

QUERYING ENTITY-RELATIONSHIP GRAPHS

BY EXAMPLE TUPLES: EXPERIMENTAL

EVALUATION AND USER STUDY

by

MAHESH GUPTA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2012

Copyright © by Mahesh Gupta 2012

All Rights Reserved

iii

ACKNOWLEDGEMENTS

 I would like to express the deepest appreciation to my advisor Dr. Chengkai Li. Without

his guidance and persistent help this thesis would not have been possible. I would also like to

thank my committee members Dr. Leonidas Fegaras and Dr. Ramez Elmasri for being on my

panel and giving me advice related to my thesis work.

 Special thanks for Mr. Nandish Jayaram, with whom I worked in this project. He guided

me in every step of this thesis. I would also like to thank Prof. Xifeng Yan and Mr. Arijit Khan

from University of California, Santa Barbara who collaborated with us in this project.

 I would like to express my gratitude to Center for Online Development at UT Arlington

for funding me, providing all time support to me during my study and giving me opportunity to

work on cutting edge technologies. Special thanks to my manager Mr. Duy Nguyen whose

friendship I will always cherish in my life.

 I owe my deepest gratitude to my parents for their constant inspiration, care and

support throughout my life. I wish to thank my siblings for their inspiration and support.

November 23, 2012

iv

ABSTRACT

QUERYING ENTITY-RELATIONSHIP GRAPHS

BY EXAMPLE TUPLES: EXPERIMENTAL

EVALUATION AND USER STUDY

Mahesh Gupta, M.S.

The University of Texas at Arlington, 2012

Supervising Professor: Chengkai Li

 The World Wide Web today has evolved into a rich repository of entities where many

knowledge bases containing entity-related information are directly available. Such knowledge

bases are often in the form of entity-relationship graphs. To query entity-relationship graphs,

users need to provide input entities, attributes and relationships by complex query graphs. To

improve the usability of graph database systems, we study a novel mechanism that queries

entity-relationship graphs by example tuples. It allows users to express a query in the form of

one or more tuples consisting of entities. The underlying query system automatically builds a

query graph based on the example tuples and ranks matching answer tuples.

 The focus of this thesis is to evaluate our query system’s accuracy and efficiency. To

evaluate accuracy we employ two methods. In the first method we evaluate queries whose

ground truths are known and calculate system’s precision and recall. In the second method we

conduct user study on ranked answer lists and calculate rank correlation co-efficient. The run

time efficiency of the system is measured with respect to the size of the query graph.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ..iii

ABSTRACT ... iv

LIST OF ILLUSTRATIONS..vii

LIST OF TABLES .. ix

Chapter Page

1. INTRODUCTION……………………………………..………..…... 1

1.1 Motivation ... 1

1.2 Overview of Problem .. 1

1.3 Challenges ... 2

1.4 Overview of Solution .. 2

1.5 Contribution of Thesis .. 3

1.6 Organization of Thesis ... 3

2. BACKGROUND AND RELATED WORK .. 4

3. OUR APPROACH ... 6

3.1 Entity-Relationship Graph .. 6

3.2 Neighborhood Graph ... 7

3.3 Maximal Query Graph ... 9

3.4 Query Graph .. 10

3.5 Answer Graph ... 10

3.6 Answer Tuple .. 11

3.7 Query Lattice ... 12

vi

3.8 Brute-Force Based Enumeration of Lattice Nodes .. 13

3.9 Best First Search Based Enumeration of Lattice Nodes ... 13

3.10 Top-K Answers Ranking .. 16

4. IMPLEMENTATION .. 17

4.1 Freebase Data Dump Processing .. 17

4.2 Overview of GQBE Implementation ... 17

4.3 Web Demo for GQBE .. 18

5. EVALUATION AND RESULTS ... 21

5.1 Query Design and Ground Truth Collection ... 21

5.2 User Study ... 23

5.3 Efficiency Metrics ... 24

5.4 Setup .. 26

5.5 Result and Comparison ... 26

6. CONCLUSION .. 33

REFERENCES ... 34

BIOGRAPHICAL INFORMATION .. 37

vii

LIST OF ILLUSTRATIONS

Figure Page

3.1 Entity-Relationship Graph ... 7

3.2 Neighborhood Graph of Depth d=2 for Input {Jerry Yang, Yahoo} .. 8

3.3 Reduced Neighborhood graph from Figure 3.2 ... 8

3.4 Examples of
 (a) Query Graph with 4 edges (b) Query Graph with 3 edges ... 10

3.5 Answer Graphs for Query Graph in Fig 3.4 (a):
 (a) Answer graph for answer tuple {Sergey Brin, Google}
 (b) Answer graph for answer tuple {Bill Gates, Microsoft} ... 11

3.6 Answer Graphs for Query Graph in Fig 3.4 (b):
 (a) Answer graph for answer tuple {Sergey Brin, Google}
 (b) Answer graph for answer tuple {Reed Hasting, Netflix} .. 11

3.7 Example of
 (a) Maximal Query Graph (b) Query Lattice ... 12

3.8 Brute-Force Based Query Lattice Enumeration ... 13

3.9 Initial Lower and Upper boundary in Lattice ... 14

3.10 (a) Node BCE detected as NULL node
 (b) Recalculation of Upper Boundaries in Lattice .. 15

4.1 GQBE Process Flow Diagram .. 18

4.2 Suggestions in Search Box .. 19

4.3 Top-4 Answers for Query {Jerry Yang, Yahoo} .. 19

4.4 Maximal Query Graph for Query {Jerry Yang, Yahoo) ... 20

4.5 Answer Graph of Answer Tuple {Bill Gates, Microsoft} .. 20

5.1 Amazon Mechanical Turk User Study Form for
 Query {Jerry Yang, Yahoo) .. 24

5.2 Mean Average Precision Comparisons Between NESS and GQBE 27

5.3 nDCG Comparisons Between NESS and GQBE ... 27

viii

5.4 Precision-at-K Comparisons Between NESS and GQBE .. 28

5.5 Run Time Comparisons Between NESS, GQBE
 and Brute-Force Method With Respect to
 Size of Maximal Query Graph. ... 30

5.6 Time Taken to Create Maximal Query Graph
 With Respect to Number of Entities in Query Tuple. ... 31

5.7 Comparisons of Brute-Force and GQBE With
 Respect to Number of Lattice Nodes Evaluated. ... 32

ix

LIST OF TABLES

Table Page

4.1 Freebase Data Set Details ... 17

4.2 GQBE API/Libraries Details ... 18

5.1 Queries and Ground Truth Details ... 21

5.2 Precision Comparisons Between GQBE and NESS .. 26

5.3 Pearson’s Correlation Coefficient (PCC) (Average=0.497) ... 29

1

CHAPTER 1

INTRODUCTION

 The World Wide Web today has evolved into a rich repository of entities where many

knowledge bases like Freebase [6] containing entity information are directly available. As of

November 2012 Freebase dataset contains almost 23 million entities [8]. An entity is a single

thing or concept that exists in the world. Entity-Relationship graph is a labeled graph where a

node represents entity and edges are relationships between them. Compared to traditional

keyword based search, entity-search targeting entities and their relationships can capture user

intention better, hence generating more meaningful search results.

1.1 Motivation

 To query an entity-relationship graph, a user has to either use a complex querying

mechanism or provide a query graph as input. In both cases its very difficult for a novice user to

query an entity-relationship graph. Jayaram et al. [31] proposed Graph Query by Example

(GQBE) system for querying entity-relationship graph. GQBE provides solution for this problem.

A user is expected to give example tuples as input to the system and the system automatically

builds a query graph that is matched against the entity-relationship graph to find similar answer

tuples. Since the query graph is automatically generated, it becomes imperative to measure the

quality of the answer tuples obtained. So we need an experimental setup to measure the

effectiveness of this new querying mechanism.

1.2 Overview of Problem

 Suppose a user is interested in finding “a list of technology companies and its

founders”. If she performs a keyword search on the Web, the result is a set of pages that might

not have the list of company-founder pairs she is looking for. GQBE provides an alternative

2

solution to this problem where the search is conducted on an entity-relationship graph. Query by

example paradigm is easy to use like the keyword query paradigm even for a novice user. Here

the user gives one or multiple answers to his query as example tuples to the system, and using

this information, the system tries to find other similar answers and ranks them.

For instance, example tuple for the technology company and its founder list can be

{Jerry Yang, Yahoo}, and the system is expected to find tuples like {Bill Gates, Microsoft}, {Larry

Page, Google}, {Steve Jobs, Apple} etc. as the answers.

1.3 Challenges

 Query by example imposes several challenges. The first challenge is to determine the

user intention. For example Jerry Yang is not only the “founder” of Yahoo, but he is also a

“board member” of Yahoo. Second challenge is to automatically and efficiently construct a

query graph capturing important relationships and properties of the input entities. The third

challenge, that is focus of this thesis work is, evaluating the correctness and quality of the

answers.

1.4 Overview of Solution

 GQBE automatically builds a query graph from the example tuple provided by the user.

To ensure a small query graph, yet capturing important relationships, GQBE assigns weight to

each edge in the graph using various intuitive parameters like Inverse Edge Frequency (IEF),

frequency of an edge with respect to both its ends and the distance of an edge from input

entities (describe in details in Chapter-3) to select “important” edges. Our experiments verify

that this approach helps in capturing the user intention pretty well.

 To check the correctness of the results, we designed input queries from gold set ground

truths known to us. We select one of the tuples from a ground truth as the example tuple input

to GQBE and then use the ground truth to calculate Precision-at-K [14], Normalized Discounted

Cumulative Gain (nDCG) [16] and Mean Average Precision (MAP) [15] of the ranked list of

answer tuples returned by GQBE. We also compared the precision and execution time of GQBE

3

with another related system called NESS (Neighborhood based similarity search) [1]. An

extensive user study using Amazon Mechanical Turk [26] was also conducted to measure the

quality of the results returned by GQBE. We used a modified version of Pearson Correlation

Coefficient [17] to capture the effectiveness of the ranking. More detailed description of the

evaluation is presented in chapter-5.

1.5 Contribution of Thesis

 In this thesis work, I have carried out an extensive experimental study of effectiveness

and efficiency of GQBE on an entity-relationship graph. The main contributions of this thesis

are:

• Freebase dataset cleaning and processing.

• Design of different queries and their ground truth collection.

• GQBE accuracy and efficiency comparison with NESS

• Measuring accuracy of the answers’ ranking using Amazon Mechanical Turk user

study.

• Developing an easy to use web interface for GQBE.

1.6 Organization of Thesis

 The thesis is organized as follows. Chapter 2 gives a detailed background of other

related work on querying entity-relationship graph. Chapter 3 presents the formal definition of

concepts introduced by GQBE and different algorithmic approaches to find answers. Chapter 4

describes technical details of our implementation, preprocessing of Freebase dataset and the

Web demo. Chapter 5 describes query design, ground truth collection, efficiency metrics,

Amazon Mechanical Turk user study and results. Conclusion is drawn in Chapter 6. I have used

material from our work [31] in this thesis.

4

CHAPTER 2

BACKGROUND AND RELATED WORK

 In this chapter, we discuss similar work done and why they are not applicable to our

problem.

 Cohen et al. [3], Xin et al. [27] proposed technique for expanding set of named entities.

The proposed system uses semi-structured web pages to find answers. GQBE is different from

these on two main aspects – (1) while these systems find existing answers within structure in

web pages such as HTML tables and lists, GQBE works on data graph. (2) GQBE is more

general in that each input query tuple contains multiple heterogeneous entities whereas these

systems, take multiple input objects in which each input is a single entity.

 There are several works [25,28,29,30] that identify the best subgraphs/paths in a data

graph to describe how several input nodes are related. The query graph discovery component

of GQBE is different from these works in several important ways – (1) Some of these works

focus on homogeneous graphs where all nodes are of the same type and all edges represent

instances of the same relationship. GQBE focus on heterogeneous graphs with many different

types of entities and relationships. (2) The graph identified by these works contains only those

paths that connect the input nodes, but GQBE include relationship pertinent to individual query

tuple entities. (3) GQBE uses query graph to find answer graphs and answer tuples, which is

not within the focus of these works.

Tian et al. [2] proposed technique for approximate matching of large graph queries. The

proposed method called TALE (a tool for approximate subgraph matching of large queries

efficiently) uses a novel neighborhood indexing method for faster execution time. Khan et al. [1]

proposed technique for efficient approximate search of a query graph in a noisy, large,

5

incomplete, labeled data graph. The proposed method called NESS (Neighborhood bases

similarity search) is appropriate for graphs with low automorphism and high noise.

GQBE is different from [1] and [2] on several aspects. First, GQBE requires to match

only edge labels, but node labels are not required to be always matched. This is equivalent to

matching a query graph with all unlabeled nodes, and thereby significantly increases the

problem complexity. Second in GQBE query graph is weighted edges graph, and an answer

graph must have entities corresponding to all query tuple entities. We compared GQBE with

NESS and our empirical result shows that GQBE clearly beats NESS in accuracy. Finally, all

these works assume query graph as input while GQBE automatically creates query graph from

query tuple.

5

CHAPTER 3

OUR APPROACH

 In this chapter we provide formal definitions of all term used in GQBE, construction of

maximal query graph from user’s example tuple, 2 different algorithmic approaches to find

answer tuples and ranking methodology.

3.1 Entity-Relationship Graph

 An entity-relationship graph is a labeled directed multi graph G (V, E) where V is a set of

entities (vertices) and E is a set of directed relationship (edges) between the entities. We also

use V(G) and E(G) to denote the entity set and the edge set, respectively. Each node v∈V

represents an entity. Each node has a unique identifier id. Each edge e=(vi, vj)∈ E denotes a

direct relationship from entity vi to entity vj. Each edge has a label, denoted as label(e). Multiple

edges can have the same label.

Figure 3.1 shows the example of an entity-relationship graph. Each node in the graph

represents an entity and an edge represents the relationship between the two vertices. For

instance vertex “Jerry Yang” represents an entity connected to another entity “Yahoo” by

relationship Founder. Example of another relationship is Industry, where both “Google” and

“Yahoo” connect to “Computer Software”.

7

Figure 3.1 Entity-Relationship Graph

3.2 Neighborhood Graph

 Given an entity-relationship graph G and a query tuple t, the corresponding

neighborhood graph Ht is the weekly connected sub graph of G that consists of all undirected

paths in G of length d or smaller, with at least one end point each such path being a query entity

in t. The path length threshold d is an input parameter. Figure 3.2 shows neighborhood graph

for query tuple {Jerry Yang, Yahoo} derived from entity-relationship graph G of figure 3.1 for

d=2.

 The neighborhood graph Ht in Figure 3.2 we have edge e1 ={Jerry Yang, USA} and

label(e1) =nationality. One more edge e2 labeled nationality is also incident on “USA”. The

neighborhood graph on a complete real world dataset may contain many more such edges

because a lot of people have “USA” as nationality. Among e1 and e2, e1 is an important edge

because it is closer to input entity “Jerry Yang”. The intuition is that edge e1 represents

important relationship with respect to input entity “Jerry Yang” but e2 is deemed unimportant

8

with respect to input entity. Similarly we can mark edge e3= {Sergey Brin, Stanford University},

label(e3)= graduated and edge e4= {Google, Computer Software}, label(e4)= Industry as

unimportant edges. Figure 3.3 shows the reduced neighborhood graph after removal of

unimportant edges from neighborhood graph in Figure 3.2.

Figure 3.2 Neighborhood Graph of Depth d=2 for Input {Jerry Yang, Yahoo}

Figure 3.3 Reduced Neighborhood Graph from Figure 3.2

9

3.3 Maximal Query Graph

 Even after removal of unimportant edges the reduced neighborhood graph Ht can be

quite large even under a small path length threshold d. The query evaluation cost can be very

high in finding approximate answers to such a large Ht. Hence we aim to drastically reduce the

size of Ht and obtain a small subgraph that capture only important features of the input entities.

This graph is termed as maximal query graph Gt.

To obtain maximal query graph, edges in the reduced neighborhood graph weighted by

following measures.

Participation Degree- Participation degree p(e) of an edge e =(u, v) define as number of edges

in data graph which share the same edge label and at least one of the two end nodes of edge e.

Formally,

p(e) =|{e'= (u',v ') | label(e) = label(e'),u'= u ∨ v '= v} |

Inverse Edge Label Frequency- For edge e, it’s defined as,

ief (e) = log
| E (G) |

label(e)

Where |E(G)| is the number of edges in data graph G and #label(e) is the number of edges in G

with the same label as e.

So, given a input query tuple t, its reduced neighborhood graph Ht, and a parameter m, the

maximal query graph Gt is a weekly connected subgraph of Ht that maximize total edge weight

and it has m edges. Here weight of edge e define as,

w(e) =
ief (e)

p(e) × d2(e)

Here d(e) is smallest distance of edge e from any input entity.

10

3.4 Query Graph

With respect to an entity-relationship graph G and its maximal query graph Gt for query

tuple t a query graph Q is a weakly connected sub graph of Gt that contains all input entities in t.

We denote set of all query graphs as Qt. We can derive multiple query graphs corresponding to

a query tuple. Figure 3.4 shows two query graphs.

Figure 3.4 Examples of (a) Query Graph with 4 edges (b) Query Graph with 3 edges

3.5 Answer Graph

 With respect to an entity-relationship graph G, its maximal query graph Gt for query tuple

t and a query graph Q, an answer graph A is a weekly connected sub graph of G. A is also

isomorphic to G except that entity label may not match. This definition of answer graph based

on the intuition that an answer tuple is similar to input tuple, if they are in similar neighborhoods.

The corresponding entities in two neighborhoods share common entity types or even the same

entities, and they have the same relationship with each other. Figure 3.5 shows two answer

graphs with respect to query graph in figure 3.4 (a) and Figure 3.6 shows two answer graphs

with respect to query graph in figure 3.4 (b).

11

Figure 3.5 Answer Graphs for Query Graph in Fig 3.4(a): (a) Answer graph for answer tuple
{Sergey Brin, Google} (b) Answer graph for answer tuple {Bill Gates, Microsoft}

Figure 3.6 Answer Graphs for Query Graph in Fig 3.4(b): (a) Answer graph for answer tuple

{Sergey Brin, Google} (b) Answer graph for answer tuple {Reed Hasting, Netflix}

3.6 Answer Tuple

 Answer tuple is defined as bijection between a query graph and answer graph. So a query

graph Q contains all input entities. Given an answer graph A, the entities corresponding to the

input entities (based on the bijection f: V (Q) → V (A)) form the answer tuple. For example

12

{Sergey Brin, Google}, {Bill Gates, Microsoft}, {Reed Hasting, Netflix} are answer tuples from

the answer graphs in figure 3.5 & 3.6.

3.7 Query Lattice

 Given a maximal query graph Gt, the query lattice is a directed acyclic graph in which

the root node is Gt, and the other nodes are subgraphs of Gt. The leaf nodes of lattice are those

query graphs that cannot be made any simpler and still keep all input entities connected. Figure

3.7(a) shows a maximal query graph, which contains two query entities in shaded circle and five

edges A, B, C, D and E. Its corresponding query lattice is in Figure 3.7 (b). The root node of the

lattice, denoted by ABCDE, represents maximal query graph itself. The two shaded nodes A

and BC are leaf nodes of the lattice. The query lattice is constructed by first generating all leaf

nodes, and then going all the way up to the root of the lattice. We define score of a node as sum

of the edge weight. In subsequent two sections we will explain two different approaches for

traversal of query lattice.

Figure 3.7 Example of (a) Maximal Query Graph (b) Query Lattice

13

3.8 Brute-Force Based Enumeration of Lattice Nodes

 Here we employ breadth-first search (BFS) based bottom-up lattice exploration method

as brute-force mechanism for evaluating the query lattice. We first start off with the leaf nodes

and use the results of each lattice node to find the answer graphs of its parent. We complete the

evaluation of every lattice node in a level before evaluating any lattice node in upper level. If

traversing a lattice node does not yield any answer graph, all its ancestors are pruned out.

Figure 3.7 shows example of query lattice. Here node ACD does not yield any answer graph,

hence all its ancestors ABCD, ACDE and ABCDE won’t be evaluated.

Figure 3.8 Brute-Force Based Query Lattice Enumeration

3.9 Best First Search Based Enumeration of Lattice Nodes

 The Brute-force approach traverses many lattice nodes to find all the answer tuples,

while we are only seeking top-K answer tuples. To traverse as few lattice nodes as possible and

find only the top-K answer tuples, we follow a Best first search method. The Best-first search

traversal always expands the most promising lattice node. A most promising node is a node that

14

has the highest upper bound. Upper bound of a node is the score of its ancestor node that has

the highest score among all its ancestors. Lower bound of a node is the score of the node itself.

Upper boundary of a node in lattice is its ancestor node that has no ancestor in lattice. Clearly,

at the beginning, upper boundary of each node is root of the lattice and their upper bound is the

score of the maximal query graph. However, it changes as we traverse the lattice and detect

null nodes. Figure 3.9 shows example of lower and upper bound values.

Figure 3.9 Initial Lower and Upper boundary in Lattice

Figure 3.10 (a) shows that node BCE is detected as a null node. So all ancestor nodes

of BCE (BCDE, ABCE and ABCDE) removed from the lattice. Figure 3.10 (b) shows new upper

boundary values.

15

⇓

Figure 3.10 (a) Node BCE detected as NULL node (b) Recalculation of Upper Boundaries in

Lattice

16

3.10 Top-K Answers Ranking

 The score of an answer tuple t’ in answer graph A is the sum of two values – the total

weight of edges in query graph Q of answer graph A and the extra credit given to matching

nodes in A and Q.

Score(A) = W (e) + match(e,e')
e= (u,v)∈E(Q)
e'=(f (u), f (v))∈E(A)

∑
e ∈E(Q)

∑

Here match (e, e’) is for giving extra credit to matching nodes in Q and A defined as follows,

 Node label matching increases overall size and complexity of the lattice. Hence

algorithm first find top-K’ (here K’ is a heuristic based number larger than K) answers based on

edge label match score. After that algorithm calculate node label match score on these top-K’

answers, re-rank them and return top-K answers.

 17

CHAPTER 4

IMPLEMENTATION

 In this chapter we are going to describe the implementation details of GQBE. We will

also describe details of the Web-based demo developed for GQBE.

4.1 Freebase Data Dump Processing

 We used Freebase dataset [7] of Sep, 2011. We cleaned it to keep only named entities

(e.g., Stanford University} and abstract concepts {e.g., Jewish People}. Freebase also contains

back edges between 2 entities, for example edge inventor connects node “Page Rank” to

“Sergey Brin” and edge inventions connects “Sergey Brin” to “Page Rank”. We kept only one

such edge on our dataset. Table 4.1 shows details of our dataset.

Table 4.1 Freebase Data Set Details

Of Edges # Of Nodes # Of distinct Edges # Of Node Type

46,708,421 28,483,132 5,428 3,307

4.2 Overview of GQBE Implementation

 GQBE was implemented in Java. Figure 4.1 shows the process flow diagram for GQBE.

The entire process can be explained as follows:

• System expects a query tuple as input.

• It first builds the neighborhood graph around the query tuple using a depth threshold d.

• It removes unimportant edges with respect to the query tuple from the neighborhood

graph to create a reduced neighborhood graph.

• Maximal query graph

maximum edge weight and

• We have 2 different strategies for lattice evaluation. First one is breadth

based brute-force method and second

promising nodes in the

evaluation are scored based on the edge label matching

• After collecting answer

considered to score the an

answers.

Figure 4.1 GQBE Process Flow D

 We have developed a web interface for GQ

input example query tuples. The system fetches

see both edge label and node label

the maximal query graph created by GQBE for

each answer tuple. Web demo

[13]. We also use other external API

T

Component

Freebase Suggestion API [9]

Input Entity

Tuple

Neighborhood

Graph

18

Maximal query graph is created from the reduced neighborhood graph that has

maximum edge weight and at most m edges, where m is a heuristic based number.

We have 2 different strategies for lattice evaluation. First one is breadth

force method and second is best first search method where

the lattice are evaluated. All answer graphs returned from

evaluation are scored based on the edge label matching.

answer graphs from lattice evaluation, node label matching

the answers, which are then re-ranked to find the final top

Figure 4.1 GQBE Process Flow Diagram

4.3 Web Demo for GQBE

We have developed a web interface for GQBE. It has search box where

example query tuples. The system fetches a list of ranked relevant answers. User

see both edge label and node label based matching score for each answer. Users

maximal query graph created by GQBE for the input query tuple and the answer graph of

Web demo was implemented using PHP and JQuery 1.7 JavaScript library

also use other external APIs whose details are presented in Table 4.2.

Table 4.2 GQBE API/Libraries Details

Description

Gives search suggestion when a

the search box.

Reduced

Neighborhood

Graph

Maximal Query

Graph

Query Lattice

Evaluation

reduced neighborhood graph that has

m edges, where m is a heuristic based number.

We have 2 different strategies for lattice evaluation. First one is breadth-first search

 only the most

returned from this lattice

node label matching is

ed to find the final top-K

BE. It has search box where a user can

answers. Users can

 can also view

answer graph of

JQuery 1.7 JavaScript library

Gives search suggestion when a user types in

Top-K Answers

ranking

 19

Table 4.2 – Continued

Freebase image API [10] To show freebase image of answer entities.

Dracula Graph Library [12] To show query and answer graphs in the

browser.

Figure 4.2 Suggestions in Search Box

Figure 4.3 Top-4 Answers for Query {Jerry Yang, Yahoo}

 20

Figure 4.4 Maximal Query Graph for Query {Jerry Yang, Yahoo)

Figure 4.5 Answer Graph of Answer Tuple {Bill Gates, Microsoft}

 21

CHAPTER 5

EVALUATION AND RESULTS

 In this chapter I am going to describe details of evaluation metrics, query design,

ground truth collection, Amazon Mechanical Turk user study. We will see comparison study

between NESS and GQBE for precision and execution time.

5.1 Query Design and Ground Truth Collection

 We used a set of 20 queries to evaluate the accuracy and efficiency of the system.

These queries were designed based on various Wikipedia and Freebase tables. Each such

table is a collection of tuples. In accuracy evaluation, for each table, we used one of its tuples

as example tuples and its remaining tuples as ground truth .The 20 queries, their ground truth

size and web URL’s are summarized in table 5.1. Each query tuple consists of one, two, three

entities. The queries cover diverse domain such as movies, people, companies, sports, awards,

religions, universities, automobiles, and music.

Table 5.1 Queries and Ground Truth Details

Query Ground
Truth Size

Ground Truth URL

C 1240 http://www.freebase.com/view/computer/progr

amming_language

TomKat 16 http://www.freebase.com/view/celebrities/sup

ercouple

Jerry Yang, Yahoo! 8349 http://www.freebase.com/view/organization/or

ganization_founder

 22

Table 5.1 – Continued

Michael Phelps, Sportsman of the year 55 http://www.freebase.com/view/en/sportsman_

of_the_year/-/award/award_category/winners

Gautama Buddha, Buddhism 621 http://www.freebase.com/view/religion/religion

Manchester United, Malcolm Glazer 40 http://en.wikipedia.org/wiki/List_of_English_fo

otball_club_owners

Boeing, Boeing C-22 89 http://www.freebase.com/view/en/boeing/-

/aviation/aircraft_manufacturer/aircraft_model

s_made

David Beckham, A C Milan 94 http://www.freebase.com/view/en/ac_milan/-

/soccer/football_team/current_roster

Beijing, 2008 Summer Olympics 41 http://www.freebase.com/view/olympics/views

/olympic_host_city

Microsoft, Microsoft Office 200 http://www.freebase.com/view/en/microsoft/-

/computer/software_developer/software

Jack Kirby, Iron Man 25 http://www.freebase.com/view/user/mahigupta

/default_domain/views/comic_character_by_ja

ck_kirby

Apple Inc, Sequoia Capital 300 http://www.freebase.com/view/user/mahigupta

/default_domain/views/company_funded_by_

sequoia_capital

Beethoven, Symphony no. 5 600 http://www.freebase.com/view/en/ludwig_van

_beethoven/-/music/composer/compositions

Uranium, Uranium-238 26 http://www.freebase.com/view/user/mahigupta

/default_domain/views/isotope_of_uranium

 23

Table 5.1 – Continued

Microsoft Office, C++ 300 http://www.freebase.com/view/user/mahigupta

/default_domain/views/c_software

Dennis Ritchie, C 163 http://www.freebase.com/view/computer/progr

amming_language_designer

Steven Spielberg, Minority report 40 http://www.freebase.com/view/user/mahigupta

/default_domain/views/movie_directed_by_spi

elberg

Nike, Tiger Woods 20 http://www.freebase.com/view/user/mahigupta

/default_domain/views/sponsored_by_nike

Donald Knuth, Stanford university, Turing

Award

18 http://en.wikipedia.org/wiki/List_of_Turing_Aw

ard_laureates_by_university_affiliation

Ford motor, Lincoln, Lincoln MKS 25 http://www.freebase.com/view/base/ranker/ra

nkerurlname/lincoln$002F2481808/-

/automotive/make/model_s

5.2 User Study

 We conducted an extensive user study using Amazon Mechanical Turk [26] to measure

the accuracy of GQBE in the real world. We chose top-30 answers in each of the 20 queries

and created 50 random pair per query. These 50 pairs broken down into 5 task of 10 questions

each and 2,000 users were asked to rank the better answer in each pair with respect to the

input query. In each form we had 1-2 screening questions about input entity tuple because we

wanted each reviewer to be aware of input entity tuple. If reviewer answered screening question

correctly, then only we accepted her review. Figure 5.1 shows example of one such task for

query {Jerry Yang, Yahoo!}. Here first 2 questions are screening question about Jerry Yang and

 24

Yahoo. It is followed by 10 questions, each have two random answer tuple. We measured

accuracy of the ranking of answers by GQBE using Pearson Correlation Coefficient [17]

between ranking and user feedback.

Figure 5.1 Amazon Mechanical Turk User Study Form for Query {Jerry Yang, Yahoo)

5.3 Efficiency Metrics

 We measured accuracy of the system by both comparing query results with ground

truth and conducting user study. Accuracy was measured by four widely used metrics, including

Precision-at-k (P@k) [14], Normalized Discounted Cumulative Gain (nDCG) [16], Mean Average

Precision (MAP) [15], and Pearson Correlation Coefficient (PCC) [17]. We briefly review them

below.

Precision-at-k: The ratio of top-k answers that belong to the ground truth list.

P@k = # answers in top-k present in Ground truth / k

 25

Normalized Discounted Cumulative Gain (nDCG): It measures the accuracy of a ranked list by

first computing the cumulative gain of relevant answer in the list. Relevance in our case is either

0 or 1 at each position. It penalizes the lower ranked relevant answers and aggregates the total

gain. It is then normalized by the gain obtained for an ideal ranking which rank all ground truths

at top.

Mean Average Precision (MAP): The average precision score for a query is based on P@k

given by,

AveP(q) =

P@k(q,i)
i=1

k

∑

#Ground − truths

The MAP for a set of queries is the mean of AveP (q) over the queries given by,

MAP =
AveP(q)

q
∑

#Queries

Pearson Product-Moment Correlation (PCC): PCC we used in Amazon Mechanical Turk user

study. For each query, we obtained top-30 answers by GQBE. We then generated 50 random

pairs of these answers. We presented each random pair to 20 Amazon Mechanical Turk users

and ask them to specify their preference in each pair. We then constructed two score lists for

each query. One list X represents GQBE, computed by taking the difference between each

pair’s ranks in query result. The other list Y represents user’s opinions, computed by taking the

difference in numbers of users favoring the two answers in the pair. PCC is then computed

between these two score lists given by,

r =

X i − X
−







 Yi −Y

−









i=1

n

∑

X i − X
_









2

Yi −Y
_









2

i=1

n

∑

 26

5.4 Setup

 All the experiments were performed using dual-core 24 GB memory 2.0 GHz Xeon

machine. The authors of NESS provided source code of NESS. To calculate edge weights,

GQBE requires inverse edge frequency and participation of each edge in the data graph. We

precomputed these values and stored them in files on secondary storage. GQBE loads these

files into memory during computation.

5.5 Results and Comparison

 Table 5.2 shows Precision comparison between GQBE and NESS for different values

of K. NESS had almost equal precision for one-entity queries but its precision gets worse for

two and three entities queries. Overall GQBE clearly beat NESS in all precision measures

(P@k, nDCG, MAP) by big margin.

Table 5.2 Precision Comparisons Between GQBE and NESS

Top-K
GQBE NESS

Precision-K nDCG MAP Precision-K nDCG MAP

10 0.905 0.933 0.176 0.405 0.49 0.0723

15 0.87315 0.934 0.247 0.405 0.499 0.1

20 0.8368 0.9331 0.269 0.378 0.478 0.08

25 0.806 0.9357 0.299 0.3705 0.479 0.101

Over-All 0.85523 0.93395 0.24475 0.389625 0.4865 0.0832

 27

Figure 5.2 Mean Average Precision Comparisons Between NESS and GQBE

Figure 5.3 nDCG Comparisons Between NESS and GQBE

 28

Figure 5.4 Precision-at-K Comparisons Between NESS and GQBE

 The PCC value for each query and the entire system is summarized in Table 5.3. It can

be observed that ranking of answer is better for 3 tuple queries, suggesting that more entities

probably captures a better maximal query graph. It can also be observed that PCC value for

{Apple Inc, Sequoia Capital} and {Beethoven, Symphony No. 5} is 0. This is because score of

all top-30 answers were the same, indicating that all those answers were projected from same

query graph. The overall PCC value for the ranking produced by GQBE across all the 20

queries is 0.497. Having a Pearson correlation coefficient over 0.5 is generally considered a

strong positive ranking correlation [18]. A PCC of 0.497 indicates that GQBE produces a good

ranking of answers, which is in line with what user expect in real world.

 29

Table 5.3 Pearson’s Correlation Coefficient (PCC) (Average=0.497)

Query PCC Query PCC

Donald Knuth, Stanford

University, Turing Award

0.79 Ford Motor, Lincoln, Lincoln

MKS

0.78

Nike, Tiger Woods 0.6 Michael Phelps, Sportsman of

the Year

0.8

Gautama Buddha, Buddhism 0.34 Manchester United, Malcolm

Glazer

0.27

Boeing, Boeing C-22 0.06 David Beckham, A C Milan 0.26

Beijing, 2008 Summer

Olympics

0.33 Microsoft, Microsoft Office 0.7710

Jack Kirby, Iron Man 0.578 Apple Inc, Sequoia Capital 0

Beethoven, Symphony No. 5 0 Uranium, Uranium-238 0.620

Microsoft Office, C++ 0.43 Dennis Ritchie, C 0.29

Steven Spielberg, Minority

Report

0.64 Jerry Yang, Yahoo 0.3

C 0.4 TomKat 0.65

Figure 5.5 shows total rum time comparison between NESS, GQBE and Brute force

method. We study this with respect to size (number of edges) of maximal query graph. One can

observe that running time of baseline suffered compared to GQBE and this is due to more

number of lattice nodes baseline requires to evaluate. It is worth noting that the running time of

GQBE and baseline do not increase consistently with increase in query graph size. This is

because lattice evaluation time is not solely dependent on the number of edges, but it is also

 30

dependent on the particular edges chosen in the maximal query graph. The running time of

GQBE and NESS is comparable in most cases and NES performs a little better in some cases.

This can be explained by the fact that NESS is an approximate graph querying system. It does

not always try to find best score for an answer tuple with respect to a given maximal query

graph. GQBE, on the other hand, always guaranteed to fetch the best score for an answer

tuple.

Figure 5.5 Run Time Comparisons Between NESS, GQBE and Brute-Force Method With
Respect to Size of Maximal Query Graph.

Figure 5.6 shows time taken to discover maximal query graph as a function of number

of entities in the query tuple, while also varying depth threshold d. Recall that maximal query

graph generation involves first getting a neighborhood graph using d, and then using a greedy

heuristic to obtain a much smaller subgraph. Once can observe that time increases when we

have a higher d, since this increases the size of the neighborhood graph.

 31

Figure 5.6 Time Taken to Create Maximal Query Graph With Respect to Number of Entities in
Query Tuple.

 Figure 5.7 shows comparisons between GQBE and Brute force method in term of

number of lattice nodes evaluated. As we can observe, the number of lattice-nodes evaluated

by GQBE is lesser than the brute-force. This is because in best-first strategy the choice of the

next node to evaluate depend on the higher upper bound which force lattice traversal to greedily

reach the top of the lattice. Evaluating fewer nodes has a direct impact on the running time of

the algorithm, which is shown in the running time comparison of the two methods.

 32

Figure 5.7 Comparisons of Brute-Force and GQBE With Respect to Number of Lattice Nodes
Evaluated.

 33

CHAPTER 6

CONCLUSION

GQBE is a system that queries entity-relationship graph by example entity tuples.

GQBE automatically creates a maximal query graph based on the input example query tuple

and finds the top-K matching answer tuples. Our experiments on large freebase dataset shows

that GQBE clearly outperforms an adaption of a related system NESS in query answer

accuracy. The runtimes of the two systems are comparable while the best first search algorithm

outperforms the brute-force method by orders of magnitude.

As an initial step toward better usability of graph query system, GQBE saves users the

burden of forming explicit query graphs, by allowing querying graphs by example entity tuple. As

we see an unprecedented proliferation of entity data graphs in real world, GQBE will have

profound impact on many future works.

34

REFERENCES

[1] A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, and S. Tao. Neighborhood based fast

graph search in large networks. In SIGMOD, pages 901-912, 2011.

[2] Y. Tian and J. M. Patel. TALE: A tool for approximate large graph matching. In ICDE, pages

963–972, 2008.

[3] R. C. Wang and W.W. Cohen. Language-independent set expansion of named entities

using the web. In ICDM, pages 342–350, 2007.

[4] M. M. Zloof. Query by example. In AFIPS, 1975.

[5] L. Chang, J. X. Yu, L. Qin, Y. Zhu, and H. Wang. Finding information nebula over large

networks. In CIKM, 2011.

[6] http://www.freebase.com/

[7] http://download.freebase.com/datadumps/

[8] http://wiki.freebase.com/wiki/Main_Page

[9] http://wiki.freebase.com/wiki/Freebase_Suggest

[10] http://wiki.freebase.com/wiki/ApiImage

[11] http://wiki.freebase.com/wiki/ApiSearch

[12] http://www.graphdracula.net/

[13] http://jquery.com/

[14] http://en.wikipedia.org/wiki/IR_evaluation

[15] http://en.wikipedia.org/wiki/Information_retrieval#Mean_average_precision

[16] http://en.wikipedia.org/wiki/Discounted_cumulative_gain

[17] http://en.wikipedia.org/wiki/Pearson_correlation_coefficient

[18] http://en.wikipedia.org/wiki/Pearson_correlation_coefficient#Interpretation_of_the_size_of_a

_correlation

35

[19] C. D. Manning, P. Raghavan, and H. Schtze. Introduction to Information Retrieval.

Cambridge University Press, New York NY, USA 2008.

[20] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a collaboratively

created graph database for structuring human knowledge. In SIGMOD, pages 1247–1250,

2008.

[21] T. Tran, H. Wang, S. Rudolph, and P. Cimiano. Top-k exploration of query candidates for

efficient keyword search on graph-shaped (rdf) data. In ICDE, pages 405–416, 2009.

[22] J. Pound, I. F. Ilyas, and G. E. Weddell. Expressive and flexible access to web-extracted

data: a keyword-based structured query language. In SIGMOD, pages 423–434, 2010.

[23] A. Khan, Y. Wu, and X. Yan. Emerging graph queries in linked data. In ICDE, pages 1218–

1221, 2012.

[24] E. Demidova, X. Zhou, and W. Nejdl. FreeQ: an interactive query interface for Freebase. In

WWW, demo paper, 2012.

[25] L. Fang, A. D. Sarma, C. Yu, and P. Bohannon. REX: explaining relationships between

entity pairs. In PVLDB, pages 241–252, 2011.

[26] https://www.mturk.com/mturk/welcome

[27] Y. He and D. Xin. SEISA: set expansion by iterative similarity aggregation. In WWW, pages

427–436, 2011.

[28] G. Kasneci, S. Elbassuoni, and G. Weikum. MING: mining informative entity relationship

subgraphs. In CIKM, 2009.

[29] H. Tong and C. Faloutsos. Center-piece subgraphs: Problem definition and fast solutions.

In KDD, pages 404–413, 2006.

36

[30] M. Sozio and A. Gionis. The community-search problem and how to plan a successful

cocktail party. In KDD, pages 939–948, 2010.

[31] N. Jayaram, A. Khan, M. Gupta, C. Li, X. Yan, R. Elmasri. GQBE: Querying Entity-

Relationship Graphs by Example Tuples. In Progress.

37

BIOGRAPHICAL INFORMATION

 Mahesh Gupta completed his Bachelor of Technology in Information Technology from

Maulana Azad National Institute of Technology (MANIT) Bhopal, India in May 2007.As a

software engineer he joined Wipro Technologies, Bangalore India and worked 2 years 11

months as SQL developer. He started his Master in Computer Science at the University of

Texas at Arlington in Fall 2010 and joined The Innovative Databases and Information System

Research (IDIR) Lab at UT Arlington in Summer 2011. He also worked as a Web Developer

Graduate Research Assistant in Center for online Development at UT Arlington from May

2011.His research involves Entity-Relationship graph, Web Search and Information Retrieval.

