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ABSTRACT 

REDUCING THE ENCODING TIME FOR H.264 BASELINE PROFILE USING PARALLEL 

PROGRAMMING TECHNIQUES 

 

Tushar Saxena, M.S. 

 

The University of Texas at Arlington, 2012 

 

Supervising Professor: K. R. Rao 

 This thesis is aimed at reducing the encoding time for a group of pictures (GOP) for 

h.264 baseline profile on a general purpose CPU. This thesis also aims at drawing a 

comparison between task based parallelism and data based parallelism. The reduction is 

achieved by encoding the frames in parallel rather than serially. Task based parallelism is 

achieved by equally dividing the GOP‟s in two different threads and running them on the 

underlying hardware at the same time using Open MP software. Data based parallelism is 

achieved by finding the hot spots in the software and then parallelizing it using task based 

approach as stated above. JM 18.0 [1] is the reference software used to obtain the results. By 

adopting task based parallelism methodology the encoding time for a group of pictures is 

reduced approximately by 50%. But this reduction comes at a cost of increased CPU power 

consumption by approximately 50% and a marginal 2% increase in the physical memory usage. 

Data based parallelism does not show any improvement in the time complexity reduction as 

thread creation for every hot spot and every frame adds up to the time complexity overhead.  
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CHAPTER 1 

INTRODUCTION 

Digital video has become the main stream and is being used in a wide range of 

applications including pocket PCs, handheld PCs, i-phones and i-pods [15] [17] [18]. These 

devices are either used as a source of entertainment for capturing and saving real time data or 

for visual communication purposes as video telephony and teleconferencing. As a result of 

which more and more users are seeking real-time video communication services with the rapid 

development of wireless networks. The emergence of digital cameras for mobile devices also 

provides conditions for real-time video communication. In order to meet the requirements of 

real-time video communication, the encoder as well as the decoder of the video codec needs to 

reduce the processing time of the frames. While doing so, care should also be taken that the 

qualities of the image as well as the bit rate of the multimedia file have not changed drastically.  

Consider a digital video sequence having a picture resolution of 720x480 and a frame 

rate of 30 frames per second (FPS). If a picture is represented using the YUV color space with 8 

bits per component or 3 bytes per pixel, size of each frame is 720x480x3 bytes. The disk space 

required to store one second of video is 720x480x3x30 = 31.1 MB. A one hour video would thus 

require 112 GB. With the number of devices inside household increasing, the bandwidth 

requirement is also increasing [16]. In addition to these extremely high storage and bandwidth 

requirements, using uncompressed video will add significant cost to the hardware and systems 

that process digital video. Digital video compression is thus necessary even with exponentially 

increasing bandwidth and storage capacities. Fortunately, digital video has significant 

redundancies and eliminating or reducing those redundancies results in compression [13].  
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Video compression is typically achieved by exploiting [3]. 

1. Spatial 

2. Temporal 

3. Statistical redundancies 

1.1 H.264 

H.264 or AVC (Advanced Video Coding) [3] [4] [5] [17] [18] is a digital video codec 

standard which is noted for achieving very high data compression [2]. It was developed by the 

ITU-T Video Coding Experts Group (VCEG) together with the ISO/IEC Moving Picture Experts 

Group (MPEG) [4] as the product of a collective partnership effort known as the Joint Video 

Team (JVT) [2]. H.264 is an algorithm used for video compression. It is the latest industry 

standard for video compression and is the first choice of preference for most of the companies 

for its products and services [6]. For compression H.264 uses a technique known as difference 

coding where only the first image is coded entirely in a group of pictures.    

 

Figure 1.1 Inter-frame predictions in modern video compression algorithms [7] 

As seen from Figure 1.1, only the moving parts of the picture i.e. the motion of the man 

are coded using motion vectors, thus reducing the amount of information that is sent and stored. 

 Also, techniques like block-based motion compensation are included to further reduce the data. 
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Figure 1.2 Illustration of block-based motion compensation [7] 

In block based motion compensation, the entire frame is divided into blocks. Each block 

in the current frame is then matched to find a similar block in the reference around a search 

window. Referring to Figure 1.2, the target block in the current frame is matched with different 

blocks in the reference frame within the search window. Instead of transmitting the entire target 

block the motion vectors for the most appropriate matched blocks are coded and transmitted 

thus reducing the amount of information sent [8]. 

Thus difference coding and block-based motion compensation helps in reducing the bit 

rate [7] but the encoding time using the above two techniques is quite large. This acts as a 

hindrance for real time capability. To reduce this encoding time many different Intra mode 

approaches like in [9], [10], [11] and [12] have been proposed. These approaches bring about a 

change in the intra mode algorithm thus sacrificing the quality of the original video clip in return. 

It is important to maintain a tradeoff between encoding time and quality. Hence an efficient 

algorithm to reduce the encoding time for an H.264 video codec is proposed here having the 

same quality level as the original. 
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1.2 Summary 

The thesis proposes an efficient way of reducing the encoding time for H.264 baseline 

profiles by incorporating parallel programming paradigms. It exploits the fact that the encoding 

algorithm for every frame is the same; hence by incorporating task level parallelism to encode 

two or more than two frames simultaneously the encoding time can be reduced drastically. The 

reference software used in this thesis is JM18.0 [13] and OpenMP [14], set of parallel 

programming library and was used to incorporate task level parallelism. Chapter 2 describes 

about the video coding standards and video formats. 
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CHAPTER 2 

OVERVIEW OF H.264 / AVC STANDARD 

INTRODUCTION 

  H.264 [39] Advanced Video Coding standard [19] [20] significantly improves video 

compression ratio and enhances the power of the video coding algorithms. It enhances and 

adds up new features for the next generation internet-based wire-line and wireless video 

applications such as cellular camera-phone, video-based web browser, smart set-top box with 

video-on-demand and game and packet-based video broadcast/on-demand [21]. 

2.1 H.264 profiles 

 

Figure 2.1 Profiles for H.264 [3] 

  As seen from Figure 2.1, H.264 [39] has the following profiles – Baseline, Extended, 

Main and High. The properties for the following profiles are as discussed below [22] – 

2.1.1 Baseline profile 

Baseline profile consists of the following features - 

1. I, P slices only 

2. CAVLC (Context- Adaptive Variable Length Coding) for entropy coding.
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3. Flexible Macro-block Order (FMO): Macro-blocks may not necessarily be in the           

raster scan order. The map assigns macro-blocks to a slice group. Arbitrary 

slice order (ASO): The ordering of the slices in the bit stream may not be in 

raster scan order. Figure 2.2 shows the scanning of the frames as complete 

frames or as sequence of interlaced fields. 

 

                                          Figure 2.2 Interlaced video sequence [3] 

A video signal can be progressively sampled (series of complete frames) or interlaced 

(sequence of interlaced fields). In an interlaced video sequence two fields comprise one video 

frame (figure 2.2) and a field consists of either the odd-numbered or even-numbered lines 13 

within a complete video frame. The advantage of this sampling method is that it is possible to 

send twice as many fields in an equivalent progressive sequence with the same data rate, 

giving the appearance of smoother motion [3], [8]. 

2.1.2 Extended profile 

Extended profile consists of the following features - 

1. All the features of baseline profile 

2. SP slices – SP frames make use of motion compensated predictive coding to 

exploit temporal redundancy in the sequence similar to P frames. It allows 

identical frames to be reconstructed even when they are predicted using 

different reference frames [40].  
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3. SI slices – SI frames are used in conjunction with SP frames. An SI frame uses 

only spatial prediction as an I frame and still reconstructs identically the 

corresponding SP frame which uses motion compensated prediction [40]. 

4. B slices 

5. Weighted prediction 

2.1.3 Main profile 

Main profile consists of the following features - 

1. I,P,B slices 

2. Weighted prediction 

3. CABAC (context adaptive binary arithmetic coding) / CAVLC (context         

adaptive variable length coding) for entropy coding.  

2.1.4 High profile [23], [24] 

High profile consists of the following features - 

1. Includes high profile (HP) supporting 8-bit video with 4:2:0 sampling, 

addressing high end consumer use and other applications using high resolution 

video. The 4:2:0 sampling shown in Figure 2.3. 

2. 8x8 intra prediction. 

3. High 4:2:2 profile (H422P), supporting up to 4:2:2 sampling and up to 10-bits 

per sample. The 4:2:2 sampling shown in Figure 2.3. 

4. High 4:4:4 profile (H444P), supporting up to 4:4:4 sampling, up to 12 bits per 

sample, lossless region coding and integer residual color transform for coding 

RGB video. The 4:4:4 sampling is as shown in Figure 2.3. 

5. All features of main profile 

6. Adaptive block size transform (introduction of 8x8 integer DCT) 

7. Perceptual quantization matrices. 
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Figure 2.3 4:2:0, 4:2:2 and 4:4:4 sampling patterns (progressive) [5] 

2.2 H.264 block diagram 

Basic block diagram for H.264 [39] video encoding and decoding is shown in Figure 2.2.  

 

Figure 2.4 Block diagram for H.264 video encoding and decoding [3] 

H.264 [39] takes the advantages of many kinds of coding methods and blends them into 

one progress, in which there is intra prediction; inter prediction, integer DCT, Run-Level scan 

and entropy encoding, which can reduce the redundancy of spatial, temporal and statistical 
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respectively. Figure 2.4 gives a brief view of the coding methods incorporated in this video 

codec. Compared with the former video coding standards, such as MPEG-4 [41] and H.263 

[42], H.264 [39] has many obvious advantages for e.g. more intra prediction modes, quarter 

pixel's motion estimation and compensation, integer DCT, higher compression ratio, better 

picture quality and internet adaptability. For these advantages, H.264 [39] video coding 

standard has been and will be widely used in many telecommunication domains such as digital 

television broadcast, satellite broadcast, mobile phone television and internet based streaming 

media technique [27]. 

2.3 H.264 encoder 

 

   Figure 2.5 H.264 video encoder block diagram [22] 

Figure 2.5 shows the detailed encoder block diagram for H.264 video codec. Different 

blocks can be explained as below –  

2.3.1 Intra prediction 

H.264/AVC introduced new intra-prediction methods which offer a still image coding 

performance that is comparable or superior to the JPEG and JPEG2000 image coding 

standards [26].   The H.264/AVC intra-prediction methods are directional in nature. There are 

different block sizes, each having a different number of modes and making use of up to 4 
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neighboring blocks for prediction. Despite this great encoding flexibility, which adapts itself to 

the image characteristics, only the block‟s surrounding pixels are used for prediction [25]. 

H.264 also provides various intra-prediction modes for both gray and color videos. For a 

gray signal, there are intra_4×4 prediction modes whose block is more suitable for detail 

information and intra_16×16 prediction modes suitable for smooth changes in the image. For 

color components, prediction mode is only intra_8×8 [28][29][30]. Selection for an intra 

prediction mode in H.264 usually adopts the rate distortion optimization (RDO) technology 

which intends to achieve the best encoding effect under the least bit rate. The rate distortion 

cost (RD_Cost) can be expressed as follows [28] –  

RD_Cost = SSD + λ * R 

where SSD is the sum of squared differences between the actual pixels and the predicted 

pixels, R is the coding rate, and λ is a Lagrange parameter connected with the quantization 

parameter (QP)  as 

λ = 0.85 * 2
(QP-12)/3 

Conventionally, when processing a macro block for intra-coding, all prediction modes are 

needed to be traversed and a mode decision process is used to select the optimal mode as the 

final coding mode [28]. Figure 2.4 shows the mode decision process of intra-prediction. 

 

Figure 2.6 Mode decision process of intra prediction [28] 
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As shown in Figure 2.6, the mode decision algorithm for intra prediction mode selection 

for a macro-block can be depicted as follows [28] – 

Step 1 - The macro-block is divided into sixteen 4×4 small blocks, then nine different 

intra-prediction modes are adopted respectively in each block and an optimal one is selected by 

the RD_Cost of the mode in each 4×4 block.  

              Step 2 - Similarly four kinds of intra-prediction modes for 16×16 blocks are tested for 

the macro-block and the RD_Costs of every mode is calculated. Also an optimal mode is 

selected by the minimum RD_Cost. Comparing the minimum RD_Cost of 4×4 block and that of 

16×16 block, intra_4×4 or intra_16×16 block dividing intra-prediction mode is decided.  

Step 3 - For color video, testing four prediction modes of 8×8 mode for chroma macro 

block, repeating above steps to select a intra-prediction mode with the minimum RD_Cost for 

chroma block.            

        Step 4 – Mode with minimum RD_Cost is chosen as the best intra predicted mode.    

             The different modes available to exploit spatial redundancy using intra prediction are as 

shown in Figures 2.7and 2.8. 

 

 

 

Figure 2.7 Nine intra prediction modes for 4x4 block sizes [31] 
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Figure 2.8 Four intra prediction modes for 16x16 block sizes [31] 

  Nine intra prediction modes for 8x8 block sizes as same as that for 4x4 block sizes [31] 

2.3.2 Inter prediction 

Inter prediction is the process of predicting a block of luma and chroma samples from a 

picture that has been previously coded and transmitted. This involves selecting a prediction 

region, generating a prediction block and subtracting this from the original block of samples to 

form a residual that goes through transform, quantization and entropy coding. The block of 

samples to be predicted, a macro-block partition or sub-macro block partition, can range in size 

from a complete macro-block, i.e. 16 × 16 luma samples and corresponding chroma samples, 

down to a 4 × 4 block of luma samples and corresponding chroma samples. 

Motion estimation (ME) is an important part of inter-picture prediction. It is used 

to reduce temporal redundancy. It is a process of determining the best motion vectors 

that describe the transformation from one frame to another. Motion vector (MV) 

described as (dx, dy) is displacement vector of a moving object. Figure 2.9 shows a 

diagram depicting ME [3]. 

 

Figure 2.9 Multi frame motion estimation [1] 
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As shown in Figure 2.9, the current frame is composed of blocks. These blocks are 

predicted either from the last previously encoded frame alone or from a group of previously 

encoded frames.  

 

Figure 2.10 Example of macro block size and prediction sources [3] 

Figure 2.10 shows the prediction sources for three macro-blocks, an I macro block, a P 

macro block and a B macro block. An I macro block (I MB) is predicted using intra prediction 

from neighboring samples in the current frame. A P macro block (P MB) is predicted from 

samples in a previously-coded frame. Different rectangular sections in a P MB may be predicted 

from different reference frames. Each partition in a B macro block (B MB) is predicted from 

samples in one or two previously-coded frames, for example, one „past‟ and one „future‟ as 

shown in the Figure 2.10 [3]. 

Each 16×16 P or B macro block may be predicted using a range of block sizes. The 

macro block is split into one, two or four macro block partitions as shown in Figure 2.12 [3] -   

1. one 16 × 16 macro block partition (covering the whole MB) 

2. two 8 × 16 partitions 

3. two 16 × 8 partitions 
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4. four 8 × 8 partitions 

 

 
Figure 2.11 Macro block partitions and sub-macro block partitions [3] 

If 8 × 8 partition size is chosen, then each 8 × 8 block of luma samples and associated 

chroma samples, a sub-macro block, is split into one, two or four sub-macro block partitions, 

one 8 × 8, two 4 × 8, two 8 × 4 or four 4 × 4 sub-MB partitions. Each macro block partition and 

sub-macro block partition has one or two motion vectors (x, y), each pointing to an area of the 

same size in a reference frame that is used to predict the current partition. A partition in a P 

macro block has one reference frame and one motion vector, a partition in a B macro block has 

one or two reference frames and one or two corresponding motion vectors [3]. 

2.3.3 Transform coding 

The discrete cosine transform (DCT) is a prevalent transform method, widely-used in 

signal processing and multimedia applications. It is a real orthogonal computation, the 

performance of which is close to the K-L transform [35].An improvement of DCT-integer 

transform [33] inherits the advantages of DCT but avoids the mismatch between encoder and 

decoder. Integer transform is adopted by H.264 video coding standard to provide high 
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compression efficiency. The H.264/AVC uses a 2D-DCT based integer transform "C" for all 4x4 

block of residual pixel data "X" and is given as follows [32][35] – 

Z = C X C
T 

where superscript T implies transpose of a matrix and matrix C is as given below 

 

                                                 
H.264 employs a purely integer spatial transform (a rough approximation of the DCT 

[36]) which is primarily 4x4 in shape, as opposed to the usual floating-point 8x8 DCT specified 

with rounding-error tolerances as used in earlier standards. The small shape helps to reduce 

blocking and ringing artifacts, while the precise integer specification eliminates any mismatch 

issues between the encoder and decoder in the inverse transform. It is also computationally 

less expensive as the number of multiplications is reduced [8]. 

2.3.4 Quantization  

H.264 assumes a scalar quantizer. It can be represented by the following equation - 

Z(i j) = round(Y(i j) /Qstep)  

where Y(i j) is a transform coefficient, Qstep is a quantizer step size and Z(i j) is a quantized 

coefficient. A total of 52 values of Qstep are supported by the quantization parameter (QP). The 

wide range of quantizer step sizes makes it possible for an encoder to control the tradeoff 

accurately and flexibly between bit rate and quality [22]. 

2.3.5 Deblocking filter 

        
Reducing the temporal and spatial redundancies of video sequences during coding can 

cause blocking artifacts. H.264/AVC standard defines methods of block-based prediction, 
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transformation and quantization for encoding/decoding. A frame or a slice is divided into many 

macro blocks (MBs) and each MB contains 16 × 16 pixels. Furthermore, a MB may be divided 

into 16 sub blocks and each consists of 4 × 4 pixels as shown in Figure 2.11. Operations based 

on blocks are one of the main reasons for blocking artifacts. Further, quantization process for 

transform coefficients in DCT (discrete cosine transform) transformation is relatively rough and it 

causes errors of transform coefficients which once pass through IDCT (inverse discrete cosine 

transform) process and cause blocking effect. One of the solutions to remove blocking artifacts 

is the in-loop deblocking algorithm used in H.264/AVC. 

2.4 H.264 decoder 

 

Figure 2.12 H.264 decoder block diagram [38] 

A video decoder receives the compressed H.264 bit stream, decodes each of the 

syntax elements and extracts the information described above as shown in Figure 2.12, i.e. 

quantized transform coefficients, prediction information, etc. This information is then used to 

reverse the coding process and recreate a sequence of video images [3]. 
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Figure 2.13 Inverse transform combining weighted basis patterns to create a 4 × 4 image block 

[3] 

The quantized transform coefficients are re-scaled. Each coefficient is multiplied by an 

integer value to restore its original scale. The quantized coefficients are each multiplied by a 

QP. An inverse transform combines the standard basis patterns, weighted by the re-scaled 

coefficients, to re-create each block of residual data. Figure 2.13 shows how the inverse DCT or 

integer transform creates an image block by weighting each basis pattern according to a 

coefficient value and combining the weighted basis patterns [3]. 
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Figure 2.14 Reconstruction flow diagrams [3] 

Figure 2.14 shows the reconstruction process at the decoder. For each macro block, 

the decoder forms an identical prediction to the one created by the encoder using inter 

prediction from previously-decoded frames or intra prediction from previously-decoded samples 

in the current frame. The decoder adds the prediction to the decoded residual to reconstruct a 

decoded macro block which can then be displayed as part of a video frame [3]. 

2.5 Summary 

This chapter has presented a basic introduction to the H.264 video coding standard. 

H.264 performs better than the previous video coding standards by introducing new innovative 

algorithms and improving some previously used algorithms to provide superior visual quality at 

lower bitrates with better error resilience [22]. Chapter 3 describes about the hyper-threading 

technology.
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CHAPTER 3 

INTRODUCTION TO PARALLEL PROGRAMMING 

3.1 Serial programming basics [53], [54] 

Traditionally, software has been written for serial computation and has the following 

properties: 

1. To be run on a single computer having a single Central Processing Unit (CPU). 

2. A problem is broken into a discrete series of instructions. 

3. Instructions are executed one after another. 

4. Only one instruction may execute at any moment in time. 

A typical scenario for a serial computation can be as shown in figure 3.1 where the problem to 

be solved is divided into instructions and executed one at a time. 

 

Figure 3.1 Serial execution of a program [53] 

 

3.2 Parallel programming basics [53], [54] 

In the simplest sense, parallel computing is the simultaneous use of multiple computer 

resources to solve a computational problem. The problem is broken into discrete parts that can 

be solved concurrently using multiple CPU‟s. Each part is further broken down into a series of 

instructions which part execute simultaneously on different CPUs.
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A typical scenario for a serial computation can is shown in figure 3.2 where the problem to be 

solved is divided into instructions and multiple instructions are executed simultaneously 

depending upon the number of available cores. 

 
Figure 3.2 Parallel execution of a program [53] 

 

3.2 Limitation for serial computing [53], [54] 

Both physical and practical reasons pose significant constraints to simply building ever 

faster serial computers: 

1. Transmission speeds - the speed of a serial computer is directly dependent upon 

how fast data can move through hardware. Absolute limits are the speed of light (30 

cm/nanosecond) and the transmission limit of copper wire (9 cm/nanosecond). 

Increasing speeds necessitate increasing proximity of processing elements. 

2. Limits to miniaturization - processor technology is allowing an increasing number of 

transistors to be placed on a chip. However, even with molecular or atomic-level 

components, a limit will be reached on how small components can be. 

3. Economic limitations - it is increasingly expensive to make a single processor 

faster. Using a larger number of moderately fast commodity processors to achieve 

the same (or better) performance is less expensive. 
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4. Current computer architectures are increasingly relying upon hardware level 

parallelism to improve performance using multiple execution units, pipelined 

instructions and multi-core processors. 

3.4 Classification of parallel computers [53], [54] 

There are different ways to classify parallel computers. One of the more widely used 

classifications, in use since 1966, is called Flynn's Taxonomy. It distinguishes multi-processor 

computer architectures according to how they can be classified along the two independent 

dimensions of instruction and data. Each of these dimensions can have only one of two possible 

states: Single or Multiple. The matrix shown below in figure 3.3 defines the 4 possible 

classifications according to Flynn‟s Taxonomy [20] - 

 
Figure 3.3 Classification of parallel computers [53] 

3.4.1 Single Instruction Single Data (SISD) 

In this set of parallel computers only one instruction and data stream is being acted on 

by the CPU during any one clock cycle. It shows a deterministic behavior. It is the oldest and 

even today, the most common type of computer. Figure 3.4 shows the instruction pipeline for a 

SISD system where only one instruction stream is being acted on by the CPU and only one data 

stream is being used as input in a clock cycle. 
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Figure 3.4 Instruction pipeline for a SISD system [53] 

3.4.2 Single Instruction, Multiple Data (SIMD) 

In this set of parallel computers all processing units execute the same instruction at any 

given clock cycle. Each processing unit can operate on a different data element. It is best suited 

for graphics/image processing. Modern computers with graphics processor units (GPUs) 

employ SIMD instructions and execution units. Figure 3.5 shows the instruction pipeline for a 

SIMD system where all processing units execute the same instruction and each processing unit 

operates on a different data element. 

 

Figure 3.5 Instruction pipeline for a SIMD system [53] 

3.4.3 Multiple Instructions, Single Data (MISD) 

In this set of parallel computers each processing unit operates on the data 

independently via separate instruction streams. A single data stream is fed into multiple 
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processing units. Figure 3.6 shows the instruction pipeline for a MISD system where each 

processing unit operates on the data independently via separate instruction streams and a 

single data stream is fed into multiple processing units. 

  

Figure 3.6 Instruction pipeline for a MISD system [53] 

3.4.4 Multiple Instructions, Multiple Data (MIMD) 

In this set of parallel computers every processor may be executing a different 

instruction from different data stream. Execution can be synchronous or asynchronous, 

deterministic or non-deterministic. Currently, the most common type of parallel computer - most 

modern supercomputers fall into this category. Figure 3.7 shows the instruction pipeline for a 

MIMD system where each processing unit is executing a different instruction stream working on 

different sets of data. 

 

Figure 3.7 Instruction pipeline for a MIMD system [53] 
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3.5 Parallel programming models [53], [54] 

Parallel programming models exist as an abstraction above hardware and memory 

architectures.  These models are not specific to a particular type of machine or memory 

architecture. Any of these models can (theoretically) be implemented on any underlying 

hardware. Some of the parallel programming models are described as below: 

3.5.1 Shared Memory 

In this programming model, tasks share a common address space. Mechanisms such 

as locks / semaphores are used to control access to the shared memory. An advantage of this 

model from the programmer's point of view is that the notion of data "ownership" is lacking, so 

there is no need to specify explicitly the communication of data between tasks. An important 

disadvantage in terms of performance is that it becomes more difficult to understand and 

manage data locality. 

3.5.2 Threads 

This programming model a single process can have multiple, concurrent execution 

paths. It is a type of shared memory programming. A typical scenario for a thread based parallel 

programming model is shown in figure 3.7. Here each function is executed in a different thread 

in a multi-threaded environment. 

 

Figure 3.8 Thread based parallel programming model [53] 
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3.5.3 Distributed Memory / Message Passing 

This programming model multiple tasks reside on the same physical machine and/or 

across an arbitrary number of machines. Tasks exchange data through communications by 

sending and receiving messages. Data transfer usually requires cooperative operations to be 

performed by each process. A typical scenario for a message passing parallel programming 

model is shown in figure 3.9. In this model, threads on different machines operate on a data and 

send the processed data to other machines via a network. 

 

Figure 3.9 Message passing parallel programming model [53] 

3.5.4 Data Parallel 

 This programming model focuses on performing operations on a data set. The data set 

is organized into a common structure, such as an array or cube. A set of tasks, work collectively 

on different partition of the same data structure. A typical scenario for a data parallel 

programming model is shown in figure 3.10. In this all tasks have access to the same data 

structure through global memory but operate on different indexes of the data structure. 
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                         Figure 3.10 Data parallel programming model [53] 

3.6 Points to consider before writing a parallel program [53], [54] 

The first step in developing parallel software is to first understand the problem that one 

wishes to solve in parallel. Starting with a serial program necessitates understanding the 

existing code also. One also needs to determine whether or not the problem is one that can 

actually be parallelized. Few points that one needs to be considered are the program's 

hotspots, bottlenecks in the program and inhibitors to parallelism. 

3.6.1 Program hotspots 

The majority of scientific and technical programs usually accomplish most of their work 

in a few places. Profilers and performance analysis tools can help to identify these hot spots. 

Hence the focus should be in parallelizing the hotspots and ignore those sections of the 

program that account for little CPU usage. 

3.6.2 Bottlenecks 

 There are areas that are disproportionately slow and cause parallelizable work to halt 

and be deferred. For example, I/O is usually something that slows a program down. In such a 

scenario a different algorithm should be used to reduce or eliminate unnecessary slow areas. 
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3.6.3 Inhibitors to parallelism 

  As demonstrated in the following example - Calculation of the Fibonacci series (0, 

1,1,2,3,5,8,13,21...) by use of the formula 

F(n) = F(n-1) + F(n-2) 

This is a non-parallelizable problem because the calculation of the Fibonacci sequence as 

shown would entail dependent calculations rather than independent ones. The calculation of the 

F(n) value uses those of both F(n-1) and F(n-2). These three terms cannot be calculated 

independently and therefore, not in parallel. This common class of inhibitor is termed as data 

dependence. 

3.7 Summary 

This chapter gives an introduction to parallel programming paradigm, parallel 

programming models, limitation of serial programming and also the steps to consider while 

writing a parallel program. 

The next chapter gives a detailed explanation to implement a parallel application on a 

CPU (Central Processing Unit) using a parallel programming library OpenMP (Open Multi 

Programming). It details all the directives and the environment variables which one needs to 

incorporate in the application to make it run parallel.
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CHAPTER 4 

OPENMP: API SPECIFICATION FOR PARALLEL PROGRAMMING  

4.1 OpenMP programming model 

OpenMP (Open Multiprocessing) is an API (Application Programming Interface) that 

supports multi-platform shared memory multiprocessing programming in C, C++, and Fortran on 

most processor architectures and operating systems, including Solaris and Windows platforms. 

It consists of a set of compiler directives, library routines and environment variables that 

influence run-time behavior [14]. [43], [44], [45], [46], [50].  OpenMP is an implementation of 

multithreading. As shown in Figure 4.1 it is a method of parallelizing whereby a master thread (a 

series of instructions executed consecutively) forks a specified number of slave threads and a 

task is divided among them. The threads then run concurrently, with the runtime environment 

allocating threads to different processors [43], [50].  

 

 
Figure 4.1 Fork/join model in OpenMP [50], [51] 

 
       The section of code that is meant to run in parallel is marked accordingly with a 

preprocessor directive that will cause the threads to form before the section is executed. Each
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 thread has an id attached to it. An illustration of multithreading can be seen in figure 4.2 where 

the master thread forks into many slave threads in a parallel region to perform the task in 

parallel. The thread id is an integer and the master thread has an id of 0. After the execution of 

the parallelized code, the threads join back into the master thread, which continues onward to 

the end of the program. By default, each thread executes the parallelized section of code 

independently. Work-sharing constructs can be used to divide a task among the threads so that 

each thread executes its allocated part of the code. Both task parallelism and data parallelism 

can be achieved using OpenMP in this way [43], [50]. 

 

Figure 4.2 An illustration of multithreading in OpenMP [43] 

     The runtime environment allocates threads to processors depending on usage, 

machine load and other factors. The number of threads can be assigned by the runtime 

environment based on environment variables or in code using functions.  

4.2 Goals of OpenMP [49], [50] 

Fork/join programming model in OpenMP provides a standard for shared memory 

architectures/platforms. It establishes simple and limited set of directives for programming 

shared memory machines. Significant parallelism can be implemented by using just 3 or 4 

directives. It provides support for portability of C and C++. Diagrammatic representation for 

fork/join model of OpenMP is shown in figure 4.3.  

http://en.wikipedia.org/wiki/Task_parallelism
http://en.wikipedia.org/wiki/Data_parallelism
http://en.wikipedia.org/wiki/Environment_variables
http://upload.wikimedia.org/wikipedia/en/f/f1/Fork_join.svg
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Figure 4.3 Fork/join programming model in OpenMP [49] 

4.3 OpenMP core elements [43], [50] 

       The core elements of OpenMP are shown in figure 4.4. They can be categorized as 

follows - constructs for thread creation, workload distribution (work sharing), data-environment 

management, thread synchronization, user-level runtime routines and environment variables. 

 
 

Figure 4.4 Chart of OpenMP constructs [43] 
 

4.4 OpenMP Runtime Library Routines [50], [52] 
 

     Execution environment routines affect and monitor threads, processors and the parallel 

environment. The routines are explained in table 

 

 

 

 

 

http://upload.wikimedia.org/wikipedia/commons/9/9b/OpenMP_language_extensions.svg
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Table 4.1 Runtime library routines in OpenMP 

Environment Routines Description 

omp_set_num_threads Sets the number of threads used for subsequent 

parallel regions that do not specify a num_threads 

clause.  

omp_get_num_threads Returns the number of threads in the current team.  

omp_get_max_threads Returns maximum number of threads that could be 

used to form a new team using a parallel construct 

without a num_threads clause. 

omp_get_thread_num Returns the ID of the encountering thread where ID 

ranges from zero to the size of the team minus 1. 

omp_get_num_procs Returns the number of processors available in the 

program. 

omp_in_parallel Returns true if the call to the routine is enclosed by an 

active parallel region; otherwise, it returns false.  

omp_get_team_size Returns, for a given nested level of the current thread, 

the size of the thread team to which the ancestor or 

the current thread belongs.  

omp_init_lock This routine initializes an OpenMP lock.  

omp_destroy_lock This routine ensures that the OpenMP lock is 

uninitialized. 

omp_set_lock This routine provides a means of setting an OpenMP 

lock. 

omp_unset_lock This routine provides a means of unsetting an 

OpenMP lock.  

omp_test_lock These routines attempt to set an OpenMP lock but do 

not suspend execution of the task executing the 

routine. 
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4.5 OpenMP Directives [50], [52] 

This section gives a brief overview of directives typically used in OpenMP. An OpenMP 

executable directive applies to the succeeding structured block. A structured-block is a single 

statement or a compound statement with a single entry at the top and a single exit at the 

bottom.  

4.5.1 Parallel construct  

         It is one of the basic constructs that initiates a parallel execution. The parallel construct 

forms a team of threads and starts parallel execution.  

4.5.2 Loop construct  

         The loop construct specifies that the iterations of loops will be distributed among teams 

and executed by the encountering team of threads.  

There can be various kinds in the loop as explained below:  

1. Static: Iterations are divided into chunks of size chunk_size. Chunks are assigned to 

threads in the team in round-robin fashion in order of thread number.  

2. Dynamic: Each thread executes a chunk of iterations and then requests another chunk 

until no chunks remain to be distributed.  

3. Guided: Each thread executes a chunk of iterations and then requests another chunk 

until no chunks remain to be assigned. The chunk sizes start large and shrink to the 

indicated chunk_size as chunks are scheduled.  

4. Auto: The decision regarding scheduling is delegated to the compiler and/or runtime 

system.  

5. Runtime: The schedule and chunk size are taken from the run-sched-var ICV.  

4.5.3 Sections construct  

          The sections construct contains a set of structured blocks that are to be distributed and 

executed by the encountering team of threads. The single construct specifies that the 
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associated structured block is executed by only one of the threads in the team (not necessarily 

the master thread), in the context of its implicit task.  

4.5.4 Single construct  

The single construct specifies that the associated structured block is executed by only 

one of the threads in the team (not necessarily the master thread) in the context of its implicit 

task.  

4.5.5 Parallel loop construct  

The parallel loop construct is a shortcut for specifying a parallel construct containing 

one or more associated loops and no other statements.   

4.5.6 Parallel sections construct  

         The parallel sections construct is a shortcut for specifying a parallel construct containing 

one sections construct and no other statements.  

4.5.7 Task construct  

   The task construct defines an explicit task. The data environment of the task is created 

according to the data-sharing attribute clauses on the task construct and any defaults that 

apply.  

4.5.8 Critical construct  

     The critical construct restricts execution of the associated structured block to a single 

thread at a time. 

4.5.9 Master construct  

     The master construct specifies a structured block that is executed by the master thread 

of the team. There is no implied barrier either on entry to or exit from the master constructs.  

4.5.10 Barrier construct  

     The barrier construct specifies an explicit barrier at the point at which the construct 

appears. Threads wait at this barrier till all threads have reached this point. 
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4.5.11 Taskwait construct  

      The taskwait construct specifies a wait on the completion of child tasks of the current 

task.   

4.5.12 Atomic construct  

        The atomic construct ensures that a specific storage location is updated atomically 

rather than exposing it to the possibility of multiple simultaneous writing threads.  

4.6 OpenMP Clauses [50], [52] 
 

     The set of clauses that is valid on a particular directive is described with the directive. 

Most clauses accept a comma-separated list of list items. All list items appearing in a clause 

must be visible. 

Data Sharing Attribute Clauses:  

         Data-sharing attribute clauses apply only to variables whose names are visible in the 

construct on which the clause appears.  

4.6.1 Default  

Controls the default data-sharing attributes of variables that are referenced in a parallel 

or task construct.  

4.6.2 Shared  

Declares one or more list items to be shared by tasks generated by a parallel or task 

construct.  

4.6.3 Private  

Declares one or more of the list items to be private to a task.  

4.6.4 Firstprivate 

Declares one or more list items to be private to a task, and initializes each of them with 

the value that the corresponding original item has when the construct is encountered.  

 



 

35 
 

4.6.5 Lastprivate  

Declares one or more list items to be private to an implicit task, and causes the 

corresponding original item to be updated after the end of the region. 

4.7 OpenMP Environment Variables [50], [52] 

Environment variable is a method to alter the execution features of OpenMP 

applications. It is used to control loop iterations scheduling, default number of threads, etc. in an 

application which in run using OpenMP software. 

4.7.1 OMP_SCHEDULE    

Sets the runtime environment variable that sets the schedule type and chunk size for 

the threads that run in the parallel region. Valid OpenMP schedule types are static, dynamic, 

guided or auto. Chunk is a positive integer that specifies chunk size.  

4.7.2 OMP_NUM_THREADS  

Sets the runtime environment variable to initialize the number of threads for use in a 

parallel region.  

4.7.3 OMP_DYNAMIC  

Sets the runtime environment variable for dynamic adjustment of threads in a parallel 

region. Valid values for dynamic are true or false.  

4.7.4 OMP_NESTED 

Sets the runtime environment variable to enable or disable nested parallelism. Valid 

values are true or false.  

4.7.5 OMP_THREAD_LIMIT  

Sets the runtime environment variable to control the maximum number of threads 

participating in the OpenMP program. 
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4.8 Race Conditions [50] 
 

     A race condition exists when two unsynchronized threads access the same shared 

variable with at least one thread modifying the variable. The outcome may be unpredictable and 

depends on the timing of the threads in the team. Race conditions are an insidious problem 

because they can remain undetected for many thousands of executions, and it is not always 

obvious that the program has generated incorrect results. Because communications and 

synchronizations are often implicit in shared memory programming, race conditions can arise 

unexpectedly. It is the programmer's responsibility to ensure that the code is free from situations 

that could give rise to race conditions that corrupt the computational results. Following simple 

example demonstrates the race condition -  

int i=0;  

#pragma omp parallel  

{  

:  

i++;  

:  

} 

Consider a possible time-line for a two-thread example as shown in table 4.2. 
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Table 4.2 Timeline for two threads in OpenMP 

 

Clock 

 

Thread 0 

 

Thread 1 

1 load i  (i = 0)  

2 incr i  (i = 1)  

3 swapped out load i  (i = 0) 

4  incr i  (i = 1) 

5  store i  (i = 1) 

6 store i  (i = 1) swapped out 

 
 

In this case, the result in i is 1 and not 2, as one would expect. Because the increment 

(++) operation is not atomic, it can be interrupted before completion and can cause incorrect 

results. A simple increment on a shared variable like this is a prime candidate for the use of the 

OpenMP atomic directive, as shown below, which eliminates the possibility of a race condition.  

Finally, the following two-step process goes a long way towards eliminating race conditions from 

the code:  

1. Identify all shared variables within an OpenMP region.  

2. Guard all modifications of those variables with critical regions or atomic directives, even 

when they look innocuous.  

Even though it is easy to write shared memory programs, it is not easy to write correct 

shared memory programs. 

4.9 Summary 
 

      This chapter gives a detailed description of key concepts in the OpenMP program such 

as programming model, directives, constructs, environmental variables etc. In the end, it 

explains race conditions that can occur while processing in parallel.  
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       The next chapter describes how the OpenMP program is incorporated in this thesis to 

achieve task based parallelism. Finally, results, especially time complexity reduction are clearly 

illustrated with various graphs.
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CHAPTER 5 

RESULTS OF COMPLEXITY REDUCTION USING OPENMP 

5.1 Strategy adopted 

 This thesis aims at drawing a conclusion based on the reduction in the encoding time of 

a video sequence by using task based and data based parallelism. The task based parallelism 

in JM 18.0 [13] reference software is achieved by dividing the GOP‟s into two equal parts and 

encoding each part in two threads independently on the underlying hardware. These threads 

are created by making use of OpenMP software. OpenMP software makes it possible to run 

multiple threads at the same time depending on the number of available cores. In this thesis a 

maximum of two threads are run in parallel on two different cores i.e. one thread on one 

dedicated core to achieve task level parallelism. Hence the two threads become independent of 

each other with no data dependency. The above design can be explained in detail with the help 

of figure 5.1 as follows: 

      Step 1] Divide the GOP‟s into two equal sub GOP‟s. For example, if the total number of 

frames to encode is 30, then GOP1 contains frame numbers from 1 to 15 to be encoded in 

thread 1 and GOP2 contains frame numbers from 16 to 30 to be encoded in thread 2. 

      Step 2] Perform intra coding on two different frames i.e. frame 1 and frame 16. Frame 1 can 

be used as a reference frame for frame 2 and frame 16 can be used as a reference frame for 

frame 17. 

      Step 3] Perform inter coding on frame 2 and frame 17 in two separate threads i.e. thread 1 

and thread 2 respectively. Frame 1 and frame 16 acts as reference frames for frame 2 and 

frame 17 respectively. Similarly frame 2 and frame 17 acts as reference frames for frame 3 and 

frame 18 respectively. The two threads thus become independent with no data dependency and 

can run in parallel.
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Figure 5.1 Parallel encoding of 30 frames. 

 Diagrammatic representation of step 1 to step 3 are shown in figure 5.1. 

 Data based parallelism is achieved by first finding the hot spots in the JM 18.0 [13] 

reference software. These hot spots are then made to run in parallel by dividing the total work of 

a hot spot into two different threads equally. These threads are created by making use of 

OpenMP software. The division of the work is done by changing the code of the hot spot under 

consideration. While dividing the work care needs to be taken to ensure that there is no data 

dependency between the two threads. Also it is preferable to maintain the load balancing 

between the two threads for optimum results. Thus software complexity increases and also 

there is an extra overhead of thread creation for each hot spot in the reference software.   

5.2 Prediction Structure [3], [4], [5], [7] used 

 Prediction structures offer different options for choosing reference pictures for inter 

prediction.  H.264 video codec offers four basic prediction structures as explained in chapter 2. 

To obtain results, low delay minimal storage prediction structure was used since it is compatible 

with the Baseline Profile of H.264 [3]. Figure 5.1 shows the low delay minimal storage prediction 

structure. It uses only I and P slices. It does not allow B slices. The first frame is coded as an I 
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slice and subsequent frames are coded as P slices for a GOP predicted from the previous 

frame. 

 

Figure 5.2 Low delay, minimal storage prediction structure in H.264 video codec [3] 

5.3 Performance metric [3], [50] 

The results are compared in terms of change of PSNR (ΔPSNR), bit-rate (Δ bit rate), 

SSIM (ΔSSIM), encoding time (Δ Time), physical memory usage and CPU power usage. A 

conclusion is drawn finally based on results obtained from the reduction of the encoding time 

using task based and data based parallelism. 

5.3.1 %T reduction 

 Computational efficiency is measured by the amount of time reduction, which is 

computed as follows: 

 

5.3.2 Delta bit rate 
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5.3.3  PSNR (Peak Signal to Noise Ratio) [59] is computed as follows: 

 

5.3.4  SSIM [57], [58] (%) can be measured on similar lines, as follows: 

 

5.3.5 Physical memory usage  

 Task manager can be used to find the Physical memory usage. The task manager can 

be viewed in a pop up window by pressing Ctrl + Alt + Delete key‟s together from the keyboard. 

Click on the performance tab to view the Physical memory usage for the JM 18.0 [13] software.  

A screen shot for the task manager is as shown in figure 5.3. 
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Figure 5.3 Task manager snapshot 

5.3.6 CPU power usage  

 CPU power usage to run the JM software can be obtained by using third party software 

called joule-meter [62], [63]. This software gives the CPU power usage in watts for any 

application in the running state. A snap shot for the joule meter is as shown in figure 5.4. 
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Figure 5.4 Joule-meter snapshot [62], [63] 

5.4 Preview of test sequences [50], [54] 

 CIF (Common Intermediate Format) is a format used to standardize the horizontal and 

vertical resolutions in pixels of Y, Cb, Cr sequences in video signals, commonly used in video 

teleconferencing systems. QCIF means "Quarter CIF". To have one fourth of the area as 

"quarter" implies the height and width of the frame are halved. The differences in Y, Cb, Cr of 

CIF and QCIF are shown in figure 5.5. 
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Figure 5.5 CIF and QCIF formats [55] 

CIF (352 × 288) and QCIF (176 × 144) [55] sequences have been used to test the results of 

proposed technique. Following 12 CIF and QCIF video sequences have been used (figure 5.6) 

to draw a conclusion for this thesis. 



 

46 
 

 
Figure 5.6 Preview of CIF and QCIF video sequences for testing [60] 

 CIF and QCIF sequences have been used with frame rate selected as 25 Hz. 

Compared to original JM 18.0 reference software [13], results obtained by optimizing the 

software are shown based on PSNR, bit rate, SSIM (Structural Similarity Index Metric) [56], total 

encoding time [50], CPU power and memory usage. 

 SSIM, a recently proposed approach to image fidelity measurement has proven to be 

highly effective for measuring the fidelity of coded images. The human visual system is highly 

adapted to extract structural information from visual scenes; this is the basis for SSIM. For 

image fidelity measurement, the retention of signal structure should be an important ingredient 

[50].  
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5.5 Encoding specifications 

5.5.1 Configuration Parameters 

 The following configuration parameters (Figure 5.7) are given as input before starting 

the encoding procedure. Figure 5.7 states the configuration parameters for container_cif.yuv 

video sequence. 

 
Figure 5.7 Configuration parameters for container_cif.yuv video sequence. 

 
5.6 Results with CIF and QCIF sequences 

5.6.1 Results with CIF sequences 

Table 5.1 Simulation results for CIF video sequences at QP 10 and 25. 

Test 
Sequence 

(QCIF) 

QP = 10 QP = 25 

%T 
Reducti

on 
ΔPSN
R (%) 

Δ Bit-
rate (%) 

Δ 
SSIM 
(%) 

%T 
Reducti

on 
ΔPSN
R (%) 

Δ Bit-
rate (%) 

Δ 
SSIM 
(%) 

Foreman 47.12 0.034 -0.012 0.002 46.06 -0.012 0.001 0.001 

Coastguard 46.75 -0.123 0.011 0.000 45.94 0.031 0.003 -0.002 

Hall  44.92 0.002 0.013 0.001 44.21 -0.012 -0.002 0.103 

Mobile 45.24 0.021 0.013 0.002 44.69 0.016 0.061 0.008 

News 46.98 0.019 0.005 -0.007 46.23 0.010 0.021 0.004 

Flower 45.12 0.034 0.007 -0.001 44.72 0.032 0.041 -0.016 

Highway 45.92 0.034 0.018 0.001    45.11 0.046 0.022 -0.008 
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Table 5.1 continued 

Mother- 
Daughter 

45.56 0.031 0.004 -0.007 46.18 -0.050 0.052 0.006 

Container 45.32 0.029 0.026 -0.005 45.20 -0.034 0.041 0.006 

Bus  45.09 0.002 0.017 0.050 45.07 0.051 0.045 0.008 

Paris 44.35 0.011 0.014 -0.011 43.57 0.043 0.033 0.003 

 

Table 5.2 Simulation results for CIF video sequences at QP 35 and 45. 

 

5.6.2 Results with QCIF sequences 

Table 5.3 Simulation results for QCIF video sequences at QP 10 and 25. 

Test 
Sequence 

(QCIF) 

QP = 35 QP = 45 

%T 
Reducti

on 
ΔPSN
R (%) 

Δ Bit-
rate (%) 

Δ 
SSIM 
(%) 

%T 
Reducti

on 
ΔPSN
R (%) 

Δ Bit-
rate (%) 

Δ 
SSIM 
(%) 

Foreman 47.45 0.018 -0.001 0.001 48.12 0.001 -0.002 0.101 

Coastguard 45.89 -0.001 0.021 0.000 45.98 0.024 0.006 0.005 

Hall  45.68 0.012 0.008 -0.003 45.73 -0.012 0.011 -0.012 

Mobile 44.53 0.032 0.043 0.012 43.91 0.018 0.012 0.013 

News 46.56 0.027 0.032 0.007 46.98 0.035 0.013 -0.012 

Flower 45.98 0.062 0.012 0.005 46.12 0.026 0.032 0.012 

Highway 46.23 0.062 0.062 0.003 45.89 0.020 -0.094 0.009 

Mother-
daughter 44.78 -0.028 0.001 0.004 45.18 0.038 0.009 0.011 

Container 44.98 0.051 0.045 0.008 43.52 0.016 0.061 0.000 

Bus 44.67 0.026 0.001 0.013 45.12 -0.122 0.009 0.163 

Paris 45.12 0.014 0.009 0.005 45.51 0.025 0.043 0.007 

Test 
Sequence 

(QCIF) 

QP = 10 QP = 25 

%T 
Reducti

on 
ΔPSN
R (%) 

Δ Bit-
rate (%) 

Δ 
SSIM 
(%) 

%T 
Reducti

on 
ΔPSN
R (%) 

Δ Bit-
rate (%) 

Δ 
SSIM 
(%) 

Foreman 47.34 0.062 -0.013 0.00 46.73 -0.002 0.089 -0.03 

Coastguard 48.12 0.000 -0.014 0.005 47.56 0.002 -0.032 0.002 

Hall  49.86 0.003 0.006 0.001 50.58 -0.003 0.001 0.101 

Mobile 47.12 -0.053 -0.021 0.012 46.67 -0.001 -0.001 -0.012 

News 48.56 0.005 -0.002 -0.006 47.53 -0.022 -0.129 -0.004 

Suzie 50.82 0.012 -0.001 0.015 49.11 -0.010 -0.010 0.015 

Highway 45.95 -0.089 -0.008 -0.012 46.18 -0.004 -0.041 0.001 

Mother-
daughter 46.91 0.001 -0.003 0.001 46.50 -0.001 -0.012 0.001 

Salesman 48.10 0.003 -0.001 0.032 48.31 -0.062 -0.103 -0.002 

Miss-america 48.12 -0.041 -0.012 0.014 49.18 -0.012 -0.055 0.004 

Container 48.26 0.009 -0.031 -0.015 47.80 -0.007 -0.108 -0.001 
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Table 5.3 continued 

Bridge-close 47.45 0.001 -0.001 0.001 46.38 0.00 -0.138 0.005 

 

Table 5.4 Simulation results for QCIF video sequences at QP at 35 and 45. 

 

5.7 Graphs 

5.7.1 Average encoding time for all CIF sequences 

Test 
Sequence 

(QCIF) 

QP = 35 QP = 45 

%T 
Reducti

on 
ΔPSN
R (%) 

Δ Bit-
rate (%) 

Δ 
SSIM 
(%) 

%T 
Reducti

on 
ΔPSN
R (%) 

Δ Bit-
rate (%) 

Δ 
SSIM 
(%) 

Foreman 48.90 -0.197 -0.122 0.002 48.92 -0.011 -0.232 -0.012 

Coastguard 46.98 -0.007 -0.196 -0.012 47.12 -0.016 -0.259 -0.018 

Hall  48.59 0.001 -0.185 0.021 49.23 0.021 -0.324 -0.007 

Mobile 46.34 0.008 -0.069 0.001 47.12 0.014 -0.214 0.001 

News 46.89 -0.063 -0.013 0.091 46.12 -0.013 -0.198 0.012 

Suzie 48.12 0.089 -0.021 -0.002 47.34 0.045 -0.109 -0.021 

Highway 48.96 0.034 -0.154 0.036 47.98 0.006 -0.236 -0.009 

Mother-
daughter 46.78 -0.108 -0.121 0.001 45.92 -0.056 -0.126 0.089 

Salesman 50.52 0.001 -0.109 -0.006 49.45 0.008 -0.214 0.056 

Miss-america 47.51 0.005 -0.001 0.002 48.34 0.001 -0.167 -0.012 

Container 47.12 -0.002 -0.115 0.014 48.56 -0.001 -0.091 0.002 

Bridge-close  46.89 -0.001 -0.201 0.000 47.39 0.000 -0.506 -0.005 
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Figure 5.8 Comparison of average encoding time for all CIF sequences 

 

5.7.2 Average encoding time for all QCIF sequences 

  

Figure 5.9 Comparison of average encoding time for all QCIF sequences 
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5.7.3 PSNR graphs for QCIF sequences 

5.7.3.1 Foreman_qcif.yuv   

 

Figure 5.10 PSNR graph for foreman_qcif.yuv 

 

5.7.3.2 Coastguard_qcif.yuv 

 

 
 

Figure 5.11 PSNR graph for coastguard_qcif.yuv 
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5.7.3.3 Hall_qcif.yuv 

 

 

Figure 5.12 PSNR graph for hall_qcif.yuv 

 

5.7.3.4 Bridge-close_qcif.yuv 

 

 
 

Figure 5.13 PSNR graph for bridge-close_qcif.yuv 
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5.7.3.5 Mobile_qcif.yuv 

 
 

Figure 5.14 PSNR graph for mobile_qcif.yuv 

5.7.3.6 News_qcif.yuv 

 

Figure 5.15 PSNR graph for news_qcif.yuv 
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 5.7.3.7 Suzie_qcif.yuv 

 

Figure 5.16 PSNR graph for suzie_qcif.yuv 

 5.7.3.8 Highway_qcif.yuv 

 

Figure 5.17 PSNR graph for highway_qcif.yuv 
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 5.7.3.9 Mother-daughter_qcif.yuv 

 

Figure 5.18 PSNR graph for mother-daughter_qcif.yuv 

5.7.3.10 Salesman_qcif.yuv 

 

Figure 5.19 PSNR graph for salesman_qcif.yuv 
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 5.7.3.11 Miss-america_qcif.yuv 

 

Figure 5.20 PSNR graph for miss-america_qcif.yuv 

5.7.3.12 Container_qcif.yuv  

 

Figure 5.21 PSNR graph for container_qcif.yuv 
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5.7.4 SSIM graphs for QCIF sequences 

5.7.4.1 Foreman_qcif.yuv 

 
 

Figure 5.22 SSIM graphs for foreman_qcif.yuv 

 

 5.7.4.2 Bridge-close_qcif.yuv 

 

 
 

Figure 5.23 SSIM graphs for bridge-close_qcif.yuv 
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5.7.4.3 Hall_qcif.yuv 

 

 
 

Figure 5.24 SSIM graphs for hall_qcif.yuv 

 

5.7.4.4 Coastguard_qcif.yuv 

 

 
 

Figure 5.25 SSIM graphs for coastguard_qcif.yuv 
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 5.7.4.5 Mobile_qcif.yuv 

 

 
 

Figure 5.26 SSIM graphs for mobile_qcif.yuv 

 5.7.4.6 News_qcif.yuv 

 

Figure 5.27 SSIM graphs for news_qcif.yuv 
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 5.7.4.7 Suzie_qcif.yuv 

 

Figure 5.28 SSIM graphs for suzie_qcif.yuv 

 5.7.4.8 Highway_qcif.yuv  

 

Figure 5.29 SSIM graphs for highway_qcif.yuv 
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 5.7.4.9 Mother-daughter_qcif.yuv 

 

Figure 5.30 SSIM graphs for mother-daughter_qcif.yuv 

 5.7.4.10 Salesman_qcif.yuv 

 

Figure 5.31 SSIM graphs for coastguard_qcif.yuv 
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 5.7.4.11 Miss-america_qcif.yuv 

 

Figure 5.32 SSIM graphs for miss-america_qcif.yuv 

5.7.4.12 Container_qcif.yuv 

 

Figure 5.33 SSIM graphs for container_qcif.yuv 
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5.7.5 PSNR graphs for CIF sequence 

5.7.5.1 Foreman_cif.yuv 

 

Figure 5.34 PSNR graph for foreman_cif.yuv 

 

5.7.5.2 Coastguard_cif.yuv 

 

 
 

Figure 5.35 PSNR graph for coastguard_cif.yuv 
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5.7.5.3 Hall_cif.yuv 

 
 

Figure 5.36 PSNR graph for hall_cif.yuv 

 

5.7.5.4 Bridge-close_cif.yuv 

 

 
 

Figure 5.37 PSNR graph for bridge-close_cif.yuv 
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5.7.5.5 Mobile_cif.yuv 

 
 

Figure 5.38 PSNR graph for mobile_cif.yuv 

 5.7.5.6 News_cif.yuv 

 

Figure 5.39 PSNR graph for news_cif.yuv 
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 5.7.5.7 Bus_cif.yuv 

 

Figure 5.40 PSNR graph for bus_cif.yuv 

 5.7.5.8 Highway_cif.yuv 

 

Figure 5.41 PSNR graph for highway_cif.yuv 
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 5.7.5.9 Mother-daughter_cif.yuv 

 

Figure 5.42 PSNR graph for mother-daughter_cif.yuv 

 5.7.5.10 Flower_cif.yuv 

 

Figure 5.43 PSNR graph for flower_cif.yuv 
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 5.7.5.11 Paris_cif.yuv 

 

Figure 5.44 PSNR graph for paris_cif.yuv 

 5.7.5.12 Container_cif.yuv  

 

Figure 5.45 PSNR graph for container_cif.yuv 
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5.7.6 SSIM graphs for CIF sequences 

5.7.6.1 Foreman_cif.yuv 

 
 

Figure 5.46 SSIM graph for foreman_cif.yuv 

 

5.7.6.2 Bridge-close_cif.yuv 

 

 
 

Figure 5.47 SSIM graph for bridge-close_cif.yuv 
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5.7.6.3 Hall_cif.yuv 

 

 
 

Figure 5.48 SSIM graph for hall_cif.yuv 

 

5.7.6.4 Coastguard_cif.yuv 

 

 
 

Figure 5.49 SSIM graph for coastguard_cif.yuv 
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5.7.6.5 Mobile_cif.yuv 

 

 
 

Figure 5.50 SSIM graph for mobile_cif.yuv 

 5.7.6.6 News_cif.yuv 

 

Figure 5.51 SSIM graph for news_cif.yuv 
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 5.7.6.7 Bus_cif.yuv 

 

Figure 5.52 SSIM graph for bus_cif.yuv 

 5.7.6.8 Highway_cif.yuv  

 

Figure 5.53 SSIM graph for highway_cif.yuv 
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 5.7.6.9 Mother-daughter_cif.yuv 

 

Figure 5.54 SSIM graph for mother-daughter_cif.yuv 

 5.7.6.10 Flower_cif.yuv 

 

Figure 5.55 SSIM graph for Flower_cif.yuv 
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 5.7.6.11 Paris_cif.yuv 

 

Figure 5.56 SSIM graph for paris_cif.yuv 

5.7.6.12 Container_cif.yuv 

 

Figure 5.57 SSIM graph for container_cif.yuv 
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5.7.7 CPU power usage graphs for QCIF sequences 

 

 Figure 5.58 Comparison of average CPU power usage for all QCIF sequences 

5.7.8 CPU power usage graphs for CIF sequences 

 

Figure 5.59 Comparison of average CPU power usage for all CIF sequences 
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5.7.9 Physical memory usage graphs for CIF sequences 

 

Figure 5.60 Comparison of physical memory usage for all CIF sequences 

5.7.10 Physical memory usage graphs for QCIF sequences 

 

Figure 5.61 Comparison of physical memory usage for all QCIF sequences 
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5.8 Analysis of task based and data based parallelism 

 As per the design strategy adopted in this thesis to achieve task based parallelism, a 

GOP to be encoded is always divided equally into two sub GOP‟s and each sub GOP is 

encoded in a single dedicated thread. Hence a maximum of two threads are required to encode 

an entire GOP as the GOP is always divided into two equal sub GOP‟s for any video sequence. 

The number of frames in each sub GOP has to be preset before starting the encoding 

procedure by setting the „intra frame period‟ parameter in the configuration file 

„encodebaseline.cfg‟. The „intra frame period‟ parameter denotes the number of P frames 

between two successive I frames. Hence to encode a video sequence with a GOP of 30 frames, 

the „intra frame period‟ parameter would be set to 15 with frame 1 and frame 16 as I frame for 

thread 1 and thread 2 respectively. The successive frames i.e. frame 2 to frame 15 would be 

encoded as P frames in thread 1 and frame 17 to frame 30 as P frames in thread 2 respectively. 

By adopting this approach the two threads become independent of each other and hence no 

data dependency. Also the overhead for thread creation is minimal as only a maximum of two 

threads are required to encode any video sequence for any number of GOP‟s. This design 

strategy for task based parallelism implemented in the JM 18.0 [1] reference software using 

OpenMP software for thread creation reduces the encoding time for a GOP approximately by 

50%. This can be concluded from the readings shown in table 5.1 and 5.4. The other advantage 

of task based parallelism is the elimination of data dependency. It is eliminated by introducing 

an additional I frame for each sub GOP; hence the two threads can run in parallel without any 

race conditions. This reduces the software complexity. The most evident disadvantage of this 

design is that the encoding of the video sequence can only start after the raw data bytes for the 

middle frame in a GOP is made available. This can hamper the real time response for a video 

sequence. Also as an additional I frame is included for encoding a GOP, the bit rate increases 

marginally as compared to the original reference JM 18.0 [1] software.       
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 The basic idea behind data based parallelism is to identify the hot spots in the software 

and parallelize them by creating new threads for each hot spot. This drastically increases the 

overhead for thread creation as the total number of threads created for encoding a GOP is 

dependent on the number of frames to be encoded and the number of hot spots encountered 

during encoding of a single frame. For example to encode a video sequence having a GOP of 

30 frames with each frame having 5 hot spots to encode it completely and each hot spot being 

divided equally  between a maximum of two parallel threads, the number of threads created 

would be : 

No of threads created = 2 * 5 * 30 

                                     = 300 threads 

Hence compared to task based parallelism an additional overhead of 298 thread creation is 

required to encode the same video sequence using data based parallelism as per the design 

strategy explained above. Also the software complexity to eliminate race condition between two 

threads in data based parallelism is more as compared to task based parallelism. Hence from 

figures 5.8 and 5.9 it can be shown that the data based parallelism approach carried out on a 

CPU having a maximum of 2 cores brings about no reduction in the encoding time for most of 

the video test sequences [60] but increases the encoding time by few seconds for quite a few 

video test sequences [60].   . 

5.9 Summary 

 This chapter explains the advantages and disadvantages of using task based 

parallelism approach to encode the video frames over data based parallelism approach. The 

results were populated on a general purpose CPU having a maximum of 2 cores and running a 

maximum of 2 threads i.e. 1 dedicated thread on each core to achieve parallelism. OpenMP 

software is used to create the threads and make it run in parallel on the underlying hardware. 

The results were populated on video test sequences [60] shown in figure 5.6. These test 
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sequences covered large variations in motion i.e. from fast moving objects to constant 

background. Based on the results shown in table 5.1 and 5.4, approximately 50% reduction in 

the encoding time was achieved by adopting task based parallelism approach. Data based 

parallelism showed no reduction in the encoding time as compared to the original reference JM 

18.0 [1] software.    . 

 The next chapter derives a conclusion based on the analysis of the results shown in 

chapter 5 and also gives brief introduction as to what can be further implemented using parallel 

programming methodologies.
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

 From the simulation results shown in Chapter 5, it is shown that the proposed task 

based parallel algorithm on a general purpose CPU having 2 cores with a maximum of 2 

threads running in parallel created by OpenMP software brings about approximately 50% 

reduction in the encoding time with no degradation in the video quality as compared to the 

reference JM 18.0 [1] software. These results are shown in table 5.1 to 5.4 and figure 5.8 to 

5.60. PSNR and SSNR are used as video quality metric.   

 Besides this data based parallelism causes thread creation overhead and there is no 

reduction in the encoding time as compared to the reference JM 18.0 [1] software. This result is 

shown in figure 5.8 and figure 5.9. But past research as shown in [65] proves that data based 

parallelism brings about 20% more reduction as compared to the task based parallelism in this 

thesis. Hence while deciding the design strategy to adopt to reduce the time complexity; one 

needs to consider the number of available cores. In case of a 2 core general purpose CPU, task 

based parallelism is a better approach than data based parallelism as thread creation over head 

is less in task based parallelism than data based parallelism. Also since data race condition 

between threads is eliminated by introducing an additional I frame, software for a task based 

approach is computationally less complex as compared to a data based approach.      

6.2 Future work 

 In this thesis stress is given on adopting a task based parallelism approach to encode 

the video frames rather than adopting data based parallelism as it raises two major concerns –  

 1] Overhead in creating thread.
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2] Data dependencies involved in intra prediction, inter prediction, loop filtering and 

CAVLC. 

By having a parallel computing model like Compute Unified Device Architecture (CUDA) [64] 

invented by NVIDIA, the thread creation overhead can be reduced as CUDA threads are 

extremely lightweight, with very low creation overheads and switching time. The problem of data 

dependency can also be solved by dividing the frame into many macro-blocks (MB) and then 

mapping each MB‟s on different processor to execute in parallel. 
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