TRANSIENT ANALYSIS OF A PULSED DETONATION COMBUSTOR USING

THE NUMERICAL PROPULSION SYSTEM SIMULATION

By

Anthony Scott Hasler

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Aerospace Engineering

The University of Texas at Arlington

December 2012

Copyright © by Anthony S. Hasler 2012

All Rights Reserved

Abstract

TRANSIENT ANALYSIS OF A PULSED DETONATION COMBUSTOR USING

THE NUMERICAL PROPULSION SYSTEM SIMULATION

Anthony Scott Hasler, M.S.

The University of Texas at Arlington, 2012

Supervising Professor: Donald Wilson

The performance of a hybrid mixed flow turbofan (with detonation tubes installed
in the bypass duct) is investigated in this study and compared with a baseline model of a
mixed flow turbofan with a standard combustion chamber as a duct burner. Previous
studies have shown that pulsed detonation combustors have the potential to be more
efficient than standard combustors, but they also present new challenges that must be
overcome before they can be utilized. The Numerical Propulsion System Simulation
(NPSS) will be used to perform the analysis with a pulsed detonation combustor model
based on a numerical simulation done by Endo, Fujiwara, et. al. Three different cases will
be run using both models representing a take-off situation, a subsonic cruise and a
supersonic cruise situation. Since this study investigates a transient analysis, the pulse
detonation combustor is run in a rig setup first and then its pressure and temperature are

averaged for the cycle to obtain quasi-steady results.

Table of Contents

FAN)1 = [ox SRS iii
LISt Of SYMDOIS......eiiiiiiiii e Vi
LiSt Of ADDIEVIALIONSt e e e e st e e e e e e s eaneeees Vi
LISt OF FIQUIES ...ttt et s ekt e s et e e e st e e e e e Viii
[A0 1= o S PP iX
(O 0= o) (=T A [1 Yo [T 1o o I PSPPIt 1
1.1 P UIPOSE et 2
1.2 o To=To (1] = RSP PEPRR 3
Chapter 2 Thermodynamic Models of DetoNationcooveiiiiiiiieiiiiie e 4
2.1 ThermodynamiC MOUEIS.........coouiiiiiiiiie et 4
2.1.1 Chapman-JOUQUEL ... s 4
2.1.2 Zeldovich-von Neumann-DOMNGcccuoiiiiiiiiiiiiieeaiieee e 6
2.1.3 Performance MOUEL..........uuiiiiiiiiiiiie e e e eer e e e e e e 12

2.2 TranSIENE ANAIYSISeeiieiiiiie ittt e e b e 15
2.2.1 PDE CVYCIE ...ttt bbb 17
2.2.2 NPSS TIaNSIENE ..coeiiiiiiiiiee ettt ettt a et r e e e e e s e bbb e e e e e e e e s annnes 18
2.3.1 Turbine INlet TEMPEIALUIEciiiecee e 21
2.3.2 NPSS DESIGN PrOCESS ... s 24
Chapter 3 PDC and Baseline Performance Datacccovuveeeiiiiieeiniieee e 27
Chapter 4 RESUILS ..ottt e e s e e e enees 39
T 1= 1= SRS 40
4.2 TrANSONIC CrUISE ..ciiieiiiiitiieee ettt ettt e e e e e et e e e e e e s e s nnbreeaeaeeeaaannnes 41

4.3 YU 1T Y0 a1 O U 1= SR 42

4.4 Future Work Recommendationsccvverreriieeeniee e 43
Chapter 5 COAe LISTING ...cccoivriieiiiiiee ettt et 44
RETEIEINCES ...ttt e et e e b e e e e 151
Biographical INfOrmationceeiiiiiiiii e 153

List of Symbols

p — Density

p — Pressure

y — Specific Heat Ratio

q — Heat Addition

uc; — Chapman-Jouguet Detonation Wave Velocity
a — Speed of Sound in a Fluid

Cp = Z—’;| — Specific Heat at Constant Pressure
P

de

CV:aT

— Specific Heat at Constant Volume
4

M¢; — Chapman-Jouguet Mach Number

h — Enthalpy

Aiupe — Detonation Tube Cross—Sectional Area
l;upe — Tube Length

MFP — Mass Flow Parameter

TSFC — Thrust Specific Fuel Consumption

vi

List of Abbreviations

PDE — Pulsed Detonation Engine

PDC — Pulsed Detonation Combustor

NPSS — Numerical Propulsion System Simulation
CJ — Chapman — Jouguet

ZND — Zeldovich, Von Neumann and Doéring

DDT — Deflagration to Detonation Transition
CEA — Chemical Equilibrium with Applications

SLS — Sea Level Static

Vi

List of Figures

Figure 1.1 — Detonation Tubes in the bypass section of a turbfan engine (Ref. 5). 2

Figure 1.2 — A concept for a hybrid engine combining conventional turbomachinery with

pulsed detonation combustion (Ref. 5).c.ueiiiiiiiiiii e 3
Figure 2.1 — Diagram of Hugoniot Curve and Rayleigh Linecccccccveveeiiiiiiiieeee e, 5
Figure 2.2 — Diagram showing the ZND Model of Detonation (Ref. 8).........cccccveveeeeiiinnnnns 7

Figure 2.3 — Diagram showing the transition of the gas from undisturbed to Von Neumann

to the upper Chapman-Jouguet point (Refs. 4 & 5). ..oovveeiiiiiiiiiiiiee e 8
Figure 2.4 — Pressure Ratio from CEA, CPG.cooiiiiiiiiiiiiie et 11
Figure 2.5 — Temperature Ratio from CEA, CPG. ..ot 11
Figure 2.6 — Density Ratio from CEA and CPG.oooviiiiiiiiiiieiiieeeeeeeeeeeeeeeseeeeeeeveeeaaaanes 12

Figure 2.7 — The x-t diagram for the characteristics inside the detonation tube (Ref. 6)..13

Figure 2.8 — Diagram containing the seven major stages of a PDE cycle. 17
Figure 2.9 — Typical result of pressure as a function of time in a rig setup.cccceeeeeee. 19
Figure 2.10 - Typical result of temperature as a function of time in a rig setup................ 19
Figure 2.11 — Typical pressure integration running average.eeeeeeeeeeeeeeeeeeererenenenns 20
Figure 2.12 — A 1996 Projection of Turbine Inlet Temperatures...........cccvvvvevvveveeveveenennnnns 21
Figure 2.13 — Projection of Turbine Inlet Temperatures Using Actual Engine Data......... 22
Figure 2.14 — NPSS DeSigN StEP ONE ..cooiiiiiieiiiiiee ettt 24
Figure 2.15 — NPSS DeSIgN STEP TWO ..eeeiuriiieiiiiiie ittt st e e 24
Figure 2.16 — NPSS DeSign StEP TRICE ..c...viiieiiiii et 25
Figure 2.17 — NPSS DeSigN StEP FOUcoiiiiiiiiiiee ettt a e 25
Figure 2.18 — Flow Station Diagram (PDC Setup)........c.uuueieieeiiiiiiiiiieee e eeeiiieeee e e e 26
Figure 2.19 — Flow Station Diagram (Standard Combustor Setup)coocuveeereeerninnnns 26

viii

List of Tables

Table 2.1 — Pressure Ratio from CEA, CPG and Percent Effor........cccccovcvveeiniieeennnnn. 9
Table 2.2 — Density Ratio from CEA, CPG and Percent EITOr.ccccoccvvvveeeeeeiiicivnnnnn. 10
Table 2.3 — Temperature Ratio from CEA, CPG and Percent Error.........cccccceeevevivvnnnnn. 10
Table 3.1 — PDC entrance and exit conditions at altitude = 0 kft, M = 0.0ccceernenne 27
Table 3.2 — PDC entrance and exit conditions at altitude = 25 kft, M= 0.8c..c..... 27
Table 3.3 — PDC entrance and exit conditions at altitude = 50 kft, M =2.3ccceeene 28
Table 3.4 — PDE at altitude = O Kft, M = 0.0......ccoiiiiiiiiiiiee et 29
Table 3.5 — PDE at altitude = 25 kft, M = 0.8ccoi i 30
Table 3.6 — PDE at altitude = 50 kft, M = 2.3 ... oo 31
Table 3.7 — Mixed Turbofan at altitude = 0 kft, M = 0.0c.cocoiiiiiiiiiiiiii e 32
Table 3.8 — Mixed Turbofan at altitude = 25 kft, M = 0.8cccveiiiiiiiiiii e 33
Table 3.9 — Mixed Turbofan at altitude = 50 kft, M = 2.3 ... 34
Table 3.10 — Mixed Turbofan with PDC Performancecccccoviieeiiiiiiec e 35
Table 3.11 — Baseline Mixed Turbofan Performancecccccevireeeiiiiec e 35
Table 3.12 — Detonation properties for various fan pressure ratios..........cccoeeeeeeeiieeeeeennn. 36
Table 3.13 — PDC properties initialized in NPSS. ..o 37
Table 3.14 — CJ conditions for each design POINt.cceeiiiiiii e 38
Table 4.1 —Baseline and PDC Model in the Takeoff Conditionc.cccceeeviiieiiiiiienenns 40
Table 4.2 — Baseline and PDC Model in the Subsonic Cruise Conditioncceeenee 41
Table 4.3 — Baseline and PDC Model in the Supersonic Cruise Condition...................... 42

Chapter 1

Introduction

In the past ten to fifteen years, a significant amount of research has been done in
trying to make detonation a feasible means of increasing the efficiency of combustion
engines for aerospace propulsion. Since a detonation wave provides both the heat
release due to chemical combustion as well as a large pressure rise, it has the
potential to be much more efficient than a standard combustion engine as well as
removing the necessity of having a large series of compressor blades in order to
compress the fuel-air mixture. In addition to reducing the complexity of designing an
efficient compressor, reducing the amount of delicate moving parts would also lead to
lower maintenance costs and lower maintenance time on the engine itself.

Although detonation engines are promising in these aspects, there are still
technical problems which must be solved in order to make a detonation engine
viable. When a fuel-air mixture is burned in a tube with both ends open, the
deflagration wave will move with a constant velocity, usually small compared to the
sonic velocity of the gas (order of 0.01%). However, if one end is closed and a
deflagration wave is ignited at this end the combustion wave will be observed to
accelerate until it reaches the speed of a detonation wave. This is the “thermal
initiation” of a detonation wave and the overall process is known as deflagration to
detonation transition (DDT). In experiments, it has been shown that the DDT process
can be sometimes difficult to induce and there is not yet a good way of predicting
whether a transition will take place with a specific geometry and chemistry. Another
large problem with detonation engines is the noise that they produce. With traditional

engines, steps are already taken to reduce the amount of noise produced by the

engine exhaust, and a detonation engine produces significantly more noise than a
traditional turbofan/turbojet engine.

In the aerospace community, it is hoped that a hybrid of a detonation combustor
within a more traditional turbomachinery setup will result in an engine that is both
quieter than a pure detonation engine and more efficient than a pure

turbomachine/combustion engine.

1.1 Purpose
The purpose of this thesis is to create a model of a pulse detonation combustor
(henceforth PDC), integrate the PDC into a turbofan engine in the bypass ducts and
then compare the PDC/Turbofan hybrid to a turbofan engine with a traditional
combustor in the bypass ducts. The goal of the comparison is to demonstrate the
potential benefit of detonation combustion over traditional deflagration combustion,
specifically taking advantange of the self-compressing nature of detonation in the

bypass ducts (i.e. flow not coming out of a compressor).

Figure 1.1 — Detonation Tubes in the bypass section of a turbfan engine (Ref. 5).

1.2 Procedure

The Numerical Propulsion System Simulation (NPSS) was developed in a
cooperative effort between the major aerospace industry companies and NASA to
predict and analyze the performance of air breathing engines in various
configurations, and can easily be modified and tweaked by the user (Ref. 11). NPSS
will be the tool used to model and analyze the performance of the hybrid PDC
turbofan and the “baseline” turbofan engine with a conventional combustor.
Additionally, NASA’s Chemical Equilibrium with Applications (CEA) will be used to
calculate the upper Chapman-Jouguet conditions based on an initial pressure,
temperature and chemical composition (Ref. 10). For this thesis, the fuel will be liquid
Hydrogen (H,) and the oxidizer will be air from the atmosphere (Std. Air by molar

fraction: O, + 3.76 N,, CEA will include trace elements as well).

Figure 1.2 — A concept for a hybrid engine combining conventional turbomachinery with

pulsed detonation combustion (Ref. 5).

Chapter 2

Thermodynamic Models of Detonation

2.1 Thermodynamic Models
2.1.1 Chapman-Jouguet
Experimentally, it has been found that the detonation velocity is uniquely
constant for a given mixture (Ref. 1). By using the conservation of mass, momentum

and energy the Rayleigh line can be derived (Ref. 1):

,_1(P—P o
uy = E 1 1 (Rayleigh Line)
p1 P2

State 1 corresponds to the upstream, unburnt gases and state 2 refers to the
downstream, burned gases. After adding the equation of state, the Rankine-Hugoniot
relationship is given by (Ref. 1):

Y (Pz P1) 1(P P)<1+1> H ot)
I —_ — —] = q ugoniot curve
y=1\p, p/ 272 "V p p, g

Where the heat release per unit mass is given by the enthalpy difference between
states 1 and 2:
q = h — h§ (heat release per unit mass)
h = C,T + h°(total enthalpy per unit mass)
The intersection of the Raleigh line and the Hugoniot curve are the upper and
lower Chapman-Jouguet (CJ) points. By controlling the value of heat release q we
can control the offset of the Hugoniot curve, and therefore change the CJ wave

velocity. When the pressure behind the combustion wave P, is plotted as a function

of specific volume pi, the shock Hugoniot curve is the result:
2

7

|
|
pz | ?. Region |
|, Upper CI point
e Region 11
Region ¥V
\ Eegion 111
P1 N — =) Region IV
I A
I Lower CJ T!-cc-int""'--'r —

P, 1/psy

Figure 2.1 — Diagram of Hugoniot Curve and Rayleigh Line

There are five regions on the Hugoniot curve. Region V can be immediately
eliminated since it would require a transition from subsonic to supersonic flow across
a normal shock, which is impossible in a constant area duct. Regions Il and IV are
weak and strong deflagrations, respectively, and give expansion waves (i.e. P, < Py).
Finally, Regions | and Il are strong and weak detonations giving compression waves
with high velocities. Of primary interest to this work are the detonation regions,
specifically, the upper CJ point between regions | and Il. At the CJ points, the

following is true (Ref. 1):

P, =P
l_l= _VPZPZ
P2 P1

When combined with

Results in the following (Ref. 1):

P

P2

uj =—==adajoru,| = a

Where a, is the speed of sound in the downstream gases. In region Il (“weak”
detonations) the wave speed is below M, = 1 which is rarely observed. Rather, we

will focus on wave speeds corresponding to the upper CJ point and above (M, > 1).

2.1.2 Zeldovich-von Neumann-Déring

The ZND theory states that the detonation wave consists of a planar shock (1
dimensional) that moves at the detonation velocity and leaves heated and
compressed gas behind it. After a short induction period during which the gas is
adiabatically compressed, the chemical reactions begin and the temperature rises
and the pressure and density fall to the CJ values. The short pressure spike before

the chemical reactions start is called the Von Neumann spike.

Detonation wave -
N

Teom Ps
T _//’/. 1 . Von Neumann
| pressure spike
—
Taylor wave Shock wave
POJ
-
-
Ps —— T+
P41
Heat addition Induction
zZone Zone

Figure 2.2 — Diagram showing the ZND Model of Detonation (Ref. 8).

In order to visualize the ZND theory of detonation on the Hugoniot, first start with
unreacted, undisturbed gas (i.e. g = 0) into which the shock propagates, heating it up
to the Von Neumann spike at which point the chemical reactions begin and moves
the gas to the upper CJ point at a new Hugoniot curve with a new value for heat
release. Along the path followed by the gas from the initial point to the CJ point if the
pressure and temperature after the ‘jump’ from the initial point to the Von Neumann
spike are not high enough, the detonation may not have enough energy to sustain
itself. In other words, the heat released by combustion must be enough to keep the
wave propagating at sonic velocity in order to maintain a detonation. It is important to
note that the sonic velocity (i.e. M = 1) occurs behind the detonation wave in the
moving frame of reference, and in the stationary (or “lab”) reference frame, the flow

following the detonation wave can still be supersonic.

1/ps

Figure 2.3 — Diagram showing the transition of the gas from undisturbed to Von Neumann

to the upper Chapman-Jouguet point (Refs. 4 & 5).

The Von Neumann conditions are calculated by assuming a normal shock moves
into the fuel-air mixture at a speed equal to the CJ velocity. Assuming a calorically
perfect gas (valid for the upstream gas and the adiabatic transition to Von Neumann

spike), the conditions after the Von Neumann spike are given by:

Py 2y,
—=1+ MZ -1
B, y0+1(o— 1

p1 (Yo + MG

po 2+ (yo— DM}

i _Pipo
Ty Pyps

Where state 0 is the undisturbed gas and 1 is the Von Neumann condition. Mg is

the detonation Mach number, calculated using NASA CEA code. It is important to

note that the above equations are the normal shock equations assuming a calorically

perfect gas, whereas CEA performs the calculations based on a real gas model. For

small Mach numbers, the difference between these two models should be small. In

this project, the Mach number calculated by CEA was typically in the range of M = 3

— 4, with a maximum of 4.8288 in the (unused) case of a takeoff with a fan pressure

ratio of 1.0. For the cases analyzed in the project the Chapman-Jouguet Mach

number was less than 4.

Table 2.1 — Pressure Ratio from CEA, CPG and Percent Error.

Upstream Mach

CEA Result CPG Result Percent Error
No.
1 1.000 1.000 0%
2 4.528 4.500 0.62%
2.5 7.198 7.125 1.01%
3 10.483 10.333 1.40%
3.5 14.390 14.125 1.84%
4 18.926 18.500 2.25%
4.5 24.105 23.4583 2.68%
4.8288 27.867 27.0369 2.98%

Table 2.2 — Density Ratio from CEA, CPG and Percent Error.

Upstream Mach
CEA Result CPG Result Percent Error

No.
1 1.0003 1.0000 0.03%
2 2.7540 2.6667 3.17%
25 3.56235 3.3333 5.40%
3 4.1833 3.8571 7.80%
3.5 4.7475 4.2609 10.25%
4 5.2392 4.5714 12.75%
4.5 5.6816 4.8119 15.31%
4.8288 5.9562 4.9406 17.05%

Table 2.3 — Temperature Ratio from CEA, CPG and Percent Error.

Upstream Mach
CEA Result CPG Result Percent Error
No.
1 1.0000 1.0000 0%
2 1.6440 1.6875 2.65%
2.5 2.0430 2.1375 4.63%
3 2.5060 2.6790 6.90%
3.5 3.0310 3.3151 9.37%
4 3.6130 4.0469 12.01%
4.5 4.2420 4.8751 14.92%
4.8288 4.6770 5.4724 17.01%

10

Pressure Ratio

Temperature Ratio

30

25

20

15

CEA Result
CPG Result

10

1 1.5 2 2.5 3 3.5 4 4.5
Mach No.

Figure 2.4 — Pressure Ratio from CEA, CPG.

5.5 r r
CEA Result

5 CPG Result

4.5

3.5

2.5

1.5

1 1.5 2 2.5 3 3.5 4 4.5 5
Mach No.

Figure 2.5 — Temperature Ratio from CEA, CPG.

11

5.5

4.5 —

3.5

Density Ratio

2.5

1.5 CEA Result
CPG Result

1 r r
1 1.5 2 2.5 3 3.5 4 4.5 5

Mach No.

Figure 2.6 — Density Ratio from CEA and CPG.

2.1.3 Performance Model

The theoretical model developed by Endo, Fujiwara, et. al. is one of the most
widely used and accepted models of the gas dynamics inside a pulse detonation
engine (Refs. 6 & 7). They treat the PDE as a straight tube with fixed cross section in
which one end of the tube is closed and the other end is open. Attimet=0, a
detonation wave is initiated at the closed end (position x = 0) and begins propagating
toward the open end of the tube. Since the detonation wave is a compression wave,
the gas velocity behind the compression wave must be non-zero. However, since the
gas velocity at the closed end must be at rest, the gas is decelerated through a self-
similar rarefaction wave (known as the Taylor Rarefaction wave) following the

detonation wave which also propagates toward the open end. The time at which the

12

detonation wave reaches the open end is called tc; and is the time at which another
rarefaction wave starts to propagate from the open end toward the closed end. This
second rarefaction wave reaches the closed end of the tube at time tyjaeau, at which
point it reflects once more toward the open end. Finally, once the rarefaction reaches
the open end it will begin to reflect toward the closed end, but will be interrupted by
the purging of the air remaining in the tube before being refilled and the process

starting from the beginning.

% %

Figure 2.7 — The x-t diagram for the characteristics inside the detonation tube (Ref. 6).

13

The conditions in the initial “shock-rarefaction” region are given by:

1 1 (2]/2 5
—1 x\Uz-1

P = (— + yz _) " PZ
Y2 Y2 X2

2

(1 +y2—1x>(yz——1)
p=\— — p
Y2 Y2 X2 g

_— p
PR

Where P,, p, refer to the Von Neumann spike conditions. The conditions inside the

rarefaction wave’s “first reflection” region:

1L - \G-2D

_ Y2 — —x\lr2-1 V1 2

P= (1) G Mo
-1

v, + 1)

2

(1 y,— 1L —x)()/z—l) y,+1
p:

0. | P1
Dey t=ta =
)

However, these conditions do not affect the flow at the closed end and are usually
referred to as the “plateau” conditions since they represent a reflected shock moving
from the open end to the closed end (refer to Fig. 2.7, the open end is at position

% = 1 from time t* to t¥). The final rarefaction wave which is referred to as the
“blowdown phase” or decay of the pressure at the thrust wall is given in the Endo-
Fujiwara model at the closed end of the tube, and had to be modified in order to give
the correct results at the open end of the tube. In this project it is referred to as

“second reflection” and whose conditions are given by:

14

P = 21348 Pyoeqy - Ps - (1 — 175(t — t4))

p= Pdecay " P3

Where Pyecqy is given as a curve fit to experimental data in Endo, Fujiwara et. al. as:

- 30 - a3
Paocay = 060660 22) 1 (1 _ 0.6066)e ()

—(r2+1)
2 2(y2-1)
t# = 63 + 6A2 I:m:l -1 tC]
—(r+1)
Sp =2 <[V1M5] + Yz] [Vz + 1D2<y—1>
g Vlng +1 2y,
V1ng
Sa2 = M2 4,
yiMg; +ve

2.2 Transient Analysis

Initially, this project was intended to analyze a standard turbofan with the
traditional combustion chamber changed to a pulse detonation combustor. Doing
this, however, caused several problems in NPSS which would not allow a solution to
be found. One of the major problems in analyzing a pulse detonation combustor in a
turbomachinery based engine is the purge-fill portion of the cycle during which
essentially cold air (no chemical energy added through combustion) is blown through

the turbine. A study cited by Andrus (Ref. 4) involved a series of computational and

15

experimental studies which examined how detonation waves interacted with a 2-
dimensional cascade of rotor blades. The work showed that there is a significant
fluctuation in mass flow rate, pressure and temperature across the rotor blades
during the detonation cycle. One possible solution to such a problem is to fire the
detonation tubes out of phase so that quasi-steady flow could be obtained at the
turbine inlet. In NPSS this type of approach does not work since there cannot be any
amount of time at which cool air is ejected from the combustor, since the turbine
would be attempting to extract work out of air which has had no chemical energy
added to it. Instead the transient analysis will be carried out in a “rig” setup in which
the combustor is the only engine element present. The pressure and temperature
over the cycle will be numerically integrated at each point using the trapezoidal
method. After the cycle ends, the average pressure and temperature will be obtained
using the Mean Value Theorem. This approach will allow a pulsed detonation

combustor to be used in any type of engine setup in NPSS.

t2 P(ty) + P(t
J M (t, —t,) [Trapezoidal Method)]
t

P(t)dt =
® .

1

T(t) +T(t2)

5 (t; —t1)

tz
f T(t)dt =
t

1

- [P(t)dt

P(t) AL [Mean Value Theorem]

[T(t)dt

T ="—F

16

2.2.1 PDE Cycle
A pulse detonation engine cycle essentially contains seven stages. Figure 2.5

shows the major portions of the cycle in order.

Purging stage
(chamber is at ambient condition)

Po

@ Purging starts @ Filling stage

Fuel
Air

- -

= I

@ Exhaust Stage (Thrust)

@ Ignition/Initiation stage
® Detonation Wave reaches the exit @ Detonation Wave Propagation

(Compression+ Heat Addition)
. O

PDE Cycle

.y

Figure 2.8 — Diagram containing the seven major stages of a PDE cycle.

(Image from Ref. 8)

Stage one shows the initial condition of the tube, containing only static air at the
ambient conditions upstream of the tube. Stage two is the “fill” portion of the cycle
during which upstream air is mixed with fuel and is assumed to be homogenous by
the end of the fill portion of the cycle. Stage three is the ignition stage during which a
deflagration wave is started at the closed end of the tube and transitions to a
detonation wave at some point before reaching the open end of the tube during stage

four. The time that the transition takes is known as the deflagration to detonation

17

transition time and can be changed in the combustor element file in NPSS. At stage
five, the detonation wave, assumed to be at the Chapman-Jouguet condition,
reaches the open end of the tube and begins exhausting into the downstream
element of the engine. This is known as the exhaust phase during which the thrust of
the detonation tube is generated. Finally, the “purge” portion is the part of the cycle
when the valve opens the closed end of the tube and fresh air replaces the burned
fuel-air mixture. Pressure and temperature in the tube return to ambient (or
upstream) conditions during this portion of the cycle and velocity in the tube drops to

Zero.

2.2.2 NPSS Transient

In NPSS, running a transient analysis is essentially determining the behavior of
the desired system at a series of discrete time steps over a certain interval. This
allows for time varying inputs, component configurations (i.e. shaft inertia), initial
conditions and various termination criteria. In this work, the “rig” setup will be run in
the transient condition in order to determine the pressure, temperature and enthalpy
profile for the detonation tubes over one full cycle. After the cycle is run, each value
will be averaged for the given time period and substituted into the values for the
steady-state burner output. In this case, the time is reported as a multiple of the CJ
time, which is the time taken for the initial detonation wave to reach the open end of
the tube. For this particular setup, the CJ time is 0.00222463 seconds, or 2.22463 ms

(and an overall cycle time of 0.0757394 seconds).

18

500
400
—P(t)
300
Pressure —Pressure
(psi) 1 Average
200
100 \‘
\\
0 —
0 1 2 3 4 5 6 7
Time (integer multiples of t/tCJ)

Figure 2.9 — Typical result of pressure as a function of time in a rig setup.

6000 \
5000

4000

Temperature

3000 \

(degrees R)

e T ()
2000

1000

0 1 2 3 4 5 6 7
Time (integer multiples of t/tCJ)

Figure 2.10 - Typical result of temperature as a function of time in a rig setup.

19

In order to obtain the average of these results, at each discrete time step a
running average is updated according to the numerical integration process of the
trapezoidal rule. At each time step, n:

(Pps1 — P (1 — t)
2

n+1

P, +

(Tn+1 - Tn)(tn+1 - tn)
2

Tn+1 = Tn +

Where B,and T,refer to the running averages, and the n subscript refers to the
current time (n is the previous step, n+1 is the current step). After the final time step,
these values are then divided by the time interval in order to find their average values
over the cycle. A typical profile of a running pressure average is shown in Figure

2.11.

P(t) Integratio

1250

1000 -

750 - _
Pressure - /

Average | /

500
] -~

e

250 - 4

6 7

Time (zl'nteger mzbltiples o? t/tCJ)

Figure 2.11 — Typical pressure integration running average.

20

The final value of the pressure integration is 818.0731354, which when divided

by the time interval (in terms of multiples of tc;, the time interval is 8) gives the

average pressure over the cycle of 102.271 psi. The same process is used to find the

average temperature with a final value of 24289.474 and an average of 3036.532 °R.

Since the pressure and temperature as a function of time are straight lines

connecting two discrete values, it can be considered a polynomial of degree 1. As

such, the trapezoidal rule gives an exact result for the integration (since the area

bounded by a straight line is a trapezoid).

2.3.1 Turbine Inlet Temperature

In an engine operating on the Brayton cycle such as a gas-turbine, one extremely

important design parameter is the turbine inlet temperature (also called the turbine

entry temperature).

76 7
| =
2400 ,\Qgé/ A
7] cooLinG
x S " | CONCEPT
5> 2200} O !
) & |
£ 2000 SRR
&
= 1800 =3\ FILM
s /:’ IMPINGEMENT
= CONVECTION
& 1600 SOPHISTICATED
= COOLING SYSTEMS
()
L
= 1400 (" = SIMPLE COOX NG CONVECTION
s
= 1200} S e T
ALLOWABLE METAL TEMPERATURE
UNCOOLED TURBINES
1 1 1 1 <<
Q56 1960 1970 1980 1990 2010
YEAR

Image courtesy of Lalchminamayvana B. Fluid Dvrnarnics and Hear Transgfe of Twhomackhinew, 1996

Figure 2.12 — A 1996 Projection of Turbine Inlet Temperatures.

21

2200

2000

1800

1600

1400

Turbine Inlet Temperature (K)

_~

LN

~

00
1940 1950 1960 1970 1980 1990 2000 2010
Year

1200

10

Figure 2.13 — Projection of Turbine Inlet Temperatures Using Actual Engine Data.

Initially when gas-turbine engines were first produced (roughly 1940), the turbine
blades were completely uncooled and couldn’t sustain high temperatures for very
long. With the introduction of turbine cooling in the 1960’s, the turbine inlet
temperature began to rise. Since then, advances in materials, thermal coatings and
more sophisticated cooling methods have allowed for an increasing amount of heat
to reach the turbine blades. Using a linear projection of the turbine inlet temperatures
of several commercial and military engines produced by Rolls-Royce from 1940 until
1993, the predicted turbine inlet temperature in 2012 is approximately 2100 K (3780
°R). However, it is important to note that the linear projection uses actual data, and
should represent a very conservative value for the turbine inlet temperature. As of

1993, the maximum turbine inlet temperature that could be realistically cooled was

22

higher than 2200 K (3960 °R), however, and would be more than 2400 K (4320 °R)
by the year 2012. As such, the maximum turbine inlet temperature in this project
(4238.44 °R) should be within the cooling capabilities of a modern gas-turbine

engine.

23

2.3.2 NPSS Design Process

Images property of Wolverine Ventures, Inc. ©Copyright, 2011. (Ref. 11)

Start With a Concept

omss) (Y

Figure 2.14 — NPSS Design Step One

Break Into Components

Figure 2.15 — NPSS Design Step Two

24

Translate Into NPSS Elements

32

Figure 2.16 — NPSS Design Step Three

Link the Components

Shaft Engine

Compressor Burner Turbine

Figure 2.17 — NPSS Design Step Four

25

Bypass

Fan Core

Inlet [FO] [F010]

Det. Tube
[F125]

HP Comp.
[FO25]

Det.
Bypass
[F235]

Det. Hot

Comb.
Chamber
[FO30]

HP
Turbine
[FO40]

LP
Turbine
[FO45]

Figure 2.18 — Flow Station Diagram (PDC Setup)

Fan Bypass
[F110]

Fan Core
[FO10]

Inlet [FO]

Secondary
Combustion
Chamber
[F125]

HP Comp.
[FO25]

Primary
Combustion
Chamber
[FO30]

HP Turbine
[FO40]

LP Turbine
[FO45]

secondary
Mixer

Primary
Mixer
[FO50]

Nozzle
[FO70]

Mixer
(Bypass)
[F150]

Flow End
[FO90]

Mixer
(Core)
[FO50]

Nozzle
[FO70]

Figure 2.19 — Flow Station Diagram (Standard Combustor Setup)

26

Flow End
[FO90]

Chapter 3

PDC and Baseline Performance Data

Table 3.1 — PDC entrance and exit conditions at altitude = 0 kft, M = 0.0

Total Temperature

Total Pressure

Total Enthalpy

(°R) (psia) (BTU/Ibm)
Upstream
730.5 44.09 174.9
Conditions
Cycle Average 2537.8 190.1 748.7
Det. Tube Max. 5181.9 847.7 1609.3

Table 3.2 — PDC entrance and exit conditions at altitude = 25 kft, M = 0.8

Total Temperature

Total Pressure

Total Enthalpy

(°R) (psia) (BTU/Ibm)
Upstream
683.0 24.95 163.5
Conditions
Cycle Average 2691.6 114.8 801.9
Det. Tube Max. 5475.6 511.1 1712.5

Table 3.3 — PDC entrance and exit conditions at altitude = 50 kft, M = 2.3

Total Temperature

Total Pressure

Total Enthalpy

(°R) (psia) (BTU/Ibm)
Upstream
1118.8 63.2 270.7
Conditions
Cycle Average 1854.9 171.1 510.4
Det. Tube Max. 3490.5 790.7 1026.3

28

Table 3.4 — PDE at altitude = 0 kft, M = 0.0

Flow Station Total Temperature Total Pressure Mass Flow (Ibm/s)
°R) (psia)

FO 518.67 14.6959 300
FO10 518.67 14.6225 300
F110 518.67 14.6225 245.455
F020 518.67 14.6225 54.5455
F120 730.5 43.8674 245.455
F025 735.28 43.8674 54.5455
F125 730.5 43.2093 245.455
FO30 1270.18 263.204 54.5455
F135 2397.27 186.31 11.7074
F235 730.5 43.2093 236.208
F040 3709.13 250.044 57.0455
F045 3317.1 138.317 57.0455
FO50 2688.49 46.1055 57.0455
F150 823.22 61.8238 247.916
FO70 1221.68 51.4168 304.961
F090 1221.68 51.4168 304.961

29

Table 3.5 — PDE at altitude = 25 kft, M = 0.8

Flow Station

Total Temperature

Total Pressure

Mass Flow (Ibm/s)

(°R) (psia)

FO 484.68 8.31607 300
FO10 484.68 8.27449 300
F110 484.68 8.27449 245.455
F020 484.68 8.27449 54.5455
F120 683.00 24.8235 245.455
F025 687.49 24.8235 54.5455
F125 683.00 24.4511 245.455
FO030 1191.96 148.941 54.5455
F135 2534.20 112.513 6.85979
F235 683.00 24.4511 240.037
F040 3650.55 141.494 57.0455
F045 3282.83 80.6931 57.0455
FO50 2659.88 26.8977 57.0455
F150 744.22 19.4788 246.897
FO70 1156.26 17.885 303.942
F090 1156.26 17.885 303.942

30

Table 3.6 — PDE at altitude = 50 kft, M = 2.3

Flow Station Total Temperature Total Pressure Mass Flow (Ibm/s)
°R) (psia)

FO 801.68 21.0581 300
F010 801.68 20.9528 300
F110 801.68 20.9528 245.455
F020 801.68 20.9528 54.5455
F120 1118.82 62.8584 245.455
F025 1125.89 62.8584 54.5455
F125 1118.82 61.9155 245.455
FO30 1887.12 377.15 54.5455
F135 1787.8 167.7 13.6686
F235 1118.82 61.9155 234.659
F040 4186.57 358.293 57.0455
F045 3601.39 159.458 57.0455
FO50 2925.09 53.1527 57.0455
F150 1160.03 61.537 248.328
FO70 1531.97 57.0603 305.373
F090 1531.97 57.0603 305.373

31

Table 3.7 — Mixed Turbofan at altitude = 0 kft, M = 0.0

Flow Station

Total Temperature

Total Pressure

Mass Flow (Ibm/s)

(°R) (psia)

FO 518.67 14.6959 300
FO10 518.67 14.6225 300
F110 518.67 14.6225 245.455
F020 518.67 14.6225 54.5455
F120 765.61 51.1786 245.455
F025 735.28 43.8674 54.5455
F125 765.61 50.4109 245.455
FO030 1270.18 263.204 54.5455
F040 3761.64 250.044 57.0455
F045 3370.28 139.543 57.0455
FO50 2403.42 23.7443 57.0455
F150 1332.37 47.8904 247.455
FO70 1551.89 30.2027 304.5
F090 1551.89 30.2027 304.5

32

Table 3.8 — Mixed Turbofan at altitude = 25 kft, M = 0.8

Flow Station

Total Temperature

Total Pressure

Mass Flow (Ibm/s)

(°R) (psia)

FO 484.69 8.31607 300
FO10 484.68 8.27449 300
F110 484.68 8.27449 245.455
F020 484.68 8.27449 54.5455
F120 715.96 28.9607 245.455
F025 687.50 24.8235 54.5455
F125 715.96 28.5263 245.455
FO030 1191.96 148.941 54.5455
F040 3703.16 141.494 57.0455
F045 3336.09 81.3816 57.0455
FO50 2432.39 15.5926 57.0455
F150 1286.71 27.1 247.455
FO70 1522.33 19.1215 304.5
F090 1522.33 19.1215 304.5

33

Table 3.9 — Mixed Turbofan at altitude = 50 kft, M = 2.3

Flow Station

Total Temperature

Total Pressure

Mass Flow (Ibm/s)

(°R) (psia)

FO 801.69 21.0581 300
FO10 801.68 20.9528 300
F110 801.68 20.9528 245.455
F020 801.68 20.9528 54.5455
F120 1170.41 73.3348 245.455
F025 1125.89 62.8584 54.5455
F125 1170.41 72.2348 245.455
FO030 1887.12 377.15 54.5455
F040 4238.44 358.293 57.0455
F045 3654.14 161.205 57.0455
FO50 2165.45 10.0521 57.0455
F150 1703.76 68.623 247.455
FO70 1796.01 15.9855 304.5
F090 1796.01 15.9855 304.5

34

Table 3.10 — Mixed Turbofan with PDC Performance

Gross Net Thrust TSFC Primary Duct Fuel
Thrust (Ibf) (Ilbm/(Ibf*hour)) Fuel Flow Flow
(Ibf) (Ibm/hour) (Iom/hour)
Alt. = 0 kft 19770.0 19770.0 0.600842 9000 2878.62
M=0.0
Alt = 25 kft 18787.6 11205.6 0.953695 9000 1686.69
M=0.8
Alt = 50 kft 28057.2 7287.33 1.69621 9000 3360.82
M=23
Table 3.11 — Baseline Mixed Turbofan Performance
Gross Net Thrust TSFC Primary Duct Fuel
Thrust (Ibf) (Ibm/(Ibf*hour)) Fuel Flow Flow
(Ibf) (Ibm/hour) (Ibm/hour)
Alt. = 0 kft 17716.7 17716.7 0.812792 5400 9000
M =0.0
Alt = 25 kft 22105.8 14523.8 0.991477 5400 9000
M=0.8
Alt = 50 kft 28497.6 7727.72 1.86342 5400 9000
M=23

35

From Tables 3.10 and 3.11, it may seem strange that both the primary fuel flow and

duct fuel flow vary significantly between the PDC turbofan and the baseline turbofan.

After | had completed the PDC turbofan performance, | wanted to compare it to a

baseline turbofan which offered similar performance in terms of thrust and thrust specific

fuel consumption. This led to essentially a “guess-and-check” with the fuel flows of the

baseline model until the performance was satisfactory. Though the performance is

similar, the net fuel flow of the baseline turbofan was much higher than that of the PDC

turbofan (greater than 1000 Ilbm/hour).

Table 3.12 — Detonation properties for various fan pressure ratios.

Fan PR Pourned (PSia) Tournea (°R) Hpurned (BTU/Ibm)
1.0 162.18 5135.976 579.647
15 244.56 5178.024 582.92
2.0 327.22 5296.41 585.099
25 410.05 5227.56 586.71
3.0 493.04 5244.264 587.96
5.0 825.93 5288.256 591.225

For various fan pressure ratios, several detonation parameters were determined
using CEA (i.e. they represent the Chapman-Jouguet properties). Although the initial
pressure changes significantly, both the temperature and enthalpy values changed very
little. As such, a fan pressure ratio of 3.0 was used in this project in order to represent an
average turbofan engine without taking too much power out of the turbine (although

modern turbofans may be able to provide much more compression).

36

Table 3.13 — PDC properties initialized in NPSS.

PDC Properties

Burning Efficiency 0.995
Fuel-Air Ratio 0.0683
Equivalence Ratio 0.85
Purge Fraction 0.2
Fill Fraction 0.8
Tube Length (inches) 36
Number of Tubes 24
Tube Diameter (inches) 2

The values chosen for the PDC in Table 3.12 were the same as those used in the
Andrus (Ref. 4) and Thorn (Ref. 5) papers, and represent average values expected for a
pulsed detonation combustor in the real world. These values were not altered for any of
the test cases and no optimization was attempted in this project, although customization

of these parameters would alter the results.

37

Table 3.14 — CJ conditions for each design point.

Chapman-Jouguet 0 kft, M =0.0 25 kft, M =0.8 50 kft, M = 2.3
Conditions
M/M, 4.0949 4.2172 3.3140
P/Py 11.183 11.868 7.422
TIT, 7.719 7.579 4.836
Uc; (ft/s) 6231.63 6208.99 6203.74
P/p1 1.7704 1.7775 1.7364
Yo 1.1821 1.1779 1.1750
Re; [(ft*Ibf)/(Ibm*°R)] 53.3507 53.3507 53.3507

38

Chapter 4

Results

Initial results for the mixed flow turbofan engine with a pulsed detonation combustor
as a duct burner look extremely promising. The fuel efficiency in the PDC model was an
improvement over the baseline model in each case. In a real engine setting, the pulse
detonation combustor must be well designed in order to offer an improvement over the
baseline case since the losses in a real detonation combustor could begin to outweigh
the advantages that detonation offers. In NPSS, in order to differentiate between a
“design-point” run and an “off-design” run various sub-elements become important (i.e.
compressor element, compressor performance map sub-element). In each of these three
cases, the PDC has no mechanism to provide for an off-design consideration other than
the variation in Chapman-Jouguet conditions based on the inlet flow conditions. However,
the core elements of the turbofan do correct for off-design since the performance of
compressors and turbines have been documented extremely well and a performance
map is widely available (NPSS includes performance maps for all of its turbomachinery
elements). As detonation tubes become more widely used, a performance map will likely
be developed, at which point an off-design consideration would be much more feasible

and accurate.

39

4.1 Take-Off

Table 4.1 — Performance of Baseline and PDC Model in the Takeoff Condition

Gross Net TSFC Primary Duct Fuel
Thrust Thrust (Iom/(Ibf*hour)) Fuel Flow Flow
(Ibf) (Ibf) (lom/hour) | (Ibm/hour)
Baseline 17716.7 17716.7 0.812792 5400 9000
Model
PDC 19770.0 19770.0 0.600842 9000 2878.62
Model

In the take-off case, the thrust specific fuel consumption of the pulse detonation

model was 73.92% that of the baseline case with the total fuel flow reduced from 14,400

pounds per hour to 11,878 pounds per hour with a gain in net thrust from 17,717 pounds

in the baseline case to 19,770 pounds in the PDC case. This case offers the most drastic

improvement over the baseline case since the efficiency of the detonations is highest

when the initial pressure is the smallest (i.e. when the ram pressure increase due to the

motion of the aircraft relative to the air is the smallest).

40

4.2 Transonic Cruise

Table 4.2 — Performance of Baseline and PDC Model in the Subsonic Cruise

Condition
Gross Net TSFC Primary Duct Fuel
Thrust Thrust (Iom/(Ibf*hour)) Fuel Flow Flow
(Ibf) (Ibf) (lbm/hour) | (Ibm/hour)
Baseline 22105.8 14523.8 0.991477 5400 9000
Model
PDC 18787.6 11205.6 0.953695 9000 1686.69
Model

In the transonic cruise case (freestream Mach number of 0.8 at an altitude of 25

kft), both engines offer similar performance. While the baseline mixed turbofan model has

a higher net thrust than the PDC model, the fuel efficiency of the PDC is better, as in the

previous case. The thrust specific fuel consumption of the PDC model in this case is

improved by 3.96% and the overall fuel flow is reduced from 14,400 pounds per hour to

10,686 pounds per hour.

41

4.3 Supersonic Cruise

Table 4.3 — Performance of Baseline and PDC Model in the Supersonic Cruise Condition

Gross Net TSFC Primary Duct Fuel
Thrust Thrust (Iom/(Ibf*hour)) Fuel Flow Flow
(Ibf) (Ibf) (lom/hour) | (Ibm/hour)
Baseline 28497.6 7727.72 1.86342 5400 9000
Model
PDC 28057.2 7287.33 1.69621 9000 3360.82
Model

Finally, in a supercruise condition (freestream Mach number of 2.3 at an altitude

of 50 kft) the PDC model is again much more efficient than the baseline model. The

thrust specific fuel consumption of the PDC model is 9.86% better than the baseline

model with the overall fuel flow reduced from 14,400 pounds per hour to 12,360 pounds

per hour.

42

4.4 Future Work Recommendations

Improvements to this work could include a more flexible computational model which
can accurately handle a wider range of input conditions. Also, a mechanism for including
the deflagration to detonation transition would most likely improve the accuracy of the
results. Though at the time of this writing a full chemically reacting CFD simulation would
be too expensive in terms of computational time, future works may not be limited in this
manner and would offer the potential to fully exploit the advantages offered by a
detonation combustor through optimization. Additional work could include extending the
detonation model or developing a performance map for a PDC to account for off-design

runs.

43

Chapter 5
Code Listing

Transient Model Definition — TransModel.mdl

I

I Model Definition

I

/I Instantiate the Ambient element

/I This element sets the ambient conditions

/I and is refered to by the InletStart and Nozzle elements

Element Ambient AmbT {

switchMode = "ALDTMN?"; // Set ambient conditions based on altitude, Mach
number, and standard day delta T

alt_in = 0.; // ft, input altitude

MN_in = 0.0;// input, Mach number

dTs_in = 0.; // Rankine, input temperature delta from standard day conditions

}// END Amb

Element InletStart FSEngT {
AmbientName = "AmbT"; // Name of the Ambient element

W_in = 257.143; // Ibm/s, input air flow flow rate

44

} /I End FsEng

Element Compressor CmpT {
/I Load file that instantiates a subelement and plugs into compressor socket
(S_map) and contains
/I compressor performance map
#include "IpcE3.map"; // when scoping, refer to the subelement by its socket
name: S_map
/I Set compressor design point values in S_map subelement
S map {
PRdes = 3.0; // design point pressure ratio
effDes = 0.9; // design point efficiency

}
}// End Cmp

Element FuelStart FUSEngT {

Wrfuel = 2.0; // Ibm/s, fuel flow rate (Used ONLY when Burner switchBurn =
WFUEL)

LHV =18400; // BTU/Ibm, Hydrogen - 61,000, Default - 18,400

} /1 End FusEng

/Il Instantiate the BrnPri element
Element PulseDetonationCombustor BrnPriT {
effBase =.995; // burning efficiency
dPgPBase = 0; //1.0-0.96; // pressure loss across valves/through bypass

switchBurn = FAR; // set fuel-air ratio (vs equivalence ratio)

45

/IswitchHotLoss = CALCULATE; // hot pressure loss will be calculated
FAR = 0.0683; // 0.0683 is ~85% of stoichiometric conditions
purgeFrac = 0.2; // designate purge fraction
fillFrac = 0.8; // designate fill fraction
[Tube = 36; // length of tube in inches
n_tubes = 24; // number of tubes
dTube = 2.0; // inside diameter of tubes
tCycle = .016776271641; // cycle time
}
Element Shaft ShT {
/I Mechanical Ports. These are created as needed on the shaft.
ShaftinputPort Sh_ICmp; // create a shaft port for a mechanical connection
between the shaft and the compressor
Nmech = 10000.; // rpm, shaft speed

}/ End Sh

Element FlowEnd FePriT {

} /I End combustion air flow

Element FlowEnd FeSecT {

} /1 End bypass air flow

1

/1 Component Linkages

1

46

/I Link Fluid Ports

linkPorts("FSEngT.FI_O" ,"CmpT.FI_I , "FOT");
linkPorts("CmpT.FI_O" , "BrPriT.FI_I" , "FO30T");
linkPorts("BrnPriT.FI_O1" , "FePriT.FI_I" ,"FO90T");
linkPorts("BrnPriT.FI_O2" , "FeSecT.FI_I" ,"F190T");

/ILink Fuel Ports

linkPorts("FUSEngT.Fu_O" ,"BroPriT.Fu_I" , "Fu_InT");

/I Link Shaft Ports

linkPorts("CmpT.Sh_O" ,"ShT.Sh_ICmp" ,"MeCmp");

/I Set power applied to shaft (HPX is in horsepower)

/I To match the power consumed by the compressor

ShT.HPX = -CmpT.pwr;

47

Mixed Turbofan Design Model — DesignModel.mdl

I

1 Model Definition

1

/I Instantiate the Ambient element
/I This element sets the ambient conditions
/I and is refered to by the InletStart and Nozzle elements

real MN;

Element Ambient Amb {

switchMode = "ALDTMN"; // Set ambient conditions based on altitude, Mach number,
and standard day delta T

alt_in = 0.; // ft, input altitude

MN_in = 0.0;// input, Mach number

MN = MN_in;

dTs_in = 0.; // Rankine, input temperature delta from standard day conditions

}// END Amb

48

/I Instantiate the InletStart element

Element InletStart FSEng {
AmbientName = "Amb"; // Name of the Ambient element
W_in = 300.; // Ibm/s, input air flow flow rate

} /1 End InletStart

/I Instantiate the Inlet element

Element Inlet InEng {
if(MN > 1) {

eRamBase =1 - (0.075*(MN - 1)**1.35); // Ram pressure recovery

else {
eRamBase = 0.995;

}
}// END InEng

/I Instantiate the bypass splitter
Element Splitter SpltFan {
BPRdes = 4.5;

} // END SpltFan

/I Instantiate the fan OD element

49

Element Compressor CmpFSec {
/I Load file that instantiates a subelement and plugs into compressor socket
(S_map) and contains
/I compressor performance map
#include "fanE3.map"; // when scoping, refer to the subelement by its socket
name: S_map
/I Set compressor design point values in S_map subelement
S _map{
PRdes = 3.0; // design point pressure ratio
effDes = 0.9; // design point efficiency
}
} /I End CmpL

/I Instantiate the fan duct for the bypass flow

Element Duct D130 {

switchDP = "INPUT"; // allow the user to input the relative pressure drop (deltP /
Pin)

dPqgP_in = 0.015; // user-input relative pressure drop

}// END Dfan

Element FuelStart FuseEngDuct {

Wfuel = 2.0; // Ibm/s, fuel flow rate (Used ONLY when Burner switchBurn =
WFUEL)

LHV =18400; // BTU/Ibm, Hydrogen - 61,000, Default - 18,400

} /1 End FusEng

50

Element PulseDetonationCombustor BrnPri {
effBase = .995; // burning efficiency
dPgPBase = 0; //1.0-0.96; // pressure loss across valves/through bypass
switchBurn = FAR; // set fuel-air ratio (vs equivalence ratio)
/IswitchHotLoss = CALCULATE; // hot pressure loss will be calculated
FAR = 0.0683; // 0.0683 is ~85% of stoichiometric conditions
purgeFrac = 0.2; // designate purge fraction
fillFrac = 0.8; // designate fill fraction
[Tube = 36; // length of tube in inches
n_tubes = 24; // number of tubes
dTube = 2.0; // inside diameter of tubes

tCycle = .016776271641; // cycle time

/I Instantiate the Compressor element

Element Compressor CmpL {

/I Load file that instantiates a subelement and plugs into compressor socket
(S_map) and contains

/I compressor performance map

#include "IpcE3.map"; // when scoping, refer to the subelement by its socket
name: S_map

/I Set compressor design point values in S_map subelement

S_map{

PRdes = 3.0; // design point pressure ratio

effDes = 0.88; // design point efficiency

51

}
} /1 End CmpL

Element Compressor CmpH {
/I Load file that instantiates a subelement and plugs into compressor socket
(S_map) and contains
/I compressor performance map
#include "hpcE3.map"; // when scoping, refer to the subelement by its socket
name: S_map
/I Set compressor design point values in S_map subelement
S _map{
PRdes = 6.0; // design point pressure ratio
effDes = 0.88; // design point efficiency

}
} /1 End CmpH

/I Start the flow of fuel

Element FuelStart Fuseng {

Wfuel = 2.0; // Ibm/s, fuel flow rate (Used ONLY when Burner switchBurn =
WFUEL)

LHV =18000; // BTU/Ibm, user input fuel lower heating value (LHV). Default is
18400 BTU/Ibm
} /1 End FusEng

/I Instantiate the Burner element

52

Element Burner BrnSec {

/[dPqgPfBase = 0.05; // user input friction relative pressure drop (Pin -
Pout)/Pin

dPgP_dmd = 0.05; // user input friction relative pressure drop (Pin -
Pout)/Pin

effBase =0.98; // user input burner adiabatic efficiency

/I The value for switchBurn determines how burner fuel flow rate is set

/I if switchBurn = FUEL, then use Wfuel that is set in the burner element

/I if switchBurn = WFUEL, then use fuel start element flow rate to set Wfuel
(Fu_l.Wfuel inherited from fuel start Fu_O.Wfuel)

/l'if switchBurn = FAR, then use air inlet FAR value (FI_I.FAR) to calculate Wfuel

switchBurn = "FUEL"; // FUEL, WFUEL, or FAR

Wfuel = 2.5; // Ibm/s, user input fuel flow rate. Used only whey switchBurn =
FUEL

}/ End BrnPri

/I Instantiate the High Pressure Turbine element

Element Turbine TrbH {

/I Load file that instantiates a subelement and plugs into turbine socket (S_map)
and contains

/I turbine performance map

#include "hptE3.map"; // when scoping, refer to the subelement by its socket
name: S_map

/I Set turbine design point values in S_map subelement

53

S_map {
effDes =0.9; // user-specified Design efficiency
parmMap =6.0; // pressure ratio initial guess

}
}// End TrbH

/I Instantiate the High Pressure Turbine element

Element Turbine TrbL {

/I Load file that instantiates a subelement and plugs into turbine socket (S_map)
and contains

/I turbine performance map

#include "IptE3.map"; // when scoping, refer to the subelement by its socket
name: S_map

/I Set turbine design point values in S_map subelement

S_map {
effDes =0.9; // user-specified Design efficiency
parmMap = 3.0; // pressure ratio initial guess

}

}/ End TrbL

/I Instantiate the Low Pressure Shaft element

Element Shaft ShL {

/I Mechanical Ports. These are created as needed on the shaft.

54

ShaftinputPort Sh_ICmpFSec; // create a shaft port for a mechanical connection
between the shaft and the fan OD element

ShaftinputPort Sh_ICmp; // create a shaft port for a mechanical connection between the
shaft and the low pressure compressor

ShaftinputPort Sh_ITrb; // create a shaft port for a mechanical connection between the
shaft and the low pressure turbine

Nmech = 5000.; // rpm, shaft speed

}// End ShL

/l Instantiate the Low Pressure Shaft element
Element Shaft ShH {

/I Mechanical Ports. These are created as needed on the shaft.

ShaftinputPort Sh_ICmp; // create a shaft port for a mechanical connection between the
shaft and the high pressure compressor

ShaftinputPort Sh_ITrb; // create a shaft port for a mechanical connection between the
shaft and the high pressure turbine

Nmech = 10000.; // rpm, shaft speed

}// End ShH

Element Mixer MixPri {
FI_11.MN = 0.1;

FI_12.MN = 0.1;

Element Mixer MixSec {

55

/IFL_11.MN = 0.15;
/IFL_12.MN = 0.15;
FI_I1.A = 256;

FI_I2.A = 256;

Element Nozzle NozPri {
PsExhName = "Amb.Ps"; // Model variable for ambient static pressure
switchType = "CONIC"; // conic nozzle

} //END NozPri

/I End the flow of air for primary stream

Element FlowEnd FePri {

} /I End FrPri

/I Instantiate the EngPerf element

/I This element makes some basic engine performance calculations

Element EngPerf Perf {

} //End Perf

1

/1 Component Linkages

I

56

/I Link Fluid Ports

/I Primary Hot Section
linkPorts("FSEng.FI_O"
linkPorts("InEng.Fl_O"
linkPorts("SpltFan.FI_0O1"
linkPorts("CmpL.FI_O"
linkPorts("CmpH.FI_O"
linkPorts("BrnSec.FI_O"
linkPorts("TrbH.FI_O"

linkPorts("TrbL.FI_O"

/I Fan duct section

linkPorts("SpltFan.FI_02",

linkPorts("CmpFSec.FI_O",

linkPorts("D130.FI_O",
linkPorts("BrnPri.FI_O1",
linkPorts("BrnPri.FI_0O2",

linkPorts("MixSec.FI_O",

/I Mix Primary/Duct flows
linkPorts("MixPri.FI_O"

linkPorts("NozPri.FI_O"

, "InEng.FL_I" | "FO");
, "SpltFan.FI_I" ,"FO10");
, "CmpL.FL_I" , "F020");
, "CmpH.FL_I" , "FO25");
, "BrnSec.Fl_I" |, "F030");
' TroH.FLI" | "F040");
' TrbL.FLI" |, "F045");
, "MixPri.FI_11" | "FO50");
"CmpFSec.Fl_I", "F110");
"D130.FI_I", "F120");
"BrnPri.FI_I", "F125");
"MixSec.Fl_I11", "F135");
"MixSec.Fl_I2", "F235");
"MixPri.FI_12", "F150");
, "NozPri.FI_I" ,"FO70");
, "FePri.FI_I" | "F090");

57

/I Link Fuel Ports
linkPorts("FusEng.Fu_O" , "BrnPri.Fu_I" | "Fu_In");

linkPorts("FuseEngDuct.Fu_O" , "BrnSec.Fu_I" , "Fu_In2");

/I Link Shaft Ports

linkPorts("CmpFSec.Sh_0O" ,"ShL.Sh_ICmpFSec" ,"MeCmpFSec");
linkPorts("CmpL.Sh_0O" ,"ShL.Sh_ICmp" ,"MeCmpL");
linkPorts("TrbL.Sh_O" "ShL.Sh_ITrb" ,"MeTrbL");

linkPorts("CmpH.Sh_0O" ,"ShH.Sh_ICmp" ,"MeCmpH");
linkPorts("TrbH.Sh_O" ,"ShH.Sh_ITrb" ,"MeTrbH");

I

1 Solver Sequence

1

/' If solver execution sequence is not set by the user (below), the default sequence will be

the order of the element instantiation above

solver.executionSequence = {
"Amb",
"FSEng",
"InEng",
"SpltFan”,
"CmpL",
"CmpH",
"CmpFSec",

"D130",

58

"FusEngDuct",
"BrnPri",
"MixSec",
"FusEng",
"BrnSec",
"TrbH",
"TrbL",
"MixPri",
"ShH",
"ShL",
"NozPri",
"FePri",

"Perf"

Standard Turbofan Model Definition — MixedTFComparison.mdl

I

1 Model Definition

I

/I Instantiate the Ambient element
/I This element sets the ambient conditions

/I and is refered to by the InletStart and Nozzle elements

59

Element Ambient Amb {

switchMode = "ALDTMN?"; // Set ambient conditions based on altitude, Mach number,
and standard day delta T

alt_in = 0.; // ft, input altitude

MN_in = 0.0;// input, Mach number

dTs_in = 0.; // Rankine, input temperature delta from standard day conditions

}// END Amb

/I Instantiate the InletStart element

Element InletStart FSEng {

AmbientName = "Amb"; // Name of the Ambient element

W_in = 300.; // Ibm/s, input air flow flow rate

} /1 End InletStart

/I Instantiate the Inlet element

Element Inlet InEng {

if(MN > 1) {
eRamBase = 1 - (0.075*(MN - 1)**1.35); // Ram pressure recovery
}
else {
eRamBase = 0.995;
}

} /I END InEng

60

/Il Instantiate the bypass splitter

Element Splitter SpltFan {
BPRdes = 4.5;

} /l END SpltFan

/I Instantiate the fan OD element

Element Compressor CmpFSec {
/I Load file that instantiates a subelement and plugs into compressor socket
(S_map) and contains
/I compressor performance map
#include "fanE3.map"; // when scoping, refer to the subelement by its socket
name: S_map
/I Set compressor design point values in S_map subelement
S _map{
PRdes = 3.5; // design point pressure ratio
effDes = 0.9; // design point efficiency

}
}// End CmpL

/I Instantiate the fan duct for the bypass flow

Element Duct D130 {

61

switchDP = "INPUT"; // allow the user to input the relative pressure drop (deltP /
Pin)
dPgP_in = 0.015; // user-input relative pressure drop

} // END Dfan

Element FuelStart FuseEngDuct {

Wifuel = 2.5; // Ibm/s, fuel flow rate (Used ONLY when Burner switchBurn =
WFUEL)

LHV =18400; // BTU/Ibm, Hydrogen - 61,000, Default - 18,400

} /1 End FusEng

Element Burner BrnPri {

/l[dPgPfBase = 0.05; // user input friction relative pressure drop (Pin -
Pout)/Pin

dPgP_dmd = 0.05; // user input friction relative pressure drop (Pin -
Pout)/Pin

effBase = 0.98; // user input burner adiabatic efficiency

/I The value for switchBurn determines how burner fuel flow rate is set

/I'if switchBurn = FUEL, then use Wfuel that is set in the burner element

/I'if switchBurn = WFUEL, then use fuel start element flow rate to set Wfuel
(Fu_l.Wfuel inherited from fuel start Fu_O.Wfuel)

Il if switchBurn = FAR, then use air inlet FAR value (FI_I.FAR) to calculate Wfuel

switchBurn = "FUEL"; // FUEL, WFUEL, or FAR

Wfuel = 2.0; // Ibm/s, user input fuel flow rate. Used only whey switchBurn =

FUEL

62

/I Instantiate the Compressor element
Element Compressor CmpL {
/I Load file that instantiates a subelement and plugs into compressor socket
(S_map) and contains
/I compressor performance map
#include "IpcE3.map"; // when scoping, refer to the subelement by its socket
name: S_map
/I Set compressor design point values in S_map subelement
S _map{
PRdes = 3.0; // design point pressure ratio
effDes = 0.88; // design point efficiency

}
}// End CmpL

Element Compressor CmpH {

/I Load file that instantiates a subelement and plugs into compressor socket
(S_map) and contains

/I compressor performance map

#include "hpcE3.map"; // when scoping, refer to the subelement by its socket
name: S_map

/I Set compressor design point values in S_map subelement

S_map{

PRdes = 6.0; // design point pressure ratio

effDes = 0.88; // design point efficiency

63

}
} /1 End CmpH

/I Start the flow of fuel
Element FuelStart FusEng {

Wifuel = 1.5; // Ibm/s, fuel flow rate (Used ONLY when Burner switchBurn =
WFUEL)

/ILHV = 18400; // BTU/Ibm, user input fuel lower heating value (LHV). Default is
18400 BTU/Ibm

} /1 End FusEng

/I Instantiate the Burner element

Element Burner BrnSec {

/[dPqPfBase = 0.05; // user input friction relative pressure drop (Pin -
Pout)/Pin

dPgP_dmd = 0.05; // user input friction relative pressure drop (Pin -
Pout)/Pin

effBase = 0.98; // user input burner adiabatic efficiency

/I The value for switchBurn determines how burner fuel flow rate is set

/I'if switchBurn = FUEL, then use Wfuel that is set in the burner element

/I if switchBurn = WFUEL, then use fuel start element flow rate to set Wfuel
(Fu_l.Wfuel inherited from fuel start Fu_O.Wfuel)

/I if switchBurn = FAR, then use air inlet FAR value (FI_I.FAR) to calculate Wfuel

switchBurn = "WFUEL"; // FUEL, WFUEL, or FAR

64

/I Wfuel = 0.2; // lbm/s, user input fuel flow rate. Used only whey switchBurn =

FUEL

/I Instantiate the High Pressure Turbine element
Element Turbine TrbH {

/I Load file that instantiates a subelement and plugs into turbine socket (S_map)
and contains

/I turbine performance map

#include "hptE3.map"; // when scoping, refer to the subelement by its socket
name: S_map

/I Set turbine design point values in S_map subelement

S map {
effDes =0.9; // user-specified Design efficiency
parmMap =5.0; // pressure ratio initial guess

}

} /I End TrbH

/I Instantiate the High Pressure Turbine element
Element Turbine TrbL {

/I Load file that instantiates a subelement and plugs into turbine socket (S_map)
and contains

/I turbine performance map

#include "IptE3.map"; // when scoping, refer to the subelement by its socket
name: S_map

/I Set turbine design point values in S_map subelement

65

S map {
effDes =0.9; // user-specified Design efficiency
parmMap = 2.0; // pressure ratio initial guess

}
} /1 End TrbL

/I Instantiate the Low Pressure Shaft element
Element Shaft ShL {

/I Mechanical Ports. These are created as needed on the shaft.

ShaftinputPort Sh_ICmpFSec; // create a shaft port for a mechanical connection
between the shaft and the fan OD element

ShaftinputPort Sh_ICmp; // create a shaft port for a mechanical connection between the
shaft and the low pressure compressor

ShaftinputPort Sh_ITrb; // create a shaft port for a mechanical connection between the
shaft and the low pressure turbine

Nmech = 5000.; // rpm, shaft speed

}// End ShL

/l Instantiate the Low Pressure Shaft element
Element Shaft ShH {

/I Mechanical Ports. These are created as needed on the shaft.

ShaftinputPort Sh_ICmp; // create a shaft port for a mechanical connection between the
shaft and the high pressure compressor

ShaftinputPort Sh_ITrb; // create a shaft port for a mechanical connection between the
shaft and the high pressure turbine

Nmech = 10000.; // rpm, shaft speed

66

}// End ShH

Element Mixer MixPri {
FI_I11.MN = 0.1;

Fl_12.MN = 0.1;

Element Nozzle NozPri {
PsExhName = "Amb.Ps"; // Model variable for ambient static pressure
switchType = "CONIC"; // conic nozzle

} //END NozPri

/I End the flow of air for primary stream

Element FlowEnd FePri {

} / End FrPri

/I Instantiate the EngPerf element

/I This element makes some basic engine performance calculations

Element EngPerf Perf {

} //End Perf

1

/1 Component Linkages

67

I

/I Link Fluid Ports

/I Primary Hot Section

linkPorts("FsEng.FI_O" , "InEng.FL_I" |, "FO");
linkPorts("InEng.FI_O" , "SpltFan.FL_I" , "F010");
linkPorts("SpltFan.FI_O1" ,"CmpL.FLI" ,"F020");
linkPorts("CmpL.FI_O" , "CmpH.FL_I" , "FO25");
linkPorts("CmpH.FI_O" , "BrnSec.FI_I" , "FO30");
linkPorts("BrnSec.FI_O" , "TroH.FL_I" , "FO40");
linkPorts("TrbH.FI_O" ,"TroL.FLI" |, "F045");
linkPorts("TrbL.FI_O" , "MixPri.FI_I1" | "FO50");

/I Fan duct section

linkPorts("SpltFan.FI_02", "CmpFSec.FI_I", "F110");
linkPorts("CmpFSec.FI_O", "D130.FI_I", "F120");
linkPorts("D130.FI_O", "BrnPri.FI_I", "F125");

linkPorts("BrnPri.FI_O", "MixPri.FI_I2", "F150"),

/I Mix Primary/Duct flows
linkPorts("MixPri.FI_O" , "NozPri.FL_I" ,"FO70");

linkPorts("NozPri.FI_O" , "FePri.FL_I" | "F090");

/I Link Fuel Ports

linkPorts("FusEng.Fu_O" , "BrnPri.Fu_I" ,"Fu_In");

68

linkPorts("FuseEngDuct.Fu_O" , "BrnSec.Fu_I" ,"Fu_In2");

/I Link Shaft Ports

linkPorts("CmpFSec.Sh_0O" ,"ShL.Sh_ICmpFSec" ,"MeCmpFSec");
linkPorts("CmpL.Sh_0O" ,"ShL.Sh_ICmp" ,"MeCmpL");
linkPorts("TrbL.Sh_O" "ShL.Sh_ITrb" ,"MeTrbL");

linkPorts("CmpH.Sh_0O" ,"ShH.Sh_ICmp" ,"MeCmpH");
linkPorts("TrbH.Sh_O" "ShH.Sh_ITrb" ,"MeTrbH");

1

I Solver Sequence

I

/I'If solver execution sequence is not set by the user (below), the default sequence will be

the order of the element instantiation above

solver.executionSequence = {
"Amb",
"FsEng",
"InEng",
"SpltFan”,
"CmplL",
"CmpH",
"CmpFSec",
"D130",
"FusEngDuct",

"BrnPri",

69

"Fusng",
"BrnSec”,
"TrbH",
"TrbL",
"MixPri",
"ShH",
"ShL",
"NozPri",
"FePri",

"Perf"

70

Standard Turbofan Run File — MixedTurbofan.run

#include <InterpIncludes.ncp> // file contains unit names, socket types, error statements,

and some constants

I

1 Set Thermodynamic Package

1

setThermoPackage("GasTbl"); // air properties, developed by Pratt and Whitney
/IsetThermoPackage("Janaf"); // air properties, developed by Honeywell

/IsetThermoPackage("FPT"); // custom fluid property tables, developed by the user

1

I Model Definition

I

/I Switch 1 contains a standard mixed turbofan

/I Switch 2 contains a mixed turbofan with a duct burner

/l#include "MixedTurbofan.mdl"; // switch = 1
#include "MixedTFComparison.mdl"; // switch = 2
real switch = 2;

I

71

1 Print Desired Values to the Command Prompt

I

/I Create a custom function to print model some results to the command window.

/I Results will only be printed whenever this function is called.

void printResults() {
if(switch == 1) {

/I Print out Ambient conditions

cout << "Altitude =" << Amb.alt << " ft" << endl;

cout << "Mach Number =" << Amb.MN << endl;

cout << "Engine Air Flow =" << FO.W << " |lbm/s" << endl;

cout << end|;

cout << "HP Compressor Power =" << CmpH.pwr << " " <<
CmpH.pwr.units << endl;

cout << "LP Compressor Power =" << CmpL.pwr << " " <<
CmpL.pwr.units << endl;

cout << "LP Turbine Power =" << TrbL.pwr << " " << TrbL.pwr.units <<
endl;

cout << "HP Turbine Power =" << TrbH.pwr << " " << TrbH.pwr.units <<
endl << endl;

cout << "FO.Tt ="<<FO.Tt<<"" << FO0.Tt.units << endl;

cout << "F010.Tt =" << F010.Tt << " " << F010.Tt.units <<" F110.Tt =
"<<F110.Tt << " " << F110.Tt.units << endl;

cout << "F020.Tt =" << F020.Tt << " " << F020.Tt.units << endl;

cout << "F025.Tt =" << F025.Tt << " " << F025.Tt.units << endl;

72

cout << "F030.Tt =" << F030.Tt << " " << F030.Tt.units <<" F130.Tt =
" << F130.Tt << " " << F130.Tt.units << endl;

cout << "F040.Tt =" << F040.Tt << " " << F040.Tt.units << endl;

cout << "FO45.Tt =" << FO45.Tt << " " << F045.Tt.units << endl;

cout << "F050.Tt =" << FO50.Tt << " " << F050.Tt.units << " F150.Tt =
" << F150.Tt << " " << F150.Tt.units << endl;

cout << "F070.Tt =" << FO70.Tt << " " << F070.Tt.units << endl;

cout << "F090.Tt = " << F090.Tt << " " << F090.Tt.units << endl;

cout << endl;

cout << "FO.Pt ="<< F0.Pt<<"" << FO0.Pt.units << endl;

cout << "F010.Pt =" << F010.Pt << " " << F010.Pt.units <<" F110.Pt =
" << F110.Pt << " " << F110.Pt.units << endl;

cout << "F020.Pt =" << F020.Pt << " " << F020.Pt.units << endl;

cout << "F025.Pt =" << F025.Pt << " " << F025.Pt.units << endl;

cout << "F030.Pt =" << F030.Pt << " " << F030.Pt.units <<" F130.Pt =
" << F130.Pt << " " << F130.Pt.units << endl;

cout << "F040.Pt =" << F040.Pt << " " << F040.Pt.units << endl;

cout << "F045.Pt =" << F045.Pt << " " << FO45.Pt.units << end];

cout << "F050.Pt =" << F050.Pt << " " << FO50.Pt.units << " F150.Pt =
" << F150.Pt << " " << F150.Pt.units << endl;

cout << "FO70.Pt =" << FO70.Pt << " " << FO70.Pt.units << endl;

cout << "F090.Pt =" << F090.Pt << " " << F090.Pt.units << endl;

cout << endl;

cout << "FO.W ="<<FO.W <<"" << F0.W.units << endl;

cout << "FO10.W =" << F010.W << " " << FO10.W.units << " F110.W =

"<< F110.W << " " << F110.W.units << endl;

73

cout << "F020.W =" << F020.W << "" << F020.W.units << endI;
cout << "F025.W =" << F025.W << "" << F025.W.units << endl;

cout << "FO30.W =" << FO30.W << " " << FO30.W.units <<" F130.W =

" << F130.W << " " << F130.W.units << endl;

cout << "FO040.W =" << FO40.W << " " << F040.W.units << endl;
cout << "F045.W =" << FO45.W << "" << F045.W.units << endl;

cout << "FO50.W =" << FO50.W << " " << FO50.W.units << " F150.W =

" << F150.W << " " << F150.W.units << endl;

endl;

endl;

else {

cout << "FO70.W =" << FO70.W << " " << FO70.W.units << endl;

cout << "F090.W =" << FO90.W << "" << F090.W.units << endl;

cout << end|;

cout << "Primary Wfuel =" << Fuseng.Wfuel*3600 << " lbm/hr" << endl;
cout << "SFC =" << Perf.SFC << " " << Perf.SFC.units << end|;

cout << "Gross Thrust =" << NozPri.Fg << " " << NozPri.Fg.units <<

cout << "Net Thrust =" << Perf.Fn << " " << Perf.Fn.units << end| <<

/I Print out Ambient conditions

cout << "Solver Indep and Dep variables" << endl;
cout << endl;

cout << solver.list("Independent");

cout << endl;

cout << solver.list("Dependent");

cout << endl;

74

cout << "Altitude =" << Amb.alt << " ft" << end|;

cout << "Mach Number =" << Amb.MN << endl;

cout << "Engine Air Flow =" << FO.W << " Ibm/s" << endl;
cout << endl;

cout << "HP Compressor Power =" << CmpH.pwr << " " <<

CmpH.pwr.units << endl;

cout << "LP Compressor Power =" << CmpL.pwr << " " <<

CmpL.pwr.units << endl;

endl;

endl << endl;

cout << "LP Turbine Power =" << TrbL.pwr << " " << TrbL.pwr.units <<

cout << "HP Turbine Power =" << TrbH.pwr << " " << TrbH.pwr.units <<

cout << "HP Turbine PR =" << TrbL.S_map.parmMap << endl;
cout << "LP Turbine PR =" << TrbH.S_map.parmMap << end| << endl;
cout << "FO.Tt ="<<FO0.Tt<<"" << FO0.Tt.units << endl;

cout << "F010.Tt=" << F010.Tt << " " << F010.Tt.units <<" F110.Tt=

" << F110.Tt << " " << F110.Tt.units << end|;

cout << "F020.Tt =" << F020.Tt << " " << F020.Tt.units << F120.Tt =

" << F120.Tt << " " << F120.Tt.units << endl;

cout << "F025.Tt =" << FO025.Tt << " " << F025.Tt.units <<" F125.Tt=

"<< F125.Tt << " " << F125.Tt.units << endl;

cout << "F030.Tt =" << F030.Tt << " " << F030.Tt.units << endl;
cout << "F040.Tt =" << F040.Tt << " " << F040.Tt.units << endl;
cout << "F045.Tt =" << FO45.Tt << " " << F045.Tt.units << endl;

cout << "F050.Tt =" << FO50.Tt << " " << F050.Tt.units <<" F150.Tt =

" << F150.Tt << " " << F150.Tt.units << endl;

75

cout << "F070.Tt =" << FO70.Tt << " " << F070.Tt.units << endl;

cout << "F090.Tt =" << F090.Tt << " " << F090.Tt.units << endl;

cout << end|;

cout << "FO.Pt ="<<F0.Pt<<"" << FO0.Pt.units << endl;

cout << "F010.Pt =" << F010.Pt << " " << F010.Pt.units <<" F110.Pt =
" << F110.Pt << " " << F110.Pt.units << endl;

cout << "F020.Pt =" << F020.Pt << " " << F020.Pt.units <<" F120.Pt =
" << F120.Pt << " " << F120.Pt.units << endl;

cout << "F025.Pt =" << F025.Pt << " " << F025.Pt.units <<" F125.Pt =
" << F125.Pt << " " << F125.Pt.units << endl;

cout << "F030.Pt =" << F030.Pt << " " << F030.Pt.units << endl;

cout << "F040.Pt =" << F040.Pt << " " << F040.Pt.units << endl;

cout << "F045.Pt =" << F045.Pt << " " << F045.Pt.units << endl;

cout << "F050.Pt =" << F050.Pt << " " << FO50.Pt.units <<" F150.Pt =
" << F150.Pt << " " << F150.Pt.units << endl;

cout << "FO70.Pt =" << FO70.Pt << " " << FO70.Pt.units << endl;

cout << "F090.Pt =" << F090.Pt << " " << F090.Pt.units << endl;

cout << end|;

cout << "FO.W =" << FO.W << "" << FO.W.units << endl;

cout << "FO10.W =" << F010.W << " " << F010.W.units << " F110.W
=" << F110.W << " " << F110.W.units << endl;

cout << "FO20.W =" << F020.W << " " << F020.W.units << " F120.W =
"<< F120.W << "" << F120.W.units << endl;

cout << "FO25.W =" << F025.W << " " << FO25.W.units << " F125.W =
"<< F125.W << " " << F125.W.units << endl;

cout << "FO30.W =" << FO30.W << " " << F030.W.units << endl;

76

cout << "FO40.W =" << FO40.W << " " << F040.W.units << endl;

cout << "FO45.W =" << F045.W << " " << F045.W.units << endl;

cout << "FO50.W =" << FO50.W << " " << FO50.W.units << " F150.W =
" << F150.W << " " << F150.W.units << endl;

cout << "FO70.W =" << FO70.W << " " << FO70.W.units << end];

cout << "FO90.W =" << FO90.W << " " << F090.W.units << endl;

cout << endl;

cout << "Wfuel =" << Fuseng.Wfuel*3600 << " Ibm/hr" << endl;

cout << "Duct Wfuel =" << FusEngDuct.Wfuel*3600 << " Ibm/hr" <<
endl;

cout << "Overall TSFC =" <<
(3600*(FusEng.Wfuel+FusEngDuct.Wfuel))/Perf.Fn << " Ibm/hr" << endl;

cout << "Gross Thrust =" << NozPri.Fg << " " << NozPri.Fg.units <<
endl;

cout << "Net Thrust =" << Perf.Fn << " " << Perf.Fn.units << endl <<

endl;

I

1l Running the Model

I

cout << endl;

cout << " === \n";

cout <<"===== RUNNING DESIGN POINT =====1\n";

cout << " === === \n":

77

cout << endl;

/I set the model design/offdesign switch to design mode

setOption("switchDes", "DESIGN"); // DESIGN or OFFDESIGN

/I set the model solution mode switch to steady state

setOption("solutionMode", "STEADY_STATE"); // STEADY_STATE (default) or

TRANSIENT

autoSolverSetup();

// Run the model

run();

/I Call function (defined earlier in this file) to print results to the command window

printResults();

78

79

Pulse Detonation Combustor Code — pdc.int

#ifndef _ PDC__

#define _ PDC__

#include <InterpIncludes.ncp>

class PulseDetonationCombustor extends Element {

1

J] #5555 DOCUMENTATION e

1

tittle ="";

description = isA () + " will calculate performance for pulsed detonation combustor .";
usageNotes = "The burner element performs high level burner performance calculations .
This element works with an entrance fluid and fuel stream. It mixes the two flows together
and then performs the burn calculations. Please note that the burner has no control over
the actual fuel stream conditions -- fuel type, LHV, etc. These values are properties of the

fuel flow itself

80

and are usually set in the FuelStart element. There are two ways to specify the burner
exit conditions. The first way is specify the burner fuel -to -air ratio. The second way is to
set equivalence ratio. The type of input used is controlled by an option switch. The burner
tracks several different pressure losses. The first, dPgP, accounts for duct friction
pressure drops and approximates the pressure loss through valves. The second,
dPgPRayleigh, accounts for the Rayleigh pressure drop. dPRayleigh is input or 50
calculated - see switchHotLoss, an iteration is necessary since the pressure loss itself is
a function of the exit conditions. The burner also allow two efficiencies to be input. The
first efficiency, eff, refers to the efficiency based on enthalpy

55 change. The second efficiency, effChem, refers to the efficiency based on
temperature change . Both terms can be input. However, the enthalpy efficiency is
always applied first. Additionally, the user can request a pre burner pressure loss dPgP.
The pressure loss calculations are performed before all the other calculations are done .
This means that the combustion entrance

pressure will not match the value indicated by the burner entrance. The user can request
a heat transfer Qhx. The heat transfer calculations are performed after all the other
calculations are

done. This means that if heat transfer is being used, the exit temperature will not match
the value indicated by the burner calculations.";

background ="";

I

Jj #xw0s SETUP VARIABLES *ooss

1

real x2 {

81

value = 0.0; IOstatus = "output"; units = "ft";

description = "Location of leading shock characteristic";

}
real x3 {
value = 0.0; IOstatus = "output”; units = "ft";
description = "Location of trailing rarefaction characteristic";
}
real xir {
value = 0.0; I0status = "output"; units = "ft";
description = "Location of first reflected rarefaction characteristic”;
}
real xrf {
value = 0.0; IOstatus = "output"”; units = "ft";
description = "Location of second reflected rarefaction characteristic";
}
real Tlast {
value = 0.0; I0status = "output"; units = "R";
description = "Previous value of burner temp. for determining max/avg value";
}

82

real Plast {
value = 0.0; IOstatus = "output"; units = "psia";

description = "Previous value of burner pressure for determining max/avg value";

}
real Hlast {
value = 0.0; IOstatus = "output"; units = "BTU/Ibm";
description = "Previous value of burner enthalpy for determining max/avg value";
}
real Tmax {
value = 0.0; IOstatus = "output"; units = "R";
description = "Maximum value of temperature up to time t";
}
real Pmax {
value = 0.0; IOstatus = "output"; units = "psia";
description = "Maximum value of pressure up to time t";
}
real Hmax {
value = 0.0; IOstatus = "output”; units = "BTU/Ibm";
description = "Maximum value of enthalpy up to time t";
}
real pCJ{

83

value = 0.0; IOstatus = "input"; units = "none";

description = "Pressure ratio given for the detonation by CEA";

}
real TCJ {
value = 0.0; IOstatus = "input"; units = "none";
description = "Temperature ratio given for the detonation by CEA";
}
real uCJ{
value = 0.0; I0status = "input"; units = "ft/s";
description = "Wave speed given for the detonation by CEA";
}
real rhoCJ {
value = 0.0; IOstatus = "input"; units = "none";
description = "Density ratio given for the detonation by CEA";
}
real gamCJ {
value = 0.0; IOstatus = "input"; units = "none";
description = "Specific heat ratio given for the detonation by CEA";
}
real RCJ {

84

value = 0.0; I0status = "input"; units = "(ft*Ibf)/(Iom*R)";

description = "Gas constant given for the detonation by CEA";

real a3 {
value = 0.0; IOstatus = "input"; units = "ft/s"2";

description = "Speed of sound behind detonation wave";

real a_dPgP {
value = 0.0; I0status = "input"; units = "none";

description = "Duct friction pressure drop adder";

real a_dPgPAud {
value = 0.0; IOstatus = "unset"; units = "psia";

description = "Audit factor adder applied to pressure ratio";

}

real a_eff {
value = 0.0; IOstatus = "input"; units = "none";
description = "Adiabatic efficiency adder";

}

real a_effChem {

value = 0.0; IOstatus = "input"; units =" none ";

85

description = "Chemical efficiency adder";

real ARvalve {
value = 0.5; I0status = "input"; units = "none";

description = "Ratio of valve throat area to tube cross section area”;

}
real deltaS {
value = 0.0; I0status = "output"; units = "none";
description = "Change in entropy due to detonation";
}
real DDT {
value = 0.0005; IOstatus = "input"; units = "seconds";
description = "Detonation to deflaration time in seconds";
}
real dPqgP {
value = 0.0; IOstatus = "output”; units = "none";
description = "Adjusted duct friction pressure drop";
}

real dPgPBase {

value = 0.0; IOstatus = "input"; units = "none";

86

description = "Duct friction pressure drop";
}
real dPgPRayleigh {
value = 0.0; I0status = "input"; units = "none";

description = "Adjusted Rayleigh pressure drop";

real dTube {
value = 2.0; I0status = "input"; units = "inches";

description = "Inside diameter of the detonation tube";

real eff {
value = 1.0; I0status = "output"; units = "none";

description = "Adjusted adiabatic burner efficiency";

real effBase {
value = 1.0; IOstatus = "input"; units = "none";

description = "Adiabatic burner efficiency, from socket";

real effChem {
value = 1.0; I0status = "input"; units = "none";

description = "Adjusted chemical efficiency"”;

87

real effChemBase {
value = 1.0; I0status = "input"; units = "none";

description = "Chemical efficiency, from socket";

real eqRatio {
value = 1.0; IOstatus = "input”; units = "none”;

description = "Equivalence ratio for fuel-air mixture";

}

real FAR {
value = 0.0; IOstatus = "output"; units = "none";
description = "Fuel-air ratio";

}

real FARDes {
value = 0.0; IOstatus = "output"; units = "none";

description = "Fuel-to-air ratio at design";

}

real fillFrac {
value = 1.0; I0status = "input"; units = "none";
description = "Fill fraction™;

}

88

real freq {
value = 0.0; IOstatus = "output"; units = "Hz";

description = "Detonation frequency";

real fuelFractV {
value = 0.0; I0status = "input"; units = "none";

description = "Fraction of the incoming flow velocity fuel enters the burner";

real Haverage {
value = 0.0; IOstatus = "output"; units = "(ft*Ibf)/lbm";

description = "Continuously updated enthalpy average";

}
real Hinput {
value = 0.0; IOstatus = "input"; units = "none";
description = "Input cycle average enthalpy value for design mode";
}
real iBPR {
value = 1.4; I0status = "output"; units = "none";
description = "Bypass ratio internal to the PDC";
}

89

real iBPRdes {
value = 1.0; I0status = "output"; units = "none";

description = "Bypass ratio internal to the PDC at design conditions";

}
real ITube {
value = 36; IOstatus = "input”; units = "inches";
description = "Length of the individual detonation tubes";
}

real n_tubes {
value = 36; IOstatus = "input"; units = "none";

description = "Total number of detonation tubes used in the PDC";

}
real MCJ {
value = 3.0; IOstatus = "output"; units = "none";
description = "Chapman-Jouguet Mach number of the detonation wave";
}
real Mvalve {
value = 1.0; I0status = "input"; units = "none";
description = "Mach number of flow passing through the valve throat";
}

90

real gadd {
value = 0.0; IOstatus = "output"; units = "none";

description = "Heat addition due to fuel combustion™;

}
real Qhx {
value = 0.0; I0status = "input"; units = "Btu/sec”;
description = "Heat loss to thermal mass storage";
}

string region {
value =" "; I0Ostatus = "output”; units = "none";

description = "Detonation region at point x at time t";

}
real out {

value = 0.0; IOstatus = "input"; units = "none";

description = "Output value from discrete solver function”;
}

real Paverage {
value = 0.0; I0status = "output"; units = "psia”;

description = "Continuously updated pressure average";

91

real Pinput {
value = 0.0; IOstatus = "input"; units = "none";

description = "Input cycle average pressure value for design mode";

real PqPRayleigh {
value = 1.0; IOstatus = "output"; units = "none";

description = "Adjusted Rayleigh pressure drop”;

real PqPRayleighDelta {
value = 0.0; IOstatus = "output"; units = "none";

description = "Bounded Rayleigh pressure drop - for loop only";

real PgPRayleighError {
value = 1.0; IOstatus = "output"; units = "none";

description = "Adjusted Rayleigh pressure drop error";

real PgPRayleighMin {
value = 0.05; IOstatus = "input"; units = "none";

description = "Rayleigh pressure drop lower limit - for loop only";

real PqPRayleighStep {

92

value = 0.05; IOstatus = "input"; units = "none";

description = "Maximum step for Rayleigh pressure drop - for loop only";

real PgPRayleighNew {
value = 1.0; IOstatus = "output"; units = "none";

description = "Previous adjusted Rayleigh pressure drop - for loop only";

real purgeFrac {
value = 0.25; IOstatus = "input"; units = "none";

description = "Purge fraction coefficient for flow";

}
real s_dPqP {
value = 1.0; IOstatus = "input"; units = "none";
description = "Duct friction pressure drop scalar";
}

real s_dPqPAud {
value = 1.0; IOstatus = "unset"; units = "none";

description = "Audit factor scalar applied to pressure ratio";

real s_eff {

93

value = 1.0; IOstatus = "input"; units = "none";

description = "Adiabatic efficiency scalar”;

real s_effChem {
value = 1.0; IOstatus = "input"; units = "none";

description = "Chemical efficiency scalar";

real tauBIDn {
value = 5.; I0status = "input"; units = "none";

description = "Blowdown time constant”;

real tauValveOpen {
value = 0.33333; I0status = "output"; units = "none";

description = "Time valve open/time cycle - from 0 to 1";

real Taverage {
value = 0.0; IOstatus = "output”; units = "Rankine";

description = "Continuously updated temperature average";

real tCycle {

value = 0.01; IOstatus = "output"; units = "seconds";

94

description = "Detonation engine cycle time (= 1/frequency)";

}
real time {
value = 0.0; I0status = "input"; units = "seconds";
description = "Time used in transient calculation”;
}

real tinterval {
value = 0.0; I0status = "input"; units = "seconds";

description = "Time interval used in pressure/temp average";

real tExhaust {
value = 0.0; IOstatus = "output"; units = "seconds";

description = "Time at which the valve opens and the tube is purged”;

real tolRayleigh {
value = 4e-05; I0status = "input"; units = "none";

description = "Iteration tolerance on momentum pressure drop";

real tolwWfuel {

value = 1e-05; I0status = "input"; units = "none";

95

description = "Iteration tolerance on temperature burn®;

real TtCombOut {
value = 0.0; IOstatus = "input"; units = "R";

description = "Exit temperature";

real TtLast {
value = 0.0; I0status = "input"; units = "R";

description = "Previous exit temperature - for loop only";

real TTSSeff {
value = 1.0; I0status = "input”; units = "none";

description = "Efficiency factor for the transition device";

real TTSSdPgP {
value = 0.0; IOstatus = "input"; units = "none";
description = "Change in Pressure divided by Pressure for transistion to steady

state calculation”;

}

real tBlowdown {

value = 0.0; IOstatus = "input"; units = "seconds";

96

description = "Blowdown time";

real tBlowdownComp {
value = 0.0; I0status = "input"; units = "seconds";

description = "Blowdown time comparison";

}

real tValve {
value = 0.0002; IOstatus = "input"; units = "seconds";
description = "Time for valves to open/close";

}

real u3 {
value = 0.0; I0status = "input"; units = "ft/s";
description = "Velocity behind detonation wave";

}

real Wfuel {
value = 0.0; IOstatus = "input"; units = "lbm/sec";
description = "Combustor fuel flow";

}

real WfuelError {

value = 0.0; IOstatus = "input"; units = "lbm/sec";

97

description = "Combustor fuel flow error";

real WfuelLast {
value = 0.0; I0status = "input"; units = "lbm/sec";

description = "Previous combustor fuel flow - for loop only";

real WfuelNew {
value = 0.0; I0status = "input"; units = "lbm/sec";

description = "Next combustor fuel flow - for loop only";

}
real xval {
value = 0.0; I0status = "input"; units = "none";
description = "Non-dimensional location along tube";
}

int countFuel {
value = 0; IOstatus = "output";

description = "Fuel loop counter";

int countFuelMax {
value = 50; IOstatus = "input";

description = "Fuel loop maximum counter";

98

int countRayleigh {
value = 0; IOstatus = "output";

description = "Rayleigh loop counter";

int countRayleighMax {
value = 25; IOstatus = "input";

description = "Rayleigh loop maximum counter";

int flagRayleighLossTooMuch {
value = 0; IOstatus = "output";

description = "If true, Rayleigh loop results in too much loss";

}
int flagRayleighChoked {

value = 0; IOstatus = "output";

description = "If true, Rayleigh loop results in supersonic flow";
}

/I for backward compatibilty with old " aud "
FunctVariable a_dPgPaud {

units = "none"; IOstatus = "input";

99

getFunction = "get_aAud"; setFunction = "set_aAud";

real get_aAud() {

return a_dPgPAud;

void set_aAud(real userValue) {

a_dPgPAud = userValue;

FunctVariable s_dPqgPaud {
units = "none"; I0status = "input”;

getFunction = "get_sAud"; setFunction = "set_sAud";

real get_sAud() {

return s_dPgPAud;

void set_sAud(real userValue) {
s_dPgPAud = userValue;

}
Ik

[¥¥¥xxxx OPTION VARIABLE SETUP ****k**

I

100

Option switchAud {
allowedValues = { "BASE" , "AUDIT" }
description = "Determines if the audit factors are used";
IOstatus = "input";

trigger = TRUE ;

Option switchBurn {
allowedValues = { "FAR" , "EQRATIO", "FUEL", "WFUEL", "TEMPERATURE" };
description = "Switch determines if burner is running to fuel flow , FAR , or T4 .
Setting option to FUEL will burn using the burner value as an input . Setting the option to
WFUEL will burn using the value coming in from the fuel station .";

trigger = TRUE ;

Option switchDes {
allowedValues = { "DESIGN" , "TRANSIENT" , "ORIGINAL" };
description = "Design switch";

trigger = FALSE ;

/[input kept in for backward compatible (remove later)
Option switchHotLoss {
allowedValues = { "INPUT" , "CALCULATE", "input" };
description = "Switch determines if the hot pressure loss is input or iterated on";

trigger = TRUE ;

101

I

/[**** SETUP PORTS , FLOW STATIONS , SOCKETS , TABLES ******

1

/l FLUID PORTS
FluidinputPort FI_1 {

description = "Incoming flow";

FluidOutputPort FI_0O1 {

description = "Exiting combustion flow";

FluidOutputPort FI_0O2 {

description = "Exiting bypass flow";

/l FUEL PORTS
FuellnputPort Fu_| {

description = "Incoming fuel flow";

/l BLEED PORTS
/l THERMAL PORTS

/I MECHANICAL PORTS

102

/l FLOW STATIONS

FlowsStation FI_lcomb {
description = "Inlet station to detonation tube section of burner (after the initial
pressure loss is applied)";

}

FlowStation FI_IcombAir {
description = "Copy of the inlet station to detonation tube section of burner (after

the initial pressure loss is applied, before flow is split and partitioned)";

}

FlowStation Fl_lprg {

description = "Station containing detonation tube purge fluid ";

FlowStation FI_Ocomb {
description = "Exit station to combustion section of burner (before thermal

storage heat transfer is calculated)";

}

FlowsStation FI_Vit {

description = "Vitiated Fluid flow station before detonation (cold)";

/l SOCKETS

103

Socket S_dPgP {
allowedValues = { "dPgPBase" };
description = "Dry duct and valve pressure loss "; // ___mod - socketType ="

dPgP ",

}

Socket S_eff {
allowedValues = { "effBase" , "effChemBase" }
description = "PulseDetonationCombustor adiabatic efficiency";

socketType = "BURN_EFFICIENCY";

Socket S_Qhx {
allowedValues = { "Qhx" };
description = "Thermal storage socket";

socketType = "HEATTRANSFER";

/l TABLES

I

[**¥¥xxxx INTERNAL SOLVER SETUP *rrtrkk

1

1

[****xx ADD SOLVER INDEPENDENTS & DEPENDENTS ******

I

104

1

[*Fxxxxxx \JARIABLE CHANGED METHODOLOGY *¥ii*

1

void variableChanged(string name, any oldVal) {
/I Check to see what variables were changed
/I Change input / output status as necessary
if(name == "switchBurn") {
if(switchBurn == "FAR") {

FAR.IOstatus = "input";

Wfuel.lOstatus = "output";

TtCombOut.IOstatus = "output";

egRatio.lOstatus = "output”;

else if(switchBurn == "FUEL") {
FAR.IOstatus = "output";
Wfuel.IOstatus = "input";

TtCombOut.IOstatus = "output”;

else if(switchBurn == "WFUEL") {
FAR.IOstatus = "output";
Wfuel.lOstatus = "output";

TtCombOut.IOstatus = "output";

105

else if(switchBurn == "EQRATIO") {
FAR.IOstatus = "output";
Wfuel.lOstatus = "output";
TtCombOut.IOstatus = "output";

egRatio.lOstatus = "input";

else if(name == "switchHotLoss") {
if(switchHotLoss == "INPUT") {

dPgPRayleigh.IOstatus = "input";

}
else if(switchHotLoss == "input")}{
switchHotLoss = "INPUT";
}
else {
dPgPRayleigh.lOstatus = "output";
}

else if(name == "switchAud") {
a_dPgPAud.|Ostatus = "inactive";
s_dPqgPAud.IOstatus = "inactive";
if(switchAud == "AUDIT") {
a_dPgPAud.|Ostatus = "input";

s_dPgPAud.|Ostatus = "input’;

106

1

[#*xxxxx PERFORM ENGINEERING CALCULATIONS ke

1

void calcPreLoss() {

1

/I Check to see if the pressure sockets are empty , if not then execute

1

if(!S_dPgP.isEmpty()) {
S_dPgP.execute();

}

dPqgP = dPgPBase*s_dPqgP + a_dPqP ; // calculate pressure losses (dry duct and Valve)

if(switchDes == "OFFDESIGN") {
if(switchAud == "AUDIT") {

dPgP = dPgP*s_dPqPAud + a_dPqgPAud;

/I Collect total enthalpy at inlet

real hin = Fl_L.ht;

107

real Pin = (1 - dPgP)*FI_LI.Pt;

/I copy flow to combustor flow
Fl_Icomb.copyFlowsStatic("FI_I");

Fl_lcomb.setTotal_hP(hin, Pin);

}

void calcBurn() {
real TtCombOutTemp;
real htStoich;
real WFuelLimit;
real WFuelHeat;

FI_Ocomb.copyFlow("FI_Icomb");

I

/Il Efficiency

1

if(!S_eff.isEmpty()) {
S_eff.execute();

}
eff = effBase*s_eff + a_eff ;

effChem = effChemBase*s_effChem + a_effChem ;

1

// Burn

108

1

FI_Ocomb.burn("Fu_lI", eff);

1

/I if inputting a PW type of efficiency adjust the temperature

1l
if(effChem < 1.0) {
TtCombOutTemp = effChem*(FI_Ocomb.Tt - FI_lcomb.Tt) + Fl_Icomb.Tt;

FI_Ocomb.setTotalTP(TtCombOutTemp, Fl_Icomb.Pt); // use Pin

void calcRayleighLoss() {
flagRayleighChoked = 0;
flagRayleighLossTooMuch = 0;
PgPRayleigh = 1.0;

PgPRayleighError = 0.0;

I

/I self - convergent iteration loop for internal momentum pressure drop calc

I

for(countRayleigh = 0; countRayleigh <= countRayleighMax; countRayleigh++) {

1

/I input or output dPgPRayleigh
1

109

if(switchHotLoss == "INPUT") {

PgPRayleigh = 1.0 - dPgPRayleigh;

else if(switchHotLoss == "CALCULATE") {

dPgPRayleigh = 1.0 - PgPRayleigh;

1

/I calculate momentum pressure drop

1

real PtCombOut = PgPRayleigh*FI_lcomb.Pt;

FI_Ocomb.setTotal_hP(FI_Ocomb.ht, PtCombOut);

1

/I Check momentum pressure drop

1

PgPRayleighNew = PgPRayleigh;

if(switchHotLoss == "CALCULATE") {

I

/I make this thing a constant area burner

1

FI_Ocomb.A = Fl_Icomb.A;

flagRayleighChoked = 0;

110

/I when MN > 1.0 FlowStation static calc is not consistent with Area
if(FI_Ocomb.MN > 1.0) {
/IFI_Ocomb.MN = 0.6; // do not do this - creates major iteration problems

flagRayleighChoked = 1,

1

/I Calculate the exit static pressure from the momentum egn
/I assume the fuel has the same velocity as the entrance flow

1

real PsMomMeth1;

PsMomMethl = FI_lcomb.W*F|_Icomb.V - FI_Ocomb.W*FI_Ocomb.V;
PsMomMethl = PsMomMeth1/C_GRAVITY;

PsMomMethl = PsMomMeth1 + Fl_lcomb.Ps*FI_lcomb.A;

PsMomMethl = PsMomMeth1/FI_Ocomb.A;

real PsMomMeth2;

/I PsMomMeth2 = FI_Ocomb.W*F|_lcomb.V;

PsMomMeth2 = FI_lcomb.W*F|_Icomb.V + Wfuel*FI_Icomb.V*fuelFractV;
PsMomMeth2 = PsMomMeth2/C_GRAVITY;

PsMomMeth2 = PsMomMeth2 + Fl_lcomb.Ps*FI_lcomb.A;

PsMomMeth2 = PsMomMeth2/FI_Ocomb.A;

PsMomMeth2 = PsMomMeth2/(1.0 + FI_Ocomb.gams*FI_Ocomb.MN*FI_Ocomb.MN);
/I PsMomMethl = PsMonMeth2;

1

/I Note Methl = Meth2 when MN <= 1.0

111

/I Use Meth2 - seems more stable the Methl when MN > 1.0

1

PgPRayleighNew = (PsMomMeth2/FI_Ocomb.Ps)*PqPRayleigh;

}

/I Check against tolerance
PgPRayleighError = PgPRayleighNew - PqPRayleigh;
if(abs(PgPRayleighError) < tolRayleigh) {

break;

/I Bounding of PgPRayleigh movement to PqPRayleighStep

real sign;

sign = PgPRayleighError/abs(PgPRayleighError);

PgPRayleighDelta = sign*min(abs(PgPRayleighError), PgPRayleighStep);

PgPRayleighNew = PgPRayleigh + PgPRayleighDelta;

/I Lower limit of PgPRayleigh - limit too much loss to PgPRayleighMin
if(PqPRayleighNew < PgPRayleighMin) {
if(flagRayleighLossTooMuch == 1) {
ESOreport(1023901, "Rayleigh pressure loss limited, too much loss" ,
FALSE);
break ;
}
PgPRayleighNew = PgPRayleighMin;

flagRayleighLossTooMuch = 1;

112

else {

flagRayleighLossTooMuch = 0O;

Jx
/I debug info

cout << "FI_Ocomb.A =" << FI_Ocomb.A << endl;

cout << "FI_Ocomb.MN =" << FI_Ocomb.MN << endl;

cout << "FI_Ocomb.Ps =" << FI_Ocomb.Ps << endl;

cout << "PsMomMethl =" << PsMomMeth1 << endl;

cout << "PsMomMeth2 =" << PsMomMeth2 << endl;

cout << "PgPRayleigh =" << PgPRayleigh << endl;

cout << "PgPRayleighNew =" << PgPRayleighNew << endl;
cout << endl;

*

1

/I check for convergence

I

if(countRayleigh >= countRayleighMax) {
ESOreport(1023901 , "Rayleigh iteration failed to converge, counter exceed
max", FALSE);

break ;

113

PgPRayleigh = PqPRayleighNew;
}

if(flagRayleighChoked == 1) {
ESOreport(1023901 , "Rayleigh FI_Ocomb.MN exceed choked condition" ,
FALSE);
}
}

void calculate() {

1

/I Preburning pressure loss

1
calcPreLoss(); // creates Fl_Icomb, applies pre - losses
real FARIin = F|_lcomb.FAR;

real WARIn = FI_lcomb.WAR;

[*
cout << "FI_ILMN =" << FI_I.MN << endl;
cout << "Fl_IL.Aphy =" << FI_I.Aphy << endl;
cout << "Fl_IL.ht =" << FI_L.ht << end];

cout << "FI_ILLPt =" << Fl_I.Pt << endl;

cout << "Fl_lL.s =" << Fl_l.s << endl;

cout << endl;

*

114

if(FI_LLMN == 0. && FI_I.Aphy == 0.) {
Fl_Icomb.MN = 0.4,

Fl_Icomb.setTotal_hP(Fl_Ilcomb.ht, FI_lcomb.Pt);

1

/I Pre - calculate Burning to obtain enthalpy ,etc .

1
if(switchBurn == "FAR") {

1

/I determine the fuel weight flow from the input FAR

1

Wfuel = (FI_lcomb.W/(1 + FARIin + WARIn))*(FAR - FARIn);
Fu_l.Wfuel = Wfuel;

egRatio = FAR/Fu_I|.FARst;

calcBurn();
calcRayleighLoss();

TtCombOut = FI_Ocomb.Tt;

}

/I do an equivalence ratio calculation
else if(switchBurn == "EQRATIO") {

FAR = egRatio*Fu_I|.FARst ;

115

Wriuel = (FI_Icomb.W/(1 + FARIn + WARIn))*(FAR - FARIn);
Fu_l.Wfuel = Wfuel;

calcBurn();

calcRayleighLoss();

TtCombOut = FI_Ocomb.Tt;

1

/l make a flow station that has props of cold vitiated air

1

Fl_Vit.copyFlowStatic("FI_Ocomb");

Fl_Vit.setTotalTP(Fl_lcomb.Tt, FI_Icomb.Pt);

1

/I copy inlet flow for pure air reference to be used later

)
/I Take a snapshot of air after it has entered detn tubes
Fl_lcombAir.copyFlowStatic("FI_lcomb");

/I Copy input flow properties for internal bypass flow

FI_0O2.copyFlow("FI_IcombAir");

1

/I On - design loop

1

if(switchDes == "DESIGN") {

116

1

/I Initialize local variables

1

real uCJ, a_1, rhoVit, freq, PcqgPi, errors;

real gamt, Cpt, beta, MCJ2, PcqgPi2;

real Atube, Vtube, mCycle, Wtube;

real MFP, Wvalve, gma_I;

real mFillAir, mPurgeAir, mPureAir;

real tDetonation, tDetProp, tBlowdown, tPurge, tFill, iVel;
real gam_s, gmm_fc;

real WtotAir, Wbypass;

int count;

/I ---- initiated but not iterated
/I static density of cool vitiated fluid

rhoVit = FI_Vit.rhot; //(Ibm /ft ~3)

/I speed of sound in pure air, stagnated in detonation
/I tube that the detonation wave propogates in to

a_1 = sgrt(Fl_lcomb.gamt*F|_lcomb.Rt*FI_Icomb.Tt*25037.);

// === ===

/I Calculate Chapman - Jouguet Mach number for wave

/I as described in Heiser and Pratt

// === ===

/[*** input variables : //

117

/[*** output variables : // MCJ , deltaS , gadd //
/[*** Flow Stations : // FI_Ocomb , FI_lcomb //

/l'local variables : // gamt , Cpt, qadd , beta , MCJ2 //

/[arithmetic mean of gamma for stopped fluid

gamt = (FI_Ocomb.gamt + Fl_lcomb.gamt)/2.0;

/I arithmetic mean of Cp for a stopped fluid

Cpt = (FI_Ocomb.Cpt + FI_lcomb.Cpt)/2.0;
I ----- Calculate heat addition per Heiser - Pratt cycle ---
/I calculate non - dimensional heat addition

gadd = (FI_Ocomb.ht - FI_lcomb.ht)/(Cpt* FI_Icomb.Tt);

beta = (gamt + 1.0)*qadd+1.0;
MCJ2 = beta + sqrt(beta **2 - 1.0);

MCJ = sqrt(MCJ2);

I -=-mmem- Calculate Entropy gain based on CJ detonation -

deltaS = Cpt*(-log(MCJ2*((gamt+1.0)/(1.0+gamt*MCJ2))**((gamt+1.0)/gamt)));

/I ---- calculate the pressure rise using the H &P method --

PcgPi = (1.0+gamt*MCJ2)/(gamt+1.0);

uCJ=a_1* MCJ,

118

Atube = (PI/4.)*dTube**2/144.; |/ ft "2

Vtube = Atube*(ITube/12) ; // ft 3

gma_| = Fl_IcombAir.gamt;
MFP = Mvalve*sqrt((gma_I1*32.174) /(FI_lcombAir.Rt *778.16))*(1.+(gma_I -1.)
[2.* Mvalve **2) **((gma_l +1.) /(2.*(1. - gma_l)));

Wvalve = (FI_IcombAir.Pt/sqrt(FI_IcombAir.Tt))*(Atube*144.*ARvalve)*MFP;

1

/I On - Design : Calculate bypass ratio

1

/[*** input Variables : // dTube , [Tube , n_tubes , fillFrac

/I'll purgeFrac ,

/I *** iterated Variables // freq

/I *** output Variables : // iBPR

/I *** local variables : // WfillAir , WpurgeAir , WpureAir , WtotAir
/I Wbypass , WpurgeAir , Wvit

/I *** Flow Stations : // FI_lcombAir , FI_Icomb , FI_lprg , FI_Vit

/I ---- Calculate the split and patrtition of flow ----------
/I amount of air that will be mixed with fuel - 1 tube

mFillAir = Vtube*(rhoVit*fillFrac)/(1.+ FAR);

119

/I amount of air that will purge during each cycle - 1 tube

mPurgeAir = Vtube*(FI_lcombAir.rhos*purgeFrac);

/l total air per cycle flowing though one tube

mPureAir = mFillAir + mPurgeAir;

I
cout << "mFillAir =" << mFillAir << endl;
cout << "mPurgeAir =" << mPurgeAir << endl;
cout << "mPureAir =" << mPureAir << endl;
cout << endl;

*/

1

/I Timing - calculate frequency

1

/I *** input Variables : DDT, tValve, ITube, ff, pf, tCycle
/I *** iterated Variables : uCJ, PcqPi
/I *** output Variables tCycle, tauValveOpen, freq

/I *** local variables : tDetonation, tDetProp, tBlowdown, tPurge, tFill

I

/I DetProp time is relatively independent of fill fraction

tDetProp = ITube/(uCJ*12);

120

/I DDT is input , tDetonationPropogation calcd
/I (may need to iterate)

tDetonation = DDT + tDetProp;

/R — Blowdown time

/I assume choked flow at tube exit and calculateon
/I blowdown based draw - down time of a pressurized
/I tank calculated on pressure differential
gam_s = Fl_IcombAir.gams; // larger gamma is more conservative

gmm_fc = ((gam_s + 1)/2)**(-(gam_s + 1)/(2*(gam_s - 1)));

I ###+# tBlowdown : Use ~1/2 calcd pressure (to match experimental data)
/l we 'll use CJ det wave velocity as the speed of sound in the gas

/I since a cannot be directly calc 'd

/I note tBlowdown is proportional to tube length

/I tauBIDn is proportional to tube length

tBlowdown = (log(0.4*PcqPi)/gmm_fc)*(ITube/uCJ);

/I Use the choked flow at valve inlet and the mass flow rate as
/I calculated outside the loop to calculate fill time (m/ mdot)
tPurge = tValve + (mPurgeAir/Wvalve); // seconds

tFill = tValve + (mFillAir/Wvalve); // seconds

/I Improvement could be made by calculating vitiated air velocity ...

121

tCycle = tDetonation + tBlowdown + tPurge + tFill;
tauValveOpen = (tPurge + tFill)/tCycle;
freq = 1./tCycle;

cout << endl;

WitotAir = mPureAir*n_tubes*freq;

/Il steady - state flow rate into tubes

/I conservation of mass check

if(WtotAir > Fl_LW) {
fillFrac = fillFrac*(FI_I.W/WtotAir);
purgeFrac = purgeFrac*(FI_L.W/WtotAir);

mFillAir = Vtube*(rhoVit*fillFrac)/(1.+ FAR);

/I amount of air that will be mixed with fuel - 1 tube

mPurgeAir = Vtube*(Fl_lcombAir.rhos*purgeFrac);

/[l amount of air that will purge during each cycle -1 tube

mPureAir = mFillAir + mPurgeAir;

/I total air per cycle flowing though one tube
WitotAir = FI_LW,;
cout << "purgeFrac changed to: " << purgeFrac << endl;

cout << "fillFrac changed to: " << fillFrac << endl << endl;

122

/[— Set iBPR

Whypass = FI_L.W - WtotAir;

/Il steady - state flow rate sent to bypass

iBPR = Whbypass/W1otAir;

/I steady - state internal PDC bypass ratio

iBPRdes = iBPR;

FI_lprg.copyFlowStatic("FI_IcombAir");

/I copy flow for purge function

Fl_lprg.AphyDes = (Atube*144)*n_tubes; // Set phys area

Fl_Iprg.W = mPurgeAir*freq*n_tubes; // set m dot

Fl_Icomb.copyFlow("FI_IcombAir");

Fl_Icomb.AphyDes = Atube*144.*n_tubes*tauValveOpen,;

123

/I Actual area is multiplied by tauVO to get equivalent
/[area . - Fluid flows steadily through this area
Fl_Icomb.W = WtotAir; //mFillAirn_tubes*freq;

Fl_Icomb.setTotal_hP(Fl_IcombAir.ht, FI_lcombAir.Pt);

I
cout << "WtotAir =" << WtotAir << endl;
cout << "Whypass =" << Whypass << endl << endl;
cout << "mPureAir =" << mPureAir << endl;
cout << "mPurgeAir =" << mPurgeAir << endl;
cout << "mFillAir =" << mFillAir << endl;
cout << endl;

*/

/l sets time - averaged static conditions

1l
/I Burning

1

/I FAR was calculated prior to entering this
/I point - so we just need to modify
/I Wfuel based on changed Fl_Icomb.W
Wfuel = (FI_lcomb.W/(1. + FARIn + WARIn))*(FAR - FARIn);
Fu_l.Wfuel = Wfuel;
calcBurn();
calcRayleighLoss();

TtCombOut = FI_Ocomb.Tt;

124

llcout << "FI_Ocomb.Tt =" << FI_Ocomb.Tt << end!;

/lcout << "FI_Ocomb.Pt =" << FI_Ocomb.Pt << end];

// === ===

/I Apply Dyer - Kaemming correction to obtain tube flow

/I at exit (ignores the kinetic energy of shock wave .)

I === ===
J*
cout << "deltaS =" << deltaS << endl;
cout << "Fl_lcomb.s =" << FI_lcomb.s << endl|;
cout << "FI_Ocomb.s =" << FI_Ocomb.s << endl;
cout << end|;
*
FI_Ocomb.setTotal_hP(Hinput*Fl_Icomb.ht, Pinput*Fl_Icomb.Pt);
}

// dkkkkkkkkkkkkkkkkkkkkkhkkkhkkkkhkkhkkkkhkkkkhkkkkkkhkkkkk

/I Transient Loop

// *kkkkkkkhkhkhkhkhkhk *kkkkk *% *kkkkkkkhkhkkhk

if(switchDes == "TRANSIENT") {

1

/I Initialize local variables

1

real a_1, rhoVit, freq, PcqPi, errors;

125

real gamt, Cpt, beta, MCJ2, PcqPi2;

real Atube, Vtube, mCycle, Wtube;

real MFP, Wvalve, gma_;

real mFillAir, mPurgeAir, mPureAir;

real tDetonation, tDetProp, tBlowdown, tPurge, tFill, iVel;
real gam_s, gmm_fc;

real WtotAir, Wbypass;

int count;

/I ---- initiated but not iterated

/I static density of cool vitiated fluid

rhoVit = FI_Vit.rhot; //(lbm/ft"3)

/I speed of sound in pure air, stagnated in detonation
/ tube that the detonation wave propogates in to

a_1 = sgrt(Fl_Ilcomb.gamt*F|_lcomb.Rt*FI_Icomb.Tt*25037.);

// === === ===
/I Calculate Chapman - Jouguet Mach number for wave

/I as described in Heiser and Pratt

// === ===

/[*** input variables :
/[*** output variables : MCJ, deltaS, gadd
/I *** Flow Stations : FI_Ocomb, Fl_lcomb

/l'local variables : gamt, Cpt, qadd, beta, MCJ2

126

/I arithmetic mean of gamma for stopped fluid

gamt = (FI_Ocomb.gamt + FI_lcomb.gamt)/2.0;

/I arithmetic mean of Cp for a stopped fluid
Cpt = (FI_Ocomb.Cpt + Fl_Icomb.Cpt)/2.0;

/ICpt = 2.3190*0.23885; // convert kJ/(kg*K) to Btu/(Ibm*R)

MCJ2 = MCJ**2;
beta = (MCJ2**2)+1)/(2*MCJ2);

gadd = (beta-1)/(gamt+1);

I -=-mmmm- Calculate Entropy gain based on CJ detonation -
deltaS = Cpt*(-log(MCJ2*((gamt + 1.0)/(1.0 + (gamt*MCJ2)))**((gamt +

1.0)/gamt)));

/I ---- calculate the pressure rise using the H&P method --

PcgPi = (1.0 + gamt*MCJ2)/(gamt + 1.0);

Atube = (PI*((dTube/2)**2))/144.; /I ft"2

Vtube = Atube*(ITube/12); // ft"3

127

gma_| = Fl_IcombAir.gamt;
MFP = Mvalve*sqrt((gma_I1*32.174)/(Fl_lcombAir.Rt*778.16))*(1. + (gma_l -
1.)/2. *Mvalve**2)**((gma_l + 1.)/(2.%(1. - gma_l)));

Wvalve = (FI_lcombAir.Pt/sqrt(FI_lcombAir.Tt))*(Atube*144.*ARvalve)*MFP;

1

/I On - Design : Calculate bypass ratio

1
/[*** input Variables : dTube, ITube, n_tubes, fillFrac, purgeFrac

/I *** iterated Variables freq

/I *** output Variables : iBPR

/I *** local variables : WHfillAir, WpurgeAir, WpureAir, WtotAir, Wbypass, WpurgeAir, Wvit

/I *** Flow Stations : FI_lcombAir, FI_lcomb, FI_lprg, FI_Vit

/I ---- Calculate the split and patrtition of flow ----------

/I amount of air that will be mixed with fuel - 1 tube

mFillAir = (Vtube*rhoVit*fillFrac)/(1.+ FAR);

/l amount of air that will purge during each cycle - 1 tube

mPurgeAir = Vtube*Fl_IcombAir.rhos*purgeFrac;

/I total air per cycle flowing though one tube

mPureAir = mFillAir + mPurgeAir;

128

1

/I Timing - calculate frequency

1

/[*** input Variables : DDT, tValve, ITube, ff, pf, tCycle

/I *** iterated Variables : uCJ, PcqPi

/[*** output Variables tCycle, tauValveOpen, freq

/[*** |ocal variables : tDetonation, tDetProp, tBlowdown, tPurge, tFill

1

/I DetProp time is relatively independent of fill fraction

tDetProp = ITube/(uCJ*12);

/I DDT is input , tDetonationPropogation calcd

/I (may need to iterate)

tDetonation = DDT + tDetProp;

/e —— Blowdown time

/I assume choked flow at tube exit and calculateon
/l blowdown based draw - down time of a pressurized
/I tank calculated on pressure differential
gam_s = Fl_IcombAir.gams; // larger gamma is more conservative

gmm_fc = ((gam_s + 1)/2)**(-(gam_s + 1)/(2*(gam_s - 1)));

I #### tBlowdown : Use ~1/2 calcd pressure (to match experimental data)

/l we 'll use CJ det wave velocity as the speed of sound in the gas

129

/I since a cannot be directly calc 'd
/I note tBlowdown is proportional to tube length
// tauBIDn is proportional to tube length

tBlowdown = (log(0.4*PcqPi)/gmm_fc)*(ITube/uCJ);

/I Use the choked flow at valve inlet and the mass flow rate as
/I calculated outside the loop to calculate fill time (m/ mdot)
tPurge = tValve + (mPurgeAir/Wvalve); // seconds

tFill = tValve + (mFillAir/Wvalve); // seconds

/I Improvement could be made by calculating vitiated air velocity ...

tCycle = tDetonation + tBlowdown + tPurge + tFill;
tauValveOpen = (tPurge + tFill)/tCycle;

freq = 1./tCycle;

/I ---- Calculate the transient pressure ----

int tTot, tC, tNew, xTot, XC, xNew;

real timeCycle, pwall, func, dB, fn2, tNo, Tt3, para, xrf, xir, fn3, rhox, hx;

real gaml, gam2, p2, a2, u2, dAl, dA2, p3, tref, xref, tplateau, px, ax, xPr, 2,
pDecay;

real rho2, rho3, T2, T3, dCJ, p, fn, T, Icycle, Isp, IcyclePositive, IspPositive;

real Ispf, IspfPositive, pex, rhoex, xPlat;

130

if(time >= timeCycle) {
tTot = (1e6*time);
tC = (1e6*tCycle);
tNew = tTot%tC,

timeCycle = tNew/1e6;

else {

timeCycle = time;

[Tube = ITube/12; // change ITube to feet

tCJ = tDetonation;

gaml = Fl_Icomb.gamt;

gam2 = Fl_Ocomb.gamt;

dCJ = [Tube/tCJ;

dAl =
((gam1*MCJ2+gam?2)/(2*gam2))*((((gam1*MCJ2+gam2)*(gam2+1))/((gam1*MCJ2+1)*(2*
gam2)))**((gam2+1)/(gam2-1)));

dA2 = 2*((gam1*MCJ2)/(gam1*MCJ2+gam?2));

dB = 2*(((gam1*MCJ2+gam?2)/(gam1*MCJ2+1))*((gam2+1)/(2*gam?2)))**(-

(gam2+1)/(2*(gam2-1)));

/l von Neumann spike conditions
real pVN = 1+(((2*gam1)/(gam1+1))*(MCJ2-1));
real rhoVN = ((gam1+1)*MCJ2)/(2+((gam1-1)*MCJ2));

real TVN = pVN/rhoVN;

131

real RVN =
p _Icomb.Pt/(rho | Icomb.rhot | Icomb.Tt . : as
(pVN*FI_I b.Pt/(rhoVN*FI_I b.rhot*TVN*FI_| b.Tt))*173.700943; //VN G

constant in (ft*lbf)/(lbm*R)

/I Calculate fluid properties behind detonation wave
p2 = pVN*FI_lcomb.Pt;
a2 = ((gam1*MCJ2+1)/(gam1*MCJ2))*(gam2/(gam2+1))*dCJ;
u2 = (((gam1*MCJ2-gam2)/(gam1*MCJ2))*(1/(gam2+1)))*dCJ;
rho2 = rhoVN*FI_Icomb.rhot;
T2 = (144*p2)/(rho2*RVN);

x2 = dCJ*timeCycle;

/I Calculate fluid properties behind rarefaction wave

x3 =x2/2;

a3 =dCJ/z;

p3 = (gam1/(2*gam2))*(((gam2+1)/(2*gam?2))**((gam2+1)/(gam2-
1)))*MCJ2*F|_lcomb.Pt;

rho3 = 2*(((gam2+1)/(2*gam?2))**((gam2+1)/(gam2-1)))*FI_lcomb.rhot;

T3 = (p3*144)/(rho3*FI_Ocomb.Rt*778.17);

if(timeCycle == 0) {

px = FI_lcomb.Pt;

Tx = Fl_Ilcomb.Tt;

132

tref = tCJ*((((gam1*MCJ2+gam2)*(gam2+1))/((gam1*MCJI2+1)*(2*gam2)))**(-
(gam2+1)/(2*(gam2-1))));

xref =
ITube*((L/dA2)*((((gam1*MCJI2+gam2)*(gam2+1))/((gam1*MCJI2+1)*(2*gam2)))**(-
(gam2+1)/(2*(gam2-1)))));

tplateau = (tref + xref/a3);

tExhaust = (dA2*(calcDiscrete(dAl,gam2)-1) + dB)*tCJ;

tNo = (dB + dA2*(((2/(gam2+1))**(-(gam2+1)/(2*(gam2-1))))-1))*tCJ:;

para = timeCycle - tplateau + ITube/as3;

/I fn2 = aw/a3
fn2 = (0.6066*exp(-2.991*(a3/ITube)*(timeCycle-tplateau))+((1-0.6066)*exp(-

0.5014*(a3/ITube)*(timeCycle-tplateau))))**((gam2-1)/(2*gam?2));

/I fn = pw/p3
/lfn = (a3*(timeCycle-tNo)/ITube)+1;
/IpDecay = calcDiscrete(fn, gam2);
pDecay = 0.6066*exp(-2.991*(a3/ITube)*(timeCycle-tN0))+((1-0.6066)*exp(-

0.5014*(a3/ITube)*(timeCycle-tNo)));

/I Reflection from open end of tube
xrf = ((dCJ*timeCycle)/(gam2-
1))*(((gam2*(gam1*MCJ2+1)/(gam1*MCJ2))*(tCJI/timeCycle)**((2*(gam?2-1))/(gam?2+1)))-

((gam1*MCJ2+gam?2)/(gam1*MCJ2)));

/I Reflection from thrust wall

133

xir = ITube - ((gam2+1)/(gam2-1))*a3*para*(((para*a3/ITube)**(-2*(gam2-

1)/(gam2+1))) - (2/(gam2+1)));

/I Undisturbed air ahead of detonation wave
if((xval > x2) && (xval > x3)) {
px = Fl_lcomb.Pt;
Tx = Fl_lcomb.Tt;

region = "Undisturbed";

// Between detonation wave and rarefaction wave
else if((xval > x3) && (xval <= x2)) {
xPlat = xval/x2;
px = p2*(((/gam2)+(((gam2-1)/gam2)*(xval/x2)))**((2*gam2)/(gam2-1)));
rhox = rho2*(((1/gam2)+(((gam2-1)/gam2)*(xval/x2)))**(2/(gam2-1)));
u3 = u2 - ((2/(gam2+1))*((x2-xval)/timeCycle));
a3 = a2 - (((gamz2-1)/(gam2+1))*((x2-xval)/timeCycle));
Tx = TCI*((px/p3)**((gam2-1)/gam?2));

region = "Shock-Rarefaction”;

/I Plateau pressure
else if((xrf >= xval) && (x3 >= xval)) {
px = (gaml1/((gam2**((2*gam2)/(gam2-1)))*(gam?2+1)))*MCJ2*pCJ;
rhox = ((gam2+1)/(gam2**((gam2+1)/(gam2-1))))*rhoCJ;

Tx = (144*px)/(rhox*FI_Ocomb.Rt*778.17);

134

region = "Plateau”;

/I Rarefaction wave propogating toward thrust wall
else if((xrf < xval) && (xrf >= 0) && (x2 > ITube)) {
px = p2*(((1/gam2)+(((gam2-1)/gam2)*(0.5)))**((2*gam2)/(gam2-1)));
rhox = rho2*(((1/gam2)+(((gam2-1)/gam2)*(0.5)))**(2/(gam2-1)));
Tx = TCI*((px/p3)**((gam2-1)/gam?2));

region = "First Reflection";

/I Rarefaction wave propogating toward open end
else if((xir >= xval) && (xrf < 0)) {
px = 2.13480013*pDecay*p3*(1-175*(timeCycle-tNo));
rhox = pDecay*rho3; //Fl_Icomb.rhot;
rhoex = ((gam2+1)/(gam2**((gam2+1)/(gam2-1))))*FI|_Icomb.rhot;
real uex = dCJ/(gam2+1);
real t1 = 2*|Tube/dCJ;
real t2 = 4*|Tube/dCJ;
real t3 = ((rho3*ITube)/(rhoex*uex))+t1;
real pUTA = (p3-pCJ)*(1-((timeCycle-t2)/(t3-t2))) + pCJ;
Tx = TCI*((px/p3)**((gam2-1)/gam?2));

region = "Second Reflection";

/l Exhaust

135

if(timeCycle >= tExhaust) {
px = Fl_lcomb.Pt;
Tx = Fl_lcomb.Tt;

region = "Exhaust";

[Tube = ITube*12; // change ITube back to inches

WitotAir = mPureAir*freq;

/Il steady - state flow rate into tubes

/I conservation of mass check

if(WtotAir > FI_ILW) {
fillFrac = fillFrac*(FI_I.W/WtotAir);
purgeFrac = purgeFrac*(FI_l1.W/WtotAir);

mFillAir = Vtube*(rhoVit*fillFrac)/(1.+ FAR);

/I amount of air that will be mixed with fuel - 1 tube

mPurgeAir = Vtube*(FI_lcombAir.rhos*purgeFrac);

/l amount of air that will purge during each cycle -1 tube

mPureAir = mFillAir + mPurgeAir;

136

/I total air per cycle flowing though one tube
WitotAir = FI_LW;
cout << "purgeFrac changed to: " << purgeFrac << end];

cout << "fillFrac changed to: " << fillFrac << endl << endl;

/E— Set iBPR

WitotAir = mPureAir*freq;

Whbypass = FI_I.W - WtotAir;

/I steady - state flow rate sent to bypass

iBPR = Wbypass/WtotAir;

/I steady - state internal PDC bypass ratio

iBPRdes = iBPR;

FI_lprg.copyFlowStatic("FI_IcombAir");

/I copy flow for purge function

Fl_lprg.AphyDes = (Atube*144); //*n_tubes; // Set phys area

137

Fl_Iprg.W = mPurgeAir*freq; //*n_tubes; // set m dot

Fl_lcomb.copyFlow("FI_lcombAir");

Fl_lcomb.AphyDes = Atube*144.*tauValveOpen; // *n_tubes

/I Actual area is multiplied by tauVO to get equivalent

/l area . - Fluid flows steadily through this area

Fl_Icomb.W = mFillAir*freq; // *n_tubes

Fl_lcomb.setTotal_hP(FI_lcombAir.ht, FI_lcombAir.Pt);

1
// Burning

I

/I FAR was calculated prior to entering this

/I point - so we just need to modify

/I Wfuel based on changed Fl_lcomb.W
Wfuel = (FI_lcomb.W/(1. + FARIin + WARIn))*(FAR - FARIn);
Fu_l.Wfuel = Wfuel;

calcRayleighLoss();

FI_Ocomb.setTotalTP(TXx, px);

updateAvg(Tx, px, FI_Ocomb.ht);

138

if(Tlast < Tx) {
Tmax = Tx;
}
if(Plast < px) {
Pmax = px;
}
if(Hlast < FI_Ocomb.ht) {

Hmax = FI_Ocomb.ht;

}

Tlast = Tx; Plast = px; Hlast = FI_Ocomb.ht;

1

/I Add split flows back to combusted flow

1

FI_Ocomb.add("FI_Iprg"); // add purge flow in (uncorrected)

// === ===
/I Apply corrections to the flow for transition to ...

/] steady state (TTSS)

// === ===

/[*** Local Variables : Snew, Pnew
/[*** Input Variables : deltaS, TTSSeff, TTSSdPqP
/I *** Flow stations : FI_Ocomb, FI_Vit

real hnew, Pnew, Snew;

139

/l eff = (dht) TTSF /(dht) comb + 1.

/I current h - (h gained)*(1. - eff)

hnew = FI_Ocomb.ht - ((FI_Ocomb.ht - FI_lcomb.ht)*(1.0 - TTSSeff));

Pnew = FI_Ocomb.Pt*(1.0 - TTSSdPqP);

Fl_O1.copyFlow("FI_Ocomb");

1

/Il Thermal storage calculations

1

if('S_Qhx.isEmpty()) {

S_Qhx.execute();

real hout = FI_O1.ht - (Qhx/FI_O1.W);

FI_O1.setTotal_hP(hout, FI_O1.Pt);

I

/I store the design value of FAR for use in guessing

1

if(switchDes == "DESIGN") {

FARDes = FAR;

140

void setX(real x) {
/lcout << "Xval set to " << x*[Tube << " feet" << endl;

xval = x*ITube/12;

void setTime(real t, real tint) {
/lcout << "Time setto " <<t << " seconds" << endl;
time =t;

tinterval = tint;

void updateAvg(real temp, real pressure, real enthalpy) {

J*
cout << "temp =" << temp << end|;
cout << "pressure = " << pressure << endl;
cout << "enthalpy =" << enthalpy << endl;
cout << "Tlast =" << Tlast << endl;
cout << "Plast =" << Plast << endl;
cout << "Hlast = " << Hlast << endl;
*
Taverage = Taverage + tinterval*(Tlast+temp)/2;
Paverage = Paverage + tinterval*(Plast+pressure)/2;
Haverage = Haverage + tinterval*(Hlast+enthalpy)/2;
I

141

cout << "Tnew =" << Taverage << endl;
cout << "Pnew =" << Paverage << endl;
cout << "Hnew =" << Haverage << end];
cout << endl;

*/

void setCJ(real M, real p, real T, real u, real rho, real gamma, real R) {
MCJ = M;
pCJ = p*Fl_Icomb.Pt;
TCJ =T*Fl_lcomb.Tt;
uCJ =u;
rhoCJ = rho*FI_lcomb.rhot;

gamCJ = gamma;

RCJ =R;
[*
cout << "MCJ =" << MCJ << endl;
cout << "pCJ =" << pCJ << endl,
cout << "TCJ ="<< TCJ << endl;
cout << "uCJ =" << uCJ << endl
cout << "rhoCJ =" << rhoCJ << endl;
cout << "gamCJ =" << gamCJ << endl;
cout << "RCJ =" << RCJ << endl << end|;
*/
}

142

real getT() {

return Taverage;

real getP() {

return Paverage;

real getH() {

return Haverage;

real getTstat() {

return Fl_lcomb.Tt;

real getPstat() {

return FI_lcomb.Pt;

real getHstat() {

return Fl_lcomb.ht;

real getPMax() {

return Pmax;

143

real getTMax() {

return Tmax;

real getHMax() {

return Hmax;

void setH(real in) {

Hinput = in;

void setP(real in) {

Pinput = in;

real calcDiscrete(real parameter, real gamma) {
real na, nb, gamA, gamB, X, np, gamln, fa, fb, para;
gamin = gamma,

para = parameter;

if((gamlin < (5/3)) && (gamin >= (7/5))) {

na=1;nb=2;

144

else if((gamin < (7/5)) && (gamlin >= (9/7))) {

na=2;nb=3;

}

else if((gamin < (9/7)) && (gamin >= (11/9))) {
na =3;nb=4;

}

else if((gamin < (11/9)) && (gamin >= (15/13))) {
na = 4; nb = 6;

}

else if((gamin < (15/13)) && (gamin >= (23/21))) {
na = 6; nb = 10;

}

else {
na = 6; nb = 10;

}

iflna==1){
fa = 0.5*(para**0.2) + 0.5*(para**0.6);

}

else if(na==2) {
fa = 0.375*(para**0.14286) + 0.25*(para**0.42857) +
0.375*(para**0.714286);
}
else if(na == 3) {
fa = 0.3125*(para**0.11111) + 0.1875*(para**0.33333) +

0.1875*(para**0.55555) + 0.3125%(para**0.77777);

145

}
else if(na==4) {
fa = 0.273438*(para**0.090909) + 0.15625*(para**0.272727) +
0.140625%(para**0.454545) + 0.15625*(para**0.636363) + 0.273438*(para**0.818181);
}
else if(na == 6) {
fa = 0.22471*(para**(1/15)) + 0.123047*(para**(3/15)) +
0.10214*(para**(5/15)) + 0.097656*(para**(7/15)) + 0.10214*(para**(9/15)) +
0.123047*(para**(11/15)) + 0.224708*(para**(13/15));
}
else if(na == 10) {
fa = 0.176197*(para**(1/23)) + 0.092734*(para**(3/23)) +
0.073643*(para**(5/23)) + 0.065460*(para**(7/23)) + 0.061683*(para**(9/23)) +
0.060562*(para**(11/23)) + 0.061683*(para**(13/23)) + 0.065460*(para**(15/23)) +

0.073643*(para**(17/23)) + 0.092734*(para**(19/23)) + 0.176197*(para**(21/23));

}
if(nb == 1) {

fb = 0.5*(para**0.2) + 0.5*(para**0.6);
}

else if(nb == 2) {
fb = 0.375*(para**0.14286) + 0.25*(para**0.42857) +
0.375*(para**0.714286);

}
else if(nb == 3) {

146

fb = 0.3125*(para**0.11111) + 0.1875*(para**0.33333) +
0.1875*(para**0.55555) + 0.3125*(para**0.77777);
}
else if(nb ==4) {
fb = 0.273438*(para**0.090909) + 0.15625*(para**0.272727) +
0.140625%(para**0.454545) + 0.15625*(para**0.636363) + 0.273438*(para**0.818181);
}
else if(nb == 6) {
fb = 0.22471*(para**(1/15)) + 0.123047*(para**(3/15)) +
0.10214*(para**(5/15)) + 0.097656*(para**(7/15)) + 0.10214*(para**(9/15)) +
0.123047*(para**(11/15)) + 0.224708*(para**(13/15));
}
else if(nb == 10) {
fb = 0.176197%(para**(1/23)) + 0.092734*(para**(3/23)) +
0.073643*(para**(5/23)) + 0.065460*(para**(7/23)) + 0.061683*(para**(9/23)) +
0.060562*(para**(11/23)) + 0.061683*(para**(13/23)) + 0.065460*(para**(15/23)) +

0.073643*(para**(17/23)) + 0.092734*(para**(19/23)) + 0.176197*(para**(21/23));

}

gamA = (2*na + 3)/(2*na + 1);
gamB = (2*nb + 3)/(2*nb + 1);
X = (gamIn-gamA)/(gamB-gamA);
np = (3-gamin)/(2*(gamin-1));
out = (1-X)*fa + X*fb;

[*

cout << "Para =" << para << endl;

147

cout<<"f a(Z) =" << fa<<endl
cout << "f h(Z) =" << fb << endl;
cout << "gamlIn =" << gamlIn << endl;
cout << "gamA =" << gamA << endl;
cout << "gamB =" << gamB << endl;
cout << "X ="<< X << endl;

cout << "np =" << np << endl;

cout << "pw/p3 =" << out << endl;

cout << endl;
*/

return out;
}
1

/ register the appropriate errors at build time

1

void VCinit()
{
ESOregCreate(1023901, 8 , ", TRUE, FALSE, TRUE); // provisional
ESOregCreate(1093901, 8 , ", TRUE, FALSE, TRUE); // provisional
}

}
#endif

148

close all; clear all; clc;

% Mach no.

M=[1225335445 4.8288];

% P ratio

PC =[14.528 7.198 10.483 14.390 18.926 24.105 27.867];
% T ratio

TC =[1 1.644 2.043 2.506 3.031 3.613 4.242 4.677];

% Density ratio

pC =[1.0003 2.7540 3.5235 4.1833 4.7475 5.2392 5.6816 5.9562];

for i=1:length(M)
P(i) = 1+((2.8/2.4)*((M(i)"2)-1));
d(1,i) = 100*abs(1-(P(i)/PC(i)));
p(i) = (2.4*(M()"2))/(2+(0.4%(M(1)"2)));
d(2,i) = 100*abs(1-(p())/pC(i)));
T(i) = P@)/p(i);
d(3,i) = 100*abs(1-(T(i)/TC())):

end

figure(1);

hold on; grid on;
xlabel('"Mach No.")
ylabel('Pressure Ratio")

plot(M,PC,M,P)

149

legend('CEA Result',/CPG Result','Location’,'Best)
figure(2);

hold on; grid on;

xlabel('Mach No.")

ylabel('Temperature Ratio")

plot(M,TC,M,T)

legend('CEA Result',/CPG Result','Location’,'Best)
figure(3);

hold on; grid on;

xlabel('Mach No.")

ylabel('Density Ratio")

plot(M,pC,M,p)

legend('CEA Result',/CPG Result','Location’,'Best)
disp('Pressure % Error")

disp(d(1,))

disp('Density % Error’)

disp(d(2,3))

disp('Temp. % Error’)

disp(d(3,2))

150

References

Glassman, Irvin., Yetter, Richard. A., Combustion. Academic Press, New York,

NY, fourth edition, 2008. ISBN 978-0-12-088573-2

Mattingly, Jack D. and von Ohain, Hans., Elements of Propulsion: Gas Turbines
and Rockets. American Institute of Aeronautics and Astronautics (AIAA), Reston,

Virginia, 2006. ISBN 1563477793

Andrus, lonio Q., Comparative Analysis of a High Bypass Turbofan Using a
Pulsed Detonation Combustor. MS thesis, AFIT/GAE/ENY/07-M02. Graduate
School of Engineering and Management, Air Force Institute of Technology (AU),

Wright-Patterson AFB OH, March 2007.

Thorn, Caitlin R., Off-Design Analysis of a High Bypass Turbofan Using a Pulsed
Detonation Combustor. MS thesis, AFIT/GAE/ENY. Graduate School of
Engineering and Management, Air Force Institute of Technology (AU), Wright-

Patterson AFB OH, March 2010.

Kumar, Sivarai Amith., Parameteric and Performance Analysis of a Hybrid Pulse

Detonation/Turbofan Engine. MS thesis, University of Texas at Arlington,

Department of Mechanical & Aerospace Engineering, May 2011.

151

10.

11.

Endo, Takuma and Fujiwara, Toshi, Analytical Estimation of Performance
Parameters of an Ideal Pulse Detonation Engine. Trans. Japan Soc. Aero. Space

Sci., Vol. 45, No. 150, pp. 249-254, 20083.

Endo, Takuma, Kasahara, Jiro and Fujiwara, Toshi. Pressure History at the
Thrust Wall of a Simplified Pulse Detonation Engine. AIAA Journal Vol. 42, No. 9,

September 2004.

Wilson, Donald R., Lu, Frank K., Kim, JunHyun and Hekiri, Haider., Analysis of
an Ejector-Augmented Pulse Detonation Rocket. 46" AIAA Aerospace Sciences

Meeting and Exhibit, 7-10 January 2008, Reno, Nevada. AIAA 2008-114.

Browne, S., Ziegler, J. and Shepherd, J.E., Numerical Solution Methods for
Shock and Detonation Jump Conditions. California Institute of Technology,

GALCIT Report FM2006.006, July 2004-Revised August 29, 2008.
NASA Chemical Equilibrium with Applications (CEA),
www.grc.nasa.goviIWWW/CEAWeb/, Last Updated: 02/03/2010. Curator and

NASA Official: Dr. Michael J. Zehe.

NPSS Consortium, NPSS Consortium, http://www.npssconsortium.org/, Last

Retrieved 11/13/2012.

152

Biographical Information

Anthony Hasler graduated from Texas Christian University in 2010 with a degree
in Mechanical Engineering. From there he went to the University of Texas in Arlington to
get a Master’s degree in Aerospace Engineering (graduated in December of 2012). His
research interests lie in propulsion, aerodynamics, high temperature gas-dynamics and
numerical methods for solving differential equations. Projects that he has worked on
include computational fluid dynamics in low and high Reynolds number situations with
high temperature gas dynamics, a KIVA-based analysis of gasoline and ethanol in a four-
stroke internal combustion engine, an NPSS analysis of a turbojet engine including
transient effects and, most significantly, a transient analysis of a mixed-flow turbofan with
detonation combustors acting as duct burners (and comparison with standard combustion
duct burners). His future plans are to continue research in the field of Aerospace

Engineering with the hopes of one day becoming an astronaut.

153

