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ABSTRACT 

 

APPLICATION OF ELLIPSE FOR HORIZONTAL ALIGNMENT 

 

Farzin Maniei, M.S. 

 

The University of Texas at Arlington, 2012 

 

Supervising Professor:  Siamak Ardekani 

 In highway design, horizontal alignments provide directional 

transition of roadways. Three categories of horizontal transition curves are simple 

circular curves, compound circular curves, and spiral circular curves. Compound 

and spiral curves, as alternatives to a simple circular curve, are often more costly 

since they are longer in length and require additional right-of-way.  These costs 

differences are amplified at higher design speed. This study presents calculations 

associated with using a single elliptical arc in lieu of compound or spiral curves in 

situations where the use of simple circular curves is not prudent due to driver 

safety and comfort considerations. The study presents an approach to 
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analytically determine the most suitable substitute elliptical curve for a given 

design speed and intersection angle.  

 Computational algorithms are also provided to stake out the elliptical 

curve. These include algorithms to determine the best fit elliptical arc with the 

minimum arc length and minimum right-of-way; and algorithms to compute chord 

lengths and deflection angles and the associated station numbers for points 

along the elliptical curve.  

These algorithms are next applied to an example problem in which 

elliptical curve results are compared to the equivalent circular curve and spiral-

circular curve results.  According to this comparison, the elliptical curve not only 

provides a smoother and safer transition, but also shortens the length of the 

roadway.  However, the right-of-way requirement for the elliptical curve for this 

specific example is slightly higher than the right-of-way for the equivalent circular 

and spiral-circular curves. An added advantage of using an elliptical horizontal 

curve is found to be a smoother transition in cross-section from the normal crown 

to full superelevation, as this transition can be achieved more gradually through 

the entire length of the elliptical arc. The transition is likely to be more 

aesthetically pleasing as well.   
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CHAPTER 1 

INTRODUCTION OF HORIZONTAL CURVES 

1.1 Introduction and Problem Definition 

 First, in this chapter, horizontal alignment is defined. The circular curve, 

as the simplest horizontal curve, is introduced and equations relating to circular 

curve calculations are tabulated. Transition curves are also discussed. 

Transition curves are used to provide a smooth transition between the tangent 

section and horizontal curves when the rate of change of radial acceleration is 

too great, as specified by the American Association of State Highway and 

Transportation Officials (AASHTO). Finally, the origin of applying an ellipse as a 

horizontal highway curve is discussed. 

Using compound curves, as horizontal curves, could be problematic in 

terms of right-of-way cost and calculations. Horizontal alignments which avoid 

these complexities are always preferred, provided that driver safety is not 

compromised. While this favors the use of simple circular curves, the use of 

such curves is not always possible due to driver safety and comfort 

requirements. A key question, therefore, is whether or not there are other single 

curves that may be used in lieu of compound curves or spiral-circular 

combinations. This thesis examines the potential applicability of an elliptical arc 

as an alternative to the spiral-circular or compound circular curves. The use of a 
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single elliptical arc in situations where a single circular curve is not feasible may 

offer advantages in terms of smoother transitions and possible ROW savings. 

Sometimes, looking at nature offers clues to deal with problems. In 

astronomy, planetary motion reminds us of some similarities. Considering 

planetary orbits, both centrifugal and centripetal forces are subjected to planets. 

For example, the planet Earth experiences an outward force called centrifugal 

force which represents the effect of inertia that arises in connection with the 

rotation. On the other hand, our planet is subjected to gravitational forces, as 

given by the relation below (Grant and Phillips, 2001, p. 134): 

 � = (
) (�
)(��)��  (1.1) 

in which 

� = Gravitational force between �
 and ��  

�� = magnitude of mass �. 

 = Gravitational constant   

� = Distance between �
 and ��. 

For the Earth, the centripetal force is supplied by this gravitational force. 

As we know, the Earth’s orbit is not a perfect circle. Johannes Kepler 

discovered that the orbits of planets around the Sun are elliptical (Grant et al., 

2001, p. 145). Considering the Earth as a dynamic object on an elliptical orbit 

around the Sun raises the question of whether vehicles could also have an 

elliptical trajectory from PC to PT. If so, would there be inherent advantages to 
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elliptical curves in terms of safe and smooth angular transitions as well as right-

of-way advantages? 

 

1.2 Horizontal Alignments  

 In highway design, horizontal alignment, which provides for a directional 

transition of roadway is typically a circular curve connecting two straight 

sections of the roadway, known as tangents. The angle between these two 

tangents is called the intersection angle and the point of intersection is 

abbreviated to PI. Mostly, the basic form of a horizontal alignment consists of a 

circular curve and two transition curves forming a curve which joins two 

straights lines. In some cases, the transition curve has zero length (i.e. it is not 

needed) and the horizontal curve is a single circular curve. 

 
Figure 1.1 A schematic diagram of a horizontal curve with and without transition 

curves 
 

The most important factor in designing roadways is the design speed. 

Let us suppose that such a horizontal curve is already provided. When a vehicle 

goes around a curve like this, it experiences a lateral force known as the 
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centrifugal force. This centrifugal force, caused by the change in the direction of 

the velocity vector, pushes the vehicle outward from the center of curvature of 

the curve. The vehicle is also subjected to an inward radial force which is called 

the centripetal force. In fact, the centripetal force is always directed orthogonally 

to the velocity vector of the vehicle, toward the instantaneous center of 

curvature of the curve. At high speeds, the centripetal force acting inward may 

be inadequate to balance the centrifugal force acting outward without any 

assistance. To handle this problem, the angle of incline of roadway, known as 

the superelevation angle � (or bank angle) is provided (Garber and Hoel, 2002, 

p. 70). As shown in Figure 1.2, F� is the side friction force between the vehicle 

and the surface of the roadway, and N is the reaction to the weight of the 

vehicle normal to the surface of the roadway. F� is the centrifugal force acting 

horizontally on the vehicle and has a magnitude of ((m)(	v�) �⁄ ), where m is the 

mass of the vehicle. On the other hand, all forces shown in Figure 1.2 should be 

in equilibrium. They can be resolved along the angle of incline of the road 

(Garber et al., 2002, p. 70):  

 (m)(v�)R = (m)(g)(sin e) + (m)(g)(f$%&')(cos e) (1.2) 

 
Since � is a small angle, we have: 

 sin e ≈ e	(in	rad. )	and cos � ≈ 1. (1.3) 

Then: 

 (m)(v�)R = (m)(g)(e) + (m)(g)(f$%&')	, (1.4) 
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and  

 v�	R � 	g�	e " f$%&'�. (1.5) 

Therefore (Garber et al., 2002, p. 71):  

 R � v�	g�	e " f$%&'�	. (1.6) 

This � is the minimum radius that should be provided for a roadway with 

a design speed of 1 and a superelevation of	�. 

 
Figure 1.2 Centrifugal and centripetal forces 
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1.3. Circular Curves 

 One type of horizontal alignment is the circular curve, which is the 

simplest curve to connect two straight lines. As the name implies, the curve is a 

segment of a circle with radius R. This radius should satisfy the equation below: 

 R2�3 � v�	g�	e " f$%&'�	. (1.7) 

As shown in Figure 3, the point at which the circular curve begins is 

known as the point of curvature, abbreviated as PC. As stated earlier, the 

intersection of the two tangents is called the PI. The point at which the circular 

curve ends is known as the point of tangency, abbreviated as PT. 

 
Figure 1.3 A circular curve and its elements. 
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To define a circular curve fitted to the tangents, we first need to know the 

degree of the curve. Here, this simple circular curve is described either by its 

radius (for example, 300-ft-radius curve) or by the degree of the curve. If ∆ is 

the angle in radians subtended at the center by an arc of a circle, then the 

length of that arc would be (Garber et al., 2002, p. 708): 

 5 � 	∆�	��	. (1.8) 

 Assume that D is the degree of the curve which represents a 100-ft 

circular arc. If D is the angle in degrees, then (Garber et al., 2002, p. 708-709): 

 6°360° = 100(2)(<)(�). (1.9) 

Therefore, 

 6° = 5729.6� , (1.10) 

where � is in feet. 

 Thus, the radius of the curve can be determined if the degree of the 

curve is known. As mentioned above, we can also define the degree of curve 

using the chord length, which is the length of a line segment connecting the PC 

to another point on the circular curve. The chord length defines the degree of 

the curve in terms of the angle subtended at the center by a chord of 100 ft. in 

length (Figure 1.3). In this case (Garber et al., 2002, p. 708), “the radius is given 

as: 

 � = 50
sin @6A 2B C	 (1.11) 
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where 6A is the angle in degrees subtended at the center by a 100-ft chord. The 

arc definition is commonly used for highway work, and the chord definition is 

commonly used for railway work.”  

 Referring to Figure 1.3 and using the properties of a circle, the relations 

in Table 1.1 can be derived based on the arc definition of D. 
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Table 1.1 Circular Curve Relations (Garber et al., 2002, pp. 708-712) 
Equation Comments 

D � 	E� FGHI ∆JK Tangent 

L � MNOOOPE 			FL � QRJS. TE K Degree of Curve – Central angle 
which subtends a 100 ft. arc U = PMNO (∆)(E) Length of Curve 

U = MOOF∆LK  

V = (D) FGHI ∆WK = (E) FXYZX[	 \JK External 

] = EFM − _`a∆JK = E	 FbXcZ \JK Mid-Ordinate 

d = (E)(aeI f)  

g = (E)(M − _`af)  

h = (J)(E) FaeI ∆JK Long Chord 

[ = (J)(E) FaeI fJK Chord 

i = fJ Deflection Angle 

f = FUjc[E K FMNOP K 
The angle between any two points 

chosen on a curve 

kcXjlm_G`n = FUJK (E) = (P)(EJ) F ∆oTO°K 
Sector is bounded by two radii and 

the included arc of the circle. 

kcXjlmpqmIG = rEJJ sr(P)(∆)MNO° − aeI ∆s 
Segment is between the chord and 

arc of a circle. 

kcXj_tnum/wHIp = FD − UJK (E) Area between the arc and the 
tangents. 
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1.4. Transition Curve 

 Another type of horizontal alignment is the transition curve, used to 

connect the curved and the tangent sections of the roadway. Transition curves 

can also be used to connect two circular curves where the difference in radius 

is large. The radial acceleration experienced by vehicles travelling at a given 

velocity of 1 changes the centrifugal force form zero on the tangent to 	1� �⁄  on 

the circular curve. The form of transition curve should be such that the rate of 

change of the radial acceleration along the transition curve is constant to 

provide a smooth maneuver for vehicles (Garber et al., 2002, p. 719-920).  

 In fact, the radius of curvature of a transition curve gradually decreases 

from infinity at the intersection of the tangent and the transition curve to the 

designated radius � at the intersection of the transition curve with the circular 

curve. The minimum length of spiral recommended by AASHTO for a horizontal 

curve of radius � is given by (Garber et al., 2002, p. 720): 

 xy � 	3.15)(z{)(�)(�)  
(1.7) 

 
where 

xy = minimum	length	of	transition	spiral	(ft)	
z = design	speed	(mph)	
� = radius	of	curvature	(ft)	
� = rate	of	change	of	centripetal	acceleration	(ft sec{⁄ ). 
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� is an important factor indicating the level of comfort and safety involved. A 

higher value of xy  provides a smoother and easier transition from the tangent to 

the circular curve. Therefore, the smaller the value of �, the smoother the 

transition. The most common values of � are between 1 to 3 ft sec{⁄ . According 

to AASHTO, a desirable value of � for railroad design and high design speed 

highways is 1	ft sec{⁄ . According to AASHTO (2004), under operational 

conditions, the most desirable length of a spiral curve is approximately the 

length of the natural spiral path used by drivers as they traverse the curve. 

Based on this, AASHTO recommends lengths of spiral curves shown in Table 

1.2. 

As discussed earlier, the highway surface on circular curves needs to be 

superelevated to deal with the effect of centrifugal force. The length of highway 

section required to achieve a full superelevated section from a section with 

adverse crown removed or vice versa, is known as the superelevation runoff. 

Depending on the design speed, the rate of superelevation, and the width of 

pavement, the length of superelevation runoff varies. In those design cases 

where spiral curves are needed, AASHTO recommends that the superelevation 

runoff be achieved over the length of the spiral curve. Based on this 

recommendation, the length of the spiral curve should be the length of the 

superelevation runoff, as shown in Table 1.3. Another possible advantage of 

using a single elliptical arc is ample length to develop the full superelevation, as 
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the full superelevation will only be needed at the middle of the arc where the 

radius is the tightest. 

Table 1.2 Spiral lengths corresponding to design speed (AASHTO, 2004). 
Design Speed (mph) Spiral Length (ft.) 

15 44 

20 59 

25 74 

30 88 

35 103 

40 117 

45 132 

50 147 

55 161 

60 176 

65 191 

70 205 

75 220 

80 235 
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1.5. Problem with Compound Curves 

A compound curve is a combination of two or more simple curves. These 

curves will be used when simple circular curves cannot be used. In some 

cases, transition curves should be used to provide smoother and easier 

transition. As described above, more consideration and calculations are 

necessary to fit appropriate curves to provide a smooth and safe transition.  

           Another problem with the compound curves relates to the Right-of-Way. 

Right-of-Way is the strip of land upon which a roadway or railroad will be 

constructed. Right-of-Way can also include additional land purchased for the 

purpose of future expansion. For roadways with high design speed, exclusive 

use of compound curves is often impractical due to a large amount of right-of-

way, which results in excessive cost. The most high-speed turning roadways 

include a combination of tangents and curves. Applying this approach, the 

design should consider the right-of-way acquisition costs in addition to the 

driver comfort and safety.  The next chapter will discuss the use of single 

elliptical arcs in lieu of spiral-circular or compound circular curves. 
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Table 1.3. Tangent runout length corresponding to design speed for different 
superelevation rates (AASHTO, 2004, p. 192) 

 Tangent Runout Length (ft.) 

 Superelevation Rates  

Design Speed 

(mph) 
2% 4% 6% 8% 10% 

15 44 - - - - 

20 59 30 - - - 

25 74 37 25 - - 

30 88 44 29 - - 

35 103 52 34 26 - 

40 117 59 39 29 - 

45 132 66 44 33 - 

50 147 74 49 37 - 

55 161 81 54 40 - 

60 176 88 59 44 - 

65 191 96 64 48 38 

70 205 103 68 51 41 

75 220 110 73 55 44 

80 235 118 78 59 47 
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CHAPTER 2 

USE OF ELLIPTICAL CURVES FOR HORIZONTAL ALIGNMENT 

2.1 Introduction 

In this chapter, we will discuss use of ellipses as horizontal alignment 

curves. This includes a general discussion of properties of ellipse and how to 

find an appropriate elliptical curve that provides smooth and safe transition from 

the PC to PT. Also, discussions of chord length and deflection angle 

calculations for an elliptical arc are presented. 

 

2.2 Ellipse and Its Properties 

Mathematically speaking (Larson and Edwards, 2010, p. 700), an ellipse 

is the set of points in a plane the sum of whose distances from two points �
 

and �� is constant (see Figure 2.1). Each of these two fixed points is called the 

focus. One of the Kepler’s laws is that the orbits of the planets in the solar 

system are ellipses with the sun at one focus.  
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Figure 2.1. An ellipse. 

 
In order to obtain the simplest equation for an ellipse, we place the foci 

on the x-axis at the points 	^�, 0� and 	�, 0� as in Figure 2.2 so that the origin, 

which is called center of ellipse, is halfway between �
 and ��.  Let the sum of 

the distances from a point on the ellipse to the foci be 2� � 0. Let us suppose 

that  �	�, �� is any point on the ellipse. According to the definition of the ellipse, 

we will have: 

 |��
| " |���| � 2� (2.1) 

that is,  

 �	� " ��� " �� " �	� ^ ��� " �� � 2� (2.2) 

or 

 �	� " ��� " �� � 2� ^	�	� ^ ��� " ��	. (2.3) 

Squaring both sides, we get: 
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�� ^ 	2)(�)(�) + �� + ��

= (4)(��) − (4)(�) ��(� + �)� + ��� (��) 
																	+2�� + �� + ��.

(2.4) 

We square again to obtain: 

 
(��)(�� + (2)(�)(�) + �� + ��) = 

																																																								�� + (2)(��)(�)(�) + (��)(��) (2.5) 

or 

 (�� − ��)(��) + (��)(��) = (��)(�� − ��)	. (2.6) 

 From triangle �
��� in Figure 2.2, we see that 2� < 2�, so � < � and 

therefore �� − �� > 0 . For convenience let �� = �� − ��. Then the equation of 

the ellipse becomes  

 (��)(��) + (��)(��) = (��)(��). (2.7) 

Dividing both sides by ����, we have: 

 ���� + ���� = 1	. (2.8) 

 
 Since �� = �� − �� <	��, it follows that � < �. The x-intercepts are found 

by setting � = 0. Then �� ��⁄ = 1, or �� = ��, so � = ±	�. The corresponding 

points (�, 0) and (−�, 0) are called the vertices of the ellipse and the line 

segment joining the vertices is called the major axis. To find the y-intercepts, 

we set � = 0 and obtain �� = ��, so � = ±�. Equation (2.8) is unchanged if � is 

replaced by −� or � is replaced by −�, so the ellipse is symmetric about both 

axes. Notice that if the foci coincide, then � = 0 and � = � and the ellipse 

becomes a circle with radius � = � = �. 
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Figure 2.2 Cartesian components of a point on ellipse with center at the origin 

 
In mathematics, there is a parameter for every conic section called 

eccentricity (Larson et al., 2010, p. 701). Eccentricity shows how much the 

conic section deviates from being a circle. An ellipse as a conic section has its 

own eccentricity �, which is calculated using the formula below (Larson et al., 

2010, p. 701): 

 � � ��	, (2.9) 

 
in which: 

� =  eccentricity of ellipse, 

� = length of major axis, 

� � 	√�� ^ ��. 
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In mathematics texts, the eccentricity is denoted by e or �. In this text, we 

use � to denote the eccentricity of an ellipse in order to avoid confusion 

between eccentricity and superelevation.  

 

2.3 Circular Curve, Design Speed, and Superelevation 

 As shown in Chapter 1, the relation between the radius of circular curve, 

the design speed, and the superelevation is expressed by the equation below: 

 R = v�(g)(e + f$%&')	. (2.10) 

According to this relation, AASHTO tabulates values of the minimum 

radius of circular curves required for each combination of superelevation, side 

friction factor, and design speed.  

Therefore, the desired elliptical curve should, as a minimum, satisfy the 

minimum radius curve required by AASHTO. This brings us to one of our 

constraints to find an appropriate elliptical curve. Before considering this and 

other constraints, we should determine what distance should be considered as 

the “radius” of an ellipse. To do this, we would use the polar coordinate system. 

In the polar coordinate system, there are two common equations to 

describe an ellipse depending on where the origin of polar coordinates is 

assumed to be. As shown in Figure 2.3, if the origin of the polar coordinates is 

located at the center of the ellipse and the angular coordinate � is measured 

from the major axis, then the ellipse’s equation will be: 
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 �	�� � 	��	��
�	� cos ��� " 	� sin ���	. (2.11) 

 
Figure 2.3 Polar coordinates system with origin at center of the ellipse 

 
On the other hand, if the origin of polar coordinates is located at one 

focus and the angular coordinate � is still measured from the major axis, then 

the ellipse’s equation will be:  

 �	�� � 	��	1 ^ ���1 � 	��	cos �� (2.12) 

 
where the sign in the denominator will be negative if the reference direction is 

from � � 0 towards the center. The sign in the denominator is positive if the 

reference direction points away from the center. 
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Figure 2.4 Polar coordinates system with origin at foci of the ellipse 

 
From the astronomical point of view, Kepler’s laws claimed that the orbits 

of planets in a solar system are ellipses with a sun at one focus. Thus, the 

ellipse’s polar equation (2.6), where the origin of the polar coordinates is 

assumed at one focus, will be helpful to describe the desired elliptical arc. 

Figure 2.4 shows that the minimum radius of the desired ellipse with 

respect to the foci �� is � ^ �. Since � 	��	�� , then we have:	� ^ � � � ^
	��	�� � 	��	1 ^ ��	. On the other hand, the minimum radius should not be 

smaller than the minimum radius �2�3 recommended by AASHTO. Thus, we 

have: 

 	��	1 ^ �� � �2�3	. (2.13) 

Actually, we are looking for an elliptical curve to connect the PC to PT 

which would be an arc of an ellipse that satisfies the inequality below as a 

constraint: 
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 	��	1 − �) = �2�3	. (2.14) 

Therefore, we should first find an appropriate ellipse and then identify the 

desired arc to be used as a highway curve. In our design problem, the known 

parameters are location of PI, the angle ∆, and the design speed. Based on the 

known design speed, we can read a value for �2�3 recommended from the 

design tables provided by AASHTO. With �2�3 known, we now need to identify 

an equivalent elliptical arc. In equation (2.14), we have two unknown variables 

relating to the ellipse. Using numeric methods, we can find all pairs of (�, �) 
which satisfy our constraint by inserting acceptable values for � and solving the 

equation for �. The eccentricity of ellipse, � ranges from 0 to 1. To make a finite 

set of value for �, we should consider only one or two decimal points for 

eccentricity depending on the level of accuracy required. 

By having the major axis � and the eccentricity �, the equivalent ellipse 

can be easily identified. We know that 

 � = ��� − ��	. (2.15) 

But � = (�)(�), then 

 � = (�) ��1 − ���. (2.16) 

One of the constraints indicates that the arc of the ellipse should be 

tangent to the PT and the PC. Therefore, the slope of the tangent line on the 

ellipse at the PC and PT has to be the same as the slope of the tangent line 

passing through the PI. 
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 To identify an arc, just two points are needed. We first start with finding a 

point on the ellipse where the slope of the tangent line is the same as the slope 

of the line passing through PI and PT or PI and PC, called �
.Then, the location 

of the other point can be identified by drawing a line starting at the end of the 

first line and ending at a point on ellipse so that the angle between these two 

lines provides the desired intersection angle ∆. 

 Another constraint is an aesthetic factor required by AASHTO. According 

to AASHTO, symmetric design enhances the aesthetics of highway curves. 

Therefore, a symmetric arc of the ellipse is desirable to meet the aesthetics 

requirement. 

 
Figure 2.5 A schematic diagram of the ellipse desired  

 
Since the desired arc should be symmetrical, the arc must be symmetric 

with respect to either the major axis or the minor axis of the ellipse. In addition, 

the desired arc should have the shortest length among all possible arcs of the 
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same ellipse. Thus, the desired arc is symmetric with respect to the major axis 

of the ellipse because the length of the elliptical arc with respect to the major 

axis would be of minimum length. Let us assume a hypothetical ellipse in the 

Cartesian coordinates system with the center at the origin and the foci on the y-

axis. Suppose that the desired arc is the smallest arc between points � �
	�
, �
� and � � 	��, ���. Since the arc is symmetric with respect to the major 

axis, which lies on the y-axis, we have �
 � ^��, and �
 � ��	. 

 
Figure 2.6 An arc of ellipse needed to connect PC to PT 

 
Let us also assume that the slope of the tangent line at points � �

	�
, �
� and � � 	��, ��� are �
	and ��, respectively. So,	�
 � ^��. As shown 

in Figure 2.6, the long chord for the desired arc of the ellipse and the tangent 

lines form an isosceles triangle since: 
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 �
� � �
� �	∆2	. (2.17) 

Then, 

 ��� = ��� = 180 −	∆2	. (2.18) 

 

Therefore,  

 �
 = tan F180 −	∆2K, (2.19) 

and 

 �� = − tan F180 −	∆2K. (2.20) 

On the other hand, the equation of the ellipse in the Cartesian coordinate 

system is: 

 ���� + ���� = 1. (2.21) 

By taking the derivative of the ellipse equation, the slope of the tangent 

line at any arbitrary point of the ellipse is: 

 ���� = −(��)(�)(��)(�) 	. (2.22) 

 

 

From the ellipse equation, y-coordinate of any point on the ellipse is: 

 � = ±���� ���� − ���. (2.23) 

By substituting equation (2.23) in the equation (2.22), we will have: 
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��
�� � ^	���	��

	���	�� 	� ^	���	��
	��� ���� �√�� ^ ��� �

^	��	��
	���√�� ^ ���	. (2.24) 

Therefore, 

 �
 =	 −(�)(�
)(�)���� − �
��	. (2.25) 

Thus, 

 �
 = (�
)(��)��� + (�
�)(��)	, (2.26) 

and 

 �
 = ���� r��� − �
�s	. (2.27) 

As a result, the location of point � = (��, ��) will be determined to be: 

 
�� = −�
 = −(�
)(��)

��� + (�
�)(��) (2.28) 

and  

  �
 = ��. (2.29) 

Consequently, any desired arc of the ellipse can be found by having the 

slope (direction) of the tangent lines and the intersection angle between them. 
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2.4 Length of the Arc of an Ellipse 

 To minimize the ROW, the minimum length arc is desired that meets all 

requirements. In the previous section, a method was introduced to identify an 

arc that only satisfies the tangent lines constraint. After this, the resulting arc 

should be checked to ensure it is the minimum-length arc. 

 To find the length of an ellipse arc, the polar coordinate system is again 

useful. It is proven (Larson et al., 2010, p. 704) that the length of an ellipse arc 

between 0 and  � can be found from the following integration: 

 �	�, �) = �� �1 − ������ ¡
¢ 		�  (2.30) 

in which 

�: is the length of the major axis of the ellipse; 

�: is the eccentricity of the ellipse; and 

�(�, �): is the length of the arc of an ellipse with eccentricity of �,        
between 0 and  �. 

To be able to use this integration, we need to know the coordinates of 

points � and � in the polar coordinate system. Since � = (�
, �
) and � =
(��, ��), the polar coordinates of points � and � will be easily gained by 

applying trigonometry, namely, 

 �
 = tan¤
 F�
�
K , �
 = ��
� + �
�	; (2.31) 

and 

 �� = tan¤
 F����K , �� = ���� + ���	. (2.32) 
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Now, let us define the length of the arc as: 

 x¦,§(�
, ��) = �(��, �) − 	�(�
, �) 
 

(2.33) 

in which 

�
= the angle at which the ellipse arc starts; 

��= the angle at which the ellipse arc ends; 

x¦,§(�
, ��) = is the length of the arc starting at angle �
 and ending at �� 

on an ellipse with major axis � and the eccentricity of �. 
 

2.5 Area of an Ellipse Sector and the Right-Of-Way 

 As described, there are two ellipse sectors commonly used: one is 

defined with respect to the center of the ellipse and the other can be defined 

with respect to each focus. The ellipse equation in the polar coordinate system 

with respect to the center is: 

 �(�) = (�)(�)�(� cos �)� + (� sin �)�	. (2.34) 

Also, the ellipse equation can be written with respect to each focus as: 

 �(�) = (�)(1 − ��)1 ± � cos �  
(2.35) 

 

where the sign in the denominator will be negative if the reference direction is 

from � = 0 towards the center. The sign in the denominator is positive if the 

reference direction points away from the center.  
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Therefore, the areas of the ellipse sector with respect to the center and 

foci, respectively, are 

 

			�¨,§	�
, ��� � � 12 ��	��	. ��	
¡©
¡ª

� 	� 		��	����2«	� cos ��� " 	� sin ���¬	 . ��	
¡©
¡ª

 

(2.36) 

 
and 

 

 

				�¨,§	�
, ��� � � 12 ��	��	. ��	
¡©
¡ª

�	� ��	1 ^ ����2«1 � � cos �¬� 	 . ��	.
¡©
¡ª

 

(2.37) 

Figures 2.7 and 2.8 show each case: 

 
Figure 2.7 Sector of ellipse with respect to the center 
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Figure 2.8 Sector of ellipse with respect to the foci 

 
Let us assume the width of right-of-way is 100 ft., 50 ft. on each side of 

the centerline. Since the ellipse arc is supposed to be found with respect to one 

of the foci, the ellipse’s equation with respect to the same focus should be used 

to calculate the area of the sector. In Figure 2.9, the shaded strip shows the 

right-of-way for an arbitrary ellipse arc. The right-of-way can be calculated as: 

�­® � � 12 	�	�� " 50����		 ^ 	� 12 	�	�� ^ 50����¡©
¡ª

	¡©
¡ª

	

												� 12� ¯r	��	1 ^ ���	1 � � cos � " 50s� ^ r	��	1 ^ ���	1 � � cos � ^ 50s�° ��	¡©
¡ª

 

 

(2.38) 
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2.6 Chord Length and Deflection Angle Calculations 

 Assuming that the desired arc of an ellipse connecting the PC to PT is 

identified, the next step is the calculation of the chord length and deflection 

angle. In Figure 2.10, the chord length, xA	, and the deflection angle, ±, are 

schematically shown. Using the polar equation of the ellipse with respect to the 

center of the ellipse, we know that: 

 �	�� � 	��	��
�	� cos ��� " 	� sin ���		. (2.39) 

 

 
Figure 2.9 Right-Of-Way 

 

As shown in Figure 2.10, ­�, �6, and 6­ form the triangle ­�6. The 

length of ­� and 6­ can be calculated by inserting �
 and �� in the polar 
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equation of the ellipse. Let us suppose that the deflection angles need to be 

calculated in decrement of ² from 	�� to �
. Therefore, the angle between ­� 

and 6­ is ², as shown in Figure 2.10. Thus, the length of chord xA can be 

obtained by applying the Law of Cosines: 

 xA� � �	���� " �	�
�� ^ 2	�	�
�	�	��� cos(²), (2.40) 

 

Now, we need to find the deflection angle ±. According to the Law of Sines, in 

the triangle ­�6 we have: 

 
sin	(³)�(��) = sin	(²)xA 	. (2.41) 

Then: 

 ³ = sin¤
 r�(��) sin ²xA s 
(2.42) 

In Figure 2.10, we also have: 

 ´ = 180° − �
 (2.43) 

On the other hand, in triangle �6�: 

 
µ = 180° − ³ − ´	
				= 	180° − ³ − (180° − �
) = �
 − ³	. 

(2.44) 

Then, 

 			δ = B
 − 	β = 	∆2 −	(�
 − ³) = ∆2 −	�
 + ³.  (2.45) 
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Figure 2.10 Diagram of an ellipse arc 
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2.7 Locations of  �����, and �����  

 Referring to Figure 2.10, the locations of points � and � are known. 

Based on definition, the intersection of the lines tangent at points � and � will 

be the location of the �¹. The equations of tangent lines are: 

 Tangent	Line	at	A:		� = �
 + (�
)(� − �
)	, (2.46) 

and 

 Tangent	Line	at	B:		� = �� + (��)(� − ��)	. (2.47) 

By solving the system of equations below,  

 ½� = �
 + (�
)(� − �
)	� = �� + (��)(� − ��) (2.48) 

the location of �¹ can be determined. Note that �
, ��, �
, ��, �
, and �� are 

known. Let us suppose that point (�∗, �∗) is the intersection of tangent lines. 

Then: 

 �∗ = �
 − �� + (�
)(�
) − (��)(��)�
 −�� 								 (2.49) 

Since �
 = −�� : 

 �∗ = �
 − �� + (�
)(�
 + ��)2�
 		, (2.50) 

and 
 

 �∗ = �
 + (�
)(�∗ − �
). (2.51) 

 
Therefore, the length of tangent line � is: 

 � = �(�∗ − �
)� + (�∗ − �
)�	. (2.52) 
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2.8 Station Numbers Calculations for ¿ÀmÁÂ and ¿wmÁÂ 

 It is assumed that the station number of �¹ is given. As shown, the length 

of tangent, �, and the length of the ellipse arc, x¦���,can be calculated as: 

� � �	�∗ ^ �
�� " 	�∗ ^ �
��	; 

 

x¦��� � �	��, �) − �(�
, �)	
										= � r� �1 − ������ ¡©

¢ 		� 	 − � �1 − ������ ¡ª
¢ 		� s	. (2.53) 

 Therefore, 

 Ã �. #	@	¿ÀmÁÂ = 	Ã �. #	@	¿Æ	– 	T (2.54) 

and 

 Ã �. #	@	¿wmÁÂ = 	Ã �. #	@	¿ÀmÁÂ +	x¦ÈÉÊ . (2.55) 
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Figure 2.11 Location of PC and PT, and Length of Tangent Line 

 

The next chapter will present the procedure for staking out the elliptical 

arc. 
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CHAPTER 3 

STAKE-OUT PROCEDURE AND APPLICATION EXAMPLES 

3.1 Algorithm to Find the Minimum Arc of Ellipse Connecting PC and PT 

 As discussed in Chapter 2, the angle Δ, speed design zÌ and the location 

(station number) of �¹. are typically given. According to the equations derived, 

the following algorithm results in the desired arc of ellipse connecting PC to PT 

Algorithm (A): 

0. Angle ∆, design speed, zÌ, and location of PI are given. 

1. According to the design speed zÌ and minimum radius recommended 

by AASHTO, the value of �2�3 for zÌ is known.  

2. Start with eccentricity � of 0.1. 

3. Find the major axis,	�, by plugging � into  

 � = �2�31 − �	. (3.1) 

4. By applying equation below, calculate the minor axis, �: 

 � = (�) ��1 − ���	. (3.2) 

5. Find the slope of the tangent line at point A, �
: 

 �
 = tan F180 −	∆2K (3.3) 
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6. The slope of the tangent line at point B, �� is ^�
: 

 �
 � ^��. (3.4) 

7. Find the x-coordinate of point A, �
: 

 �
 = (�
)(��)
��� + (�
�)(��)	 

(3.5) 

8. Find the y-coordinate of point A, �
: 

 �
 = ������� − �
�	.	 (3.6) 

9. Determine �
 = tan¤
 �ÍªÎª�. 

10.  Determine �� = tan¤
 �Í©Î©�	. 
11.  Calculate the length of the elliptical arc,  

 x¦,§(�
, ��) = �(��, �) − 	�(�
, �) (3.7) 

        in which 

 �(�, �) = �� �1 − ������ ¡
¢ 		� 	 (3.8) 

12. Calculate the area of piece of ellipse, �¨,§(�
, ��): 
 �­® = 12� ¯r(�)(1 − ��)	1 ± � cos � + 50s�¡©

¡ª
− r(�)(1 − ��)	1 ± � cos � − 50s�° 	��.      (3.9) 
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13.  Repeat the preceding steps for new eccentricity � with increments of 

0.1 unit the current � is less than 1.0. 

 

14. Compare the length of the arc and the area of the piece of ellipse 

gained for each value of eccentricity �, and pick the eccentricity � with 

the minimum length of arc and area. This is the desired minimum 

length elliptical arc to be used. 

15. It is the elliptical arc we desire. 

 

3.2 Algorithm to Calculate Chords Length and Deflection Angles 

 After the desired elliptical arc is acquired, another algorithm is needed to 

stakeout the elliptical curve. To achieve this, chord lengths and deflection 

angles should be determined using the algorithm B, as follows: 

Algorithm (B): 

0. �
 and �� are gained by algorithm (A). 

1. Degree of curvature is: 

 6 �	 	�� ^ �
�	100)x¦,§(�
, ��) 	. (3.10) 

2. If 
(¡©¤¡ª)Ï  is integer, then 

 Ð = (�� − �
)6 	; (3.11) 

      Else  
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 Ð � Ñ	�� ^ �
�6 Ò	. (3.12) 

 

3. Get � = 1. 

4. ² = � × 6 

5. Get �∗ = �� − 	². 

6. Find the length of chord by applying the equation below: 

 (xA)� = ��(��)� + �(�∗)� − 2	�(��)	�(�∗) cos(²) (3.13) 

       in which 

 �(�) = (�)(�)�(� cos �)� + (� sin �)�	. (3.14) 

7. Find ³: 

 ³ = sin¤
 r�(��) sin ²xA s	. (3.15) 

8. Find deflection angle, δ�: 
 δ� = ∆2 −	�∗ + ³	. (3.16) 

9. � = � + 1 .  

10. Repeat step 4 and follow the algorithm until �	 ≤ Ð. 

11. Now, we have the deflection angles and their corresponding chord 

lengths. 
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3.3 Algorithm to Stake-out Station Numbers 

 As an output of Algorithm (A), the Cartesian coordinates of points � and 

�, respectively 	x
, y
) and (x�, y�), will be acquired. The respective slope 

tangent lines at points � and �, �
and ��, are determined. The following is the 

algorithm to find the station numbers: 

Algorithm (C): 

0. From Algorithm (A), we have coordinates of point � and �. We also 

know slopes �
, and ��. 

1. Find �∗: 
 �∗ = �
 − �� + (�
)(�
 + ��)2(�
) 	. (3.17) 

2. Find �∗: 
 �∗ = �
 + (�
)(�∗ − �
). (3.18) 

3. Calculate length of tangent,  �: 

 � = �(�∗ − �
)� + (�∗ − �
)�. (3.19) 

4. Station number of ¿ÀmÁÂ : 

 Ã �. #	@	¿ÀmÁÂ = 	� �. #	@	¿Æ	 − 	T	. (3.20) 

5. Station number of ¿wmÁÂ : 

 Ã �. #	@	¿wmÁÂ = 	Ã �. #	@	¿ÀmÁÂ +	x¦ÈÉÊ . (3.21) 

6. Station numbers along elliptical arc at any angle �∗: 
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 Ã �. #	@	��×x�		�∗ = 	Ã �. #	@	¿ÀmÁÂ +	x¦,§(�∗, ��) (3.22) 

       where x¦,§(�∗, ��) is the length of arc between angle �∗, ���	��.  

       Take this step, for each �∗ to find the corresponding station number. 

7. At this step, all station numbers will be obtained. 
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3.4 An Application Example 

 Let us assume that it is desired to connect the PC to PT through an 

elliptical arc such that ∆	� 120°, �2�3 = 1000	(ft), and Ã �. #	@	�¹	 = 40 + 40. 

First, the arc of ellipse should be found so that it satisfies the initial constraints. 

Applying the algorithm (A) yields with the results tabulated in Table 3.1. 

Comparing the length of the arc and the right-of-way area, the ellipse with 

� = 0.1 provides the minimum length and the minimum right-of-way. Therefore, 

the desired ellipse is an ellipse with major axis � of 1111.1 ft. and minor axis � 

of 1105.5 ft. Using the algorithm (B), chord lengths and deflection angles are 

hen obtained, as shown in Table 3.2. Finally, the algorithm (C) yields the station 

numbers to stakeout the elliptical curve, as shown in Tables 3.3.a. and 3.3.b.  In 

Table 3.4, a summary of all three algorithms is provided. 

 

 



 

 

 

Table 3.1  Results of Algorithm (A). 
 

E
cc

en
tr

ic
it

y 
Ø 

j 

(ft.) 

Ù 

(ft.) ∆ (d
eg

.)
 

Slope ÚM 

Point A Point B 

ÛM 
(deg.) 

ÛJ 
(deg.) 

Ü j,Ø(Û
M,Û J

) (ft.
) 

EÝÞ) 
(Sq.ft.) 

 YM 
(ft.) 

ßM 
(ft.) 

YJ 
(ft.) 

ßJ 
(ft.) 

 0.1 1111.1 1105.5 120 -1.734 956.5 557.1 -956.5 557.1 30.22 149.78 2318.9 252,894 

 0.2 1250.0 1224.7 120 -1.734 1055 635.2 -1055 635.2 31.06 148.94 2570.2 308,832 

 0.3 1428.6 1362.8 120 -1.734 1166 739.3 -1166 739.3 32.37 147.63 2869.8 385,238 

 0.4 1666.7 1527.5 120 -1.734 1293 887.3 -1293 887.3 34.46 145.54 3219.2 492,565 

44 

0.5 2000.0 1732.1 120 -1.734 1442 1108 -1442 1108 37.54 142.46 3636.5 652,790 

0.6 2500.0 2000.0 120 -1.734 1622 1462 -1622 1462 42.04 137.96 4131.2 909,085 

 0.7 3333.3 2380.5 120 -1.734 1852 2094 -1852 2094 48.52 131.48 4734.7 1,369,860 

 0.8 5000.0 3000.0 120 -1.734 2163 3466 -2163 3466 58.04 121.96 5467.8 2,366,885 

 0.9 10000.0 4358.9 120 -1.734 2628 7976 -2628 7976 71.8 108.20 6283.4 5,593,074 
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Table 3.2 Results of Algorithm (B). 

Û∗ 
(deg.) 

c	Û∗� 
(ft.) 

à 
(deg.) 

á 
(deg.) 

Deflection Angles fâ  (deg.) 
Chord Length 	Ü[�â (ft.) 

149.80 1106.9 0.00 149.80 0 0.0 
144.64 1107.4 87.16 57.48 2.52 99.6 

139.49 1107.9 84.57 54.91 5.09 199.1 

134.33 1108.4 81.99 52.33 7.66 298.2 

129.17 1108.9 79.41 49.76 10.24 396.7 

124.02 1109.4 76.84 47.18 12.82 494.5 

118.86 1109.8 74.26 44.59 15.41 591.3 

113.70 1110.2 71.69 42.01 17.99 686.9 

108.55 1110.5 69.13 39.42 20.58 781.2 

103.39 1110.8 66.56 36.82 23.18 873.8 

98.23 1111.0 64.00 34.23 25.77 964.7 

93.08 1111.1 61.44 31.63 28.37 1053.6 

87.92 1111.1 58.88 29.03 30.96 1140.4 

82.76 1111.0 56.32 26.44 33.56 1224.8 

77.60 1110.9 53.76 23.84 36.16 1306.6 

72.45 1110.6 51.21 21.24 38.76 1385.7 

67.29 1110.3 48.65 18.64 41.36 1462.0 

62.13 1109.9 46.09 16.04 43.96 1535.2 

56.98 1109.4 43.53 13.45 46.55 1605.3 

51.82 1109.0 40.97 10.85 49.15 1672.1 

46.66 1108.5 38.40 8.26 51.74 1735.4 

41.51 1108.0 35.84 5.67 54.33 1795.2 

36.35 1107.5 33.27 3.08 56.92 1851.3 

31.19 1107.0 30.70 0.50 59.50 1903.7 

30.22 1106.9 30.21 0.01 59.99 1913.2 

 
 
 
 

 



 

46 

 
Table 3.3 Results of algorithm (C) - initial part. 

ÛM 
(deg.) 

ÛJ 
(deg.) 

Intersection 
of Tangent 

Lines D 
(ft.) 

ãmnmm	`ä	ÀtnuHGtnm, L 
(deg.) N Y∗ 

(ft.) 

ß∗ 
(ft.) 

30.22 149.78 0 2216.0 1914.9 5.16 24 

 
 

Table 3.4 Results of algorithm (C) - second part. lGH. #	@	¿Æ w	(ft. ) lGH. #	@	¿ÀmÁÂ ÁHmÁÂ(ft. ) lGH. #	@	¿wmÁÂ 

40+40.0 1914.9 21+25.1 2318.9 44+44.0 
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Table 3.5 Stakeout Table. 

 â Station 
Numbers 

Û∗ 
(deg.) 

c	Û∗� 
(ft.) 

Deflection 
Angles 
(deg.) fâ 

Chord 
Length 

(ft.) 	Ü[�â 
Length of 
Arc (ft.) Üj,Ø(Û∗, ÛJ) 

lGH. #	@	¿ÀmÁÂ 1 21+25.1 149.80 1106.9 0 0.0 0.0 

 2 22+25.1 144.64 1107.4 2.52 99.6 100.0 

 3 23+25.1 139.49 1107.9 5.09 199.1 200.0 

 4 24+25.1 134.33 1108.4 7.66 298.2 300.0 

 5 25+25.1 129.17 1108.9 10.24 396.7 400.0 

 6 26+25.1 124.02 1109.4 12.82 494.5 500.0 

 7 27+25.1 118.86 1109.8 15.41 591.3 600.0 

 8 28+25.1 113.70 1110.2 17.99 686.9 700.0 

 9 29+25.1 108.55 1110.5 20.58 781.2 800.0 

 10 30+25.1 103.39 1110.8 23.18 873.8 900.0 

 11 31+25.1 98.23 1111.0 25.77 964.7 1000.0 

 12 32+25.1 93.08 1111.1 28.37 1053.6 1100.0 

 13 33+25.1 87.92 1111.1 30.96 1140.4 1200.0 

 14 34+25.1 82.76 1111.0 33.56 1224.8 1300.0 

 15 35+25.1 77.60 1110.9 36.16 1306.6 1400.0 

 16 36+25.0 72.45 1110.6 38.76 1385.7 1499.9 

 17 37+25.0 67.29 1110.3 41.36 1462.0 1599.9 

 18 38+25.0 62.13 1109.9 43.96 1535.2 1699.9 

 19 39+25.0 56.98 1109.4 46.55 1605.3 1799.9 

 20 40+25.0 51.82 1109.0 49.15 1672.1 1899.9 

 21 41+25.0 46.66 1108.5 51.74 1735.4 1999.9 

 22 42+25.0 41.51 1108.0 54.33 1795.2 2099.9 

 23 43+25.0 36.35 1107.5 56.92 1851.3 2199.9 

 24 44+25.0 31.19 1107.0 59.50 1903.7 2299.9 lGH. #	@	¿wmÁÂ 25 44+44.0 30.22 1106.9 59.99 1913.2 2318.9 
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Circular Curve SolutionThe  3.5 

  

 To provide highway horizontal alignment, using a circular curve is the most 

typical solution. Again, let us assume that it is desired to connect PC to PT, but this time 

through a circular curve such that ∆	� 120°, �2�3 = 1000	(ft), and Ã �. #	@	�¹. = 40 +
40.0.  According to the Table 1.1, the length of tangent line � is: 

 � = (�) tan F∆2K = (1000) tan F120°2 K = 1732.1	ft. (3.23) 

The length of arc x¦ is: 

 x¦ = � <180� (Δ)(	�) = � <180� (	120)(1000)
= 2094.4	ft. (3.24) 

 Therefore, the locations of PC and PT are as shown in Table 3.5 below: 

  

Table 3.6 Locations of PC and PT for circular curve. lGH. #	@	¿Æ T Sta. #	@	PC 	lè		 Sta. #	@	PT 

40+40.4 1732.1 23+07.9 2094.4 44+02.3 

  

Then, 

 Degree	of	Curvature	6 = 5729.6� = 5729.61000 = 5.73°	. (3.25) 

 Applying the formulas provided in Table 1.3, the resulting stakeout table is shown 

in Table 3.6. 
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Table 3.7 Stake-out Table for Circular Curve. 

 

� Station 
Numbers 

Deflection 
Angles (deg.) fâ 

Di 

(deg.) 

Chord 
Length (ft.) 	Ü[�â 

Length of 
Arc (ft.) Üj 

lGH. #	@	¿À 1 23+07.9 0.00 0.00 0.0 0.0 

 2 24+07.9 2.86 5.73 100.0 100.0 

 3 25+07.9 5.72 11.46 199.7 200.0 

 4 26+07.9 8.58 17.19 298.9 300.0 

 5 27+07.9 11.44 22.92 397.4 400.0 

 6 28+07.9 14.30 28.65 494.8 500.0 

 7 29+07.9 17.16 34.38 591.1 600.0 

 8 30+07.9 20.02 40.11 685.8 700.0 

 9 31+07.9 22.88 45.84 778.9 800.0 

 10 32+07.9 25.74 51.57 870.0 900.0 

 11 33+07.9 28.60 57.30 958.9 1000.0 

 12 34+07.9 31.46 63.03 1045.4 1100.0 

 13 35+08.0 34.32 68.76 1129.4 1200.1 

 14 36+08.0 37.18 74.49 1210.4 1300.1 

 15 37+08.0 40.04 80.22 1288.5 1400.1 

 16 38+08.0 42.90 85.95 1363.4 1500.1 

 17 39+08.0 45.76 91.68 1434.8 1600.1 

 18 40+08.0 48.62 97.41 1502.6 1700.1 

 19 41+08.0 51.48 103.14 1566.7 1800.1 

 20 42+08.0 54.34 108.87 1626.9 1900.1 

 21 43+08.0 57.20 114.60 1683.0 2000.1 lGH. #	@	¿w 22 44+02.2 60.00 120.00 1732.1 2094.3 
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3.6 Comparing Circular Curve Results with Elliptical Curve Results 

 In highway design terms, the length of horizontal alignment and right-of-way are 

two significant factors in evaluating the alternative design proposed. In Figure 3.1, both 

the elliptical curve and the equivalent circular curve are shown. The blue curve is 

circular curve. The elliptical curve is shown in red. Point A is the start point of the 

elliptical curve, �����.. Point B is the start point of the circular curve, ��. Point C is the 

end point of the circular curve. Point D is the end point of the elliptical curve, ��. 

According to the results gained for the same problem through the circular and elliptical 

approaches, the right-of-way for circular curve connecting A to D, shown in Figure 3.1, 

is: 

 �­®ê�ëAì�¦ë = (��íííí)(100) + 

(Δ)(<)360 «(�îê� + 50)� − (�îê� − 50)�¬ + (�6íííí)(100) (3.24) 

As shown in Figure 3.1, 

 ABíííí = CDíííí = FLCï − LC�2 Kð 1
cos �Δ2�ñ 

						= F1913 − 17322 Kð 1
cos �1202 �ñ = F1812 K (2) = 181	ft. 

(3.25) 

Then, 

 			�­®ê�ëAì�¦ë = (181)(100)
+ �<3� «(1000 + 50)� − (1000 − 50)�¬ 
+(181)(100) = 245,633	sq. ft. 

(3.26) 
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Length of roadway from A to D through circular curve is: 

 5óîêÏ � 5óî " 5îê " 5êÏ � ABíííí " x¦ê�ëAì�¦ë " CDíííí 
� 181 + 2094.3 + 181 = 2456.3	ft. (3.27) 

Comparing circular results with the elliptical result, we have: 

Table 3.8 Circular Curve vs. Elliptical Curve. 
 Circular Curve Elliptical Curve 

Length 2456 ft. 2319 ft. 

Right-Of-Way 5.64 acres 5.81 acres 

 

Therefore, the elliptical curve provided a smoother horizontal transition in a 

length which is 137 ft. shorter than the alternative circular curve. Another possible 

advantage of the elliptical alternative is that the transition from the normal crown to the 

superelevated cross-section can be achieved more gradually through the entire length 

of the elliptical arc. This also provides for a smoother cross-section transition. However, 

the circular curve needs smaller right of way, 0.17 acre less than the elliptical curve in 

this example; resulting in a somewhat smaller ROW purchase cost. Figure 3.1 depicts 

both the circular and the elliptical curve to provide a visual comparison. 
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Figure 3.1 Final Profile: Elliptical curve vs. circular curve. 
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3.7 The Spiral-Circular Curve Solution 

 An alternative for horizontal alignment is spiral-circular curve, which consists of 

one circular curve at the middle and two spiral curves on sides. As discussed earlier in 

detail, the length of the spiral curves can be calculated from equation 1.7, as follows: 

xy � 	3.15)(z{)(�y)(�) 	.	
 The radius of spiral curves varies from infinity at TS to the radius of the circular 

curve at SC. Therefore, the degree of curvature varies from 0 to 6A. In fact, the average 

degree of curvature for spiral curves is 6A/2	. As a result, it can be assumed that the 

radius of the spiral curve is on the average twice of the radius of the circular 

curve,	ô�y��ë¦�õ2¦Î = (2)(�A�ëAì�¦ë). Referring to Figure 3.2 and applying geometric 

properties, the relations in Table 3.8 can be derived. 
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Figure 3.2 A schematic diagram of spiral-circular curve (Banks, 2002, p. 81). 

  

In Figure 3.2, we have: 

TS: the point of change from the tangent to the spiral curve. 

SC: the point of change from the spiral curve to the circular curve. 

CS: the point of change from the circular curve to the spiral curve. 

ST: the point of change from the spiral curve to the tangent.  
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Table 3.9  Spiral-Circular Curve Relations (Banks, 2002, p. 81). 

Equation Comments 

ÜZ � 	o. MQ)(bo)(EZ)(h)  Length of Spiral Curve 

ÛZ = (UZ)(L[)JOO  Spiral Angle 

\[ = \− (J)(ÛZ) Circular Angle 

ã_ = QRJS. Tö_  Circular Degree of Curvature 

÷[ = ÛZo  Spiral Degree of Curvature 

÷â = FâQK
J (÷[) Deflection Angles (5-Chord Method) 

wø = (E[ + ù) FGHI \JK  

dZ = rM. O − ÛZJMOs (UZ) �y is in radians 

gZ = rÛZo − ÛZoWJs (UZ) �y is in radians 

d = U− UQ(WO)(kW) + US(oWQT)(kN) 
ú coordinate of any point on the 

spiral. (�� = (�A)(5y)) 
g = Uo(T)(kJ) − UR(ooT)(kT) + UMM(WJJWO)(kMO) 

û coordinate of any point on the 
spiral. (�� = (�A)(5y)) 

ù = gZ − (E[)(M − _`a ÛZ) Throw Distance (�y is in Radian) 

ü = dZ − (E[)(aeI ÛZ)  
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Let us suppose that an spiral-circular curve is used for the same problem with 

Δ � 120°, Rý%þ = 1000	ft., and Sta. # @ PI=40+40.0. To find the length of the spiral 

curve, design speed, zÌ, and the rate of change of centripetal acceleration, �, must be 

specified. According to AASHTO, (2004, p. 147), Rý%þ = 1000	ft. satisfies a speed of 50 

mph for all superelevation angles provided. Therefore, let us assume V& = 50	mph. The 

roadways with design speed, V& = 50	mph, are classified as high speed roadways. 

Thus, � = 1	 ft. sec{⁄ . Then, we have: 

 �y = (2)(�A) = (2)(1000) = 2000	ft. (3.28) 

Consequently, based on the Table 3.8, we have: 

 xy = (3.15)(1{)(�y)(�) = (3.15)(50{)(2000)(1) = 196.9	 ≈ 197	ft., (3.29) 

 6A = 5729.6�A = 5729.61000 = 5.73°	, (3.30) 

 �y = (197)(5.73)200 = 5.644° ≈ 5.64°	 =	0.0984	rad. (3.31) 

 

 

 ΔA = Δ − (2)(�y) = 120° − (2)(5.64°) = 108.72° (3.33) 

 

 Φê = 13 (�y) = F13K (5.64°) = 1.88° (3.32) 
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 úy � r1 − �y�10s	5y = r1 − 0.0984�10 s (197) = 196.8	(ft. ) (3.34) 

 

 ûy = r�y3 − �y�42s (5y)	
					= r0.09843 − 0.0984�42 s (197) = 6.42	(ft. ) 

(3.35) 

 

 � = úy − (�A) (sin �y) = 196.8 − 1000 × sin(5.64°)
= 98.5	(ft. ) (3.36) 

 

 � = ûy − (�A)(1 − cos	(�y))	
			= 6.42 − (1000)(1 − cos(5.64°)) = 1.58 

(3.37) 

 							�ø = (�A + �) tan FΔ2K 
                  = (1000 + 1.58) �tan �
�¢°� �� = 1734.8	ft. 

(3.38) 

To stakeout the spiral-circular curve, the station number of TS needs to be 

determined, as follows:  

 Ã �. #	@	�Ã = Ã �. #	@	�¹	 ^ �ø ^ �	
																				� 	4040.0) − (1734.8) − (98.5) = 22 + 06.7. (3.39) 
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Tables 3.9, 3.10, and 3.11 provide the resulting station numbers and deflection angles 

for the spiral and the circular curves.  

Table 3.10 Stake-out table for spiral-circular curve from TS to SC 
 

â Station 
Numbers 

Length of 
Arc, Ü 

(5-Chord 
Method) 

(ft.) 

÷ � FÜâÜZK
J 	÷Z� 

(deg.) 

kJ
�	

E [�
	 U Z

�  
(f

t.
2 ) d 

(ft.) 
g 

(ft.) 

Chord 
Length, Ü[ 

TS 0 22+06.7 0 0.00 197000 0.00 0.00 0.00 
 1 22+46.1 39.4 0.08 197000 39.40 0.05 39.40 
 2 22+85.5 78.8 0.30 197000 78.80 0.41 78.80 
 3 23+24.9 118.2 0.68 197000 118.19 1.40 118.19 
 4 23+64.3 157.6 1.20 197000 157.54 3.31 157.57 
SC 5 24+03.7 197 1.88 197000 196.81 6.46 196.92 
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Table 3.11 Stakeout table for spiral-circular curve from SC to CS 

 

â Station 
Numbers 

Deflection 
Angles 
(deg.) fâ 

Degree of 
Curvature 

(deg.) Lâ 

Chord 
Length 

(ft.) Ü[â 
Length of Arc 

(ft.) Üjâ 
SC  0 24+03.7 0 0 0.0 0.0 

  1 25+03.7 2.86 5.73 99.8 100.0 
  2 26+03.7 5.72 11.46 199.3 200.0 
  3 27+03.7 8.58 17.19 298.4 300.0 
  4 28+03.7 11.44 22.92 396.7 400.0 
  5 29+03.7 14.3 28.65 494.0 500.0 
  6 30+03.7 17.16 34.38 590.1 600.0 
  7 31+03.7 20.02 40.11 684.7 700.0 
  8 32+03.7 22.88 45.84 777.6 800.0 
  9 33+03.7 25.74 51.57 868.6 900.0 
  10 34+03.7 28.6 57.3 957.4 1000.0 
  11 35+03.7 31.46 63.03 1043.8 1100.0 
  12 36+03.7 34.32 68.76 1127.6 1200.1 
  13 37+03.7 37.18 74.49 1208.6 1300.1 
  14 38+03.7 40.04 80.22 1286.6 1400.1 
  15 39+03.7 42.9 85.95 1361.4 1500.1 
  16 40+03.7 45.76 91.68 1432.8 1600.1 
  17 41+03.7 48.62 97.41 1500.7 1700.1 
  18 42+03.7 51.48 103.14 1564.8 1800.1 

CS  19 4301.1 54.36 108.72 1625.4 1897.5 
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Table 3.12 Stake-out table for spiral-circular curve from CS to ST 

 1 2 3 4 5 6 7 8 
 

â Station 
Numbers 

Length 
of Arc, Ü 
(5-Chord 
Method) 

(ft.) 

÷ � FÜâÜZK
J 	÷Z� 

(deg.) 

kJ
�	

E [�
	 U Z

�  
(f

t.2 ) d 
(ft.) 

g 
(ft.) 

Chord 
Length, Ü[ 

CS 0 43+01.1 0 0.00 197000 0.00 0.00 0.00 
 1 43+40.5 39.4 0.08 197000 39.40 0.05 39.40 
 2 43+79.9 78.8 0.30 197000 78.80 0.41 78.80 
 3 44+19.3 118.2 0.68 197000 118.19 1.40 118.19 
 4 44+58.7 157.6 1.20 197000 157.54 3.31 157.57 
ST 5 44+98.1 197 1.88 197000 196.81 6.46 196.92 
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3.8 Comparing Spiral-Circular Curve Results with Elliptical Curve Results 

In Figure 3.3, both the elliptical curve and the equivalent spiral-circular curve are 

shown. The green curves are the spiral curves and the middle blue curve is circular 

curve. The elliptical curve is shown in red. Point A is the start point of the elliptical curve, 

�����.. Point B is the start point of the spiral-circular curve, TS. Point C is the end point 

of the spiral-circular curve. Point D is the end point of the elliptical curve, �����.. The 

right-of-way and the length of the spiral-circular curve are as follows: 

 
							�­®���ë¦� = (��íííí)(100) 

+F(Δê)(π)360 K «(�îê� + 50)� − (�îê� − 50)�¬	 
																													+ F(2)(�y)(π)360 K «(�î¤�.ê.� + 50)� − (�î¤�.ê.� − 50)�¬ 
																													+(�6íííí�	100). 

(3.40) 

 

As shown in Figure 3.3, 

 ABíííí = CDíííí = FLCï��%	$' − LC
	%�è�¤�%����è�.2 Kð 1
cos Δ2ñ

= F1913.2 − 1831.62 Kð 1
cos �1202 �ñ = F81.62 K (2)

= 81.6	ft. 

(3.41) 
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Then, 

 �­®���ë¦� � 	81.6�	100�

" r	108.72�	<�
360 s «	1000 + 50��

^ 	1000 − 50��¬
" r	2�	5.64�	π�

360 s «	2000 " 50��

^ 	2000 ^ 50��¬ " 	81.6�	100� 

                           � 8,160 + 189,752 + 39,375

+ 8,160 � 245,447 sq. ft.

� 5.63 �����. 

(3.42) 

 

Length of roadway from A to D through spiral-circular curve is: 

 5óîêÏ � 5óî " 5î¤�ê " 5îê " 5�ê¤ê " 5êÏ
� ABíííí " xy " x¦ê�ëAì�¦ë " xy " CDíííí
� 81.6 + 197 + 1,897.5 + 197

+ 81.6 � 2,454.7 ft. 

(3.43) 
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Comparing the circular results with the elliptical result, we have: 

Table 3.13 Spiral-Circular Curve vs. Elliptical Curve. 
 Spiral-Circular 

Curve Elliptical Curve 

Length 2455 ft. 2319 ft. 

Right-Of-Way 5.63 acres 5.81 acres 

Therefore, the elliptical curve provided a smoother horizontal transition in a 

length which is 136 ft. shorter than spiral-circular curve. However, the spiral-circular 

curve needs a slightly smaller right of way, 0.18 acre less than the elliptical curve and 

0.01 acre less than the circular curve in this example. In other word, the right of way for 

the spiral-circular is nearly the same as the right of way for the circular curve. 
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Figure 3.3 Final Profile. Elliptical curve vs. spiral-circular curve. 
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CHAPTER 4 

CONCLUSIONS AND RECOMMENDATIONS 

  

 According to the results, elliptical curves can be used as horizontal transition 

curves to provide a smoother and safer directional transition in comparison with simple 

circular or spiral-circular curves. A possible advantage of using elliptical curves instead 

of all other alternatives is that elliptical curves can shorten the length of the roadway as 

shown in the application example. Since elliptical curves provide a smoother transition, 

another possible advantage is that the transition from the normal crown to the 

superelevated cross-section can be achieved more gradually through the entire length 

of the elliptical arc. Therefore, it can also provide a smoother cross-sectional transition 

and one that is likely more aesthetically pleasing.  

As a result, elliptical curves should be considered as an alternative design for 

horizontal alignments. For instance, for each specific horizontal alignment problem with 

a given intersection angle, Δ, and design speed, zÌ, alternative calculations for simple 

circular, spiral-circular-spiral, compound circular, and elliptical can be conducted. Then, 

the results obtained for each alternative should be compared with respect to the arc 

length and ROW requirements to optimize the design. Regarding the sight distance, the 

middle ordinate distance, which is the distance between the middle point of the curve 

and middle point of long chord, should be calculated for elliptical curves to make sure 
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there is no horizontal sight restriction for drivers. 

In terms of calculations, the key equation to find the elliptical arc length is an 

elliptic integral. There are some difficulties to find a good estimation of this integral. This 

integral should be estimated for each feasible ellipse satisfying the intersection angle 

and the design speed.  

In addition, many other calculations need to be done for algorithms (A) and (B), 

as described in the previous chapter. Also, this integral is a determinant equation for 

algorithm (C) to calculate station numbers. Therefore, it is recommended to develop a 

software, which includes all three algorithms and their calculations to find the most 

suitable elliptical curve for a given Δ and zÌ.  Also, elliptical calculations as an 

alternative design to circular, circular compound, or spiral-circular alignments should be 

incorporated in highway design software packages such as Geopak (Bentley Systems, 

2012) and Microstation (Bentley Systems, 2012). Also, there may be benefits in using 

elliptical arcs for reverse curves. This aspect can be investigated as an extension of this 

work. As mentioned earlier, since the elliptical curve is found for a specific problem, 

using elliptical curves in lieu of circular, spiral-circular, and compound curve should be 

examined for various combination of intersection angles, Δ, and design speeds, zÌ, to 

investigate possible advantages regarding the arc length and ROW. 

 Regarding environmental issues, using elliptical curves can reduce the mass of 

air pollutants. Elliptical curves can shorten the length of the roadway as well as provide 

a smoother transition from the normal crown to full-superelevated cross-section.  Both 

of these properties could reduce vehicle fuel consumption.  During a roadway’s design 
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life, an elliptical curve can therefore save road users a significant amount of fuel. As a 

result, less fuel consumption could also translate to less air pollution. In addition, in the 

case of asphalt pavements, the shorter length of the roadway will decrease solar 

radiation absorbed by the asphalt surface. Therefore, elliptical curves can be more 

environmentally beneficial as they have the potential to substantially reduce air pollution 

and solar radiation absorbed by the asphalt surface over the design life of the roadway. 

One possible extension of this work could be a user-cost study of elliptical versus the 

more conventional horizontal alignments.  The user cost could be quantified in terms of 

fuel consumption and air pollutants over the design life of a project and be used in the 

evaluation of alternative designs.  
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