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ABSTRACT

DATA MINING BASED THRESHOLD DEVELOPMENT FOR

NOVELTY DETECTION

POOVICH PHALADIGANON, Ph.D.

The University of Texas at Arlington, 2012

Supervising Professor: Victoria C. P. Chen

The objective of this dissertation is to develop thresholds for novelty detection

with applications to statistical process control (SPC). SPC is a widely used technique

for improving process and product quality. The primary tool of SPC is a control

chart that is used to monitor and detect abnormal processes. Traditional control

chart techniques usually require a specific distributional assumption, typically the

normal distribution, to establish their control limits. However, in modern manufac-

turing processes, the normality assumption is often violated. Novelty detection more

generally seeks abnormal (or novel) patterns in data, and novelty detection tech-

niques can be applied to control charts in SPC. This dissertation consists of three

components.

First, a bootstrap-based threshold for detecting abnormal patterns in multivari-

ate T 2 control chart is proposed. This approach can efficiently monitor a process when

the distribution of observed data is nonnormal or unknown. The bootstrap method

is a nonparametric technique that does not rely on the assumption of a parametric

distribution of the observed data. Prior SPC literature only studies the bootstrap

vi



technique to develop univariate control charts to monitor a single process, while in this

dissertation, the bootstrap technique is integrated with multivariate control charts.

Second, principal component analysis (PCA)-based control charts have been

widely used to address problems posed by high correlations by reducing dimensional-

ity. However, an assumption that the data are normally distributed has limited the

use of PCA control charts. In this dissertation, the bootstrapping threshold approach

and a kernel density estimation approach are employed for threshold development to

yield nonparametric PCA control charts that do not require any distributional as-

sumptions for their construction.

In novelty detection, support vector data description (SVDD) is a one-class

classification technique that constructs a boundary in order to differentiate novel

from normal patterns. However, boundaries constructed by SVDD do not consider

the density of the data. Data points located in low density regions are more likely to

be novel patterns because they are remote from their neighbors. This study presents

a density-focused SVDD (DFSVDD), for which its boundary considers both shape

and the dense region of the data.
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CHAPTER 1

INTRODUCTION

The capability to detect novel patterns in data, widely used in academia and

science, is attracting increasing attention for various practical applications. Novelty

detection is a widely used technique to identify novel patterns in data. The novel

patterns targeted for identification are defined as a new or unusual occurrences in data

that do not conform to normal patterns [1]. The basic idea of novelty detection is to

differentiate the specified “normal” target class from all other classes. Furthermore,

novelty detection can be used when one important class is undersampled. Although

information on one of the classes in the data is typically abundant and easy to acquire,

collection of data specific to the abnormal or novel conditions may be difficult because

of their rarity and the expense of identifying and obtaining them. The need to

record every example from the novel class to ensure that it represents all types of

circumstance is a further complication.

For instance, the status of a machine operating normally, which would generate

data referred to as the target class, can be seen daily in manufacturing. Data for

this circumstance is easy and practical to measure and collect. In contrast, the

data associated with a breakdown of the same machine, a situation referred to as a

novelty, is rarely collected [2]. The representation of such a novelty also must cover all

possible cases that can cause the machine’s failure. Another typical example occurs

in a medical diagnosis in which any type of disease must be detected. Information on

healthy people in the target class is well sampled, but there is a lack of information

on all types of diseases that constitute a novelty and depart from the norm. The

1



techniques of novelty detection have far-ranging potential application in such fields

as detection of fraudulent credit transactions [3], intrusion into computer networks

[4], and locations of mines in minefields [5].

As described earlier in the example of a machine breakdown, novelty detection

can be used in quality control in terms of charting control problems. The main goal of

a control chart is to detect abnormal behavior in a process. Furthermore, construction

of control charts requires only data representing the target class. The main focus of

this dissertation is development of thresholds for novelty detection for subsequent

application to statistical process control, especially in problems of control charting.

Quality is a key factor in manufacturing success. Another factor, customers’

purchasing of products and services, is mainly determined by the level of quality.

To satisfy their customers, manufacturers try constantly to control and improve the

quality of their products and services. It is the simple nature of things that no two

products can be produced exactly the same. This is true because of variations in

the process. The causes of these variations are of two types: common and special.

Common causes of variation are a natural part of a process and cannot be removed

or controlled. A process that varies only because of common causes is considered in

control. In contrast, special causes lead to an excessive magnitude of variation in a

process and render it out of control.

Statistical process control (SPC) contains a set of powerful tools used to improve

processes to provide quality products and services to customers. SPC comprises seven

major tools: histogram or stem-and-leaf plots, check sheets, Pareto charts, cause-and-

effect diagrams, defect concentration diagrams, scatter diagrams, and control charts.

This dissertation mainly focuses on a control chart used to monitor the performance

of a process and product over time. Walter A. Shewhart of Bell Laboratories was the

2
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Figure 1.1 Shewhart x̄ chart.

first to devise a control chart. His innovation can assist in reducing the variability

inherent in processes and prevent the manufacture of defective products.

Several quality characteristics, such as thickness, diameter, and length, describe

a product in a manufacturing process. Control charts are a graphical display of a

quality characteristic [6]. A control chart is composed of two major components.

The first is a monitoring statistic that is a function of a measurement of a quality

characteristic taken from a process and used to plot the control chart. Some well-

known examples of monitoring statistics are the sample mean (x̄) and sample range

(R). Control limits are the second component in control charts. These establish

the threshold for a determination of whether or not a process is in control. When a

process shifts out of control, the monitoring statistic falls outside the control limits

and serves to indicate that the process is out of control. However, control charts

sometimes falsely signal a change in the process. This situation is called a false

alarm. Figure 1.1 illustrates a Shewhart x̄ chart in which data were generated under

3



an assumption that the process is in control. However, two observations (50th and

70th) fall outside the upper control limit. These two points are identified as false

alarms.
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Figure 1.2 Multivariate Hotelling’s T 2 chart.

Control charts can be categorized into two types: univariate and multivari-

ate. Univariate control charts monitor a single quality characteristic. Figure 1.1 is an

example of univariate Shewhart x̄ chart widely used to monitor a process mean. Mul-

tivariate control charts monitor multiple quality characteristics in one chart. Figure

1.2 illustrates a multivariate Hotelling’s T 2 control chart. These data were generated

so that the first 80 observations are the actual in-control observations, but the last

20 are actual out-of-control observations. Figure 1.2 clearly shows that the process

has shifted out of control.

Two types of error rates are commonly used to measure the performance of

control charts. A Type I error rate (α), also referred as to the false alarm rate, is the

4



ratio of actual in-control observations that are incorrectly identified as out of control

to the total number of actual in-control observations. A Type II error rate (β) is the

actual out-of-control observations that are incorrectly identified as in control divided

by the number of actual out-of-control observations. In Figure 1.2, observation num-

bers 10 and 20 are classified as Type I errors, and Type II errors can be recognized

by observation numbers 85, 90, and 95. Another performance measure for control

charts is the average run length (ARL), which is the average number of observations

before an out-of-control signal occurs. In-control ARL (ARL0) corresponds to the

ARL before a false alarm occurs when the process is in control, and out-of-control

ARL (ARL1) is the ARL before occurrence of an out-of-control signal. In practice,

an engineer specifies the ARL0 so that few false alarms occur; however, a small ARL1

is equally desirable for quick detection of an out-of-control situation.

1.1 Motivation and Contribution

The research in this dissertation was first motivated by the novelty detection

aspect of SPC methods. Novelty detection techniques are applicable to control chart-

ing problems because both share similar detection objectives. Moreover, in novelty

detection approaches the rare representative samples of the other classes (novelty) are

difficult or impractical to acquire for model training. However, the construction of

control charts requires only information about in-control (target) data. Apart from

the process of training a model, a control chart needs only development of a thresh-

old as a basis for decision making. However, thresholds (control limits) constructed

for control charts require a parametric assumption. A certain distribution has to be

known for mathematical derivation of a threshold formula.

Usually, traditional control charts assume that process data follow a certain

probability distribution. In particular, multivariate T 2 control charts (T 2 charts)
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are efficient and reliable when the process data are normally distributed (see Section

2.2). Under this assumption, T 2 statistics follow the F -distribution. The control

limit of a T 2 chart is the upper quantile of the F -distribution with corresponding

degrees of freedom. However, data from complex industrial processes often do not

follow a specific distribution. This implies that the control limits obtained by the F -

distribution may be inaccurate because the rate of false alarms is higher than desired.

In this dissertation, a bootstrap approach that does not require any distributional

assumptions is employed to establish control limits for T 2 charts under nonnormality.

The bootstrap method is a nonparametric estimation method that can be used

for distributional approximation. This method helps to avoid a distributional as-

sumption, such as normality, that is often a requirement of model construction. The

general idea of the bootstrap method is to draw a random sample with replacement

from the empirical distribution to obtain a bootstrap sample. This procedure is re-

ferred to as a resampling technique. Statistics of interest, such as mean, median, and

mode, are calculated from each bootstrap sample. This process can be repeated many

times to obtain the statistics of interest by using the power of computing. A large

number of bootstrap samples are required for complex estimations [7].

Further, a large number of highly correlated quality characteristics may ren-

der traditional T 2 charts less effective at detecting shifts in the process because of

an increased rate of false alarms. Principal component analysis (PCA)-based con-

trol charts have been used to overcome these problems (see Section 2.3). PCA is

a statistical analysis technique primarily used for dimensional reduction. However,

the distributional assumption of PCA-based control charts is that process data are

normally distributed. In this dissertation, bootstrap and kernel density estimation

(KDE) approaches have been implemented to construct control limits for PCA-based

control charts when the data follow multivariate nonnormal distributions. Kernel
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density estimation is a nonparametric method incorporated with kernel techniques

that is used to estimate probability distributions.

Support vector data description (SVDD) is a one-class classification technique

widely used for novelty detection. However, boundaries constructed from the tra-

ditional SVDD do not take into account the density of the data. Intuitively, the

data points located in low density regions are most likely to be novelties because

they are remote from their neighbors. This study presents a density-focused SVDD

(DFSVDD) where its boundary considers both the shape and dense regions of the

data.

1.2 Outline of this Dissertation

Chapter 2 gives a brief background of data mining techniques. Several novelty

detection algorithms are also discussed in this chapter and classical univariate and

multivariate control charts are briefly surveyed. In addition, this chapter contains a

discussion of control charts in terms of novelty detection and the implementation of

the bootstrap method for threshold development in control chart problems.

Chapter 3 presents a bootstrap-based T 2 multivariate control chart. The pro-

posed bootstrap percentile approach is used to estimate the control limits of T 2 con-

trol charts when the data do not follow a multivariate normal distribution. The

performance of the proposed bootstrap-based T 2 control charts is compared with the

traditional T 2 and existing kernel density estimation (KDE)-based T 2 control charts

based on in-control average run length.

Chapter 4 presents PCA-based bootstrap control charts for multivariate non-

normal distributions. The existing PCA-based control charts, T 2
PCA and Q charts,

are integrated into the bootstrap and KDE approaches to determine control limits.

The nonparametric control limits obtained from the bootstrap and KDE approaches
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are compared with the traditional PCA control charts in a simulation study that uses

various types of multivariate nonnormal distributions.

Chapter 5 presents a method that was developed based on support vector data

description (SVDD). The traditional SVDD includes the density of the data. The

resultant method is called density-focused SVDD (DFSVDD). A simulation study

demonstrates the comparative performance of DFSVDD and the traditional SVDD.

Chapter 6 summarizes this dissertation and presents future research.
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CHAPTER 2

LITERATURE REVIEW

2.1 Data Mining

The rapid growth of data generation and the need to collect and analyze vast

quantities of it has led to development of more sophisticated techniques for extract-

ing potential information from these data. Data mining is defined as the process of

discovering meaningful information in large data [8][9][10] and has been used in many

areas of science, business, and industry. Data mining can be separated into two cate-

gories: supervised learning and unsupervised learning [11]. Supervised learning uses

both input and output variables to create a model to predict or classify future output

observations. Unsupervised learning uses only information from input variables. The

goal of an unsupervised learning technique is to find hidden structure in the data

without the benefit of information from output variables.

2.1.1 General Description of Data Mining Methods

Supervised learning uses two approaches, regression and classification [11]. Re-

gression involves continuous output variables. The purpose of regression is to predict

the response values of future observations. Classification is based on qualitative or

categorical output variables. The goal is to create a model using existing labeled

observations to classify unlabeled observations.

Linear regression models, one of the regression techniques, have been frequently

used for prediction in regression problems because of their simplicity and interpretabil-
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ity. Given X = (X1, X2, . . . , Xp) linear regression models describe the relationship

between response (Y) and predictor variables (X) as follows:

Y = β0 +

p∑
i=1

Xiβi, (2.1)

where least square estimation can be used to estimate the β parameters by minimizing

the residual sum of squares. The goal of a linear regression model is to use single or

multiple predictor variables to predict values of a response variable. However, a linear

regression model may be misleading when the relationship between the response and

predictor variables is nonlinear.

Classification methods constitute a decision boundary for the classification of

unlabeled observations. Linear discriminant analysis (LDA) and quadratic discrimi-

nant analysis (QDA) are traditional classification techniques based on a multivariate

normal distribution. LDA generates a linear decision boundary and assumes that dif-

ferent classes have the same covariance. In contrast, QDA determines the quadratic

decision boundary and assumes that different classes have different covariances.

Decision tree models have been applied to many tasks because they can handle

both classification and regression problems that, respectively, use categorical and

continuous output variables. The tree models generate boundaries by partitioning

the input variables’ space into a set of rectangular regions. Typically, a top-down

strategy is used to grow the tree model and then a tree pruning technique is performed

to improve the prediction error rate. Decision tree models are flexible because they

can apply to all types of data, ranging from data that is continuous to data that is a

mix of categorical and numerical input variables. Furthermore, a decision tree model

is easy to interpret because of the hierarchical structure that the model builds.

The k-nearest neighbor (kNN) method is a supervised learning technique that

is considered as an instance-based learning method. The kNN algorithm can be
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used in both classification and regression, depending on the type of output variables.

kNN classification is suitable for categorical output variables, and kNN regression

is suitable for continuous output variables. Generally, the kNN algorithm first uses

distance measures to determine the k observations in a training data set that are

closest to a new observation. Euclidean distance or Mahalanobis distance are typically

used. In classification problems, the new observation is assigned to a class that has the

largest majority vote among the k nearest points. In contrast, in regression problems

the average output variables of the k nearest points is the predicted value of the new

observation.

Support vector machine (SVM) learning is a statistical learning theory widely

used in classification [12], and support vector regression is gaining popularity [13]. The

SVM algorithm determines the optimal separating hyperplane in a high dimensional

input variable space. SVM maximizes the margin and generalizability between classes

by solving a convex optimization [14]. When the data are not linearly separable, SVM

uses many types of kernel functions, such as polynomial, Gaussian, and sigmoid, to

construct a nonlinear decision boundary.

Artificial neural network (ANN) models were motivated by biological learning

systems that consist of a number of interconnected neurons [15]. ANN models are

powerful for both regression and classification types of prediction, but they are dif-

ficult to interpret. The structure of an ANN model consists of input and output

layers and typically one or more hidden layers in between. Each layer is composed

of nodes that correspond to neurons. The number of nodes for the input and output

layers is determined by the numbers of input and output variables, respectively, but

the modeler must determine the number of nodes inside the hidden layer or layers.

The model parameters specify weights on connections between nodes from one layer

to the next. The ANN algorithm iteratively adjusts the weights during the training
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process to find the optimal output that produces the minimum mean squared error.

Activation functions convert the input from one node to the next based on the desired

structure of the output from a node. For example, a step function can be used when

classification is needed, but a continuous function is used in regression [16].

The other type of learning technique in data mining is unsupervised learning.

Unsupervised learning techniques extract important information from data or identify

patterns within it without regard for information from the output variables. Principal

component analysis (PCA) is an unsupervised learning technique that is extensively

used for dimensional reduction and visualization.

PCA is a multivariate analysis technique that extracts a new set of variables

by projecting the original variables onto principal component space. The extracted

variables, called PCs, are linear combinations of the original variables in which the

coefficients of the linear combination can be obtained from the eigenvectors of the co-

variance (or correlation) matrix of the original data [17]. Geometrically, PCA rotates

the axes of the original coordinate system to a new set of axes along the direction of

maximum variability of the original data [18]. PCs are uncorrelated with each other,

and the first few PCs can usually account for most of the information of the original

data. Let x = [x1, x2, . . . , xp]
T represent a random vector of observations on p quality

characteristics with the sample covariance matrix S. Based on the spectral decom-

position that links the structure of a symmetric matrix to the eigenvalue-eigenvector

pairs [19], the covariance matrix can be decomposed as follows:

UTSU = L, (2.2)

where U is the matrix composed of eigenvectors in columns corresponding to the di-

agonal L matrix, which are the eigenvalues sorted in descending order, l1 > l2 > . . . >

lp > 0. U is orthonormal eigenvectors such that UTU = I. The principal component

12



technique transforms p correlated variables into new p uncorrelated variables by using

the following equation:

Z = UT [x− x̄]. (2.3)

Determination of the appropriate number of PCs to retain can be subjective. In

general, a scree plot that visualizes the proportion of variability of each PC can be

used [20]. The first few PCs generally account for a large proportion of the variability

in the data; this allows significant dimension reduction with little loss of information.

However, PCA can be used effectively when data has a linear structure. In case of

nonlinear structure, PCA can be implemented by incorporating a kernel technique

into it [21].

Cluster analysis is a class of unsupervised learning methods that seek to discover

underlying structure in data by grouping observations into homogeneous clusters.

Observations within a cluster are considered to have higher similarity to each other

than to observations assigned to different clusters. Cluster analysis can be separated

into two types: nonhierarchical and hierarchical clustering. One of the most popular

nonhierarchical clustering techniques is the k-means clustering algorithm [11]. The

k-means clustering algorithm iteratively assigns new center points to form clusters

until it achieves the minimum mean squared distance from each observation to its

nearest center. However, the performance of the k-means algorithm depends on k,

the user-specified number of clusters, and the choice of distance measures.

In hierarchical cluster analysis, distance measures still determine the clusters

but are represented by a dendrogram. The advantage of this algorithm is that it does

not require specification of the number of k clusters and a starting point. Hierarchical

cluster analysis can be constructed according to two strategies: agglomerative and

divisive methods. An agglomerative method constructs the dendrogram by starting
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at the bottom in which each observation is set as an initial cluster. Then a selected

pair of clusters is recursively merged into a single cluster. A divisive method is a top-

down approach. All observations are used as an initial cluster and recursively split

into two new clusters at each level. Further, distances between sets of observations

can be determined by various linkage criteria, such as single, complete, and average

linkage and by Ward’s method [22].

As described in this section, data mining tools can be used for different tasks,

depending on the application. Novelty detection, which is described in the next

section, is viewed as a subset of data mining. The purpose of novelty detection is to

detect abnormalities in the data.

2.1.2 Novelty Detection

Novelty detection is an approach to recognition of abnormal patterns among the

normal patterns in data. In classical classification techniques, the predefined classes

of training observations contain more than one category. Generally, a decision bound-

ary in conventional classification problems is built from a binary class. That means

the information on two classes is available to train a model. Once trained, a model

determines the normalcy or novelty of the class of an unknown observation. How-

ever, building a classification model with the conventional classification algorithms

requires a balance of classes from the collected data. Expense or time constraints can

sometimes rule out gathering information on a class of data. To overcome such prob-

lems for novelty detection, one-class classification techniques can be used. The main

purpose of one-class classification techniques is to construct a boundary to envelop

the target class.

Several approaches have been proposed for detecting novelties in one-class clas-

sification tasks. The Gaussian density model is a well-known statistical model that
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estimates mean and covariance from training observations. The basic assumption of

the Gaussian density model is that the data observations are normally distributed.

This model can be viewed as using the Mahalanobis distance. Any observations with

larger distances than a threshold are classified as novelties. In order to relax the

normality assumption, the Gaussian mixture model (GMM) is used. By specifying

the parameters of the GMM, means and covariance, one can estimate distributions

by using an expectation-maximization algorithm [23].

Parzen window estimation [24], also known as kernel density estimation, is a

nonparametric technique to estimate the underlying probability density function of

data. Each training observation serves as a center in a kernel function. To estimate the

probability density of a new observation, the average distances from a new observation

to all centers in a kernel function are calculated. A probability density value associated

with a new observation is compared with a threshold to determine whether it is a

normal or novel pattern. Although several existing kernels can be used for the Parzen

window estimation, the Gaussian kernel function is commonly chosen in practice

[23]. Further, the performance of the Parzen window is dependent on a smoothing

parameter, which determines the smoothness of the estimation. Several approaches,

such as maximum likelihood estimation, the normal reference rule, and Scott’s rule,

can be used to determine this smoothing parameter [25].

Nearest neighbor data description (NNDD) uses information on local density

for comparative distance purposes. The NNDD algorithm compares the distance

from a new observation z to its nearest neighbor (NN(z)) with the distance from

the NN(z) to its nearest neighbor of NN(z) [26]. To increase the robustness of the

NNDD approach to noise, the k parameter can be introduced to select the number of

neighbors among the given data points.
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Other robust distance-based approaches also have been proposed to identify

novelties in data. Harmeling et al. [27] introduced three distance-based novelty de-

tection techniques: (1) distance to the k-th nearest neighbor, (2) average of distances

to the k nearest neighbors, and (3) distance to the average of k nearest neighbors.

The distance to the k-th nearest neighbor determines the radius of a hypersphere

centered on an observation that then contains k neighbors. The average of distances

to the k nearest neighbors, instead of considering only the farthest data point among

the nearest neighbors, attempts to find distances from an observation to all of its

k nearest neighbors and then take an average. Lastly, the distance to the average

of k nearest neighbors is simply identified as a distance from an observation to the

mean of its k nearest neighbors. Another useful distance-based approach for novelty

detection is the minimum spanning tree (MST) proposed by Juszczak et al. [28]. The

MST is represented by a graph, which consists of edges and vertices. The MST is

an undirected and acyclic graph that connects all the vertices in such a way that the

minimum total weight is obtained [29]. The distance from a new observation to the

MST can be measured either from an edge or a vertex, either of which is chosen by

the smallest distance criteria.

Several data mining methods from Section 2.1.1 can be used in novelty detec-

tion, including clustering, PCA, and SVM. Clustering algorithms seek to discover

underlying structure in data by assigning target observations into different groups.

As described earlier, the k-means clustering algorithm forms clusters by minimizing

the mean squared error determined from each training observation to its nearest cen-

ter [30]. For the purposes of novelty detection, the distance from a new observation

to its nearest cluster can be evaluated as a novelty score and then compared with a

threshold to determine if the observation is normal or novel. Using PCA, the residuals

obtained from a remaining set of p − k PCs are suggested for use in determining a
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novelty. Because PCA only maximizes the information of the target data, the novelty

loses more information when it is projected to a lower dimensional space than the

target. SVM was originally developed for a two-class problems. However, Scholköpf

et al. [31] extended the traditional SVM using a separating hyperplane to one-class

problems of novelty detection. His one-class SVM constructs an optimal hyperplane

that differentiates the targets from areas containing no data with a maximal margin

[32].

Invention of support vector data description (SVDD) was inspired by the SVM.

Instead of using a separating hyperplane to differentiate between targets and novelties,

SVDD generates a hypersphere to enclose target observations with a minimum radius

hypersphere. SVDD is a one-class classification technique, originally introduced by

Tax and Duin [33] for novelty detection. SVDD produces a hyperspherical boundary

constructed by a set of support vectors obtained by solving a convex optimization

problem. Let xi, where xi ∈ Rp and i = 1, 2, . . . , N be the training observations. Let

R2 be the radius of the hypersphere and a be the center of the hypersphere. SVDD

constructs a boundary by minimizing the volume of the hypersphere and maximizing

the number of its enclosed training observations [34]. This can be summarized as

follows:

Minimize R2 + C
N∑
i=1

ξi, (2.4)

with the constraint:

‖xi − a‖2 ≤ R2 + ξi, (2.5)

where ξi > 0 is the slack variable that relaxes the constraint in order to allow xi to

be rejected from the hypersphere. By introducing a Lagrangian function, constraint

(2.5) can be incorporated in (2.4) and the problem is modified into

L(R, a, αi, γi, ξi) = R2 + C
N∑
i=1

ξi −
N∑
i=1

αi{R2 + ξi − (‖xi − a‖2)} −
N∑
i=1

γiξi, (2.6)
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where αi ≥ 0 and γi ≥ 0 are the Lagrange multipliers. Setting partial derivatives of

L with respect to R, a, and ξi to zero results in the following constraints:

N∑
i=1

αi = 1,

a =
N∑
i=1

αixi,

C − αi − γi = 0.

By substituting these constraints to (2.6), the following optimization problem can be

obtained:

Maximize
∑
i

αi(xi · xj)−
∑
ij

αiαj(xi · xj). (2.7)

with the constraint:

0 ≤ αi ≤ C (2.8)
N∑
i=1

αi = 1, (2.9)

where i = 1, 2, . . . , N . By solving the optimization problem (2.7) with constraints

(2.8) and (2.9), a set of αi can be obtained. A training observation xi corresponding

to αi satisfies the following:

‖xi − a‖2 <R2 ⇒ αi = 0,

‖xi − a‖2 =R2 ⇒ 0 < αi < C,

‖xi − a‖2 >R2 ⇒ αi = C.

The observations xi with αi > 0 are called support vectors (SVs). The relation

between C and user-specified f , which is used to control the trade-off between the

volume of hypersphere and the misclassified observations, can be represented as fol-

lows:

f =
1

NC
, (2.10)
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where N is the number of training observations. When no novelty is expected to be

contained in the training data, C can be set equal to 1 [33]. One can obtain flexi-

ble boundaries by replacing the inner product with kernel functions. The following

Gaussian kernel function is used throughout this work:

K(xi,xj) = exp(−‖xi − xj‖
S2

), (2.11)

where S can be changed to adjust the complexity of the SVDD boundary.

To determine if a testing observation z is a novelty, the distance D2, between z

and the center of the hypersphere a, is used. That is, a testing observation is classified

as a novelty if D2 is greater than R2.

D2 = ‖zi − a‖2 = K(z, z)− 2
∑
i

αiK(z,xi) +
∑
ij

αiαjK(xi,xj). (2.12)

The effects from the parameters of SVDD (C and S) are illustrated in Fig-

ure 2.1 by using banana-shaped data generated through PRTools [35]. The SVDD

boundaries were constructed from 200 target observations with different values for the

parameters C and S. The parameter S increases from left to right, and the number of

parameters C decreases from the top down. It can be determined from Figure 2.1 that

given the same C (C = 1 and C = 0.02), the parameter S controls the smoothness

of the boundary. A smaller value for S creates more complex SVDD boundaries, but

a larger value yields smoother SVDD boundaries. As the parameter S becomes very

large, the number of SVs used to describe SVDD boundaries decreases. Consequently,

SVDD boundaries begin to resemble a regular hypersphere [33]. The parameter C

controls the misclassification error rate in targets. Because the relationship between

f and C is defined in Equation (2.10), when the parameter C decreases, the misclas-

sification error rate in targets increases. That is, the target observations are rejected

from the boundary of SVDD, which is shown from the top down in Figure 2.1, given
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Figure 2.1 Boundaries of SVDD obtained from different values of parameters: (a) C
= 1 and S = 3; (b) C = 1 and S = 8; (c) C = 0.02 and S = 3; (d) C = 0.02 and S
= 8.

the same S (S = 3 and S = 8). Note that a hard-margin solution can be obtained

when C is set to 1 because constraints (2.8) and (2.9) are always satisfied [34]. This

implies that all the training data are included in the hypersphere (Figures 2.1(a) and

2.1(b)). Further, SVDD can be viewed as a one-class SVM when a Gaussian kernel

function is applied to the construction of the classifier [26].

SVDD has been applied in a range of applications. Cho [36] used SVDD to

detect abnormal observations in chemical and biological processes. Before modeling

SVDD for process monitoring, orthogonal signal correction was used as a preprocess-
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ing step to remove any unnecessary variation that exists in the data. In hyperspectral

imagery, a certain object has a unique spectral signature representing its identity in

an image. Banerjee et al. [37] applied SVDD in mine detection to distinguish be-

tween the mine and the background classes. Because of the scarcity of the novelty

class (mines), the background images are used as the target class in which the mines

were embedded.

The idea to use SVDD for pattern denoising was proposed by Park et al. [38].

The technique of SVDD-based pattern denoising uses a geodesic projection of noise

data to obtain a denoised feature. The pre-image technique, which can reverse from

the feature space back to the input space, is performed to recover the denoised pattern

[39]. This technique was implemented in the application of handwritten digit data

from the U.S. Postal Service digit database. One deceptive aspect of a novelty is its

capability to act like data extracted from a normal operation. This happens because

an error in data measurement can result in uncertainty in the characterization of

data. The development of SVDD to handle uncertain data was proposed by Liu

et al. [40]. The algorithm aims to reduce the impact of uncertainty in the data

during the training process. A confidence score is assigned to each observation. A

low confidence score indicates the observation is remote from the other observations.

Assigning confidence scores diminishes the influence of remote observations on the

construction of a SVDD.

Furthermore, the traditional SVDD was reformulated to incorporate local den-

sity from each training data point [41]. When a degree of local density was incorpo-

rated, the optimization problem becomes difficult to solve because it is no longer a

quadratic programming problem. The use of SVDD can be extended to incorporate

weighting as determined by a kernel possibilistic c-means algorithm (PCM) [42]. The

kernel PCM assigns small weights to those observations likely to be novelties. The
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purpose of the weights is to make the algorithm robust to the novelties represented in

the data. This method can also be extended to multiclassification problems by adding

a classification rule based on Bayesian decision theory. Zhang et al. [43] improved

the weighted SVDD based on kernel PCM by incorporating novelties into the training

process to obtain a better description of the data. The method was tested on data

generated from rolling machinery fault emulation equipment.

SVDD can also be reformulated into two-class problems, called two-class SVDD,

by introducing new constraints into the optimization problem [44]. In situations in

which the training observations contain more than one class, the two-class SVDD ap-

proach constructs two hyperspherical boundaries to envelop the target observations in

each class. Any observations that fall outside these boundaries are declared novelties.

2.2 Statistical Process Control

Statistical process control (SPC) is a widely used technique for monitoring and

improving the performance of a process and the quality of products. One primary

technique in SPC is a control chart. Control chart techniques can be viewed as

a graphical display of the statistical hypothesis testing [45]. The main purpose of

a control chart is the detection of an out-of-control signal so that process quality

can be maintained and production of defective products prevented. Control charts

consist of two major components: monitoring statistics and control limits. Monitoring

statistics are used to represent quality characteristics of interest, such as temperature,

pressure, and tensile strength, that are plotted over time. Control limits are used

to determine whether the process is in control and are usually estimated from an

assumed underlying distribution of the in-control monitoring statistics. If the value

of a monitoring statistic exceeds the control limit, the corresponding observation is

considered out of control. As a result, an appropriate action has to be taken to return

22



the process to an in-control state. Control charts can be categorized as univariate

or multivariate. Univariate control charts were invented to monitor the quality of

a single process variable, and multivariate control charts monitor multiple process

variables.

2.2.1 Univariate Control Charts

The control chart was first proposed by Walter A. Shewhart [46]. The Shewhart

x̄ chart is a univariate control chart used to monitor a single quality characteristic of

interest. The purpose of the x̄ chart is to detect a shift in the process mean. Figure

1.1 in chapter 1 illustrates a Shewhart x̄ chart in which all observations are inside

the upper and lower control limits, representing an in-control process. However, the

limitation of this type of x̄ chart is that it may be inefficient in detecting small shifts in

a process. The cumulative sum (CUSUM) [47] and the exponentially weighted moving

average (EWMA) [48] control charts were developed to gain increased sensitivity in

detecting small process shifts by using information from past and current observations.

The performance of control charts often relies on the underlying distribution of

the quality characteristic. Traditional control charts assume that the distribution of a

quality characteristic is normally distributed. When this assumption is violated, the

performance of control charts can be degraded, leading to an increased rate of false

alarms [6]. Several studies have investigated the effect of nonnormality on Shewhart

x̄ charts [49][50][51]. Further, Borror et al. [52] studied the robustness of EWMA

control charts on nonnormal distributions. The results showed that an EWMA chart

with a proper design can be used as an alternative to the Shewhart x̄ chart.
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2.2.2 Multivariate Control Charts

When the goal is to monitor a single quality characteristic, a univariate control

chart, such as the Shewhart x̄, is used. However, because of the advent of advanced

technology, many modern industrial processes are characterized by numerous quality

characteristics that are correlated with each other [53]. Reliance on univariate con-

trol charts when multivariate problems are involved may lead to unsatisfactory results

such as an increased rate of false alarms [6][54]. Multivariate control charts that can

monitor two or more quality characteristics have been used to compensate for the

limitations of univariate control charts. The most widely used of these is Hotelling’s

T 2 control chart (T 2 chart), which can be considered a multivariate version of the

Shewhart chart [55]. Hotelling’s T 2 charts monitor T 2 statistics that measure the dis-

tance between an observation and a scaled-mean estimated from the in-control data.

Suppose that a dataset contains n observations, and each observation is characterized

by p process variables. Assuming that the dataset follows a multivariate normal dis-

tribution with an unknown µ and a covariance matrix Σ, the Hotelling’s T 2 statistics

can be calculated by the following equation:

T 2 = (x− x̄)TS−1(x− x̄), (2.13)

where x̄ is a sample mean vector and S−1 is the inverse of a sample covariance matrix

obtained from an in-control process. The control limits of T 2 can be computed by

using procedures that will be discussed in subsequent sections.
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2.2.2.1 F -Distribution

T 2 statistics follow the F -distribution with p and n-p degrees of freedom based

on a multivariate normality assumption [6]. The control limits of the T 2 control

chart(CLT 2) can be determined by

CLT 2 =
p(n+ 1)(n− 1)

n2 − np
F(α,p,n−p), (2.14)

where n and p, respectively, are the number of observations and process variables. In

other words, the 100α% upper percentile of an F -distribution is used as the control

limit, where α is a Type I error rate (false alarm rate) that can often be specified

by the user. A Type I error rate is estimated by the ratio of in-control observations

that are incorrectly identified as out of control to the total number of in-control ob-

servations. The control limit thus established is used to monitor future observations.

An observation is considered out of control if the corresponding T 2 statistic exceeds

the control limit. Figure 1.2 in chapter 1 illustrates the multivariate Hotelling’s T 2

chart in which the control limit is estimated based on the F -distribution. However,

when the normality assumption about the data does not hold, a control limit based

on the F -distribution may be inaccurate because a control limit determined this way

can increase the rate of false alarms [56].

It is known that T 2 charts are efficient in detecting large shifts in mean. That

is, T 2 charts are insensitive to small shifts. Multivariate CUSUM [57][58][59] and mul-

tivariate EWMA charts [60], which are non-Shewhart-type control charts, have been

developed to overcome this problem. Traditional multivariate control charts require a

normal distribution of the underlying process quality characteristic. However, as was

previously mentioned, as a practical matter, the quality characteristics of a process

are rarely normally distributed. Implementing traditional multivariate control charts

on nonnormal data can generate more false alarms. Studies of multivariate EWMA
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control charts have investigated properties of robustness to nonnormality [61][62].

The results indicate that multivariate EWMA control charts are robust to nonnormal

data when a small weighting value is used to calculate the EWMA statistic.

2.2.2.2 Multivariate EWMA and CUSUM Charts

As mentioned previously, control limits based on the F -distribution may not

yield reliable and accurate results unless the data follow the multivariate normal dis-

tribution [56]. A number of studies have been conducted to overcome the limitation

posed by this parametric assumption in T 2 charts. Liu [63] proposed nonparametric

control charts based on ranking depth. Data depth measures, without any distribu-

tional assumptions, how deep or how central a data point is within a data cloud.

Simplicial depth and Mahalanobis depth were used to construct r, Q, and S charts,

which are considered, respectively, the data depth versions of x, x̄, and CUSUM

charts. Qiu [64] proposed a nonparametric control chart based on a log-linear model.

To determine the in-control joint distribution, a log-linear model was used. Then,

a shift can be detected by a multivariate CUSUM procedure based on the log-linear

model’s estimate of the in-control distribution. Zou and Tsung [65] proposed a non-

parametric control chart that incorporates a multivariate sign test with an EWMA

scheme, called the multivariate sign EMWA (MSEWMA) chart, to detect process

shifts. Unlike traditional MEWMA charts that use a mean vector and a covariance

matrix, the MSEWMA charts use a multivariate affine-equivariant median and a

corresponding transformation matrix estimated from in-control data.
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2.3 Novelty Detection in Statistical Process Control

Data mining techniques have recently been integrated into control charting

problems. In terms of detection, data mining techniques and control charts share a

similar purpose. Hwang et al. [66] proposed multivariate control charts with arti-

ficial contrasts. They generated the out-of-control cases from independent uniform

distributions, thus converting the traditional view of the control charting problem

into a supervised learning technique. Sukchotrat et al. [67] used linear discriminant

analysis (LDA) and k-nearest neighbors (kNN) to determine the probability of class

(PoC) by making use of available out-of-control data. The PoC metric is used as a

monitoring statistic and plotted over time. The control limits of PoC charts can be

constructed by using bootstrapping. A PoC chart is considered a distribution-free

control chart because its construction does not require any distributional assump-

tions. The experimental results in their study showed that when various types of

nonnormal distributions were considered, the PoC charts performed better than T 2

charts.

A support vector machine (SVM) algorithm has been integrated in control

charts to improve their monitoring performance when data are not normally dis-

tributed [68]. SVM-PoC control charts can be constructed by extracting the PoC

values from a SVM algorithm. Bootstrapping is used to determine the control limit

of a SVM-PoC chart. The study showed that the SVM-PoC chart outperformed the

T 2, LDA-PoC and kNN-PoC charts under various nonnormal situations.

A k-linkage ranking (kLINK) algorithm determines the rank of a new observa-

tion relative to a set of in-control training observations. Low rankings indicate that

observations are located in the dense areas of the in-control set, and high rankings in-

dicate that the new observation is on the fringe or outside the in-control set. kLINK

charts [69] calculate the Mahalanobis distance and use the linkage ranking rule to
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determine a rank for a new observation. Then the rank of the new observation is

used to calculate the PoC value. The control limits of the charts are determined by

a user-specified α. The kLINK algorithm was compared with T 2 and ranking depth

charts. The study results show that with various types of nonnormal distributions,

kLINK charts provide lower type II error rates than T 2 and ranking depth charts.

2.3.1 Kernel Density Estimation

Kernel density estimation (KDE), also known as Parzen window estimation, is

used to estimate the probability density of data in novelty detection as described in

section 2.1.2. In addition to its use in novelty detection problems, KDE can determine

a threshold (control limit) in a control chart. The control limit of the traditional T 2

control chart is accurate only with an assumption that the T 2 statistic follows an

F -distribution. To relax the need for this assumption, Chou et al. [56] proposed a

nonparametric approach that uses KDE to estimate the distribution of T 2 statistics.

However, KDE is relatively complicated because before its full construction, it re-

quires determination of several parameters. These include types of kernel functions,

a smoothing parameter, and the number of spaced points. Moreover, the KDE-based

T 2 control chart involves numerical integration to calculate the percentile value (i.e.,

control limit) of the estimated kernel distribution. Given n values of T 2 statistics

(T 2
1 , T

2
2 , . . . , T

2
n) computed from the in-control observations, the distribution of the

T 2 statistics can be estimated by the following kernel function:

f̂h(t) =
1

n

n∑
i=1

K

[
(t− T 2

i )

h

]
, (2.15)

where K and h, respectively, are a kernel function and a smoothing parameter [56].

A number of kernel functions are available such as uniform, normal, triangular,
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Epachenikov, quadratic, and cosines. Of these, the standard normal kernel function

is most commonly used.

The control limit can be determined by a percentile of the estimated kernel

distribution. That is, CLkernel associated with 100·(1-α)th percentile can be calculated

by

CLkernel = f̂h(t)
−1(1− α). (2.16)
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Figure 2.2 Control limits from KDE-based T 2 control charts with different numbers
of spaced points.

To calculate CLkernel, a proper closed form that can be found in tables of inte-

grals may be used. However, from a practical standpoint, it may not be efficient to use

tables of integrals every time one wishes to calculate control limits. The trapezoidal

rule [70], one of the numerical integration methods that approximates the value of a

definite integral, can be used to calculate CLkernel. The degree of approximation of
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the trapezoidal rule depends on the number of space points (trapezoids). If the num-

ber of space points is large, the true integration result may not differ significantly

from the result derived from the trapezoidal rule. Figure 2.2 shows control limits

from KDE-based T 2 control charts with different numbers of spaced points when the

dataset follows the multivariate lognormal distribution. The result shows that the

values of the control limits fluctuated but stabilized after 1,000 spaced points.
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Figure 2.3 Control limits from KDE-based T 2 control charts with different band-
widths.

The accuracy of the estimates derived also depends on choosing an appropriate

smoothing parameter capable of compromising between oversmoothness and under-

smoothness of the estimated kernel distribution [71]. A number of methods are avail-

able to select an optimal smoothing parameter [72]. However, no consensus exists

on the best method to satisfy all conditions. Figure 2.3 illustrates the control lim-

its derived from a KDE-based T 2 control chart with different values of bandwidths
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in situations in which the dataset follows a multivariate lognormal distribution. The

asterisk shown in Figure 2.3 represents the optimal bandwidth obtained using a MAT-

LAB Statistics Toolbox that uses an algorithm based on [73].

2.3.2 Existing Multivariate Control Charts based on Principal Component Analysis

Traditional multivariate control charts can be effective when only a few quality

characteristics require monitoring. A large number of quality characteristics may

degrade the ability of these charts to detect a shift in a process and also can lead

to a multicollinearity problem [6][74]. Further, the process of calculating the T 2

statistic involves the inverse of the covariance matrix. When a large number of process

characteristics are highly correlated, the covariance matrix becomes nearly singular,

making it difficult to invert [53].

PCA is a useful multivariate statistical tool for handling this issue [53][75].

Integration of PCA and control chart techniques can improve the ability to detect

faults early and detect changes in the covariance structure of the process variables

[76]. Jackson [77] first presented the PCA technique for construction of T 2 charts that

use the first k principal components (PCs). This chart is known as a T 2
PCA chart.

Note that when all p PCs are used, T 2
PCA obtained by PCA process and conventional

T 2 values are identical [78]. Q charts are another version of control charts based on

PCA that can be constructed by using the residuals obtained from a remaining set

of p− k PCs [17].

Control charts based on PCA have been widely used in monitoring chemical

processes. Ku et al. [74] developed PCA models that can handle static and dynamic

processes by applying a multivariate autoregressive model to detect and isolate dis-

turbances. Nijhuis et al. [79] used the first k PCs and p − k PCs to develop a T 2

chart and a squared prediction error (SPE) chart, also as known the Q chart, to mon-
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itor the capillary gas chromatography analysis of fatty acid composition in BCR162.

They noted that when the number of PCs is underestimated, T 2
PCA charts, which use

only first k PCs, may not be able to detect an out-of-control point caused by p − k

PCs. Hence, a Q chart is needed to detect shifts caused by the other PCs. Moreover,

control charts based on PCA can deal with the problem of autocorrelation, which

is a known hindrance to the detection performance of control charts [80]. Using the

graph of the first two PCs for process monitoring is an effective way to detect an out-

of-control signal in autocorrelated processes [81]. However, shifts that are orthogonal

to the directions of the first two PCs cannot be detected. Monitoring the remaining

PC components with any multivariate control chart or with a control chart based on

residuals of the first two PCs (Q chart) is recommended.

As noted above, modern industrial processes often contain a large number of

quality characteristics that are highly correlated with each other. This situation can

affect the calculation of the T 2 statistic because a covariance matrix can be singular

and thus cannot be inverted [76]. PCA overcomes this problem by using the first

k PCs to compute the T 2 statistic. Note that because it is scale dependent, PCA

should be performed based either on the covariance matrix of the normalized data or

on the correlation matrix. We will briefly review the traditional PCA-based control

charts presented by [82].

2.3.2.1 T 2-based PCA Charts

The T 2-based PCA chart (T 2
PCA) uses the first k PCs to build the control chart.

The monitoring statistics of the T 2
PCA control chart can be obtained by using the

following equation:

T 2
PCA =

k∑
i=1

z2i
li
, (2.17)
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where the first k PCs are zi, i = 1, . . . , k, and li is the eigenvalue corresponding to the

ith PC. This equation produces an ellipsoid in a PC coordinate system in which the

directions can be represented by matrix U composed of eigenvectors [20]. Considering

the largest eigenvalue, l1, the direction of u1 is represented as the major axis, and

the directions of the remaining axes are defined by u2, u3, . . . , up. Note that if k in

Equation (2.17) is replaced with p, the T 2
PCA statistic obtained by the PCA process

is equivalent to the traditional T 2 statistic.

Under the assumption that the data follow a multivariate normal distribution,

the control limit of the T 2
PCA control chart can be computed as follows:

CLF−dist =
k(n+ 1)(n− 1)

n2 − nk
F(α,k,n−k), (2.18)

where n and k, respectively, are the number of observations and the number of PCs

retained, α is the false alarm rate, and F(α,k,n−k) is the upper αth quantile of the

F -distribution with k and n − k degrees of freedom. If the T 2
PCA value exceeds the

control limit, it can be concluded that the process is out of control.

2.3.2.2 Q Charts

The disadvantage of T 2
PCA control charts is that a shift in the process mean

cannot be detected if the shift is orthogonal to the first k eigenvectors of covariance

matrix S [81]. In this case, use of Q charts based on the residuals of PCs is suggested

[17]. Q charts can be used to detect new observations that deviate from the hyperplane

defined by the first k PCs [83]. The monitoring statistics of Q charts are simply the

sum of the p− k PCs and can be computed as follows:

Q =

p∑
i=k+1

z2i . (2.19)
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When the data follow the multivariate normal distribution, the control limit of the

Q chart [17] can be computed by using the following equation:

CLJackson = θ1

[
zα
√

2θ2h20
θ1

+
θ2h0(h0 − 1)

θ21
+ 1

]1/h0
, (2.20)

where zα is the upper αth quantile of the standard normal distribution,

h0 = 1− 2θ1θ3/3θ
2
2,

θj =

p∑
i=k+1

(li)
j.

for j = 1,2,3

Another way to establish control limits for the Q chart is to use an approximate

value based on the weighted chi-square distribution (gχ2
h) proposed by Box [84]. The

g and h represent, respectively, the weight and the degrees of freedom of the weighted

chi-square distribution that can be estimated by a matching moment estimation tech-

nique [85]. Consequently, estimates of g and h can be obtained by ĝ = ν/2m and

ĥ = 2m2/ν, where m and ν are the sample mean and variance of the Q-statistic. The

control limit based on gχ2
h can be obtained from the following equation:

CLgχ2
h

=
ν

2m
χ2
2m2/ν,α, (2.21)

where α is the false alarm rate.

2.3.3 Multivariate Control Charts based on One-class Classification Techniques

Conventional classification techniques usually require more than one class to

train the classifier. However, collecting information on other classes (novelties) is

sometimes difficult and expensive. Unlike conventional classification problems, one-

class classification techniques require only information from the target class. This

information can be easily collected from normal operation of the process. The purpose
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of one-class classification is to separate the novelties from targets by constructing

boundaries that aim to take the targets into account as inclusively as possible [26].

Support vector data description (SVDD) is one of the one-class classification

techniques that generates a hypersphere to capture the target data. The goal of a

SVDD algorithm is to maximize the number of target data points included in the

hypersphere and to simultaneously minimize the volume of the hypershpere [34].

The kernel function can be incorporated into a SVDD algorithm to generate flexible

boundaries. Commonly used kernel functions are Gaussian and polynomial kernel

functions. Sun and Tsung [86] proposed kernel-distance-based multivariate control

charts (K charts) that are developed from SVDD. K charts were compared with T 2

control charts, and the results show that K charts perform better than T 2 control

charts for nonnormal distributions. Sukchotrat et al. [87] suggested using bootstrap-

ping to construct the control limits for K charts.

Another approach to a one-class classification technique is k-nearest neighbors

data description (kNNDD), described in section 2.1.2. The kNNDD algorithm uses a

nearest neighbor algorithm to estimate the local density of the data [26]. Sukchotrat

et al. [87] developed K2 charts based on the kNNDD algorithm. The K2 chart uses

the average distance between the unknown observations and k nearest observations

as monitoring statistics. The control limits of K2 charts are established by bootstrap-

ping. The K2 chart was compared with the T 2 chart, and the results show that K2

charts perform better than T 2 charts in various nonnormal situations.

Traditional control charts assume that the observations are independent over

time. However, in some manufacturing processes, a serial relationship exists between

observations [6]. That is, the consecutive observations of the process are correlated

over time; when this occurs, it is referred to as to an autocorrelated process. An

autocorrelated process can degrade the performance of traditional control charts by
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decreasing the in-control average run length and increasing the false alarm rate [88].

Monitoring of the residuals has been the way SPC has traditionally addressed this

issue. However, monitoring processes through the residuals leads to a model approx-

imation in which some important information can be lost because the residuals are

the difference between the fitted values and the original observations. Integrating

one-class classification techniques into control charts has been used to monitor auto-

correlated multivariate processes [89]. The present study has been conducted using

the kNNDD algorithm as an alternate way to monitor autocorrelated multivariate

processes.

2.4 Bootstrapping

2.4.1 General Description

The bootstrap technique is a simple and, therefore, attractive resampling tech-

nique initiated by Efron in 1979 [90]. The bootstrap method is considered a powerful

tool that allows one to approximate the sampling distribution of a statistic for sta-

tistical inference. The overall purpose of the bootstrap method is to use the power of

computing to avoid a complex derivation of an unknown distribution G. By resam-

pling the observations from the distribution G, the empirical distribution Ĝ can be

obtained. Although the bootstrap approach is considered computer-intensive, com-

puting has become very powerful and inexpensive these days, facilitating the use of

highly computational methods, like bootstrapping. The bootstrap method is often

used to construct confidence regions, test hypotheses, construct prediction regions,

and solve regression problems [91].

Let X1, X2, . . . , Xn be a random sample with n observations from an unknown

distribution G. The bootstrap technique assigns probability 1/n to each observation
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X1, X2, . . . , Xn. By drawing a random sample with replacement from the original sam-

ple, the bootstrap technique creates a bootstrap sample (X∗
1 , X

∗
2 , . . . , X

∗
n) that follows

the empirical distribution Ĝ. The statistic of interest, T ∗
i = T (X∗

1 , X
∗
2 , . . . , X

∗
n), can

be calculated from each bootstrap sample. By repeating the bootstrap procedures

for B times, B values of the statistics of interest, T1, T2, . . . , TB, can be obtained.

2.4.2 The Bootstrap Method in Statistical Process Control

Conventional control charts assume that the quality characteristic of the pro-

cess follows a normal distribution. This is often untrue in real world problems, where

violations of normality are often encountered, and the central limit theorem is in-

sufficient to describe the normal distribution. To address the limitation posed by

the distributional assumption underpinning traditional control charts, nonparametric

(or distribution-free) control charts have been developed. In particular, many studies

have focused on the construction of nonparametric control charts by using a bootstrap

procedure. This procedure is favored because of its proven capabilities to effectively

manage process data without making assumptions about their distribution. Bajgier

[92] introduced a univariate control chart whose lower and upper control limits were

estimated by using the bootstrap technique. However, when confronted by an unsta-

ble in-control process, Bajgier’s control charts tend to generate a wide gap between

the lower and upper control limits. Seppala et al. [93] proposed a subgroup bootstrap

chart to compensate for the limitations of Bajgier’s approach. The subgroup boot-

strap chart uses residuals, which are the difference between the mean of jth subgroup

and each observation in jth subgroup. The lower and upper control limits are deter-

mined by adding the mean of the residuals obtained by a bootstrap technique to the

grand mean. Liu and Tang [94] proposed a bootstrap control chart that can monitor

both independent and dependent observations. To monitor the mean of independent
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processes, a general bootstrap method was used with samples of the subgroup data,

and a moving block bootstrap proposed by Liu and Singh [95] was used to monitor

the mean of dependent processes. Jones and Woodall [96] compared the performance

of the above three bootstrap control charts in nonnormal situations and found that

they did not perform significantly better than the traditional x̄ chart in terms of in-

control average run length (ARL0). Further, Wu and Wang [97] constructed x̄ and R

charts using the bootstrap method to estimate control limits for a beta distribution

with positive skewness. Their approach relied on bootstrapping the mean of each

subgroup. ARL and type I errors were used as the performance measurements for

these charts. The results showed that control limits determined by the bootstrap

method improved the detection power of the charts.

Recently, Lio and Park [98] proposed a bootstrap control chart based on the

Birnbaum-Saunders distribution. This chart performs better with data related to ten-

sile strength and breaking stress data. Specifically, they proposed to use the paramet-

ric bootstrap technique to establish control limits for monitoring a specified percentile

of the Birnbaum-Saunders distribution. They showed that their proposed parametric

bootstrap method can accurately estimate the control limits for Birnbaum-Saunders

percentiles. Further, Park [99] proposed median control charts whose control limits

were determined via bootstrap techniques by estimating the variance of the sample

median. The parametric bootstrap method was applied to construct limits for mon-

itoring a small percentile of the Weibull distribution [100]. The performance of the

charts was evaluated by in-control ARL (ARL0) and out-of-control ARL (ARL1) and

compared with Padgett and Spurrier’s Weibull control charts, which are Shewhart-

type charts [101]. The results showed the bootstrap control charts for the Weibull

distribution generated fewer false alarms than Pugett and Spurrier’s Weibull control

charts.
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All of the methods discussed so far dealt with nonparametric situations in uni-

variate processes. However, modern processes often involve a large number of process

variables that are highly correlated with each other. Although univariate control

charts can be applied to each process variable, this may lead to unsatisfactory re-

sults when multivariate problems are involved [54]. Polansky [102] provided a general

framework for constructing control charts for both univariate and multivariate situ-

ations. The framework used the bootstrap technique to estimate a discrete distribu-

tion, used a density estimation method such as kernel density estimation to obtain

a continuous distribution, and established the control limits by using a numerical

integration approach.

Several studies have found increasing interest in the application of the bootstrap

method to control charts. The main purpose in implementing the bootstrap technique

is to find appropriate control limits when the process variables exhibit unknown or

nonnormal distributions. However, as mentioned earlier, bootstrap control charts

have only been used in univariate processes.

This dissertation extends the literature by developing the bootstrap approach

for multivariate control charts in which the quality characteristics of a process are

nonnormal (chapter 3), combining the PCA based charts with the bootstrap method

(chapter 4), and modifying SVDD novelty detection to incorporate the dense region

of the data (chapter 5). These approaches are fundamentally threshold development

methods for novelty detection. However, chapters 3 and 4 are taken from the per-

spective of statistical process control.
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CHAPTER 3

BOOTSTRAP-BASED T 2 MULTIVARIATE CONTROL CHARTS

As an alternative to KDE-based T 2 control chart described in Section 2.2, this

chapter, develops a bootstrap-based T 2 control chart to establish the control limits

of T 2 control charts when the observed process data are not normally distributed.

The control limits of bootstrap-based T 2 control charts are calculated based on the

percentile of T 2 statistics derived from bootstrap samples. The proposed bootstrap-

based T 2 control chart is easy to implement because it requires neither specification

of the parameters nor a procedure for numerical integration. The absence of these

requirements makes the bootstrap-based T 2 control chart easier to use.

The remainder of this chapter is organized as follows. Section 3.2 presents

simulation studies to evaluate the performance of the bootstrap-based T 2 control chart

and compare it under various scenarios with traditional T 2 control charts and KDE-

based T 2 control charts. Section 3.3 describes a case study undertaken to demonstrate

the feasibility and effectiveness of the proposed bootstrap-based T 2 control chart in

real situations. Section 3.4 contains some discussion.

3.1 The Bootstrap Percentile Approach

As discussed in chapter 2, KDE-based T 2 control charts require some effort to

find the appropriate modeling parameters and to perform the numerical integration

that calculates the area of the estimated kernel density. In particular, if the distri-

bution is highly skewed (which is often the case), calculations of the area of the tail

region become less accurate. To avoid these cumbersome tasks, a bootstrap approach
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that can be considered an alternative to KDE (but is easier to use in practical appli-

cations) to establish the control limits for T 2 control charts when the dataset is not

multivariate normally distributed. The bootstrap technique is one of the most widely

used resampling methods to determine statistical estimates when the population dis-

tribution is unknown [103][90]. The bootstrap approach is more convenient than KDE

as a way to establish control limits because it does not involve any modeling process

in specifying the parameters.

Figure 3.1 An overview of the bootstrap procedure in calculating the control limits
in T 2 control charts.

Figure 3.1 illustrates an overview of the bootstrap procedure to calculate control

limits, and it is summarized as follows:

1. Compute the T 2 statistics with n observations from an in-control dataset using

(2.13).

2. Let T
2(i)
1 , T

2(i)
2 , . . . , T

2(i)
n be a set of n T 2 values from ith bootstrap sample (i =

1, . . . , B) randomly drawn from the initial T 2 statistics with replacement. In

general, B is the large number (e.g., B > 1,000).
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3. In each of B bootstrap samples, determine the 100·(1-α)th percentile value given

a users-specified value α with a range between 0 and 1.

4. Determine the control limit by taking an average of B 100·(1-α)th percentile

values (T̄ 2
100·(1−α)). Note that statistics other than the average can be used

(e.g., median).

5. Use the established control limit to monitor a new observation. That is, if

the monitoring statistic of a new observation exceeds T̄ 2
100·(1−α), that specific

observation is declared out of control.
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Figure 3.2 Control limits with different number of bootstrap samples.

Although the bootstrap procedure does not involve an explicit process to deter-

mine parameters, the number of bootstrap samples used may affect the determination

of control limits. Figure 3.2 illustrates various bootstrap control limits as determined

by different numbers of bootstrap samples from 100 to 5,000. For each number of
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bootstrap samples, the control limit was calculated 1,000 times. The triangular in

the figure indicates the average value of 1,000 control limits at each specified number

of bootstrap samples. As expected, variability is greater when a small number of

bootstrap samples are involved but stabilizes as the number of bootstrap samples

increases. Determination of the appropriate number of bootstrap samples to use is

not obvious. However, with reasonably large numbers of samples, the results vary lit-

tle. The computational time required has been perceived as one of the disadvantages

of the bootstrap technique, but this is not longer a significant issue because of the

computing power currently available. Moreover, it is worth noting that the bootstrap

tends to work better for statistics that are closer to being pivotal, such as the T 2

statistic. However, the bootstrap might not work so well if the process mean is the

statistic for the control chart.

3.2 Simulation Study

3.2.1 Simulation Setup

Simulation studies were conducted to evaluate the performance of the proposed

bootstrap-based T 2 control chart and to compare it with the traditional T 2 and KDE-

based T 2 control charts. One thousand bootstrap samples (B = 1, 000) were used in

this experiment. For KDE-based T 2 control charts, the standard normal distribution

was used as the kernel function.

To generate training data sets, 1,000 in-control observations (n = 1, 000) were

sampled based on multivariate normal (N), multivariate skew-normal (SN), mul-

tivariate lognormal (LogN), and multivariate gamma (Gam) distributions. Each

dataset was characterized by three process variables. To simulate the multivari-

ate normal, multivariate skew-normal, and multivariate gamma distributions, µ =
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[
0 0 0

]
. In the multivariate lognormal distribution, µ =

[
1 1 1

]
was used.

Further, the following covariance matrix was used for the multivariate normal, mul-

tivariate skew-normal, and multivariate lognormal distributions:

Σ =


1.00 0.70 0.60

0.70 1.00 0.10

0.60 0.10 1.00

 .
In the multivariate skew-normal distribution, different degrees of skewness (λ)

were considered so as to observe the effects of these differences on the performance of

the control charts. The R package (www.r-project.org) was used to generate multivari-

ate skew-normal data. For illustrative purposes, Figure 3.3 shows two-dimensional

skew-normal distributions with degrees of skewness from zero to three. The zero

degree skew-normal distribution shows the regular normal distribution without any

skewness. However, this figure also shows that as the degree of skewness increases,

the simulated data become more skewed. For more details about the multivariate

skew-normal distribution, one can refer to Azzalini and Dalla Valle [104]. In the mul-

tivariate gamma distribution, the shape and scale of the parameters were specified as

one.

3.2.2 Simulation Results

3.2.2.1 Comparison of Control Limits

Two sets of 1,000 in-control observations were generated. The first set of 1,000

in-control observations was used to determine the control limits of the T 2 control

charts from the F -distribution, KDE, and bootstrap percentile approaches. The

second set of 1,000 in-control observations was monitored on the control charts, which

were based on the control limits established by the first set of in-control observations.
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Figure 3.3 The multivariate normal and multivariate skew-normal distributions with
different degrees of skewness in two dimensions: (a) normal distribution (λ = 0); (b)
skew-normal distribution (λ = 1); (c) skew-normal distribution (λ = 2); (d) skew-
normal distribution (λ = 3).

The control chart that produces a similar value for the actual false alarm rate and

the assumed false alarm rate would be considered the better one.

Figure 3.4 displays T 2 control charts from the second set of 1,000 in-control

observations that use the normal distribution in conjunction with four different de-

grees of skewness. The control limits were computed using the F -distribution, KDE,

and bootstrap percentile approaches. The false alarm rate was specified as 0.01. As

illustrated, all three approaches yielded similar control limits in the multivariate nor-
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Figure 3.4 Control limits with α = 0.01 established by the F -distribution, KDE, and
the proposed bootstrap percentile under conditions of different degrees of skewness:
(a) normal distribution (λ= 0); (b) skew-normal distribution (λ= 1); (c) skew-normal
distribution (λ = 2); (d) skew-normal distribution (λ = 3).

mal distribution with zero skewness. As skewness (λ) increases, the control limits

from the F -distribution tended to generate higher false alarm rates. However, the

KDE and bootstrap percentiles controlled the assumed false alarm rates well. As

can be seen from Figure 3.5, this behavior becomes much clearer in two nonnormal

distributions (e.g., lognormal and gamma). In these, the false alarm rate was spec-

ified as 0.01 and generated three different control limits. The results clearly show

that the F -distribution approach failed to control the assumed false alarm rate and
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Figure 3.5 Control limits with α = 0.01 established by the F -distribution, KDE,
and the proposed bootstrap percentile on (a) multivariate lognormal distribution; (b)
multivariate gamma distribution.

generated many false alarms. In contrast, the control limits determined by the KDE

and bootstrap approaches produced similar values for the actual false alarm rate and

for the assumed false alarm rate.

3.2.2.2 Comparison of In-Control Average Run Length

Average run length (ARL) is a performance measure that is widely used to

evaluate control charts. In the present study, in-control ARL (ARL0) was used to

compare the performance of the control charts. ARL0 is defined as the average

number of observations required for the control chart to detect a change under the

in-control process [105]. In this study, the average value of ARL0 was calculated

from 10,000 replications. Under the normality assumption, the actual ARL0 of the

T 2 control chart is expected to be the same as or close to the assumed ARL0. Tables

3.1 ∼ 3.4 show the assumed ARL0 values and the actual ARL0 values as obtained

by the F -distribution, KDE, and bootstrap percentile approaches in multivariate-

normal situations in which different degrees of skewness were used. This figure shows
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that across the different approaches the actual ARL0 values are close to the assumed

ARL0 values when skewness is zero. However, as the degree of skewness increases, the

differences between the actual ARL0, as determined by the F -distribution and the

desired ARL0, increases. In contrast, KDE and the bootstrap percentile approaches

in skew-normal situations generated similar actual and assumed ARL0 results.

As with skew-normal situations, in the multivariate lognormal case (Table

3.5)and the multivariate gamma case (Table 3.6)the actual ARL0 values from the

KDE and bootstrap percentile approaches are close to the assumed ARL0 values.

Note that the average standard errors shown in parentheses in Tables 3.1 ∼ 3.6 are

small enough to permit a meaningful conclusion.

Table 3.1 ARL0 from the control limits established by using the F -distribution, KDE,
and the bootstrap percentile approaches from 10,000 simulation runs based on the
multivariate normal distribution (average standard errors are shown inside the paren-
theses)

Case α Desired ARL0 F -dist KDE Bootstrap
N 0.01 100.000 101.980 103.950 99.962

(1.012) (1.114) (1.074)
0.02 50.000 51.542 51.850 50.143

(0.517) (0.540) (0.521)
0.03 33.333 33.736 33.965 32.726

(0.331) (0.335) (0.323)
0.04 25.000 25.053 25.560 24.677

(0.248) (0.258) (0.250)
0.05 20.000 20.301 20.443 19.808

(0.199) (0.204) (0.198)
0.06 16.667 16.906 17.120 16.628

(0.163) (0.167) (0.163)
0.07 14.286 14.323 14.469 14.046

(0.138) (0.141) (0.137)
0.08 12.500 12.629 12.764 12.418

(0.122) (0.124) (0.121)
0.09 11.111 11.026 11.162 10.818

(0.104) (0.106) (0.103)
0.10 10.000 10.111 10.207 9.924

(0.098) (0.099) (0.096)
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Table 3.2 ARL0 from control limits established by using the F -distribution, KDE,
and bootstrap percentile approaches from 10,000 simulation runs based on the mul-
tivariate skew-normal distribution with λ = 1 (average standard errors are shown in
parentheses)

Case α Desired ARL0 F -dist KDE Bootstrap
SN(λ = 1) 0.01 100.000 81.724 103.200 100.12

(0.827) (1.149) (1.112)
0.02 50.000 45.059 50.804 49.413

(0.453) (0.529) (0.514)
0.03 33.333 31.369 34.184 33.056

(0.316) (0.352) (0.339)
0.04 25.000 23.606 24.933 24.364

(0.231) (0.250) (0.243)
0.05 20.000 19.610 20.636 20.012

(0.194) (0.207) (0.200)
0.06 16.667 16.101 16.558 16.118

(0.159) (0.164) (0.160)
0.07 14.286 14.210 14.568 14.182

(0.138) (0.143) (0.139)
0.08 12.500 12.534 12.72 12.377

(0.120) (0.122) (0.118)
0.09 11.111 11.253 11.415 11.075

(0.107) (0.109) (0.106)
0.10 10.000 9.932 10.07 9.7786

(0.096) (0.098) (0.095)

3.3 Case Study

The proposed bootstrap-based T 2 control chart was implemented by applying

it as a case study to a real multivariate process in a power generation company. The

ultimate goal of this case study was to develop an efficient monitoring and diagnos-

tic tool for early detection of abnormal behavior and performance degradation in a

power company. The dataset contains 2,000 observations collected over a period in

which each observation was characterized by 18 process variables. Further, the power

company’s process experts confirmed that this dataset is in control and stable. To

check its multivariate normality, the Royston’s H test [106] was conducted. The p-

49



Table 3.3 ARL0 from control limits established by using the F -distribution, KDE,
and bootstrap percentile approaches from 10,000 simulation runs based on the mul-
tivariate skew-normal distribution with λ = 2 (average standard errors are shown in
parentheses)

Case α Desired ARL0 F -dist KDE Bootstrap
SN(λ = 2) 0.01 100.000 71.901 101.45 98.821

(0.719) (1.090) (1.051)
0.02 50.000 41.846 51.772 50.562

(0.423) (0.532) (0.520)
0.03 33.333 29.587 33.850 32.944

(0.294) (0.343) (0.331)
0.04 25.000 23.089 25.483 24.897

(0.228) (0.256) (0.250)
0.05 20.000 19.019 20.370 19.894

(0.185) (0.200) (0.195)
0.06 16.667 16.137 16.944 16.512

(0.157) (0.166) (0.163)
0.07 14.286 13.977 14.467 14.146

(0.136) (0.143) (0.139)
0.08 12.500 12.338 12.642 12.277

(0.120) (0.124) (0.120)
0.09 11.111 11.007 11.141 10.859

(0.106) (0.108) (0.105)
0.10 10.000 10.018 10.074 9.806

(0.096) (0.097) (0.094)

value, which measures the plausibility that the dataset follows multivariate normal

distribution, was almost zero. This strongly indicates that this dataset does not come

from the multivariate normal distribution.

Figure 3.6 shows the T 2 control charts whose control limits were estimated by

the F -distribution, KDE, and proposed bootstrap approaches with a false alarm rate

(α) of 0.01. As shown, the actual false alarm rates from both the KDE and bootstrap

percentile approaches are 0.0095, which is similar to the assumed false alarm rate

(0.01). On the other hand, the actual false alarm rate from the F -distribution is 0.052,

resulting in a lower control limit and a higher false alarm rate. This demonstrates
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Table 3.4 ARL0 from the control limits established by using the F -distribution, KDE,
and bootstrap percentile approaches from 10,000 simulation runs based on the mul-
tivariate skew-normal distribution with λ = 3 (average standard errors are shown in
parentheses)

Case α Desired ARL0 F -dist KDE Bootstrap
SN(λ = 3) 0.01 100.000 69.605 103.410 101.050

(0.692) (1.106) (1.076)
0.02 50.000 39.696 50.037 48.928

(0.402) (0.591) (0.509)
0.03 33.333 28.982 33.824 33.02

(0.287) (0.347) (0.338)
0.04 25.000 22.744 25.183 24.668

(0.229) (0.256) (0.251)
0.05 20.000 18.712 20.090 19.612

(0.185) (0.197) (0.193)
0.06 16.667 15.961 16.834 16.404

(0.156) (0.164) (0.160)
0.07 14.286 14.064 14.661 14.273

(0.137) (0.143) (0.139)
0.08 12.500 12.214 12.479 12.193

(0.119) (0.121) (0.118)
0.09 11.111 11.360 11.553 11.254

(0.110) (0.112) (0.108)
0.10 10.000 10.078 10.143 9.899

(0.096) (0.097) (0.094)

the effectiveness of the proposed bootstrap-based T 2 control chart in a real situation

in which the process does not follow the multivariate normal distribution.

3.4 Discussion

This study proposed a bootstrap approach as a way to determine the control

limits of a T 2 control chart when the observations do not follow a normal distribu-

tion. KDE is an existing method used to establish the control limits of T 2 control

charts in nonnormal situations. It is important to emphasize again that the purpose

of the present study is not to outperform the KDE approach. Rather, the bootstrap

approach is an alternative to KDE-based T 2 control chart for dealing with nonnor-
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Table 3.5 ARL0 from control limits established by using the F -distribution, KDE, and
bootstrap percentile approaches from 10,000 simulation runs based on the multivariate
lognormal distribution (average standard errors are shown in parentheses)

Case α Desired ARL0 F -dist KDE Bootstrap
LogN 0.01 100.000 20.457 108.680 105.780

(0.208) (1.251) (1.142)
0.02 50.000 17.505 52.392 51.512

(0.172) (0.562) (0.527)
0.03 33.333 15.850 34.085 33.917

(0.155) (0.349) (0.342)
0.04 25.000 14.724 25.300 25.119

(0.143) (0.272) (0.251)
0.05 20.000 13.831 20.179 20.127

(0.137) (0.201) (0.200)
0.06 16.667 13.177 16.833 16.731

(0.130) (0.167) (0.163)
0.07 14.286 12.660 14.54 14.492

(0.126) (0.145) (0.145)
0.08 12.500 12.085 12.646 12.547

(0.117) (0.123) (0.121)
0.09 11.111 11.417 11.106 10.981

(0.111) (0.108) (0.106)
0.10 10.000 11.307 10.163 10.075

(0.110) (0.099) (0.098)

mal situations. Nevertheless, the proposed bootstrap-based T 2 chart is a model-free

approach and thus easier to implement without recourse to a strong statistical back-

ground. The simulation study showed that the proposed bootstrap-based T 2 control

charts outperformed the traditional T 2 control charts in both skew-normal and non-

normal cases and were comparable in ARL performance with the KDE-based T 2

control charts. With normally distributed data, all three approaches produced com-

parable ARL performance. This result clearly indicates that the proposed bootstrap-

based control chart is efficient in both normal and nonnormal situations. Further,

the proposed control chart was used to monitor a real multivariate process in a power

generation company and obtained results consistent with the simulation study. The

fundamental value of the present study includes the integration of the bootstrap
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Table 3.6 ARL0 from control limits established by using the F -distribution, KDE, and
bootstrap percentile approaches from 10,000 simulation runs based on the multivariate
gamma distribution (average standard errors are shown in parentheses)

Case α Desired ARL0 F -dist KDE Bootstrap
Gam 0.01 100.000 20.939 105.650 103.050

(0.207) (1.164) (1.114)
0.02 50.000 16.995 50.437 50.169

(0.162) (0.518) (0.514)
0.03 33.333 14.572 33.472 33.338

(0.141) (0.341) (0.338)
0.04 25.000 13.253 25.142 25.147

(0.129) (0.249) (0.250)
0.05 20.000 12.215 20.214 20.105

(0.119) (0.201) (0.200)
0.06 16.667 11.158 16.675 16.563

(0.107) (0.163) (0.162)
0.07 14.286 10.452 14.210 14.132

(0.100) (0.139) (0.138)
0.08 12.500 10.054 12.604 12.537

(0.097) (0.122) (0.121)
0.09 11.111 9.298 11.041 10.982

(0.089) (0.109) (0.108)
0.10 10.000 8.91 9.965 9.909

(0.086) (0.097) (0.096)

method with traditional Hotelling’s T 2 control charts to extend their applicability in

nonnormal situations.
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Figure 3.6 Control limits established by the F -distribution, KDE, and proposed boot-
strap percentile approach on the real dataset.
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CHAPTER 4

PRINCIPAL COMPONENT ANALYSIS-BASED CONTROL CHARTS
FOR MULTIVARIATE NONNORMAL DISTRIBUTION

In this chapter, the PCA-based control chart methodologies described in chapter

2 are extended to handle nonnormal processes. Recall that existing PCA control

charts and their applications are all based on the assumption that the control limits

of the T 2
PCA and Q charts can be derived based on the normality assumption. The

goal of the research in this chapter is to develop a nonparametric way to establish

control limits in PCA control charts. To be specific, bootstrap and kernel density

estimation (KDE) approaches are used to establish control limits for the T 2
PCA and

Q charts when the data depart from the multivariate normal distribution.

The chapter is organized as follows. Section 4.1 presents nonparametric ap-

proaches such as bootstrapping and KDE to establish control limits. Section 5.2

contains simulation studies to evaluate the performance of the proposed nonpara-

metric PCA control charts and compare them with parametric PCA control charts.

Finally, Section 5.3 contains some discussion.

4.1 Proposed PCA-Based Control Charts for Multivariate Nonnormal Distributions

As explained in chapter 2, obtaining reliable control limits for the existing

PCA-based control charts (T 2
PCA and Q charts) requires a multivariate normality

assumption. In this chapter, PCA-based control charts are developed for situations

where the data follow nonnormal distributions. The main idea of the proposed control
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charts is to use nonparametric approaches to establish control limits of PCA-based

control charts. The detail procedure will be discussed in the subsequent sections.

4.1.1 Combination of PCA and Kernel Density Estimation

When the distribution of the data is nonnormal or unknown, nonparametric

density estimation can be used to determine the control limits for T 2
PCA and Q charts.

Given n observations of the monitoring statistic (X1, X2, . . . , Xn) determined from

in-control data, the distribution of the monitoring statistics can be estimated by the

following kernel function:

f̂h(x) =
1

n

n∑
i=1

K

[
(x−Xi)

h

]
, (4.1)

where K is called a kernel so that
∫
Kdt = 1. Usually, the standard normal distri-

bution is selected as a kernel [25]. A bandwidth, h is a smoothing parameter, which

balances the trade-off between oversmoothing and undersmoothing. A small value

for h creates noise in an estimate, and a large value provides a smoother estimate.

Too large a value of h may lead to oversmoothing, where important structure in the

data is lost. Although a number of methods are available to determine the appro-

priate parameter h, no consensus exists on the best method to satisfy all conditions

[72]. In this study, the normal reference rule is used: h = (4/3)1/5σn−1/5 [71]. To

fit long-tailed distributions and outliers, a robust estimate for σ can be calculated as

σ = median{|Xi − X̃|}/0.6745, where X̃ denotes the median of the data [73]. Once

the distribution of the monitoring statistics is estimated by KDE, the control limits

can be determined by the 100 · (1−α)th percentile of f̂h(x). In the present study the

trapezoidal rule, one of the approximate techniques for calculating the definite inte-

gral [70] is used to calculate the control limit. Note that the trapezoidal rule depends

on the number of spaced points. If the number of spaced points is large, the integra-
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tion result may not differ much from the true integration results. In the present study,

5,000 spaced points were used to obtain accurate control limits. The experimental

results to determine the appropriate parameters will be shown in Section 5.2.3.

4.1.2 Combination of PCA and Bootstrapping

The bootstrap technique is a widely used resampling method that does not

require any distributional assumptions about the data [90, 103]. Bootstrapping as-

signs a probability of 1/n to each observation. Let {X1, X2, . . . , Xn} be the original

sample with the underlying distribution G. The bootstrap technique generates a set

of bootstrap samples by drawing B times with replacement from the original sam-

ple {X1, X2, . . . , Xn}. A bootstrap sample can be denoted by {X∗
1 , X

∗
2 , . . . , X

∗
n}. The

statistic of interest can be computed from the bootstrap sample: Ti = T (X∗
1 , X

∗
2 , . . . , X

∗
n).

By repeating the procedure B times, T1, T2, . . . , TB can be obtained.

To construct control limits, in general, let Y1, Y2, . . . , Yn with n observations be

the monitoring statistics from in-control data. The monitoring statistics are drawn

with replacement for B times. Therefore, the B sets of bootstrap samples are obtained

as follows:

Y
∗(1)
1 , Y

∗(1)
2 , · · · , Y ∗(1)

n

Y
∗(2)
1 , Y

∗(2)
2 , · · · , Y ∗(2)

n

...
...

...

Y
∗(B)
1 , Y

∗(B)
2 , · · · , Y ∗(B)

n .

In each of B bootstrap samples, the 100·(1−α)th percentile value is determined,

where α is the user-specified value with a range between 0 and 1. The control limit

can be computed by taking an average of the B percentile values, although any

statistics can be used. Figure 4.1 illustrates an overview of the bootstrap procedure
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Figure 4.1 The bootstrap procedure in calculating control limits for control charts.

to calculate control limits. The established control limit can be used to monitor future

observations. That is, if the new monitoring statistic exceeds the control limit, then

it is declared out of control.

4.2 Simulation Study

4.2.1 Simulation Setup

Simulation studies were conducted using MATLAB (MathWorks, Natick, MA)

to evaluate the performance of the proposed nonparametric PCA control charts and

compare their performance to traditional parametric PCA control charts. To gener-

ate training data sets, 1,000 in-control observations (i.e., n = 1, 000) were sampled

based on multivariate normal (N), multivariate gamma (Gam), and multivariate t

(t) distributions. A set of in-control observations was characterized by eight process

variables with a zero mean vector. Further, a correlation matrix was estimated using
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Figure 4.2 The effect of bandwidth and the number of spaced points on control limits
based on multivariate normal distribution: (a) control limits from KDE approach-
based T 2

PCA control charts with different bandwidths; (b) control limits from KDE
approach-based T 2

PCA control charts with different numbers of spaced points.

eight physical measurements of 305 girls taken from a dataset used by [82, p. 160] to

illustrate the PCA process:

Σ =



1.00 0.85 0.80 0.86 0.47 0.40 0.30 0.38

0.85 1.00 0.88 0.83 0.38 0.33 0.28 0.42

0.80 0.88 1.00 0.80 0.38 0.32 0.24 0.34

0.86 0.83 0.80 1.00 0.44 0.33 0.33 0.36

0.47 0.38 0.38 0.44 1.00 0.76 0.73 0.63

0.40 0.33 0.32 0.33 0.76 1.00 0.58 0.58

0.30 0.28 0.24 0.33 0.73 0.58 1.00 0.54

0.38 0.42 0.34 0.36 0.63 0.58 0.54 1.00



.

The PCs that explain approximately 80 percent of the total variation were retained

to calculate a T 2
PCA chart and the remaining variation for a Q chart.

Figure 4.2 shows the process to determine the parameters (bandwidth (h) and

number of spaced points) for KDE when the dataset follows a multivariate normal
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Figure 4.3 The effect on control limits of bandwidth and the number of spaced points,
based on multivariate gamma distribution: (a) control limits from KDE approach-
based T 2

PCA control charts with different bandwidths; (b) control limits from KDE
approach-based T 2

PCA control charts with different numbers of spaced points.

distribution. The asterisk in Figure 4.2(a) represents the optimal bandwidth obtained

from the normal reference rule. With optimal bandwidth, the results show that the

values of control limits begin to stabilize after 4,000 spaced points (Figure 4.2(b)).

Similar results in the multivariate gamma distribution can also be illustrated (Figures

4.3). Using the optimal bandwidth, the values of the control limits start stabilizing

after the elbow point in Figure 4.3(b).

In the bootstrap method, 1,000 bootstrap samples (B = 1, 000) were used. For

the multivariate gamma and multivariate t distributions, it was found that 1,000

in-control observations were too few to estimate a reliable control limit for the Q

chart through the bootstrap method. Thus, the number of in-control observations

was increased to 5,000.
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4.2.2 Simulation Results

4.2.2.1 Comparison of Control Limits

Two sets of 1,000 in-control observations were generated. The first set of 1,000

in-control observations was used to determine the control limits of T 2
PCA control charts

using the F -distribution, KDE, and bootstrap approaches. The second set of 1,000

in-control observations was used to evaluate the performance of the control charts.

Figure 4.4 represents T 2
PCA control charts from the second set of 1,000 in-control

observations. The false alarm rate was specified at 0.01. The control chart that

yields similar values for both the specified false alarm rate and the actual rate would

be considered the better one.

Figure 4.4(a) shows that all three approaches produced comparable control lim-

its for the multivariate normal distribution. However, under the multivariate gamma

distribution (Figure 4.4(b)) and the multivariate t distribution (Figure 4.4(c)), the

control limits from the F -distribution generated higher false alarm rates. Conversely,

the bootstrap and KDE approaches yielded similar values between the specified and

actual false alarm rates. Note that in the case of the multivariate t distribution, the

KDE approach could not obtain control limits because estimation of the control limit

required too many spaced points.

Similar results were obtained from the Q charts. Figure 4.5 shows the control

limits of Q charts that were constructed from the CLJackson, weighted χ2 (gχ2
h), KDE,

and bootstrap approaches. In Figure 4.5(a), under the multivariate normal distribu-

tion, all four approaches yielded similar control limits. The differences in control

limits become clear when the parametric approaches were used and compared with

nonparametric approaches for the multivariate gamma distribution (Figure 4.5(b)).

The CLJackson yielded the highest actual false alarm rate, and the gχ2
h, KDE, and
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Figure 4.4 Control limits of the T 2
PCA control charts established by the F -distribution,

KDE, and bootstrap approaches on (a) multivariate normal distribution; (b) multi-
variate gamma distribution; (c) multivariate t distribution (α = 0.01).

bootstrap approaches were robust to the nonnormal distribution and able to control

the false alarm rate. However, Figure 4.5(c) illustrates that the gχ2
h approach does

not control the false alarm rate well, but the bootstrap approach does in the case of

the multivariate t.

It should be noted that the KDE approach failed to determine control limits

in case of the multivariate t because the distribution of the Q-statistic was highly

skewed. It was found that using KDE to estimate a highly skewed distribution re-
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Figure 4.5 Control limits of Q control charts established by the F -distribution,
weighted χ2, KDE, and bootstrap approaches on (a) multivariate normal distribu-
tion; (b) multivariate gamma distribution; (c) multivariate t distribution (α = 0.01).

quires such a large number of spaced points that its implementation may not be

practical. Figures 4.6 and 4.7 illustrate the histogram and the KDE plots of the

T 2
PCA statistic and Q-statistic, obtained from the multivariate normal, multivariate

gamma, and multivariate t distributions. The results show that the KDE approach

cannot accurately estimate the distribution of the T 2
PCA statistic or the Q-statistic

obtained from the multivariate t distribution because the distributions of these two

monitoring statistics are highly skewed (Figures 4.6(c) and 4.7(c)).
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Figure 4.6 Histogram and kernel density estimation plots using T 2
PCA statistics calcu-

lated from (a) multivariate normal distribution; (b) multivariate gamma distribution;
(c) multivariate t distribution.
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Figure 4.7 Histogram and kernel density estimation plots using Q-statistics calculated
from (a) multivariate normal distribution; (b) multivariate gamma distribution; (c)
multivariate t distribution.
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Figure 4.8 Control limits with different numbers of bootstrap samples: (a) control
limits of the T 2

PCA chart from a normal distribution; (b) control limits of the Q
chart from a normal distribution; (c) control limits of the T 2

PCA chart from a gamma
distribution; (d) control limits of the Q chart from a gamma distribution.

The KDE approach also requires considerable effort to find the appropriate pa-

rameters, such as bandwidth and number of spaced points, and requires numerical

integration to calculate the area under the estimated density. A highly skewed dis-

tribution diminishes the accuracy of the values of the control limits estimated by the

KDE approach. On the other hand, the bootstrap approach, the other nonparametric

approach presented in this study, overcomes this issue and establishes control limits.

It involves only one parameter, the number of bootstrap samples, which may affect
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the calculation of control limit values. Figure 4.8 illustrates the values of the control

limits of the T 2
PCA and Q charts in multivariate normal and gamma distributions as

determined by various numbers of bootstrap samples ranging from 100 to 5,000. The

control limits were calculated 1,000 times for each bootstrap sample. The line in the

middle represents the average values of 1,000 control limits at each bootstrap sample.

As the number of bootstrap sample increases, the variability decreases and stabilizes.

The bootstrap approach has been considered a computationally intensive technique

when a large number of bootstrap samples are used. However, computing power now

routinely available can compensate for this issue.

4.2.2.2 Comparison of In-Control Average Run Length

Average run length (ARL) is the most widely used performance measurement

for control charts. This study focuses on the in-control ARL (ARL0), which is de-

fined as the average number of observations required until an out-of-control signal

is detected under the in-control process [105]. In this study, the value of ARL0 was

calculated from 10,000 simulations. Under the normality assumption, the difference

between the specified ARL0 and the actual ARL0 is expected to be close to zero. Ta-

ble 4.1 shows the control limits obtained by the F -distribution, KDE, and bootstrap

approaches for the T 2
PCA control chart under the multivariate normal distribution

situation. The results show that all three approaches yielded an actual ARL0 close

to the specified ARL0. As in the cases of multivariate gamma and multivariate t

distribution, the actual ARL0 values from the bootstrap approach are near the spec-

ified ARL0 values (Table 4.2, Table 4.3). However, the actual ARL0 values obtained

from the F -distribution and the specified ARL0 values are different under nonnor-

mal situations. As noted earlier, the actual ARL0 values cannot be obtained for the

67



t distribution because of the large number of spaced points required for a skewed

distribution.

Similar to the T 2
PCA control chart, for the Q charts ARL0 was compared for

weighted χ2 (gχ2
h), KDE, and bootstrap. Table 4.4 shows the results of different

control limits under the multivariate normal distribution. The results show that

across the different approaches, the actual ARL0 values are close to the specified

ARL0 values. However, the gχ2
h method tends to yield an actual ARL0 that is lower

than the specified ARL0. As for the gamma distribution, Table 4.5 shows that the

actual ARL0 values from the KDE and bootstrap approaches are close to the assumed

ARL0 values. It is interesting to see that the gχ2
h approach performs nearly as well

for ARL0 as KDE and bootstrapping. However, the CLJackson approach produced

actual ARL0 values that are too small. This will lead to many false alarms. Table

4.6 shows the results of the multivariate t distribution. It can be observed that the

CLJackson and gχ2
h methods produced an actual ARL0 unlike the specified ARL0,

but the bootstrap method produced ARL0 values similar to the actual and specified

cases.

4.3 Discussion

Nonparametric PCA control charts were presented that can be used effectively

in many modern processes when a number of highly correlated quality characteristics

are present and multivariate normality cannot be assumed. Two nonparametric ap-

proaches were proposed – KDE and bootstrapping – to determine control limits for

T 2
PCA and Q charts in nonnormal situations. The simulation showed that the proposed

nonparametric PCA control charts performed better than traditional parametric PCA

control charts in terms of ARL0 performance.
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It was found from the simulation that the KDE approach cannot produce accu-

rate control limits when the monitoring statistics are highly skewed. This approach

fails in this situation because of the large number of spaced points required to esti-

mate the tail area of the distribution. When the monitoring statistics are skewed, the

bootstrap approach is more effective for constructing control limits.

Both KDE and bootstrapping are nonparametric approaches. However, the

actual implementation of KDE is relatively complicated because it requires determi-

nation of several parameters (smoothing, number of spaced points, kernel types) for

its full construction. In contrast, bootstrapping is a model-free approach that does

not require determination of many parameters and is easy to implement.
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Table 4.1 ARL0 from the T 2
PCA chart using control limits established by using the

F -distribution, KDE, and bootstrap approaches from 10,000 simulation runs based
on multivariate normal distribution (average standard errors are shown inside the
parentheses)

Case α Desired ARL0 F -dist KDE Bootstrap
N 0.01 100.000 101.790 105.510 101.110

(1.023) (1.139) (1.082)
0.02 50.000 50.835 51.412 50.010

(0.512) (0.533) (0.518)
0.03 33.333 34.172 34.323 33.334

(0.336) (0.342) (0.332)
0.04 25.000 25.354 25.526 24.887

(0.250) (0.253) (0.247)
0.05 20.000 20.436 20.483 19.966

(0.198) (0.198) (0.194)
0.06 16.667 16.732 16.881 16.448

(0.165) (0.167) (0.163)
0.07 14.286 14.262 14.455 14.115

(0.138) (0.140) (0.137)
0.08 12.500 12.613 12.797 12.494

(0.119) (0.122) (0.119)
0.09 11.111 11.134 11.230 10.994

(0.105) (0.107) (0.104)
0.10 10.000 10.176 10.296 10.066

(0.098) (0.099) (0.097)
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Table 4.2 ARL0 from the T 2
PCA chart using control limits established by using the

F -distribution, KDE, and bootstrap approaches from 10,000 simulation runs based
on multivariate gamma distribution (average standard errors are shown inside the
parentheses)

Case α Desired ARL0 F -dist KDE Bootstrap
Gam 0.01 100.000 19.728 102.810 102.020

(0.194) (1.051) (1.040)
0.02 50.000 16.127 50.474 50.315

(0.157) (0.498) (0.498)
0.03 33.333 13.869 33.100 32.987

(0.133) (0.323) (0.320)
0.04 25.000 12.297 24.716 24.690

(0.118) (0.245) (0.245)
0.05 20.000 11.443 20.148 20.104

(0.110) (0.198) (0.197)
0.06 16.667 10.938 16.826 16.769

(0.103) (0.161) (0.160)
0.07 14.286 10.186 14.498 14.453

(0.097) (0.139) (0.139)
0.08 12.500 9.742 12.767 12.740

(0.092) (0.124) (0.124)
0.09 11.111 9.156 11.156 11.121

(0.086) (0.106) (0.106)
0.10 10.000 8.873 10.143 10.111

(0.084) (0.096) (0.096)
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Table 4.3 ARL0 from the T 2
PCA chart using control limits established by using the F -

distribution, KDE, and bootstrap approaches from 10,000 simulation runs based on
multivariate t distribution (average standard errors are shown inside the parentheses)

Case α Desired ARL0 F -dist KDE Bootstrap
t 0.01 100.000 32.815 N/A 102.94

(0.592) (N/A) (1.034)
0.02 50.000 27.563 N/A 50.486

(0.600) (N/A) (0.497)
0.03 33.333 22.811 N/A 32.937

(0.408) (N/A) (0.329)
0.04 25.000 21.106 N/A 25.305

(0.512) (N/A) (0.245)
0.05 20.000 19.367 N/A 19.962

(0.487) (N/A) (0.200)
0.06 16.667 18.067 N/A 16.654

(0.479) (N/A) (0.160)
0.07 14.286 16.321 N/A 14.334

(0.327) (N/A) (0.138)
0.08 12.500 14.726 N/A 12.499

(0.249) (N/A) (0.118)
0.09 11.111 14.558 N/A 11.053

(0.383) (N/A) (0.104)
0.10 10.000 13.596 N/A 10.191

(0.285) (N/A) (0.098)
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Table 4.4 ARL0 from the Q chart using control limits established by using the
CLJackson, weighted χ2 (gχ2

h), KDE, and bootstrap approaches from 10,000 simu-
lation runs based on the multivariate normal distribution (average standard errors
are shown inside the parentheses)

Case α Desired ARL0 CLJackson gχ2
h KDE Bootstrap

N 0.01 100.000 113.970 83.141 103.990 99.455
(1.150) (0.857) (1.110) (1.053)

0.02 50.000 53.689 44.229 50.304 48.379
(0.543) (0.453) (0.533) (0.512)

0.03 33.333 34.810 30.755 33.428 32.355
(0.343) (0.307) (0.337) (0.326)

0.04 25.000 25.886 23.520 25.073 24.161
(0.256) (0.234) (0.251) (0.240)

0.05 20.000 20.549 19.258 20.127 19.465
(0.202) (0.190) (0.200) (0.194)

0.06 16.667 17.184 16.415 16.902 16.325
(0.169) (0.163) (0.166) (0.161)

0.07 14.286 14.486 14.063 14.437 13.954
(0.140) (0.137) (0.140) (0.135)

0.08 12.500 12.551 12.388 12.551 12.121
(0.121) (0.120) (0.122) (0.117)

0.09 11.111 11.185 11.128 11.190 10.833
(0.107) (0.106) (0.107) (0.104)

0.10 10.000 10.046 10.066 10.116 9.788
(0.096) (0.098) (0.098) (0.095)
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Table 4.5 ARL0 from the Q chart using control limits established by using the
CLJackson, weighted χ2 (gχ2

h), KDE, and bootstrap approaches from 10,000 simu-
lation runs based on the multivariate gamma distribution (average standard errors
are shown inside the parentheses)

Case α Desired ARL0 CLJackson gχ2
h KDE Bootstrap

Gam 0.01 100.000 18.918 92.173 99.087 97.722
(0.188) (0.938) (1.005) (0.990)

0.02 50.000 14.437 52.652 49.363 49.009
(0.140) (0.524) (0.492) (0.488)

0.03 33.333 11.992 37.929 33.437 33.161
(0.116) (0.375) (0.333) (0.330)

0.04 25.000 10.575 28.850 24.683 24.542
(0.101) (0.286) (0.242) (0.241)

0.05 20.000 9.691 23.289 19.735 19.610
(0.092) (0.227) (0.192) (0.191)

0.06 16.667 8.814 19.754 16.565 16.489
(0.082) (0.192) (0.161) (0.160)

0.07 14.286 8.257 16.873 14.235 14.170
(0.079) (0.164) (0.139) (0.139)

0.08 12.500 7.749 14.913 12.479 12.404
(0.072) (0.146) (0.121) (0.120)

0.09 11.111 7.360 13.342 11.258 11.188
(0.069) (0.128) (0.108) (0.107)

0.10 10.000 6.943 12.106 10.144 10.085
(0.065) (0.117) (0.098) (0.097)
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Table 4.6 ARL0 from Q chart using control limits established by using the CLJackson,
weighted χ2 (gχ2

h), KDE, and bootstrap approaches from 10,000 simulation runs
based on the multivariate t distribution (average standard errors are shown inside the
parentheses)

Case α Desired ARL0 CLJackson gχ2
h KDE Bootstrap

t 0.01 100.000 21.434 258.240 N/A 98.890
(0.208) (2.969) (N/A) (0.992)

0.02 50.000 18.041 133.340 N/A 49.489
(0.176) (1.409) (N/A) (0.486)

0.03 33.333 15.818 82.174 N/A 33.273
(0.157) (0.857) (N/A) (0.330)

0.04 25.000 14.777 56.243 N/A 25.416
(0.146) (0.578) (N/A) (0.251)

0.05 20.000 13.413 39.639 N/A 19.951
(0.130) (0.406) (N/A) (0.193)

0.06 16.667 12.677 29.619 N/A 16.838
(0.126) (0.311) (N/A) (0.165)

0.07 14.286 11.859 22.369 N/A 14.273
(0.116) (0.242) (N/A) (0.138)

0.08 12.500 11.123 17.515 N/A 12.267
(0.107) (0.191) (N/A) (0.118)

0.09 11.111 10.645 13.948 N/A 11.027
(0.100) (0.155) (N/A) (0.103)

0.10 10.000 10.283 11.462 N/A 10.029
(0.100) (0.132) (N/A) (0.097)
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CHAPTER 5

DENSITY-FOCUSED SUPPORT VECTOR DATA DESCRIPTION METHOD

Support vector data description (SVDD) method described in chapter 2 has

gained much attention from many researchers. However, traditional SVDD aims to

form the boundary to capture as many observations in the target class as possible,

but fails to take into account the density of the data. Logically, the data points

near dense regions should be considered as targets while extreme points should be

considered outliers. In this chapter, a density-focused SVDD (DFSVDD) method

is proposed. The goal of this DFSVDD to take into account the density of the

data when constructing the boundary. Specifically, there are two distance measures

combined in this method. The first distance measure is the original kernel distance

calculated by the SVDD method. The second measure relies on the support vectors,

but considers how close each support vector is to the observations. This enables a

measure of density because support vectors near a dense region will be close to more

observations. Overall, the kernel distance is used to identify shape and then the

density distance measure is used to give higher weight to data points in more dense

regions.

As mentioned in chapter 2, the misclassification error rate for targets can be

adjusted by changing the parameter C. By using a smaller C value, one can reject

more target observations. Given the same values of the parameters S and C, Figure

5.1 displays the boundaries of SVDD and DFSVDD. Both were constructed from 200

observations generated by the multivariate gamma distribution. Here the gamma

distribution is chosen because it contains both low and high density regions. Figure
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Figure 5.1 Boundaries of (a) SVDD and (b) DFSVDD.

5.1(a) shows that for SVDD with C = 0.02 some portions of the target observations

that are located on the edge of high density region are located outside of the control

boundary. Intuitively, the data points that are in the region of high density should

not be considered novelties. To address this limitation of SVDD, DFSVDD, shown in

Figure 5.1(b), establishes the boundary by taking into account the density of the data.

It can be seen that the data points in the high density remain within the boundary

of DFSVDD. The detail description of DFSVDD is discussed in the next section.

5.1 Density-focused SVDD (DFSVDD)

Conventional SVDD constructs a hypersphere to include the data and uses this

hypersphere to classify a testing observation as either a target or a novelty. Data

in real-world applications may not be evenly scattered because different degrees of

density in each region can be represented. Data points that are in regions of low

density are more likely to be novelties because they are remotely located from their

neighbors. However, conventional SVDD disregards the density of the data when con-
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structing its boundary. To address this issue, the present study proposes DFSVDD,

which utilizes the support vectors (SVs) to measure the denseness of the data. The

main idea of DFSVDD is to combine conventional SVDD with the density measure

to create a new novelty score. The boundary from DFSVDD can be determined by

solving the following optimization problem:

Maximize
∑
i

αiK(xi,xj)−
∑
ij

αiαjK(xi,xj). (5.1)

with the constraints:

0 ≤ αi ≤ C (5.2)
N∑
i=1

αi = 1, (5.3)

where i = 1, 2, . . . , N . The solution to the optimization yields α1, α2, . . . , αN , one for

each of the training observations. The observations that produce 0 < αi < C are the

SVs on the boundary (SV bnd). The distance from SV bnd to the training observations

is calculated by the following kernel distance:

‖φ(SV bnd
j )− φ(xi)‖2 = K(SV bnd

j , SV bnd
j )− 2K(SV bnd

j ,xi) + K(xi,xi), (5.4)

where j = 1, 2, . . . , n indexes the SV bnd observations and i = 1, 2, . . . , N indexes the

training observations. This kernel distance can be used to quantify the density of

the data near the SV bnd. If there are many data points located near SV bnd
i , the total

distances to SV bnd
i becomes smaller, indicating that the SV bnd

i is near a region of high

density. After calculating the kernel distances from each SV bnd
i to all observations,

these distances are normalized by using the following equation:

αdensityj =

∑
i

1

‖φ(SV bnd
j )− φ(xi)‖2∑

j

∑
i

1

‖φ(SV bnd
j )− φ(xi)‖2

(5.5)
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where
∑
j

αdensityj = 1. Division by zero is possible when xi is located on SV bnd,

yielding a kernel distance of zero. To avoid this situation, we assign that data point a

distance equal to the smallest kernel distance among other observations. We replace

αj in Equation (2.12) with αdensityj to obtain the following density-focused distance

measure:

D2
density = K(z, z)− 2

∑
i

αdensityi K(z,xi) +
∑
ij

αdensityi αdensityj K(xi,xj). (5.6)

Finally, a hybrid measure combines D2
density with D2 (Equation (2.12)) is obtained by

the following equation:

H = W ·D2 + (1−W ) ·D2
density, (5.7)

such that W ∈ (0, 1). When W is set to 1, the proposed method becomes the

conventional SVDD.

To examine the effects of parameters in DFSVDD, we constructed the bound-

aries with various values of C, S, and W from 200 target observations that follow

a multivariate gamma distribution. The empirical threshold was used to determine

the decision boundaries of DFSVDD by setting to reject approximately 10% of the

target observations. From left to right column, Figure 5.2 shows that the boundaries

of DFSVDD, given the same C, became smoother when S was increased because the

number of SVs used to describe the boundary decreases [34]. Figure 5.2 also displays

(from top to bottom) when the values of S were fixed, the boundaries of DFSVDD

exhibited less complexity and became closer to a hypersphere when the parameter

C was decreased. Further, DFSVDD consists of two pieces of information combined

using the additional parameter W as shown in Equation (5.7). The values of the

parameter W equal to 0.85 and 0.95 were used. When W is set equal to 0.95, it

means that DFSVDD considers less information in the dense regions than smaller W .
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Figure 5.2 Boundaries of DFSVDD obtained from different values of the parameters
and weighting factors W = 0.85 and 0.95: (a) C = 1 and S = 2; (b) C = 1 and S =
3; (c) C = 0.02 and S = 2; (d) C = 0.02 and S = 3.

Therefore, when the value of W was set at 0.85 as compared to higher value of W =

0.95, the boundaries extended the shape in the direction of the high density region,

as illustrated in Figure 5.2.
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5.2 Simulation Study

5.2.1 Simulation Setup

Simulation studies were conducted with MATLAB (MathWorks, Natick, MA)

to examine the performance of the proposed density-focused support vector data

description (DFSVDD) and to compare it with the traditional support vector data

description (SVDD). A set of 200 training observations was generated from a mul-

tivariate gamma distribution. For a testing set, 200 targets and 40 novelties were

generated based on the same distribution as the training set. Note that novelties

were created by adding one standard deviation to the mean from the set of training

observations.

The parameter C, used to control the volume of the hypersphere, was specified

as 0.02, 0.04, 0.1, and 1 for both SVDD and DFSVDD. The parameter S in the

Gaussian kernel function, used to control the complexity of the boundary, was set

to 1, 2, 3, and 4 for both methods. Furthermore, the additional parameter W ,

a weighting factor to combine two distances, in the DFSVDD was set at 0.7, 0.8,

0.9, 0.95, 0.97, 0.98, and 0.99 to represent the different weighting of information in

the dense regions. To determine a decision boundary for the proposed method, an

empirical threshold was used. However, a bootstrap approach [90][103] can be an

alternate way to estimate a threshold for DFSVDD. Note that DDtools [107] was

used to perform the traditional SVDD method.

5.2.2 Performance Measurement

A receiver operating characteristic (ROC) curve [108] is a well-known graphical

approach designed to evaluate the performance of novelty detection. The ROC graph
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displays a plot between the true positive rate (TPR) and false positive rate (FPR)

along the y-axis and x-axis, respectively. The TPR and FPR are defined as follows:

TPR =
Targets correctly classified

Total number of targets
, (5.8)

FPR =
Novelties incorrectly classified

Total number of novelties
. (5.9)

In the first experiment, the area under the ROC curve (AUC) is used as the standard

approach to compare performances of different classifiers [109]. A value of AUC can

be obtained by integrating the values of TPR and FPR. The result of the integration

can yield any value from 0 to 1. A classifier with a larger value of AUC indicates

better performance.

In the second experiment, we measured the performance between traditional

SVDD and the proposed DFSVDD in terms of the actual TPR value. This experi-

ment is required in order to examine the boundaries between SVDD and DFSVDD

when new observations occur around the edge of a multivariate gamma distribution.

We generated 200 observations that follow the multivariate gamma distribution as a

training set. A testing set containing 100 observations was generated from a multi-

variate normal distribution with a mean and a standard deviation set at 0 and 0.5,

respectively. As mentioned, this testing set aims to focus on the dense region in the

multivariate gamma distribution. The parameter C was set to 0.025, 0.05, 0.1, 0.4,

0.5, 0.7, and 0.9 for both SVDD and DFSVDD. The parameter S was set to 2 for

both methods. For DFSVDD, the additional parameter W was set equal to 0.9. The

actual value of TPR is used as the performance measurement. The method that

provides a larger TPR is considered better.
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5.2.3 Simulation Results

5.2.3.1 Detecting Power

In this study, the artificial data were generated from the multivariate gamma

distribution, which can represent dense and sparse regions in the data. The average

AUC was used as the performance measure. The average value of AUC was evalu-

ated from 100 simulations. The method that yields a larger average AUC would be

considered the better one.
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Figure 5.3 Average AUC×100 from SVDD and DFSVDD when C = 1: (a) S = 1;
(b) S = 2; (c) S = 3; (d) S = 4.
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Figure 5.4 Average AUC×100 from SVDD and DFSVDD when C = 0.1: (a) S = 1;
(b) S = 2; (c) S = 3; (d) S = 4.

Figures 5.3 ∼ 5.5 illustrate the average AUC from SVDD and DFSVDD with

different parameter settings. The additional parameter W in DFSVDD was varied

from 0.7 to 0.99. In order to produce fair performance comparisons, SVDD was

also evaluated for each W parameter setting in DFSVDD. Figure 5.3(a) shows that

DFSVDD with high W values produced larger values of average AUC than the con-

ventional SVDD, when S is equal to 1. The results indicate that performance can be

improved by using a lower weight on dense regions. On the other hand, when smaller
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Figure 5.5 Average AUC×100 from SVDD and DFSVDD when C = 0.02: (a) S =
1; (b) S = 2; (c) S = 3; (d) S = 4.

values of W were applied, the performances of DFSVDD became worse because it

yielded smaller values of average AUC than SVDD.

Figure 5.6 demonstrates the comparison of boundaries between SVDD and

DFSVDD with the parameters C and S equal to 1. The additional parameter W

was set to 0.7 and 0.99 for the proposed DFSVDD. The corresponding boundary of

DFSVDD with W = 0.7 represents the situation when the small weighting factor

is used, while W = 0.99 represents the corresponding boundary of DFSVDD when
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Figure 5.6 Boundaries of SVDD and DFSVDD obtained from different parameters:
(a) C = 1, S = 1, and W = 0.99; (b) C = 1, S = 1, and W = 0.7.

using a large weighting factor. The decision boundaries for both approaches were

established from 200 target observations and adjusted to produce the same TPR.

The FPR can then be measured by generating 40 novelties. Figure 5.6(a) represents

the case when the large parameter W (W = 0.99) was used in DFSVDD. The corre-

sponding boundary generated from DFSVDD a yielded smaller value of FPR (FPR

= 0.28) than the conventional SVDD (FRP = 0.35). Because of the influence of the

parameter W , the boundary from DFSVDD tends to move in the direction of the

dense region. Consequently, DFSVDD constructed a tighter boundary than SVDD,

while it still maintained the complexity of the boundary. The novelties located in the

middle of the figure were correctly classified by DFSVDD.

In contrast, when the parameter W was set to 0.7 as shown in Figure 5.6(b),

the value of FPR obtained from the proposed DFSVDD method increased to 0.6.

Because the influence of parameter W , a less complex boundary was constructed.

Furthermore, the boundary established from DFSVDD moved towards the dense re-
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gion in the data when the parameter W was reduced. As a result, there were more

novelties misclassified as targets by DFSVDD than by SVDD.
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Figure 5.7 Boundaries of SVDD and DFSVDD obtained from C = 1, S = 2, and W
= 0.90.

When the parameter S was increased to 2, 3, and 4, DFSVDD with all weight-

ing factors performed better than SVDD. As shown in Figures 5.3(b), 5.3(c), and

5.3(d), the proposed DFSVDD can achieve larger average AUC values than SVDD.

To represent this circumstance, Figure 5.7 illustrates the boundaries of SVDD and

DFSVDD with the parameters C = 1 and S = 2. For DFSVDD, the parameter

W was set to 0.9. It can be seen that the corresponding boundary generated by

DFSVDD produces a lower FPR (FPR = 0.65) than the traditional SVDD (FPR =

0.78), given the same TPR. This indicates that DFSVDD can distinguish novelties

from targets better than SVDD because lower error rates can be achieved. By varying

the parameter C as shown in Figures 5.4 and 5.5, similar results can be obtained.

The vertical lines on each plot show that the standard deviations are small enough

to draw a significant conclusion.
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Table 5.1 Average AUC of SVDD and DFSVDD over different values of the parameter
C

C = 1 C = 0.1 C = 0.02 Avg.
SVDD S = 1 82.84 82.86 80.77 82.16

S = 2 56.94 56.24 55.52 56.23
S = 3 26.56 29.09 48.23 34.63
S = 4 20.20 24.23 45.37 29.93

DFSVDD S = 1 78.12 79.32 79.54 78.99
S = 2 74.36 75.06 68.60 72.67
S = 3 59.26 58.45 60.03 59.25
S = 4 49.20 47.46 56.43 51.03

Furthermore, we can compare the performances of SVDD and DFSVDD by

taking an average of the average AUC values along the parameter C. Table 5.1 shows

that SVDD is slightly better than the proposed method when the parameter S is set

equal to one. Because of the effect of the parameter S shown in Figure 5.6, SVDD

with S = 1 can generate more complex boundaries than DFSVDD. As a result, there

are fewer novelties incorrectly classified as targets. However, DFSVDD outperforms

the traditional SVDD when a larger S is used. This demonstrates that DFSVDD is

more effective than SVDD when there is a dense region represented in the data.

5.2.3.2 The True Positive Rate in the Dense Region

In contrast to the conventional SVDD, DFSVDD considers the dense region

in the data and extends its boundary in the direction of the dense regions. In this

study, the focus is on the correct classification of targets in a dense region near the

boundary, comparing DFSVDD to SVDD in terms of the actual TPR. The parameter

settings were described in Section 5.2. The empirical threshold was specified for both

methods to generate the same TPR. To measure their performances, the actual TPR

is calculated from the testing set over 100 simulations. A larger TPR indicates a

better classification performance of the method in the dense region.
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Figure 5.8 Comparison of the capturing ability of the dense region in target between
SVDD and DFSVDD.
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Figure 5.9 The actual true positive rate between SVDD and DFSVDD.

Figure 5.9 shows that the proposed DFSVDD yields higher actual TPR than

SVDD for every value of the parameter C. The results indicate that DFSVDD effec-

tively classifies the targets in the dense region, while some portion of target observa-

tions are rejected by SVDD. This leads to lower actual TPR values for conventional

SVDD. The vertical lines in the plot represent the standard errors from the simulation.
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5.3 Discussion

We have presented a density-focused SVDD method that can be effectively used

for novelty detection. However, the boundary of SVDD excludes the data points on

the edge of dense regions. The data points that are near the dense regions should

be accepted by the classifier. At the same time, the data points that lie in the

sparse region should be rejected from the boundary. We propose a density-focused

SVDD (DFSVDD) that considers the shape as well as the dense region of the data.

Two distance measures – kernel distance and density distance – are determined to

construct a boundary for DFSVDD. The kernel distance can be obtained from the

regular SVDD algorithm and the density distance is estimated from the support

vectors obtained by a quadratic optimization of the conventional SVDD. An extra

parameter W is introduced to combine these two distance measures and to control

the trade-off between the shape and the density of the data. The simulation study

shows the overall performance of DFSVDD is better than the conventional SVDD in

terms of average AUC values. This study considers only the two-dimensional case.

Results in higher dimensions will have to be the subject of further study.
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CHAPTER 6

SUMMARY AND FUTURE DIRECTIONS

This dissertation focuses on the development of thresholds for novelty detection

with application to SPC, especially in control charts. In Chapter 3, we proposed a

bootstrap-based T 2 multivariate control chart. A bootstrap method is a nonpara-

metric technique that does not require any distributional assumptions on the data.

In a simulation study, the proposed bootstrap-based T 2 control charts performs bet-

ter than the traditional T 2 and existing kernel density estimation (KDE)-based T 2

control charts. In Chapter 4, a principal component analysis (PCA)-based bootstrap

control chart is proposed to improve the estimation of a control limit when the data

do not follow a multivariate normal distribution. The existing PCA-based control

charts, T 2
PCA and Q charts, are integrated with the bootstrap and KDE approaches

to determine control limits. A simulation study indicates that the nonparametric

control limits constructed using bootstrapping and KDE show superior performance

over the traditional PCA control charts under different types of multivariate nonnor-

mal distributions. Finally, in Chapter 5, the study of support vector data description

(SVDD) indicates that SVDD does not take the density of the data into account

when constructing its boundary. A density-focused SVDD (DFSVDD) is proposed

to overcome this limitation of SVDD by combining two distance measures, the kernel

distance and the density distance. A simulation study shows the higher effectiveness

of DFSVDD over the traditional SVDD when the data contain a dense region.

In future work, the idea of combining boundaries for novelty detection will be

explored. This has been shown to improve detection performance [110]. An individual
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decision may result in a biased opinion. Additional opinions are required to increase

the possibility of making the right decision. This techniques is known as an ensemble

of classifiers that uses several unique classifier techniques to create a multiple classifier

system [111]. A subject of further study is applying an ensemble technique to create

multiple classifier systems for control charts. Such systems can assist in determining

a proper and accurate decision as to whether or not a process is out of control. For

instance, a classical control chart typically requires certain assumptions to establish

the chart. This parametric chart can serve as a single decision-maker. When the data

deviate from the assumption, another type of a control chart, such as those based on

the nonparametric methods in this dissertation, can be combined with other charts

resulting in an increase in detection performance. It will be useful to study if the

ensemble aspect will yield improvements in SPC.
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