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ABSTRACT 

 
SPIN COUPLING BY CONDUCTION ELECTRONS  

EXPLORED BY DOUBLE TIME  

GREEN'S FUNCTIONS 

 

William Decker, M.S. 

 

The University of Texas at Arlington, 2012 

 

Supervising Professor:  Nail Fazleev 

 The impurities containing unfilled d or f shells may have localized magnetic moments in 

nonmagnetic metals, semiconductors, and superconductors under certain conditions. These 

localized moments interact with each other through the spin polarization field of conduction 

electrons. The indirect coupling between magnetic impurities is referred to as the Ruderman-

Kittel-Kasuya-Yosida (RKKY) interaction which is important in describing the magnetic and 

thermodynamic properties of magnetic nanostructures. The interaction may be expressed as a 

long range oscillatory function. I explored the properties of the indirect exchange interaction 

between localized moments in different dimensions using the s-d model and the Green’s 

functions method. An effective Hamiltonian for the indirect interaction is obtained in terms of a 

Green’s function using a canonical transformation applied to the s-d exchange model. The 

equation of motion for the Green’s function has been solved by using a Hartree-Fock 

approximation to truncate higher order Green’s functions. The asymptotic form of the indirect 

spin-spin interaction for large distances R for both polarized and unpolarized conduction 

electrons has been explored using the theory of generalized functions. The Green's function 
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technique is justified as the three dimensional Hamiltonian is modified by a screened Coulomb 

potential that is Yukawa-like in nature.  
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CHAPTER 1 

INDIRECT INTERACTION BETWEEN LOCALIZED MOMENTS 

 The introduction of an impurity to a periodic lattice creates many interesting and 

practical problems that can be explored. In principle, the impurity destroys the periodicity of the 

lattice and the wave vector is no longer a constant of motion, but this does not mean that all 

periodic properties of the lattice have been destroyed.  

1.1 Introduction 

The periodic properties of a pure substance used to model the properties of an impure 

substance in a variety of ways. A simple way is to modify the independent electron’s wave 

function with a term to represent the scattering between an electron and a nonmagnetic impurity 

[1].  

                         

The variation of the electron density is calculated as 

           
              

                       
  

with 
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outside of the central charge. 

 The asymptotic behavior of the electronic density variation is proportional to 

        
            

  
  

The independent electron interacting with an impurity leads to long-range oscillatory 

charge density variations that fall off as    .  This effect shows up experimentally in the nuclear 

magnetic resonances of a material with dilute impurities. For example, the nuclear magnetic 

resonance of a Cu-base alloy experiences attenuation of its resonance line. The broadening 

occurs due to the interaction of the quadrupole moment of the Cu nuclei with the gradients in 

the electric field. The gradients in the electric field are caused by the screening charge 

surrounding the impurity [2].  

The effect of a magnetic impurity on the spin polarization density of conduction 

electrons is similar to the effect of a charged impurity on charge density described above. The 

exchange interaction between a conduction electron and a magnetic impurity causes spin 

polarization in the conduction electrons. As above, the polarization exhibits a long range 

oscillatory behavior and couples the original impurity with another magnetic impurity. This 

indirect interaction between localized magnetic moments via the conduction electrons is known 

as Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction.  

1.2 Derivation of the s-d model Exchange Interaction 

 The s-d model assumes that there are two types of electrons: s electrons that are non-

localized over the entire crystal and d electrons that are localized at impurity sites. The model 

uses the exchange interaction between these types of electrons as a basis for exploring 

magnetism. Namely,  
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where    and     are spin vectors associated with the intrinsic magnetic moment of each particle 

and      is the matrix element representing the strength of the exchange interaction between 

particles   and   . Keeping in mind the properties of the dot product, it can be seen that        

favors antiparallel spins and        favors parallel spins.  

It should be noted that the exchange interaction is a direct consequence of electron-

electron interaction and arises because of the overlap of electronic wave functions along with 

the anti-symmetric nature of their wave functions [3]. The conduction electron Hamiltonian in a 

metal of volume   and with N atoms takes the form 

         
    

  

 

where    
 

 and      are the usual second quantized creation and annihilation operators of the 

electron with wave vector k and spin s. The coefficient    is the energy of a single electron 

moving in a general potential such as that caused by a crystal field or an external magnetic 

field. The Bloch function associated with a particular electron momentum state is labeled as  

      and its spin state is labeled as      , where   is the generalized spin coordinate. For an 

impurity atom located at   , the localized orbital is          and     operator is the 

annihilation operator of the localized electron at site   and spin s.  

  Therefore, the field operator is expanded in terms of one-electron wave functions for 

both the conduction electron and the localized electron as 
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 1.1  

 

 

           
 
   

  

  
       

      
 
        

 
      

 

  

 1.2  

Using 1.1 and 1.2, the two body interaction term is written as 

 

        
                   

                               1.3  

with        representing the interaction potential between two electrons and            . 

 Only terms that represent the scattering between a conduction electron and a localized 

electron will be considered. In other words, only terms that are proportional to      will be kept. 

Inserting the definitions of 1.1 and 1.2 into 1.3 along with some rearranging of terms yields 

 

      
         

         
        

     

    

          
 

 
         

       
         

         
        

     

    

    
        

        
        

              

1.4  
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The electron-electron interaction Hamiltonian produces two types of integrals,          

and         . The first integral is known as the Coulomb integral and is defined as  

                     
       

                                 

which has the classical interpretation as the electrostatic interaction between two electrons.  

The Exchange integral does not have a direct classical interpretation and can be 

thought of as a correction to the Coulomb integral due to the anti-symmetric nature of the 

electron wave functions, 

                     
       

                                

Next, the Bloch functions are expanded in terms of Wannier functions  

                           

 

 

and the exchange integral is rewritten as 

 

         
 

 
                    . 1.5  

The coupling constant in 1.5 is defined as  
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         1.6  

and is taken to be dependent on the absolute difference between   and   . Equation 1.6 can be 

reduced to an atomic exchange integral by assuming that the lead term,      , is dominant 

enough to be able to discard the rest of the terms in the series. It is also convenient to assume 

that         is a constant, but for the rest of this section it will be taken in its most general form. 

Assuming that there is only a single unpaired orbital electron located on a particular 

impurity leads to the following second quantized operator definitions  

 
 

 
    

        
                   

               
          1.7  

with    being the spin operator of the localized electron located at n and having spin    .  

Inserting the 1.7 definitions into the exchange part of the Hamiltonian yields 

 
 

 
                            

         
             

            
           

By using similar definitions to 1-7 for the conduction electron spin operators and 

definition of the dot product between spins, 

                  . 

the final form of the exchange interaction between conduction electrons and localized d 

electrons becomes 
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       1.8  

It should be noted that the analysis of the contact hyperfine interaction between an 

electron and a nucleus will also lead to a similar exchange interaction term.  

 

 

1.2.1 Canonical Transformation of the Anderson Model 

Another model that describes the interaction of a conduction electron with a localized electron is 

the Anderson model,  

        
    

  

       
    

 

     
       

            
        

     

  

 

        

The    term represents the single particle operators and   , the term proportional to   , 

represents a mixing or hopping term. There is a canonical transformation that can transform the 

Anderson model into a Hamiltonian with exchange terms like equation 1.8 [4]. A byproduct of 

this derivation is that the transformed Hamiltonian has a much richer display of all the different 

types of interactions that can occur in a system of interacting localized moments and conduction 

electrons.  

The overall plan is to find a canonical transformation to the Anderson Model that will 

eliminate terms which are linear in   .  
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1.9  

Equation 1.9 is arrived at by expanding the exponential terms and rearranging the terms into a 

series of commutation relations. The required condition so that the terms linear in    vanish is 

 

           1.10  

After some minor manipulation of the terms, equation 1.9 becomes 

      
 

 
           

    

All terms     
   are taken to vanish and only with terms that are     

   are left. The 

transformation factor   is calculated by using 1.10 and the Heisenberg equation of motion, 

 

           
     

  
  

Solving the resulting differential equation gives [4] 
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Although   has some rather unwieldy commutation relations, it does satisfy the condition stated 

in equation 1.10. To simplify the final form of the Hamiltonian, an effective exchange constant is 

defined as: 

            
 

     

 
 

      

 
 

       

 
 

        

   

From here, the second term of    in terms of       is calculated to be 

 

 

 
                    

         
          

              

    

 
 

 
     

     
                  

  
 

     
 

  

     
     

    

      
 

     

 
 

      

  

1.11  

The first two terms in 1.11 represent a scattering only event and a scattering with spin-flip event, 

the same exchange interaction term that we found in the s-d interaction Hamiltonian.  The s-d 

model represents a subset of the interactions contained within the Anderson Model.  Also of 

note, is that taking even higher order commutator terms from 1.9 will result in even more types 

of interactions.  

1.3 Spin Polarization 

  In analogy with polarized light, an ensemble of electrons is considered to be polarized 

if the up and down states are not equally populated in a sample. This build up of spin density 

will lead to a change in the magnetic field felt within the sample. Spin-polarized electrons play 
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an important role in the development of spintronics and uncovering the magnetic properties of a 

material [6].  

1.3.1 Introduction to Spin Polarization Formalism      

 The observable spin obeys similar commutation relations to the angular momentum of 

an electron in atomic orbit. Namely, 

 

                 1.12  

where     is the Levi-Civita symbol and I,j,k represent Cartesian coordinates and       . By 

defining   
 

 
  and requiring that    be diagonal, the Pauli matrices are defined as 

 

    
  
   

       
  
  

       
   
  

   1.13  

An arbitrary state    
  

  
  as a linear superposition in terms of the eigenfunctions of   . 

 
  

  
     

 
 
     

 
 
  

Here,  
 
 
  and  

 
 
  have eigenvalues of 1 and -1 respectively. Assuming         allows the 

interpretation of     
 and     

  as the probabilities of finding   in either  
 
 
  or  

 
 
  state.  

Since operators that can be measured simultaneously must commute, 1.12 reveals that 

all the components of electronic spin cannot be measured simultaneously. However, the    

operator does commute with each individual spin direction and a precise measurement on that 

quantity and one of the particular components of spin can be made. For a       particle, the 

eigenvalue of    is               .  
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Now, there is a definite way to interpret the statement “the spin of the electron is in the z 

direction”. It means that the z-component of the spin is    , but    and    are undefined with the 

constraint that  

  
    

          
       

This concept can be pictured as a conical shell with a height of     and a hypotenuse of 

     . 

Moving on from the basic review of spin, the polarization of an electron shall be defined 

along a particular axis and in an arbitrary state,    
  

  
 . First, let                be a unit 

vector in the     direction of a unit sphere with the following component definitions 

                                               

Now, the eigenvalue equation that relates to the projection of the Pauli Spin Matrices in 

the direction of    must be solved,  

             

After performing the dot product calculations and applying some simple trigonometric identities, 

the following is arrived at 
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The condition for a nontrivial solution to this system of equations requires that the 

determinant vanishes.  

                  

      
         

Using these eigenvalues, the    coefficients are solved for 

 

      
 

 
           

 

 
       for     

      
 

 
           

 

 
       for        

1.14  

The above spin functions represent the states where the spin in the direction     has 

eigenvalues     . It is easily seen that the      solution is the same as the     in the     

direction, which can be found by just shifting the angles            . Therefore, only 

one set of solutions is considered since the other set can be found just by shifting them by    

 These equations give the mathematical framework to consider the polarization of 

electrons. Defining the polarization as the expectation value of the Pauli spin operators, 

             
    

    
  

  
  

and using the 1.13 definitions for   and 1.14 for the coefficients. The expressions for the 

polarization in different directions are found to be 
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If the polarization is normalized by dividing through by      , the magnitude of the 

polarization for different directions becomes 

   
  

      
   

    
      

 
 

   
    

      
    

    
       

 

   
    

       

    
       

  

Finally, the methods of Statistical Mechanics must be used to consider an ensemble of 

electrons with more than one spin state. In this case, the polarization of the system is 

considered to be the average of the polarization vectors for each individual spin state. Assuming 

the states    are normalized, the polarization averaged over the different ensembles of spin 

states becomes 
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  1.15  

   
  

   
 

 

Where the weighting factor,   , takes into account the proportion of each spin state compared 

to the overall mixture with    being the number of electrons in state   . 

The density matrix,  , shall be defined in the usual manner.  

 

               

 

     
  

 

  
  

 

   
       

      

     
   

     
      

 

  
      

    
   

 

 

 

1.16  

Now, the polarization rewritten in terms of the density operator is 

          

The density matrix can also be expressed in terms of the components of polarization.  
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If the polarization of the ensemble is taken to be only in the z-direction, then the density 

matrix is diagonalized as  

  
 

 
 
    

    
   

Given that the probability of obtaining the eigenvalue of     from a measurement in the 

z direction for a particular nth subsystem is    
   . Then the total probability of all the 

subsystems is        
    . This probability can also be rewritten as the ratio of    to the total 

number of particles in the system. From these definitions, it is possible to make a connection 

between fraction of particles in the spin-up state and the polarization of the system. 

      
   

 

 
  

     

 
 

 
      

The same process can be done for eigenvalue      to get 

  

     

       
   

 

 
 

 
       

From these two equations, the unidirectional polarization is simply 
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1.3.2 Spin Polarization due To s-d Interaction 

In this section, how the polarization of the conduction electrons arises out of the s-d 

interaction is demonstrated using perturbation theory. Beginning with the exchange interaction 

derived as equation 1.8, the dot product is expanded to give  

      
 

 
                               

         
             

            
         

      

  

The first order perturbation to the energy can be found by identifying the diagonal 

elements of the interaction             : 

 
 

 
            

 

 

where    and    are the total number of electrons for spin   and  . 

The first thing to notice about the first order perturbation to the energy is that the 

interaction energy of the system is lowered as the polarization,        , increases. Therefore, 

the system of conduction electrons tends to be spin-polarized. However, the diagonal terms are 

independent of the distance from the impurity and the polarization is uniform due to the first 

order effect. 

The first order correction to the Fermi energy is 

 

  
  

 

  
      

 

 
     

 

  1.17  
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with    being the maximum wave vector of an electron with spins   and  .    
  and   

  are the 

corrections to the Fermi energy associated with spin   and   , respectively.  

Next, the maximum wave vector for the unpolarized electron is defined as   and putting 

it in terms of the polarized wave vectors   

 

         1.18  

Placing 1.18 into the first order correction of the Fermi energy, 1.17, yields 

  
        

 

  

  

 
 

 

 
     

 

 

with    being the unperturbed Fermi energy.  

Now, the total number of electrons is related to the unpolarized wave vector,  , by  

   
 

   
    

and related to the polarized    by  

        
  

 
   

By requiring that   
  and   

  are equal to each other,        can be solved for 
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 1.19  

Placing this into our equation for   , an expression is obtained that describes the 

polarization of the electrons, 

 

     
   

    

     

 

  

 

1.20  

At first glance, the uniform polarization in 1.20 is a surprising result because the Friedel 

theorem states that the perturbing potential due to impurities is screened out except in the 

immediate neighborhood of the impurity [1,7]. This suggests that off-diagonal terms might have 

a first order contribution to the polarization.  

Starting with the first-order correction to the perturbed wave function of the conduction 

electron,  

     
   

           

      
  

 
  
    

yields 
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In this case,     refers to spin-up/spin-down particles, the prime on the summation indicates 

that the      is excluded, and the wave functions are represented by plane waves in the 

above equation. 

  
   

 

 
 

 
 
      

The spin density at     can be found by calculating the wave function density over 

the Fermi sea. 

           
    

  

  

 

Using the expression for the perturbed wave function and the 1
st
 order uniform 

polarization term,  

      
 

 
   

  

   

          
 

 

  
  

   
     

         

      

 

  
                           

 

  

 

  
  

Making the replacement of        and then integrating over   yields (see 1.24 for details 

and also note [8] as a different integral that yields the same results) 
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The expression is rewritten as 

      
 

 
 

  

    
          

 

 

 
  

   

   

 
     

 

 
                             

 

  
  

with 

 

       
   

    

    

   
     

     
   1.21  

The term      is omitted from the summation but is equal to the second term of       

because       . After absorbing the second term into the summation over  , the expression 

takes the form, 

      
 

 
 

  

   

   

 
                                      

 , 

with the sum now going over all values of  . It should also be emphasized that the equation for 

      includes the diagonal terms calculated in 1.20 which were absorbed into the summation 

over  . Therefore, the calculation of       represent the complete modification of the first order 
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energy perturbation. By assuming that       , the integration over   can be performed which 

yields 

      
 

 
 

     

  

   

 
                   

 

  
  

and 

                         

The polarization is defined to be the difference the up and down spin densities as noted 

in section 1.3.1. This simple calculation at long distances gives 

      
    

   

   
 
         

      
  

               

  
Figure 1.1-Plot of      Range Function 
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The final expression for the spin density reveals that the uniform polarization term is 

modified by a long range oscillatory term that depends upon the distance from the impurity as 

   . It is also noted how elongated the oscillations are by comparing the order of magnitude of 

the y-axis to the x-axis and how rapidly the polarization vanishes as    . Therefore, the 

polarization of the conduction electrons is confined to the neighborhood of the impurity much in 

line with the expectations from Friedel’s theorem.  

1.3.3 RKKY Interaction  

 So far, the system being dealt with has consisted of a sea of conduction electrons and a 

magnetic impurity. If there were a second impurity in the system, it will be perturbed by the spin 

the polarization of the conduction electrons produced by the first impurity and first will be 

perturbed in the same way by second. The system has become two magnetic moments that are 

indirectly coupled by the conduction electrons. The second order interaction between two spins 

can be written as 

        
                          

      

 

   

   

  

with         , the prime on the summation again means that the      is excluded from the 

sum, and assuming that            .  

Beginning with the summation over the spins and using a standard relation, allows the 

second order spin summation to be rewritten as 

             

 

                       

The last part of equality uses the fact that the trace of any component of   must vanish. 

 From here, the integrations are very similar to ones already calculated which yield 
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         1.22  

Once again,  

                         

The oscillatory nature of the indirect exchange interaction causes a variety of polarized spin 

structures in magnetic crystals, even including spirals!  

 

 

1.3.4 RKKY Interaction In 2D and 1D 

 So far, only crystals in three dimensions have been considered. However, an 

understanding of the RKKY polarization effects in lower dimensions is essential to 

understanding polarization effects of nanostructures. First, the susceptibility associated with the 

exchange energy of a crystal is calculated.  

 Beginning with definition of the local magnetic field at the site    which is labeled as   . 

This magnetic field induces a localized magnetic moment at    in the form of 
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Here,    is the localized magnetic at    induced by    with a magnetic susceptibility of    . 

Assuming isotropic conditions and translational invariance imposes the conditions that     is a 

scalar and                  .  

 The energy of the system is calculated by  

   
 

 
   

 

     
 

 
              

  

  

Here,    
   

   
 and focusing only on the exchange term between two magnetic moments, the 

exchange energy becomes 

     
  

   
                

 Now,   will be written in terms of      through the use of Fourier transforms. Starting 

with this definition of the transform,  

   
 

  
          

 

 

  can be rewritten as  
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Taking the sum over the   index yields and applying the        to the summation gives 

  
 

 
          

   

             

 

  

Finally, defining                          allows for  

   
 

 
           

 

  

 Next ,       is calculated by assuming a magnetic field of the form 

   
 

  
                       

The energy due to the magnetic moment of an electron interacting with a magnetic field is given 

by 
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Using the fact that      for an electron and   
  

 

 
    

        
     , the exchange energy is 

found to be 

     
 

  
     

 

    
        

                        

Now a Fourier transform must be applied to the creation and annihilation operators. Defining the 

transforms for   
 
 and    as 

   
 

  
         

 

 

  
  

 

  
        

 

  
   

Next, the exchange energy can be rewritten as  
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 Now, second order perturbation theory is applied to    .  First, it must be kept in mind 

that  

         
       

 

 

       
               

      

 

      
         

       

            
   

                   
         

      

 

  

Then, the second order perturbed term is written as 

    
    

   
 

 
  

              

       

 
              

       

 

 

  

Next, replacing       in the first term yields 

    
    

   
 

 
 

           

       
 

  

From this equation, the susceptibility can be identified as  

 

     
   

 

 
 

           

       
 

  1.23  
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 The new magnetic susceptibility will first be explored in three dimensions by taking the 

Fourier transform of      to be compared with the original calculation of the RKKY interaction, 

equation 1.20. The integral in 1.23 is a very well studied function called the Lindhard function 

and finds many applications with respect to response functions [9].  

 The general conversion formula of a summation into an integral in d dimensions is 

 

 
  

 

 

 

  

     
      

where   is the dimension under consideration. The assumptions for the calculation are that 

    ,     and the standard energy term  

   
  

  
  

 After converting the summation to an integral, the susceptibility becomes 

     
   

 

 

  

     
        

  

 

   
 

  

 
 

       
 

 

       
 

  

 

  

Taking the angular integrals yields 

     
  

 

 

 

  
 

 

 
   

    

    
   

  

 

  

After integrating up to   , the expression for the three dimensional susceptibility is 
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    1.24  

 

    

    
 

            
Figure 1.2-Three Dimensional Susceptibility 

  

 The logarithmic singularity is a first derivative singularity at       that is called a Kohn 

anomaly in both dielectric and magnetic response functions. Generally, Kohn anomalies are 

related to the Fermi surface and can result in important physical effects such as subtle kinks in 

a dispersion curve. The similarity of 1.24 to 1.21 should also be noted as it shows how the 

Lindhard function can arise naturally in a physical problem.  

 Next, the Fourier transform of      is taken and then compared to the results in 1.20.  
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The integral on    can be extended down to   because it will not affect the final result. This 

allows us to perform a contour integration which leaves the integral (with coefficients set to 

unity)  

                  
  

 

  

Using the trigonometric identity, 

                 

leaves a simple integral to calculate which gives  

        
 

 

  

 

  
 
                       

   
   

We see from the above equation that we recovered the RKKY effect for the three 

dimensional case, namely 

     
    

  
  

Similar calculations for the two and one dimensional Fourier transform yield 
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 What is immediately noticeable about reducing the dimensionality of the system is that 

the strength of the RKKY effect goes up noticeably. The reason for this difference lies in the 

singularity of      for each dimension. The stronger the singularity at       in     , the 

slower the RKKY effect falls off with distance [10]. The effect stems entirely from the nature of 

the Fourier transform. A function with stronger singularities will tend to have a broader spectrum 

in the transformed variable's space. To examine this more carefully, the magnetic 

susceptibilities are calculated for the one dimensional and two dimensional cases and then their 

singularities are explored.  

Beginning with the one-dimensional case, the summation in 1.21 is converted into the 

one-dimensional integral, 

     
   

 

  

  
    

 

         
 

 

         
 

  

   

  

This integral is calculated to be 
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Figure 1.3-One Dimensional Susceptibility 
  

 The magnetic susceptibility in one dimension has a singularity at     in the actual 

function. Therefore, the one dimensional singularity is expected to be stronger than the three-

dimensional case where the singularity was in the first derivative. 

 Moving to the calculation of the two-dimensional case of the susceptibility, summation 

in 1.21 becomes   

     
   

 

 

 

     
        

  

 

 
 

           
 

 

           
   

Using the standard integral 
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the integrals for both cases are calculated to be 

      
  

 

 

 

 
                                              

      
  

 

 

 

 
      

   
 

  
                   

    

    
 

             
Figure 1.4-Two Dimensional Susceptibility 

  

 The singularity in the two dimensional case comes from the kink where the square root 

part of the piecemeal function meets the constant function. Once again the singularity is in the 

function and not the derivative of the function as it was in the three dimensional case. 
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Therefore, we expect once again for the two-dimensional case to have a longer range than the 

three-dimensional case which is born out in the comparison between the magnetic 

susceptibilities in real space. However, the singularity in the two-dimensional case is due to a 

discontinuity in the function. For this reason, it is expected that the RKKY effect in two 

dimensions will have weaker range than in one-dimension as is borne out by direct calculation 

of the transform of the susceptibility from momentum space to real space.    
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CHAPTER 2 

  GREEN’S FUNCTIONS 

 

2.1 Introduction 

 The methods of quantum field theory have found uses in statistical physics due to the 

fact that both fields deal with basic problems that are essentially the same. Both methods 

investigate systems that infinite in volume and therefore have an infinite number of degrees of 

freedom. These methods also both describe themselves in terms of a second-quantized 

Hamiltonian, which gives the interaction of a particle with a quantized field and a large system of 

interacting particles common mathematical ground.   

The application of perturbation theory to a system with a large number of interacting 

particles is fraught with many difficulties. Typical calculations in statistical mechanics analyze 

the asymptotic properties of the system in the thermodynamic limit, the number of particles  

    while     remains constant (  is the volume of the system). However, the application of 

perturbation theory directly to a large system of interacting particles can lead to terms 

proportional in V, which become divergent in the thermodynamic limit.  Also, a statistical 

mechanical system can have a very dense energy spectrum where the distance between the 

energy levels tends to zero as     . The application of perturbation theory to the system of 

particles leads to a situation where the perturbation energy is much larger than the distance 

between the energy levels. Therefore, these perturbations can lead to large changes in the 

wave function and the energy of the system [11].  

A convenient way to eliminate these difficulties is through the use of Green’s Function 

techniques. For example, the use of Green’s functions can find expansions for the energy that 
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are not proportional to arbitrary powers of volume. In this way, the technique allows for the 

application of perturbation theory to systems of a large number of particles indirectly. Therefore, 

many of the complications mentioned above are avoided using the Green’s function method.  

2.2 A Beginner’s Guide to Green’s Functions 

Green’s functions are a generalization of the correlation function and are intimately 

connected with the calculation of observed quantities. This section will focus on what is called 

double time Green’s functions. The three types of double time Green’s functions are defined as  

 

                                        2.1  

 

                                                  2.2  

 

                                                  2.3  

In 2.1, 2.2, and 2.3 the     operator is taken to be the statistical average over the grand 

canonical ensemble and Q is taken to be the partition function for the grand ensemble as shown 

below. 

                 

           

  is the Hamiltonian defined in the grand canonical ensemble in the usual manner as 
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This relation has   as the time independent Hamiltonian operator,   as the operator of the total 

number of particles, and   as the chemical potential of the system.  The use of the grand 

canonical ensemble lifts the restriction that number of particles or quantized fields must be 

constant in the system.  

The terms      and       are the Heisenberg representations of the operators A and B, 

expressed in the language of second quantization, 

                 

The Heisenberg equation of motion for      is 

 
     

  
          

with    . 

The time-ordered operator, T, is defined as  

                                              

and the step function as 
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Finally,        indicates either commutator (     or the anticommutator (    ) 

               

For double time Green’s Functions, the choice of the sign of   is taken as a matter of 

convenience for a particular problem. Generally,   is taken in relation to the commutation 

relations for the Boson and Fermion operators as will be discussed later on.  

The cyclic properties of the trace can be used along with the definition of the 

Heisenberg representation to show that   

                  

                  

                   

The Green’s functions do not rely upon a separate time variable for each operator, but 

rather on the difference between the two times. This is an advantageous characteristic of 

double time Green’s functions that allows the use of spectral expansions to help with the 

solution of the Green’s function equations [12]. 

The equation of motion that must be solved can be built by first taking the derivative of 

a general double time Green’s function, G, which yields 
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Using the equation of motion for A in the Heisenberg representation gives 

  
  

  
 

        

  
                                   

  
  

  
                                            

Where the final line uses the relation  

 

           
 

  

     2.4  

It should be noted that the Green’s function that appears on the right hand 

side,                   , is generally of higher order than the original one. Constructing another 

equation of motion for the new higher order Green’s function will generally lead to terms of even 

higher order. Continued construction of the equations of motion will lead be an infinite chain of 

coupled equations in most cases of interacting particles and the solution of these equations is 

an extremely complicated endeavor. The general approach is to use some sort of approximation 

scheme to decouple the equations and reduce the chain to a finite number of equations that can 

be solved. However, there is no general prescription for this uncoupling process. 

2.2.1 Spectral Representations of Correlation Functions 

The Green’s function equations of motion must be supplemented with boundary 

conditions by means of spectral theorems. These spectral relations will reveal a relationship 

between the Green’s functions and statistical mechanical correlation functions. 

After defining correlation functions as 
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the spectral representations can be found to be [13] 

                            

                      
 
        

          
  

       

  

            

The method is to expand the statistical averaging brackets in terms of eigenfunctions of the 

Hamiltonian and then use the cyclical properties of the trace to rearrange terms. The above 

equations use the eigenfunction relationship 

        
      

Also,       is known as the spectral intensity of the correlation function.  

2.2.2 Spectral Representations of Retarded and Advanced Green’s functions 

The spectral representation of the retarded and advanced Green’s functions can be 

found by starting with the Fourier transform of    defined as 
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Using the spectral representation of the correlation functions and the definition of the 

retarded Green’s function, a new form for the retarded Green’s function is found as 

      
  

  
          

 
                      

A relationship between the   and   is found by using the integral form of the step function, 2.4, 

and performing a contour integration over the t variable, 

      
 

  
          

 
    

 

        
  

A similar calculation of the Fourier component of    can be done and then combined 

with    to get 

 

  
 
    

 

  
          

 
     

 

      
 2.5  

All the calculations up to this point have assumed that E is a real number, by 

considering   to be a complex quantity the function can be extended analytically into the 

complex plane.  
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If a cut is made along the real axis, the new complex function consists of two branches with    

in the upper half-plane and   in the lower half-plane. 

Now,      can be solved for by taking the difference between these two Green’s 

functions. 

            
 

  
          

 
      

 

      
 

 

      
  

Applying the  -function representation 

     
 

   
 

 

    
 

 

    
   

to the above gives a relationship between the spectral intensity      and   
 
   .  

 

                   
 
     2.6  

The steps to finding an expression for the double time correlation functions are 

1. Solve for the Green’s function by finding a way to truncate the infinite chain of equations 

2. Construct the spectral intensity from our retarded and advanced Green’s functions 

3. Solve for the correlation function  
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Also, the symbolical identity for the delta function,   

 

    
   

 

 
         

shows a connection between the imaginary and real parts of the Green’s functions that have the 

form of dispersion relations. In this equation, PV stands for the principal value of the integral. 

Using the identity in 2.6 yields 

         
 

 
  

          

   

 

  

   

          
 

 
  

          

   

 

  

    

2.2.3 Finding the Green’s function of a Perfect Quantum Gas     

 As an example of using Green’s Function techniques, consider a perfect quantum gas 

where interactions between particles are negligible compared the kinetic energies. The 

Hamiltonian for a non-interacting gas composed entirely of identical fermions or bosons is 
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Here k is the momentum,            , and with   as the chemical potential. The operators 

  
   and    represent creation and annihilation operators obeying the Fermi-Dirac or Bose-

Einstein commutation relations  

       
  

 
      

      
          and                  

    
      

   
     

Bose-Einstein particles have     and Fermi-Dirac particles use     .  

The Green’s function related to the double time correlation function    
            will be 

calculated. Using the definitions of the Green’s functions as expressed in 2.1, 2.2, and 2.3, we 

introduce the following function 

                   
         

The equation of motion for          is calculated as 

 
   

  
                  

      
 
     

   
 

  
   

         

The inhomogeneous term is only non-zero when     , therefore both operators in the 

commutator have the same time argument and the commutation relations can be applied.  
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To solve the equation of motion, the Fourier transform of the Green’s function is defined 

as 

                            

In order to complete the transform, we use the following identity for the transform of the delta 

function. 

        
 

  
             

The equation of motion in Fourier space then becomes the simple algebraic equation 

               
 

  
  

This can easily be solved for    as 

      
 

  
  

 

    

 

 From this equation, it can be seen that the poles of the Green’s function are directly 

related to the energy of a particle in state  . In the case of non-interacting particles of the 
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current system, the poles are on the real axis and represent the elementary excitation energies 

of the system.  Taking into consideration interaction of particles will generally lead to 

singularities of a more complicated nature than just poles on the real axis or a shifting of the 

poles off the real axis and into the complex plane.  

Using the solved form of the Green’s Function and 2.6, we can solve for the Spectral 

Density Function 

                      
 
           

This in turn allows us to find an expression for the correlation function  

            
                                 

            
            

           

 
  

   

 

If     , then the correlation function reverts to the familiar occupation number for a 

boson or a fermion of a perfect quantum gas. 
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2.2.4 Using the Green’s Function Method to find Spin Polarization of the s-d Model 

 The system under consideration shall consist of conduction electrons interacting with 

localized magnetic moments through the exchange interaction as derived in section 1.2 and is 

placed in an external magnetic field. The Hamiltonian has the form 

      

  

   
          

 

  
        

       

   
       

The first term represents the non-interacting terms for the electrons in a magnetic field  . The 

operator    
 

 creates a particle of momentum   and spin equal to  
 

 
  (where     ). The 

coefficient on the single particle operator term is defined to be  

                     

with       being the usual kinetic energy,    being the Fermi energy, and       representing 

the interaction of the electron with a magnetic field of strength    . The second term represents 

the interaction of the magnetic impurity with the magnetic field and           and   being the 

Lande factor (    for electrons). The final term represents interaction between the electron 

and the impurity in the form of a simple exchange interaction. In this case,   represents the 

strength of the interaction,   is the number of electrons, and   are the Pauli spin matrices. 

The retarded Green’s function used in these calculations is 

    
                        

                    
        

The Fourier Transform is defined as 
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The density of electrons with spin   can be calculated by 

         
    

  
   

     
      

    

     
       

  

  

 

  

              
      

where   is the volume of the system.  

The equations of motion in  -space of the system are found to be  

 
            

     
 

  
                

                  
    

 

      2.7  

 
                    

    
 

  
                  

             
     

    

 

 
 

  
              

      
        

               
              

    

    

          

2.8  
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2.9  

As an example, 2.7 is worked out explicitly to give a feeling on how these kinds of 

calculations are performed.  

     
               

  
 
             

 
    

    

It should be noted in the first line that it has not been decided whether to have a commutator or 

anti-commutator in the inhomogeneous term of the differential equation. Below the choice 

becomes  the anti-commutator to take advantage of the Fermi operator’s anti-commutation 

relations.  

After inserting the definition of the Hamiltonian, the linearity property of Green’s 

functions is used to rewrite the equation of motion. 
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Now, solving the equation of motion is simply calculating commutation relation for 

raising and lowering operators. By definition, the inhomogeneous term becomes 

         
  

 
       

The kinetic term is 
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Since any creation or annihilation electron operator will commute with a localized moment 

operator, that term becomes 

                 

The raising and lowering term in the exchange interaction yields 

         
    
       

 
       

    
        

    
            

       
    
                        

    
        

                  

Finally, the z component term of the exchange interaction is 

         
   
       

 
       

   
        

   
            

       
   
                       

   
        

               

Now putting the results back in the equation of motion, the equation of motion are found to be 
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After applying our Kronecker symbols to the summations, replacing      , and isolating the 

inhomogeneous term on the right hand side, the equation of motion becomes  

           
     

 

  
               

                
    

 

       

As mentioned above, construction of the equation of motion for 2.7 led to Green’s 

functions of higher order when the commutation of       with interaction part of the Hamiltonian 

is calculated. Further calculations of the equations of motion of those higher order Green’s 

functions (2.8 and 2.9) created even higher order Green’s functions. In this manner, the infinite 

chain of coupled equations of motion that results can be seen.     

The chain of equations will be truncated by attempting a reasonable approximation that 

eliminates all higher order Green’s functions and allows us to solve our original equation of 

motion.  For this particular problem, only keep terms that are of      in 2.8 and 2.9 were kept. 

This approximation will lead to terms       in our original equation of motion 2.7.  

The first order of business is to examine the equations of motion for the Green’s 

functions in 2.8 and 2.9 for any terms that are of zero order in   since any other terms will be of 

      when we insert them back into 2.8 and 2.9.  

Applying this approximation, yields the following equations to     .  
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          2.10  

 

 

                           
    

 

  
        

   

       
 

   
 

  
              

            
   

    

   
2.11  

The terms in 2.10 can be rearranged to give 

            
    

 

        
          

 

  
    

  
   

       
 

   

The application the Kronecker symbol to the summation in 2.10 finally yields 

 

            
    

        

        
 

 

  

   
  

               
  2.12  

In 2.11, a commutation relation will be used on the last Green’s function before applying 

any approximations 
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Also, the expectation value on the inhomogeneous term will be approximated to zeroth order, 

      
                             

Where          is the Fermi-Dirac distribution function for the system.    

 The application of these approximations gives  

             
            

                     
    

                    

                   

      

for the higher order Green’s function in 2.11.  By dropping the terms that are      since they will 

be       when reinserted into 2.11, the order of the Green’s function is reduced and an 

inhomogeneous term has been introduced through the approximation.   

Inserting this result back into 2.11 gives  
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Taking the              
    term to      gives  

                           
    

 

  
        

   

       
 

   
 

  
      

        

        
 

                     

                   
 

    

    

Some algebraic rearranging of terms and keeping in mind that               gives the final 

expression for 2.11 as 

 

              
    

     

                    
                           2.13  

Next, both of the equations of motion that have been approximated to      (now 2.12 

and 2.13) are placed in the original Green’s function for     
     to develop an equation of 

motion that is      .  

            
          

 

  
 

     

                   
                        

 

 

  
 

  
 

       

       
 

 

  

    
  

              
 

  

The expression can be simplified by assuming a constant density of states with this definition, 
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After doing some algebraic rearranging, we arrive at the following expression  

    
          

     
  
  

              
              

            
          

    
  

   
   

               
 

Next, applying the identity  

 

    
   

 

 
        

to the remaining summation and convert the remaining summation into an integral. The 

application of the identity to the term with the summation yields 

              
 

         
                   

                                

Where  

            
 

  

    

   
 

and   is the cutoff on the integral that is assumed to be of the order of   , the Fermi energy. 

 Putting this result back into the equation for     
     gives the result 
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The function      can be evaluated in terms of          and the cutoff variable to 

give 

         
  

  
      

 

 
 

   

  
   

where      is the digamma function defined as  

                   

Based upon the properties of     , the limiting form of      as            

        
   

 
 

In the calculation of the spin polarization, the assumption will be that the polarization is due to 

some sort of internal crystalline field by letting                  . Starting with the 

definition of electron density 

        
   

     
      

    

     
        

  

  

 

  

              
       

the polarization is defined to be 
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Calculating the summation over the spins of the Green’s functions and recombining terms yields 

  

 

    
     

    

               
             

 

 
                 

 
    

  
                   

Next, the integrations over       are calculated and give 

     
    

  

 

      
          

 

  
           

 

 
                  

 

   

      

          
 

   

  

 
 

 

 
 

 

                             

          
   

  

  

 
 

 

 
 

 

                        
        

Now, calculating the integral at     for the term that is linear in J gives for the polarization 
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 In the above,        is the spherical Bessel function of the first kind and     
     . This 

matches the standard RKKY polarization result using a different method of calculation, but note 

that there will be a modification the RKKY polarization due to the terms that are of higher order 

in  . For more details on the terms that modify the RKKY polarization, the reader is referred to 

[14].  
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CHAPTER 3 

 ASYMPTOTIC ESTIMATION OF FOURIER TRANSFORMS 

 
3.1 Introduction 

 An asymptotic expansion of a given function is a series of functions that when truncated 

provides an approximation to the given function as the argument of the function tends to a 

particular point.  Repeated applications of the integration by parts technique to an integral will 

often produce an asymptotic expansion.  Although a Taylor series fits the above definition, the 

term asymptotic series generally implies a non-convergent series.  

It is not always possible to calculate an exact expression for the Fourier transform of a 

particular function. In these cases it is necessary to construct an asymptotic expression to be 

able to calculate an approximate expression of the Fourier transform.  The asymptotic 

expression of a Fourier transform is defined as an expression that is the sum of a simpler 

Fourier transform and a remainder which tends to zero as the argument of the function tends to 

a particular point. However, the building of asymptotic expressions requires generalized function 

theory. 

3.2 Introduction to the Theory of Generalized Functions 

Before the concept of generalized functions can be introduced, good functions and fairly 

good functions must be defined [15].  

A good function is an ordinary function that is differentiable any number of times and 

the function and all its derivative are          as       for all  . In other words, A good 

function is a function that obeys 
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for any positive integers    . Some examples of good functions include  

    
,      

, 
    

      

In contrast,       is not a good function since it is not differentiable at zero and 
 

     is not a good 

function because  

   
   

  

    
    

Therefore it fails the basic limit test set forth above.   

 A fairly good function is one which differentiable everywhere any number of times and 

such that the function and all its derivatives are         as       for all  . Any polynomial 

function is a fairly good function as the nth order term is         and it can differentiated any 

number of times.  Note that the definitions of fairly good functions differs from good functions by 

         instead of         .  

 The derivative of a good function is a good function. The sum of two good functions is a 

good function. The product of a fairly good function with a good function is a good function. 

These statements are offered without proof and the interested reader is referred to [16] for 

details.  

If      is a good function, then 
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is a good function.  

The theorem can be proven by differentiating the transform p times with respect to y and then 

using integration by parts N times. Next, the application of the definition of a good function 

eliminates the boundary terms left by multiple applications of integration by parts which gives 

         
 

      
 

  

   
                       

 

  

  

 
       

    
  

  

   
         

 

  

 

           

 A sequence,      , of good functions is called regular if  

                     
 

  
 

exists for any good function     . 

 The function         is regular as can be shown.  

   
   

              
 

  

     
   

             
 

  

 



 

 63 

        
 

  

  

A generalized function is defined as a regular sequence of good functions. Furthermore, 

any two regular sequences of good functions that each has the same effect on another good 

function      are considered to be the same generalized function.  

An example of a generalized function that familiar to every physicist is the delta 

function,     . The delta function can be represented as several different regular function 

sequences that all have the same effect on the      they are acting on. An example of a 

generalized function representing      is 

   
   

 

 
          

Applying test for a regular sequence gives  

   
   

 
 

 
              

 

  

 

    
   

 

 
               

 

  

 

As the limit     is taken, the regular sequence define above takes a value of 1 at     and 

zero for    . Therefore, the result of the integral is     .  

 A second example of a sequence representing      is 
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There are many other regular sequences of good functions that all have the same effect, 

namely  

                
 

  

  

The entire class of regular sequences of good functions is known as the Dirac delta function 

and represented with the symbol     . 

3.2.1 Theory of the Asymptotic Expansion of Fourier Transforms 

After deriving the Green’s function in Fourier space, the Fourier transform must be 

taken again to have a function in real space in order to develop physical meaning of the 

solution. Unfortunately, it is not possible to know the transform of certain functions. Fortunately, 

the theory of generalized functions makes it possible to state the generalized function      as a 

sum of a simpler function whose transform we can calculate and a remainder that tends to zero 

at a certain point. The method for doing constructing the asymptotic expression of the Fourier 

transform will rely upon      having a finite number of singularities.  

A generalized function has a finite number of singularities                if, in each 

one of the intervals,                                  ,      is equal to an 

ordinary function that is differentiable any number of times at every point in the interval.  

A generalized function is defined as being “well behaved at infinity” if for some   the 

function           is absolutely integrable in the interval         and      , where      is 

some linear combination of the functions 
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        ,               ,              ,                     

for different values of   and  .  

The  generalized Riemann-Lebesgue Lemma must also be used: 

If a generalized function,     , is absolutely integrable from    to  , and      is the Fourier 

transform of      , then        as      . 

 From the definition for a finite number of singularities and the Rieman-Lebesque 

Lemma, the following theorem is obtained: 

If a generalized function,     , has a finite number of singularities                and if (and 

for each m from 1 to M)            has an absolutely integrable Nth derivative in an interval 

including   , where       is a linear combination of the type  

 

        ,                  ,                 , 

                             ,           

3.1  

 for different values of   and p, and if         is “well behaved at infinity” then the Fourier 

transform of      satisfies 

                     
    as        

where       is the Fourier transform of      . 

In layman’s terms, the function around each singularity will give a term similar to one in 

3.1 whose transform can be calculated. If each of these terms are summed together, the result 

is an asymptotic expression which is accurate to a certain error. 
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As an example of using this method, the asymptotic expression is found for the Fourier 

transform of                           to       . The singularities are seen to be         

and   and      needs to be expressed around each singularity as a summation of terms like 

those found 3.1. However, the sum of terms must have an error whose second derivative must 

be absolutely integrable in an interval that includes the singularity. Given the nature of     , it is 

natural to use the binomial series to expand the function around each singularity to generate the 

summation of 3.1 terms. 

Beginning with the     singularity,  

           
 

 
      

 

 
    

              

The expansion of      around      yields 

                                  

 
 

  
   

   

 
                     

 
 

  
                      

Finally, expanding      around     gives 
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The second term relation can be gotten by recalling the definition of        
 

   
 and  

                       
  

   
                     

Defining functions representing the 3.1 terms as 
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We can now easily check the functions for the condition that the second derivative must be 

           absolutely integrable over an interval including the singularity   . For example 

around    ,  

                                    

We calculate the first derivative of      to be 

 

  
                                          

The last part of the calculation used the relation        
 

   
. Thus, the second derivative of 

           is absolutely integrable around    . 

Next, we must take the Fourier transforms of each       so that the Fourier transform 

of      can be put into the form, 

                    

 

   

  

The following transforms are needed are needed to complete the calculation, 
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Using the transforms and applying some algebraic manipulation yields, 

                      
 

    
      

        

    
               

 

   
              

To reiterate,       was expanded around each of its singularities and applied an 

approximation to write      as a series of terms like in the 3.1 list and an error term. Next, the 

2
nd

 derivative of each term was checked to make sure that was absolutely integrable over an 

interval including the singularity.  Finally, the known Fourier transforms of the terms from 

3.1were calculated which lead directly to an asymptotic expression for the Fourier transform of 

     with error         .  

It should be noted that by including more terms from the binomial expansion around 

each singularity, even higher order derivatives of                        would be 

absolutely integrable over an interval including the singularity. This would lead to a smaller error 

in the asymptotic expression for the Fourier transform. 
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CHAPTER 4 

EFFECT OF ELECTRON-ELECTRON INTERACTION ON S-D MODEL 

4.1 Introduction 

 While the RKKY interaction describes the indirect interaction between two localized 

magnetic moments through the medium of conduction electrons, the calculations only take into 

account the exchange interactions between the conduction and localized electrons in the three 

dimensional case. In this chapter, how the addition of electron-electron interaction modifies the 

RKKY interaction is explored. 

 The first step is to calculate an effective Hamiltonian for the s-d interaction by using a 

canonical transformation to eliminate terms that are linear in the exchange interaction.   

4.2 Calculation of a New Effective Hamiltonian via Canonical Transformation 

 The canonical transformation method is particularly well suited for the creation of 

effective Hamiltonians in indirect interactions [17]. The Hamiltonian is split into two parts, the 

independent and interactive part, 

         . 

In a similar manner to section 1.2.1, I canonically transformed the Hamiltonian and looked for an 

operator,  , that eliminated linear terms of the exchange interaction. 

From section 1.2.1, the expansion of the transformation in terms of the original 

Hamiltonian 
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shows that the requirement to eliminate linear interaction terms is 

               

I used this condition along with the equation of motion for operators in the Heisenberg 

representation to arrive at the simple differential equation, 

  
     

  
       

Fortunately, the differential equation has a simple solution for  , 

      
 

 
    

 

  

          

Next, I placed the integral equation into the series equation for    and kept just terms to second 

order of the interaction,  

 

         
 

  
    

 

  

                     4.1  

I replaced          with the form of the s-d interaction, 
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Where    is assumed to be a constant,   
  is the spin operator for a localized moment at site   

and α, which indicates the raising     or lowering     operator. The conduction electrons are 

represented by     
 

 and     , the usual creation  and annihilation operators for an electron with 

momentum k and spin      . After inserting the s-d interaction into 4.1, the transformed 

Hamiltonian becomes  

         
 

  
    

 

 
 

 

           

    

 

  

    
     

     

           

      

    
     

    

                     
  

     
      
                   

  
     

     
                  

Next, basic commutation relations were applied to the commutator to expand it as 

 

   
     

     

                
  

     
      
                

   
     

     

                 
  

     
     
                 

    
     

    

                
  

     
      
                

    
     

    

                 
  

     
     
                . 

 

Since each of the above commutators can be treated the same in the following 

calculation, I worked with the a general form of the above commutators 
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 Assuming the operators representing the impurities are not functions of time allowed 

me to pull the   operators out of the commutator. Next, I averaged over the conduction 

electrons to convert the argument of the integral into familiar looking correlation functions 

    
    

              
    

            .  

 
 

  
     

 

 
 

 

                  

     
    

 

  

    
    

              
    

            

    

 

Next, the step function         was used to extend the upper limit of the integral to infinity and 

rewrite the argument as a retarded Green’s function,  

 

 
 

  
     

 

 
 

 

                       

     
    

 

      

    
    

            
    

              4.2  

As can be seen from the above, the next step will be to calculate the retarded Green’s function 

that modifies the transformed Hamiltonian.  

4.2.1 Calculation of the Green’s Function 

 The form of the Green’s function used for calculations is  
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where   ,    , and    denote arguments of three dimensional space-time. The operator 

  
              acts directly on the field at the locations    and     to annihilate and then create a 

particle. The positions of    and     can be different, but the time must be same for both space-

time coordinates in order to be able to apply double-time Green’s function theory.  

 Since the static magnetic susceptibility is a three dimensional tensor, I formulated the 

Green’s functions as rank two tensors. An example of how to show the relationship between the 

Green’s functions,     
        , and the Green’s function tensor is shown below,         . The form 

of the Green's function tensor is assumed to be 

                           

and has the Fourier transform 

          
   

     
                   . 

Here,        is the electron spin density operator associated with the x-direction and     is 

       . 

The electron spin density operators       are defined by the following expressions: 
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4.3  

Next,          is constructed from the electron density functions as 

     
              

              
              

              

     
              

                  
              

                  
              

             

     
              

               

Here, the definition of the retarded Green’s function is applied to the first and fourth terms. 

Since the commutator for these terms vanishes, the equation simply becomes 

             
           

         

For the calculation, I used the following Hamiltonian with a single particle operator and 

a two particle operator that includes the electron-electron interaction,  

 

       

 

   
                  

4.4  
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The equation of motion for the Green’s function of interest is  

 

 
 

  
    

   
              

 

  
             

                 
                

    
 

  
   

                 
               . 

4.5  

 Applying the relations, 

 

  
                  

and 

 
 

  
   

                  
                 

gave the following form for the equation of motion, 

 
 

  
    

   
                        

                
               

      
                   

               . 

 Next, I inserted 4.4 into 4.5 which yielded three parts to calculate for the equation of 

motion. The right hand side has an inhomogeneous term, a term due to the single particle 

operators, and a term due to the two particle operators.  
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The first step involved calculating the commutators on the right hand side of the 

equation of motion by using fermionic commutation relations.  

     
     

         ;                 
    

     
   

     

For these relations, the f state represents both the spin   and momentum k of the electron.  

Beginning with the inhomogeneous term, I calculated 
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Finally, I was able to re-arrange the average value brackets to yield 

             
                              

                             

By defining  

   
                              

the inhomogenous term down was simplified down to 

                                                          

Next, I calculated the single particle operator term. 
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Now, I tackled the two particle operator term 
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In the last line, the summation is changed from     when the operators are inserted back into 

the Green’s function. 

At this point, all the results back were inserted back into the equation of motion for the 

Green’s function and the linearity of the Green’s function was used to give  

  

 

 
 

  
    

   
                                                                    4.6  
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As expected, the calculation of the equation of motion lead to higher order Green’s 

function terms from the commutators with the interaction terms.  From the two particle Green’s 

function equation of motion, a three particle Green’s function was gained. Next, I truncated the 

chain of equations through approximation.   

In the earlier calculation of section 2.1.3, I relied on perturbation orders to eliminate the 

higher order terms and calculated the consequences of dropping higher order terms. In this 

section, we will seek a direct approximation to the higher order Green’s function that will look 

something like this 

        

with    as the higher order Green’s function and   is some known or easily 

calculated/measured constant. This sort of approximation enables me to solve the equation of 

motion by moving it to the left hand side and factoring out   .  The constant that I will be 

factoring out is the number of particles in a state or    
    .  

To justify the approximation to be used later, I looked at a three particle Green’s 

function where A, B, and C each represent fermion operators of the type   
   .  
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The approximation used in the third line uncorrelates A and B from the operators in the 

commutator. This approximation scheme is generally described as a Hartree-Fock 

approximation because it decouples the higher order interaction into a simpler interaction that 

has the strength by the average value of the uncorrelated operator,    
    , the number of other 

particles.  

I applied this approximation to the higher order Green’s function and use fermion 

commutation relations to pair up operators of the type   
    ,  

    
       

                      
                   

                
                 

               

     
                

                   
             

                
               

     
                

                  
                

                
              

    
                  

              
                

The job is not done at this point as there are four possible pairs of operators that can be 

factored out and all four must be accounted for since they are all of the same order in strength. 

Using fermion commutation relations to pair up the other pairs of operators,  
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Next, I added all six terms together and used the definition  

   
                             

to get 

    
       

                      
                            

   
                             

   
           

                 
   

                              
   

            

To simplify the notation, I redefined the approximation term as 
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 Now, the approximated equation of motion of     
   

            is rewritten as 

 
 

  
    

   
                                                                    

                      
   

                 

 

                            

While the Hartree-Fock approximation made all the Green’s functions of the same order, they 

are still functions of different variables in the problem. To solve the differential equation for the 

Green’s function of interest, I had to transform the equation of motion to Fourier space. 

4.3 The Fourier Transform of Green’s Function  

 Next, I took the Fourier transform of the equation of motion and attempt to solve the 

equation in Fourier space. Two types of Green’s function terms were considered, those where 

     and others where     . 

 Beginning with the      case, the equation of motion becomes 

 

 
 

  
                     

   
           

                                                                           

                                         
   

                        
   

             

Then, I defined the Fourier transforms as 
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Taking the transform with respect to   and   yielded 

                       
   

                                                                

                                                           
   

                          
   

                

Now, I took the transform with respect to the spatial variables to give 

                      
   

                                       

   
   

     
                                

   
          

  
   

     
                           

   
              

Combining like-terms and not explicitly writing the   in the Green function’s argument gave  
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Now, I took     ,     , and redefined        to get 

                   
    

     
                                     

   
       

                          

  
    

     
                           

   
           

To compact the notation a bit, the coefficient of     
   

        is rewritten as 

                       
    

     
                            

This definition finally leads to  
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Next, I integrated with respect to   on both sides of the equation and applied the approximation 

       to solve for the Green function in the case of     , 

    
   

     
   

     

                        

    
  

   

     

                

    
     

   
    

 

    
   

    
         

   
     

                
    

    
   

     

                
    

  4.7  

In this equation, I also made use of the relation 

    
   

     
   

     
    

   
         

It can be seen from the above equation, that the only non-zero Green function for the case 

     is     
      . This leads us to the solution of  

 

    
       

    

       
 4.8  

Where I have defined 
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  4.9  

Going back to look at the      term, it is rewritten as 

          
 

  
                    

by assuming     and defining    as the total number of electrons with spin  . Now,     is 

rewritten by using the new form of      as   

           
   

     

                

     
 

  
                   

  

 Taking the integral over q-space at     and noting that the integral above is of the 

type  

 
  

     
  

 

  
  

   

   
               

 

  
  

   

   
               

   

leads to 
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4.10  

Where the following definitions have been used 

 

  
 

  
  ;              

  

  
 ;              

 
     

 
;             

   

  
  4.11  

Next, I calculated the Green function for the case     . In this case, I was required to 

solve a system of equations of motion for the    and    cases and this leads to a more 

complicated looking Green’s function,  

 

          
                            

                       
  4.12  

Where I have used the following definition,  
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Finally, taking the integral over the above equation leads to  

 

             
  

   

 
            

  
   

           

           
            4.13  

with   ( ) for        case and using the same definitions in 4.10 as          . 

 Using the definitions in 4.3, the Green's functions in momentum space can be 

calculated as  

                       
    

          

            
 

         
                                   

                    
 

As a check on the validity of the equations, I looked at the case when the electrons are 

unpolarized,    , and when no external magnetic field is applied to the sample,      From 

these conditions, it is expected that the electrons will have no preferred direction of polarization.  
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It can be seen that the equations recreate the expected situation of incoherent electrons that 

have no preferred direction with respect to spin density when there is applied external magnetic 

field. 

With the Green’s function solved in momentum space, it is time to take the Fourier 

transform back to real space. I applied the asymptotic methods developed in Chapter 3 to be 

able get an expression that can be transformed back to real space.  

The term I explored is the one in the denominator of the      (equation 4.9) case or 

the term             .  The strongest singularities arising from terms where    . There are 

also singularities due to the logarithmic terms, but these singularities are logarithmic in nature 

and very similar to 1.24. Therefore, these singularities are expected to produce the RKKY 

interaction part of the Hamiltonian. Focusing on the on the singularities arising from     

since they are expected to modify the Hamiltonian, the denominator in this case is 

approximated as    
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where   
  

 

    
 and   

  
 

       
   

 

       
                    . This calculation was 

performed by using the Taylor series expansion of 

          
  

 
 

  

 
   for      . 

A similar expansion can also be performed on the numerator of 4.9. Keeping in mind the 

standard Fourier transform of the exponential decay function, 

                  
  

     

 

  

  

a Fourier transform can be performed on the approximated expression to arrive at 

                                                
    

         

     

 

             
                        

Where I have used the definition of 
 

  
          

 

 
 . 

 The case of      are omitted from discussion as they did not yield any new 

singularities beyond the usual RKKY singularities. 

The modified term for the effective Hamiltonian between spins for the polarized case of 

conduction electrons can be written in the following form 

   
                      

   
    

   
 
   

with 
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and 

           

It can be seen that including electron-electron interaction with the usual exchange interaction 

will modify the form of the RKKY interaction with an additive term that exponentially decays with 

distance from the impurity. This decaying potential term has the same form as a screened 

Coulomb interaction and is commonly called a Yukawa potential. The addition of a screened 

Coulomb term is to be expected as the system being explored was being modified by the 

inclusion of electron-electron interactions. Therefore, the produced result justifies the technique 

for more complicated systems such as nanostructures.  
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CHAPTER 5  

CONCLUSION 

 Introducing an impurity to a crystal alters periodic nature of the lattice and produces 

interesting phenomena. A non-magnetic impurity will alter the charge density of the conduction 

electrons that can be seen experimentally in the nuclear magnetic resonance of a dilute alloy. 

Inserting a magnetic impurity will produce a similar result but with variations of the spin density 

of the conduction electrons. A second magnetic impurity will “feel” the spin density variation 

produced. On the other hand, that second impurity will also produce variations in the spin 

density that the first impurity will “feel”. In this way, localized spins are coupled indirectly through 

the medium of conduction electrons.       

 The interaction between localized electrons and conduction electrons is represented in 

the s-d model exchange Hamiltonian. However, a similar interaction occurs between nuclear 

spins and conduction interaction when the contact part of the hyperfine interaction is 

considered. This similarity between interactions opens up the possibility of coupling not only 

localized electron moments to one another, but also nuclear spins to one another and a 

localized electron moment to a nuclear spin. All of these indirect coupling interactions are 

collectively known as the RKKY interaction.  

 The spin density variations from the RKKY interactions are driven by the exchange 

interaction of either a nuclear spin or localized electron moment with conduction electrons. 

However, RKKY interactions do not consider the electron-electron interactions of the conduction 

electrons. It is reasonable to expect the RKKY driven spin density of the conduction electrons to 

be altered even further when electron-electron interaction is considered.  
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 The electron-electron interaction is taken into account by first constructing an effective 

Hamiltonian to describe the s-d model in terms of a retarded double time Green’s function. From 

here, the chain of equations of motion for the Green’s function is calculated. This chain of 

equations is truncated by using an approximation that is Hartree-Fock-like. The approximated 

equation of motion is then solved by taking the Fourier transform. Next, the Fourier transform 

must be performed asymptotically to get the Green’s function back into the real space domain.  

 After the equation of motion is fully solved, the modification to the due to electron-

electron interaction was found to be a decaying exponential. The interesting thing about the 

modification of the RKKY interaction Hamiltonian is the similarity to the Yukawa potential, which 

represents a screened Coulomb interaction. The final effective Hamiltonian ended up with a 

screened Coulomb potential to go with the RKKY terms which justifies the method employed in 

the paper.  

 The future direction of this research should be to apply the same Green's functions 

technique at different dimensions to find how the electron-electron interaction modifies the 

RKKY interaction at lower dimensions. The purpose of these findings would be to develop the 

technique for further use in the interaction of different nanostructures calculations. Next, the 

range of the screened of the Coulomb interaction can be compared to the oscillations of the 

RKKY effect in different alloys. There is a possibility of finding an alloy where the screened 

Coulomb effect is dominant when the spin density polarization goes to zero and it is expected to 

have calculable effects on the nuclear resonance of the material.   
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