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ABSTRACT 

 
QUERYING ENTITY-RELATIONSHIP GRAPHS 

BY EXAMPLE TUPLES: EXPERIMENTAL 

EVALUATION AND USER STUDY 

Mahesh Gupta, M.S. 

 

The University of Texas at Arlington, 2012 

 

Supervising Professor:  Chengkai Li 

 The World Wide Web today has evolved into a rich repository of entities where many 

knowledge bases containing entity-related information are directly available. Such knowledge 

bases are often in the form of entity-relationship graphs. To query entity-relationship graphs, 

users need to provide input entities, attributes and relationships by complex query graphs. To 

improve the usability of graph database systems, we study a novel mechanism that queries 

entity-relationship graphs by example tuples. It allows users to express a query in the form of 

one or more tuples consisting of entities. The underlying query system automatically builds a 

query graph based on the example tuples and ranks matching answer tuples.  

 The focus of this thesis is to evaluate our query system’s accuracy and efficiency. To 

evaluate accuracy we employ two methods. In the first method we evaluate queries whose 

ground truths are known and calculate system’s precision and recall. In the second method we 

conduct user study on ranked answer lists and calculate rank correlation co-efficient. The run 

time efficiency of the system is measured with respect to the size of the query graph. 
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CHAPTER 1 

INTRODUCTION 

 The World Wide Web today has evolved into a rich repository of entities where many 

knowledge bases like Freebase [6] containing entity information are directly available. As of 

November 2012 Freebase dataset contains almost 23 million entities [8]. An entity is a single 

thing or concept that exists in the world. Entity-Relationship graph is a labeled graph where a 

node represents entity and edges are relationships between them. Compared to traditional 

keyword based search, entity-search targeting entities and their relationships can capture user 

intention better, hence generating more meaningful search results.  

 

1.1 Motivation 

 To query an entity-relationship graph, a user has to either use a complex querying 

mechanism or provide a query graph as input. In both cases its very difficult for a novice user to 

query an entity-relationship graph. Jayaram et al. [31] proposed Graph Query by Example 

(GQBE) system for querying entity-relationship graph. GQBE provides solution for this problem. 

A user is expected to give example tuples as input to the system and the system automatically 

builds a query graph that is matched against the entity-relationship graph to find similar answer 

tuples. Since the query graph is automatically generated, it becomes imperative to measure the 

quality of the answer tuples obtained. So we need an experimental setup to measure the 

effectiveness of this new querying mechanism. 

1.2 Overview of Problem 

             Suppose a user is interested in finding “a list of technology companies and its 

founders”. If she performs a keyword search on the Web, the result is a set of pages that might 

not have the list of company-founder pairs she is looking for. GQBE provides an alternative 
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solution to this problem where the search is conducted on an entity-relationship graph. Query by 

example paradigm is easy to use like the keyword query paradigm even for a novice user. Here 

the user gives one or multiple answers to his query as example tuples to the system, and using 

this information, the system tries to find other similar answers and ranks them.

For instance, example tuple for the technology company and its founder list can be 

{Jerry Yang, Yahoo}, and the system is expected to find tuples like {Bill Gates, Microsoft}, {Larry 

Page, Google}, {Steve Jobs, Apple} etc. as the answers. 

1.3 Challenges 

  Query by example imposes several challenges. The first challenge is to determine the 

user intention. For example Jerry Yang is not only the “founder” of Yahoo, but he is also a 

“board member” of Yahoo. Second challenge is to automatically and efficiently construct a 

query graph capturing important relationships and properties of the input entities. The third 

challenge, that is focus of this thesis work is, evaluating the correctness and quality of the 

answers.  

1.4 Overview of Solution 

 GQBE automatically builds a query graph from the example tuple provided by the user. 

To ensure a small query graph, yet capturing important relationships, GQBE assigns weight to 

each edge in the graph using various intuitive parameters like Inverse Edge Frequency (IEF), 

frequency of an edge with respect to both its ends and the distance of an edge from input 

entities (describe in details in Chapter-3) to select “important” edges. Our experiments verify 

that this approach helps in capturing the user intention pretty well. 

  To check the correctness of the results, we designed input queries from gold set ground 

truths known to us. We select one of the tuples from a ground truth as the example tuple input 

to GQBE and then use the ground truth to calculate Precision-at-K [14], Normalized Discounted 

Cumulative Gain (nDCG) [16] and Mean Average Precision (MAP) [15] of the ranked list of 

answer tuples returned by GQBE. We also compared the precision and execution time of GQBE 
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with another related system called NESS (Neighborhood based similarity search) [1]. An 

extensive user study using Amazon Mechanical Turk [26] was also conducted to measure the 

quality of the results returned by GQBE. We used a modified version of Pearson Correlation 

Coefficient [17] to capture the effectiveness of the ranking. More detailed description of the 

evaluation is presented in chapter-5. 

1.5 Contribution of Thesis 

 In this thesis work, I have carried out an extensive experimental study of effectiveness 

and efficiency of GQBE on an entity-relationship graph. The main contributions of this thesis 

are: 

• Freebase dataset cleaning and processing. 

• Design of different queries and their ground truth collection. 

• GQBE accuracy and efficiency comparison with NESS 

• Measuring accuracy of the answers’ ranking using Amazon Mechanical Turk user 

study. 

• Developing an easy to use web interface for GQBE. 

1.6 Organization of Thesis 

 The thesis is organized as follows. Chapter 2 gives a detailed background of other 

related work on querying entity-relationship graph. Chapter 3 presents the formal definition of 

concepts introduced by GQBE and different algorithmic approaches to find answers. Chapter 4 

describes technical details of our implementation, preprocessing of Freebase dataset and the 

Web demo. Chapter 5 describes query design, ground truth collection, efficiency metrics, 

Amazon Mechanical Turk user study and results. Conclusion is drawn in Chapter 6. I have used 

material from our work [31] in this thesis. 



 

 
 
4

CHAPTER 2 

BACKGROUND AND RELATED WORK 

 In this chapter, we discuss similar work done and why they are not applicable to our 

problem.  

 Cohen et al. [3], Xin et al. [27] proposed technique for expanding set of named entities. 

The proposed system uses semi-structured web pages to find answers. GQBE is different from 

these on two main aspects – (1) while these systems find existing answers within structure in 

web pages such as HTML tables and lists, GQBE works on data graph. (2) GQBE is more 

general in that each input query tuple contains multiple heterogeneous entities whereas these 

systems, take multiple input objects in which each input is a single entity.   

 There are several works [25,28,29,30] that identify the best subgraphs/paths in a data 

graph to describe how several input nodes are related. The query graph discovery component 

of GQBE is different from these works in several important ways – (1) Some of these works 

focus on homogeneous graphs where all nodes are of the same type and all edges represent 

instances of the same relationship. GQBE focus on heterogeneous graphs with many different 

types of entities and relationships. (2) The graph identified by these works contains only those 

paths that connect the input nodes, but GQBE include relationship pertinent to individual query 

tuple entities. (3) GQBE uses query graph to find answer graphs and answer tuples, which is 

not within the focus of these works. 

Tian et al. [2] proposed technique for approximate matching of large graph queries. The 

proposed method called TALE (a tool for approximate subgraph matching of large queries 

efficiently) uses a novel neighborhood indexing method for faster execution time. Khan et al. [1] 

proposed technique for efficient approximate search of a query graph in a noisy, large, 
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incomplete, labeled data graph. The proposed method called NESS (Neighborhood bases 

similarity search) is appropriate for graphs with low automorphism and high noise.

GQBE is different from [1] and [2] on several aspects. First, GQBE requires to match 

only edge labels, but node labels are not required to be always matched. This is equivalent to 

matching a query graph with all unlabeled nodes, and thereby significantly increases the 

problem complexity. Second in GQBE query graph is weighted edges graph, and an answer 

graph must have entities corresponding to all query tuple entities. We compared GQBE with 

NESS and our empirical result shows that GQBE clearly beats NESS in accuracy. Finally, all 

these works assume query graph as input while GQBE automatically creates query graph from 

query tuple. 
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CHAPTER 3 

OUR APPROACH 

            In this chapter we provide formal definitions of all term used in GQBE, construction of 

maximal query graph from user’s example tuple, 2 different algorithmic approaches to find 

answer tuples and ranking methodology.  

 

3.1 Entity-Relationship Graph 

            An entity-relationship graph is a labeled directed multi graph G (V, E) where V is a set of 

entities (vertices) and E is a set of directed relationship (edges) between the entities. We also 

use V(G) and E(G) to denote the entity set and the edge set, respectively. Each node v∈V 

represents an entity. Each node has a unique identifier id. Each edge e=(vi, vj)∈ E denotes a 

direct relationship from entity vi to entity vj. Each edge has a label, denoted as label(e). Multiple 

edges can have the same label.  

Figure 3.1 shows the example of an entity-relationship graph. Each node in the graph 

represents an entity and an edge represents the relationship between the two vertices. For 

instance vertex “Jerry Yang” represents an entity connected to another entity “Yahoo” by 

relationship Founder. Example of another relationship is Industry, where both “Google” and 

“Yahoo” connect to “Computer Software”. 
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Figure 3.1 Entity-Relationship Graph 
 

3.2 Neighborhood Graph 

 Given an entity-relationship graph G and a query tuple t, the corresponding 

neighborhood graph Ht is the weekly connected sub graph of G that consists of all undirected 

paths in G of length d or smaller, with at least one end point each such path being a query entity 

in t. The path length threshold d is an input parameter. Figure 3.2 shows neighborhood graph 

for query tuple {Jerry Yang, Yahoo} derived from entity-relationship graph G of figure 3.1 for 

d=2. 

 The neighborhood graph Ht in Figure 3.2 we have edge e1 ={Jerry Yang, USA} and 

label(e1) =nationality. One more edge e2 labeled nationality is also incident on “USA”. The 

neighborhood graph on a complete real world dataset may contain many more such edges 

because a lot of people have “USA” as nationality. Among e1 and e2, e1 is an important edge 

because it is closer to input entity “Jerry Yang”. The intuition is that edge e1 represents 

important relationship with respect to input entity “Jerry Yang” but e2 is deemed unimportant 
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with respect to input entity. Similarly we can mark edge e3= {Sergey Brin, Stanford University}, 

label(e3)= graduated and edge e4= {Google, Computer Software}, label(e4)= Industry as 

unimportant edges. Figure 3.3 shows the reduced neighborhood graph after removal of 

unimportant edges from neighborhood graph in Figure 3.2. 

  

 

Figure 3.2 Neighborhood Graph of Depth d=2 for Input {Jerry Yang, Yahoo} 
 

 
 

Figure 3.3 Reduced Neighborhood Graph from Figure 3.2  
 

 



 

 
 
9

3.3 Maximal Query Graph 

           Even after removal of unimportant edges the reduced neighborhood graph Ht can be 

quite large even under a small path length threshold d. The query evaluation cost can be very 

high in finding approximate answers to such a large Ht. Hence we aim to drastically reduce the 

size of Ht and obtain a small subgraph that capture only important features of the input entities. 

This graph is termed as maximal query graph Gt. 

To obtain maximal query graph, edges in the reduced neighborhood graph weighted by 

following measures. 

Participation Degree- Participation degree p(e) of an edge e =(u, v) define as number of edges 

in data graph which share the same edge label and at least one of the two end nodes of edge e. 

Formally,  

p(e) =|{e'= (u',v ') | label(e) = label(e'),u'= u ∨ v '= v} | 

 

Inverse Edge Label Frequency- For edge e, it’s defined as,  

ief (e) = log
| E (G) |

# label(e)  

 

Where  |E(G)| is the number of edges in data graph G and #label(e) is the number of edges in G 

with the same label as e. 

So, given a input query tuple t, its reduced neighborhood graph Ht, and a parameter m, the 

maximal query graph Gt is a weekly connected subgraph of Ht that maximize total edge weight 

and it has m edges. Here weight of edge e define as,  

w(e) =
ief (e)

p(e) × d2(e)
 

Here d(e) is smallest distance of edge e from any input entity. 
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3.4 Query Graph 

With respect to an entity-relationship graph G and its maximal query graph Gt for query 

tuple t a query graph Q is a weakly connected sub graph of Gt that contains all input entities in t. 

We denote set of all query graphs as Qt. We can derive multiple query graphs corresponding to 

a query tuple. Figure 3.4 shows two query graphs. 

 

 

Figure 3.4 Examples of (a) Query Graph with 4 edges (b) Query Graph with 3 edges 
 

3.5 Answer Graph 

            With respect to an entity-relationship graph G, its maximal query graph Gt for query tuple 

t and a query graph Q, an answer graph A is a weekly connected sub graph of G. A is also 

isomorphic to G except that entity label may not match. This definition of answer graph based 

on the intuition that an answer tuple is similar to input tuple, if they are in similar neighborhoods. 

The corresponding entities in two neighborhoods share common entity types or even the same 

entities, and they have the same relationship with each other. Figure 3.5 shows two answer 

graphs with respect to query graph in figure 3.4 (a) and Figure 3.6 shows two answer graphs 

with respect to query graph in figure 3.4 (b). 
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Figure 3.5 Answer Graphs for Query Graph in Fig 3.4(a): (a) Answer graph for answer tuple 
{Sergey Brin, Google} (b) Answer graph for answer tuple {Bill Gates, Microsoft} 

 

 
Figure 3.6 Answer Graphs for Query Graph in Fig 3.4(b): (a) Answer graph for answer tuple 

{Sergey Brin, Google} (b) Answer graph for answer tuple {Reed Hasting, Netflix} 
 

3.6 Answer Tuple 

         Answer tuple is defined as bijection between a query graph and answer graph. So a query 

graph Q contains all input entities. Given an answer graph A, the entities corresponding to the 

input entities (based on the bijection f: V (Q) → V (A)) form the answer tuple. For example 
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{Sergey Brin, Google}, {Bill Gates, Microsoft}, {Reed Hasting, Netflix} are answer tuples from 

the answer graphs in figure 3.5 & 3.6. 

3.7 Query Lattice 

 Given a maximal query graph Gt, the query lattice is a directed acyclic graph in which 

the root node is Gt, and the other nodes are subgraphs of Gt. The leaf nodes of lattice are those 

query graphs that cannot be made any simpler and still keep all input entities connected. Figure 

3.7(a) shows a maximal query graph, which contains two query entities in shaded circle and five 

edges A, B, C, D and E. Its corresponding query lattice is in Figure 3.7 (b). The root node of the 

lattice, denoted by ABCDE, represents maximal query graph itself. The two shaded nodes A 

and BC are leaf nodes of the lattice. The query lattice is constructed by first generating all leaf 

nodes, and then going all the way up to the root of the lattice. We define score of a node as sum 

of the edge weight. In subsequent two sections we will explain two different approaches for 

traversal of query lattice. 

 
Figure 3.7 Example of (a) Maximal Query Graph (b) Query Lattice  
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3.8 Brute-Force Based Enumeration of Lattice Nodes 

 Here we employ breadth-first search (BFS) based bottom-up lattice exploration method 

as brute-force mechanism for evaluating the query lattice. We first start off with the leaf nodes 

and use the results of each lattice node to find the answer graphs of its parent. We complete the 

evaluation of every lattice node in a level before evaluating any lattice node in upper level. If 

traversing a lattice node does not yield any answer graph, all its ancestors are pruned out.  

Figure 3.7 shows example of query lattice. Here node ACD does not yield any answer graph, 

hence all its ancestors ABCD, ACDE and ABCDE won’t be evaluated. 

 

Figure 3.8 Brute-Force Based Query Lattice Enumeration 
 

3.9 Best First Search Based Enumeration of Lattice Nodes 

 The Brute-force approach traverses many lattice nodes to find all the answer tuples, 

while we are only seeking top-K answer tuples. To traverse as few lattice nodes as possible and 

find only the top-K answer tuples, we follow a Best first search method. The Best-first search 

traversal always expands the most promising lattice node. A most promising node is a node that 
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has the highest upper bound. Upper bound of a node is the score of its ancestor node that has 

the highest score among all its ancestors. Lower bound of a node is the score of the node itself. 

Upper boundary of a node in lattice is its ancestor node that has no ancestor in lattice. Clearly, 

at the beginning, upper boundary of each node is root of the lattice and their upper bound is the 

score of the maximal query graph. However, it changes as we traverse the lattice and detect 

null nodes. Figure 3.9 shows example of lower and upper bound values.  

 

Figure 3.9 Initial Lower and Upper boundary in Lattice 
 

 
 

Figure 3.10 (a) shows that node BCE is detected as a null node. So all ancestor nodes 

of BCE (BCDE, ABCE and ABCDE) removed from the lattice. Figure 3.10 (b) shows new upper 

boundary values. 
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⇓ 
 

 
Figure 3.10 (a) Node BCE detected as NULL node (b) Recalculation of Upper Boundaries in 

Lattice 
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3.10 Top-K Answers Ranking 

 The score of an answer tuple t’ in answer graph A is the sum of two values – the total 

weight of edges in query graph Q of answer graph A and the extra credit given to matching 

nodes in A and Q. 

Score(A) = W (e) + match(e,e')
e= (u,v )∈E(Q )
e'=( f (u), f (v ))∈E(A )

∑
e ∈E(Q )

∑  

Here match (e, e’) is for giving extra credit to matching nodes in Q and A defined as follows, 

 

 Node label matching increases overall size and complexity of the lattice. Hence 

algorithm first find top-K’ (here K’ is a heuristic based number larger than K) answers based on 

edge label match score. After that algorithm calculate node label match score on these top-K’ 

answers, re-rank them and return top-K answers. 
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CHAPTER 4 

IMPLEMENTATION 

 In this chapter we are going to describe the implementation details of GQBE. We will 

also describe details of the Web-based demo developed for GQBE. 

 

4.1 Freebase Data Dump Processing 

 We used Freebase dataset [7] of Sep, 2011. We cleaned it to keep only named entities 

(e.g., Stanford University} and abstract concepts {e.g., Jewish People}. Freebase also contains 

back edges between 2 entities, for example edge inventor connects node “Page Rank” to 

“Sergey Brin” and edge inventions connects “Sergey Brin” to “Page Rank”. We kept only one 

such edge on our dataset. Table 4.1 shows details of our dataset. 

 

Table 4.1 Freebase Data Set Details 
 

# Of Edges # Of Nodes # Of distinct Edges # Of Node Type 

46,708,421 28,483,132 5,428 3,307 

 

4.2 Overview of GQBE Implementation 

 GQBE was implemented in Java. Figure 4.1 shows the process flow diagram for GQBE. 

The entire process can be explained as follows: 

• System expects a query tuple as input. 

• It first builds the neighborhood graph around the query tuple using a depth threshold d. 

• It removes unimportant edges with respect to the query tuple from the neighborhood 

graph to create a reduced neighborhood graph. 



 

 

• Maximal query graph 

maximum edge weight and 

• We have 2 different strategies for lattice evaluation. First one is breadth

based brute-force method and second

promising nodes in the 

evaluation are scored based on the edge label matching

• After collecting answer

considered to score the an

answers. 

Figure 4.1 GQBE Process Flow D
 

 We have developed a web interface for GQ

input example query tuples. The system fetches

see both edge label and node label 

the maximal query graph created by GQBE for 

each answer tuple. Web demo

[13]. We also use other external API

T

Component 

Freebase Suggestion API [9] 

 

Input Entity 

Tuple

Neighborhood 

Graph
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Maximal query graph is created from the reduced neighborhood graph that has 

maximum edge weight and at most m edges, where m is a heuristic based number.

We have 2 different strategies for lattice evaluation. First one is breadth

force method and second is best first search method where 

the lattice are evaluated. All answer graphs returned from 

evaluation are scored based on the edge label matching. 

answer graphs from lattice evaluation, node label matching

the answers, which are then re-ranked to find the final top

Figure 4.1 GQBE Process Flow Diagram 

4.3 Web Demo for GQBE 

We have developed a web interface for GQBE. It has search box where 

example query tuples. The system fetches a list of ranked relevant answers. User

see both edge label and node label based matching score for each answer. Users 

maximal query graph created by GQBE for the input query tuple and the answer graph of 

Web demo was implemented using PHP and JQuery 1.7 JavaScript library

also use other external APIs whose details are presented in Table 4.2. 

Table 4.2 GQBE API/Libraries Details 
 
Description 

Gives search suggestion when a

the search box. 

Reduced 

Neighborhood 

Graph

Maximal Query 

Graph

Query Lattice 

Evaluation

reduced neighborhood graph that has 

m edges, where m is a heuristic based number. 

We have 2 different strategies for lattice evaluation. First one is breadth-first search 

 only the most 

returned from this lattice 

node label matching is 

ed to find the final top-K 

 

BE. It has search box where a user can 

answers. Users can 

 can also view 

answer graph of 

JQuery 1.7 JavaScript library 

Gives search suggestion when a user types in 

Top-K Answers 

ranking
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Table 4.2 – Continued 

Freebase image API [10] To show freebase image of answer entities. 

Dracula Graph Library [12] To show query and answer graphs in the 

browser. 

 

 
 

Figure 4.2 Suggestions in Search Box 
 
 

 
 

Figure 4.3 Top-4 Answers for Query {Jerry Yang, Yahoo} 
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Figure 4.4 Maximal Query Graph for Query {Jerry Yang, Yahoo) 
 

 
 

Figure 4.5 Answer Graph of Answer Tuple {Bill Gates, Microsoft}
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CHAPTER 5 

EVALUATION AND RESULTS 

 In this chapter I am going to describe details of evaluation metrics, query design, 

ground truth collection, Amazon Mechanical Turk user study. We will see comparison study 

between NESS and GQBE for precision and execution time. 

 

5.1 Query Design and Ground Truth Collection 

 We used a set of 20 queries to evaluate the accuracy and efficiency of the system. 

These queries were designed based on various Wikipedia and Freebase tables. Each such 

table is a collection of tuples. In accuracy evaluation, for each table, we used one of its tuples 

as example tuples and its remaining tuples as ground truth .The 20 queries, their ground truth 

size and web URL’s are summarized in table 5.1. Each query tuple consists of one, two, three 

entities. The queries cover diverse domain such as movies, people, companies, sports, awards, 

religions, universities, automobiles, and music. 

Table 5.1 Queries and Ground Truth Details
 

Query Ground 
Truth Size 

Ground Truth URL 

C 1240 http://www.freebase.com/view/computer/progr

amming_language 

TomKat 16 http://www.freebase.com/view/celebrities/sup

ercouple 

Jerry Yang, Yahoo! 8349 http://www.freebase.com/view/organization/or

ganization_founder 
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Table 5.1 – Continued 

Michael Phelps, Sportsman of the year 55 http://www.freebase.com/view/en/sportsman_

of_the_year/-/award/award_category/winners 

Gautama Buddha, Buddhism 621 http://www.freebase.com/view/religion/religion 

Manchester United, Malcolm Glazer 40 http://en.wikipedia.org/wiki/List_of_English_fo

otball_club_owners 

Boeing, Boeing C-22 89 http://www.freebase.com/view/en/boeing/-

/aviation/aircraft_manufacturer/aircraft_model

s_made 

David Beckham, A C Milan 94 http://www.freebase.com/view/en/ac_milan/-

/soccer/football_team/current_roster 

Beijing, 2008 Summer Olympics 41 http://www.freebase.com/view/olympics/views

/olympic_host_city 

Microsoft, Microsoft Office 200 http://www.freebase.com/view/en/microsoft/-

/computer/software_developer/software 

Jack Kirby, Iron Man 25 http://www.freebase.com/view/user/mahigupta

/default_domain/views/comic_character_by_ja

ck_kirby 

Apple Inc, Sequoia Capital 300 http://www.freebase.com/view/user/mahigupta

/default_domain/views/company_funded_by_

sequoia_capital 

Beethoven, Symphony no. 5 600 http://www.freebase.com/view/en/ludwig_van

_beethoven/-/music/composer/compositions 

Uranium, Uranium-238 26 http://www.freebase.com/view/user/mahigupta

/default_domain/views/isotope_of_uranium 
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Table 5.1 – Continued 

Microsoft Office, C++ 300 http://www.freebase.com/view/user/mahigupta

/default_domain/views/c_software 

Dennis Ritchie, C 163 http://www.freebase.com/view/computer/progr

amming_language_designer 

Steven Spielberg, Minority report 40 http://www.freebase.com/view/user/mahigupta

/default_domain/views/movie_directed_by_spi

elberg 

Nike, Tiger Woods 20 http://www.freebase.com/view/user/mahigupta

/default_domain/views/sponsored_by_nike 

Donald Knuth, Stanford university, Turing 

Award 

18 http://en.wikipedia.org/wiki/List_of_Turing_Aw

ard_laureates_by_university_affiliation 

Ford motor, Lincoln, Lincoln MKS 25 http://www.freebase.com/view/base/ranker/ra

nkerurlname/lincoln$002F2481808/-

/automotive/make/model_s 

 

5.2 User Study 

 We conducted an extensive user study using Amazon Mechanical Turk [26] to measure 

the accuracy of GQBE in the real world. We chose top-30 answers in each of the 20 queries 

and created 50 random pair per query. These 50 pairs broken down into 5 task of 10 questions 

each and 2,000 users were asked to rank the better answer in each pair with respect to the 

input query. In each form we had 1-2 screening questions about input entity tuple because we 

wanted each reviewer to be aware of input entity tuple. If reviewer answered screening question 

correctly, then only we accepted her review.  Figure 5.1 shows example of one such task for 

query {Jerry Yang, Yahoo!}. Here first 2 questions are screening question about Jerry Yang and 
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Yahoo. It is followed by 10 questions, each have two random answer tuple. We measured 

accuracy of the ranking of answers by GQBE using Pearson Correlation Coefficient [17] 

between ranking and user feedback. 

 

 

Figure 5.1 Amazon Mechanical Turk User Study Form for Query {Jerry Yang, Yahoo) 
 

5.3 Efficiency Metrics 

 We measured accuracy of the system by both comparing query results with ground 

truth and conducting user study. Accuracy was measured by four widely used metrics, including 

Precision-at-k (P@k) [14], Normalized Discounted Cumulative Gain (nDCG) [16], Mean Average 

Precision (MAP) [15], and Pearson Correlation Coefficient (PCC) [17]. We briefly review them 

below. 

Precision-at-k:   The ratio of top-k answers that belong to the ground truth list. 

P@k = # answers in top-k present in Ground truth / k 
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Normalized Discounted Cumulative Gain (nDCG):  It measures the accuracy of a ranked list by 

first computing the cumulative gain of relevant answer in the list. Relevance in our case is either 

0 or 1 at each position. It penalizes the lower ranked relevant answers and aggregates the total 

gain. It is then normalized by the gain obtained for an ideal ranking which rank all ground truths 

at top. 

Mean Average Precision (MAP):  The average precision score for a query is based on P@k 

given by, 

AveP(q) =

P@k(q,i)
i=1

k

∑

#Ground − truths
 

The MAP for a set of queries is the mean of AveP (q) over the queries given by, 

MAP =
AveP(q)

q
∑

#Queries
 

 

Pearson Product-Moment Correlation (PCC):  PCC we used in Amazon Mechanical Turk user 

study. For each query, we obtained top-30 answers by GQBE. We then generated 50 random 

pairs of these answers. We presented each random pair to 20 Amazon Mechanical Turk users 

and ask them to specify their preference in each pair. We then constructed two score lists for 

each query. One list X represents GQBE, computed by taking the difference between each 

pair’s ranks in query result. The other list Y represents user’s opinions, computed by taking the 

difference in numbers of users favoring the two answers in the pair. PCC is then computed 

between these two score lists given by, 

r =

X i − X
− 

 
 

 

 
 Yi −Y

− 

 
 

 

 
 

i=1

n

∑

X i − X
_ 

 
 

 

 
 

2

Yi −Y
_ 

 
 

 

 
 

2

i=1

n

∑
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5.4 Setup 

 All the experiments were performed using dual-core 24 GB memory 2.0 GHz Xeon 

machine. The authors of NESS provided source code of NESS. To calculate edge weights, 

GQBE requires inverse edge frequency and participation of each edge in the data graph. We 

precomputed these values and stored them in files on secondary storage. GQBE loads these 

files into memory during computation. 

5.5 Results and Comparison 

 Table 5.2 shows Precision comparison between GQBE and NESS for different values 

of K. NESS had almost equal precision for one-entity queries but its precision gets worse for 

two and three entities queries. Overall GQBE clearly beat NESS in all precision measures 

(P@k, nDCG, MAP) by big margin. 

 

Table 5.2 Precision Comparisons Between GQBE and NESS 

Top-K 
GQBE NESS 

Precision-K nDCG MAP Precision-K nDCG MAP 

10 0.905 0.933 0.176 0.405 0.49 0.0723 

15 0.87315 0.934 0.247 0.405 0.499 0.1 

20 0.8368 0.9331 0.269 0.378 0.478 0.08 

25 0.806 0.9357 0.299 0.3705 0.479 0.101 

Over-All 0.85523 0.93395 0.24475 0.389625 0.4865 0.0832 
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Figure 5.2 Mean Average Precision Comparisons Between NESS and GQBE 
 

 

Figure 5.3 nDCG Comparisons Between NESS and GQBE 
 



 

 28

 

Figure 5.4 Precision-at-K Comparisons Between NESS and GQBE 
 

 The PCC value for each query and the entire system is summarized in Table 5.3. It can 

be observed that ranking of answer is better for 3 tuple queries, suggesting that more entities 

probably captures a better maximal query graph. It can also be observed that PCC value for  

{Apple Inc, Sequoia Capital} and {Beethoven, Symphony No. 5} is 0. This is because score of 

all top-30 answers were the same, indicating that all those answers were projected from same 

query graph. The overall PCC value for the ranking produced by GQBE across all the 20 

queries is 0.497. Having a Pearson correlation coefficient over 0.5 is generally considered a 

strong positive ranking correlation [18]. A PCC of 0.497 indicates that GQBE produces a good 

ranking of answers, which is in line with what user expect in real world. 

 

 

 



 

 29

Table 5.3 Pearson’s Correlation Coefficient (PCC) (Average=0.497) 

Query PCC Query PCC 

Donald Knuth, Stanford 

University, Turing Award 

0.79 Ford Motor, Lincoln, Lincoln 

MKS 

0.78 

Nike, Tiger Woods 0.6 Michael Phelps, Sportsman of 

the Year 

0.8 

Gautama Buddha, Buddhism 0.34 Manchester United, Malcolm 

Glazer 

0.27 

Boeing, Boeing C-22 0.06 David Beckham, A C Milan 0.26 

Beijing, 2008 Summer 

Olympics 

0.33 Microsoft, Microsoft Office 0.7710 

Jack Kirby, Iron Man 0.578 Apple Inc, Sequoia Capital 0 

Beethoven, Symphony No. 5 0 Uranium, Uranium-238 0.620 

Microsoft Office, C++ 0.43 Dennis Ritchie, C 0.29 

Steven Spielberg, Minority 

Report 

0.64 Jerry Yang, Yahoo 0.3 

C 0.4 TomKat 0.65 

 

 

Figure 5.5 shows total rum time comparison between NESS, GQBE and Brute force 

method. We study this with respect to size (number of edges) of maximal query graph. One can 

observe that running time of baseline suffered compared to GQBE and this is due to more 

number of lattice nodes baseline requires to evaluate. It is worth noting that the running time of 

GQBE and baseline do not increase consistently with increase in query graph size. This is 

because lattice evaluation time is not solely dependent on the number of edges, but it is also 
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dependent on the particular edges chosen in the maximal query graph. The running time of 

GQBE and NESS is comparable in most cases and NES performs a little better in some cases. 

This can be explained by the fact that NESS is an approximate graph querying system. It does 

not always try to find best score for an answer tuple with respect to a given maximal query 

graph. GQBE, on the other hand, always guaranteed to fetch the best score for an answer 

tuple. 

 

Figure 5.5 Run Time Comparisons Between NESS, GQBE and Brute-Force Method With 
Respect to Size of Maximal Query Graph. 

 

Figure 5.6 shows time taken to discover maximal query graph as a function of number 

of entities in the query tuple, while also varying depth threshold d. Recall that maximal query 

graph generation involves first getting a neighborhood graph using d, and then using a greedy 

heuristic to obtain a much smaller subgraph. Once can observe that time increases when we 

have a higher d, since this increases the size of the neighborhood graph. 

 



 

 31

 

Figure 5.6 Time Taken to Create Maximal Query Graph With Respect to Number of Entities in 
Query Tuple. 

 
 

 
 Figure 5.7 shows comparisons between GQBE and Brute force method in term of 

number of lattice nodes evaluated. As we can observe, the number of lattice-nodes evaluated 

by GQBE is lesser than the brute-force. This is because in best-first strategy the choice of the 

next node to evaluate depend on the higher upper bound which force lattice traversal to greedily 

reach the top of the lattice. Evaluating fewer nodes has a direct impact on the running time of 

the algorithm, which is shown in the running time comparison of the two methods. 
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Figure 5.7 Comparisons of Brute-Force and GQBE With Respect to Number of Lattice Nodes 
Evaluated. 
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CHAPTER 6 

CONCLUSION 

GQBE is a system that queries entity-relationship graph by example entity tuples. 

GQBE automatically creates a maximal query graph based on the input example query tuple 

and finds the top-K matching answer tuples. Our experiments on large freebase dataset shows 

that GQBE clearly outperforms an adaption of a related system NESS in query answer 

accuracy. The runtimes of the two systems are comparable while the best first search algorithm 

outperforms the brute-force method by orders of magnitude. 

As an initial step toward better usability of graph query system, GQBE saves users the 

burden of forming explicit query graphs, by allowing querying graphs by example entity tuple. As 

we see an unprecedented proliferation of entity data graphs in real world, GQBE will have 

profound impact on many future works. 
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