
SHAPING AND MAINTENANCE OF LOW-LATENCY ANONYMITY SYSTEMS

by

HARSHA DORESWAMY

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2012

Copyright c© by Harsha Doreswamy 2012

All Rights Reserved

To my parents, family and friends who have supported and encouraged me.

ACKNOWLEDGEMENTS

I would like to express my profound appreciation to my supervising professor

Dr. Matthew Wright for supervising me on this thesis and guiding me in every

step of my work. And I would like to thank Dr. Mohan Kumar and Dr. Gergely

Zaruba for their invaluable advice and interest in my research and for taking time

to serve on my thesis committee. I would also like to thank all the members of the

Information Security Lab for creating a positive and enjoyable work environment and

being available at any time to discuss problems.

Finally, I would like to thank my parents, family and friends. Were it not for

their support throughout my academic career, I wouldn’t have made it as far as I

have. I will never forget it.

November 19, 2012

iv

ABSTRACT

SHAPING AND MAINTENANCE OF LOW-LATENCY ANONYMITY SYSTEMS

Harsha Doreswamy, M.S.

The University of Texas at Arlington, 2012

Supervising Professor: Matthew Wright

Surveillance of users on the Internet is growing. This makes it increasingly im-

portant to protect users’ identity when they communicate online, especially for users

like journalists, whistleblowers, and military officials. Anonymity systems can con-

ceal users’ identities and provide anonymity for their online activities. Low–latency

anonymity systems like Tor are designed to provide support for applications like

Web browsing, video streaming, and online chat. To make the commutation between

source and destination unlinkable, Tor routes all the traffic through three Tor relays,

which are spread across the globe. These three relays are usually chosen without

considering the delay to get from one to the next. If the relays selected are located

too far from each other, it reduces the performance of the system. On the other hand,

if we pick the three relays closest to the sender, then it would make it easier for the

attacker to identify the sender. In other words, we would lose anonymity. One of

biggest challenges in low–latency anonymity systems is maintaining anonymity while

improving performance.

In this thesis, we try to improve the performance of Tor–like low–latency anonymity

systems without sacrificing anonymity. The current version of Tor tries to improve

v

the performance of the system in the relay selection process by biasing clients to select

nodes with higher bandwidth. However, the performance gain from bandwidth–based

biasing alone is not sufficient for many users. To further increase performance while

ensuring strong anonymity properties, we propose to arrange the nodes and links

of the network into restricted network topologies, through which anonymized traffic

is routed. In building these restricted topologies, we bias the construction process

to select lower latency edges to improve performance, while also ensuring that the

network’s bandwidth capacity is well utilized. We examine two restricted topologies:

an expander graph topology and a novel clustering model topology. In the expander

graph topology, the system constructs an expander graph with Hamiltonian cycles in

which the graph edges are biased towards latency. In the clustering model topology,

we cluster the relays based on their bandwidth and construct the graph in two steps.

First, the system calculates the number of edges for given node that connects to each

cluster based on the ratio of the total number of edges of the cluster to the total

number of all edges in the system. Then nodes are selected from these clusters with

a bias towards low–latency edges.

A key challenge in the deployment of a topology is maintaining the structure and

properties of the topology, in spite of churn— nodes joining and leaving the network.

We have shown that our topologies, of size 750 nodes, have maintained the structure

and properties of the topology for up to 25,000 churn operations without significant

degradation to anonymity and performance when compared with the initial topology.

We also compare the anonymity and performance of the expander graph versus the

clustering model topology on various parameters, such as latency bias, number of

hops, and number of nodes joining and leaving.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF FIGURES . ix

Chapter Page

1. INTRODUCTION . 1

1.1 Contributions . 2

2. BACKGROUND . 5

2.1 Tor . 5

2.2 Improving the performance of Tor by path selection 7

2.3 Other ways of improving Tor performance 10

2.4 LAP . 11

2.5 Topology maintenance in distributed systems 12

2.6 Expander graph . 14

2.6.1 Construction . 15

3. SYSTEM DESIGN . 17

3.1 Expander graph topology . 17

3.1.1 Construction . 17

3.1.2 Maintenance . 17

3.2 Clustering model topology . 18

3.2.1 Construction . 19

3.2.2 Maintenance . 23

4. EXPERIMENTS . 24

vii

4.1 Simulation design . 24

4.2 Clustering model topology performance 26

4.3 Expander graph and Clustering model graph maintenance 28

4.4 Expander graph verses Clustering model graph 30

5. CONCLUSION AND FUTURE WORK 32

REFERENCES . 34

BIOGRAPHICAL STATEMENT . 37

viii

LIST OF FIGURES

Figure Page

3.1 Clustering model with five clusters and sample values from our simulations 19

3.2 Tor Bandwidth distribution . 22

4.1 Clustering model topology performance with various node degrees and

latency bias values: (a) entropy and (b) latency 26

4.2 Clustering model topology performance with various number of clusters

and latency bias values: (a) entropy and (b) latency 27

4.3 Expander graph maintenance with and without latency biasing: (a)

entropy and (b) latency . 28

4.4 Clustering model topology maintenance with and without latency bi-

asing: (a) entropy and (b) latency . 29

4.5 Expander graph verses Clustering model over number of churn opera-

tions: (a) entropy and (b) latency . 30

4.6 Expander graph verses Clustering model over number of hops: (a)

entropy and (b) latency . 31

ix

CHAPTER 1

INTRODUCTION

With the ever growing use of the Internet in all aspects of our daily lives,

privacy and confidentiality are becoming increasingly important to the success and

wide–spread use of many online applications. Hiding user’s identity is Anonymity.

In particular providing anonymity to users on internet is a growing concern. En-

cryption alone does not provide the level of privacy required by many users, since

it only protects the transmitted data instead of the identities of the communicating

parties. User anonymity is important in Internet applications such as electronic vot-

ing, e–commerce, peer–to–peer file sharing, and anonymous Web–browsing or email.

Anonymity can also benefit government and law enforcement agencies, as it creates

a medium of safe communication for whistleblowers and citizens willing to submit

leads in criminal investigations. It can also help corporations seeking for a means of

doing competitive research and business deals. For journalists and more specifically

for citizen journalists, anonymity systems could be a very important tool.

Tor is free software and an open network that provides online anonymity [1].

Tor is one of the most widely used anonymity systems with around 500,000 users

[2]. Tor provides anonymity in terms of unlinkability of sender and receiver, i.e., the

sender and receiver of a communication cannot be identified even if the sender and

receiver are known to be of communicating through Tor. The Tor client software

routes all the traffic though a sequence of three Tor relays, called a circuit, to ensure

that no single router can link the sender and receiver. Tor relays are operated by

1

2

volunteers and there are around 3,000 volunteer–operated Tor relays spread across

the globe [3].

The volunteer–operated nature of Tor relays creates two problems. First, the

volunteers provide a wide range of bandwidths for their Tor relays. This variation

in bandwidth not only makes system performance unreliable, it can also lead to a

loss of anonymity due to attacks like throughput fingerprinting [4]. In this attack, an

attacker observes the throughput of a Tor flow, which can be used as a fingerprint

of the bottleneck relay— the relay with the least bandwidth in the circuit. Through

these observations, it is possible to identify when two or more circuits share the same

bottleneck relay, which can then be used as a stepping stone for de–anonymizing the

user. Second, the variations in latency— round trip time (RTT) between Tor relays.

With Tor relays spread across the globe unevenly, the latency between the relays

can hugely vary. If circuits are built with high–latency links between the Tor relays,

then it would reduce the performance of the system. On the other hand, always

building circuits with low–latency links between the relays, would make it easier for

the attackers to identify the relays used and can also lead to de–anonymizing the user.

1.1 Contributions

Our goal is to improve the performance of low–latency anonymity systems like

Tor without reducing users’ anonymity. To this end, we propose to organize Tor relays

into restricted network topologies, through which Tor traffic is routed. The restricted

topologies provide more cover traffic for users, which improves the anonymity. Keep-

ing in mind the influence of latency on Tor’s performance and anonymity, we try to

include this property in the construction of our topologies to increase the performance

of Tor. Tor studies appear to indicate that bandwidth is a limited resource. We treat

3

bandwidth as a shared resource and design a topology with both high utilization of

the available bandwidth and fair access to the bandwidth.

We examine two network topologies: an expander graph topology and a novel

clustering model topology. In the expander graph topology, which closely follows

the work of Mallesh et al [5], the system arranges nodes into an expander graph

with the graph edges selected using a bias towards low–latency edges. We construct

our expander graph with Hamiltonian cycles, which helps in maintaining the graph’s

structure and properties even after churn operations. In the clustering model topol-

ogy, we cluster the relays based on their bandwidth using the K–means algorithm

and construct the graph in two steps. First, the system assigns each node a number

of edges to each cluster based on the ratio of the bandwidth of that cluster to the

total bandwidth in the system. In the second step, for each of the assigned edges to

a given cluster, nodes from that cluster are selected using a bias towards low–latency

edges.

Our evaluation process consists of constructing both topologies in simulation

and calculating latency and entropy of the topologies. In real–world systems, nodes

join and leave the network all the time. To take into consideration of this churn—

nodes joining and leaving, and the effects of churn on the topologies, we simulate

churn operations varying from 0 to 25,000 and then checking for changes in latency

and entropy of the topologies . The graph size of each of these topologies is around

750 nodes. We used MIT’s King dataset [6] for assigning latency values and sample

Tor bandwidth values for assigning bandwidth values. We find that the performance

of the clustering model topology can be significantly increased, without affecting the

anonymity of the system, by increasing the biasing towards low–latency links. We

also found that the maintenance process of the expander graph should be carried out

without latency biasing, whereas the maintenance process of the clustering model

4

topology should be carried with latency biasing. A comparison between the expander

graph and the clustering model shows that the expander graph offers better anonymity

while the clustering model offers better performance.

In Chapter 2, we provide the background context for our work, including a brief

description of Tor and discussions of related work on improving the performance of

Tor and topology maintenance in distributed systems. We also discuss the similarities

and differences of our work with other topology maintenance techniques. Chapter 3

describes the construction and maintenance process of the expander graph and clus-

tering model topologies. Chapter 4 describes the experimental setup and simulation

results. Chapter 5 concludes our work by considering the outcomes of our results and

discussing ideas for possible future work.

CHAPTER 2

BACKGROUND

In this chapter, we will discuss the background of my thesis. We start with

a brief description of working of Tor. Then ways of improving performance of Tor

and various parameters of Tor used in this process. We also discuss one of a kind

anonymity system called LAP. A brief discussion of topology maintenance in dis-

tributed systems. Then get into a prior work on a restricted network topology—

expander graph.

2.1 Tor

Tor (The Onion Router) is free software and an open network which provides

online anonymity. Tor conceals its users’ identities and their network activity from

surveillance and traffic analysis. The Tor client software routes all the traffic though

a sequence of three Tor relays, called a circuit, to ensure that no single router can

link the sender and receiver. Tor is built on a second–generation onion routing design

that provides low–latency anonymity for TCP–based applications [1]. The term onion

routing refers to layered encryption, where the original message is encrypted multiple

times and then sent through a series of Tor relays. Each of these relays decrypts one

layer of encryption, allowing it to learn of the next hop in the path, and passes it on

to the next relay until it reaches the destination.

Tor is the most widely deployed anonymous communication system with around

3000 volunteer–operated nodes [3] and an estimated 500,000 users [2]. Tor’s primary

goal is to ensure anonymity with low enough latency to facilitate the use of interactive

5

6

applications such as instant messaging and Web browsing. The architecture of the Tor

system consists of Tor proxies (or clients), Tor relays, a set of trusted directory servers

that advertise information about the Tor relays such as their IP addresses, public

keys, exit policies, and self–reported bandwidth capacities. To initiate anonymous

communication, a Tor client first queries one of the directory servers to obtain a signed

list of the available Tor relays. It then establishes paths, called circuits, through the

Tor network by choosing three Tor relays and performing a key establishment protocol

with each relay in turn. The number of Tor relays chosen initially can be more than

three relays, if the user desires greater anonymity, but Tor requires a minimum of

three relays to maintain sender–receiver unlinkable anonymity.

One of the most common problems faced by Tor users is that it significantly

slows down Web browsing speed. Addressing this performance issue is not easy and

might lead to a decrease in the user’s anonymity. For example, Tor does not add

intentional delays or use cover traffic, as these measures could hurt performance for

interactive applications such as Web browsing or instant messaging [1]. However,

this also increases Tor’s vulnerability to end–to–end traffic correlation. One more

important design decision in Tor is the length of the circuits. The default Tor uses

three relays in a circuit [7] to mitigate any single relay’s ability to link a source and

destination. Reducing the number of relays in the circuit could improve performance,

but it leaves the system vulnerable to attacks. For example, consider a path length

of two and an attack model where the attacker controls one out of two relays on the

circuit. Then the attacker can carry out traffic surveillance on the other relay and

correlate the traffic from both relays, which can lead to de–anonymizing the whole

communication. The current Tor design tries to find a compromise that satisfies both

those users who desire strong anonymity and also those for whom performance is

more of a priority.

7

One more reason for the low performance of Tor can be attributed to the

volunteer–operated nature of the Tor relays, as many of them are on slow connections

or share bandwidth with other activity [8]. Hence, when selecting nodes in the circuit,

it is important to make the best use of all the limited available capacity. The Tor

relays on each path are selected by the client to prevent an attacker from manipu-

lating path selection. For best performance, the path selection algorithm must fairly

distribute connections based on the capacities of the Tor relays.

2.2 Improving the performance of Tor by path selection

We can assume that Tor users have different requirements and expectations.

Some users require high anonymity, whereas other users require higher performance.

Hence, there should be a provision for compromise between performance and anonymity

in Tor. This provision can be addressed during the selection of relays for constructing

Tor circuits. The default relay selection process in Tor is biased towards high band-

width relays to improve performance and load balancing. The bandwidth values used

in this process are reported by the owners of the relays and are not verified. This can

lead to attacks where an attacker can insert malicious nodes into the Tor network and

report a higher–than–actual bandwidth so that the bandwidth–biased relay selection

algorithm would pick these malicious nodes in most of their circuits. To mitigate the

effectiveness of this attack, all bandwidth advertisements are capped to 10 MB/s [9].

In spite of this upper bound, the attack can be quite successful. Bauer et al. report

that a small fraction of attacker controlled relays can attain the first and last node

positions on nearly half of the Tor circuits built using this attack, which could lead

to de–anonymizing the whole communication [10]. Even when the nodes are honest,

the reported values may not truly indicate the available bandwidth at a node due to

8

changing network conditions and other factors. This makes the performance of Tor

highly variable.

To address these issues, Snader and Borisov propose to replace the self–reported

bandwidth mechanism in Tor with a scheme for opportunistic bandwidth measure-

ment [11]. The current topology of the Tor network allows each relay to interact

with most other relays and observe their performance over time. These observations

can be reported by each of the Tor relays to the centralized directory servers. Then

the centralized directory servers can consolidate the observed data of other relays’

performance and can more accurately predict the actual performance of the relays.

This can mitigate the issue of false bandwidth self–reporting.

Snader and Borisov also propose that end–users should have the ability to decide

whether to bias the relay selection towards higher bandwidth relays or to select relays

uniformly at random [11]. In the current Tor path selection algorithm, the probability

of a node being selected is proportional to their contribution to the total network

bandwidth. On the other hand, in the Snader–Borisov (S–B) tunable path selection

approach, the probability of selecting a node depends on the bandwidth–based rank

ordering of nodes. In the S–B approach, all the n nodes in the network are sorted

in descending order of their measured bandwidths and then ranked. The node with

highest bandwidth will have rank 1 and node with least bandwidth will have rank n.

To select a node from this rank order, we apply the following equation:

fs (x) =
1− 2sx

1− 2s
(for s 6= 0) (2.1)

f0 (x) = x

where x is selected uniformly at random from the interval [0, 1) and the value of s

is selected by the user according to their preference for the type of performance they

need. Once fs (x) is calculated, then node is selected from the rank order by selecting

9

the node at index bn ∗ fs (x)c . In the above Equation(2.1) if s = 0, then the nodes

are selected uniformly at random. This is for users who require high anonymity. As

s value increases, better ranked nodes will be preferred, for users who are willing

to compromise anonymity for better performance. In their experiments, Snader and

Borisov show that users can use this approach to attain reasonable performance and

anonymity across a range of trade–off points. We adapt the S–B approach to our

proposed designs.

Sherr et al [12] describe a link–based relay selection process for flexibly tuning

the performance and anonymity properties of anonymous paths. In the link–based

relay selection strategy, the relays are chosen in such a way that the links connecting

the relays provide high performance gain. In comparison to node–based techniques,

in which relay selection process is biased only by the node characteristics (i.e., band-

width), link–based selection enables the choice of high performance paths across mul-

tiple metrics: latency, jitter, and loss, as well as bandwidth. In this approach, all

three relays for the candidate paths are chosen uniformly at random, then the end–

to–end cost (i.e., weight) of each generated candidate paths is calculated based on the

desired link characteristics. These candidate paths are then sorted based on weights

and the S–B [12] biasing technique (described above) is used to select the relays to

build the circuits.

Akhoondi et al. [13] design and implement a new Tor client called LASTor.

The authors show that the performance of Tor can be improved by only client–side

modification. They show that LASTor can deliver significant gain in performance

over the default Tor client by using the inferred locations of Tor relays while choos-

ing paths. LASTor’s path selection process focuses on two issues: 1. relays selected

from the same AS (Autonomous systems) and 2. geo–location services, to improve

the performance, while protecting anonymity. The authors state that if two relays

10

are selected from the same AS, then the AS can link the two relays using statistical

analysis. Hence path selection algorithm makes sure that its relays are selected from

different ASes. LASTor uses geo–location services to map the relay’s geographical lo-

cations and use this data in path selection to improve performance. Since a preference

for low–latency paths reduces the entropy of path selection, LASTor’s path selection

algorithm is designed to be tunable. A user can choose an appropriate trade–off

between performance and anonymity by specifying a value between 0 (highest per-

formance) and 1 (highest anonymity) for a single parameter. They also propose an

efficient and accurate algorithm to identify paths on which an anonymity system can

correlate traffic between the entry and exit segments. This algorithm enables LASTor

to identify and avoid such paths and improve the user’s anonymity.

2.3 Other ways of improving Tor performance

In this section we discuss ways of improving the performance of Tor using

approaches which require significant changes to the Tor system.

Another area of investigation is the improper application of TCP’s congestion

control mechanisms which degrade the performance of Tor. In Tor, the traffic between

any pair of relays is multiplexed over a single TCP connection. This will result in

interference across circuits during congestion control resulting in packet dropping or

packet reordering. Reardon et al. [?] propose to use a TCP–over–DTLS (Datagram

Transport Layer Security) between relays. Each stream of data has its own TCP con-

nection with TCP headers being protected with DTLS, which would otherwise give

stream identification information to an attacker. Through experiments, they demon-

strate that their proposal resolves the cross–circuit interference issues and improves

performance.

11

Streaming videos online is greatly affected by the low performance of Tor.

AlSabah et al. [14] propose Conflux, a multipath circuit construction and stream–

splitting approach that increases performance, especially for clients using low–bandwidth

bridges, unadvertised proxies that provide Tor access to users whose ISPs or countries

block Tor. In this design, Tor clients use Conflux to build a number of circuits (two

or more) that intersect at a common Tor exit relay. The packets are split at client end

and are reconstructed at the exit relay. This approach decreases latency and increases

throughput, particularly for low–bandwidth bridge users and streaming videos.

Tor depends on volunteers to donate their resources. Hence Ngan et al. [8]

explore the idea of giving incentives to Tor users to route Tor traffic. The idea is

that if users contribute resources to Tor overlay, they should receive faster service

in return. They propose a solution in which the central Tor directory authorities

measure the performance of each relay and construct a list of reliable gold star relays.

Relays obtain this list from the central directory authorities during normal updates.

Traffic from these gold star relays are marked as high priority by other relays and

they receive a better treatment along the whole circuit.

2.4 LAP

There is a new one of a kind system called LAP: Lightweight Anonymity and

Privacy [15] for future Internet. LAP is an efficient and practical network–based solu-

tion featuring lightweight path establishment and efficient communication. LAP at-

tempts to enhance anonymity by obscuring an end–host’s topological location, based

on two building blocks: packet–carried forwarding state and forwarding–state encryp-

tion.

Unlike Tor, in which all the relays in the circuit are predetermined, in LAP,

each packet carries its own forwarding state. The encryption schema used in LAP

12

allows each Autonomous Domains (AD) to use a secret key to encrypt and decrypt

forwarding information in packet headers. As a result, an AD’s forwarding informa-

tion can be hidden from all the other entities while a LAP packet remains the same

at each hop.

LAP also supports different privacy levels such that an end–host can trade the

anonymity for improved performance. LAP’s generic design can work with a wide

range of routing protocols, which includes the inter–domain routing protocols. LAP

considers a relaxed threat model, where the attacker can compromise any AD except

the first–hop AD, where the victim end–host resides. Because of this weaker attacker

model, LAP is only suitable for users who trust their local ISPs but want protection

from tracking by ISPs that are further away and from being tracked by Websites.

2.5 Topology maintenance in distributed systems

One of the biggest problem with organizing nodes in an overlay into a topology is

churn, the continuous process of node arrival and departure. Rhea et al. [16] address

the churn problem in Distributed Hash Tables (DHTs), with their new design called

Bamboo. In Bamboo, they look at three important factors for handling churn: 1.

Reactive versus periodic recovery from failures, 2. Calculation of message timeouts

during look–ups, and 3. Choice of nearby over distant neighbors. In reactive recovery,

as soon as a node fails it is replaced with another node immediately, whereas in

periodic recovery, all the failed nodes are recovered periodically irrespective of the

churn rate. When the churn rates are high, reactive recovery can lead to a positive

feedback cycle in which the whole DHT is continuously dealing with topology changes

on reaction to the churn, and these changes harm system performance. For medium

and high churn rates, the authors found that periodic recovery is a better solution.

Also, they compared the different ways of choosing nodes that are used to replace the

13

failed nodes, and they found that choosing neighbor nodes with lower latency improves

performance over random selection of nodes. Our findings surprisingly indicate that

this is not always the case.

Godfrey et al. [17] show various selection strategies to minimizing churn in

distributed systems. These strategies can be categorized into predictive replacement

strategies that are based on the information collected about nodes and agnostic re-

placement strategies that do not consider any information. In the predictive replace-

ment strategy, there are three types: 1. Max expectation: select the node with the

greatest expected remaining uptime, 2. Longest uptime: select the node with the

longest current uptime, and 3. Optimal: select the node with longest time until next

failure. In the agnostic replacement strategy, there are also three types: 1. Random

replacement: the failed node is replaced with an available node selected uniformly

at random, 2. Passive preference list: the nodes are ranked and the failed node is

replaced with the most preferable node, and 3. Active preference list: similar to

passive preference list, the nodes are ranked and the failed node is replaced with the

most preferable node, and when a new node becomes available, then all the nodes are

ranked again and the node is replaced with the most preferable node again. Based

on their experiments [17], they find that, in several node failure cases, the random

replacement strategy would be easier to implement and may offer a better trade–off

between churn and system complexity.

Law et al. [18] describe two ways of dealing with node failures in network

topologies in order to maintain the properties of the topology: 1. Youngest node, and

2. Shell recycling. In the youngest node approach, whenever a node leaves/fails, the

failed node is replaced with the youngest node in the graph. This way the impact

on the properties of the network topology is minimal. To replace the failed node

by the youngest node, the challenge is to maintain the youngest node. The authors

14

propose a global server to manage the current youngest node at all times, and thus

all the nodes can identify the youngest node when a node fails. In the shell recycling

approach, the failed node’s shell— simulation of the node, is adopted by one of its

neighbors, and this neighbor node processes the requests of the failed node and along

with its own requests. Each node has a maximum limit of adopting failed nodes’

shells. When all the nodes reach their maximum limits, then the whole topology

is reconstructed. In our work, we take into consideration of node’s bandwidth and

latency to construct and maintain the topology. Similar to Rhea’s Bamboo [16], we

could also use periodic recovery if the churn is high. Godfrey et al. [17] propose

considering additional properties to better reduce the effects of churn in distributed

systems. They consider node properties like node availability, uptime, and expected

time to failure, and they maintain a preference list of nodes to replace the failed nodes.

These additional parameters can also be included in our approach during biasing. In

this thesis, however, we focus more on increasing performance of the system without

affecting its anonymity, rather than considering all possible attributes of the node

during node failure.

2.6 Expander graph

Expander graphs are sparse graphs which are highly connected. To disconnect

an expander graph, very large portion of edges have to be deleted. They are called

expander graphs because they have good expansion properties [19].

Mallesh et al. propose a system that uses expander graphs as restricted net-

work topology to improve the anonymity and performance of low–latency anonymity

systems like Tor [5]. They show that expander graph possess excellent connectivity

properties enabling them to be extremely fast mixing. Along with that, fewer num-

bers of edges per vertex would provide cover traffic (i.e. more traffic on the same

15

set of edges, making it difficult to distinguish between the traffic coming from differ-

ent nodes) for the users and there by increase their anonymity. All these properties

make expander graphs a good choice to build the underlying topology of anonymity

networks.

2.6.1 Construction

Mallesh et al. employ the distributed construction method of Law et al. [18].

To construct expander graphs with D degree, we use D
2

Hamiltonian cycles, which

are closed loops through a graph that visits each node exactly once. The method

begins with an initial set of three nodes that are connected to each other in all D
2

Hamiltonian cycles. Then the graph grows incrementally, with new nodes joining

the existing nodes on each of the Hamiltonian cycles. When a new node joins the

network, it chooses a node at random from the graph. Then it randomly picks one

more node from the chosen node’s neighbors. This chosen node and its neighbor

will then become the neighbors of the new node, and the connection between the

chosen node and its neighbor is disconnected, adding the new node the graph. This

construction method leads to a random expander graph.

Mallesh et al. propose an expander topology that is biased towards low–latency

edges, which would simultaneously achieve both the security benefits of an expander

topology and improved performance [5]. An expander graph generated with a bias

towards low–latency edges, called a shaped expander, results in higher performance

than a random expander graph and also higher anonymity than a fully connected

topology. The low–latency bias method to generate a shaped expander graph was

implemented by using the S–B approach (Equation 2.1), to bias the node selection

process towards low–latency links. Due to this biasing, the shaped expander graph

may lack the expansion properties of a random expander. However, Mallesh et al.

16

show that biasing the expander graph does not lead to a topology that requires sig-

nificantly more hops to reach maximum entropy [5]. Hence, shaped expander graphs

can be used to improve link performance without substantial loss of anonymity.

CHAPTER 3

SYSTEM DESIGN

In this chapter, we explain the construction and maintenance of our two re-

stricted network topologies, the expander graph topology, and the clustering model

topology.

3.1 Expander graph topology

3.1.1 Construction

We construct our expander graphs much similar to Mallesh et al. [5] but with

modest changes in the implementation, to help with topology maintenance. Mallesh

et al. propose that when a new node joins the network, it chooses its neighbor nodes

at random, with latency bias in case of the shaped expander, from all the nodes in

the network. We instead keep track of the D
2

Hamiltonian cycles. When a new node

joins the network, for each Hamiltonian cycle, a random connected pair of nodes are

chosen as the new node’s left and right neighbor nodes in the cycle. In the case of a

shaped expander graph, latencies between the new node and all the connected pairs

of nodes of that Hamiltonian cycle are calculated and ranked. Then by using the S–B

(Equation 2.1), a connected pair of nodes are chosen as the new node’s left and right

neighbor nodes. This selection process is repeated for all the D
2

Hamiltonian cycles.

3.1.2 Maintenance

Maintaining the expander graph topology means handling churn operations

without modifying the basic properties of the graph. When a node leaves the network,

17

18

for each of D
2

Hamiltonian cycles, the left neighbor of the leaving node will be directly

connected to its right neighbor. In other words, the left and right neighbors will be

directly linked, filling the void created by the leaving node. This way, the cycle is

maintained and so is the expander graph’s properties. A node joining the network

follows the same process as explained above in the construction of the expander graph.

Node joining can also be made biased towards low–latency, using the same method

as used to construct the initial graph.

3.2 Clustering model topology

While the shaped expander graph uses latency information to improve the per-

formance of the system, it does not consider the bandwidth of the nodes. In the

expander graph, since all the nodes have same number of edges, the bandwidth used

by all the nodes would also be more or less the same, even if the nodes have variable

bandwidths. Tor, for example, has a large range of bandwidths among its relays.

Tor relays with high bandwidth can handle more circuits at a time as compared with

low–bandwidth nodes. Hence, the high bandwidth nodes should have more edges

compared to the low–bandwidth nodes. To develop a topology that takes both band-

width and latency into consideration, we propose the clustering model topology. In

this topology, we cluster the nodes in the network based on bandwidth and then

select nodes from each of these clusters with a bias towards low–latency edges. This

makes sure that high bandwidth nodes will be highly connected, while also biasing

the topology towards faster links.

Figure 3.1 depicts the clustering model using data sampled from our simulations

described in Chapter 4. There are 5 clusters with 750 nodes. Each cluster shows the

number of nodes the cluster contains, the average number of edges of all nodes, the

19

Nodes = 80

Avg num edges = 78

Total edges = 6084

Cluster Ratio = 0.218

Nodes = 120

Avg num edges = 60

Total edges = 7200

Cluster Ratio = 0.258

Nodes = 160

Avg num edges = 42

Total edges = 6720

Cluster Ratio = 0.241

Nodes = 180

Avg num edges = 30

Total edges = 5400

Cluster Ratio = 0.193

Nodes = 210

Avg num edges = 12

Total edges = 2520

Cluster Ratio = 0.09

New Node

Estimated Edges = 42

Edges = 9 Edges = 11 Edges = 10 Edges = 8 Edges = 4

Figure 3.1. Clustering model with five clusters and sample values from our simula-
tions.

total sum of all the edges, and cluster ratio. These clusters are formed based on

bandwidth of the node. High bandwidth nodes form one cluster and similarly low–

bandwidth nodes form another. When a new node joins, based on its estimated

number of edges and the cluster ratio, we can calculate the number of edges of the

new node connecting to a particular cluster.

3.2.1 Construction

We apply the K–means clustering algorithm [20] to cluster nodes by bandwidth.

K–means clusters similar data into a predefined number of clusters K. Algorithm 1

shows the steps in clustering model.

In the clustering model algorithm, we begin with a list of the nodes and their

bandwidths, and a predefined K value for K–means clustering. For each node, we es-

timate the ideal number of edges the node should have based on its bandwidth. This

20

Algorithm 1 Clustering model Algorithm

Require: nodeList, K value for clustering

1: for each node← nodeList do

2: estimatedEdgesList← calculateEstimatedEdgesFromBandwidth(node)

3: end for

4: clusterList← kMeansOnEstimatedEdges(estimatedEdgesList,K)

5: for i = 1→ K do

6: clusterRatioi =
(

sumOfEdgesInClusteri
sumOfAllEdges

)
7: end for

8: for each node← nodeList do

9: for each cluster ← clusterList do

10: numEdges← calculateNumEdgesInCluster(node, cluster)

11: for i = 1→ numEdges do

12: neighborNode← getLatencyBiasedNode()

13: ADD an edge from new node to this selected neighborNode

14: end for

15: end for

16: end for

is done by mapping a range of bandwidth values to the number of edge values pro-

portionately. We map bandwidth to edges so that it helps us to simply the topology

to just nodes and weighted edges by converting node weight to number of edges. In

our bandwidth–to–estimated–edges mapping schema, we assign minimum of 10 edges

to nodes with bandwidth of 50 KBps or less, and a maximum of 100 edges to nodes

with bandwidth of 950 KBps or more. For every increase of 10 KBps of bandwidth,

we increase the estimated edges by one. We have also provided a parameter which

21

can increase or decrease the number of estimated edges to the bandwidth ratio in the

mapping. After the estimated ideal number of edges is calculated for each node, we

use this number as a property of the node for applying one–dimensional K–means

clustering to produce K clusters. For each of these clusters, we calculate the cluster

ratio. The cluster ratio is the ratio of the sum of all the edges in that cluster to the

sum of all the edges in the whole network. In Line 10 of Algorithm 1, we calculate the

number of edges of a node that should be connected to a cluster by multiplying the

cluster ratio by the node’s estimated edges. At this point, we know how many edges

a node should have and what portion of those edges go to each of the other clusters.

The next task (Line 12) is to identify the nodes in those clusters to which these edges

will be connected. To identify these nodes, we consider both node availability and

latency. We rank all the candidate nodes based on availability and latency using the

ranking algorithm described below.

The ranking algorithm works as follows. Let ei be the estimated ideal number

of edges for a node i,and let ci be the current number of edges that i has. Then we

define a difference ratio di =
(

ei−ci
ei

)
, the attractiveness a of the node i as:

ai =


(d2i) if di > 0

−(d2i) if di ≤ 0

and the total weight mi of node i as: mi = ai − ω ×
(

`i
`ave

)
, where `i is the latency of

node i to the new node, `ave is the average of latencies of node i to all the candidate

nodes, which puts `i into perspective, and ω is a weighting parameter, used to tune

the relative importance of latency. Based on our experiments, we set the value of ω to

0.1, so that it improves the latency without affecting the anonymity. The difference

ratio of a node indicates the difference between estimated ideal number of edges and

current number of edges with respect to estimated ideal number of edges. A positive

22

difference ratio indicates that more edges can be added to the node and negative

difference ratio indicates that the node has more number of edges than the estimated

ideal edges. The attractiveness of a node captures the difference ratio and increase

or decreases its importance (attractiveness) based on the value of difference ratio.

The weight mi that is calculated for each candidate node i is then sorted in

descending order and ranked, and used in node selection process. In node selection

process, we select the neighbor node by using the S–B (Equation 2.1).

Histogram

Bandwidth (in KBps)

0 200 400 600 800 1000

C
ou

nt

0

50

100

150

200

250

Figure 3.2. Tor Bandwidth distribution.

The reason we choose to cluster the bandwidths is two fold. First, the band-

width distribution in Tor is not uniform. There are large number of low–bandwidth

nodes compared to a very small fraction of high bandwidth. Figure 3.2 shows the

distribution of bandwidth of Tor nodes, extracted from a Tor descriptor file . We

extract the Tor bandwidths from the Tor descriptor file, a file downloaded by each

Tor client from the directory server, which contains all the information about the Tor

23

relays. This figure shows a large population of low–bandwidth relays and a long tail,

hinting at a heavy–tailed distribution, though the bandwidth is capped. By clustering

the nodes and then selecting the neighbors from each of the cluster, we make sure

that low–bandwidth nodes are connected to atleast one high bandwidth node. We

show in Chapter 4 that this approach provides high connectivity even for fairly low

degree.

3.2.2 Maintenance

Maintaining the clustering model graph means handling the churn operations in

such a way that the graph properties are maintained. When a node leaves the network,

we delete all the links that are connected to that leaving node and also remove that

node from its cluster. We then update the cluster ratios, which helps in maintaining

the graph. By keeping track of the cluster ratios, we can determine whether or not the

graph is disconnected. Over all of our experiments, we did not find any disconnected

graphs, even with 25,000 churn operations. Thus, no additional measures were taken

in managing the leaving nodes. If needed, then we could assign a lower limit on the

number of current edges the node has as compared to the estimated ideal number of

edges and then add some of the deleted links. For adding links, we would follow the

same process as when adding a node. A node joining the network follows the process

as explained above in the construction of the clustering model graph. After all the

edges of the new node are connected, then based on the estimated edges and each

cluster’s average number of edges, we can determine to which cluster the new node

should be added. The closest number between the clusters’ average number of edges

to the node’s estimated edges will determine the cluster. Later the cluster ratio of all

clusters are updated.

CHAPTER 4

EXPERIMENTS

In this chapter, we first discuss the details of our simulations of both the

expander graph and the clustering model graph topologies. We then report the

anonymity and performance results of both topologies.

4.1 Simulation design

For both of our topology simulations, we start with a set of 1500 nodes. Each

node has a bandwidth value that is randomly assigned from a set of sample Tor

bandwidth values. The Tor bandwidths are extracted from the Tor descriptor file,

which is downloaded by a Tor client from the directory server and which contains all

the information about the Tor relays. We assign each node an ID called the King ID,

which corresponds to a node from King dataset. The King dataset is a collection of

pairwise latency values of 1700 nodes [6], and assigning a King ID to a node is used

to calculate latency values between nodes. The latency is measured by the round trip

time (RTT)— the total time taken by a data packet to travel from the source to the

destination and back.

From the full set of 1500 nodes, 750 initial nodes are picked at random, and we

construct the topology is constructed for the expander graph or the clustering model

graph as described in Sections 3.1.1 and 3.2.1, respectively. The other 750 nodes are

held in a reserve bucket, which is used in simulating the maintenance process.

The churn operations, in which nodes join and leave are implemented by adding

and removing nodes from the topology. We add a node by picking a node randomly

24

25

from the reserve bucket, adding it to the topology, and then applying the maintenance

procedures described in Sections 3.1.2 and 3.2.2. Similarly, when a node leaves, it

is placed back into the reserve bucket and the maintenance procedure handles the

graph changes. In our experiments, we have evaluated for between 100 to 25,000

churn operations. 25,000 churn operations is a lot of turnover for real–world Tor.

For measuring the anonymity of our topologies, we use the entropy metric de-

scribed by Danezis [21]. Entropy is calculated based on the distribution probability

for a packet entering through one node to exit through each of the other nodes. The

highest entropy would be when a packet entering through one node has equal prob-

ability to exit through any other node. If the probabilities are unequal, in case of

some nodes are not reachable in the maximum number of hops, then the entropy will

be reduced. Hence the higher the entropy, better the connectivity. Better connec-

tivity leads to better mixing of packets in the network, which in turn improves the

anonymity. To measure the performance of our topologies, we use the average latency

over possible circuits in the graph. Lower latency means better performance for the

user.

In our evaluation process, we use the term SBIAS to refer to the value of s in

Equation 2.1 used to tune the amount of bias towards lower latency links. The greater

the SBIAS value, the more it biases towards low–latency links, which means better

performance. If SBIAS is 0, then there is no bias, which is equivalent to selecting

nodes uniformly at random.

In our default model for the expander graph, we set the SBIAS to 5, the average

node degree to 48, and the number of hops to two. For the clustering model, the

default model has SBIAS of 5, average node degree of 48, five clusters, and two hops

in a circuit. We vary these parameters from the default model for different parts of

26

our evaluation. In all of our graphs, all data points indicate the mean over 20 runs,

and error bars indicate the standard error.

SBIAS

0 5 10

E
n

tr
o
p

y

0

2

4

6

8

10

28

48

62

Node degree

(a)

SBIAS

0 5 10

L
a
te

n
cy

 (
m

ic
ro

 s
ec

)

0

5.0x104

105

1.5x105

2.0x105

2.5x105

28

48

62

Node Degree

(b)

Figure 4.1. Clustering model topology performance with various node degrees and
latency bias values: (a) entropy and (b) latency.

4.2 Clustering model topology performance

From our experiments, we found that the minimum entropy value was 8.9114

which 0.5% less the average entropy value. This small percentage difference shows

that the clustering of nodes based on bandwidth and connecting to other nodes based

on these clusters, makes sure that even the low–bandwidth nodes can reach all the

nodes in the network with less number of hops. Hence, we choose to cluster the nodes

rather than directly applying probability distribution function on all the nodes during

the construction of the topology.

We evaluate the anonymity and the performance of the clustering model topol-

ogy by varying three parameters: latency bias (SBIAS), average node degree, and

27

SBIAS

0 5 10

E
n
tr
o
p
y

0

2

4

6

8

10

3

5

10

Clusters

(a)

SBIAS

0 5 10

L
a
te

n
cy

 (
m

ic
ro

 s
ec

)

0

5.0x104

105

1.5x105

2.0x105

2.5x105

3

5

10

Clusters

(b)

Figure 4.2. Clustering model topology performance with various number of clusters
and latency bias values: (a) entropy and (b) latency.

number of clusters. We calculate the entropy value and average latency of the graph

for 25,000 churn operations.

From Figure 4.1(a) and Figure 4.2(a), we can see that over all of the tested

values of latency bias (SBIAS) and number of clusters, the entropy value is almost

the same. The maximum entropy value was 9.45. It varies slightly with the average

node degree. We get 8.7 bits of entropy for an average node degree of 62 versus 7.9

bits of entropy for an average node degree of 28 for cluster size of 5, but this variation

is not that significant. These results indicate that the anonymity of the clustering

model graph is not greatly affected by variations in latency bias or average node

degree or the number of clusters.

Figure 4.1(b) and Figure 4.2(b) show that average node degree and number

of clusters do not affect the latency of circuits. As might be expected, however,

the SBIAS value has a major effect on the latency of the graph. For an average

node degree of 28 and cluster size of 5, the latency value for SBIAS 0 is 188.873 ms

and for SBIAS 10 is 103.301 ms, which is 45.3% decrease in latency. The latency

28

Number of churn operations

100 200 500 1000 2000 5000 10000 15000 20000 25000

D
if

fe
re

n
ce

 i
n

 E
n

tr
o
p

y

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

With Biasing

Without Biasing

(a)

Number of churn operations

100 200 500 1000 2000 5000 10000 15000 20000 25000

D
if

fe
re

n
ce

 i
n

 L
a
te

n
cy

 (
m

ic
ro

 s
ec

)

-6000

-4000

-2000

0

2000

4000

6000

With biasing

Without biasing

(b)

Figure 4.3. Expander graph maintenance with and without latency biasing: (a)
entropy and (b) latency.

has significantly reduced, which means that there is a significant increase in system

performance.This shows that the clustering model topology’s performance can be

significantly increased without affecting anonymity by biasing towards low–latency

links.

4.3 Expander graph and Clustering model graph maintenance

In this section, we evaluate the effects of latency bias on the maintenance pro-

cess. We bias the construction process of both the expander graph and the clustering

model graph with SBIAS of 5. Then we compare the entropy and latency values

of the churn process with and without latency bias. We evaluate our maintenance

process of both the graphs for 100 to 25,000 churn operations.

Figure 4.3(a) and Figure 4.3(b) show the evaluation of maintenance of expander

graph. Figure 4.3(a) shows that with latency bias, there is a slight decrease in

anonymity. On the other hand, in Figure 4.3(b), although there is some variation, the

latency values for both with bias and without bias are almost the same, falling within

29

Number of churn operations

100 200 500 1000 2000 5000 10000 15000 20000 25000

D
if

fe
re

n
ce

 i
n

 e
n

tr
o
p

y

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

With biasing

Without biasing

(a)

Number of churn operations

100 200 500 1000 2000 5000 10000 15000 20000 25000

D
if

fe
re

n
ce

 i
n

 l
a
te

n
cy

 (
m

ic
ro

 s
ec

)

-40000

-20000

0

20000

40000

60000

With biasing

Without biasing

(b)

Figure 4.4. Clustering model topology maintenance with and without latency biasing:
(a) entropy and (b) latency.

their respective error ranges. We conclude that with latency bias, the performance of

the maintenance process remains the same but with a slight reduction in anonymity.

Hence for the expander graph, it yields better results if we carry out the maintenance

process without latency bias.

Figure 4.4(a) shows that there is no significant change in the entropy for cluster-

ing model topology, with latency bias or without bias. From Figure 4.4(b), however,

we can see that latency bias in the maintenance process keeps latency low, whereas

not biasing increases latency over time. For example, for 25,000 churn operations,

the difference in latency between before and after maintenance process increases by

80.03%, if carried without biasing, whereas with biasing, the difference in latency

decreases by 19.96%. Hence, for the clustering model topology, latency bias for the

maintenance process yields better results than maintaining the graph without biasing.

Since, entropy does not change significantly but latency decreases with biasing.

30

Number of churn operations

0 100 200 500 1000 2000 5000 10000 15000 20000 25000

E
n

tr
o
p

y

8.2

8.4

8.6

8.8

9.0

9.2

9.4

expander graph

clustering model graph

(a)

Number of churn operations

0 100 200 500 1000 2000 5000 10000 15000 20000 25000

L
a
te

n
cy

 (
m

ic
ro

 s
ec

)

1.2x105

1.4x105

1.6x105

1.8x105

2.0x105

2.2x105

expander graph

clustering model graph

(b)

Figure 4.5. Expander graph verses Clustering model over number of churn operations:
(a) entropy and (b) latency.

4.4 Expander graph verses Clustering model graph

In this section, we compare the expander graph with the clustering model.

We evaluate for between 0 to 25,000 churn operations. Figure 4.5(a) shows that the

expander graph’s anonymity is significantly better than clustering model’s anonymity.

In this comparison, we get 8.947 bits of entropy for clustering model, whereas 9.195

bits of entropy for expander graph, which is 2.7% more than clustering model, without

churn. With 25,000 churn operations, we get 8.564 bits of entropy for clustering model

and 9.097 bits of entropy for expander graph, which is 6.2% more than clustering

model. Figure 4.5(b) shows, however, that the clustering model’s performance is

significantly better than the expander graph’s performance. For example, with no

churn, we get latency of 200.492 ms for expander graph and 141.604 ms for clustering

model, which is 29.37% decrease in latency compared to expander graph. For 25,000

churn operations, we get latency of 204.380 ms for expander graph and 131.860 ms

for clustering model, which is 35.48% decrease in latency. We also compare these

31

Number of hops

2 3 4 5

E
n

tr
o
p

y

8.4

8.6

8.8

9.0

9.2

9.4

9.6

expander graph

clustering model graph

(a)

Number of hops

1 2 3 4 5

L
a
te

n
cy

 (
m

ic
ro

 s
ec

)

0

105

2x105

3x105

4x105

5x105

6x105

expander graph

clustering model graph

(b)

Figure 4.6. Expander graph verses Clustering model over number of hops: (a) entropy
and (b) latency.

topologies with varying number of hops in Figure 4.6(a) and Figure 4.6(b). We can

see that the expander graph provides better anonymity compared to the clustering

model, since the expander graph’s entropy value is more than clustering model’s and

the clustering model topology provides better performance compared to the expander

graph, since the clustering model’s latency value is less than the expander graph’s,

with similar graph size and node degree.

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, we examine the construction and the maintenance of two re-

stricted edge network topologies for low–latency anonymity system, an expander

graph topology and a novel clustering model topology. We construct expander graphs

with constant degree and a bias towards low–latency edges. This not only increases

system performance but also limits the throughput fingerprinting attack. The cluster-

ing model topology considers both latency between nodes and node bandwidth during

construction, and this provides us to utilize the available bandwidth and faster access

to this node bandwidth. We conducted simulation experiments on both topologies to

evaluate their performance and anonymity

From our experiments, we conclude that the clustering model’s performance can

be significantly increased without affecting anonymity by biasing the construction

and maintenance process towards low–latency links. In terms of maintenance of

graphs, expander graph maintenance should be carried out without latency bias and

the clustering model graph maintenance should be carried out with latency bias for

better performance. We also saw that, for comparable graphs, the expander graph

had significantly better anonymity while the clustering model had significantly better

performance.

We now describe some possible future work. Our proposed topologies should

to be tested on real–world network or at least real–world–like simulations such as

ExperimenTor [22] or the PlanetLab–based testbed created by Chowdhuri [23]. These

32

33

tests can help us evaluate the structure and properties of our proposed topologies in

real–world environment.

In Tor, the first node chosen during the path selection process is from a set

of nodes called guard nodes. These nodes are the most reliable and trust–worthy

nodes in the network. Considering guard nodes during building topologies could be

one more area to explore. We can also explore how our approach integrates with

proposed congestion control mechanisms [24].

REFERENCES

[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second–generation

onion router,” in Proceedings of the USENIX Security Symposium, 2004.

[2] (2012) Tor metrics — number of users. [Online]. Available:

https://metrics.torproject.org/users.html

[3] (2012) Tor metrics — number of relays. [Online]. Available:

https://metrics.torproject.org/network.html

[4] P. Mittal, A. Khurshid, J. Juen, M. Caesar, and N. Borisov, “Stealthy traffic

analysis of low–latency anonymous communication using throughput fingerprint-

ing,” in Proceedings of the ACM Conference on Computer and Communications

Security (CCS), 2011.

[5] N. Mallesh and M. Wright, “Poster: Shaping network topology for privacy and

performance,” in Proceedings of the ACM Conference on Computer and Com-

munications Security (CCS), 2011.

[6] “King dataset,” 2005. [Online]. Available:

http://pdos.csail.mit.edu/p2psim/kingdata/

[7] K. Bauer, J. Juen, N. Borisov, D. Grunwald, D. Sicker, and D. Mccoy, “On

the optimal path length for Tor,” in Proceedings of the Hot Topics in Privacy

Enhancing Technologies Symposium (HotPETS), 2010.

[8] T.-W. Ngan, R. Dingledine, and D. S. Wallach, “Building incentives into Tor,”

in Proceedings of the International Conference, 2010.

[9] R. Dingledine and N. Mathewson. (2012) Tor path specification. [Online]. Avail-

able: https://git.torproject.org/checkout/tor/master/doc/spec/path-spec.txt

34

35

[10] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. Sicker, “Low–resource

routing attacks against Tor,” in Proceedings of the ACM Workshop on Privacy

in Electronic Society (WPES), 2007.

[11] R. Snader and N. Borisov, “A tune–up for Tor: Improving security and per-

formance in the Tor network,” in Proceedings of the Network and Distributed

System Security Symposium (NDSS), 2008.

[12] M. Sherr, M. Blaze, and B. T. Loo, “Scalable link–based relay selection for anony-

mous routing,” in Proceedings of the Privacy Enhancing Technologies Symposium

(PETS), 2009.

[13] M. Akhoondi, C. Yu, and H. V. Madhyastha, “LASTor: A low–latency AS–aware

Tor client,” in Proceedings of the IEEE Symposium on Security and Privacy

(S&P), 2012.

[14] M. AlSabah, K. Bauer, T. Elahi, and I. Goldberg, “The path less travelled:

Overcoming Tor’s bottlenecks with multipaths,” University of Waterloo, Tech.

Rep., 2011.

[15] H.-C. Hsiao, T. H.-J. Kim, A. Perrig, A. Yamada, S. C. Nelson, M. Gruteser,

and W. Meng, “LAP: Lightweight anonymity and privacy,” in Proceedings of the

IEEE Symposium on Security and Privacy (S&P), 2012.

[16] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn in a DHT,”

in Proceedings of the USENIX Annual Technical Conference (ATC), 2004.

[17] P. B. Godfrey, S. Shenker, and I. Stoica, “Minimizing churn in distributed sys-

tems,” in Proceedings of the Conference on Applications, Technologies, Architec-

tures, and Protocols for Computer Communications (SIGCOMM), 2006.

[18] C. Law and K.-Y. Siu, “Distributed construction of random expander networks,”

in Proceedings of the IEEE International Conference on Computer Communica-

tions (INFOCOM), 2003.

36

[19] S. Hoory, N. Linial, A. Wigderson, and A. Overview, “Expander graphs and their

applications,” 2006.

[20] G. A. Wilkin and X. Huang, “K–means clustering algorithms: Implementation

and comparison,” in Proceedings of the International Multi–Symposiums on Com-

puter and Computational Sciences (IMSCCS), 2007.

[21] G. Danezis, “Mix–networks with restricted routes,” in Proceedings of the Privacy

Enhancing Technologies Workshop (PET), 2003.

[22] K. Bauer, M. Sherr, D. McCoy, and D. Grunwald, “ExperimenTor: a testbed

for safe and realistic Tor experimentation,” in Proceedings of the Workshop on

Cyber Security Experimentation and Test (CSET), 2011.

[23] S. D. Chowdhuri, “Measurements of a latency–biased expander topology in the

Tor anonymity system,” Master’s thesis, The University of Texas at Arlington,

2012.

[24] T. Wang, K. Bauer, C. Forero, and I. Goldberg, “Congestion–aware path se-

lection for Tor,” in Proceedings of the International Conference in Financial

Cryptography and Data Security (FC), 2012.

BIOGRAPHICAL STATEMENT

Harsha Doreswamy was born in Bangalore, India in 1988. He received his B.E.

(Computer Science and Engineering) degree from the BMS College of Engineering,

Visvesvaraya Technological University, India in 2009. From 2009 to 2010, he was with

Core Objects, India as an Associate Trainee Engineer. He has been a part of ISec,

the Information Security Lab, from 2011. From May 2012, he has been working at

Copper labs, Irving, TX as a Mobile application developer.

37

