

OPTIMIZING A NEURAL NETWORK OVER SIZE

AND ITERATION NUMBER

by

JIGNESH K PATEL

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2012

Copyright © by Jignesh Patel 2012

All Rights Reserved

iii

ACKNOWLEDGEMENTS

 I am heartily thankful to my advisor, Dr. Michael T. Manry, for supervising me on this thesis and

guiding me in each step of work.

 I wish to thank Dr. Victoria Chen and Dr. Alan Davis for taking time to serve on my thesis

committee.

 I wish to thank my parents, my sister, my brother-in-law and all my friends for their support.

May 01, 2012

iv

ABSTRACT

OPTIMIZING A NEURAL NETWORK OVER SIZE

AND ITERATION NUMBER

Jignesh K. Patel, M.S.

The University of Texas at Arlington, 2012

Supervising Professor: Michael T. Manry

A unique algorithm has been developed for training multilayer perceptron neural networks. First

the training algorithm has been used with hidden weight optimization (HWO) and multiple optimal learning

factors (MOLF) to get the best performance. In each training iteration, this method first optimally orders

the inputs and then optimally orders the hidden basis functions. At the end of each training iteration, the

method calculates the validation error versus number of basis function curve in one pass through the

validation data. Since, pruning is done at each iteration, we optimize validation error over number of basis

functions and number of iterations simultaneously. The number of required multiplies for the algorithm

has been analyzed. The method has been compared to others in simulations and been found to work

very well.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iii

ABSTRACT .. iv

LIST OF FIGURES .. viii

LIST OF TABLES ... ix

Chapter Page

1. INTRODUCTION... 1

1.1 Applications of Neural Networks ... 1

1.2 Neural Network Properties .. 1

1.3 Current Research .. 2

1.4 Thesis Goals ... 4

2. MLP NOTATION AND TRAINING .. 5

2.1 Multilayer Perceptron .. 5

2.2 Output Weight Optimization .. 7

2.3 Back Propagation Algorithm ... 7

2.4 Output Weight Optimization-Backpropagation .. 8

2.5 Hidden Weight Optimization ... 9

vi

3. MULTIPLE OPTIMAL LEARNING FACTOR TRAINING .. 11

3.1 Basic MOLF Algorithm .. 11

3.2 MOLF-HWO .. 13

3.2.1 Effect of Dependence on HWO .. 13

4. CLASSIFICATION... 15

4.1 Algorithm for Calculating Percentage Classification Error .. 16

4.2 Problems with Regression Based Classifiers ... 16

4.3 The potential for MSE-Based Optimal Classifiers ... 17

4.4 Output Reset Algorithm ... 18

5. PRUNING IN EACH ITERATION .. 19

5.1 Introduction ... 19

5.2 Ordered pruning .. 19

5.2.1 Ordering Inputs .. 21

5.2.2 Ordering Hidden Units .. 21

5.2.3 Linear Dependency Condition .. 22

5.3 One pass validation ... 23

5.4 Combining Pruning with Training at each iteration ... 24

5.4.1 Approximation case .. 24

5.4.2 Classification case ... 25

5.5 Computational cost ... 26

vii

6. RESULTS .. 29

6.1 Approximation Results .. 29

6.1.1 twod data set .. 29

6.1.2 mattrn data set ... 31

6.1.3 single2 data set .. 33

6.1.4 oh7 Data set ... 35

6.2 Classification results ... 37

6.2.1 gongtrn data set ... 37

6.2.2 speech_map data set ... 39

7. CONCLUSION .. 42

REFERENCES .. 46

BIOGRAPHICAL INFORMATION ... 52

viii

LIST OF FIGURES

Figure Page

1. Fully connected Multilayer perceptron .. 5

2. Ev vs Nit for twod.tra, Nh=30, Nit=120 .. 30

3. Ev vs Nit and Nh for twod.tra, Nh=30, Nit=120 .. 30

4. Ev vs Nh, for twod.tra, Nit=10,Nh=70 .. 31

5. Ev vs Nit, for mattrn, Nit=20, Nh=70 .. 32

6. Ev vs Nit and Nh, for mattrn, Nit=20, Nh=10 .. 32

7. Ev vs Nh, for mattrn, Nit=15, Nh=30 .. 33

8. Ev vs Nit, for single2, Nh=15, Nit=18 ... 34

9. Ev vs Nit, for single2, Nh=15, Nit=18 ... 34

10. Ev vs Nh, for single2, Nh=35, Nit=15 .. 35

11. Ev vs Nit, for oh7, Nh=25, Nit=10 .. 36

12. Ev vs Nh, for oh7, Nh=38, Nit=18 .. 36

13. Ev vs Nit and Nh, for oh7, Nh=38, Nit=18 .. 37

14. Ev vs Nit, for gongtrn, Nit=50, Nh=15 .. 38

15. Ev vs Nh and Nit, for gongtrn, Nh=15, Nit=50 .. 38

16. Ev vs Nh, for gongtrn, Nh=30, Nit=15 .. 39

17. Ev vs Nit, for speech_map, Nit=25, Nh=40 ... 40

18. Ev vs Nh and Nit, for speech_map, Nit=25, Nh=40 ... 40

19. Ev vs Nh, for speech_map, Nit=20, Nh=40 ... 41

ix

LIST OF TABLES

Table Page

1. Multiplies comparison for approximation data sets ... 28

2. Multiplies comparison for classification data sets ... 28

1

CHAPTER 1

INTRODUCTION

1.1 Applications of Neural Networks

Neural networks consist of highly interconnected processing elements working to solve specific

problems. A neural network processing element (a neuron) consists of a number of inputs that are

multiplied by gains, a threshold that is added to it, and an activation function that performs a nonlinear

transformation on the result [56]. Neural networks have an ability to learn [54, 55]. Given an arbitrary data

set, a neural network can approximate a mapping from the inputs to the outputs [1]. It has been proved

that a multilayer perceptron with sufficiently many nonlinear units (neurons) in a single hidden layer can

work as a universal function approximator [34]. Other favorable features include the MLP‟s ability to mimic

Bayes discriminant [35] and MAP estimates [36].

Neural networks have emerged as powerful statistical tools capable of learning and

generalization. They have been used in the in the areas of parameter estimation [2] [3], document

analysis and recognition [4], finance and manufacturing [5] and data mining [6]. Specific applications of

neural networks include target recognition [7, 8], power load forecasting [9, 10], ZIP code recognition [11,

12], prognostics [13], face recognition [14], image retrieval [15] and speaker recognition [16] among

others.

1.2 Neural Network Properties

While initially developed to mimic brain functions, neural networks can be thought of as another

way of developing approximations. A function of many variables needs to be approximated given only

values of the function (often perturbed by noise) at various points in the input space. Typically, a feed-

forward network with a single hidden layer, with enough hidden units to approximate the continuous

2

function is selected. The optimum size and topology of the network has been studied in the literature [17,

49, 50, 57]. Neural networks are being increasingly preferred over polynomial approximations. Unlike

polynomial approximations, neural networks can be trained for ill-posed patterns, but the mappings they

yield for such cases may not be globally accurate [18].

A classifier groups items with similar feature vectors into labeled groups. A nearest neighbor [48]

classifier can be designed by using clustering algorithms, and assigning classes to clusters or groups of

clusters. When neural network classifiers are designed, there is usually one output per class, and each

output functions as the discriminant for the corresponding class.

1.3 Current Research

A major problem in applying neural networks is specifying the size of the network [51] and a lot of

research has been done to determine the best network size. The network designer‟s dilemma occurs

because both large and small networks exhibit a number of advantages. Even for moderately sized

networks the number of parameters may become large compared to the number of patterns [21]. When a

network has too many free parameters (i.e., weights and/or units) not only is learning fast [22]–[25], but

local minima are more easily avoided [26]. In particular, a theoretical study [27] has shown that when the

number of hidden units equals the number of training examples (minus one), the back propagation error

surface is guaranteed to have no local minima only for output weights.

Both theory [28] and experience [29]–[31] show that networks with few free parameters exhibit a

better generalization performance, and this is explained by recalling the analogy between neural network

learning and curve fitting. Moreover, knowledge embedded in small trained networks is presumably easier

to interpret and thus the extraction of simple rules can hopefully be facilitated [32]. Lastly, from an

implementation standpoint, small networks only require limited resources in any physical computational

environment.

3

When optimizing the structural complexity of feed-forward neural networks, different size

networks are designed which minimize the mean-square training error. Typically, the machine with the

smallest validation error is saved. When different size networks are independently initialized and trained,

however, the training error versus network size curve is not monotonic. Similarly, the resulting validation

error versus size curve is not smooth, making it difficult to find a proper minimum. [33] So, monotonic

training curves and smooth validation curves are desirable.

For validation error minimization two approaches can be used. In pruning[50] we start with a large

multilayer perceptron with an adequate performance for the problem at hand and then prune it by

eliminating certain weights or nodes in a selective and ordered fashion. This approach combines the

advantages of training large networks (i.e., accuracy and avoidance of local minima) and those of using

small ones (i.e., improved generalization). However it requires advance knowledge of what size is “large”

for the problem at hand, but this is not a serious concern as upper bounds on the number of hidden units

have been established[49]. By pruning, validation error as a function of network size (number of basis

functions) is obtained, which can be non-monotonic. The network with the smallest validation error will be

chosen.

In the second approach, the neural network is trained for several iterations and for each iteration

validation error is obtained. So, finally we will get a validation error versus number of iterations curve. This

curve can also be non-monotonic. A neural network can be trained for the iteration which has minimum

validation error.

These approaches only optimize the network over either number of iterations or number of hidden

units. In general it is not known how many iterations and hidden units result in the minimum validation

error.

4

1.4 Thesis Goals

In this thesis, an algorithm is developed which optimizes a neural network over size and iteration

number simultaneously. In chapter 2, batch training algorithms are reviewed. The multiple optimal

learning factor (MOLF) is discussed in chapter 3. Classification is discussed in chapter 4. In chapter 5,

first we discuss algorithm to get optimally ordered orthonormalized neural network. The method is

discussed to get validation error versus basis functions curve in one pass through validation data using

the trained orthonormalized network. So, here we have first pruned the network and then early stopping is

applied on validation data set, thus we will get best network size for each iteration. Results for both

approximation and classification case are shown in chapter 6.

5

CHAPTER 2

MLP NOTATION AND TRAINING

2.1 Multilayer Perceptron

The multilayer perceptron (MLP) forms a very important class of neural networks. A typical MLP

structure consists of a set of input units that constitute the input layer, one or more layers of neurons

forming the hidden layers and an output layer for producing the actual output. All the layers are connected

by weights and the signal travels from the input through the hidden layers, to the output layer. Such a

network is shown below.

Figure 1 Fully connected Multilayer perceptron

As shown in Figure 1, input weights w(k,n) connect the n
th
 input xp(n) to the k

th
 hidden unit. Output

weights woh(m,k) connect the k
th
 hidden unit‟s activation op(k) to the m

th
 output yp(m), which has a linear

activation. The bypass weight woi(m,n) connects the n
th
 input to the m

th
 output. The training data,

described by the set (xp,tp) consists of N-dimensional input vectors xp and M-dimensional desired output

6

vectors, tp. The pattern number p varies from 1 to Nv where Nv denotes the number of training vectors

present in the data set.

In order to handle thresholds in the hidden and output layers, the input vectors are augmented by

an extra element xp(N+1) where, xp(N+1) = 1 , so xp = [xp(1), xp(2),…., xp(N+1)]
T
 . Let Nh denote the

number of hidden units. The dimensions of the weight matrices W, Woh and Woi are respectively Nh by

(N+1), M by Nh and M by (N+1) .The k
th
 element of net vector np can be written as,

     





1N

1n
npxnk,wkpn

(2.1)

In matrix notation it can be summarized as,

pxWpn 

(2.2)

where the k
th
 element of the hidden unit activation vector op is calculated as op(k) = f(np(k)) and f(.)

denotes the hidden layer activation function. For the sigmoid activation case, the output of the k
th
 hidden

unit is given by

f np k

 e np(k)

(2.3)

The actual output of the network, yp can be written as,

         








h
N

1k
kpokm,

oh
w

1N

1n
npxnm,

oi
wmpy

(2.4)

In matrix notation it can be summarized as,

po
oh

Wpx
oi

Wpy 

(2.5)
The MLP computes its outputs as a weighted sum of the inputs and the hidden unit outputs. The weights

form the unknowns, which are typically found by minimizing the mean squared error between the actual

and desired outputs,

7

     






vN

1p

M

1m

2
mpympt

N

1
E (2.6)

2.2 Output Weight Optimization

Output weight optimization (OWO) is a technique to solve for weights connected to the actual

outputs of the network (this would be the output weights, Woh and by-pass weights, Woi). Since the

outputs have linear activation, finding the weights connected to the outputs is equivalent to solving a

system of linear equations. The expression for the actual outputs given in (2.6) can be re-written as

 pXoWpy  (2.7)

where Xp=[xp, op] is the augmented input vector of size Nu = N + Nh + 1, Wo is formed as [Woi : Woh] and

has a size of M by Nu. The output weights can be solved by setting ∂E ⁄ ∂Wo=0 which leads to a set of

linear equations given by,

T
oWRC  (2.8)

where,

 



vN

1p

T
ptpX

vN

1
C (2.9)





vN

1p

T
pXpX

vN

1
R

Popular candidates for solving equation (2.8) are conjugate gradient[38] and the orthogonal least squares

methods[39].

2.3 Back Propagation Algorithm

The popular backpropagation (BP) algorithm[52] is a first order method that uses gradient

information to update the weights in the network. In full batch mode, the (BP) algorithm updates the input

weights and thresholds, W, as

    
 















nk,w

E
znk,wnk,w (2.10)

8

for 1 ≤ k ≤ Nh and 1 ≤ n ≤ (N + 1). Here z is the learning factor. For the p
th
 pattern, we use BP to get the

partial derivative of Ep (error for the p
th
 pattern) as

   

 

 nk,w

kpn
.

kpn

pE

nk,w

pE













 (2.11)

For the p
th
 pattern, output layer delta and hidden layer delta are,

       



M

1m
km,

oh
wmpoδkpo'kpδ

       mpympt2mpoδ  (2.12)

Now, the negative gradient of E is

      








vN

1p
npxkpδ

vN

1
nk,g

n)w(k,

E
 (2.13)

Nv

 δ

Nv

p

where       Thpppp N ,...,2,1δ . If steepest descent is used to modify the hidden weights, W is

updated in a given iteration as

 GzWW  (2.14)

 GzΔW  (2.15)

First order methods are generally easier to implement and also require the least computation per training

iteration. They are also guaranteed to converge to a global or local minimum. However, these benefits are

largely outweighed by the method‟s rate of slow convergence [40].

2.4 Output Weight Optimization-Backpropagation

One option to train an MLP would be to divide the weight adaptation into two separate stages: (i)

train all weights, Woh, Woi connected to the actual network outputs[53] and (ii) train all the input

weights,W. During either stage, the other weights are not updated. This approach combines the two

previously described approaches and is called output weight optimization-backpropagation (OWO-BP).

9

This method is attractive for several reasons. First, the training is faster, since training weights connected

to the outputs is equivalent to solving for linear equations. Second, it helps us avoid some local minima.

Third, the method exhibits improved training performance.

A brief description of OWO-BP is given below. For every training iteration,

1) Find the negative Jacobian matrix G described in equation (2.13)

2) Find the optimal learning factor
2 2

/

/

E z
z

E z

 

 

 and update the input weights, W, using equation

(2.14)

3) Solve the system of linear equations described in section 2.2, using OLS and update the output

weights, Wo.

2.5 Hidden Weight Optimization

In HWO, the hidden weights are updated by minimizing separate error functions for each hidden

unit. The error functions measure the difference between the desired and the actual net function. For the

k
th
 hidden unit and p

th
 pattern, the desired net function is constructed as[42]

 (k)pδz(k)pn(k)
pd

n  (2.16)

where npd(k) is the desired net function and np(k) is the actual one in (2.1). z is the learning factor and

)(mpo and)(kp are given in equation (2.12).

The hidden weights are to be updated as

      nk,
hwo

gznk,
hi

wnk,
hi

w  (2.17)

where ghwo(k, n) is the weight change. The weight changes are derived using

     





1N

1n
(n)p.xnk,

hwo
gznk,

hi
w(k)pzδ(k)pn (2.18)

Therefore,

   





1N

1n
(n)pxnk,

hwo
g(k)pδ (2.19)

The error of (2.18) and (2.19) for the k
th
 hidden unit is measured as

10

    





 






vN

1n

2
vN

1n
(n)pxnk,

hwo
g(k)pδ

vN

1
k

δ
E (2.20)

Equating the gradient of Ed(k) with respect to the hidden weight change to zero, we have

      mk,
bp

g
1N

1n
mn,

i
rnk,

hwo
g 




 (2.21)

where

  (m)px
vN

1p
(n)px

vN

1
mn,

i
r 




 for

for

1



Nm1

1Nn1

    
 mk,

hi
w

EvN

1p
(m)px(k)pδ

vN

1
mk,

bp
g







 (2.22)

During the first half of the training epoch, OWO updates the output weights. During the second half of the

training epoch, the hidden weights are updated using HWO as (2.17), where Ghwo is a matrix of hidden

weight changes. Thus OWO-HWO is similar to OWO-BP with the BP component replaced by HWO.

Setting to zero the derivative of  k
δ

E with respect to ghwo(j,m), we get,

 (2.23)

Instead of directly using the negative Jacobian Gbp to update the hidden weights, HWO minimizes a

separate error function, given by (2.20) and solves the system of linear equations in (2.21) and updates

the hidden weights using (2.17). Equation (2.23) can be re-written as

 (2.24)
where Ri is the autocorrelation matrix defined in (2.22). OWO-HWO is summarized below. For every

training epoch

 Solve the linear equations and update the output weights

 Find the negative Jacobian matrix Gbp described in equation (2.22)

 Solve the linear equations in (2.21) to find the HWO and update Ghwo

 Compute the optimal learning factor.

 Update the hidden weights using (2.17)

11

CHAPTER 3

MULTIPLE OPTIMAL LEARNING FACTOR TRAINING

In this chapter, a new learning algorithm called the multiple optimal learning factor (MOLF)

algorithm [44] is reviewed. MOLF calculates an optimal learning factor for every hidden unit, in order to

increase the speed of learning and overall convergence. In MOLF Newton‟s method is used in order to

calculate a separate optimal learning factor for each hidden unit‟s input weights in a feedfoward network.

In the past, researchers have used multiple learning rates and/or momentum terms in order to

speed up the learning process. Unfortunately, these methods are mostly heuristic, and their performance

relies on the settings of some user chosen parameters. Also, using standard gradients makes them slow

to converge. The Newton‟s method can be viewed as a second order method to assign a learning rate to

every weight in the network. Elements of the new method‟s Hessian matrix are shown to be weighted

sums of elements from the total network‟s Hessian. First we will discuss basic algorithm to generate one

optimal learning factor.

3.1 Basic MOLF Algorithm

A MLP is assumed to be trained using OWO-BP. However, let z be a vector whose k
th
 element zk

represent the OLF used to update the input weights, w(k,n).The error function to be minimized is given by

(2.6). The predicted output yp(m) is given by,

               











 







h
N

1k

1N

1i
ipxik,g

k
zik,wfkm,

oh
w

1N

1n
npxnm,

oi
wmpy (3.1)

where, g(k,i) is again an element of the negative Jacobian matrix G and f() denotes the hidden layer

activation function. The negative first partial derivative of E with respect to an OLF zj is,

12

              jpΔnjpo'jm,
oh

w
vN

1p

M

1m

h
N

1k k
zpokm,

oh
wmpt

vN

2

j
z

E
j

molf
g 

























 (3.2)

where op
‟
(j) indicates the first partial derivative of op(j) with respect to its net function and,

       





1N

1n
npxnm,

oi
wmptmpt

     





1N

1n
nj,gnpxjpΔn

         













1N

1n
npxnk,g

k
znk,wf

k
zpo (3.3)

Using Gauss-Newton updates, the second partial derivative elements of the Hessian Hmolf are derived as,

             











vN

1p
jpΔnkpΔnjpo'kpo'

M

1m
jm,

oh
wkm,

oh
w

vN

2

j
z

k
z

E
2

jk,
molf

h

              nj,gik,g
1N

1i

1N

1n

vN

1p
jpo'kpo'npxipxjk,u

vN

2











 







 (3.4)

where,

     



M

1m
km,

oh
wjm,

oh
wkj,u

The Gauss-Newton update guarantees that Hmolf is non-negative definite. Given the negative

gradient vector and the Hessian Hmolf, the error E is minimized with respect to the vector z using Newton‟s

method. For every iteration in the training algorithm, the steps are as follows:

i. Find the negative Jacobian matrix G described in equation (2.13)

ii. Solve z using Hmolf·z = gmolf and update the input weights as w(k,n)← w(k,n) + zk·g(k,n)

iii. Solve linear equations for all output weights.

13

Thus the MOLF procedure has been applied to OWO-BP, and the resulting algorithm is denoted

as MOLF-BP algorithm. Similarly the MOLF procedure can also be used to improve other training

algorithms.

3.2 MOLF-HWO

The hidden weight optimization (HWO) technique was introduced in section 2.5. In this section we

are showing that HWO is immune to the presence of linearly dependent inputs during training. We then

replace the BP component in MOLF with HWO. The resulting improved versions of MOLF is shown to be

unaffected by linearly dependent inputs and better than using BP.

3.2.1 Effect of Dependence on HWO

HWO finds the input weight update by solving for a system of linear equations as given by

equation (2.21), reproduced below for convenience.

bp

G
i

R
hwo

G  (3.5)

If one of the inputs to the network is linearly dependent, clearly it would cause the input auto-correlation

matrix, Ri to be singular. In such a situation, using the conjugate gradient (C-G) algorithm to solve (3.5)

would lead to poor training, since the convergence of C-G is affected by the presence of linearly

dependent inputs. However, using OLS or inversion methods could prove useful in detecting and

eliminating the linearly dependent input, as analyzed in the following subsections.

Orthogonal Least Squares:

Using OLS to solve for Ghwo in (3.12) involves computing the orthonormal weight update, G′ hwo, as

T

iC
bp

G
hwo

G'  (3.6)

where Ci is a lower triangular matrix of orthonormal coefficients of dimension (N+1). The orthonormal

weight update can be mapped to the original weight update as

i
C

hwo
G

hwo
G' 

i

C
T

i
CgpG  (3.7)

14

Assume xp(N+2) was linearly dependent. This would cause the (N+2)
th
 row and column of Ri to be linearly

dependent. During OLS, a singular auto-correlation matrix transforms to the (N+2)
th
 row of Ci to be zero.

The expression for Ghwo contains Ci
T
Ci, which will be a square, symmetric matrix with zeros for the

(N+2)
th
 row and column. This would reflect in Ghwo having zeros for the (N+2)

th
 column. The implication is

that the weight update vector computed for all input weights connected to the dependent input (N+2) is

zero. These weights are not updated during training, effectively freezing them. This is highly desirable, as

the dependent input is not contributing any new information. Thus HWO-type update using OLS is

perfectly capable of picking up linearly dependent inputs, leading to a very robust training algorithm.

15

CHAPTER 4

CLASSIFICATION

Neural network classifiers trained using the mean squared error (MSE) objective function have

been shown to approximate the optimal Bayesian classifier. Although the expectation value of the

classifier error rate is considered to be the ideal training criteria, training algorithms that are based on the

minimization of the expected squared error criteria are often easier to mechanize and better understood.

MLP, commonly used neural network classifier, is designed through iterative regression - minimizing the

mean squared error (MSE) between the target class and a network mapping function.

The MLP approximates the Bayes discriminant, when designed by minimizing the standard

training error as in equation (2.6), where M is the number of classes, Nv denotes the total number of

training patterns, E(i) is mean-squared error for the i
th
 class. tp(i) denotes the i

th
 desired output and yp(i)

denotes the i
th
 observed output. The i

th
 desired output for the p

th
 pattern is defined as

 





0

1
ipt

 for

for

d
ii

cii





 (4.1)

where ic denotes the correct class number for the current training pattern and id denotes any incorrect

class number for that pattern. The output can be written as in equation (2.4).

Output activations yp(ic) are used as class discriminants. The classifier is said to have correctly

classified the p
th
 pattern when yp(ic) is the largest observed output, otherwise we indicate that the network

has misrecognized the p
th
 pattern by incrementing the classification error count. In either case, squared

residuals accumulate in the standard training error as we step through the set of Nv training patterns.

16

4.1 Algorithm for Calculating Percentage Classification Error

Algorithm for calculating the probability of error and percentage classification error:

(1) Initially Ner = 0, Pe = 0 and Percentage Classification Error = 0

(2) For 1 ≤ p ≤ Nv, read the input vector (Xp) and the correct class (ic)

(3) Find the output vector (yp) using input vector (Xp) and output weight matrix (Wo)

(4) Find the index i for which yp(i) is maximum, that index i is the estimated class

(5) If estimated class = correct class then go to step(7)

(6) Increment Ner

(7) If the entire data file is read then go to step(8) else go to step(2)

(8) Pe=Ner/Nv, Percentage Classification error= (100 x Ner)/ Nv

4.2 Problems with Regression Based Classifiers

Let Nv(i) denote the number of patterns belonging to class i, S(i) denote the set of patterns that

correspond to class i, fx(xp) denote the probability density of feature vector xp, f(xp|i) the conditional

density of feature vector xp given that it belongs to class i, and P(i) the probability that the feature vector

comes from class i.

The optimal Bayesian or minimum probability of error discriminant dp(i) for feature vector xp is

given as

 dp(i) = P(i|xp) (4.2)

where P(i|xp) is the aposteriori probability given that vector xp belongs to class i. Let the desired output

tp(i) for correct class ic in this case be defined as

 tp(i) δ(i-ic) (4.3)

Then the expected squared error between network output y(i) and optimal Bayes discriminant is given by

 



M

1i
]

2
y(i))E[(d(i)

B
E (4.4)

17

where E[.] is the expectation operator and y(i) is a random variable storing the i
th
 actual network output.

Note that yp(i) is the actual i
th
 output when the input vector is xp.

Theorem 2: As the training patterns Nv increase, E approaches the (EB + K), where K is a constant.

Thus E = EB + K, implies that network with estimated output yp, which minimizes the MSE yields the

optimal Bayes discriminant function in the minimum mean squared error sense.

Unfortunately; classifiers designed using regression have the following problems:

1) Theorem 1 does not mention anything about the network structure.

2) Minimizing EB is not the same as minimizing Pe even though y(i) = d(i) would minimize Pe .For

example, if the actual outputs are better than the desired outputs as yp(ic) > tp(ic) or yp(id) < tp(id) then the

MSE(E) increases but the probability of classification error decreases.

3) The weight matrix Wo obtained by minimizing the MSE is not optimal; the weight matrix for the SVM or

Bayes classifier is not obtained by minimizing the MSE.

4.3 The potential for MSE-Based Optimal Classifiers

Let Wo
opt

 denote an output weight matrix for a classifier that is optimal in some sense, such as

the minimum probability of error or Bayes classifier, or the SVM.

Theorem 2: Wo
opt

 is the solution to a least squares problem

Proof: Given Wo
opt

, the optimal cross-correlation matrix C
opt

 is,

 C
opt

 = R·(Wo
opt

)
T

(4.5)

The optimal cross-correlation matrix C
opt

 can be expressed as

  
T





vN

1p
p

opt
tpX

vN

1opt
C (4.6)

If C
opt

 and R are known in equation (4.6), we can solve for Wo
opt

. In designing the classifier, we assume

that the basis vectors Xp are given and unchangeable. The only component that is under user control is

the desired output vector tp. C
opt

 can be found from the above equations by using good desired outputs

tp
opt

 since the basis vectors Xp are unchangeable. So in order to get Wo
opt

 we need to use good desired

outputs tp
opt

. We can get good desired outputs tp
opt

 by changing the desired outputs tp appropriately.

18

Various classifiers with desirable properties can be designed through regression, merely through the

proper choice of the desired output tp
opt

.

Assume that C
opt

 is available and that we want to generate the desired output vectors tp.

c(i,)

c(i,2)

c(i,L)

t(i,)

t(i,2)

t(i,Nv)

a(,) a(,2) a(,Nv)

…

a(2,) a(2,2) … a(2,Nv)

…
a(L,) a(L,2) … a(L,Nv)

where c(i,n) is an element of C
opt

. The n
th
 row p

th
 column element of the L by Nv matrix A is Xp(n)/Nv , and

t(i,p) denotes the i
th
 element of tp. Assuming that L < Nv and that A has rank L, above equation is an

underdetermined set of equations for the vector tp(i) and has uncountably many exact solutions. Assume

that C
opt

 is available and that we want to generate the desired output vectors tp. It is easy to generate the

desired output vectors that produce C
opt

. The catch is that this must be done without pre-knowledge of

Wo
opt

 or C
opt

. Iterative algorithms designed to find the desired outputs tp
opt

 are called Output Reset (OR)

algorithms and the iterations are called OR iterations.

4.4 Output Reset Algorithm

We have used an improved output reset (OR) algorithm which, through manipulation of local error

biases, relaxes the MSE objective function which is then applied to training of neural network classifiers.

Compared to conventionally-designed MLPs, the OR-designed networks have proved superior for

complicated classification problems. The OR algorithm, combined with enhanced MOLF-HWO training,

greatly improves classifier performance. Details for the OR algorithm are described in [37].

19

CHAPTER 5

PRUNING IN EACH ITERATION

5.1 Introduction

The unique one pass pruning method is presented which uses orthogonal least squares. Our aim

is to get a monotonically non-increasing graph of validation minimum square error versus basis functions.

Here, OLS is used to eliminate less useful inputs and hidden units and also to detect linear dependent

basis function. This algorithm first optimally orders the inputs and then hidden units. The Schmidt

procedure is used to get orthonormal basis functions.

In section 5.2 we are getting the optimal ordering of basis function, according to their usefulness

to get the output layer. In 5.3, using that orthonormalized network we are getting monotonically non-

increasing graph of Ev(Nu). We are repeating this procedure for every iteration and at the end of each

iteration network with the least validation error is saved. Our algorithm is described is section 5.4 for both

approximation and classification case. The computational burden of algorithm is calculated in section 5.5.

The MOLF-HWO described in section 3.2 is used as a training algorithm.

5.2 Ordered pruning

The purpose of pruning is to eliminate less useful inputs and hidden units which have no

information relevant for estimating outputs or are linearly dependent on inputs or hidden units that have

already been orthonormalized. In section 4.2, we have only discussed OLS type OWO, optimal order of

the basis functions has not been taken into account. In this section we modify the Schmidt procedure so

that during pruning useless basis functions x, are eliminated.

Let o(m) be the new optimal order of the neural network, so that o(m) specifies the order in which

raw basis function xk will be processed into orthonormal basis function ’i. Then x is to be calculated from

 , , … and so on. This function also defines the structure of the new hidden layer where ≤ m

20

≤ Nu and 1 ≤ o(m) ≤ Nu. If o(m) = k then the m
th
 unit of the new structure comes from the k

th
 unit of the

original structure. Given the function o(m), the m
th
 orthonormal basis function is described as,[45]

  



m

1k ko
x

mk
amx' (5.1)

Initially,
 is found as where,

       2
1

1o,1or

1

1o,
x

1

11
a  (5.2)

For 2 ≤ m ≤ Nu, we first perform,

     



i

1q
mo,qor

iq
a

i
c (5.3)

For 1 ≤ i ≤ m-1, Second, we set bm=1 and get

 





1m

ki ik
a
i

c
k

b (5.4)

Lastly for 1 ≤ k ≤ m-1, we get coefficient amk as,

    
2

1
1m

1i

2
i

cmo,mor

k
b

mk
a













 (5.5)

For 1 ≤ k ≤ m,  mi,
0

w' is found as,

     



m

1k
koi,c

mk
ami,

0
w' (5.6)

The goal of ordered pruning is to find the function o(m) which defines the structure of the basis function.

Here it is assumed that the original basis functions are linearly independent i.e. the denominator of

equation (5.5) is not zero.

Since we want the effects of inputs and the constant „ ‟ to be removed from the orthonormal basis

functions, the first N+1 basis functions are picked as,

o(m) = m, for 1 ≤ m ≤ N

21

5.2.1 Ordering Inputs

First the selection process will be used to optimally order the inputs N+1. We now define notation

that helps us specify the set of candidate basis function to choose in a given iteration. First, define S(m)

as the set of indices of chosen basis functions where m is the number of inputs. Then S(m) is given by

 
 

      




m,...o2o,1o

φ
mS

for

for

1Nm0

0m





(5.7)
Let‟s take o() , putting the threshold as a first input. the set of candidate basis functions is clearly

S
c
{m} { ,2,…,N }-S(1), which is {1,2,…,N }. For 2 < m ≤ N , we obtain S

c
(m-1). For each trial value

of o(m) € S
c
 {m-1} perform operations (5.3), (5.4), (5.5), and (5.6). Then P(m) is

     



M

1i

2
mi,ow'mP (5.8)

The trial value of o(m) that maximizes P(m) is found. Assuming that P(m) is maximum when testing the

k
th
 element, then o(m) = k. S(m) is updated as

       mo1mSmS  (5.9)

Then for the general case the candidate basis functions are S

c
(m-) { ,2,…,N }-{o(),o(2),…,o(m-1)},

with N-m candidate basis function. By using equation (4.25) after testing all the candidate basis function,

o(m) takes its value and S(m) is updated according to equation (4.26). The process is repeated until m =

N+1.

5.2.2 Ordering Hidden Units

Same process as for inputs will be repeated for hidden units. Now S(m) is,

 
 

      




m,...j2j,1j

φ
mS

for

for

uNm0

0m





(5.10)
Starting with an initial network which has zeros hidden unit, m = N+1, the set of candidate basis functions

will be S
c
{m} { ,2,…,Nu}-S(m), which is {N 2,N 3,…,Nu}. For N 2 ≤ m ≤ Nu, we obtain S

c
(m-1). For

each trial value of o(m) € S
c
 {m-1} perform operations (5.3), (5.4), (5.5), and (5.6). Then P(m) is found as

22

in (5.8). The trial value of o(m) that maximizes P(m) is found. Then o(m) will get its value and S(m) is

updated as in (5.9).

Then for the general case the candidate basis functions are S
c

(m-) { ,2,…,Nu}-

{o(),o(2),…,o(m-1)}, with Nu-m+1 candidate basis function. After testing all the candidate basis function,

o(m) takes its value and S(m) is updated according to equation (5.9). Defining Nhd as the desired number

of units in the hidden layer, the process is repeated until m = N+1+Nhd.

After the o(m) function is complete, both the original basis functions and the orthonormal ones are

ordered. Then the orthonormal weights are mapped to normal weights. Considering the final value of

o(m), row reordering of the original input weights matrix is performed for generating the right op(j), values.

After reordering the rows, as only the Nhd units are kept, the remaining units (op(j), with Nhd < j ≤ Nh) are

pruned by deleting the last Nh - Nhd rows.

5.2.3 Linear Dependency Condition

Assume that a raw basis function, xj(m) is linearly dependent on previously chosen basis functions,

where j(m) denotes an input (≤ m ≤ N) and j(m) has taken on a trial value. Then

 







1m

1k k
x'

k
d'

mj
x (5.11)

Now the denominator of amk in (5.5) can be rewritten as

 2
1

mz,mzg  (5.12)

where,

   







1m

1i i
x'

mj
x',

i
x'

mj
xmz (5.13)

Substituting (5.11) into (5.13), however, we get

  1d
mj

x,
i

x'  (5.14)

and zm and g are both zero.

If o(m) denotes an input, and g satisfies

εg 

23

for  = 10
-27

, then we perform

  kkj 

for ≤ k < m, and

  1kkj 

for m ≤ k ≤ N.

 In effect we decrease N by one and let the j(k) function skip over the linearly dependent input. If j(m)

denotes a hidden unit, the same procedure is used to determine whether or not xj(m), is useful. If xj(m) is

found to be linearly dependent, the current, bad value of j(m) is discarded before amk is calculated.

5.3 One pass validation

In section 5.2, we have got optimal ordered neural network. Now the idea is to combine it with the

early stopping. For that we will need validation error versus basis functions Ev(Nu) curve.

Given the matrix A and the MLP network with ordered basis functions, we wish to generate the

validation error versus Nu curve Ev(Nu) from the validation data. The vector xk is converted into

orthonormal basis function by transformation,

 



m

1k k
x

mk
a

'
mx for 11  mk (5.15)

In order to get the validation error for all size networks in a single pass through the data, we use the

following strategy. Let yp(i,m) represent the i
th
 output of the network having m hidden units for the p

th

pattern, let Ev(m) represent the mean square error of the network for validation with m hidden units. First,

the linear network output is obtained and the corresponding error is calculated as follows [46]:

     





1N

1k
kpx'ki,w'i,0py for Mi 1

       



M

1i

2
i,0py(i)pt0vE0vE (5.16)

Then for 1 ≤ m ≤ Nh, the following two steps are performed. For 1 ≤ i ≤ M,

24

        m1Npx'm1Ni,w'1mi,pymi,py  (5.17)

       



M

1i

2
mi,py(i)ptmvEmvE (5.18)

Apply equations (5.16)-(5.18) for 1 ≤ p ≤ Nv and get the total validation error over all the patterns for each

size network. Then these error values should be normalized as

 
 

vN

mvE
mvE  for hNm 0

(5.19)
Thus we generate the validation error versus the network size curve in one pass through the validation

data set.

5.4 Combining Pruning with Training at each iteration

5.4.1 Approximation case

In section 5.2, we got network with optimal order of basis functions and in section 5.3 we generated

Ev(Nu) curve for validation data in one data pass. Now, we want to optimize validation error not only over

Nu, but also over Nit . Hence, we are optimizing Ev over Nv and Nit simultaneously.

At each iteration, we will first train the network using MOLF-HWO algorithm, then we will use OLS

type OWO to optimally order basis functions. Using that we will do one pass validation and get the

desired Ev(Nu) curve. The detailed steps for the approximation are given below.

Firstly, take Gaussian random variables as initial input weights and perform net control to get desired

net function (np) mean is equal to 0.5 and desired variance is equal to 1. Use OWO-OLS to get initial

output weights. And then for each iteration we are doing following steps,

1) Calculate Ri and Gbp using equation (2.22), using those solve equation (2.21) using OLS method

to get Ghwo .

2) Calculate Gmolf and Hmolf using equations (3.4) and (3.6) respectively. Then calculate multiple

learning factor z using OLS method.

3) Update the input weights using, w(k,n) = w(k,n) + z(k)·ghwo(k,n)

25

4) Using changed input weights calculate auto-correlation and cross-correlation matrix using

equation (2.9).

5) Generate an optimally ordered orthonormal network using discussed OWO-OLS algorithm.

6) Using validation data get the Ev(Nu) curve using the one pass validation technique.

7) Store the original network weights for each network size, if the validation error for that network

size is decreased than that for the previous iteration. There will be total Nh+1 networks, one

network with N+1 inputs.

8) Get the original network from the orthonormal one and calculate outputs of the network.

9) If the maximum number of iterations is not reached, then go to step (1).

5.4.2 Classification case

 In this section, we will discuss the algorithm for the classification case. Our goal is the same as

for the approximation case to optimize the validation error over number of iterations and network size

simultaneously. We have used improved OR algorithm discussed in section 4.4, to get the best results.

 Firstly, generate desired output for each pattern using equation (4.1). Then take the Gaussian

random variable as initial input weights, and do net control. Generate initial output weights using OWO-

OLS algorithm. Here, the classification validation error is being calculated as described in section 4.1.

Follow the below procedure for each iteration.

1) Calculate the optimal desired output tp
opt

, using improved OR algorithm as described in section

4.2

2) Calculate Ri and Gbp using equation (2.22), using those solve equation (2.21) using OLS method

to get Ghwo . During calculation of output deltas consider the optimal desired output.

3) Follow step (2) and (3) as described for approximation case.

4) Using the changed input weights calculate the outputs of the network.

5) Calculate the optimal desired output using improved OR algorithm.

6) Using changed input weights and changed desired outputs calculate auto-correlation and cross-

correlation matrix using equation (2.9).

7) Follow step (5), (6), (7), (8) and (9) as described for approximation case.

26

After repeating the above procedure (in both the approximation and the classification case) for Nit

iterations and capturing the best size of the network, we can generate a unique number of basis functions

versus number of iteration Nu(Nit) curve. From looking at the curve one can easily decide the best size of

the network and it can be very useful to compromise between performance and network complexity.

5.5 Computational cost

 In this section the computational burden on the algorithm is calculated. The number of multiplies

required to solve output weights using OLS is,

Mols Nu[M Nu 2
3

4
Nu(Nu)

 (5.20)

The gradient Gbp and auto-correlation for inputs Ri, are calculated using equation (2.22). To calculate

HWO gradient Ghwo as in equation (2.21) using OLS the number of multiplies required is,

Mhwo Nv Nh M N 3 Mols hwo
 (5.21)

where,

Mols hwo N [N 2 (N
h

N

3
) (N)

(5.22)
The multiplies required to calculate multiple optimal learning factors z using OLS is,

Mmolf NvNh N 2 M Nh 3 Mols molf
(5.23)

where,

Mols molf Nh [
Nh Nh 2

3
 (Nh)

(5.24)

To optimally order the basis functions using the method described is section 5.2 multiplications required

is,

Mols order
Nu

6
 2M Nh

2 7Nu 6M 6 3MNu
Nh(N)

6
 N 2 2N 3M 6 6M M2

N

(5.25)

The number of multiplies required for one pass validation error calculation is,

Mval Nvv[Nh N 2
Nu

2
 Nu 4M

(5.26)

27

where, Nvv is number of patterns in validation data set. So, for MOLF-HWO required multiplication is given

as,

Mmolf-hwo = Mmolf + Mhwo

(5.27)

Using all the above equations, we will now compare the number of multiplies required for three different

methods: Optimization alone, Pruning alone and our method (described in above section).

The total number of multiplies required for optimization alone is,

Mopti alone Mmolf hwo Mols Nv[2Nh N 2 2M Nu Nu(M Nu)

(5.28)
The validation error versus Nh curve is not obtained and basic OLS is used not optimally ordered OLS.

Total number of multiplies required for pruning alone is,

Mpruning alone Nit(Mmolf hwo Mols Nv Nh N 2 Nu 2M Nu) Mols order Mval

(5.29)

Here, pruning is only done for one time after the MOLF-HWO algorithm, so Mols-order and Mval is required

only one time. Nit is number of iterations used.

The total number of multiplies required for algorithm described is section 5.5.1 for approximation

case is,

Mour app Mmolf hwo Nv Nh N 2 Nu 2M Nu Mols order Mval

(5.30)

Now, for classification case, as we are using percentage classification error, the multiplies required for

one pass validation is,

Mval class Nvv[N
h
 N 2

Nu

2
(Nu 2M)

(5.29)
As described in section 5.5.2, we are updating the optimal output using the improved OR algorithm that

does not require any multiplication. Since we are calculating output and output energy again before

optimal ordering using OLS, there will be NvM(Nu+1) extra multiplications. So, the total multiplication

required for classification case is,

Mour class Mmolf hwo Nv Nh N 2 Nu 2M Nu M(Nu) Mols order Mval class
(5.30)

28

All the equations given in this section contains the multiplications required for each iteration except

equation (5.29). The number of multiplies required for the different data sets for the three methods

discussed are compared. It shows that the difference between the number of multiplies required for our

method and other methods is nominal.

Table 1 Multiplies comparison for approximation data sets

Data set Nh and Nit Optimization alone Pruning alone Our method

twod.tra

Nv=1179,

Nvv=589

30,70 889997418 844420410 1038341838

20,25 167127204 155940191 181807292

mattrn

Nv=1333,

Nvv=667

8,15 18382848 16402750 18875505

20,10 44885773 42630526 49537582

single2

Nv=6667,

Nvv=3333

30,15 790464561 730732164 855030201

40,10 799807719 755503467 893477904

oh7

Nv=10000,

Nvv=5000

50,30 5416831071 5120699091 6120338781

20,15 773617115 715074610 824905932

Table 2 Multiplies comparison for classification data sets

Data set Nh and Nit Optimization alone Pruning alone Our method

gongtrn

Nv=2000,

Nvv=1000

10,15 102699853 97913213 110353168

30,50 1561123122 1511006622 1745170422

speech_class

Nv=1456,

Nvv=728

10,15 272950893 265673947 296793768

30,50 3616546838 3534898032 4021433088

29

CHAPTER 6

RESULTS

In this chapter, results for the algorithms shown in chapter 5 are presented. The algorithms are

implemented in Matlab and Microsoft Visual C. We have compared our algorithm with pruning alone and

optimizing alone. In pruning alone we are doing pruning only one time after the network is trained

completely using MOLF algorithm. And 10-fold validation is used to generate the results.

We will have the validation error of the network with all different sizes at each iteration. So, we could

plot 3-D of validation error versus network size and number of iteration. The local minima of this plot will

be the network with the least validation error and that will be the best network.

We are also saving the best network for each size. So, if one wants the network with the

particular size, he will know how much training is needed. So that it does not get over-trained. This saves

a lot of computational cost.

6.1 Approximation Results

6.1.1 twod data set

The validation error versus the number of iterations is plotted for optimizing Ev over Nit alone

using MOLF-HWO algorithm and for our method as described in previous chapter. So, the first method

considers all the hidden units for each iteration. Since our method does pruning at each iteration it

considers the best network at each iteration. Number of hidden units used, Nh = 30.

In figure 3, a 3-D contour of validation error versus hidden units and iterations is shown. The

minimum of that curve is the best network for given number of hidden units and iterations.

In figure 4, the validation error versus number of hidden units is plotted for pruning alone and for

our method. For pruning order OWO-OLS is used. As we are doing pruning at each iteration our method

has a better result.

30

Figure 2 Ev vs Nit for twod.tra, Nh=30, Nit=120

Figure 3 Ev vs Nit and Nh for twod.tra, Nh=30, Nit=120

0 20 40 60 80 100 120
0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

Iterations

V
al

id
at

io
n

E
rr

or

Validation Error vs Iteration

Optimization alone

Our method

0

10

20

30

40

0

50

100

150

0.2

0.25

0.3

0.35

Hidden units

Validation Error vs Iterations and Hidden units

Iterations

V
a
lid

a
ti
o
n
 E

rr
o
r

31

Figure 4 Ev vs Nh, for twod.tra, Nit=10,Nh=70

6.1.2 mattrn data set

 Here, the validation error decreases very fast for even a small number of hidden units and

iterations. For comparison with optimization alone over Nit, Nh=70 and Nit=20 is taken. In figure 7, our

method is compared with pruning alone, Nh=30 and Nit=15 is taken.

0 10 20 30 40 50 60 70 80
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Hidden units

V
a
lid

a
ti
o
n
 E

rr
o
r

Validation Error vs Hidden units

Pruning alone

Our method

32

Figure 5 Ev vs Nit, for mattrn, Nit=20, Nh=70

Figure 6 Ev vs Nit and Nh, for mattrn, Nit=20, Nh=10

0 2 4 6 8 10 12 14 16 18 20
0.015

0.0155

0.016

0.0165

0.017

0.0175

0.018

Iterations

V
a
lid

a
ti
o
n
 E

rr
o
r

Validation Error vs Iteration

Optimization alone

Our method

0

5

10

15

0

5

10

15

20
0

0.05

0.1

0.15

0.2

Hidden units

Validation Error vs Iterations and Hidden units

Iterations

V
a
lid

a
ti
o
n
 E

rr
o
r

33

Figure 7 Ev vs Nh, for mattrn, Nit=15, Nh=30

6.1.3 single2 data set

Figure 8 clearly shows that at each iteration, pruning has huge effect on validation error, here

Nit=18 and Nh=15. While comparing, our method with pruning alone, network with less hidden units has

no effect. But as the hidden unit increases the validation error decreases faster and we are getting best

result at Nh=26 then error increases again, Nh=30 and Nit=15 is used.

0 5 10 15 20 25 30 35
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Hidden units

V
a
lid

a
ti
o
n
 E

rr
o
r

Validation Error vs Hidden units

Pruning alone

Our method

34

Figure 8 Ev vs Nit, for single2, Nh=15, Nit=18

Figure 9 Ev vs Nit, for single2, Nh=15, Nit=18

0 2 4 6 8 10 12 14 16 18
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Iterations

V
a
lid

a
ti
o
n
 E

rr
o
r

Validation Error vs Iteration

Optimization alone

Our method

0

5

10

15

20

0

5

10

15

20
0

0.5

1

1.5

Hidden units

Validation Error vs Iterations and Hidden units

Iterations

V
a
lid

a
ti
o
n
 E

rr
o
r

35

Figure 10 Ev vs Nh, for single2, Nh=35, Nit=15

6.1.4 oh7 Data set

For a low number of iterations, pruning has not affected the error very much, but after the 4
th

iteration pruning affects greatly improves the error, here Nit=10 and Nh=25. A 3-D contour of validation

error versus hidden units and iterations is shown. In figure 12, the validation error versus number of

hidden units is plotted for both methods. Nh=3 and Nit=18 is taken.

0 5 10 15 20 25 30 35 40
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Hidden units

V
a
lid

a
ti
o
n
 E

rr
o
r

Validation Error vs Hidden units

Pruning alone

Our method

36

Figure 11 Ev vs Nit, for oh7, Nh=25, Nit=10

Figure 12 Ev vs Nh, for oh7, Nh=38, Nit=18

1 2 3 4 5 6 7 8 9 10
1.56

1.58

1.6

1.62

1.64

1.66

1.68

1.7

1.72

1.74

Iterations

V
a
lid

a
ti
o
n
 E

rr
o
r

Validation Error vs Iteration

Optimization alone

Our method

0 5 10 15 20 25 30 35 40
1.5

2

2.5

3

3.5

4

Hidden units

V
a
lid

a
ti
o
n
 E

rr
o
r

Validation Error vs Hidden units

Pruning alone

Our method

37

Figure 13 Ev vs Nit and Nh, for oh7, Nh=38, Nit=18

6.2 Classification results

6.2.1 gongtrn data set

The validation error here is a percentage classification error calculated as discussed in 4.1. For

the gongtrn data, both methods are tested for validation error versus iterations. It is clear from figure 14

that our method gives much better classification result than optimization alone. Figure 16 shows that

despite in our method starting error is more, but it decreases very fast until the 23
th
 hidden units and then

it increases and never decreases again, here, Nh=30 and Nit=15. A 3-D contour of validation error versus

hidden units and iterations is shown, here, Nh=15 and Nit=50.

0

10

20

30

40

0

5

10

15

20
1.5

2

2.5

3

3.5

4

Hidden units

Validation Error vs Iterations and Hidden units

Iterations

V
a
lid

a
ti
o
n
 E

rr
o
r

38

Figure 14 Ev vs Nit, for gongtrn, Nit=50, Nh=15

Figure 15 Ev vs Nh and Nit, for gongtrn, Nh=15, Nit=50

0 5 10 15 20 25 30 35 40 45 50
7

7.5

8

8.5

9

9.5

10

10.5

Iterations

V
a
lid

a
ti
o
n
 C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r

Validation Classification Error vs Iteration

Optimization alone

Our method

0

5

10

15

20

0

20

40

60
8

9

10

11

12

Hidden units

Validation Classification Error vs Iterations and Hidden units

Iterations

V
a
lid

a
ti
o
n
 C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r

39

Figure 16 Ev vs Nh, for gongtrn, Nh=30, Nit=15

6.2.2 speech_map data set

Data set speech_map has 34 inputs and 39 different classes, so it is very hard to train this file.

Figure 17 shows that by doing pruning at each iteration we are optimizing the validation error very well,

here Nit=25 and Nh=40. Figure 18 shows the 3-D contour. Comparing it with pruning alone shows that, the

best network size is 36, as after that classification error increases again, here Nh=40 and Nit=20.

0 5 10 15 20 25 30 35
7.5

8

8.5

9

9.5

10

10.5

Hidden units

V
a
lid

a
ti
o
n
 C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r

Validation Classification Error vs Hidden units

Pruning alone

Our method

40

Figure 17 Ev vs Nit, for speech_map, Nit=25, Nh=40

Figure 18 Ev vs Nh and Nit, for speech_map, Nit=25, Nh=40

0 5 10 15 20 25 30 35 40
36

38

40

42

44

46

48

50

Iterations

V
a
lid

a
ti
o
n
 C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r

Validation Classification Error vs Iteration

Optimization alone

Our method

0

10

20

30

0

10

20

30

40
35

40

45

50

55

Hidden units

Validation Classification Error vs Iterations and Hidden units

Iterations

V
a
lid

a
ti
o
n
 C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r

41

Figure 19 Ev vs Nh, for speech_map, Nit=20, Nh=40

0 5 10 15 20 25 30 35 40 45
38

39

40

41

42

43

44

45

Hidden units

V
a
lid

a
ti
o
n
 C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r

Validation Classification Error vs Hidden units

Pruning alone

Our method

42

CHAPTER 7

CONCLUSION

 Based on the validation error curves obtain in results from the prescribed different approaches we

can make following observations.

 Optimization over training iterations definitely reduces the training time, but is prone to give a

large network size. Because the same large network size is used in every iteration.

 In the pruning alone method, after completion of training since we modify the network size, we get

a small network as compared to optimization alone method. But, the number of iteration needed

for training is much larger because training progresses on the same large network.

 The novel approach shown in this thesis relieves the drawbacks of the above two methods and

therefore attains a much better result in terms of network size, training time and validation error.

43

APPENDIX A

DESCRIPTION OF DATA SETS USED FOR

APPROXIMATION AND CLASSIFICATION

44

Twod - Inversion of surface scattering parameters

This training file is used in the task of inverting the surface scattering parameters from an inhomogeneous

layer above a homogeneous half space, where both interfaces are randomly rough. The parameters to be

inverted are the effective permittivity of the surface, the normalized rms height, the normalized surface

correlation length, the optical depth, and single scattering albedo of an inhomogeneous irregular layer

above a homogeneous half space from back scattering measurements.

The training data file contains 1,768 patterns. The inputs consist of eight theoretical values of back

scattering coefficient parameters at V and H polarization and four incident angles. The outputs were the

corresponding values of permittivity, upper surface height, lower surface height, normalized upper surface

correlation length, normalized lower surface correlation length, optical depth and single scattering albedo

which had a joint uniform PDF [58, 59].

Single2 – Inversion of back scattering parameters

This training data file consists of 16 inputs, 3 outputs and 10,000 training patterns, and represents the

training set for inversion of surface permittivity, the normalized surface rms roughness, and the surface

correlation length found in back scattering models from randomly rough dielectric surfaces. The first 16

inputs represent the simulated back scattering coefficient measured at 10, 30, 50 and 70 degrees at both

vertical and horizontal polarization. The remaining 8 are various combinations of ratios of the original

eight values. These ratios correspond to those used in several empirical retrieval algorithms [60, 61].

Oh7 - Radar Scattering from Bare Soil Surfaces

This data set is given in [62]. The training set contains VV and HH polarization at L 30, 40 deg, C 10, 30,

40, 50, 60 deg, and X 30, 40, 50 deg along with the corresponding unknowns rms surface height, surface

correlation length, and volumetric soil moisture content in g / cubic cm. The file has 20 inputs, 3 outputs

and 15,000 training patterns.

45

Mattrn – Matrix inversion data

This training file provides the data set for inversion of random two-by-two matrices. Each pattern consists

of 4 input features and 4 output features. The input features, which are uniformly distributed between 0

and 1, represent a matrix and the four output features are elements of the corresponding inverse matrix.

The determinants of the input matrices are constrained to be between .3 and 2. the file has 2,000 training

patterns.

Gongtrn data set

The raw data consists of images from hand printed numerals collected from 3,000 people by the Internal

Revenue Service. We randomly chose 300 characters from each class to generate 3,000 character

training data. Images are 32 by 24 binary matrices. An image scaling algorithm is used to remove size

variation in characters. The feature set contains 16 elements. The 10 classes correspond to 10 Arabic

numerals.[63]

Speech class data set

The speech samples are first preemphasized and it is converted into frequency domain by taking DFT.

Then it is passed through Mel filter banks and the inverse DFT is applied on the output to get Mel-

Frequency Cepstrum Coefficients (MFCC). Each of MFCC(n), MFCC(n)-MFCC(n-1) and MFCC(n)-

MFCC(n-2) would have 13 features, which results in a total of 39 features. Each class corresponds to a

phoneme.

46

REFERENCES

[1] An efficient piecewise linear network, Rawat,Rohit. The University of Texas at Arlington, 2009.

[2] R. C. Odom, P. Pavlakos, S. Diocee, S. M. Bailey, D. M. Zander, and J. J. Gillespie, “Shaly sand

analysis using density-neutron porosities from a cased-hole pulsed neutron system,” in SPE Rocky

Mountain regional meeting proceedings: Society of Petroleum Engineers, 1999, pp. 467–476.

 [3 A. Khotanzad, M. H. Davis, A. Abaye, and D. J. Maratukulam, “An artificial neural network hourly

temperature forecaster with applications in load forecasting,” IEEE Transactions on Power Systems, vol.

11, no. 2, pp. 870–876, May 1996.

[4 S. Marinai, M. Gori, and G. Soda, “Artificial neural networks for document analysis and recognition,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 1, pp. 23–35, 2005.

[5] R. B. J. Kamruzzaman, R. A. Sarker, Artificial Neural Networks: Applications in Finance and

Manufacturing. Idea Group Inc (IGI), 2006.

[6] L. Wang and X. Fu, Data Mining With Computational Intelligence. Springer- Verlag, 2005.

[7 G. Edwards and J. P. Tate, “Target recognition and classification using neural networks,” in

Proceedings of MILCOM 2002, vol. 2, Oct 2002, pp. 1439–1442.

[8 E. F. M. Filho and A. C. P. L. de Carvalho, “Target recognition using evolutionary neural networks,” in

Proceedings of V
th
 Brazilian Symposium on Neural Networks, 1998, Dec 1998, pp. 226–231.

[9] K. Liu, S. Subbarayan, R. R.Shoults, M. T. Manry, C. Kwan, F. L. Lewis, and J.Naccarino,

“Comparison of very short-term load forecasting techniques,” IEEE Transactions on Power Systems, vol.

11, no. 2, pp. 877–882, May 1996.

[0 M. T.Manry, R. Shoults, and J. Naccarino, “An automated system for developing neural network short

term load forecasters,” in Proceedings of the 58th American Power Conference, Apr 1996, pp. 237–241.

[Y. Saifullah and M. T. Manry, “Classification based segmentation of zip codes,” IEEE Transactions

on Systems, Man and Cybernetics, vol. 23, no. 5, pp. 1437– 1443, Sep/Oct 1993.

http://search.proquest.com/pqdtft/docview/305176161/135D2A7422461F0F0B3/1?accountid=7117

47

 [12] Y. LeCun, B. Boser, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, “Backpropagation

applied to handwritten zip code recognition,” Neural Computation, vol. 1, pp. 541–551, 1989.

[13] M. T. Manry, C.-H. Hsieh, and H. Chandrasekaran, “Near-optimal flight load synthesis using neural

nets,” in Neural Networks for Signal Processing IX, 999. Proceedings of the 1999 IEEE Signal

Processing Society Workshop, 1999, pp. 535–544.

[4 P. Hong, Z. Wen, and T. S. Huang, “Real-time speech-driven face animation with expressions using

neural networks,” IEEE Transaction on Neural Networks, vol. 13, no. 4, pp. 916–927, July 2002.

[5 P. Muneesawant and L. Guan, “Automatic machine interaction for content-based image retrieval

using a self organizing tree map structure,” IEEE Transaction on Neural Networks, vol. 13, no. 4, pp.

821–834, July 2002.

[16] I. Lapidot, H. Gunterman, and A. Cohen, “Unsupervised speaker recognition based on competition

between self-organizing maps,” IEEE Transaction on Neural Networks, vol. 13, no. 4, pp. 877–887, July

2002.

[17] M. Attik, L. Bougrain and F. Alexandre. (2005, Neural network topology optimization. Lecture Notes in

Computer Science 3697pp. 53.

[18] W. C. Carpenter and J. F. Barthelemy. (1994, Common misconceptions about neural networks as

approximators. J. Comput. Civ. Eng. 8(3), pp. 345-358.

[19] A. A. Abdurrab, M. T. Manry, J. Li, S. S. Malalur and R. G. Gore. A piecewise linear network

classifier. Presented at International Joint Conference on Neural Networks.

[20] T. Cover and P. Hart. (1967, Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1),

pp. 21-27.

[21] IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997 519 An Iterative

Pruning Algorithm for Feedforward Neural Networks Giovanna Castellano, Anna Maria Fanelli, Member,

IEEE, and Marcello Pelillo, Member, IEEE

[22] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error

propagation,” in Parallel Distributed Processing— Vol. 1: Foundations, D. E. Rumelhart and J. L.

McClelland, Eds. Cambridge, MA: MIT Press, 1986, pp. 318–362.

48

[23] S. Y. Kung and J. N. Hwang, “An algebraic projection analysis for optimal hidden units size and

learning rates in backpropagation learning,” in Proc. IEEE Int. Conf. Neural Networks, San Diego, CA,

vol. 1, 1988, pp. 363–370.

[24 D. C. Plaut and G. E. Hinton, “Learning sets of filters using backpropagation,” Comput. Speech

Language, vol. 2, pp. 35–61, 1987.

[25 D. J. Burr, “Experiments on neural net recognition of spoken and written text,” IEEE Trans. Acoust.,

Speech, Signal Processing, vol. ASSP-36, pp. 1162–1168, 1988.

[26] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by backpropagating

errors,” Nature, vol. 323, pp. 533–536, 1986.

[27] X.-H. Yu, “Can backpropagation error surface not have local minima,” IEEE Trans. Neural Networks,

vol. 3, pp. 1019–1021, 1992.

[28 E. B. Baum and D. Haussler, “What size net gives valid generalization?” Neural Computa., vol. 1, pp.

151–160, 1989.

[29] J. Denker, D. Schwartz, B. Wittner, S. Solla, R. Howard, L. Jackel, and J. Hopfield, “Large automatic

learning, rule extraction, and generalization,” Complex Syst., vol. 1, pp. 877–922, 1987.

[30 Y. Le Cun, “Generalization and network design strategies,” in Connectionism in Perspective, R.

Pfeifer, Z. Schreter, F. Fogelman-Soulie, and L. Steels, Eds. Amsterdam: Elsevier, 1989, pp. 143–155.

[31 Y. Chauvin, “Generalization performance of overtrained backpropagation networks,” in Neural

Networks—Proc. EURASIP Wkshp. 1990, L. B. Almeida and C. J. Wellekens, Eds. Berlin: Springer-

Verlag, 1990, pp. 46–55.

[32] G. G. Towell, M. K. Craven, and J. W. Shavlik, “Constructive induction in knowledge-based neural

networks,” in Proc. 8th Int. Wkshp. Machine Learning, L. A. Birnbaum and G. C. Collins, Eds. San Mateo,

CA: Morgan Kaufmann, 1991, pp. 213–217.

[33]An integrated growing-pruning method for feedforward network training Pramod L. Narasimhaa,_,

Walter H. Delashmit, Michael T. Manry, Jiang Li, Francisco Maldonado

[34 K. H. M. Stinchcombe and H. White, “Universal approximation of an unknown mapping and its

derivatives using multilayer feed-forward networks,” Neural Networks, vol. 3, no. 5, pp. 551 – 560, 1990.

49

[35 D.W. Ruck, “The multi-layer perceptron as an approximation to a bayes optimal discriminant

function,” IEEE Transactions on Neural Networks, vol. 1, no. 4, 1990.

[36 Q. Yu, S. J. Apollo, and M. T. Manry, “Map estimation and the multi-layer perceptron,” Proceedings of

the 1993 IEEE Workshop on Neural Networks for Signal Processing, pp. 30–39, September 1993.

[37] R. G. Gore, J. Li, M. T. Manry, L. M. Liu, C. Yu and J. Wei, "Iterative Design of Neural Network

Classifiers Through Regression", International Journal on Artificial Intelligence Tools, Vol 14, Issues 1&2,

2005.

[38] M. R. Hestenes and E. Steifel, “Methods of conjugate gradients for solving linear systems,” Journal of

Research of the National Bureau of Standards, vol. 49, no. 6, pp. 409–436, 1952.

[39] F. J. Maldonado, M. T. Manry, and T.-H. Kim, “Finding optimal neural network basis function subsets

using the schmidt procedure,” in Proceedings of the International Joint Conference on Neural Networks,

ser. 20-24, vol. 1, July 2003, pp. 444 – 449.

[40] A. J. Shepherd, Second-Order Methods for Neural Networks, ser. Perspectives in Neural Computing.

Springer, 1997.

[41]Convergence of a Batch Training Algorithm for Feed-forward Networks Sanjeev S. Malalur
1
,

Changhua Yu
2
 and Michael T. Manry

3

[42] An efficient hidden layer training method for the multilayer perceptron Changhua Yua,_, Michael T.

Manry, Jiang Lic, Pramod Lakshmi Narasimha

[43 S. McLoone and G. Irwin, “A variable memory Quasi-Newton training algorithm,” Neural Processing

Letters, vol. 9, pp. 77-89, 1999.

[44]Sanjeev Malalur, M. T. Manry, "Multiple Optimal Learning Factors for Feed-forward Networks,"

accepted by The SPIE Defense, Security and Sensing (DSS) Conference, Orlando, FL, April 2010

[45] Finding Optimal Neural Network Basis Function Subsets Using the Schmidt Procedure. F. J.

Maldonado, M. T. Manry, and Tae-Hoon Kim

[46] Fast Generation of a Sequence of Trained and Validated Feed-Forward Networks Pramod L.

Narasimha, Walter Delashmit, Michael Manry, Jiang Li and Francisco Maldonado

[47] S. Raudys, Statistical and Neural Classifiers: An integrated approach to design, Springer-Verlag,

2001.

http://www-ee.uta.edu/eeweb/IP/papers/gore1or.pdf
http://www-ee.uta.edu/eeweb/IP/papers/gore1or.pdf
http://www-ee.uta.edu/eeweb/IP/papers/gore1or.pdf
http://www-ee.uta.edu/eeweb/IP/papers/gore1or.pdf

50

[48] W.E. Weideman, M.T. Manry, and H.C. Yau, "A comparison of a nearest neighbor classifier and a neural

network for numeric handprint character recognition," Proceedings of IJCNN'89, vol. I, pp. I-117 to I-120,

Washington D.C., June 1989.

[49] S-C Huang and Y-F Huang, "Bounds on the number of hidden neurons in multilayer perceptrons," IEEE

Transactions on Neural Networks, January 1991, pp. 47-55.

[50] J. Sietsma and R.J.F. Dow, "Neural net pruning-Why and how ?," in Proceedings of IJCNN'88, Vol. I, pp.

325-332.

[51] M.A. Sartori and P.J. Antsaklis, "A simple method to derive bounds on the size and to train multilayer

neural networks," IEEE Transactions on Neural Networks, vol. 2, no. 4, July 1991, pp. 467-471.

[52] Mu-Song Chen and M.T. Manry, "Basis Vector Analyses of Back-Propagation Neural Networks,"

Proceedings of the 34th Midwest Symposium on Circuits and Systems, Monterey, California, May 1991.

[53] M.T. Manry, X. Guan, S.J. Apollo, L.S. Allen, W.D. Lyle, and W. Gong, "Output weight optimization for

the multi-layer perceptron," Conference Record of the Twenty-Sixth Annual Asilomar Conference on Signals,

Systems, and Computers, Oct. 1992, vol 1, pp. 502-506.

[54] D. S. Levine, Introduction to Neural and Cognitive Modeling, Hillsdale, NJ: Lawrence Erlbaum Assoc.,

1991.

[55]Nils J. Nilsson, The Mathematical Foundations of Learning Machines, Morgan Kaufmann Publishers,

San Mateo, California, 1990.

[56] T. Kohonen, "An introduction to neural computing," Neural Networks, Vol. 1, 1988, pp.3-16.

[57] M.A. Sartori and P.J. Antsaklis, "A simple method to derive bounds on the size and to train multilayer

neural networks," IEEE Transactions on Neural Networks, vol. 2, no. 4, July 1991, pp. 467-471.

[58] M. S. Dawson, A. K. Fung and M. T. Manry. (1993, Surface parameter retrieval using fast learning

neural networks. Remote Sens. Rev. 7(1), pp. 1-18.

51

[59] M. S. Dawson, J. Olvera, A. K. Fung and M. T. Manry. Inversion of surface parameters using fast

learning neural networks. Presented at IGARSS'92.

[60] A. K. Fung, Z. Li and K. S. Chen. (1992, Backscattering from a randomly rough dielectric surface.

IEEE Trans. Geosci. Remote Sens. 30(2), pp. 356-369.

[61] A. K. Fung. (1994), Microwave scattering and emission models and their applications. Norwood, MA:

Artech House, 1994.

[62] Y. Oh, K. Sarabandi and F. T. Ulaby. (1992, An empirical model and an inversion technique for radar

scattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens. 30(2), pp. 370-381.

[63] W. Gong, H. C. Yau, and M. T. Manry, "Non-Gaussian Feature Analyses Using a Neural Network,"

Progress in Neural Networks, vol. 2, 1994, pp. 253-269.

52

BIOGRAPHICAL INFORMATION

Jignesh Patel was born in 1989. He did his Bachelor of Engineering from Dharmsinh Desai University,

Nadiad, Gujarat in Electronics and Communication Engineering in May 2010. He obtained his Master of

Science degree in Electrical Engineering from the University of Texas at Arlington in May 2012.

