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ABSTRACT 

OPTIMIZING A NEURAL NETWORK OVER SIZE  

AND ITERATION NUMBER 

 

Jignesh K. Patel, M.S.  

The University of Texas at Arlington, 2012 

 

Supervising Professor:  Michael T. Manry 

A unique algorithm has been developed for training multilayer perceptron neural networks. First 

the training algorithm has been used with hidden weight optimization (HWO) and multiple optimal learning 

factors (MOLF) to get the best performance. In each training iteration, this method first optimally orders 

the inputs and then optimally orders the hidden basis functions. At the end of each training iteration, the 

method calculates the validation error versus number of basis function curve in one pass through the 

validation data. Since, pruning is done at each iteration, we optimize validation error over number of basis 

functions and number of iterations simultaneously. The number of required multiplies for the algorithm 

has been analyzed. The method has been compared to others in simulations and been found to work 

very well. 
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CHAPTER 1 

INTRODUCTION 

1.1 Applications of Neural Networks 

Neural networks consist of highly interconnected processing elements working to solve specific 

problems. A neural network processing element (a neuron) consists of a number of inputs that are 

multiplied by gains, a threshold that is added to it, and an activation function that performs a nonlinear 

transformation on the result [56]. Neural networks have an ability to learn [54, 55]. Given an arbitrary data 

set, a neural network can approximate a mapping from the inputs to the outputs [1]. It has been proved 

that a multilayer perceptron with sufficiently many nonlinear units (neurons) in a single hidden layer can 

work as a universal function approximator [34]. Other favorable features include the MLP‟s ability to mimic 

Bayes discriminant [35] and MAP estimates [36]. 

 

Neural networks have emerged as powerful statistical tools capable of learning and 

generalization. They have been used in the in the areas of parameter estimation [2] [3], document 

analysis and recognition [4], finance and manufacturing [5] and data mining [6]. Specific applications of 

neural networks include target recognition [7, 8], power load forecasting [9, 10], ZIP code recognition [11, 

12], prognostics [13], face recognition [14], image retrieval [15] and speaker recognition [16] among 

others. 

1.2 Neural Network Properties 

 
While initially developed to mimic brain functions, neural networks can be thought of as another 

way of developing approximations. A function of many variables needs to be approximated given only 

values of the function (often perturbed by noise) at various points in the input space. Typically, a feed-

forward network with a single hidden layer, with enough hidden units to approximate the continuous 
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function is selected. The optimum size and topology of the network has been studied in the literature [17, 

49, 50, 57]. Neural networks are being increasingly preferred over polynomial approximations. Unlike 

polynomial approximations, neural networks can be trained for ill-posed patterns, but the mappings they 

yield for such cases may not be globally accurate [18]. 

A classifier groups items with similar feature vectors into labeled groups. A nearest neighbor [48] 

classifier can be designed by using clustering algorithms, and assigning classes to clusters or groups of 

clusters. When neural network classifiers are designed, there is usually one output per class, and each 

output functions as the discriminant for the corresponding class. 

1.3 Current Research 

 

A major problem in applying neural networks is specifying the size of the network [51] and a lot of 

research has been done to determine the best network size. The network designer‟s dilemma occurs 

because both large and small networks exhibit a number of advantages. Even for moderately sized 

networks the number of parameters may become large compared to the number of patterns [21]. When a 

network has too many free parameters (i.e., weights and/or units) not only is learning fast [22]–[25], but 

local minima are more easily avoided [26]. In particular, a theoretical study [27] has shown that when the 

number of hidden units equals the number of training examples (minus one), the back propagation error 

surface is guaranteed to have no local minima only for output weights. 

 

Both theory [28] and experience [29]–[31] show that networks with few free parameters exhibit a 

better generalization performance, and this is explained by recalling the analogy between neural network 

learning and curve fitting. Moreover, knowledge embedded in small trained networks is presumably easier 

to interpret and thus the extraction of simple rules can hopefully be facilitated [32]. Lastly, from an 

implementation standpoint, small networks only require limited resources in any physical computational 

environment. 
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When optimizing the structural complexity of feed-forward neural networks, different size 

networks are designed which minimize the mean-square training error. Typically, the machine with the 

smallest validation error is saved. When different size networks are independently initialized and trained, 

however, the training error versus network size curve is not monotonic. Similarly, the resulting validation 

error versus size curve is not smooth, making it difficult to find a proper minimum. [33] So, monotonic 

training curves and smooth validation curves are desirable.  

  

For validation error minimization two approaches can be used. In pruning[50] we start with a large 

multilayer perceptron with an adequate performance for the problem at hand and then prune it by 

eliminating certain weights or nodes in a selective and ordered fashion. This approach combines the 

advantages of training large networks (i.e., accuracy and avoidance of local minima) and those of using 

small ones (i.e., improved generalization). However it requires advance knowledge of what size is “large” 

for the problem at hand, but this is not a serious concern as upper bounds on the number of hidden units 

have been established[49]. By pruning, validation error as a function of network size (number of basis 

functions) is obtained, which can be non-monotonic. The network with the smallest validation error will be 

chosen.  

 

In the second approach, the neural network is trained for several iterations and for each iteration 

validation error is obtained. So, finally we will get a validation error versus number of iterations curve. This 

curve can also be non-monotonic. A neural network can be trained for the iteration which has minimum 

validation error. 

 

These approaches only optimize the network over either number of iterations or number of hidden 

units. In general it is not known how many iterations and hidden units result in the minimum validation 

error. 
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1.4 Thesis Goals 

In this thesis, an algorithm is developed which optimizes a neural network over size and iteration 

number simultaneously. In chapter 2, batch training algorithms are reviewed. The multiple optimal 

learning factor (MOLF) is discussed in chapter 3. Classification is discussed in chapter 4. In chapter 5, 

first we discuss algorithm to get optimally ordered orthonormalized neural network. The method is 

discussed to get validation error versus basis functions curve in one pass through validation data using 

the trained orthonormalized network. So, here we have first pruned the network and then early stopping is 

applied on validation data set, thus we will get best network size for each iteration. Results for both 

approximation and classification case are shown in chapter 6. 
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CHAPTER 2 

MLP NOTATION AND TRAINING 

2.1 Multilayer Perceptron 

The multilayer perceptron (MLP) forms a very important class of neural networks. A typical MLP 

structure consists of a set of input units that constitute the input layer, one or more layers of neurons 

forming the hidden layers and an output layer for producing the actual output. All the layers are connected 

by weights and the signal travels from the input through the hidden layers, to the output layer. Such a 

network is shown below. 

 

Figure 1 Fully connected Multilayer perceptron 

 

As shown in Figure 1, input weights w(k,n) connect the n
th
 input xp(n) to the k

th
 hidden unit. Output 

weights woh(m,k) connect the k
th
 hidden unit‟s activation op(k) to the m

th
 output yp(m), which has a linear 

activation. The bypass weight woi(m,n) connects the n
th
 input to the m

th
 output. The training data, 

described by the set (xp,tp) consists of N-dimensional input vectors xp and M-dimensional desired output 
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vectors, tp. The pattern number p varies from 1 to Nv where Nv denotes the number of training vectors 

present in the data set. 

In order to handle thresholds in the hidden and output layers, the input vectors are augmented by 

an extra element xp(N+1) where, xp(N+1) = 1 , so xp = [xp(1), xp(2),…., xp(N+1)]
T
 . Let Nh denote the 

number of hidden units. The dimensions of the weight matrices W, Woh and Woi are respectively Nh by 

(N+1), M by Nh and M by (N+1) .The k
th
 element of net vector np can be written as, 

     





1N

1n
npxnk,wkpn  

(2.1) 

In matrix notation it can be summarized as,  

pxWpn   

(2.2) 

where the k
th
 element of the hidden unit activation vector op is calculated as op(k) = f(np(k)) and f(.) 

denotes the hidden layer activation function. For the sigmoid activation case, the output of the k
th
 hidden 

unit is given by 

f  np k   
 

  e np(k)
 

(2.3) 

The actual output of the network, yp can be written as, 

         








h
N

1k
kpokm,

oh
w

1N

1n
npxnm,

oi
wmpy  

(2.4) 

In matrix notation it can be summarized as,  

po
oh

Wpx
oi

Wpy   

(2.5) 
The MLP computes its outputs as a weighted sum of the inputs and the hidden unit outputs. The weights 

form the unknowns, which are typically found by minimizing the mean squared error between the actual 

and desired outputs, 
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     






vN

1p

M

1m

2
mpympt

N

1
E  (2.6) 

2.2 Output Weight Optimization 

Output weight optimization (OWO) is a technique to solve for weights connected to the actual 

outputs of the network (this would be the output weights, Woh and by-pass weights, Woi). Since the 

outputs have linear activation, finding the weights connected to the outputs is equivalent to solving a 

system of linear equations. The expression for the actual outputs given in (2.6) can be re-written as 

 pXoWpy   (2.7) 

where Xp=[ xp, op] is the augmented input vector of size Nu = N + Nh + 1, Wo is formed as [Woi : Woh] and 

has a size of M by Nu. The output weights can be solved by setting ∂E ⁄ ∂Wo=0 which leads to a set of 

linear equations given by, 

 
T
oWRC   (2.8)

 

where, 

 



vN

1p

T
ptpX

vN

1
C  (2.9) 





vN

1p

T
pXpX

vN

1
R  

Popular candidates for solving equation (2.8) are conjugate gradient[38] and the orthogonal least squares 

methods[39]. 

2.3 Back Propagation Algorithm 

The popular backpropagation (BP) algorithm[52] is a first order method that uses gradient 

information to update the weights in the network. In full batch mode, the (BP) algorithm updates the input 

weights and thresholds, W, as 

    
 















nk,w

E
znk,wnk,w  (2.10) 
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for 1 ≤ k ≤ Nh and 1 ≤ n ≤ (N + 1). Here z is the learning factor. For the p
th
 pattern, we use BP to get the 

partial derivative of Ep (error for the p
th
 pattern) as 

 

 
   

 

 nk,w

kpn
.

kpn

pE

nk,w

pE













  (2.11) 

For the p
th
 pattern, output layer delta and hidden layer delta are, 

       



M

1m
km,

oh
wmpoδkpo'kpδ  

       mpympt2mpoδ   (2.12) 

Now, the negative gradient of E is 

      








vN

1p
npxkpδ

vN

1
nk,g

n)w(k,

E
 (2.13) 

  
 

Nv

 δ
 

Nv

p  

  
  

where       Thpppp N ,...,2,1δ . If steepest descent is used to modify the hidden weights, W is 

updated in a given iteration as 

 GzWW   (2.14) 

 GzΔW   (2.15) 

First order methods are generally easier to implement and also require the least computation per training 

iteration. They are also guaranteed to converge to a global or local minimum. However, these benefits are 

largely outweighed by the method‟s rate of slow convergence [40].  

2.4 Output Weight Optimization-Backpropagation 

One option to train an MLP would be to divide the weight adaptation into two separate stages: (i) 

train all weights, Woh, Woi connected to the actual network outputs[53] and (ii) train all the input 

weights,W. During either stage, the other weights are not updated. This approach combines the two 

previously described approaches and is called output weight optimization-backpropagation (OWO-BP). 
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This method is attractive for several reasons. First, the training is faster, since training weights connected 

to the outputs is equivalent to solving for linear equations. Second, it helps us avoid some local minima. 

Third, the method exhibits improved training performance. 

 

A brief description of OWO-BP is given below. For every training iteration, 

1) Find the negative Jacobian matrix G described in equation (2.13) 

2) Find the optimal learning factor 
2 2

/

/

E z
z

E z

 

 

 and update the input weights, W, using equation 

(2.14) 

3) Solve the system of linear equations described in section 2.2, using OLS and update the output 

weights, Wo. 

2.5 Hidden Weight Optimization 

In HWO, the hidden weights are updated by minimizing separate error functions for each hidden 

unit. The error functions measure the difference between the desired and the actual net function. For the 

k
th
 hidden unit and p

th
 pattern, the desired net function is constructed as[42] 

 (k)pδz(k)pn(k)
pd

n   (2.16) 

where npd(k) is the desired net function and np(k) is the actual one in (2.1). z is the learning factor and 

)(mpo  and )(kp   are given in equation (2.12). 

The hidden weights are to be updated as 

      nk,
hwo

gznk,
hi

wnk,
hi

w   (2.17) 

where ghwo(k, n) is the weight change. The weight changes are derived using 

     





1N

1n
(n)p.xnk,

hwo
gznk,

hi
w(k)pzδ(k)pn  (2.18) 

Therefore, 

   





1N

1n
(n)pxnk,

hwo
g(k)pδ  (2.19) 

The error of (2.18) and (2.19) for the k
th
 hidden unit is measured as 
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    





 






vN

1n

2
vN

1n
(n)pxnk,

hwo
g(k)pδ

vN

1
k

δ
E  (2.20) 

Equating the gradient of Ed(k) with respect to the hidden weight change to zero, we have 

      mk,
bp

g
1N

1n
mn,

i
rnk,

hwo
g 




  (2.21) 

where 

  (m)px
vN

1p
(n)px

vN

1
mn,

i
r 




 for

for

1



Nm1

1Nn1

 
 

    
 mk,

hi
w

EvN

1p
(m)px(k)pδ

vN

1
mk,

bp
g







  (2.22) 

During the first half of the training epoch, OWO updates the output weights. During the second half of the 

training epoch, the hidden weights are updated using HWO as (2.17), where Ghwo is a matrix of hidden 

weight changes. Thus OWO-HWO is similar to OWO-BP with the BP component replaced by HWO. 

Setting to zero the derivative of  k
δ

E with respect to ghwo(j,m), we get, 

            (2.23)                  

Instead of directly using the negative Jacobian Gbp to update the hidden weights, HWO minimizes a 

separate error function, given by (2.20) and solves the system of linear equations in (2.21) and updates 

the hidden weights using (2.17). Equation (2.23) can be re-written as 

          
  

 

  (2.24) 
where Ri is the autocorrelation matrix defined in (2.22). OWO-HWO is summarized below. For every 

training epoch 

 Solve the linear equations and update the output weights 

 Find the negative Jacobian matrix Gbp described in equation (2.22) 

 Solve the linear equations in (2.21) to find the HWO and update Ghwo 

 Compute the optimal learning factor. 

 Update the hidden weights using (2.17) 
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CHAPTER 3 

MULTIPLE OPTIMAL LEARNING FACTOR TRAINING 

In this chapter, a new learning algorithm called the multiple optimal learning factor (MOLF) 

algorithm [44] is reviewed. MOLF calculates an optimal learning factor for every hidden unit, in order to 

increase the speed of learning and overall convergence. In MOLF Newton‟s method is used in order to 

calculate a separate optimal learning factor for each hidden unit‟s input weights in a feedfoward network. 

 

In the past, researchers have used multiple learning rates and/or momentum terms in order to 

speed up the learning process. Unfortunately, these methods are mostly heuristic, and their performance 

relies on the settings of some user chosen parameters. Also, using standard gradients makes them slow 

to converge. The Newton‟s method can be viewed as a second order method to assign a learning rate to 

every weight in the network. Elements of the new method‟s Hessian matrix are shown to be weighted 

sums of elements from the total network‟s Hessian. First we will discuss basic algorithm to generate one 

optimal learning factor. 

3.1 Basic MOLF Algorithm 

A MLP is assumed to be trained using OWO-BP. However, let z be a vector whose k
th
 element zk 

represent the OLF used to update the input weights, w(k,n).The error function to be minimized is given by 

(2.6). The predicted output yp(m) is given by, 

               











 







h
N

1k

1N

1i
ipxik,g

k
zik,wfkm,

oh
w

1N

1n
npxnm,

oi
wmpy  (3.1) 

where, g(k,i) is again an element of the negative Jacobian matrix G and f() denotes the hidden layer 

activation function. The negative first partial derivative of E with respect to an OLF zj is, 
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              jpΔnjpo'jm,
oh

w
vN

1p

M

1m

h
N

1k k
zpokm,

oh
wmpt

vN

2

j
z

E
j

molf
g 

























 (3.2) 

where op
‟
(j) indicates the first partial derivative of op(j) with respect to its net function and, 

       





1N

1n
npxnm,

oi
wmptmpt  

     





1N

1n
nj,gnpxjpΔn  

         













1N

1n
npxnk,g

k
znk,wf

k
zpo  (3.3) 

Using Gauss-Newton updates, the second partial derivative elements of the Hessian Hmolf are derived as, 

             











vN

1p
jpΔnkpΔnjpo'kpo'

M

1m
jm,

oh
wkm,

oh
w

vN

2

j
z

k
z

E
2

jk,
molf

h  

              nj,gik,g
1N

1i

1N

1n

vN

1p
jpo'kpo'npxipxjk,u

vN

2











 







 (3.4) 

where, 

     



M

1m
km,

oh
wjm,

oh
wkj,u  

 

The Gauss-Newton update guarantees that Hmolf is non-negative definite. Given the negative 

gradient vector and the Hessian Hmolf, the error E is minimized with respect to the vector z using Newton‟s 

method. For every iteration in the training algorithm, the steps are as follows: 

i. Find the negative Jacobian matrix G described in equation (2.13) 

ii. Solve z using Hmolf·z = gmolf and update the input weights as w(k,n)← w(k,n) + zk·g(k,n) 

iii. Solve linear equations for all output weights. 
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Thus the MOLF procedure has been applied to OWO-BP, and the resulting algorithm is denoted 

as MOLF-BP algorithm. Similarly the MOLF procedure can also be used to improve other training 

algorithms. 

3.2 MOLF-HWO 

The hidden weight optimization (HWO) technique was introduced in section 2.5. In this section we 

are showing that HWO is immune to the presence of linearly dependent inputs during training. We then 

replace the BP component in MOLF with HWO. The resulting improved versions of MOLF is shown to be 

unaffected by linearly dependent inputs and better than using BP. 

3.2.1 Effect of Dependence on HWO 

HWO finds the input weight update by solving for a system of linear equations as given by 

equation (2.21), reproduced below for convenience. 

 
bp

G
i

R
hwo

G   (3.5) 

If one of the inputs to the network is linearly dependent, clearly it would cause the input auto-correlation 

matrix, Ri to be singular. In such a situation, using the conjugate gradient (C-G) algorithm to solve (3.5) 

would lead to poor training, since the convergence of C-G is affected by the presence of linearly 

dependent inputs. However, using OLS or inversion methods could prove useful in detecting and 

eliminating the linearly dependent input, as analyzed in the following subsections. 

Orthogonal Least Squares: 

Using OLS to solve for Ghwo in (3.12) involves computing the orthonormal weight update, G′ hwo, as 

 
T

iC
bp

G
hwo

G'   (3.6) 

where Ci is a lower triangular matrix of orthonormal coefficients of dimension (N+1). The orthonormal 

weight update can be mapped to the original weight update as 

i
C

hwo
G

hwo
G'   

              
i

C
T

i
CgpG   (3.7) 



 
 

14 
 

Assume xp(N+2) was linearly dependent. This would cause the (N+2)
th
 row and column of Ri to be linearly 

dependent. During OLS, a singular auto-correlation matrix transforms to the (N+2)
th
 row of Ci to be zero. 

The expression for Ghwo contains Ci
T
Ci, which will be a square, symmetric matrix with zeros for the 

(N+2)
th
 row and column. This would reflect in Ghwo having zeros for the (N+2)

th
 column. The implication is 

that the weight update vector computed for all input weights connected to the dependent input (N+2) is 

zero. These weights are not updated during training, effectively freezing them. This is highly desirable, as 

the dependent input is not contributing any new information. Thus HWO-type update using OLS is 

perfectly capable of picking up linearly dependent inputs, leading to a very robust training algorithm. 
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CHAPTER 4 

CLASSIFICATION 

Neural network classifiers trained using the mean squared error (MSE) objective function have 

been shown to approximate the optimal Bayesian classifier. Although the expectation value of the 

classifier error rate is considered to be the ideal training criteria, training algorithms that are based on the 

minimization of the expected squared error criteria are often easier to mechanize and better understood. 

MLP, commonly used neural network classifier, is designed through iterative regression - minimizing the 

mean squared error (MSE) between the target class and a network mapping function. 

The MLP approximates the Bayes discriminant, when designed by minimizing the standard 

training error as in equation (2.6), where M is the number of classes, Nv denotes the total number of 

training patterns, E(i) is mean-squared error for the i
th
 class. tp(i) denotes the i

th
 desired output and yp(i) 

denotes the i
th
 observed output. The i

th
 desired output for the p

th
 pattern is defined as 

 





0

1
ipt

 for

for

d
ii

cii





            (4.1)

 

where ic denotes the correct class number for the current training pattern and id denotes any incorrect 

class number for that pattern. The output can be written as in equation (2.4). 

Output activations yp(ic) are used as class discriminants. The classifier is said to have correctly 

classified the p
th
 pattern when yp(ic) is the largest observed output, otherwise we indicate that the network 

has misrecognized the p
th
 pattern by incrementing the classification error count.  In either case, squared 

residuals accumulate in the standard training error as we step through the set of Nv training patterns. 
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4.1 Algorithm for Calculating Percentage Classification Error 

Algorithm for calculating the probability of error and percentage classification error: 

(1) Initially Ner = 0, Pe = 0 and Percentage Classification Error = 0 

(2) For 1 ≤ p ≤ Nv, read the input vector (Xp) and the correct class (ic) 

(3) Find the output vector (yp) using input vector (Xp) and output weight matrix (Wo) 

(4) Find the index i for which yp(i) is maximum, that index i is the estimated class 

(5) If estimated class = correct class then go to step(7) 

(6) Increment Ner 

(7) If the entire data file is read then go to step(8) else go to step(2) 

(8) Pe=Ner/Nv, Percentage Classification error= (100 x Ner)/ Nv 

4.2 Problems with Regression Based Classifiers 

 
Let Nv(i) denote the number of patterns belonging to class i, S(i) denote the set of patterns that 

correspond to class i, fx(xp) denote the probability density of feature vector xp, f(xp|i) the conditional 

density of feature vector xp given that it belongs to class i, and P(i) the probability that the feature vector 

comes from class i.  

The optimal Bayesian or minimum probability of error discriminant dp(i) for feature vector xp is 

given as 

 dp(i) = P(i|xp) (4.2) 

where P(i|xp) is the aposteriori probability given that vector xp belongs to class i. Let the desired output 

tp(i) for correct class ic in this case be defined as 

 tp(i)  δ(i-ic) (4.3) 

Then the expected squared error between network output y(i) and optimal Bayes discriminant is given by 

 



M

1i
]

2
y(i))E[(d(i)

B
E  (4.4) 
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where E[.] is the expectation operator and y(i) is a random variable storing the i
th
 actual network output. 

Note that yp(i) is the actual i
th
 output when the input vector is xp. 

 

Theorem 2: As the training patterns Nv increase, E approaches the (EB + K), where K is a constant.  

Thus E = EB + K, implies that network with estimated output yp, which minimizes the MSE yields the 

optimal Bayes discriminant function in the minimum mean squared error sense. 

Unfortunately; classifiers designed using regression have the following problems: 

1) Theorem 1 does not mention anything about the network structure. 

2) Minimizing EB is not the same as minimizing Pe even though y(i) = d(i) would minimize Pe .For 

example, if the actual outputs are better than the desired outputs as yp(ic) > tp(ic) or yp(id) < tp(id) then the 

MSE(E) increases but the probability of classification error decreases. 

3) The weight matrix Wo obtained by minimizing the MSE is not optimal; the weight matrix for the SVM or 

Bayes classifier is not obtained by minimizing the MSE. 

4.3 The potential for MSE-Based Optimal Classifiers 

Let Wo
opt

 denote an output weight matrix for a classifier that is optimal in some sense, such as 

the minimum probability of error or Bayes classifier, or the SVM. 

Theorem 2: Wo
opt

 is the solution to a least squares problem 

Proof: Given Wo
opt

, the optimal cross-correlation matrix C
opt

 is,  

 C
opt

 = R·( Wo
opt

 )
T 

(4.5) 

The optimal cross-correlation matrix C
opt

 can be expressed as 

  
T





vN

1p
p

opt
tpX

vN

1opt
C  (4.6) 

If C
opt

 and R are known in equation (4.6), we can solve for Wo
opt

. In designing the classifier, we assume 

that the basis vectors Xp are given and unchangeable. The only component that is under user control is 

the desired output vector tp. C
opt

 can be found from the above equations by using good desired outputs 

tp
opt

 since the basis vectors Xp are unchangeable. So in order to get Wo
opt

 we need to use good desired 

outputs tp
opt

. We can get good desired outputs tp
opt

 by changing the desired outputs tp appropriately. 
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Various classifiers with desirable properties can be designed through regression, merely through the 

proper choice of the desired output tp
opt

. 

Assume that C
opt

 is available and that we want to generate the desired output vectors tp.  

 

c(i, )

c(i,2)

 
c(i,L)

   

t(i, )

t(i,2)

 
t(i,Nv)

  

a( , ) a( ,2)  a( ,Nv)

…

a(2, ) a(2,2) … a(2,Nv)

…
a(L, ) a(L,2) … a(L,Nv)

  

 

where c(i,n) is an element of C
opt

. The n
th
 row p

th
 column element of the L by Nv matrix A is Xp(n)/Nv , and 

t(i,p) denotes the i
th
 element of tp. Assuming that L < Nv and that A has rank L, above equation is an 

underdetermined set of equations for the vector tp(i) and has uncountably many exact solutions. Assume 

that C
opt

 is available and that we want to generate the desired output vectors tp. It is easy to generate the 

desired output vectors that produce C
opt

. The catch is that this must be done without pre-knowledge of 

Wo
opt

 or C
opt

. Iterative algorithms designed to find the desired outputs tp
opt

 are called Output Reset (OR) 

algorithms and the iterations are called OR iterations. 

4.4 Output Reset Algorithm 

We have used an improved output reset (OR) algorithm which, through manipulation of local error 

biases, relaxes the MSE objective function which is then applied to training of neural network classifiers. 

Compared to conventionally-designed MLPs, the OR-designed networks have proved superior for 

complicated classification problems. The OR algorithm, combined with enhanced MOLF-HWO training, 

greatly improves classifier performance. Details for the OR algorithm are described in [37]. 
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CHAPTER 5 

PRUNING IN EACH ITERATION 

5.1 Introduction 

The unique one pass pruning method is presented which uses orthogonal least squares. Our aim 

is to get a monotonically non-increasing graph of validation minimum square error versus basis functions. 

Here, OLS is used to eliminate less useful inputs and hidden units and also to detect linear dependent 

basis function. This algorithm first optimally orders the inputs and then hidden units. The Schmidt 

procedure is used to get orthonormal basis functions. 

In section 5.2 we are getting the optimal ordering of basis function, according to their usefulness 

to get the output layer. In 5.3, using that orthonormalized network we are getting monotonically non-

increasing graph of Ev(Nu). We are repeating this procedure for every iteration and at the end of each 

iteration network with the least validation error is saved. Our algorithm is described is section 5.4 for both 

approximation and classification case. The computational burden of algorithm is calculated in section 5.5. 

The MOLF-HWO described in section 3.2 is used as a training algorithm. 

5.2 Ordered pruning 

 
The purpose of pruning is to eliminate less useful inputs and hidden units which have no 

information relevant for estimating outputs or are linearly dependent on inputs or hidden units that have 

already been orthonormalized. In section 4.2, we have only discussed OLS type OWO, optimal order of 

the basis functions has not been taken into account. In this section we modify the Schmidt procedure so 

that during pruning useless basis functions x, are eliminated. 

Let o(m) be the new optimal order of the neural network, so that o(m) specifies the order in which 

raw basis function xk will be processed into orthonormal basis function  ’i. Then x is to be calculated from 

     ,        , … and so on. This function also defines the structure of the new hidden layer where   ≤ m 
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≤ Nu and 1 ≤ o(m) ≤ Nu. If o(m) = k then the m
th
 unit of the new structure comes from the k

th
 unit of the 

original structure. Given the function o(m), the m
th
 orthonormal basis function is described as,[45] 

  



m

1k ko
x

mk
amx'  (5.1) 

Initially,   
  is found as         where, 

 

       2
1

1o,1or

1

1o,
x

1

11
a   (5.2)  

For 2 ≤ m ≤ Nu, we first perform, 

     



i

1q
mo,qor

iq
a

i
c  (5.3) 

For 1 ≤ i ≤ m-1, Second, we set bm=1 and get  

 





1m

ki ik
a
i

c
k

b  (5.4) 

Lastly for 1 ≤ k ≤ m-1, we get coefficient amk as, 

 

    
2

1
1m

1i

2
i

cmo,mor

k
b

mk
a













  (5.5) 

For 1 ≤ k ≤ m,  mi,
0

w'  is found as, 

     



m

1k
koi,c

mk
ami,

0
w'  (5.6) 

The goal of ordered pruning is to find the function o(m) which defines the structure of the basis function. 

Here it is assumed that the original basis functions are linearly independent i.e. the denominator of 

equation (5.5) is not zero. 

Since we want the effects of inputs and the constant „ ‟ to be removed from the orthonormal basis 

functions, the first N+1 basis functions are picked as, 

o(m) = m,   for 1 ≤ m ≤ N   
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5.2.1 Ordering Inputs 

First the selection process will be used to optimally order the inputs N+1. We now define notation 

that helps us specify the set of candidate basis function to choose in a given iteration. First, define S(m) 

as the set of indices of chosen basis functions where m is the number of inputs. Then S(m) is given by  

 
 

      




m,...o2o,1o

φ
mS  

for

for

1Nm0

0m




 

(5.7) 
Let‟s take o( )    , putting the threshold as a first input. the set of candidate basis functions is clearly 

S
c
{m}   { ,2,…,N  }-S(1), which is {1,2,…,N  }. For 2 < m ≤ N  , we obtain S

c
(m-1). For each trial value 

of o(m) € S
c
 {m-1} perform operations (5.3), (5.4), (5.5), and (5.6). Then P(m)  is 

 

     



M

1i

2
mi,ow'mP  (5.8) 

The trial value of o(m) that maximizes P(m) is found. Assuming that P(m) is maximum when testing the  

k
th
 element, then o(m) = k. S(m) is updated as 

 

       mo1mSmS   (5.9) 

 
Then for the general case the candidate basis functions are S

c 
(m- )   { ,2,…,N  }-{o( ),o(2),…,o(m-1)},  

with N-m candidate basis function. By using equation (4.25) after testing all the candidate basis function, 

o(m) takes its value and S(m) is updated according to equation (4.26). The process is repeated until m = 

N+1.  

5.2.2 Ordering Hidden Units 

Same process as for inputs will be repeated for hidden units. Now S(m) is, 

 
 

      




m,...j2j,1j

φ
mS   

for

for

uNm0

0m




 

(5.10) 
Starting with an initial network which has zeros hidden unit, m = N+1, the set of candidate basis functions 

will be S
c
{m}   { ,2,…,Nu}-S(m), which is {N 2,N 3,…,Nu}. For N 2 ≤ m ≤ Nu, we obtain S

c
(m-1). For 

each trial value of o(m) € S
c
 {m-1} perform operations (5.3), (5.4), (5.5), and (5.6). Then P(m) is found as 
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in (5.8). The trial value of o(m) that maximizes P(m) is found. Then o(m) will get its value and S(m) is 

updated as in (5.9). 

 

Then for the general case the candidate basis functions are S
c 

(m- )   { ,2,…,Nu}-

{o( ),o(2),…,o(m-1)},  with Nu-m+1 candidate basis function. After testing all the candidate basis function, 

o(m) takes its value and S(m) is updated according to equation (5.9).  Defining Nhd as the desired number 

of units in the hidden layer, the process is repeated until m = N+1+Nhd.  

After the o(m) function is complete, both the original basis functions and the orthonormal ones are 

ordered. Then the orthonormal weights are mapped to normal weights. Considering the final value of 

o(m), row reordering of the original input weights matrix is performed for generating the right op(j), values. 

After reordering the rows, as only the Nhd units are kept, the remaining units (op(j), with Nhd < j ≤ Nh) are 

pruned by deleting the last Nh - Nhd rows. 

5.2.3 Linear Dependency Condition 

Assume that a raw basis function, xj(m) is linearly dependent on previously chosen basis functions, 

where j(m) denotes an input (  ≤ m ≤ N) and j(m) has taken on a trial value. Then 

 
 







1m

1k k
x'

k
d'

mj
x  (5.11) 

Now the denominator of amk in (5.5) can be rewritten as 

 2
1

mz,mzg   (5.12) 

where,  

 
   







1m

1i i
x'

mj
x',

i
x'

mj
xmz  (5.13) 

Substituting (5.11) into (5.13), however, we get 

 
  1d
mj

x,
i

x'   (5.14) 

and zm and g are both zero. 

If o(m) denotes an input, and g satisfies 

εg   
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for   = 10
-27

, then we perform 

  kkj   

for   ≤ k < m, and 

  1kkj   

for m ≤ k ≤ N. 

 In effect we decrease N by one and let the j(k) function skip over the linearly dependent input. If j(m) 

denotes a hidden unit, the same procedure is used to determine whether or not xj(m), is useful. If xj(m) is 

found to be linearly dependent, the current, bad value of j(m) is discarded before amk is calculated.  

5.3 One pass validation 

In section 5.2, we have got optimal ordered neural network. Now the idea is to combine it with the 

early stopping. For that we will need validation error versus basis functions Ev(Nu) curve.  

Given the matrix A and the MLP network with ordered basis functions, we wish to generate the 

validation error versus Nu curve Ev(Nu) from the validation data. The vector xk is converted into 

orthonormal basis function by transformation, 

 



m

1k k
x

mk
a

'
mx    for 11  mk  (5.15) 

 
In order to get the validation error for all size networks in a single pass through the data, we use the 

following strategy. Let yp(i,m) represent the i
th
 output of the network having m hidden units for the p

th
 

pattern, let Ev(m) represent the mean square error of the network for validation with m hidden units. First, 

the linear network output is obtained and the corresponding error is calculated as follows [46]: 

 

     





1N

1k
kpx'ki,w'i,0py  for Mi 1  

       



M

1i

2
i,0py(i)pt0vE0vE  (5.16) 

 
Then for 1 ≤ m ≤ Nh, the following two steps are performed. For 1 ≤ i ≤ M, 
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        m1Npx'm1Ni,w'1mi,pymi,py   (5.17) 

       



M

1i

2
mi,py(i)ptmvEmvE  (5.18) 

Apply equations (5.16)-(5.18) for 1 ≤ p ≤ Nv and get the total validation error over all the patterns for each 

size network. Then these error values should be normalized as  

 
 

vN

mvE
mvE    for hNm 0  

(5.19) 
Thus we generate the validation error versus the network size curve in one pass through the validation 

data set. 

5.4 Combining Pruning with Training at each iteration 

5.4.1 Approximation case 

In section 5.2, we got network with optimal order of basis functions and in section 5.3 we generated 

Ev(Nu) curve for validation data in one data pass. Now, we want to optimize validation error not only over 

Nu, but also over Nit . Hence, we are optimizing Ev over Nv and Nit simultaneously. 

At each iteration, we will first train the network using MOLF-HWO algorithm, then we will use OLS 

type OWO to optimally order basis functions. Using that we will do one pass validation and get the 

desired Ev(Nu) curve. The detailed steps for the approximation are given below. 

Firstly, take Gaussian random variables as initial input weights and perform net control to get desired 

net function (np) mean is equal to 0.5 and desired variance is equal to 1. Use OWO-OLS to get initial 

output weights. And then for each iteration we are doing following steps, 

1) Calculate Ri and Gbp using equation (2.22), using those solve equation (2.21) using OLS method 

to get Ghwo . 

2) Calculate Gmolf and Hmolf using equations (3.4) and (3.6) respectively. Then calculate multiple 

learning factor z using OLS method. 

3) Update the input weights using, w(k,n) = w(k,n) + z(k)·ghwo(k,n)  
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4) Using changed input weights calculate auto-correlation and cross-correlation matrix using 

equation (2.9). 

5) Generate an optimally ordered orthonormal network using discussed OWO-OLS algorithm.  

6) Using validation data get the Ev(Nu) curve using the one pass validation technique. 

7) Store the original network weights for each network size, if the validation error for that network 

size is decreased than that for the previous iteration. There will be total Nh+1 networks, one 

network with N+1 inputs.  

8) Get the original network from the orthonormal one and calculate outputs of the network. 

9) If the maximum number of iterations is not reached, then go to step (1). 

5.4.2 Classification case 

 In this section, we will discuss the algorithm for the classification case. Our goal is the same as 

for the approximation case to optimize the validation error over number of iterations and network size 

simultaneously. We have used improved OR algorithm discussed in section 4.4, to get the best results.  

 Firstly, generate desired output for each pattern using equation (4.1). Then take the Gaussian 

random variable as initial input weights, and do net control. Generate initial output weights using OWO-

OLS algorithm. Here, the classification validation error is being calculated as described in section 4.1. 

Follow the below procedure for each iteration. 

1) Calculate the optimal desired output tp
opt

, using improved OR algorithm as described in section 

4.2 

2) Calculate Ri and Gbp using equation (2.22), using those solve equation (2.21) using OLS method 

to get Ghwo . During calculation of output deltas consider the optimal desired output. 

3) Follow step (2) and (3) as described for approximation case. 

4) Using the changed input weights calculate the outputs of the network. 

5) Calculate the optimal desired output using improved OR algorithm.   

6) Using changed input weights and changed desired outputs calculate auto-correlation and cross-

correlation matrix using equation (2.9). 

7) Follow step (5), (6), (7), (8) and (9) as described for approximation case. 
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After repeating the above procedure (in both the approximation and the classification case) for Nit 

iterations and capturing the best size of the network, we can generate a unique number of basis functions 

versus number of iteration Nu(Nit) curve. From looking at the curve one can easily decide the best size of 

the network and it can be very useful to compromise between performance and network complexity.  

5.5 Computational cost 

 In this section the computational burden on the algorithm is calculated. The number of multiplies 

required to solve output weights using OLS is, 

 

Mols Nu[M Nu 2  
3

4
Nu(Nu  )  

          (5.20) 

The gradient Gbp and auto-correlation for inputs Ri, are calculated using equation (2.22). To calculate 

HWO gradient Ghwo as in equation (2.21) using OLS the number of multiplies required is, 

Mhwo Nv Nh M N 3   Mols hwo 
 (5.21) 

where,  

Mols hwo  N   [ N 2 (N
h
 

N

3
) (N  )  

(5.22) 
The multiplies required to calculate multiple optimal learning factors z using OLS is, 

Mmolf NvNh  N 2  M Nh 3   Mols molf 
(5.23) 

where, 

Mols molf  Nh   [
Nh Nh 2 

3
 (Nh  )  

(5.24) 
 

To optimally order the basis functions using the method described is section 5.2 multiplications required 

is, 

Mols order 
Nu  

6
  2M Nh

2 7Nu 6M 6  3MNu  
Nh(N  )

6
  N 2  2N 3M 6  6M  M2

N 

(5.25) 
 

The number of multiplies required for one pass validation error calculation is, 

Mval Nvv[Nh N 2  
Nu

2
 Nu 4M     

(5.26) 
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where, Nvv is number of patterns in validation data set. So, for MOLF-HWO required multiplication is given 

as, 

Mmolf-hwo = Mmolf + Mhwo 

(5.27) 
 

Using all the above equations, we will now compare the number of multiplies required for three different 

methods: Optimization alone, Pruning alone and our method (described in above section). 

The total number of multiplies required for optimization alone is, 

Mopti alone Mmolf hwo Mols Nv[2Nh N 2  2M Nu    Nu(M Nu)  

(5.28) 
The validation error versus Nh curve is not obtained and basic OLS is used not optimally ordered OLS.   

Total number of multiplies required for pruning alone is, 

Mpruning alone Nit(Mmolf hwo Mols Nv Nh N 2  Nu 2M Nu  ) Mols order Mval 

(5.29) 
 

Here, pruning is only done for one time after the MOLF-HWO algorithm, so Mols-order and Mval is required 

only one time. Nit is number of iterations used. 

The total number of multiplies required for algorithm described is section 5.5.1 for approximation 

case is, 

Mour app Mmolf hwo Nv Nh N 2  Nu 2M Nu   Mols order Mval 

(5.30) 

Now, for classification case, as we are using percentage classification error, the multiplies required for 

one pass validation is, 

Mval class Nvv[N
h
 N 2  

Nu

2
(Nu 2M  )  

(5.29) 
As described in section 5.5.2, we are updating the optimal output using the improved OR algorithm that 

does not require any multiplication. Since we are calculating output and output energy again before 

optimal ordering using OLS, there will be NvM(Nu+1) extra multiplications. So, the total multiplication 

required for classification case is, 

Mour class Mmolf hwo Nv Nh N 2  Nu 2M Nu  M(Nu  )  Mols order Mval class 
(5.30) 
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All the equations given in this section contains the multiplications required for each iteration except 

equation (5.29). The number of multiplies required for the different data sets for the three methods 

discussed are compared. It shows that the difference between the number of multiplies required for our 

method and other methods is nominal. 

Table 1 Multiplies comparison for approximation data sets 

Data set Nh and Nit Optimization alone Pruning alone Our method 

twod.tra 

Nv=1179, 

Nvv=589 

30,70 889997418 844420410 1038341838 

20,25 167127204 155940191 181807292 

mattrn 

Nv=1333, 

Nvv=667 

8,15 18382848 16402750 18875505 

20,10 44885773 42630526 49537582 

single2 

Nv=6667, 

Nvv=3333 

30,15 790464561 730732164 855030201 

40,10 799807719 755503467 893477904 

oh7 

Nv=10000, 

Nvv=5000 

50,30 5416831071 5120699091 6120338781 

20,15 773617115 715074610 824905932 

 

Table 2 Multiplies comparison for classification data sets 

Data set Nh and Nit Optimization alone Pruning alone Our method 

gongtrn 

Nv=2000, 

Nvv=1000 

10,15 102699853 97913213 110353168 

30,50 1561123122 1511006622 1745170422 

speech_class 

Nv=1456, 

Nvv=728 

10,15 272950893 265673947 296793768 

30,50 3616546838 3534898032 4021433088 



29 
 

CHAPTER 6 

RESULTS 

In this chapter, results for the algorithms shown in chapter 5 are presented. The algorithms are 

implemented in Matlab and Microsoft Visual C. We have compared our algorithm with pruning alone and 

optimizing alone. In pruning alone we are doing pruning only one time after the network is trained 

completely using MOLF algorithm.  And 10-fold validation is used to generate the results. 

We will have the validation error of the network with all different sizes at each iteration. So, we could 

plot 3-D of validation error versus network size and number of iteration. The local minima of this plot will 

be the network with the least validation error and that will be the best network.   

We are also saving the best network for each size. So, if one wants the network with the 

particular size, he will know how much training is needed. So that it does not get over-trained. This saves 

a lot of computational cost. 

6.1 Approximation Results 

6.1.1 twod data set 

The validation error versus the number of iterations is plotted for optimizing Ev over Nit alone 

using MOLF-HWO algorithm and for our method as described in previous chapter. So, the first method 

considers all the hidden units for each iteration. Since our method does pruning at each iteration it 

considers the best network at each iteration. Number of hidden units used, Nh = 30. 

In figure 3, a 3-D contour of validation error versus hidden units and iterations is shown. The 

minimum of that curve is the best network for given number of hidden units and iterations. 

In figure 4, the validation error versus number of hidden units is plotted for pruning alone and for 

our method. For pruning order OWO-OLS is used. As we are doing pruning at each iteration our method 

has a better result. 



 
 

30 
 

 
Figure 2 Ev vs Nit for twod.tra, Nh=30, Nit=120 

 
Figure 3 Ev vs Nit and Nh for twod.tra, Nh=30, Nit=120 
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Figure 4 Ev vs Nh, for twod.tra, Nit=10,Nh=70 

 

6.1.2 mattrn data set 

 Here, the validation error decreases very fast for even a small number of hidden units and 

iterations. For comparison with optimization alone over Nit, Nh=70 and Nit=20 is taken. In figure 7, our 

method is compared with pruning alone, Nh=30 and Nit=15 is taken.  
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Figure 5 Ev vs Nit, for mattrn, Nit=20, Nh=70 

 
Figure 6 Ev vs Nit and Nh, for mattrn, Nit=20, Nh=10 
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Figure 7 Ev vs Nh, for mattrn, Nit=15, Nh=30 

 

6.1.3 single2 data set 

Figure 8 clearly shows that at each iteration, pruning has huge effect on validation error, here 

Nit=18 and Nh=15. While comparing, our method with pruning alone, network with less hidden units has 

no effect. But as the hidden unit increases the validation error decreases faster and we are getting best 

result at Nh=26 then error increases again, Nh=30 and Nit=15 is used. 
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Figure 8 Ev vs Nit, for single2, Nh=15, Nit=18 

 
Figure 9 Ev vs Nit, for single2, Nh=15, Nit=18 
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Figure 10 Ev vs Nh, for single2, Nh=35, Nit=15 

6.1.4 oh7 Data set 

For a low number of iterations, pruning has not affected the error very much, but after the 4
th
 

iteration pruning affects greatly improves the error, here Nit=10 and Nh=25. A 3-D contour of validation 

error versus hidden units and iterations is shown. In figure 12, the validation error versus number of 

hidden units is plotted for both methods. Nh=3 and Nit=18 is taken. 
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Figure 11 Ev vs Nit, for oh7, Nh=25, Nit=10 

 

Figure 12 Ev vs Nh, for oh7, Nh=38, Nit=18 
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Figure 13 Ev vs Nit and Nh, for oh7, Nh=38, Nit=18 

 

6.2 Classification results 

6.2.1 gongtrn data set 

The validation error here is a percentage classification error calculated as discussed in 4.1. For 

the gongtrn data, both methods are tested for validation error versus iterations. It is clear from figure 14 

that our method gives much better classification result than optimization alone. Figure 16 shows that 

despite in our method starting error is more, but it decreases very fast until the 23
th
 hidden units and then 

it increases and never decreases again, here, Nh=30 and Nit=15. A 3-D contour of validation error versus 

hidden units and iterations is shown, here, Nh=15 and Nit=50.  
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Figure 14 Ev vs Nit, for gongtrn, Nit=50, Nh=15 

 

Figure 15 Ev vs Nh and Nit, for gongtrn, Nh=15, Nit=50 
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Figure 16 Ev vs Nh, for gongtrn, Nh=30, Nit=15 

6.2.2 speech_map data set 

Data set speech_map has 34 inputs and 39 different classes, so it is very hard to train this file. 

Figure 17 shows that by doing pruning at each iteration we are optimizing the validation error very well, 

here Nit=25 and Nh=40. Figure 18 shows the 3-D contour. Comparing it with pruning alone shows that, the 

best network size is 36, as after that classification error increases again, here Nh=40 and Nit=20.  
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Figure 17 Ev vs Nit, for speech_map, Nit=25, Nh=40 

 

Figure 18 Ev vs Nh and Nit, for speech_map, Nit=25, Nh=40 
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Figure 19 Ev vs Nh, for speech_map, Nit=20, Nh=40 
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CHAPTER 7 

CONCLUSION 

 Based on the validation error curves obtain in results from the prescribed different approaches we 

can make following observations.  

 Optimization over training iterations definitely reduces the training time, but is prone to give a 

large network size. Because the same large network size is used in every iteration.  

 In the pruning alone method, after completion of training since we modify the network size, we get 

a small network as compared to optimization alone method. But, the number of iteration needed 

for training is much larger because training progresses on the same large network.  

 The novel approach shown in this thesis relieves the drawbacks of the above two methods and 

therefore attains a much better result in terms of network size, training time and validation error. 
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APPENDIX A 
 

 

DESCRIPTION OF DATA SETS USED FOR 

APPROXIMATION AND CLASSIFICATION 
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Twod - Inversion of surface scattering parameters 

This training file is used in the task of inverting the surface scattering parameters from an inhomogeneous 

layer above a homogeneous half space, where both interfaces are randomly rough. The parameters to be 

inverted are the effective permittivity of the surface, the normalized rms height, the normalized surface 

correlation length, the optical depth, and single scattering albedo of an inhomogeneous irregular layer 

above a homogeneous half space from back scattering measurements.  

The training data file contains 1,768 patterns. The inputs consist of eight theoretical values of back 

scattering coefficient parameters at V and H polarization and four incident angles. The outputs were the 

corresponding values of permittivity, upper surface height, lower surface height, normalized upper surface 

correlation length, normalized lower surface correlation length, optical depth and single scattering albedo 

which had a joint uniform PDF [58, 59]. 

 

Single2 – Inversion of back scattering parameters 

This training data file consists of 16 inputs, 3 outputs and 10,000 training patterns, and represents the 

training set for inversion of surface permittivity, the normalized surface rms roughness, and the surface 

correlation length found in back scattering models from randomly rough dielectric surfaces. The first 16 

inputs represent the simulated back scattering coefficient measured at 10, 30, 50 and 70 degrees at both 

vertical and horizontal polarization. The remaining 8 are various combinations of ratios of the original 

eight values. These ratios correspond to those used in several empirical retrieval algorithms [60, 61]. 

 

Oh7 - Radar Scattering from Bare Soil Surfaces 

This data set is given in [62]. The training set contains VV and HH polarization at L 30, 40 deg, C 10, 30, 

40, 50, 60 deg, and X 30, 40, 50 deg along with the corresponding unknowns rms surface height, surface 

correlation length, and volumetric soil moisture content in g / cubic cm. The file has 20 inputs, 3 outputs 

and 15,000 training patterns. 
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Mattrn – Matrix inversion data 

This training file provides the data set for inversion of random two-by-two matrices. Each pattern consists 

of 4 input features and 4 output features. The input features, which are uniformly distributed between 0 

and 1, represent a matrix and the four output features are elements of the corresponding inverse matrix. 

The determinants of the input matrices are constrained to be between .3 and 2. the file has 2,000 training 

patterns. 

 

Gongtrn data set 

The raw data consists of images from hand printed numerals collected from 3,000 people by the Internal 

Revenue Service. We randomly chose 300 characters from each class to generate 3,000 character 

training data. Images are 32 by 24 binary matrices. An image scaling algorithm is used to remove size 

variation in characters. The feature set contains 16 elements. The 10 classes correspond to 10 Arabic 

numerals.[63] 

Speech class data set 

The speech samples are first preemphasized and it is converted into frequency domain by taking DFT. 

Then it is passed through Mel filter banks and the inverse DFT is applied on the output to get Mel-

Frequency Cepstrum Coefficients (MFCC). Each of MFCC(n), MFCC(n)-MFCC(n-1) and MFCC(n)-

MFCC(n-2) would have 13 features, which results in a total of 39 features. Each class corresponds to a 

phoneme. 
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