1.

We conducted many groups of experiments by randomly selecting 10, 20, 30 data

sources for Infocom05 data set and 3, 6, 9 data sources for Cambridge05 data set.

Each data generated at a data source is assigned a destination node which is randomly

selected. Under the same configuration setting, we ran the simulation three times with

three different seeds which control the randomness in the experiments, for example,

the selection of data sources. The data plots in the following show the average of the

results collected from the three corresponding experiments. We compare the two case

scenarios with/without our congestion control framework, which are named WithCtrl

and WithoutCtrl, respectively.

We focus on two metrics, delivery ratio and the number of data delivered, to

evaluate our congestion control framework. The delivery ratio is referred to the num-

ber of data delivered divided by the number of data created, which demonstrates the

performance of a protocol with our congestion control framework with respect to data

forwarding. However, the number of data delivered can show the network throughput

which is a traditional measurement to evaluate a congestion control mechanism. In
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addition to the two important metrics, we also show the average delay of delivered

data.

From Figures 6.6 and 6.9, we can see the delivery ratio by the protocol with

our congestion control framework is higher than the ratio by the protocol without it,

although the difference isn’t tangible. We believe a real trace data set which can better

capture the topological features of social networks can be used for our experiments

to better show the advantage of applying our congestion control framework in MSNs.

Figures 6.7 and 6.10 show our evaluation of our framework with respect to network

throughput. The protocol with our framework has a smaller throughput than the
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protocol without our framework. For the WithoutCtrl protocol, although it drops a

lot of data, it creates data whenever possible, which increases the chance of having

more data delivered. However, our congestion control framework cuts in half of the

data generation rate of a data source when its congestion signal becomes 1 and will

not update it until the end of the next epoch, which may miss a lot of chance of

generating new data even though the node has room in its buffer. Therefore, the

suboptimal scheme of adjusting data generation rate in WithCtrl is the reason for

having less throughput by our congestion control framework. Moreover, as shown

in the Figures 6.5 and 6.8, the average delay of delivered data by WithoutCtrl is

shorter than that by WithCtrl. The reason is that as a lot of data with old stamps

are dropped in WithoutCtrl, most likely, the delivered data are quite new, thereby

leading to less delay.

6.6 Summary

In this chapter, we introduced how to apply social influence to control con-

gestion in MSNs. Specifically, we defined a congestion signal for each node which

captures the congestion condition at high-centrality nodes in the network. We built

a congestion control framework using Binary Influence Model to spread the conges-

tion signals. Each node aggregates the congestion signals collected from its encounter

nodes to update its own signal. We implemented our congestion control framework

and conducted experiments on real trace data sets. Although not all results are pos-

itive, we believe using a real trace set which can captures the topological features

of social networks, like the limited number of high-centrality nodes, will help better

demonstrate the advantage of applying our framework to control traffic congestion in

MSNs.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

With the advent of Web 2.0 and advanced wireless techniques, a huge amount

of data have been being collected from human beings’ daily activities, like surfing

the Internet or chatting through mobile phones. Using these data, we can infer what

people did before, what they are doing, and even predict what they are going to

do in the near future. This dissertation mainly focused on handling the data which

can be used to infer the relationships among people, such as friendships or trust

relationships. In particular, we studied the human relation networks we derived from

the relevant data collected from our digital world, such as online social networks and

mobile social networks, and researched on how to securely and effectively use the

relationship networks by studying four research problems. In the following, we briefly

draw a conclusion for each of the four problems and correspondingly shed a light on

future work.

(1) We discovered a more realistic attack against users’ relation privacy in pub-

lishing OSN data, in the worst case of which some users’ identities may be disclosed.

We noticed the weakness of k-degree anonymity technique in preserving users’ rela-

tionship privacy and proposed a new privacy preservation model, called `-diversity. In

order to defend against the attack we modeled, we proposed three graph-manipulation

based anonymization techniques, MaxSubB, MaxSub and MinSuper. We proved the

graphs anonymized by our techniques to be `-diversity anonymous. After conducting

experiments on real-world data sets, we demonstrated good utility preserved by our

anonymization techniques in the published data.
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In this work, we only considered the preservation of users’ relationship privacy

in one-time OSN publishing which is a snapshot of the dynamic OSN. If the third-

party requests a sequence of OSN publishings, we need to design a more efficient

anonymization technique. In particular, instead of applying our anonymization tech-

niques individually in each publishing of OSN data, we should consider how to adjust

the OSN data published previously to protecting newly constructed relationships in

the OSN in the current publishing. The goal is to reduce the time spent on data

anonymization, as time consumption is critical especially for the large-scale data set,

like Facebook.

(2) From the viewpoint of a third-party analyst, we discussed how to lever-

age the topological features of social networks, such as small-world, scale-free and

the good-connectivity of high-degree nodes, to efficiently discover the connectivity

of the subgraph which include a group of target users on OSNs. Furthermore, we

took the cost of the subgraph discovery into consideration. We delicately interpreted

the original problem of local-view based subgraph detection with cost concern into

a problem which sequentially handles the two points of “minimum” - discovering a

subgraph of minimum size with a minimum cost. To solve this challenging prob-

lem, we proposed two searching techniques, Unbalanced Multiple-Subgraph(UMS)

and Balanced Multiple-Subgraph(BMS), which can quickly discover the subgraph

connectivity. We conducted experiments on the real-world data sets and showed that

BMS even outperforms UMS. Furthermore, the experimental results demonstrate that

the well-connectivity of OSNs is for all nodes in OSNs rather than only limited to

high-degree nodes, as we can find the connectivity of any group of users by a small

query cost in searching.

Although this work researched only on discovering subgraph connectivity on

OSNs from the perspective of the third-parties, it demonstrates the effectiveness of
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using topological properties of social networks in searching on OSNs. Therefore, we

can also research some other graph mining problems leveraging these properties, for

example, to sample graphs for estimating the size of OSNs.

(3) After noticing the possibility of constructing fake relations to damage net-

work performance in MSNs, we proposed a trust-based framework which can be flexi-

bly integrated with a large family of existing single-copy data forwarding protocols in

MSNs, aiming at comprehensively evaluating an encounter’s ability to deliver data.

With the help of our proposed framework, not only black hole attack but also arbi-

trarily forwarding attack can be counteracted effectively.

In the attack model in this work, we assumed malicious nodes to launch attacks

independently. However, a stronger attack would allow some malicious nodes to

launch a collusive attack. In this case, solely using our reputation-based frame is not

sufficient to ensure the reliability of forwarding data in MSNs, therefore, some other

techniques are called for to defense against this stronger attack.

(4) In order to deal with network congestion in MSNs which is caused by the

heavy traffic concentration at high-centrality nodes in data forwarding, especially

when the social-aware data forwarding protocols are applied, we designed a social-

influence based congestion control framework. The framework effectively spreads the

congestion condition at high-centrality nodes to the entire network to notify data

sources of the congestion situation so that they can adjust data generation rate to

relieve network congestion.

In the future, we need to look for a better scheme of adjusting data generation

rate when a data source’s signal becomes 1 aiming at increasing the network through-

put. Furthermore, we should look into the associations between the mobility pattern

of nodes, data generation model(including the model to select pairs of source and
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destination) and the influence model, and theoretically analyze them to validate the

effectiveness of our congestion control model.
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