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ABSTRACT

SOLUTION TO THREE DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES

EQUATIONS USING FINITE ELEMENT METHOD

SHRINIVAS G APTE, M.S.

The University of Texas at Arlington, 2012

Supervising Professor: Brian H Dennis

A primitive variable mixed order formulation of finite element method for

solving three dimensional incompressible Navier-Stokes equations is presented. The

method of weighted residuals is used for obtaining the approximate solutions of linear

and nonlinear partial differential equations. The Physical domain is discretized by

using unstructured tetrahedral elements. Unequal order interpolation functions are

used for pressure & velocity variables while the temporal discretization is carried out

by using an implicit time marching scheme based on finite differencing.

One of the major difficulties arising during the finite element solution of an

incompressible Navier-Stokes equations is the efficient factorization/preconditioning

of the resulting indefinite stiffness matrix. In this work, the formation of an indefinite

matrix is avoided by using a pseudo compressibility technique in which an artificial

term is introduced into the mass matrix. The artificial term is time dependent and

disposed at a later stage once the steady state is reached. Using this approach, the

resulting system of equations can then be solved iteratively with standard precondi-

tioners. The non-linear convective term in the Navier-Stokes equations is linearized in

v



time. To diffuse the numerical oscillations which may occur in convection dominated

flows, second-orderTaylor-Galerkinstabilization technique is used.

The entire solution procedure is encoded in C++ using object oriented program-

ming. One of the special features of this FEM code is that it uses the exact integrals

of the shape functions in order to improve the accuracy of the solution, as supposed

to any numerical integration schemes. The solution procedure is validated using the

benchmark computations for 3D steady incompressible flows.
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CHAPTER 1

INTRODUCTION

1.1 Background

Navier-Stokes equations constitute one of the most fundamental fluid flow equa-

tions as most of the real life situations involving fluid motion are governed either by

them or by one of their special cases. The Navier-Stokes equations are named in

honor of two people—M.Navier from France and G.Stokes from England—who ob-

tained the equations independently at the beginning of nineteenth century[3]. Since

then Navier-Stokes equations are considered as the basis from which all the fluid

mechanics studies begin[4].

Even though having an exact solution to the most general form of Navier-Stokes

equations would be extremely useful for understanding the complex natures of fluid

flow problem in various practical cases, so far it has eluded scientists and engineers.

Several analytical solutions have been developed for the special cases of Navier-Stokes

equations by weakening or removing the nonlinearity in the problem. These solutions

are applicable for steady or unsteady cases of Coutte and Poiseuille flow[5]. There

have also been few attempts to find a class of a solution for Navier-Stokes equation

using potential function and transformed coordinates which looking at a larger picture

would make it possible to obtain the global solution[6].

More success has come to those who have tried to obtain an approximate solu-

tion for Navier-Stokes equations using different numerical methods. Two such popular

numerical methods, finite difference(FDM) and finite volume(FVM), are widely ac-

cepted by scientific community and also by commercial solver developers to solve
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the Navier-Stokes equations approximately. The third approach—Finite Element

Method(FEM)—although very popular in structural dynamics, hasn’t been used for

solving complex flow problems extensively. In this work, an effort has been made to

solve the unsteady, incompressible, three dimensional Navier-Stokes equations using

finite element method.

1.2 Finite Difference, Finite Volume and Finite Element Methods

The most burning issue before the start of this work was the choice of finite

element method as solver for fluid dynamic problem. As mentioned earlier, finite

element method has made an impact on solid mechanics field for long and is being

considered as generally accepted method to solve continuum problems, same does not

hold good when it comes to the fluid dynamics problems. The issue has been clearly

addressed by Zienkiewicz in [7]. Finite element method, in spite of being computa-

tionally least expensive of the three, has not been considered as an alternative due to

the success achieved in solving the flow problems by finite difference or finite volume

methods and also due to the large investments in highly developed software which are

making use of these methods. The comparison between these three methods can be

seen in [8]. FEM and FVM both solve the integral form of the governing equations

and thus have advantage over FDM in a sense that they satisfy the conservation laws

inherently[9]. One of the main advantages FEM carries over other solvers is its ability

to handle complex geometries with unstructured grids producing high accuracy so-

lutions. The other significant advantage would be its inherent ability to incorporate

natural boundary conditions[10]. Due to these advantages, it becomes an important

task to try and have a method which will give improved solutions to Navier-Stokes

equations.
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1.3 Finite Element Method for Navier-Stokes Equations: Different Approaches

One can find three different approaches being used in literature to obtain the

solution of Navier-Stokes equations using finite element method.

1. Stream Function Formulation

2. Stream Function and Vorticity Formulation

3. Primitive Variable (Velocity and Pressure) Formulation

The detailed study on these three approaches can be found in[11]. Third approach

holds lot of advantages over the first two and hence been preferred by most of the

authors. Comparison between these methods can be seen in[12, p. 390]. Another

variation of primitive variable formulation —Penalty Method— is also very popular

in which pressure is represented in terms of an additional parameter λ and continuity

equation is dropped. Due to the simplicity and straight forward nature of primitive

variable formulation, it is preferred in this work.

The primitive variable formulation is then encoded in C++ using object oriented

programming. This program reads the input mesh file created by Ansys APDL in

‘.inp’ format. After solving the governing equations iteratively using standard linear

solvers, solution is written which can be read using Tecplot. Output results are com-

pared with benchmark case of laminar flow around an obstacle and the formulation

is validated.

1.4 Overview

This report has total five chapters. Chapter 2 explains the weak formulation of

Navier-Stokes equations using method of weighted residuals. Chapter 3 talks about

interpolation functions, coefficient matrices and finite element formulation. In chapter

4, some aspects of programming are discussed. Finally, in chapter 5, programming

3



results are validated and convergence study is carried out followed by conclusion and

future work recommendations.
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CHAPTER 2

WEAK FORMULATION OF INCOMPRESSIBLE NAVIER-STOKES EQUATION

2.1 Introduction

As mentioned in previous chapter, primitive variable formulation is used in this

study to obtain a solution of Navier-Stokes equations using FEM. The formulation

starts from the basic conservative laws i. e. conservation of mass (continuity), con-

servation of momentum (Navier-Stokes) and conservation of energy. For the purpose

of this work, conservation of energy is excluded from the set of equations as heat

transfer is not considered as a part of formulation. After choosing pressure and ve-

locity as primitive variables, method of weighted residuals is applied in which the

differential equations are converted into integral forms[12]. A Galerkin criteria for

weight function is applied at this point and by using the integration by parts, weak

form of governing equation is obtained.

2.2 Governing Equations and Method of Weighted Residuals (MWR)

This section provides a detailed derivation of ‘weak form’ of Navier-Stokes equa-

tions using MWR. Basic concept and application of this method can be found in

literature[13, 14, 12]. It is important to note that MWR by itself has nothing to

do with FEM and is just an alternate way of formulating finite element equations.

Even though same solutions can be obtained by using other methods such as varia-

tional principle or minimum potential energy principle, MWR carries an advantage

due to its easy implementation directly from governing differential equations and the

availability of abundant weight functions.
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The procedure starts by considering the suitable form of governing equations,

in this case the conservative form of incompressible Navier-Stokes equations. All the

notations used here are as per [3]. The incompressible continuity equation is given

by equation 2.1,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.1)

The incompressible momentum equations in x, y and z directions are given by,

ρ

[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

]
=
∂(σx − P )

∂x
+
∂τyx
∂y

+
∂τzx
∂z

+ ρfx (2.2)

ρ

[
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

]
=
∂(σy − P )

∂y
+
∂τxy
∂x

+
∂τzy
∂z

+ ρfy (2.3)

ρ

[
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

]
=
∂(σz − P )

∂z
+
∂τxz
∂x

+
∂τyz
∂y

+ ρfz (2.4)

where, u, v ,w are velocity components in x, y and z directions respectively.

t is time, τij is the shear stress in j direction exerted on a plane perpendicular to i

axis. Density of the fluid is denoted by ρ and µ is the dynamic viscosity. Pressure

perpendicular to the face of fluid volume is denoted by p while fx, fy & fz are

the body forces per unit mass acting on the fluid element in x, y and z direction

respectively. All the above equations are obtained after using an incompressibility

condition (∇.U = 0) in the continuity and momentum equations.

For newtonian fluids, Stokes obtained the constitutive equations. For an in-

compressible flow (∇.U = 0), these equations are as shown below.

σx = 2µ
∂u

∂x
(2.5)

σy = 2µ
∂v

∂y
(2.6)

σz = 2µ
∂w

∂z
(2.7)

τxy = τyx = µ

[
∂v

∂x
+
∂u

∂y

]
(2.8)
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τxz = τzx = µ

[
∂u

∂z
+
∂w

∂x

]
(2.9)

τyz = τzy = µ

[
∂w

∂y
+
∂y

∂z

]
(2.10)

After substituting constitutive equations in (2.2) to (2.4) we get the complete

Navier-Stokes equations for incompressible flow.

− ρ
[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

]
+

∂

∂x

[
2µ
∂u

∂x
− P

]
+ µ

∂

∂y

[
∂v

∂x
+
∂u

∂y

]
+ µ

∂

∂z

[
∂u

∂z
+
∂w

∂x

]
+ ρfx = 0 (2.11)

− ρ
[
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

]
+

∂

∂y

[
2µ
∂v

∂y
− P

]
+ µ

∂

∂x

[
∂v

∂x
+
∂u

∂y

]
+ µ

∂

∂z

[
∂w

∂y
+
∂v

∂z

]
+ ρfy = 0 (2.12)

− ρ
[
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

]
+

∂

∂z

[
2µ
∂w

∂z
− P

]
+ µ

∂

∂x

[
∂u

∂z
+
∂w

∂x

]
+ µ

∂

∂y

[
∂w

∂y
+
∂v

∂z

]
+ ρfz = 0 (2.13)

Suppose ũ, ṽ, w̃ and P̃ are the approximate solutions of the governing equations

leaving out a residual R as a result. For the sake of simplicity, these approximate

solutions are denoted by u, v, w, and P here onwards. These approximate solutions

are given by,

u =
n∑
i=1

ψi(x, y, z)ui(t) (2.14)

v =
n∑
i=1

ψi(x, y, z)vi(t) (2.15)

w =
n∑
i=1

ψi(x, y, z)wi(t) (2.16)
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P =
m∑
j=1

φj(x, y, z)Pj(t) (2.17)

ψ and φ are the functions chosen to satisfy n and m number of unknowns

respectively. These functions are known as ‘Basis functions’ or ‘Shape functions’ or

‘Interpolation functions. Two different shape functions (unequal order) to obtain a

correct pressure field in a solution[15]. This topic will be explained later in detail

while defining the shape functions.

As per the procedure of MWR, two weight functions, Q & W are selected for

continuity and momentum equations. The idea is to make the weighted average of

residuals over the entire domain zero. This can be formulated as shown below.∫
V

Q

[
∂u

∂x
+
∂v

∂y
+
∂w

∂z

]
dV = 0 (2.18)

∫
V

W
[
−ρ
(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
+

∂

∂x

(
2µ
∂u

∂x
− P

)
+ µ

∂

∂y

(
∂v

∂x
+
∂u

∂y

)
+ µ

∂

∂z

(
∂u

∂z
+
∂w

∂x

)
+ ρfx

]
dV = 0 (2.19)

∫
V

W
[
−ρ
(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
+

∂

∂y

(
2µ
∂v

∂y
− P

)
+ µ

∂

∂x

(
∂v

∂x
+
∂u

∂y

)
+ µ

∂

∂z

(
∂v

∂z
+
∂w

∂y

)
+ ρfy

]
dV = 0 (2.20)

∫
V

W
[
−ρ
(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
+

∂

∂z

(
2µ
∂w

∂z
− P

)
+ µ

∂

∂x

(
∂u

∂z
+
∂w

∂x

)
+ µ

∂

∂y

(
∂v

∂z
+
∂w

∂y

)
+ ρfy

]
dV = 0 (2.21)

As mentioned earlier, MWR allows us to have a broad choice of weight func-

tions. Generally for the purpose of finite element formulation, ‘Galerkin Criterion’ is

8



applied for the selection of weight functions. According to Galerkin Criterion, weight

functions are chosen to be exact same as approximating functions or shape functions.

For instance, for the purpose of continuity equation, weight function Qj is same as

shape function φj and for momentum equations, Wi is same as ψi.

Ths Galerkin criterion is used in equations (2.19) to (2.21) to replace the weight

functions by shape functions and the expressions for these shape functions are ob-

tained from equations (2.14) to (2.17). After rearranging, following expressions are

obtained. ∫
V

φ

[
u
∂ψT

∂x
+ v

∂ψT

∂y
+ w

∂ψT

∂z

]
dV = 0 (2.22)

∫
V

[
ρ

(
ψψT

∂u

∂t

)]
dV +

∫
V

[
ρ

(
ψψT

∂ψT

∂x
u+ ψψT

∂ψT

∂y
v + ψψT

∂ψT

∂z
w

)
u

]
dV

−
∫
V

[
2µψ

∂2ψT

∂x2
u+ µψ

∂2ψT

∂y2
u+ µψ

∂2ψT

∂z2
u+ µψ

∂2ψT

∂y∂x
v + µψ

∂2ψT

∂z∂x
w

]
dV

+

∫
V

[
ψ
∂φT

∂x
P

]
dV =

∫
V

[ψρfx] dV (2.23)

∫
V

[
ρ

(
ψψT

∂v

∂t

)]
dV +

∫
V

[
ρ

(
ψψT

∂ψT

∂x
u+ ψψT

∂ψT

∂y
v + ψψT

∂ψT

∂z
w

)
v

]
dV

−
∫
V

[
2µψ

∂2ψT

∂y2
v + µψ

∂2ψT

∂x2
v + µψ

∂2ψT

∂z2
v + µψ

∂2ψT

∂x∂y
u+ µψ

∂2ψT

∂y∂z
w

]
dV

+

∫
V

[
ψ
∂φT

∂y
P

]
dV =

∫
V

[ψρfy] dV (2.24)

∫
V

[
ρ

(
ψψT

∂w

∂t

)]
dV +

∫
V

[
ρ

(
ψψT

∂ψT

∂x
u+ ψψT

∂ψT

∂y
v + ψψT

∂ψT

∂z
w

)
w

]
dV

−
∫
V

[
2µψ

∂2ψT

∂z2
w + µψ

∂2ψT

∂x2
w + µψ

∂2ψT

∂y2
w + µψ

∂2ψT

∂x∂z
u+ µψ

∂2ψT

∂y∂z
v

]
dV

+

∫
V

[
ψ
∂φT

∂z
P

]
dV =

∫
V

[ψρfy] dV (2.25)
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In order to ensure the continuity of field variable and its derivatives across

the element boundaries, it is required to chose appropriate shape functions. Details

about the order of continuity requirements that needs to be satisfied by the shape

functions, can be found in [12, 16]. As a general rule, shape functions need to have

Cn continuity of field variable to satisfy ‘compatibility’ condition across the element

boundaries and Cn+1 order of continuity for ‘completeness’ within the element, ‘n+1’

being the highest order of derivative appearing in the expression. It can be seen

in above equations that the highest order of derivative appearing in the equation is

two and hence the shape function satisfying the stringent continuity requirements

(C2) needs to be selected to ensure the continuous solution over entire domain. This

difficulty can be resolved using integration by parts. Applying integration by parts

reduces the order of the highest derivative appearing in the expression by one hence

‘weakening’ the continuity requirements for the shape function. Integration by parts

in three dimensions is known as Gauss’s theorem and is given by,∫
V

u(∇.v) dV =

∫
A

u(v.n̂) dA−
∫
V

v.∇u dV (2.26)

Using Gauss’s theorem for equations (2.17) to (2.25) and rearranging the terms,

we obtain the ‘Weak Form’ of three dimensional Navier-Stokes equation.∫
V

φ

[
∂ψT

∂x
u+

∂ψT

∂y
v +

∂ψT

∂z
w

]
dV = 0 (2.27)

∫
V

ρ

[
ψψT

∂u

∂t

]
dV +

∫
V

ρ

[
ψ(ψTu)

∂ψT

∂x
+ ψ(ψTv)

∂ψT

∂y
+ ψ(ψTw)

∂ψT

∂z

]
u dV

+

∫
V

[
2µ

(
∂ψ

∂x

∂ψT

∂x

)
+ µ

(
∂ψ

∂y

∂ψT

∂y

)
+ µ

(
∂ψ

∂z

∂ψT

∂z

)]
u dV

+

∫
V

[
µ

(
∂ψ

∂x

∂ψT

∂y

)
v + µ

(
∂ψ

∂x

∂ψT

∂z

)
w

]
dV

−
∫
V

P

(
∂ψ

∂x
φT
)
dV =

∫
V

ψρfx dV (2.28)
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∫
V

ρ

[
ψψT

∂v

∂t

]
dV +

∫
V

ρ

[
ψ(ψTu)

∂ψT

∂x
+ ψ(ψTv)

∂ψT

∂y
+ ψ(ψTw)

∂ψT

∂z

]
v dV

+

∫
V

[
µ

(
∂ψ

∂x

∂ψT

∂x

)
+ 2µ

(
∂ψ

∂y

∂ψT

∂y

)
+ µ

(
∂ψ

∂z

∂ψT

∂z

)]
v dV

+

∫
V

[
µ

(
∂ψ

∂y

∂ψT

∂x

)
u+ µ

(
∂ψ

∂y

∂ψT

∂z

)
w

]
dV

−
∫
V

P

(
∂ψ

∂y
φT
)
dV =

∫
V

ψρfy dV (2.29)

∫
V

ρ

[
ψψT

∂w

∂t

]
dV +

∫
V

ρ

[
ψ(ψTu)

∂ψT

∂x
+ ψ(ψTv)

∂ψT

∂y
+ ψ(ψTw)

∂ψT

∂z

]
w dV

+

∫
V

[
µ

(
∂ψ

∂x

∂ψT

∂x

)
+ µ

(
∂ψ

∂y

∂ψT

∂y

)
+ 2µ

(
∂ψ

∂z

∂ψT

∂z

)]
w dV

+

∫
V

[
µ

(
∂ψ

∂z

∂ψT

∂x

)
u+ µ

(
∂ψ

∂z

∂ψT

∂y

)
v

]
dV

−
∫
V

P

(
∂ψ

∂z
φT
)
dV =

∫
V

ψρfz dV (2.30)

In order to write the weak statement of Navier-Stokes equations in matrix form,

some coefficient matrix formulae need to be defined.

1. Mass Matrix,

M =

∫
V

ρψψT dV (2.31)

2. Convective Matrix,

C(u, v, w) =

∫
V

ρ

[
ψ(ψTu)

∂ψT

∂x
+ ψ(ψTv)

∂ψT

∂y
+ ψ(ψTw)

∂ψT

∂w

]
dV (2.32)

3. Diffusive Matrix,

Kij =

∫
V

µ

(
∂ψ

∂xi

∂ψT

∂xj

)
dV (2.33)

4. Gradient Matrix,

Qi =

∫
V

∂ψ

∂xi
φT dV (2.34)
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5. Force Vector,

Fi =

∫
V

ρψfi dV (2.35)

After substituting above coefficient matrix formulae in equations (2.27) to (2.30)

to obtain a matrix form of the weak statement.



M 0 0 0

0 M 0 0

0 0 M 0

0 0 0 0





u̇

v̇

ẇ

Ṗ


+



C(u, v, w) 0 0 0

0 C(u, v, w) 0 0

0 0 C(u, v, w) 0

0 0 0 0





u

v

w

P



+



2K11 +K22 +K33 K12 K13 −Q1

K21 K11 + 2K22 +K33 K23 −Q2

K31 K32 K11 +K22 + 2K33 −Q3

QT
1 QT

2 QT
3 0





u

v

w

P



=



F1

F2

F3

0


(2.36)

It becomes important to point out two aspects of equation (2.36),

1. Zero appearing in the diagonal of the mass matrix due to incompressibility

constrain.

2. Possibility of unstable solution in convection dominated flows due to non linear

terms appearing in the convection matrix.

These two conditions make it difficult to solve the incompressible Navier-Stokes equa-

tion using FEM. Techniques to handle these two difficulties are discussed in the next

two sections.
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2.3 Artificial/Pseudo Compressibility

As seen in equation (2.36), due to the incompressibility condition (∇.~u = 0)

applied to the continuity equation, there exists a zero on the diagonal of mass matrix

corresponding to the time derivative of pressure term. This condition makes the mass

matrix singular. A method to handle this difficulty in incompressible Navier-Stokes

equation was first developed by Alexander Chorin[17]. The scope of this method is not

limited to finite element method and hence the method of ‘Artificial Compressibility’

has been successfully implemented in variety of incompressible viscous problems. The

idea behind the technique is to convert an elliptical problem into hyperbolic problem

by introducing an artificial term in continuity equation[18]. After changing the type

of the problem, it can be solved by well known discretization techniques.

Using the technique of artificial compressibility, an alternate form of (2.1) can

be written as,

∂ρ

∂t
+
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.37)

where, ρ is called artificial density and β is artificial compressibility such that P = ρ/β.

Equation (2.37) is the artificial continuity equation. When the calculation progresses

and becomes independent of time, it also becomes independent of β. Thus β can

be disposed when solution converges to steady state[17]. Thus the weak form of

continuity equation can be derived as shown below,

Applying the method of weighted residuals to artificial continuity equation,∫
V

Q

(
β
∂P

∂t
+
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
dV = 0 (2.38)

Therefore, ∫
V

φ

(
βφT

∂P

∂t
+
∂ψT

∂x
u+

∂ψT

∂y
v +

∂ψT

∂z
w

)
dV = 0 (2.39)

Lets define a new matrix for this artificial equation.

Pressure Mass Matrix, MP =
∫
V
βφφTdV
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Thus the equation (2.36) can be modified as,

M 0 0 0

0 M 0 0

0 0 M 0

0 0 0 MP





u̇

v̇

ẇ

Ṗ


+



C(u, v, w) 0 0 0

0 C(u, v, w) 0 0

0 0 C(u, v, w) 0

0 0 0 0





u

v

w

P



+



2K11 +K22 +K33 K12 K13 −Q1

K21 K11 + 2K22 +K33 K23 −Q2

K31 K32 K11 +K22 + 2K33 −Q3

QT
1 QT

2 QT
3 0





u

v

w

P



=



F1

F2

F3

0


(2.40)

It can be noted in equation (2.40) that mass matrix is no longer singular.

2.4 Taylor Galerkin Stabilization Technique

One key feature of incompressible Navier-Stokes equation is the presence of

non-linear unsymmetrical convective term in the equation. As the Reynolds num-

ber starts increasing in high velocity flows, convective term starts dominating the

flow field inducing oscillations in it, thus making the solution unstable. To handle

this difficulty, Taylor-Galerkin(TG) stabilization technique has been employed in this

work. TG technique was first presented by J.Donea in which an effective method to

couple the time discretization with spatial Galerkin discretization was presented[19].

Purpose of TG method—also known as the finite element equivalent of Lax-Wandroff

technique—is to introduce higher order numerical dissipation (diffusion or disper-
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sion) to reduce the numerical oscillations. This method consists of writing higher

order time derivative of taylor series in terms of spatial derivatives from governing

PDEs. The original PDE is then recovered with additional dissipation by rearranging

the terms and spatial discretization is then carried out by Galerkin method. Details

about TG method and its application to linear,nonlinear equations can be seen in

[19, 20, 21, 22, 23]. Here second order TG method is applied only to convective term

in Navier-Stokes equations and stabilization matrix is computed. Derivation of this

method for Navier-Stokes equations is provided in Appendix. Thus the stabilization

matrix is written as,

KTG(u, v, w) =
∆t

2

∫
V

ψψT
[
uu
∂ψ

∂x

∂ψT

∂x
+ uv

∂ψ

∂x

∂ψT

∂y
+ uw

∂ψ

∂x

∂ψT

∂z
+

uv
∂ψ

∂y

∂ψT

∂x
+ vv

∂ψ

∂y

∂ψT

∂y
+ vw

∂ψ

∂y

∂ψT

∂z
+

uw
∂ψ

∂z

∂ψT

∂x
+ vw

∂ψ

∂z

∂ψT

∂y
+ ww

∂ψ

∂z

∂ψT

∂z

]
dV (2.41)

After calculating the stabilization matrix, the weak form of Navier-Stokes equa-

tion can be modified to,
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

M 0 0 0

0 M 0 0

0 0 M 0

0 0 0 MP





u̇

v̇

ẇ

Ṗ


+



C(u, v, w) 0 0 0

0 C(u, v, w) 0 0

0 0 C(u, v, w) 0

0 0 0 0





u

v

w

P



+



2K11 +K22 +K33 K12 K13 −Q1

K21 K11 + 2K22 +K33 K23 −Q2

K31 K32 K11 +K22 + 2K33 −Q3

QT
1 QT

2 QT
3 0





u

v

w

P



+



KTG(u, v, w) 0 0 0

0 KTG(u, v, w) 0 0

0 0 KTG(u, v, w) 0

0 0 0 0





u

v

w

P


=



F1

F2

F3

0


(2.42)

Equation (2.42) is the final weak form of incompressible Navier-Stokes equations

which will be discretized using piecewise approximation in following chapter.
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CHAPTER 3

INTERPOLATION FUNCTIONS AND FINITE ELEMENT FORMULATION

3.1 Introduction

After obtaining the weak form of Navier-Stokes equations as explained in the

previous chapter, the next step is to decide on the choice of shape functions to be

used in finite element formulation. The accuracy and the computational efficiency of

the solution largely depends on the choice of shape function. To get the continuous

and accurate solutions, shape function needs to satisfy completeness and compatibility

requirements. The availability of shape functions goes on decreasing with the increas-

ing order of continuity requirements. Using integration by parts helps in lowering the

degree continuity requirements of shape function to some extent as done in the deriva-

tion to the weak form of Navier-Stokes equations. It can be seen from the final form

of the weak Navier-Stokes equations that both the shape functions—φ and ψ—should

be C1 continuous as the highest order of derivative appearing in the expressions is

1. According to the investigation carried out by P.Hood and C.Taylor, although it is

possible to obtain an accurate velocity field using FEM for Navier-Stokes equation, it

leads to certain inaccuracies in the pressure field[15]. After further investigation they

found that accurate solutions can be obtained for both velocity and pressure fields by

using unequal interpolation in such a way that the shape functions associated with

velocity variables are one order higher than those associated with pressure. For this

exact reason, two different weight functions, Q and W were selected for continuity

and momentum equations. The detailed discussion on the selection of element shape
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for geometry discretization and further finite element formulation is included in this

chapter.

3.2 Tetrahedral Element

As finite element method carries an advantage over other numerical methods

in terms of using unstructured grids to produce accurate solutions, straight sided

tetrahedral element is selected in this problem to discretize the physical domain. As

mentioned earlier, both velocity and pressure shape functions need to be at least

C1 accurate in order to satisfy compatibility and completeness requirements. For

this purpose, first order (linear) shape function φ is selected for pressure variable

and second order (quadratic) shape function ψ is selected for velocity variables. The

derivation of shape functions for linear and quadratic tetrahedron in natural coordi-

nates can be found in many books and articles[12, 16]. These shape functions are

directly imported in this document without the derivation.

The quadratic shape function ψ is obtained from 10 node tetrahedron as shown

in figure 3.1.

18



Figure 3.1. Qadratic Tetrahedral Element.

The quadratic shape function in natural coordinate Li is given below,

ψ =



L1(2L1 − 1)

L2(2L2 − 1)

L3(2L3 − 1)

L4(2L4 − 1)

4L1L2

4L2L3

4L1L3

4L1L4

4L2L4

4L3L4



(3.1)

Similarly, linear shape function φ is obtained from a 4 node tet element as

shown in figure 3.2.
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Figure 3.2. Linear Tetrahedral Element.

φ =



L1

L2

L3

L4


(3.2)

The natural coordinate L1, L2, L3&L4 are functions of the cartesian coordinates.

L1 = (a1 + b1x+ c1y + d1z)/(6V ) (3.3)

L2 = (a2 + b2x+ c2y + d2z)/(6V ) (3.4)

L3 = (a3 + b3x+ c3y + d3z)/(6V ) (3.5)

L4 = (a4 + b4x+ c4y + d4z)/(6V ) (3.6)

The derivatives of shape functions are given by,

∂Li
∂x

=
bi

6V
i = 1 : 4 (3.7)
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∂Li
∂y

=
ci

6V
i = 1 : 4 (3.8)

∂Li
∂z

=
di
6V

i = 1 : 4 (3.9)

a1, b1, c1 & d1 coefficients are given as,

a1 =

∣∣∣∣∣∣∣∣∣∣
x2 y2 z2

x3 y3 z3

x4 y4 z4

∣∣∣∣∣∣∣∣∣∣
b1 = −

∣∣∣∣∣∣∣∣∣∣
1 y2 z2

1 y3 z3

1 y4 z4

∣∣∣∣∣∣∣∣∣∣

c1 = −

∣∣∣∣∣∣∣∣∣∣
x2 1 z2

x3 1 z3

x4 1 z4

∣∣∣∣∣∣∣∣∣∣
d1 = −

∣∣∣∣∣∣∣∣∣∣
x2 y2 1

x3 y3 1

x4 y4 1

∣∣∣∣∣∣∣∣∣∣
Other constants can be calculated by cyclic permutations of subscripts 1, 2, 3

&4 if defined counterclockwise.

Volume ‘V ’ of an element can be found by using following formula.

V =
1

6

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣
3.3 Finite Element Formulation

After gathering the necessary information about quadratic and linear shape

functions, these shape functions are substituted in eqation (2.31) to (2.35) in order

to find the weak form of governing equations given by (2.40). This task is carried out

by using the integration formula for the tetrahedral shape functions given below.
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∫
V

Lα1L
β
2L

γ
3L

δ
4 dV =

α!β!γ!δ!

(α + β + γ + δ + 3)!
(6V ) (3.10)

In order to make the task of integration simpler, shape functions and its deriva-

tives are written as matrix-vector product such that all the coefficients are gathered

in a matrix form while the vector is comprised of only pure functions of natural

coordinates.

Shape function ψ given by equation (3.1) can also be written as {ψ} = [A]{R}

where [A] and {R} are given by,

[A] =



1 0 0 0 −1 0 −1 −1 0 0

0 1 0 0 −1 −1 0 0 −1 0

0 0 1 0 0 −1 −1 0 0 −1

0 0 0 1 0 0 0 −1 −1 −1

0 0 0 0 4 0 0 0 0 0

0 0 0 0 0 4 0 0 0 0

0 0 0 0 0 0 4 0 0 0

0 0 0 0 0 0 0 4 0 0

0 0 0 0 0 0 0 0 4 0

0 0 0 0 0 0 0 0 0 4



{R} =



L1

L2

L3

L4

L1L2

L2L3

L1L3

L1L4

L2L4

L3L4


Derivatives of the shape functions can also be found using this technique of

separating the coefficients.

∂ψ

∂xi
=

∂ψ

∂L1

∂L1

∂xi
+

∂ψ

∂L2

∂L2

∂xi
+

∂ψ

∂L3

∂L3

∂xi
(3.11)

where, dimension i changes from 1 to 3 for x, y and z. But {ψ} = [A]{R} thus,

22



∂{R}
∂x

=



2L1b1

2L2b2

2L3b3

2L4b4

L1b2 + L2b1

L2b3 + L3b2

L1b3 + L3b1

L1b4 + L4b1

L2b4 + L4b1

L3b4 + L4b3


But ∂{R}

∂x
can be written as ∂{R}

∂x
= [B]{H} where [B] and {H} are given by,

[B] =



2b1 0 0 0

0 2b2 0 0

0 0 2b3 0

0 0 0 2b4

b2 b1 0 0

0 b3 b2 0

b3 0 b1 0

b4 0 0 b1

0 b4 0 b2

0 0 b4 b3



{H} =



L1

L2

L3

L4



[C] and [D] can be obtained by replacing bi from [B] to ci and di respectively.

Thus the derivatives of {R} are given as,

∂{R}
∂x

= [B]{H} (3.12)
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∂{R}
∂y

= [C]{H} (3.13)

∂{R}
∂z

= [D]{H} (3.14)

After defining the shape functions and their derivatives in appropriate forms,

they can be substituted in coefficient matrices given by equations (2.31) to (2.35).

24



CHAPTER 4

FINITE ELEMENT PROGRAMMING

4.1 Introduction

In this chapter, few key featues of finite element programming have been ex-

plained. Even after having a correct finite element formulation, the accuracy and

computational efficiency for the solver is largely influenced by these key programming

aspects. A C++ object oriented programm is written using notepad++ and compiled

using gnu g++ compiler on WINDOWS which comes as a part of CYGWIN.

4.2 Time Marching using Backward Euler (Implicit) Scheme

Equation (2.42) represents the elemental (local) form of finite element equation

which can also me written as,

[m]{u̇}+ [Ke(u)]{u} = {Fe} (4.1)

Time marching of above equation is carried out using implicit algorithm. Other

time marching algorithms, their comparisons, advantages, limitations with implicit

algorithms can be found in [3]. The non linear terms in [Ke(u)] are linearized using

the solution in previous time step.

By using the implicit algorithm,

[m]

(
un+1 − un

∆t

)
+ [Ke(u

n)]{un+1} = {Fe} (4.2)

∴
(m

∆t
+ [Ke(u

n)]
)
un+1 = {Fe}+

m

∆t
un (4.3)
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Thus the modified stiffness matrix and force vectors are,

[Ke(u)] =
(m

∆t
+ [Ke(u

n)]
)

(4.4)

{Fe} = {Fe}+
m

∆t
un (4.5)

Implicit method gives unconditional stability to the solution but at the expense

of solving large system of linear equations for each time step. For more accurate time

dependant solutions, higher order scheme such as Krank-Nicolson could prove more

suitable.

4.3 Assembly of Global Stiffness Matrix using Sparse Matrix Libraries

Local stiffness matrix calculated after using an implicit algorithm is then assem-

bled in a global system. The assembly becomes particularly complicated because of

multiple degrees of freedom associated with every node. To add to the complications,

4 corner nodes of the quadratic tetrahedron carry 4 dofs while 6 midside nodes have

3 dofs each. Let N1 be the number of corner nodes per element and N2 be number of

midside nodes per element then local (elemental) degreed of freedom (Ldof ) can be

calculated as,

Ldof = 4N1 + 3N2 (4.6)

= 4(4) + 3(6)

= 34

In similar fashion, if N1G are the total corner nodes is the global system and N2G are

total midside nodes, global degrees of freedom (Gdof ) are given as,

Gdof = 4N1G + 3N2G (4.7)

Thus every local stiffness matrix is made up of 34x34 entries which are ordered in

u1, u2 . . . u10, v1, v2 . . . v10, w1, w2 . . . w10, p1 . . . p4 this fashion. In contrast, the assem-
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bly of these local entries into the global system is arranged in u1, v1, w1, p1 . . . uN1G
,

vN1G
, wN1G

, pN1G
. . . un, vn, wn this way, n being total number of nodes.

Another key issue that arises during assembly process is the large memory re-

quirements to store the global system. Incidentlly, most of the entries in this system

are zeros making it a ‘Sparse System’. Storing these large number of zeros is unneces-

sary and time consuming. To avoid this problem, an open source library ‘SparseLib++’

along with special matrix vector classes ‘MV++’are effectively used[24, 25]. Using

these libraries make it easier to solve the system of linear equations with minimum

efforts and memory. After assembling the global system, factorization is carried out

by using standard Incomplete LU Preconditioner and then the system is solved iter-

atively using Biconjugate Gradient (BiCG) method.
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4.4 Program Outline

Figure 4.1. Simplified outline of FEM program.

28



CHAPTER 5

TESTING AND VALIDATION

5.1 Introduction

Before putting any new software to use, it needs to be validated with a bench-

mark problem. In this work, two validations are performed. First the FEM code is

validated using a standard problem of flow in a cylindrical pipe and then using nu-

merical benchmark cases of 3D laminar flow around an obstacle which was defined by

DFG high priority research program flow simulation with high performance comput-

ers by Schäfer and Turek and which was studied by many authors such as[2, 1, 26].

In the second problem, objective is to find pressure drop across the obstacle and

coefficients of drag and lift (CD & CL) on the surface of the obstacles. A slightly

different approach has been adopted in present study and the code is validated only

for ∆P across the obstacle. Drag and Lift coefficients are not evaluated but instead

mass conservation is monitored to see if it is satisfying the continuity equation. An

extensive validation study with the grid dependency test, even though desired, has

not been carried out in this work. The purpose of this validation procedure is to find

out whether the finite element solutions obtained have physical sense or not.
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5.2 Poiseuille Flow

One of the simplest problem to validate the FEM code is flow through a cylin-

der. One can find analytical solutions for such a problem derived in cylindrical

coordinates[27]. The velocity in z direction is given by formula (5.1).

w(r) =
∆P D2

16µL

[
1−

(
2r

D

)2
]

(5.1)

where, D is a diameter of cylinder and L is its length.

5.2.1 Problem Setup

A cylinder with diameter 0.4 m and length 2.5 m is created and meshed using

Ansys Workbench as shown in figure 5.1. On inlet face, uniform velocity of 0.5 m/sec

is given in the Z direction as a boundary condition keeping other components of

velocity as zero.

(a) (b)

Figure 5.1. Validation using Poiseuille flow (a) Cylindrical geometry for validation
(b) Tetrahedral mesh on the surface of geometry.

This geometry is then subject to test using FEM code at ∆t = 0.1 sec and

β = 5 sec2/m2 values. The results are presentated in next section.
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5.2.2 Results for Poiseuille Flow

Figure 5.2 shows the pressure and velocity contours of Poiseuille flow on a

section plane cut though the centre of cylinder along Z axis. In the velocity contours,

it can be seen that the uniform inlet flow develops into the parabolic profile as it moves

along the length. maximum velocity at the outlet (0,0,2.5) is measured in tecplot and

required pressure drop to produce this velocity is compared using analytical formula

and numerical values.

(a)

(b)

Figure 5.2. Result contours for poiseuille flow on section plane cut through the
centre of cylinder along Z axis (a) Velocity contours with wmax = 0.085 m/sec and
wmin = 0 m/sec (b) Pressure contours with Pmax = 0.024 Pa and Pmin = 0 Pa.

For the maximum velocity of 0.081 m/sec at the end of a channel (0,0,2.5), the

analytical and numerical pressure drops between (0,0,0) and (0,0,2.5) is validated as,

∆PAnalytical = 0.02025 Pa

∆PNumerical = 0.02124 Pa
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5.3 Numerical Benchmark Problems for Laminar Flow with Obstacle

In this section, FEM program will be validated using a numerical benchamark

problems defined in DFG high priority research program as mentioned earlier.

5.3.1 Test Geometry and Mesh Setup

The validation is performed on two test models. Each model consists of a simple

channel with a square cross section and has an obstacle in it. In model 1, the obstacle

is a cylinder with circular cross-section while in model 2 it is a parallelepiped with

square cross-section. Each model has three boundaries namely inlet, outlet and wall.

The obstacle surfaces are also considered as part of walls. These model geometries

with their orientations in space are shown in the figure 5.3. Note that the models are

oriented along positive X axis. Both these models were created using ‘design modeler’

in Ansys Workbench.

(a) (b)

Figure 5.3. Benchmark models with (a) Model-1:cylindrical obstacle and (b) Model-
2:parellelepiped obstacle from[1].
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After the model creation, they were divided in finite number of tetrahedral

elements using Ansys Workbench ‘meshing’ module. Both the models were meshed

using same meshing parameters but show different number of elements due to slight

difference in their geometric shapes. Table 5.1 shows the meshing parameters used.

All other parameters have default values given in Ansys Workbench. Figure 5.4 shows

tetrahedral mesh in two models.

Table 5.1. Ansys Workbench meshing details for two benchmark models

Meshing Parameter Selection

Meshing Method Patch Conforming Tetrahedron
Advance Sizing Function On Proximity and Curvature

Max Face Sizing 0.08 m
Max Tet Sizing 0.150 m

Element Size on Obstacle Surface 0.02 m
Midside Nodes Kept

# Elements Model-1: 18261, Model-2: 23220
# Nodes Model-1: 27827, Model-2: 34793

(a) (b)

Figure 5.4. Tetrahedral mesh on (a) model-1 and (b) model-2 .
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5.3.2 Validation

For both the configurations, same input quantities are used. Density of fluid is

ρ = 1kg/m3 and kinematic viscosity is ν = 10−3m2/sec. Parabolic velocity profile is

used as inlet boundary condition only in axial X direction. Y and Z components of

velocity remain zero. Thus inlet condition is given by,

u(0, y, z) = 16Umyz(H − y)(H − z)/H4, v = w = 0 (5.2)

where, H = 0.41m and Um = 0.45m/s. These input quantities give Re ≈ 20.

Other input quantities used are time step ∆t = 0.1 sec and artificial compressibilitiy

β = 5 sec2/m2.

For the purpose of validation, two quantities are computed.

1. Pressure difference ∆P between points (0.45, 0.2, 0.205) and (0.55, 0.2, 0.205).

2. Mass conservation i. e.
∫
A
~u dA on inlet and outlet faces, difference between two

being the error.

Both these validation operations are carried out by using a post processing tool

‘Tecplot’. The pressure drop values are then compared with the ones available in

literature[2, 1, 26] to get a sense whether the solution obtained is physical or not.

For model-1 with circular cross-section, reference values are published in [2]

using boundary fitted higher order finite element methods as they proved to be the

most accurate. Those values are computed using piecewise triquadratic elements

for velocity discretization and discontinuous piecewise linear elements for pressure.

For model-2 with square cross-section, reference values are taken from [1] which are

computed using stabilized triquadratic elements for both velocity and pressure on

structured meshes.
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Table 5.2. Reference values published in [2] for model-1 with circular cross-section

# cells dof ∆P
(Pa)

245760 7035840 0.170403
1966080 55666560 0.170779

Table 5.3. Reference values published in [1] for model-2 with square cross-section on
structured grids

# cells dof ∆P
(Pa)

78 3696 0.183495
624 24544 0.208050
4992 177600 0.177370
39936 1348480 0.176165

It can be seen from comparing the values from the result tables that the answers

are over predicted in both the cases. Although different types of refinement techniques

can be applied to the problem, no further effort has been made in this work to do so.

Different contour plots, streamline plots and residual convergence plots can be

seen in figure 5.5 to 5.8

5.4 Convergence Study

To obtain a solution of incompressible Navier-Stokes equations using FEM, the

method of artificial compressibility was used and the solutions for two models were

validated in previous few sections. Although the validation proves the ability of

FEM program to converge towards right solutions, it does not consider the amount

of time and number of iterations required to get to the prescribed convergence limits.

Convergence of the solution plays a very important role particularly in this work

because of the modifications made to the continuity equations based on artificial
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Table 5.4. Values obtained in present work for model-1 and model-2 using ILU Pre-
conditioner and Bi-Conjugate Gradient linear solver

case # elements dof ∆P Qin −Qout # iter # time steps
(Pa) (m3/sec)

model-1 18261 100612 0.2164 0.000313 25444 5085
model-2 23220 125238 0.2489 0.002018 32108 5161

compressibility to avoid the formation of indefinite system. As stated earlier, adding

an artificial term, β ∂P
∂t

, to the continuity equation imparts some amount of hyperbolic

nature to the problem which violates the incompressibility constraint. The solution

obtained can be claimed right only if this time dependant artificial term becomes

negligible and hence discarded at steady state. This artificial compressibility β is a

free parameter and according to Chorin[17], can be related to the artificial speed of

sound in compressible flows with small Mach number by the relation given in equation

(5.3).

c = 1/β1/2 (5.3)

Unfortunately, one can not find precise guidelines in lituerature on what range

of values for β are required to be used to achieve a fast convergence. To damp out the

artificial sound waves and hence to accelerate the convergence, an alternate form of

Chorin’s method is presented by J.D.Rashaw et al. in which an artificial bulk viscosity

is introduced in the momentum equations which again vanishes at steady state[28].

In present work, we are making an effort to study what effects does this artificial

compressibility has on the convergence speed and can the process be accelerated

without adding the bulk viscosity.
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5.4.1 Testing Setup

For the purpose of this convergence analysis, a simpler geometry which can be

effectively meshed in fewer number of elements is preferred as it will allow for faster

convergence and multiple test runs. The model is a very simple channel with square

cross-section. The dimensions remain the same as per the models used in validation

procedure. The obstacles are removed and hence becomes very simple to mesh. This

simple channel geometry with its orientation is shown in figure 5.9. Note that its

orientation in space is along positive Z axis.

Boundary conditions used for this study are given in table 5.5

Table 5.5. Boundary Conditions for Convergence Analysis

Boundary Face Boundary Name Boundary Condition

u = 0
Inlet Velocity Inlet v = 0

w = 16Umxy(H − x)(H − y)/H4

Outlet Atmospheric Pressure Outlet P = 0

u = 0
Wall No Slip v = 0

w = 0

where,Um is the velocity amplitude, H=0.41m is the dimension of channel cross-

section.

5.4.2 Pseudo Convergence Number (PCN)

To understand the effect of artificial compressibility on the solution convergence

of Navier-Stokes equations, it becomes important to know in what form it appears in

the weak statement of governing equations. In this work the the governing equations
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used are in dimensional form and hence it becomes difficult to establish specific effects

of different parameters on convergence because too many input parameters could get

involved in the analysis. For resolving this difficulty, we define a new non dimensional

number which takes into account the effects of artificial compressibility β, time step

size ∆t and material properties ρ and µ. This ‘Pseudo Convergence Number (PCN)’

then can be controlled to observe the effects of other input parameters such as grid

size and boundary conditions on the convergence.

PCN = ν
β

∆t
(5.4)

where, ν denoted the kinematic viscosity and has dimensions m2/sec while artificial

compressibility from equation (5.3) has the dimensions of sec2/m2. This dimension-

less number will be used as a variable to observe the effects of grid and boundary

conditions on solution convergence.

5.4.3 Effect of Grid Size and Reynolds Number on Solution Convergence

In this section, effects of refining the mesh and changing the input velocity

magnitude on convergence speed is studied at different values of PCN. In the first step,

the convergence was tested for the same grid but three different Reynolds numbers

and their convergence history was recorded. Reynolds numbers used are 10, 20 and

40. In the second step, similar testing was performed but this time for the same

Reynolds number and three different grids. Simple tetrahedral grids without any

local refinement are used in this study.

The two steps mentioned above produce four sets of results which are explained

below. In each of these cases, PCN is varied to see the effect on other variables.

1. Case 1: In this case, same grid i. e. grid-1 is used for three different Reynolds

numbers of 10, 20 and 40 to plot total number of iterations required for linear
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Table 5.6. Three different grids used for convergence study

Grid # Elements # Nodes

Grid-1 2234 4250
Grid-2 4051 6469
Grid-3 6121 9612

solver to converge. Results obtained are shown in figure 5.10. It is clear from

the figure that more iterations are required for the solver to converge and hence

curve shift slightly upwards with increase in Reynolds number.

2. Case 2: In this case, same grid is used for three Reynolds numbers and variation

in number of time steps is observed. It can be seen from figure 5.11 that the

relationship is not very clear and it is hard to see any pattern in the limited

range of PCN which was tested. Although the three curves seem to be following

the order, the fluctuations in them make it hard to draw any conclusion.

3. Case 3: In this case, Reynolds number is kept constant at 20 and PCN was varied

for three different grids to check the number of iterations required for conver-

gence. Figure 5.12 shows that for the initial part of the curves till PCN=0.1

show a definite trend, a finer mesh requiring more number of iterations to con-

verge than denser one. But for higher range of PCN, that trend is lost.

4. Case 4: This case deals with constant Reynolds number of 20 and different grid

sizes to record the number of time steps required for convergence. Agin there is

no definite trend found and fluctuations with different amplitude and different

wavelengths are observed in figure 5.13.

It can be seen by studying these four cases that there certainly exiists a rela-

tionship between PCN and convergence speed, but the exact nature is complicated.
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5.4.4 Elemental Reynolds Number

As seen in previous section, different grids and Reynolds numbers seem to be

affecting the convergence speed. To combine the effect of two, we consider an ‘Ele-

mental Reynolds Number (ERe)’ which is given by,

ERe =
uehe
ν

(5.5)

where, ue is the local velocity magnitude and he is the characteristic length of an

element which is the ratio of volume of an element and its surface area. The idea

behind using ERe is to be able to change PCN at elemental level to obtain faster con-

vergence. Elemental Reynolds number combines the effect of grid size and boundary

conditions together. Thus,

PCN = f(ERe) (5.6)

where ‘f’ remain unknown function which needs to be determined. By using

this relationship it would be possible to modify the value of PCN for every element

when assembly of global system takes place. The value of PCN should be such that

it would contribute towards speeding the convergence of global system. In an effort

to find this unkown function ‘f’, variation in number of iterations and number of

times steps is plotted against PCN for different values of ERe. It can be seen in

figures 5.14 and 5.15. The total number of iterations seem to be converging towards

some minimum value for different values of ERe, but the plot showing the time steps

required is again a matter of concern. Unfortunately the range of PCN which was

used for this study proved is too small to make any conclusions and hence definite

relationship given by equation (5.6) remians unknown.
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5.5 Concluding Remarks

This work presented an effective way to use Finite Element Method to solve

three dimensional Navier-Stokes equations. The entire work was focused on devel-

oping a solver which would serve as a basic building block for more advanced and

innovative techniques to be implemented in future. Method of artificial compress-

ibility was effectively used to avoid the formation of indefinite system and hence

factorization of linear system was performed using standard preconditioners. The

entire formulation was then encoded using C++ programming language which makes

it possible to run the program at high speeds. The solutions obtained were validated

using benchmark case of three dimensional laminar flow.

Convergence analysis was performed to see which input parameters affect the

convergence speed. A new dimensionless number ‘Pseudo Convergence Number’ was

defined as PCN = ν β
∆t

and its effect on convergence speed was observed for different

grids and Reynolds numbers. It was found that the effect of different meshes and

input velocities can be combined together in the form of ‘Elemental Reynolds Number

(ERe)’. It was proposed that the improved speeds of convergence can be achieved by

substituting PCN as a function of ERe but the exact function remains unknown and

requires future investigation.

5.6 Future Work

No work is complete without the mention of possible future improvements. Two

such high priority recommendations are listed below.

1. Dual Time Marching: In the present work, although unsteady form of govern-

ing equations are used, solution obtained are valid only at steady state when

artificial compressibility can be ignored. To obtain unsteady solutions, dual
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time marching is required. Two time variables, one in real time (∆t) and one in

pseudo time (∆τ) are used. For every real time step, steady state is achieved in

pseudo time where artificial variables can be disposed safely without affecting

the solutions.

2. Non Dimensional Forms of Governing Equations: The governing equations used

for FEM formulation are in dimensional form. Handling non dimensional num-

bers such as Re, ERe, and PCN which are used in this work, is difficult in

dimensional form. Using non dimensional forms would be very useful for more

effective convergence analysis.
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(a) (b)

(c) (d)

Figure 5.5. Solution results for model-1, (a) Contours of pressure on the surfaces of
model-1, (b) Iteration history with time marching, (c) Convergence of β

∆t
|dP | with

time marching, (d) Convergence of |dU | with time marching .
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(a)

(b)

Figure 5.6. Model-1 with (a) Streamlines drawn on the the plane showing pressure
contours cutting through circular obstacle at z=0.205m (b) Parabolic boundary con-
dition on inlet face .
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(a) (b)

(c) (d)

Figure 5.7. Solution results for model-2, (a) Contours of pressure on the surfaces of
model-2, (b) Iteration history with time marching, (c) Convergence of β

∆t
|dP | with

time marching, (d) Convergence of |dU | with time marching .
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(a)

(b)

Figure 5.8. Model-2 with (a) Streamlines drawn on the the plane showing pressure
contours cutting through square obstacle at z=0.205m (b) Parabolic boundary con-
dition on inlet face .
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Figure 5.9. Channel geometry used for convergence study with its orientation in 3D
space.

Figure 5.10. Variations in total number of iterations required for BiCG solver with
ILU Preconditioner to converge for different Reynolds numbers on grid-1.
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Figure 5.11. Variations in total number of time steps with ∆t = 0.1 for different
Reynolds numbers on grid-1.

Figure 5.12. Variations in total number of iterations required for BiCG solver with
ILU Preconditioner to converge for different grids with Re = 20.
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Figure 5.13. Variations in total number of time steps with ∆t = 0.1 for different grids
with Re = 20.

Figure 5.14. Variations in total number of iterations over a range of PCN for different
values of ERe.
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Figure 5.15. Variations in total number of time steps over a range of PCN for different
values of ERe.
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APPENDIX A

DERIVATIONS OF COEFFICIENT MATRICES
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The coefficient matrices which needs to be substituted in equations (2.31) to

(2.35) are derived in this appendix.

A.1 Preparation

Before finding the coefficient matrices, it becomes important to express the

shape functions in suitable forms. This task is carried out in this section.

{ψ} =



L1(2L1 − 1)

L2(2L2 − 1)

L3(2L3 − 1)

L4(2L4 − 1)

4L1L2

4L2L3

4L1L3

4L1L4

4L2L4

4L3L4



=



2L2
1 − L1

2L2
2 − L2

2L2
3 − L3

2L2
4 − L4

4L1L2

4L2L3

4L1L3

4L1L4

4L2L4

4L3L4



(A.1)

52



{ψ} can also be written as {ψ} = [A]{R} where,

[A] =



1 0 0 0 −1 0 −1 −1 0 0

0 1 0 0 −1 −1 0 0 −1 0

0 0 1 0 0 −1 −1 0 0 −1

0 0 0 1 0 0 0 −1 −1 −1

0 0 0 0 4 0 0 0 0 0

0 0 0 0 0 4 0 0 0 0

0 0 0 0 0 0 4 0 0 0

0 0 0 0 0 0 0 4 0 0

0 0 0 0 0 0 0 0 4 0

0 0 0 0 0 0 0 0 0 4



{R} =



L1

L2

L3

L4

L1L2

L2L3

L1L3

L1L4

L2L4

L3L4


This step separates the coefficients of natural coordinates into a square matrix

and pure functions of natural coordinates into a vector. Integrations of shape func-

tions which will follow after next few steps become easier due to this separation. The

same procedure is followed for the derivatives of shape functions as well.

∂ψ

∂x
=

∂ψ

∂L1

∂L1

∂x
+

∂ψ

∂L2

∂L2

∂x
+

∂ψ

∂L3

∂L3

∂x
+

∂ψ

∂L3

∂L4

∂x
(A.2)

∂ψ

∂y
=

∂ψ

∂L1

∂L1

∂y
+

∂ψ

∂L2

∂L2

∂y
+

∂ψ

∂L3

∂L3

∂y
+

∂ψ

∂L3

∂L4

∂y
(A.3)

∂ψ

∂z
=

∂ψ

∂L1

∂L1

∂z
+

∂ψ

∂L2

∂L2

∂z
+

∂ψ

∂L3

∂L3

∂z
+

∂ψ

∂L3

∂L4

∂z
(A.4)

But {ψ} = [A]{R} and hence,
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∂{R}
∂x

=



2L1b1

2L2b2

2L3b3

2L4b4

L1b2 + L2b1

L2b3 + L3b2

L1b3 + L3b1

L1b4 + L4b1

L2b4 + L4b1

L3b4 + L4b3



= [B]{H} (A.5)

∂{R}
∂y

=



2L1c1

2L2c2

2L3c3

2L4c4

L1c2 + L2c1

L2c3 + L3c2

L1c3 + L3c1

L1c4 + L4c1

L2c4 + L4c1

L3c4 + L4c3



= [C]{H} (A.6)
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∂{R}
∂z

=



2L1d1

2L2d2

2L3d3

2L4d4

L1d2 + L2d1

L2d3 + L3d2

L1d3 + L3d1

L1d4 + L4d1

L2d4 + L4d1

L3d4 + L4d3



= [D]{H} (A.7)

where,

[B] =



2b1 0 0 0

0 2b2 0 0

0 0 2b3 0

0 0 0 2b4

b2 b1 0 0

0 b3 b2 0

b3 0 b1 0

b4 0 0 b1

0 b4 0 b2

0 0 b4 b3



(A.8)
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[C] =



2c1 0 0 0

0 2c2 0 0

0 0 2c3 0

0 0 0 2c4

c2 c1 0 0

0 c3 c2 0

c3 0 c1 0

c4 0 0 c1

0 c4 0 c2

0 0 c4 c3



(A.9)

[D] =



2d1 0 0 0

0 2d2 0 0

0 0 2d3 0

0 0 0 2d4

d2 d1 0 0

0 d3 d2 0

d3 0 d1 0

d4 0 0 d1

0 d4 0 d2

0 0 d4 d3



(A.10)

{H} =



L1

L2

L3

L4


(A.11)

The linear shape function {φ} is same as {H}.
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The formula for the exact integrations of shape functions in natural coordinates

is given as, ∫
V

Lα1L
β
2L

γ
3L

δ
4 dV =

α!β!γ!δ!

(α + β + γ + δ + 3)!
(6V ) (A.12)

A.2 Mass and Pressure Mass Matrices

[M ] =

∫
V

ρψψT dV (A.13)

= ρ[A]

∫
V

{R}{R}T dV [A]T (A.14)

[M ] =
1

2520
ρ[A]



6 1 1 1 −4 −6 −4 −4 −6 −6

1 6 1 1 −4 −4 −6 −6 −4 −6

1 1 6 1 −6 −4 −4 −6 −6 −4

1 1 1 6 −6 −6 −6 −4 −4 −4

−4 −4 −6 −6 32 16 16 16 16 8

−6 −4 −4 −6 16 32 16 8 16 16

−4 −6 −4 −6 16 16 32 16 8 16

−4 −6 −6 −4 16 8 16 32 16 16

−6 −4 −6 −4 16 16 8 16 32 16

−6 −6 −4 −4 8 16 16 16 16 32



[A]T (A.15)

[MP ] =

∫
V

βφφT dV (A.16)

= β

∫
V

{H}{H}T dV (A.17)

= β[G] (A.18)
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where,

[G] =

∫
V

{H}{HT} dV (A.19)

Therefore,

[MP ] = β



2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2


(A.20)

A.3 Gradient Matrix

[Qi] =

∫
V

∂ψ

∂xi
φT dV (A.21)

= [A]

∫
V

∂{R}
∂xi

φT dV (A.22)

Therefore,

[Q1] = [A][B][G] (A.23)

[Q2] = [A][C][G] (A.24)

[Q3] = [A][D][G] (A.25)

A.4 Diffusive Matrix

[Kij] =

∫
V

µ

(
∂ψ

∂xi

∂ψT

∂xj

)
dV (A.26)

= µ[A]

∫
V

(
∂{R}
∂xi

∂{RT}
∂xj

)
dV [A]T (A.27)
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[K11] = [A][B][M ][B]T [A]T (A.28)

[K22] = [A][C][M ][C]T [A]T (A.29)

[K33] = [A][D][M ][D]T [A]T (A.30)

[K12] = [A][B][M ][C]T [A]T (A.31)

[K21] = [A][C][M ][B]T [A]T (A.32)

[K13] = [A][B][M ][D]T [A]T (A.33)

[K31] = [A][D][M ][B]T [A]T (A.34)

[K23] = [A][C][M ][D]T [A]T (A.35)

[K32] = [A][D][M ][C]T [A]T (A.36)

A.5 Force Vector

Fi =

∫
V

ρψfi dV (A.37)

A.6 Convective Matrix

C(u, v, w) =

∫
V

ρ[ψ(ψTu)
∂ψT

∂x︸ ︷︷ ︸
Cx

+ψ(ψTv)
∂ψT

∂y︸ ︷︷ ︸
Cy

+ψ(ψTw)
∂ψT

∂w︸ ︷︷ ︸
Cz

] dV (A.38)

Cx = [A][A]T
∫
V

[R][R]T [A]Tu[H]T dV [B]T [A]T (A.39)

Cy = [A][A]T
∫
V

[R][R]T [A]Tv[H]T dV [C]T [A]T (A.40)

Cz = [A][A]T
∫
V

[R][R]T [A]Tw[H]T dV [D]T [A]T (A.41)
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APPENDIX B

TAYLOR-GALERKIN FORMULATION
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In this appendix, derivation of Taylor Galerkin technique for Navier-Stokes

equation is shown.

For the purpose of simplicity and to avoid tediousness during derivation, vector

form of Navier-Stokes equation is used. Although TG technique can be applied to

the entire Navier-Stokes equation, only convective terms are considered in this work

as stability issues arise due to them.

Taylor series expansion for n+ 1th time step is,

un+1 = un + ∆t
∂un

∂t
+

∆t2

2

∂2un

∂t2
+ . . . (B.1)

The incompressible Navier-Stokes equations considering only convective terms

are given by,

∂u

∂t
= −~u.∇~u (B.2)

Second derivative of u with respect to t is obtained as,

∂2u

∂t2
=

∂

∂t
(−~u.∇~u) (B.3)

= −~u.∇
(
∂u

∂t

)
(B.4)

= ~u.∇(~u.∇~u) (B.5)

Equation (B.4) is obtained by taking the ∇ operator inside assuming ~u as constant

to avoid higher order terms.

Substituting (B.2) and (B.5) in (B.1) to recover the original equation and some

additional terms.

un+1 − un

∆t
= −~u.∇u+

∆t

2
~u.∇(~u.∇u) (B.6)
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It can be seen by comparing (B.6) and (B.2) that the stabilization term obtained

using TG technique in a strong form of Navier-Stokes equation is ∆t
2
~u.∇(~u.∇~u).

Thus the weak form of this stabilization term can be found by method of

weighted residuals and applying integration by parts(Gauss’s Theorem),

−∆t

2
W

∫
V

~u.∇(~u.∇~u) = − ∆t

2
W

∫
V

(~u.∇~u)(∇.~u) dV (B.7)

=

∫
V

W

[(
u
∂~u

∂x
+ v

∂~u

∂y
+ w

∂~u

∂z

)(
∂~u

∂x
+
∂~u

∂y
+
∂~u

∂z

)]
dV (B.8)

Thus the final expression of TG stabilization is given by,

Kse(u, v, w) =
∆t

2

∫
V

ψψT
[
uu
∂ψ

∂x

∂ψT

∂x
+ uv

∂ψ

∂x

∂ψT

∂y
+ uw

∂ψ

∂x

∂ψT

∂z
+

uv
∂ψ

∂y

∂ψT

∂x
+ vv

∂ψ

∂y

∂ψT

∂y
+ vw

∂ψ

∂y

∂ψT

∂z
+

uw
∂ψ

∂z

∂ψT

∂x
+ vw

∂ψ

∂z

∂ψT

∂y
+ ww

∂ψ

∂z

∂ψT

∂z

]
dV (B.9)

To calculate above expression, all the terms need to be integrated. One of such

examples is shown below.∫
V

ψψT
(
uu
∂ψ

∂x

∂ψT

∂x

)
dV =

∫
V

[A]{R}{R}T [A]Tuu[A][B]{H}{H}T [B]T [A]T dV

(B.10)

[B] is replaced by [C] and [D] to calculate the other terms where derivatives appear

with respect to y and z respectively.
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