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Abstract 

LUMPED PARAMETER MODELING OF 

FLUID LINE DYNAMICS WITH 

TURBULENT FLOW 

CONDITIONS 

 

Yi-Wei Huang, PhD 

 

The University of Texas at Arlington, 2012 

 

Supervising Professor: David Hullender  

A procedure for obtaining rational polynomial transfer functions representing 

ordinary differential equations for time domain transient response simulations of systems 

with fluid transmission lines with incompressible turbulent flow is formulated and 

presented.  The method is based on the use of an inverse frequency least squares 

algorithm applied to the distributed parameter model for laminar flow with added lumped 

resistance to match the additional resistance associated with turbulence. Guidelines for 

using the algorithm are included with focus on the use of weighting parameters, the 

number of resonant modes to be included, and the bandwidth of the pressure/flow 

pulsation dynamics in the line.  Frequency and time domain comparisons are presented 

demonstrating the accuracy of the transfer function formulations. 

For special cases where the use of a lumped parameter model is preferred or is 

necessary for modeling and simulating the fluid pulsations in a line, guidelines for 

tapering the capacitance and inertance lump sizes for laminar and turbulent flow are 

presented. The improvement in matching the true mode frequencies and the 

improvement in the accuracy of transient responses achieved by tapering the size of the 
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lumps as compared to using equal size lumps is demonstrated for a variety of boundary 

conditions associated with different causalities. 

The ability to obtain accurate rational polynomial transfer functions for 

pressure/flow pulsations in lines for both laminar and turbulent flow conditions, using 

either the inverse frequency algorithm or a tapered lumped model, makes it possible to 

include the line as a component in the model for a total dynamic system represented by 

ordinary differential equations for purposes of time domain simulations and the use of 

linear system analysis and control algorithms on the total system.  
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Chapter 1  

Introduction 

Equation Chapter (Next) Section 1 

The subject of pressure and flow pulsations in fluid lines or pipes resulting from 

changes in the boundary conditions at the ends of the line has been researched and 

studied for decades [1, 2, 3, 4].  Consider the schematic of a fluid line shown in Figure 

1.1. The pressures at the ends of the line are denoted by aP  and bP ; the volumetric flow 

rates at the ends are denoted by aQ  and bQ . Sudden changes in these pressure or flow 

variables result in pressure and flow pulsations in the line.  For example, assume that the 

flow through the line is initially constant or zero.  Assume a sudden increase or decrease 

occurs in the pressure aP , aP∆ , associated with a control or measurement signal, or, 

consider a sudden increase in the flow aQ , aQ∆ , associated with a hydraulic fracturing 

process or ‘fracking’.  These boundary condition changes will cause pressure and flow 

pulsations along the line.  Pulsations will also occur if there is a sudden decrease in the 

pressure bP , bP∆ .  This decrease could be associated with a break in the line or the 

sudden opening of a valve causing a sudden increase in the flow bQ , bQ∆ .  An 

additional example are pulsations associated with a sudden closing of a valve; in this 

case, the flow bQ  suddenly decreases or even goes to zero creating a blocked end 

condition on the line.  It is not uncommon for the need to perform time domain 

simulations of these pulsations and also, time domain simulations of total systems in 

which these lines are internal system components.  
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Figure 1.1 Schematic of a fluid transmission line 

There are numerous time domain methods for simulating the fluid dynamics in a 

line to analyze these pressure and flow pulsations.  For example, for laminar flow 

conditions, the distributed parameter partial differential equations can be solved using the 

method-of-characteristics [5].  This technique provides an accurate solution but can be 

difficult to use for time varying boundary conditions and cannot be used if a line is an 

integral component in a total system in which eigenvalues and/or mode frequencies are 

to be analyzed.  A more versatile solution technique is to approximate the laminar flow 

distributed parameter partial differential equations by ordinary differential equations using 

an inverse frequency technique first applied to fluid line dynamics by Wongputorn [6]. 

This approach allows for the boundary conditions to be variables which may be 

associated with other components such as actuators, valves, other fluid lines, etc.; this 

approach is particularly attractive when some of the other components are defined by 

ordinary differential equations.  A review of the procedure for formulating ordinary 

differential equations for the pressure/flow pulsations in a line starting with the partial 

differential equations for the distributed parameter model is reviewed in Chapter 2 of this 

document.   

Then there is the very popular approach of formulating lumped parameter models 

for the fluid dynamics in a line; the idea is to represent the resistance, inertance, and 

capacitance properties of the fluid in the line by a series of lumped resistances, 

inertances, and capacitances.  Supposedly, the smaller the size of the lumps and the 

larger the number of lumps, the greater the accuracy of the overall model; as will be 

demonstrated in Chapter 3, however, the use of a larger number of smaller lumps does 

Pa 

Qa 

Pb 

Qb 
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improve the accuracy but does not necessarily achieve the true mode frequencies and is 

lacking when matching the true pressure/flow pulsation dynamics within the line. 

In this author’s opinion, the most versatile time domain method of modeling and 

simulating dynamic systems containing fluid lines is the method of approximating the 

distributed parameter equations for the line by ordinary differential equations [6, 8].  

Unfortunately, to this date, the distributed parameter equations are for pulsations 

superimposed onto laminar flow conditions.  For systems with fluid lines with turbulent 

flow, the lumped parameter modeling technique has been essentially the most common 

method for simulating these pressure/flow pulsations.  Most likely, this is because the 

lumped parameter model approach, as well as the inverse frequency method, provides 

ordinary differential equations for the fluid lines that can be meshed with the algebraic 

and ordinary differential equations associated with the remaining components of a total 

system.  The question arises, however, as to the best way to formulate the lumped 

parameter model especially if the flow through the lines is turbulent.   

The overall objective of this research is to formulate a method for developing a 

reasonably accurate model for a dynamic system containing fluid lines with potentially 

turbulent flow.  Throughout this study, numerous approaches to achieving this objective 

have been explored.  However, as will be demonstrated, the most accurate approach 

found in this study seems to be to use a combination of a laminar flow distributed 

parameter model with a lumped resistance to account for the additional flow resistance 

associated with turbulence.  For turbulent flow conditions, recent publications [7, 8] 

pertaining to steady turbulent flow in lines have introduced a way to formulate a more 

realistic turbulent resistance lumped model based on an empirical friction factor equation 

which is a function of the Reynolds number. 
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To develop an approach for using a combination of the distributed parameter 

model with a lumped resistance for turbulent conditions, Chapter 2 provides a review of 

the method for achieving ordinary differential equation approximations for the laminar 

flow distributed parameter model based on the inverse frequency concept [6, 8, 9].  As 

will be shown, the accuracy of a transfer function approximation depends on the choice of 

the frequency range to be matched, the weighting factor on each of the frequencies, and 

the order of numerator and denominator.  The initial objective of using the inverse 

frequency concept was to formulate a method for tapering the size of the lumps within a 

lumped parameter laminar flow model in order to obtain a match of the dynamics with the 

distributed parameter model.  The goal was to then extend the tapering algorithm to 

formulating lumped parameter models to lines with turbulent flow.  Chapter 3 presents the 

results of attempting to use tapered lumped models to match the true fluid dynamics 

within a line with laminar flow. 

As mentioned above, Chapter 3 focuses on the method to achieve an accurate 

lumped parameter model for the line with the size of the individual lumps tapered in order 

to achieve the true mode frequencies of the pressure/flow pulsations when superimposed 

on laminar steady flow conditions.  The need to taper the size of the lumps in the model 

stems from the inability to achieve the true mode frequencies by simply increasing the 

number of lumps of equal size.  The idea to taper the lumps in order to achieve the mode 

frequencies in fluid lines was first introduced by Paynter [10].  As will be demonstrated, 

the tapering method does allow one to match the true mode frequencies but the lumped 

model has limited accuracy due to the fact that a lumped model does not provide 

necessary numerator derivatives in the transfer functions.  As mentioned, Chapter 3 

focused on laminar flow conditions only.  The objective of Chapter 4 is to extend the 

concepts in Chapter 3 to turbulent flow conditions. 



5 

The initial objective of research presented in Chapter 4 was to extend the 

tapered lumped model concepts to turbulent flow conditions by incorporating an 

additional lumped resistance based on an empirical friction factor model associated with 

turbulent flow.  Tables with varied boundary conditions, fluid properties, and line 

parameters are provided for guidance on establishing levels of tapering.  After 

formulating the tables for tapering lumps for lines with turbulent flow, however, it became 

obvious that the limitation of no input derivatives in the transfer functions could be 

avoided by using the transfer functions from the inverse frequency algorithm directly 

instead of attempting to match the model with a tapered lumped model.  Thus, the 

objective changed to investigating how to use the inverse frequency algorithm directly for 

turbulent flow conditions.  A recommended approach for modeling pressure/flow 

pulsations superimposed on steady turbulent flow is thus presented in Chapter 4.  All of 

the analysis of Chapters 2 - 4 is applied to a specific set of boundary conditions 

consisting of aP∆  as input pressure, bQ∆  as output flow rate, and 0bP∆ = . These 

techniques are extended to other sets of potential boundary conditions in Chapter 5. 

Three different cases of boundary conditions are analyzed for the distributed 

parameter and lumped parameter models in Chapter 5.  As will be demonstrated, 

similarities in the resulting models for different boundary condition assumptions permits 

application of one set of results for a particular set of boundary conditions to the model 

for a different set of boundary conditions.  As will be demonstrated in Chapter 5, results 

for only two types of model formulations are required for showing the similarities and 

differences in the form of the distributed parameter model and the lumped parameter 

model.  Consequently, it is possible to use suggested coefficients for tapering the lumps 

for more than a single set of boundary conditions.  The tapering coefficients for lumped 
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models are formulated and listed in tables along with assumed lumped resistances that 

account for turbulent flow conditions. 

The conclusions and recommendations for future research are included in 

Chapter 6.  
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Chapter 2  

Rational Polynomial Approximations 

Equation Chapter (Next) Section 1 

Distributed parameter models for pressure and flow pulsations in lines for laminar 

flow conditions have been tested and proven to be very accurate using graphical and 

frequency domain analysis techniques. However, it is often desirable to obtain ordinary 

differential equations for these pulsations in lines for purposes of time domain simulations 

in special cases.  There have been many algorithms presented for approximating the 

distributed parameter equations by ordinary differential equations depending on various 

simplifying assumptions [1, 4].  It appears that the most versatile and consistently 

accurate approach, however, is based on an inverse frequency technique formulated by 

Levi [9] and then applied to the transmission line problem by Wongputorn [6, 8].  This 

chapter is devoted to reviewing the application of this inverse frequency method to fluid 

line dynamics with emphasis on techniques for fine tuning the process of generating 

ordinary differential equations from the partial differential equations.  

2.1 Distributed Parameter Model 

In reality, the inertance, capacitance, and resistance of a fluid transmission line 

are continuously distributed from beginning to end and defined by partial differential 

equations for laminar flow conditions. This is in contrast to the lumped parameter model, 

which assumes the inertance, capacitance, and resistance are lumped independently at 

discrete locations.  

The distributed parameter model is derived by considering a control volume of 

cross section of a round tube. To develop its general equations, the following 

assumptions are made. 

1. Rigid walls 
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2. Uniform cross section line 

3. One dimensional flow 

4. Fluid velocity is small compared to the speed of sound in the line 

Assume the following boundary conditions:  

 
(0, ) (0, )
( , ) ( , )

a a

b b

P t P Q t Q
P L t P Q L t Q

= =
= =

 (2.1) 

As documented in Ref. [1], the corresponding solution of the partial differential 

equations for the distributed parameter model in matrix form is shown below. 

 

cosh 1
sinh sinh
1 cosh

sinh sinh

c ca a

b b

c c

Z ZQ P
Q P

Z Z

Γ − Γ Γ    =   Γ    − Γ Γ 

 (2.2) 

The equations for the propagation operator and characteristic impedance vary 

depending on assumptions regarding friction, heat transfer, and compressibility.  For 

example, the lossless model [1, 4] is assumes that there is no dissipation due to viscosity 

and heat transfer. So the propagation operator is 

 
L s
c

Γ =  (2.3) 

and the characteristic impedance is  

 c
cZ

Ac A
β ρ

= =  (2.4) 

For the case of the dissipative model [1, 4, 11, 12] that includes viscosity and 

heat transfer, the propagation operator and the characteristic impedance become,  

 
1 ( 1)

1
r

r

BLs
c B

σγ+ −
Γ =

−
 (2.5) 
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 0

(1 )(1 ( 1) )c
r r

ZZ
B B σγ

=
− + −

 (2.6) 

where  

 

2

1

2 2

0

2 ( )

( )
r

r sJ j
B

r s r sj J j

ν

ν ν

=

⋅

 (2.7) 

 

2

1

2 2

0

2 ( )

( )
r

r sJ j
B

r s r sj J j
σ

σ
ν

σ σ
ν ν

=

⋅

 (2.8) 

 0
cZ

A
ρ

=  (2.9) 

Here we introduce the dimensionless dissipation number [13, 14], nD , defined by 

Equation (2.11) and the normalized Laplace operator, s , and viscous frequency, vω , both 

defined by Equation (2.12) which is used to simplify the equation. The equation for the 

propagation operator becomes 

 
1 ( 1)

1
r

n
r

BD s
B

σγ+ −
Γ =

−
  (2.10) 

where  

 2n
LD

cr
ν

=  (2.11) 

 
2

v

r ss s
ν ω

= =  (2.12) 
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 1

0

2 ( )

( )
r

J j sB
j s J j s

=
⋅

 (2.13) 

 1

0

2 ( )

( )
r

J j sB
j s J j s

σ
σ

σ σ
=

⋅
 (2.14) 

 c β
ρ

=  (2.15) 

When formulating rational polynomial approximations for the fluid transmission 

line model, the poles and zeros depend on the magnitude of the dissipation number nD . 

In other words, the transfer function of the model is a function of nD .  

The remainder of Chapter 2 and Chapters 3 - 4 focus on a specific set of 

boundary conditions which have aP∆  as input pressure with 0bP∆ = , and &b aQ Q∆ ∆  

as output flow rates. The distributed parameter model equation becomes  

1
sinhb aQ P

Z
 ∆ = ∆ Γ 

  and  
cosh
sinha aQ P

Z
Γ ∆ = ∆ Γ 

 

But in Chapter 5, we will introduce two other boundary condition formulations and 

address how to apply the techniques in Chapters 2 - 4 to these other cases. One of these 

cases has bP∆  as input with 0aP∆ = , and &a bQ Q∆ ∆  as outputs. So the distributed 

parameter model equation will become 

1
sinha bQ P

Z
− ∆ = ∆ Γ 

  and  
cosh
sinhb bQ P

Z
− Γ ∆ = ∆ Γ 

 

Another case has bQ∆  as input with 0aP∆ = , and &a bQ P∆ ∆  as outputs. Its 

distributed parameter model equation will become 
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1
cosha bQ Q ∆ = ∆ Γ 

  and  
sinh

coshb b
ZP Q− Γ ∆ = ∆ Γ   

As will be explained and demonstrated in Chapter 5, the similarities of these 

transfer functions for different inputs and outputs makes it possible to apply results for 

model tapering to more than one set of boundary conditions. 

2.2Curve Fit Approximation of the Distributed Parameter Model 

In references [6, 8], a new approach is introduced to obtain rational polynomial 

transfer function approximations that very accurately match the frequency response 

properties of the original function over a designated frequency band. This approach is to 

match the frequency response using the least squares algorithm of Levi [9]. The actual 

function is represented by frequency response data of the system taken from 

measurements or generated directly from an analytical function.  

For the case of the dissipative distributed parameter model of the circular rigid 

fluid transmission line, this approach will match this frequency response data generated 

from Equation (2.2). These techniques are utilized in an m-file named ‘invfreqs’ available 

in the Signal Processing toolbox within MATLAB. By formulating a new transfer function 

in MATLAB representing an ordinary differential equation, the results allow for time 

domain simulations and analysis techniques. Thus, the objective is to obtain a transfer 

function approximation representing an ordinary differential equation that accurately 

models the pressure and flow dynamics by performing an inverse frequency least 

squares curve fit to the frequency response of a transfer function representing the 

solution to the partial differential equations.  The approximation will be a ratio of rational 

polynomials of the Laplace operator s  or a normalized version of s . 

To demonstrate the process, consider the following example.  The flow through 

the line is initially steady with upstream pressure a iP P=  and downstream pressure 
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b oP P= .  Pressure/flow pulsations will be created from a sudden increase or decrease in 

pressure aP∆  in aP . That is, after time 0, a i aP P P= + ∆ . The schematic is shown in 

Figure 2.1.  

Assuming that the downstream pressure remains constant, the flow rate bQ∆

becomes 

 
1( ) ( )

sinhb aQ s P s
Z
 ∆ = ∆ Γ 

 (2.16) 

Normalizing ( )bQ s∆ by steady flow rate ( )e i o sQ P P R= − , where sR  is the 

laminar steady flow line resistance, gives 

 
( )

( )

( ) ( )1
sinh

( )
sinh

b a

e i o s

s a

i o

Q s P s
Q Z P P R

R P s
Z P P

∆ ∆ =  Γ − 

∆ =  Γ − 

 (2.17) 

The transfer function for the normalized flow rate and the normalized pressure 

input simplifies to  

 
( )

( )
sinh( )

b e s

a s o

Q s Q R
ZP s P P

∆
=

Γ∆ −
 (2.18) 

 

Figure 2.1 Schematic of a fluid transmission line for laminar flow 

As mentioned above, the objective is to obtain a rational polynomial 

approximation for the transfer function such as in Equation (2.17).  An approximation that 

Pa = Pi 

Qa 

Pb = Po 

Qb 
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will provide accurate time domain simulations should include all modes out through the 

bandwidth of the original transfer function and should have the correct DC gain.  

Since the transfer functions obtained from solving the partial differential 

equations are not linear, the easiest way determine the bandwidth and the number of 

modes that need to be included is by trial and error using an educated guess for the 

number of modes, the order of the system, and the mode frequencies.  Consider the 

following example. 

The fluid used in this example is MIL-L-87257, whose properties are defined in 

the MATLAB Hydraulic Utilities Library. These properties and the dimensions of the line 

are listed below. 

Line Properties: 

D = 0.003175  Diameter of line, m 

L = 20   Length of line, m 

T1 = 27   Avg. temperature, ℃ 

Fluid Properties: 

Fluid MIL-F-87257 

KVis = 7.6179e-006 Kinematic viscosity, m2 s⁄  

Den = 855.24  Density, kg m3⁄  

Bulk = 1.8246e+009 Bulk modulus, N m2⁄  

If all of the modes are 2nd order thus representing complex eigenvalues, the order 

N of the transfer function approximation needs to be at least two times the number of 

modes that need to be included.  Considering that some of the modes will be 1st order 

representing real eigenvalues, the number of modes in the approximation will be slightly 

greater than N/2.  The only way to really know the number of modes needed and the 

frequencies involved is to start with educated guesses.  It may prove beneficial to use 
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equations for the mode frequencies.  In Hullender’s paper [13, 14], equations for 

approximating the mode natural frequencies and damping ratios for air and liquids are 

presented. For a liquid, the equation is 

 10 10log 1.0178log 0.42966n cω λ= +  (2.19) 

where  

 
1 1, 2, 3,
2c ni D iλ  = − = 

 
  (2.20) 

Using Equation (2.19) with the fluid properties and line dimensions in the 

example above gives the first 6 natural frequencies to be 68.767, 139.24, 210.37, 281.94, 

353.83, and 425.97 rad s ec .  Until a frequency response is generated, however, a 

reasonable estimate of the number of modes needed and the bandwidth will remain 

unknown.  For instance, assume that the bandwidth is between 281 and 353 rad s ec . 

We will designate this frequency by maxω . 

In this case, the transfer function must accurately approximate the first four 2nd 

order modes and any significant 1st order modes in this frequency range.  Thus, a 10th 

order transfer function is selected; for this designated frequency range, a 10th order will 

accommodate two first order modes in addition to the four 2nd order modes.   

To insure that an accurate DC gain is achieved, a lower bound on the frequency 

range must also be assumed; for this example, min 0.11 secradω =  is chosen.  Finally, 

the order of the numerator of the transfer function approximation must be chosen.  In all 

probability, the most accurate approximation will be achieved with a numerator order N-1. 
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Adjustment of  may be needed depending on the comparison result of the 

figure of frequency responses. The second consideration of accuracy is that the DC gain 

should be as close to 1 as possible while adjusting the maximum frequency maxω . 

The MATLAB command for converting the frequency response data to a transfer 

function is  

 [ ] ( )num,den = invfreqs h, w,n,m, wt, iter  

Where ‘h’ is the frequency response data corresponding to the frequency data ‘w’, 

associated with the transfer function in Equation (2.18). The ‘wt’ is a vector of weighting 

factors and has the same length as ‘w’. The ‘wt’ can be substituted with ‘[ ]’ to obtain a 

weighting vector of all ones. The ‘iter’ parameter tells “invfreqs” to end the iteration when 

the solution has converged, or after ‘iter’ iterations, whichever comes first.  

Using the MATLAB command above, the 9th/10th order transfer function 

approximation for the fluid and line properties listed above is  

 
( )

9 18 19

10 19 19

3.454 2.845 10 5.463 10
1.206 10 5.461 1

( ) ( )
0

b a

e i o

Q s P s
Q s s P

s
P

s∆ ∆+ + × + ×
+ + × + ×

=
−





 (2.21) 

A comparison of the frequency response plot of the original transfer function and 

the 10th order approximation listed above is shown in Figure 2.2.  Note the accuracy of 

the approximation at all frequencies including the resonant peaks out through the 4th 

second order mode.  Also note that the 4th resonant peak is at about -5 dB which is 

slightly below the standard bandwidth cutoff of -3 dB.  It is also important to note that the 

DC gain is of the approximation is 1.0003 which is essentially equal to the true value of 1. 

The eigenvalues, damping ratios, and natural frequencies of the approximation 

are listed below. It is of interest to compare the mode frequencies with the values 

predicted using Equation (2.19).  The frequencies are reasonably close to the estimated 

maxω
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values.  A comparison of these values with transfer functions corresponding to lumped 

parameter models with zero order numerators will be of interest in the next section.  

         Eigenvalue              Damping       Freq. (rad/s)   

 -5.77e+000                              5.77e+000     

 -2.36e+001                              2.36e+001     

 -6.74e+000 + 6.98e+001i      9.62e-002      7.01e+001     

 -6.74e+000 - 6.98e+001i      9.62e-002      7.01e+001     

 -8.92e+000 + 1.43e+002i      6.23e-002      1.43e+002     

 -8.92e+000 - 1.43e+002i      6.23e-002      1.43e+002     

 -1.19e+001 + 2.17e+002i     5.50e-002      2.17e+002     

 -1.19e+001 - 2.17e+002i      5.50e-002      2.17e+002     

 -1.14e+001 + 2.93e+002i      3.89e-002      2.93e+002     

 -1.14e+001 - 2.93e+002i      3.89e-002      2.93e+002     
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Figure 2.2 Comparison of frequency responses of distributed parameter model and 

9th/10th order approximation model 

A quantitative comparison of the resonant peaks is provided in Table 2.1.  

Table 2.1 Comparing the resonant peaks of the distributed parameter and 9th/10th models 

Normalized resonant 
frequencies 69.759 142.97 216.91 292.92 

Resonant peaks of 
distributed model (dB) 0.32074 -2.2435 -3.8644 -5.1345 

Resonant peaks of transfer 
function approximation (dB) 0.28908 -2.1411 -4.0538 -4.9807 

 

2.3 Zero Order Numerator Transfer Function Approximation 

The use of lumped parameter models for line dynamics is very popular.  However, 

it can be shown that the transfer function for a lumped parameter model will always have 
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a zero order numerator.  Consequently, any study pertaining to the number and size of 

lumps to use in a lumped model for a line must start with the assumption that the order of 

the numerator is zero.  Thus, to match the transfer function coefficients of the lumped 

parameter model from the frequency response of the distributed parameter model, the 

order of the transfer function of the curve fit approximation will be set to zero.  

In section 2.2,  a 10th order approximation was obtained for the purpose of having 

a transfer function that can be used to accurately model the time response of all of the 

modes with modal frequencies within the bandwidth of the system.  This model is thus 

assumed to provide an ‘exact’ or ‘true’ time response for comparison with lower order 

transfer functions without numerator dynamics such as occur with lumped parameter 

models for the line.  For instance, a lumped parameter line model with two lumped 

capacitances and two lumped inertances will be 4th order with a 0th order numerator.  For 

the line and fluid properties in the example in section 2.2, a 4th order transfer function will 

at best accurately model only one resonant mode.  

It is not uncommon to get an error warning from MATLAB while using the m-file 

of ‘invfreqs’ due to the restriction of a zero order numerator in the transfer function. The 

best way to avoid this error is to adjust the weighting factors wt  by increasing the weight 

around the first real eigenvalue and mode frequencies.  For example, the weighting 

factors are set to 2 for the frequency range of 2~30 secrad , and the rest set to 1. The 

frequency range of the approximation is set from 0.11 to 87 secrad . The results are as 

follows:  

DCgainHt1 = 0.99236 

Transfer function: 
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( )

7

4 3 4 2 6 7

2.863 10
867.6 1.688 10

( )
4.336 10 2

(
.8

)
85 10

b a

e i o

Q s P s
Q Ps Ps s s

×
+ + × ×

∆
=

+
∆

−× +
 (2.22) 

Comparing the first mode eigenvalues, frequencies, damping ratios, and 

frequency response plots (Figure 2.2 and Figure 2.3) to those of the 10th order model 

reveals that the results are reasonably accurate.  

         Eigenvalue              Damping       Freq. (rad/s)   

 -6.72e+000                              6.72e+000     

 -3.53e+000 + 7.05e+001i      5.00e-002      7.06e+001     

 -3.53e+000 - 7.05e+001i      5.00e-002      7.06e+001     

 -8.84e+002                              8.84e+002     

 
Figure 2.3 Comparison of frequency responses of distributed parameter model and 0/4th 

order approximation model 
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A quantitative comparison of the resonant peaks of the first 2nd order mode is 

provided in Table 2.2.  The error is seen to be 0.26866-(-0.46306)=0.73172 dB which is 

relatively very accurate. 

Table 2.2 Magnitude of distributed parameter model and 0/4th order TF approximation 

Normalized resonant frequencies 70.556 
Resonant peaks of distributed model (dB) 0.26866 

Resonant peaks of transfer function 
approximation (dB) -0.46306 

 
In Figure 2.4, we see that the 4th order approximation does not exactly match the 

10th order approximation mainly due to the 0 order numerator of the transfer function. 

However, its mode frequencies and DC gain are very accurate.  

 
Figure 2.4 Comparison of step response of 9th/10th order and 0/4th order transfer function 

approximation 
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This chapter has focused on the procedure for generating a rational polynomial 

transfer function approximation for a partial differential equation transfer function defined 

in the frequency domain.  A 10th order transfer function representing the ‘exact’ or ‘true’ 

model was generated for a specific set of line dimensions and fluid properties. This model 

was then used to determine the accuracy and limitations of lower order transfer functions 

as might be formulated from lumped parameter models.  Chapter 3 pertains to methods 

for formulating tapered lumped models and higher order transfer functions such as the 

10th order obtained in this section will be used as a baseline for determining the accuracy 

of the tapered models in the time domain.  
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Chapter 3  

Lumped Parameter Model 

Equation Chapter (Next) Section 1 

For pressure/flow pulsations in lines with turbulent flow conditions, the most 

accurate method for formulating the model is debatable. Previous studies proposed that 

inertance and capacitance properties of the line do not change with the flow being 

laminar or turbulent but only that the resistance will change with an increase in the 

Reynolds number. The approach in this study is to simply add additional lumped 

resistance to the distributed parameter model for a line; the additional resistance is 

sufficient to produce the total steady flow resistance for turbulent flow through the line. In 

all probability, the most accurate approach is to distribute the resistance in one or more 

lumps along the line; use of more than one lump, however, requires that the distributed 

parameter model be divided into distributed segments. The scope of this study is limited 

to a single distributed parameter segment with a single lumped resistance for the 

turbulence; a thorough understanding of this relatively simple model is of interest before 

extending the research to a more complex segmented model.  

A popular approach to modeling the pressure/flow dynamics in lines with 

turbulence is the use of a lumped parameter model. The model consists of a lumped 

inertance in series with a lumped capacitance in series with a lumped resistance. The 

actual ordering of the lumps may vary depending on the causalities associated with the 

boundary conditions; however, the resulting transfer functions always end up with a zero 

order numerator which limits the accuracy of the models.  

The objective of the following section of this document is to explore the 

improvement in achieving the true mode frequencies and more accurate transient 

responses using tapered lumps in comparison to the traditional method of equal sized 
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lumps. Guidelines for tapering the lumps as a function of the dissipation number nD  are 

presented. 

A lumped parameter model assumes that the effects of inertance, capacitance, 

and resistance can be treated as being concentrated separately in the line.  

The Figure 3.1 shows a typical lumped parameter model, which has a single 

lump for the line inertance, a single lump for the line capacitance, and a single lump for 

the line resistance; all the impedances are in series. And Figure 3.2 is a supposedly more 

accurate model that has two times the number of lumps equally weighted. 

 

Figure 3.1 Typical single lumped parameter model 

 

 

Figure 3.2 Typical two lumped parameter model 

 

3.1 Equal Lumped Parameter Model 

Traditionally, if we have more than one lumped parameter for inertance, 

capacitance, and resistance, the value of each lump is assumed to be the same 

respectively. A better result would be expected when the numbers of lumped parameter 

are increased. However, it may not give a good result due to its incorrect mode 

frequencies.  
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The schematic of the 4th order lumped parameter model shown in Figure 3.3 is 

used for an example to demonstrate the above phenomenon. Although the location and 

number of lumped resistances does affect the result but not the order of the transfer 

function, a single resistance lump will be placed at the right end of the line in the 

examples to follow.  

 

Figure 3.3 0/4th order lumped parameter model 

We can derive the symbolic transfer function: 

 
( ) ( )
( )
( )

( )
1

4 3
1 2 0 1 1 1 0 1

2
1 0 1 2 0 1 2 1 1

0 1 1

( ) ( )
C C I I R s C I I s

C I R C I R C I R

b a

e i o

Q s P sR
Q P P

s

I I s R

∆ ∆
=

+ −

+ + +

+ + +

 (3.1) 

Let 0 1 1 2 sI I I= = × , 1 2 1 2 sC C C= = × , and 1 sR R=  with the line and fluid 

properties used in Chapter 2, the 4th order equal lumped parameter model becomes, 

Transfer function: 

 
( )4 3 2

5.2244 010
114.79 50633.0 7.3466 006

2.1604 009 5.2244 010

( ) ( )b a

e i o

e
s s e s

e

Q s P s
Q P P

s e

∆
+

+

∆

+
−+

=  (3.2) 

         Eigenvalue  Damping       Freq. (rad/s)   

 -2.61e+001                              2.61e+001     

 -1.12e+001 + 2.10e+002i      5.30e-002      2.11e+002     

 -1.12e+001 - 2.10e+002i      5.30e-002      2.11e+002     

C1 

Qa Q1
 

I0 

P1 Pb=Po 

C2 

Qb P2 Pa=Pi 

R1 I1 
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 -3.93e+002                              3.93e+002     

In order to compare the results of an equal lumped parameter model with the 

transfer function approximation of the distributed parameter model, the process of un-

normalization of s  in both approximate transfer functions is needed. That is to convert s  

to s , which 2( )s s r ν= × . Then the results of the example in Chapter 2 become   

10th order Transfer Function Approximation:  

Transfer function: 

 
( )

24 9

25 10

3.001 10 0.01723 1
2.

( )
875 10 0.07

( )
307 1

b a

e i o

Q s P s
Q

s s
s s P P

−

−

× + + +
× + + +

∆ ∆
=

−



 (3.3) 

         Eigenvalue              Damping       Freq. (rad/s)   

 -1.74e+001                               1.74e+001     

 -7.00e+001                              7.00e+001     

 -2.04e+001 + 2.11e+002i      9.62e-002      2.12e+002     

 -2.04e+001 - 2.11e+002i      9.62e-002      2.12e+002     

 -2.71e+001 + 4.32e+002i      6.26e-002      4.33e+002     

 -2.71e+001 - 4.32e+002i      6.26e-002      4.33e+002     

 -3.59e+001 + 6.56e+002i      5.47e-002      6.57e+002     

 -3.59e+001 - 6.56e+002i      5.47e-002      6.57e+002     

 -3.42e+001 + 8.85e+002i      3.86e-002      8.86e+002     

 -3.42e+001 - 8.85e+002i      3.86e-002      8.86e+002     

4th order Transfer Function Approximation: 

Transfer function: 

 
( )10 4 6 3 5 24.152 10 1.089 10 6.404 10

0.04972

( ) ( )1

1

b a

e i os s s
Q s P s
Q P

s
P− − −

∆ ∆
× + × +

+

=
−×

+

 (3.4) 
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         Eigenvalue              Damping       Freq. (rad/s)   

 -2.05e+001                              2.05e+001     

 -1.07e+001 + 2.13e+002i      5.03e-002      2.14e+002     

 -1.07e+001 - 2.13e+002i      5.03e-002      2.14e+002     

 -2.58e+003                              2.58e+003     

From above data, we can see the mode frequencies of the equal lumped 

parameter model and the first 2nd order mode of the 9th/10th order approximate transfer 

function are reasonably close.  In addition, the equal lumped parameter model has a 

larger error in the first real eigenvalue. Figure 3.4 shows that the step response of the 

equal lumped parameter model does not match well with the 9th/10th order approximate 

transfer function. The 0/4th order approximate transfer function time response is shown 

for comparison.  Frequency domain comparisons of the transfer functions are shown in 

Figure 3.5. 
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Figure 3.4 Comparison of step responses of equal lumped parameter model, 9th/10th 

order and 0/4th order approximate transfer function model 
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Figure 3.5 Comparison of bode plot of equal lumped parameter model, 9th/10th order and 

0/4th order approximate transfer function 

3.2 Tapered Lumped Parameter Model with Lossless Effect 

To improve the lumped model, Professor Paynter’s patent [10], which allows the 

model to have only a few lumps but hit frequencies exactly for zero resistance, is utilized. 

Figure 3.6 shows a network diagram for an n-segment tapered model. 

 

Figure 3.6 Network diagram for an n-segment tapered model 
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The values of the Φ’s and Ψ’s are dependent on the number of segments, n. 

Values of Φ and Ψ for n up to 4 are given in below Table. 

Table 3.1 Taper coefficients Φ and Ψ for Paynter’s model 

n-> 1 2 3 4 

Φ
0
 1.000 .250 .142 .099 

Ψ
1
 

 .541 .289 .199 

Φ
1
 

 .750 .311 .205 

Ψ
2
 

  .367 .218 

Φ
2
 

  .547 .244 

Ψ
3
 

   .295 

Φ
3
 

   .452 

 

The lossless model of the distributed parameter model will be used to compare 

with the Paynter’s lumped parameter model. The propagation operator and the 

characteristic impedance from Equations (2.3) and (2.4) will be applied to the lossless 

model.  

An example is shown below to demonstrate the comparisons of the model of a 

8th/9th order approximate transfer function, the equal lumped parameter model of 0/5th 

order transfer function, and Paynter’s tapered lumped parameter model of 0/5th order 

transfer function. The model of 8th/9th order approximate transfer function will be assumed 

to be the exact model of the line.  

To get the transfer function of lossless effect for equal lumped parameter model 

and Paynter’s tapered lumped parameter model, the symbolic transfer function of the 

lumped parameter mode is needed and shown below.  
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+ + +

∆
=

−
 (3.5) 

The properties of the line and fluid are the same as those in the example in 

Chapter 2 except for the viscosity of the fluid; it is assumed to be zero as used in 

Equation (3.5). The transfer functions and mode frequencies of each model are 

presented below.   

8th/9th order Transfer Function Approximation of Distributed Parameter Model 

Transfer function: 

 
( )

9 8 11 13

9 20 8 2

22

3.141 10 2.029 10 1.379 10
6.734 4.42 10 0.0002587

2.978 10

( ) ( )

1

b a

e i o

s s
s s s

Q s P s
Q P P

s

− −

−
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=

× + + × + ×
+ × + +

+ × +

−




 (3.6) 

Mode frequencies ( rad s )  =  [229, 459, 688,  918] 

 

Equal Lumped Parameter Model: ICICI, 5th order 

Transfer function: 

 
( )5 30.7032 9.001 004 2.16 00

( ( )1
9

)b a

e i os e s e
Q s P s
Q P Ps+ +

∆ ∆
=

−
 (3.7) 

Mode frequencies ( rad s )  =  [179,  310]     

 

Paynter’s Tapered Lumped Parameter Model: ICICI, 5th order  

Transfer function: 

 
( )5 30.1946 5.11 004 2.1

( ) ( )1
6 009

b a

e i os e s e
Q s P s
Q Ps P+

∆ ∆
=

−+
 (3.8) 

Mode frequencies ( rad s )  =  [230,  458]     
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From the above data and Figure 3.7, we can see the mode frequencies of the 

Paynter’s tapered lumped parameter model match well with the 8th/9th order approximate 

transfer function of lossless distributed parameter model, but the equal lumped parameter 

model does not.  

 

Figure 3.7 Bode plot of 8th/9th order approximate transfer function model and 0/5th order 

transfer functions of both equal and Paynter’s tapered lumped parameter models 

This approves the Paynter’s tapered lumped parameter model does achieve the 

true mode frequencies for lossless models. How about the models with resistance? Dr. 

Paynter suggests attaching the resistance at the end of the lossless model. The next 

section demonstrates the results.  
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3.3 Tapered Lumped Parameter Model with Viscosity Effect 

To apply the viscosity effect to Paynter’s tapered lumped parameter model, we 

can simply add the resistance at the end of the line. The following shows the transfer 

function, eigenvalues, damping ratios, and mode frequencies of Paynter’s tapered 

lumped parameter model. 

Paynter’s Tapered Lumped Parameter Model with Resistance: ICIR, 0/3rd order  

Transfer function: 

 
( )7 3 5 27.865 10 2.536 10 0.0413

( ) 1
5 1

( )b a

e i o

Q s P s
Q s s s P P− −× + ×

∆
+ +

∆
=

−
 (3.9) 

        Eigenvalue              Damping       Freq. (rad/s)   

 -2.43e+001                              2.43e+001     

 -3.99e+000 + 2.29e+002i      1.74e-002      2.29e+002     

 -3.99e+000 - 2.29e+002i      1.74e-002      2.29e+002     

In Chapter 3.1, the Equation (3.3) and data of the 10th order approximate transfer 

function of distributed parameter model presents an accurate model. By comparing 

above data with the accurate model, Paynter’s model with viscosity effect obviously has 

larger errors for the eigenvalues and mode frequencies than the 5th order approximate 

transfer function shown in Equation (3.4).  

Figure 3.8 and Figure 3.9 show the inaccuracy of Paynter’s lumped model with 

viscosity effect in time response. Also, Figure 3.10 clearly shows the first mode frequency 

of his model does not match the accurate model at all.  

Therefore, we can conclude that the tapering of the lumped parameter model 

should change with the resistance  
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Figure 3.8 Comparison of step responses (a) 
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Figure 3.9 Comparison of step responses (b) 
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Figure 3.10 Comparison of frequency responses
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Therefore a proper tapering for the lumped parameter model is needed. Since we 

can get an approximate transfer function with a zero order numerator from the 

distrabuted parameter model, we can attempt to use this transfer funciton to represent a 

lumped parameter model? The idea is to match the denominator coefficients of the 

approximate transfer function of distributed parameter model with the coefficients of the 

transfer function for the tapered lumped parameter model. 

The 0/4th order approximate transfer function and the 4th order lumped parameter 

model illustrated in Figure 3.3, is used as the example to demonstrate how to solve the 

coefficients of inertance and capacitance of the lumped parameter.  

First, define , ,s s sI C R  as the sum of inertance, capacitance, and resistance 

correspondingly, and 0 1 1 2, , ,i i c c  as their coefficients. Assume 0 0 sI i I= × , 1 1 sI i I= × ,  

1 1 sC c C= × , 2 2 sC c C= ×  and 1 1 sR R= × . The Equation (3.1) can be rewritten as  

 

( ) ( )
( ) ( )

( )2 2 4 2 3
1 2 0 1 1 0 1

2
1 0 2 0 2 1 0 1

( ) ( )b s a

e i os s s s s

s s s s s

Q s R P s
Q P PI C R c c i i s I C c i i s

I C R c i c i c i s I i i s R

∆ ∆
=

−   +   
+ + + + + +      

 (3.10) 

where 

 2s
LI
r
ρ
π

=  (3.11) 

 
2

s
r LC π
β

=  (3.12) 

 4 4

128 8
(2 )s

L LR
r r
ρν ρν

π π
= =  (3.13) 

 2s s
r
ν

=  (3.14) 
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22 2 2
2

2 42/n
L L LD

cr rr
ν ν ρν

ββ ρ

  = = =       
 (3.15) 

Substitute line and fluid properties and s  into the , , ands s sI C R of Equation 

(3.10) and sum up into the format of nD .  

The coefficients of the transfer function can be rewritten separately as 

( ) ( )
2 4 44 4

0 1 1 2 0 1 1 22 8: n
L i i c c i i c c D

r
s ρ ν

β
= ×  

2 23 20 1 1 0 1 1
4

( ) ( ):
8 8 n

i i c i is cL D
r

ρν
β

= ×  

( ) ( )
2 22 2

0 1 0 2 1 2 0 1 0 2 1 24: n
L i c i c i c i c i c c Ds i

r
ρν
β

+ + = + + ×  

1 0 1(i i ):
8

s +
 

0:1s  

We can see that the coefficients of the symbolic transfer function of the lumped 

parameter model are a function of nD , just like the coefficients of the approximate 

transfer function of distributed parameter model are also a function of nD . 

Then we use symbolic math in MATLAB to solve for the taper coefficients, 

0 1 1 2, , ,i i c c , with the coefficients of Equation (3.4). Notice that, we have 4 equations for 

solving for 4 unknowns 0 1 1 2( )i i c c . In this example, we get the results for 

coefficient, 0 1 1 2, , ,i i c c , for the I’s and C’s parameters:  

 [ ] [ ]0 1 0.61822 0.58403wI i i= =  (3.16) 

 [ ] [ ]1 2 0.38895 0.084098wC c c= =  (3.17) 
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3.4 Tapering with Varied nD   

Since the I ’s and C ’s coefficients are functions of nD , we can repeat the whole 

procedure to get a table of I ’s and C ’s coefficients versus nD  for tapering the lumped 

parameter models. Here we use the 4th order tapered lumped parameter model as the 

example to calculate the I ’s and C ’s coefficients with varied nD values, which are 

controlled by changing the length of the line in this case. Results are shown in Table 3.2. 

Table 3.2 I ’s and C ’s coefficients of 0/4th order tapered lumped parameter model with 

varied nD  

L (m) 20 16 12 8 4 2 

nD  0.04139 0.033112 0.024834 0.016556 0.0082781 0.004139 

Ratio 1 4/5 3/5 2/5 1/5 1/10 

wI(1) 0.62301 0.64816 0.73168 0.76697 0.87463 0.97119 

wI(2) 0.5877 0.55963 0.53946 0.52408 0.42157 0.32426 

wC(1) 0.38633 0.38401 0.37327 0.36128 0.38123 0.43782 

wC(2) 0.081268 0.073349 0.022999 2.7138e-13 2.6126e-12 2.064e-11 

 

L (m) 1.6 1.2 0.8 

nD  0.0033112 0.0024834 0.0016556 

Ratio 4/50 3/50 2/50 

wI(1) 0.98956 0.9958 1.0472 

wI(2) 0.2972 0.30305 0.25645 

wC(1) 0.46348 0.47242 0.50005 

wC(2) 1.5053e-12 1.3934e-12 0.51971 
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Figure 3.11 I ’s and C ’s coefficients of 0/4th order tapered lumped parameter model with 

varied nD  

To find the relation of these coefficients, they are plotted as a scatter diagram 

and described by polynomial equations using MS Excel function. These results are 

shown in Figure 3.11 as a function of nD . However, a proper equation for the wC(2) 

cannot be found due to the last value of wC(2) in Table 3.2 is significantly increased to 

0.51971. Also, these line equations do not express the left side of the data accurately.  

To improve this and have a better data line approximation, the last data for 

0.0016556nD =  are taken off and log( )nD  is used. The results are shown in Figure 

3.12.  
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For laminar flow conditions, after the value of nD  is calculated, we can get any 

lump coefficients of the lumped parameter model with these equations 

 

 

Figure 3.12 I ’s and C ’s coefficients of 0/4th order tapered lumped parameter model with 

varied log( )nD  in x-axis 

This analysis technique will be extended to turbulent flow cases in Chapter 4. 
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Chapter 4  

Tapered Lumped Parameter Model for Turbulent Flow 

Equation Chapter (Next) Section 1 

In Chapter 2 and Chapter 3, procedures were developed to formulate accurate 

approximate models results in the frequency and time domains.  Also, empirical formulas 

were formulated for tapering the size of the lumps in lumped parameter models for 

laminar flow conditions.  

In Chapter 4, we would like to extend this concept to turbulent flow. Since 

inertance and capacitance properties of the line are assumed to not be a function of the 

Reynolds number, we can add an extra resistance, defined as vR , at the end of the line 

represented by the distributed parameter model to achieve the appropriate turbulent flow 

resistance. Then repeating the procedures in Chapter 2 and Chapter 3, guidelines for 

tapering the size of the lumps will be formulated for small pressure/flow pulsations in the 

line with turbulent flow. 

The pressure/flow pulsations are assumed to be relatively small because the 

resistance of the line is a nonlinear function of the Reynolds number.  Therefore, the case 

of a small amplitude disturbance superimposed on a gross turbulent flow is applied here. 

The next section of this document pertains to the derivation of the equation for the 

equivalent resistance vR  required to achieve a steady flow resistance for turbulent flow.  

This resistance will be added to the end of the line which will be modeled using the 

distributed parameter equations.  

4.1 Turbulent Flow Resistance 

For incompressible steady flow of the circular transmission line, the summation of 

the forces on the fluid in a small section of pipe is  
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2

1

2

2
o

i

P L

P L

f UdP dx
D
ρ

= −∫ ∫  (4.1) 

The empirical friction factor f  [7, 15, 16] of a smooth pipe for turbulent flow is  

 0.250.3164 / nf R≈  (4.2) 

where nR  is the Reynolds number defined by  

 
4 e

n
QR
D

ρ
µπ

=  (4.3) 

The velocity of the flow is defined by  

 2

4e eQ QU
A Dπ

= =  (4.4) 

Substituting these equations into Equation (4.1) and performing the integration 

gives 

 
0.75 0.25

1.75 1.75
4.75

0.2414
i o e f e

LP P Q C Q
D
ρ µ

− = =  (4.5) 

The lumped resistance vR  is defined by the following equation  

 1.75 ( )i o f e s v eP P C Q R R Q− = = +  (4.6) 

Thus, solving for Rv gives  

 0.75
v f e sR C Q R= −  (4.7) 

Or in terms of the Reynolds number, Equation (4.7) becomes  

 

0.750.75 0.25

4.75 4

0.75
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4 4

0.2414 128
4
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D D

L L
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R
D D

π µρ µ µ
ρ π

µ π µ
π

  
−  

  

  = −  
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For 0vR = , 1187.6nR = . So, the Reynolds number at which turbulent 

resistance equals the laminar resistance is 1187.6. The above equation for vR  gives a 

value that can be used as long as 1187.6nR > .  

It is desirable to represent vR  as a normalized resistance rR  defined by  

 

0.75
0.75

0.75

0.2414 1
128 4

0.004943 1

v
r n

s

n

RR R
R

R

π π  = = −  
  

= −

 (4.9) 

or  

 0.75 202.3044( 1)n rR R= +  (4.10) 

 

4.2 Distributed Parameter Model 

 

Figure 4.1 Schematic of a fluid transmission line for turbulent flow 

To apply the turbulent flow resistance to the distributed parameter model, an 

additional linear resistance vR will be attached to the end of the line so the total resistance 

will be equal to the turbulent flow resistance tR . 

See Figure 4.1 for the schematic. Consider the example shown below. The flow 

through the line is initially steady with upstream pressure a iP P=  and downstream 

pressure oP .  Pressure/flow pulsations will be created from a slight increase or decrease 

Po Pa = Pi 
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Pb 

Qb 

Rv 
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in pressure aP , aP∆ . Therefore, like Equation (2.18) for laminar flow conditions, the 

transfer function for normalized flow rate for the normalized pressure input becomes, 

 
( )

( ) ( )
sinh cosh

b t a

e v i o

Q s R P s
Q Z R P P

 ∆ ∆
=  Γ + Γ − 

 (4.11) 

where v t sR R R= −    

Using the example presented in Chapter 2 and Chapter 3, the effects of a 

gradual transition from laminar to turbulent flow are presented in Table 4.1  

Table 4.1 Effects of increasing from laminar to turbulent flow 

 1st mode 
frequency 

Damping ζ1 Natural frequency 
ω1 

Rr = 0, Laminar flow 5.77 0.0962 70.1 

Rr = 1, Rn = 2992.6 12 0.205 69.8 

Rr = 2, Rn = 5138.5 18.4 0.342 70.4 

Rr = 3, Rn = 7540.9 22.2 0.581 68.1 

 

It is observed that the damping ratio and 1st mode frequency increase as the 

Reynolds number increases. 

 

4.3 Curve Fit Approximation of the Distributed Parameter Model 

Before doing the curve fit approximation, we need to assume the Reynolds 

number for the turbulent flow in order to have the turbulent flow equivalent resistance. 

To demonstrate, we start with 10544.37nR = , which is turbulent flow condition. 

The flow rate can be derived.  

 0     
4n n

A DQ R or R
D
ν µπ

ρ
=  (4.12) 



 

45 

Properties of line and fluid are the same as in Chapter 2. Therefore, Equation 

(4.9), the turbulent flow equivalent resistance becomes  

2.6872 011t eR +=   

Then we repeat the same procedures as with laminar flow condition for turbulent 

flow condition to do the curve fitting. As in the previous chapters, the 9th/10th order 

transfer function approximation will be used to represent the true model since it provides 

an accurate least squares fit for the dominant modes out through the bandwidth of the 

pulsation frequencies.  Setting the upper bound on frequency to be 353 ( secrad ) 

results in the so called ‘true’ transfer function for comparison with other models for 

turbulent flow conditions: 

 
( )

21 9 5 2

22 10 2

1.935 10 1.761 10 0.003475 1
1.222 10 0.008033 0.034

( ) (
15 1

)b a

e i o

s s sQ s P s
sQ P Ps s

− −

−

× − × − +
×

∆ ∆+
+

=
+ + + −




 (4.13) 

The eigenvalues, damping ratios, and natural frequencies are listed below for 

comparison with lumped parameter models with zero order numerators to be formulated.  

        Eigenvalue              Damping       Freq. (rad/s)   

 -2.98e+001 + 3.80e+001i      6.17e-001      4.83e+001     

 -2.98e+001 - 3.80e+001i      6.17e-001      4.83e+001     

 -2.81e+001 + 1.10e+002i      2.48e-001      1.13e+002     

 -2.81e+001 - 1.10e+002i      2.48e-001      1.13e+002     

 -3.73e+001 + 1.75e+002i      2.08e-001      1.79e+002     

 -3.73e+001 - 1.75e+002i      2.08e-001      1.79e+002     

 -4.69e+001 + 2.60e+002i      1.77e-001      2.65e+002     

 -4.69e+001 - 2.60e+002i      1.77e-001      2.65e+002     

 -3.34e+001 + 3.47e+002i      9.59e-002      3.49e+002     



 

46 

 -3.34e+001 - 3.47e+002i     9.59e-002      3.49e+002     

 

Figure 4.2 Comparison of frequency responses of distributed parameter model and 

9th/10th order approximation model 

Figure 4.2 shows the accuracy of the ‘true’ model in regard to matching resonant 

peaks and frequencies.  A quantitative comparison of the resonant peaks is provided in 

Table 4.2.  

Table 4.2 Comparing the resonant peaks of the distributed parameter and 9th/10th models  

Normalized resonant 
frequencies 38.004 109.86 175.01 260.38 347.28 

Resonant peaks of 
distributed model (dB) 1.4367 0.42623 -0.4 -1.0828 -2.0572 

Resonant peaks of transfer 
function approximation (dB) 

1.4262 0.49274 -0.36327 -1.2373 -1.9373 
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Selection of the upper bound on the frequency for the least squares curve fit may 

make a big difference in the accuracy of the results.  For example, the results of an 

attempt to include too many modes in the fit with too low of an order for the transfer 

function are provided in Figure 4.3 and Table 4.3.  The upper frequency bound was set to 

120 secrad  in an attempt to include the second 2nd order mode. The accuracy of the 

resulting transfer function is poor.  

 

Figure 4.3 Comparison of frequency responses of distributed parameter model and 0/4th 

order approximation model (a) 

A quantitative comparison of the resonant peaks of the first and second 2nd order 

modes are provided in Table 4.3.  The error of the first 2nd order mode is seen to be 

1.9945-1.43667=0.55783 dB which is not really significant if we consider the magnitude 
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scale; an error less than 1dB, is small. But the error of the second 2nd order mode is 

0.42623-(-2.4211)=2.8473 dB which is not acceptable.  

Table 4.3 Magnitude of distributed parameter model and 0/4th order TF approximation 

Normalized resonant frequencies 34.831 91.992 
Resonant peaks of distributed model (dB) 1.4367 0.42623 

Resonant peaks of transfer function 
approximation (dB) 1.9945 -2.4211 

 

In order to improve the results, the maximum frequency range is reduced to only 

cover the first mode frequency and adjusted until the first mode peak of the 4th order 

transfer function approximation matches the peak of the distributed parameter model. In 

this case, the upper bound on frequency is set to be 73 ( secrad ). This kind of 

adjustment will be applied to all similar cases. Examination of Figure 4.4 shows the 

improvement. The resulting transfer function for turbulent flow is  

 
( )8 4 6 3 29.536 10 7.042 10 0.0008799

0.0329

( ) ( )1

9 1

b a

e i o

Q s
s s s

s

P s
Q P P− −× + × +

+ +

∆ ∆
=

−
 (4.14) 

        Eigenvalue              Damping       Freq. (rad/s)   

 -2.39e+001 + 3.29e+001i      5.88e-001      4.07e+001     

 -2.39e+001 - 3.29e+001i      5.88e-001      4.07e+001     

 -1.30e+001 + 7.85e+001i      1.63e-001      7.95e+001     

 -1.30e+001 - 7.85e+001i      1.63e-001      7.95e+001     
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Figure 4.4 Comparison of frequency responses of distributed parameter model and 0/4th 

order approximation model (b) 

A quantitative comparison of the resonant peaks of the first 2nd order mode is 

provided in Table 4.4.  The error of the first 2nd order mode is seen to be 1.4367-

1.4159=0.0208 dB which is relatively very accurate.  

Table 4.4 Magnitude of distributed parameter model and 0/4th order TF approximation 

Normalized resonant frequencies 32.935 
Resonant peaks of distributed model (dB) 1.4367 

Resonant peaks of transfer function 
approximation (dB) 1.4159 
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4.4 Equal Lumped Parameter Model 

This section shows the difference between 4th order equal lumped parameter 

model and models of 10th and 4th order approximate transfer functions of the distributed 

parameter model with turbulent flow conditions. Recall that the 10th order approximate 

transfer function represents what is considered to be the ‘true’ transfer function for 

comparing and evaluating other transfer function models. The 4th order approximate 

transfer function represents a reasonably accurate model out through the first 2nd order 

mode; it will be used to find the coefficients of inertance and capacitance of a tapered 

lumped parameter model.  

4th order equal lumped parameter model:  

For 4th order equal lumped parameter model, we assume that 1 2 0.5 sC C C= = × ,

0 1 0.5 sI I I= = ×  and 1 tR R= . The transfer function, eigenvalues and mode frequencies 

become  

 
( )9 4 7 3 22.197 10 1.884 10 0.0001406

0.0080

( ) ( )1

4 1

b a

e i o

Q s
s s s

s

P s
Q P P− −× + × +

+ +

∆ ∆
=

−
 (4.15) 

        Eigenvalue              Damping       Freq. (rad/s)   

 -3.21e+001 + 8.58e+001i      3.50e-001      9.16e+001     

 -3.21e+001 - 8.58e+001i      3.50e-001      9.16e+001     

 -1.08e+001 + 2.33e+002i      4.64e-002      2.33e+002     

 -1.08e+001 - 2.33e+002i      4.64e-002      2.33e+002     

In order to compare the time responses of the equal lumped parameter model 

with the transfer function approximations of the distributed parameter model, s  must first 

be un-normalized using 2 ( )s s r ν= × . The transfer functions can then be compared to 

the ‘true’ transfer function.  The result is  
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( )

26 9 6 2

27 10 5 2

9.183 10 1.928 10 0.00115 1
1.918 10 8.791 10 0.0113

( ) ( )
1

b a

e i o

s s s
s

Q s P s
Q P Ps s

− −

− −

× + − × − +
× + + ×

∆
+ +

∆
=

−




 (4.16) 

        Eigenvalue              Damping       Freq. (rad/s)   

 -9.01e+001 + 1.15e+002i      6.17e-001      1.46e+002     

 -9.01e+001 - 1.15e+002i      6.17e-001      1.46e+002     

 -8.50e+001 + 3.32e+002i      2.48e-001      3.43e+002     

 -8.50e+001 - 3.32e+002i      2.48e-001      3.43e+002     

 -1.13e+002 + 5.29e+002i      2.08e-001      5.41e+002     

 -1.13e+002 - 5.29e+002i      2.08e-001      5.41e+002     

 -1.42e+002 + 7.87e+002i      1.77e-001      8.00e+002     

 -1.42e+002 - 7.87e+002i      1.77e-001      8.00e+002     

 -1.01e+002 + 1.05e+003i      9.59e-002      1.05e+003     

 -1.01e+002 - 1.05e+003i      9.59e-002      1.05e+003    

The 4th order transfer function approximation for turbulent flow conditions is found 

to be 

 
( )9 4 7 3 5 21.142 10 2

( ) ( )1
.55 10 9.63 10

0.01091 1

b a

e i o

Q s P s
Ps Ps s

s
Q − − −× + × +

∆
×

+ +

∆
=

−
 (4.17) 

        Eigenvalue              Damping       Freq. (rad/s)   

 -7.24e+001 + 9.96e+001i      5.88e-001      1.23e+002     

 -7.24e+001 - 9.96e+001i      5.88e-001      1.23e+002     

 -3.92e+001 + 2.37e+002i      1.63e-001      2.40e+002     

 -3.92e+001 - 2.37e+002i      1.63e-001      2.40e+002     
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Figure 4.5 Comparison of step responses of equal lumped parameter model, 9th/10th 

order and 0/4th order approximate transfer function models 

From the above data and Figure 4.5 and Figure 4.6, there are significant 

differences between the model with equal size lumps and both models of 9th/10th order 

and 0/4th order transfer functions. It is clear that the model of 0/4th order approximate 

transfer function is closer to the ‘true’ model than the model with equal size lumps.  

Therefore, this 0/4th order approximate transfer function will be used in the next section to 

solve for the tapering coefficients of the inertance and capacitance lumps.  
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Figure 4.6 Comparison of bode plots of equal lumped parameter model, 9th/10th order and 

0/4th order approximate transfer function models 

 

4.5 Lumped Parameter Model Tapering with Varied &n nD R  

Referring to Figure 3.3, we assume 0 0 sI i I= , 1 1 sI i I= , 11 sC c C= , 22 sC c C=  

and 1 tR R= . The same procedure is repeated as was done for laminar flow conditions in 

Chapter 3. The symbolic transfer function of the 4th order lumped parameter model is  

 

( ) ( )
( ) ( )

( )2 2 4 2 3
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2
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I C R c i c i c i s I i i s R
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After solving the symbolic math with MATLAB by comparing Equation (4.17) and 

Equation (4.18), we get the coefficients for the I’s and C’s for 0.04139nD =  with 

10544.37nR = : 

 [ ] [ ]0 1 0.68837 0.66893wI i i= =  (4.19) 

 [ ] [ ]1 2 0.36733 0.1921wC c c= =  (4.20) 

The coefficients are different than those for laminar flow. Therefore, new tables 

are needed. As was done for laminar flow, we varied only the length of the line to get the 

corresponding values of nD  for computing the coefficients. 

The resulting coefficients for 10544.37nR =  and different values of nD  are 

shown in Table 4.5 and Figure 4.7.  

Table 4.5 I ’s and C ’s coefficients of 0/4th order tapered lumped parameter model with 

varied nD , for 10,544nR =  

L (m) 20 16 12 8 4 2 

nD  0.04139 0.033114 0.024834 0.016557 0.0082778 0.004139 

Ratio 1 4/5 3/5 2/5 1/5 1/10 
wI(1) 0.68837 x 0.61696 0.6307 0.62692 0.65081 
wI(2) 0.66893 x 0.60042 0.57044 0.5105 0.45644 
wC(1) 0.36733 x 0.43945 0.46648 0.40276 0.39793 
wC(2) 0.1921 x 0.17319 0.11895 0.11729 0.11267 

 

L (m) 1.6 1.2 0.8 0.4 0.2 

nD  0.0033113 0.0024834 0.0016556 0.0008278 0.0004139 

Ratio 4/50 3/50 2/50 1/50 1/100 
wI(1) 0.66408 0.72043 0.72674 0.79124 0.85847 
wI(2) 0.443 0.4549 0.42 0.37899 0.32999 
wC(1) 0.39989 0.38127 0.39407 0.40473 0.43202 
wC(2) 1.2976e-013 1.7723e-013 9.7274e-013 3.0053e-012 2.9128e-011 
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From the Table 4.5, we see that the column for 0.033114nD =  is incomplete; 

for these cases the solution did not converge. That is because the difficulty of achieving a 

good curve fit when there is a real eigenvalue located in front of the first 2nd order mode 

in the frequency response of the distributed parameter model.  

To find empirical equations for these coefficients, the data in Table 4.5 was 

plotted as a scatter diagram and described with polynomial equations using the MS Excel 

function. This is shown in Figure 4.7 as a function of log( )nD . 

 

Figure 4.7 I ’s and C ’s coefficients of 0/4th order tapered lumped parameter model with 

log( )nD  in x-axis, for 10,544nR =  

More results are shown below in tables and figures as a function of log( )nD  for 

turbulent flow 10 and 100rR =  which correspond to Reynolds numbers of

29,053 and 558,602nR = . 

y = 0.0686x3 + 0.6009x2 + 1.5396x + 1.8427 

y = 0.0444x3 + 0.3514x2 + 1.0431x + 1.5571 

y = -0.1361x4 - 1.4056x3 - 5.27x2 - 8.4597x - 4.4705 

y = 0.0444x2 + 0.3198x + 0.5616 

-0.1 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

-3.5 -3 -2.5 -2 -1.5 

C
oe

ff
ic

ie
nt

s m
ul

tip
lie

r 

Logarithm dissipation number, log(Dn) 

wI(1) 

wI(2) 

wC(1) 

wC(2) 



 

56 

Table 4.6 I ’s and C ’s coefficients of 0/4th order tapered lumped parameter model with 

varied nD , for 29,053nR =  
L (m) 20 16 12 8 4 2 1.6 

nD  0.04139 0.033112 0.024834 0.016556 0.0082781 0.004139 0.0033112 
Ratio  1 4/5 3/5 2/5 1/5 1/10 4/50 
wI(1) 0.99341 0.84938 0.70615 0.59849 0.6091 0.62187 0.62023 
wI(2) 0.65043 0.53336 0.45543 0.41951 0.51182 0.50236 0.49535 
wC(1) 0.21022 0.23068 0.25758 0.26814 0.37973 0.38015 0.38787 
wC(2) 0.18113 0.2163 0.25727 0.2829 0.17453 0.10111 0.11306 
L (m) 1.2 0.8 0.4 0.2 

nD  0.0024834 0.0016556 0.00082781 0.0004139 
Ratio  3/50 2/50 1/50 1/100 
wI(1) 0.62086 0.64886 0.68949 0.72005 
wI(2) 0.46815 0.4665 0.43296 0.39775 
wC(1) 0.39166 0.38126 0.38829 0.40148 
wC(2) 0.142 0.11337 0.099763 0.13629 

 

 

Figure 4.8 I ’s and C ’s coefficients of 0/4th order tapered lumped parameter model with 

log( )nD  x-axis, for 29,053nR =  

y = 0.253x5 + 3.2773x4 + 16.822x3 + 42.81x2 + 54.002x + 27.592 

y = 0.4093x5 + 5.2009x4 + 25.977x3 + 63.589x2 + 76.116x + 36.059 

y = 0.1079x5 + 1.3787x4 + 6.8384x3 + 16.347x2 + 18.608x + 8.2769 

y = -0.2307x5 - 2.9489x4 - 14.858x3 - 36.738x2 - 44.3x - 20.513 
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Table 4.7 I ’s and C ’s coefficients of 0/4th order tapered lumped parameter model with 

varied nD , for 558,602nR =  
L (m) 20 16 12 8 4 2 1.6 

nD  0.04139 0.033112 0.024834 0.016556 0.0082781 0.004139 0.0033112 
Ratio  1 4/5 3/5 2/5 1/5 1/10 4/50 
wI(1) 0.50442 0.36951 0.25469 0.16235 0.091907 0.064734 0.061261 
wI(2) 0.27674 0.20638 0.14562 0.094432 0.055663 0.044341 0.041117 
wC(1) 0.41782 0.55363 0.78573 1.218 2.0062 2.5362 2.7576 
wC(2) 0.41903 0.57162 0.80705 1.2178 2.0556 2.7786 2.8323 
L (m) 1.2 0.8 0.4 0.2 

nD  0.0024834 0.0016556 0.00082781 0.0004139 
Ratio  3/50 2/50 1/50 1/100 
wI(1) 0.059152 0.046495 0.059259 0.060449 
wI(2) 0.039308 0.039637 0.051228 0.051736 
wC(1) 2.8381 3.0306 3.6128 3.6506 
wC(2) 2.8938 2.6668 1.9599 1.4214 

 

 

Figure 4.9 I ’s and C ’s coefficients of 0/4th order tapered lumped parameter model with 

log( )nD  x-axis, for 558,602nR =   

y = 0.1673x4 + 1.7915x3 + 7.1534x2 + 12.651x + 8.4365 
y = 0.0745x4 + 0.8174x3 + 3.353x2 + 6.0871x + 4.1675 

y = 0.1452x4 + 1.5875x3 + 5.7604x2 + 6.4074x + 1.8871 

y = 1.5377x4 + 15.272x3 + 53.434x2 + 76.645x + 39.05 
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Chapter 5  

Models for an Assortment of Boundary Conditions 

Equation Chapter (Next) Section 1 

The examples in the previous chapters were based on the specific set of 

boundary conditions associated with the output being the perturbation in flow and the 

input being a perturbation in pressure.  That is, 

1( ) ( )
sinhb aQ s P s

Z
 ∆ = ∆ Γ 

 

The objective of this chapter is to demonstrate how to use the results in the 

previous chapters to other sets of boundary conditions.  Three applications of the line are 

used to show the similarities and differences of each model in Chapter 5. As in the 

previous chapters, an additional resistance vR  is added to the end of the line to account 

for turbulence.  

The similarities and differences of each application in the distributed parameter 

model and the tapered lumped parameter model will be demonstrated. Also, the I’s and 

C’s coefficients for each application will be presented with tables and polynomial 

equations from corresponding figures of the I’s and C’s coefficients of tapered lumped 

parameters with varied resistance ratio, rR , and dissipation number, nD . 

 

5.1 Distributed Parameter Model Transfer Functions 

Case 1: 

Consider the schematic of a fluid line shown in Figure 5.1. The pressures at the 

ends of the line are denoted by aP  and oP ; the volumetric flow rates at the ends are 

denoted by aQ  and bQ ; vR  is a linear resistance attached at the right end of the line for 
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turbulence. Assume that the flow through the line is initially constant, then a sudden 

increase or decrease occurs in the pressure aP , aP∆ , associated with a control or 

measurement signal. This input will cause pressure and flow pulsations along the line. 

 

Figure 5.1 Schematic of a fluid transmission line for Case 1 

The flow rate bQ  equation of distributed parameter model for case 1 is given 

from Equation (2.2). Then the equations of this model are  

 1 cosh
sinh sinh

b o v b

b a b

P P R Q

Q P P
Z Z

∆ −∆ = ⋅∆
Γ

∆ = ∆ − ∆
Γ Γ

 (5.1) 

Since 0oP∆ = , the bQ∆  can be rewritten as 

 

1 cosh ( )
sinh sinh

1
sinh cosh

b a o v b

a
v

Q P P R Q
Z Z

P
Z R

Γ
∆ = ∆ − ∆ + ∆

Γ Γ

= ∆
Γ + Γ

 (5.2) 

For steady state, the flow rate through the line will be the same value, eQ , and 

the pressure difference becomes ( )i oP P− . The steady state equation can be written as  

 ( )i o s v eP P R R Q− = +  (5.3) 

Finally, the transfer function of the normalized flow rate bQ∆  becomes 

Pa = Pi 

Qa 

Pb 

Qb 

Rv 

Po 
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( )

( )

sinh cosh

1

sinh cosh

b s v a

e v i o

ar

i o
r

s

Q R R P
Q Z R P P

or
PR

Z P PR
R

∆ + ∆
=

Γ + Γ −

∆+
=

−Γ + Γ

 (5.4) 

where rR  is defined as r v sR R R=  

Using the same procedure, the aQ∆  and the transfer function of the normalized 

aQ∆  is  

 
cosh sinh

( sinh cosh )
v

a a
v

Z RQ P
Z Z R

Γ + Γ
∆ = ∆

Γ + Γ
 (5.5) 

 

( )

( )

( cosh sinh )( )
( sinh cosh )

( cosh sinh )( 1)

( sinh cosh )

a v v s a

e v i o

r r
s a

i o
r

s

Q Z R R R P
Q Z Z R P P

or
Z R R
R P

Z P PZ R
R

∆ Γ + Γ + ∆
=

Γ + Γ −

Γ + Γ +
∆

=
−Γ + Γ

 (5.6) 

The transfer function of  bP∆  can be shown to be 

 
sinh cosh

v
b a

v

RP P
Z R

∆ = ∆
Γ + Γ

 (5.7) 

Case 2: 

Consider the schematic of a fluid line shown in Figure 5.2. The pressures at the 

ends of the line are denoted by iP  and bP ; the volumetric flow rates at the ends are 

denoted by aQ  and bQ ; vR  is a linear resistance attached at the right end of line to 

account for turbulence. Assume that the flow through the line is initially constant. 
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Pulsations will also occur if there is a sudden decrease in the pressure bP , bP∆ . This 

decrease could be associated with a break in the line or the sudden opening of a valve 

causing a sudden increase in the flow bQ , bQ∆ . 

 

Figure 5.2 Schematic of a fluid transmission line for Case 2 

The flow rate aQ  equation of the distributed parameter model for case 2 is given 

from the Equation (2.2). The resulting equations of this model are 

 cosh 1
sinh sinh

i a v a

a a b

P P R Q

Q P P
Z Z

∆ −∆ = ⋅∆
Γ

∆ = ∆ − ∆
Γ Γ

 (5.8) 

Since 0iP∆ = , the aQ∆  can be rewritten as 

 

cosh 1( )
sinh sinh

1
sinh cosh

a i v a b

b
v

Q P R Q P
Z Z

P
Z R

Γ
∆ = ∆ − ∆ − ∆

Γ Γ
−

= ∆
Γ + Γ

 (5.9) 

In steady state, the flow rate difference through the line will be the same value, 

eQ , and the pressure difference becomes ( )i oP P− . The steady state equation can be 

written as ( )i o s v eP P R R Q− = + . 

Finally, the transfer function of the normalized flow rate aQ∆  becomes 

Pa 

Qa 

Pb = Po 

Qb 

Rv 
Pi 
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e v i o
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r

s

R RQ P
Q Z R P P
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R P

Z P PR
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− +∆ ∆
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 (5.10) 

Using the same procedure, the transfer function of the normalized ∆Qb is  

 
cosh sinh

( sinh cosh )
v

b b
v

Z RQ P
Z Z R

Γ + Γ
∆ = − ∆

Γ + Γ
 (5.11) 

 

( )

( )

( cosh sinh )( )
( sinh cosh )

( cosh sinh )(1 )

( sinh cosh )

b v s v b

e v i o

r r
s b

i o
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s

Q Z R R R P
Q Z Z R P P

or
Z R R
R P

Z P PZ R
R

∆ − Γ + Γ + ∆
=

Γ + Γ −

− Γ + Γ +
∆

=
−Γ + Γ

 (5.12) 

Also, the transfer function of the ∆Pa can be shown to be 

 
sinh cosh

v
a b

v

RP P
Z R

∆ = ∆
Γ + Γ

 (5.13) 

Case 3: 

Consider the schematic of a fluid line shown in Figure 5.3. The pressures at the 

ends of the line are denoted by iP  and bP ; the volumetric flow rates at the ends are 

denoted by aQ  and bQ ; vR  is a linear resistance attached at the right end of line to 

account for turbulence. Assume that the flow through the line is initially constant. An 

additional example are pulsations associated with a sudden closing of a valve; in this 
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case, the flow bQ  suddenly decreases or even goes to zero creating a blocked end 

condition on the line.  

 

Figure 5.3 Schematic of a fluid transmission line for Case 3 

The flow rate aQ  equation for the distributed parameter model for case 3 is 

obtained from the Equation (2.2). Then the equations of this model are 

 sinh 1
cosh cosh

i a v a

a a b

P P R Q

Q P Q
Z

∆ −∆ = ⋅∆
Γ

∆ = ∆ + ∆
Γ Γ

 (5.14) 

Since 0iP∆ = , the aQ∆  can be rewritten as 

 

sinh 1( )
cosh cosh

cosh sinh

a i v a b

b
v

Q P R Q Q
Z

Z Q
Z R

Γ
∆ = ∆ − ∆ + ∆

Γ Γ

= ∆
Γ + Γ

 (5.15) 

In steady state, the flow rate difference through the line will be the same value, 

eQ , and the pressure difference becomes ( )i oP P− . The steady state equation can be 

written as ( )i o s v eP P R R Q− = + . 

Then, the transfer function of the normalized flow rate aQ∆  becomes 

Pa 

Qa 

Pb = Po 

Qb 

Rv 
Pi 
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Q QZ
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 (5.16) 

Using the same procedure, the transfer function of the normalized bP∆  is 

obtained as follows.  

 
( sinh cosh )

cosh sinh
v

b b
v

Z Z RP Q
Z R

Γ + Γ
∆ = − ∆

Γ + Γ
 (5.17) 
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Γ + Γ + 

∆ = −
Γ + Γ

 (5.18) 

Likewise, the transfer function of the normalized aP∆  can be derived as follows. 

 
cosh sinh

v
a b

v

ZRP Q
Z R

∆ = − ∆
Γ + Γ

 (5.19) 

 

( )
( )

( )

cosh sinh

1

cosh sinh

v s va b

i o v e

r r
s b

e
r

s

Z R R RP Q
P P Z R Q

or
Z R R
R Q

Z QR
R

− +∆ ∆
=

− Γ + Γ

− +
∆

=
Γ + Γ

 (5.20) 
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By inspecting the transfer functions obtained for each case, we see that case 1 

and case 2 has similar transfer functions. That is, compare the transfer functions in 

Equations (5.4) and. (5.10). The same is true for Equations (5.6) and. (5.12). Thus, 

modeling simplifications obtained for one of the cases and be used for the other cases 

without having to redo the curve fitting and analysis. 

Case 3 is a different model from case 1 and 2 because it has a change in the 

volumetric flow rate as the input instead of a pressure change.  

 

5.2 Tapered Lumped Parameter Model 

Using the boundary conditions described in Chapter 5.1, lumped parameter 

modeling is used to demonstrate the similarity and difference of each case. 

Case 1: 

 

Figure 5.4 Schematic of lumped parameter model of a line for Case 1 

The equations of the lumped parameter model are 

 

( )

1 1

2 1 1

1 2 2 2

2 2 2

2

a a

a

b

b s v b

P P I sQ
Q Q C sP
P P I sQ
Q Q C sP
P P R R Q

− =
− =
− =
− =

− = +

 (5.21) 

By solving the symbolic equations, we have symbolic transfer functions of 

normalized bQ∆  and aQ∆ .  

Po Pa = Pi Q1 Qb Pb Qa 

Rv 

P1 P2 

I1 I2 Rs 
C1 C2 
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 (5.23) 

Case 2: 

 

Figure 5.5 Schematic of lumped parameter model of a line for Case 2 

The equations of the lumped parameter model are 
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 (5.24) 

By solving the symbolic equations, we have symbolic transfer functions of 

normalized aQ∆  and bQ∆ .  
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 (5.25) 

Pi Pa Q1 Qb Pb = Po Qa 

Rv 

P1 P2 

I1 I2 Rs 
C1 C2 
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 (5.26) 

Comparing (5.22) with (5.25), it is observed that these transfer functions are 

identical except for the negative sign if 1C  and 2C  are switched and 1I  and 2I  are 

switched.  The same is true for the transfer functions in (5.23) and (5.26).  

Case 3: 

 

Figure 5.6 Schematic of lumped parameter model of a line for Case 3 

The equations of the lumped parameter model are 
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 (5.27) 

By solving the symbolic equations, we have symbolic transfer functions of 

normalized aQ∆  and aP∆ .  
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Pi Pa Q1 Qb Pb = Po Qa 
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 (5.29) 

5.3 Demonstration with Turbulent Flow Conditions 

The same procedures used in Chapter 4 can be applied to Case 1 and Case 3 

without Case 2 since Case 1 and Case 2 are considered as the same type of model.  

To start, the ratio rR  for turbulent flow is introduced. 

The turbulent resistance equation [15, 16] for incompressible steady flow of the 

smooth circular transmission line is  

 1.75( ) fF Q P C Q= =  (5.30) 

See the derivation of fC  in Chapter 4.1.  

 
0.75 0.25

4.75

0.2414
f

LC
d
ρ µ

=  (5.31) 

Rewrite the Equation (5.30) using the equivalent resistance gives  

 1.75( ) f e t eF Q P C Q R Q= = =  (5.32) 

 4e n nQ R A D R Dν νπ= =  (5.33) 

 µ ρν=  (5.34) 

The turbulent resistance tR  is defined as  

 ( )

0.75
0

0.25 0.750.75

4.75

0.2414
4

t f

n

R C Q

L R D
D

ρ ρν νπ

=

  =      

 (5.35) 

Also, 
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 ( ) ( )4

1281 1t s r r
LR R R R

D
ρν

π
= + = +  (5.36) 

Combining Equations (5.35) and (5.36), we got the resistance ratio rR  

corresponding to Reynolds number nR .  
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 (5.37) 

We will use rR  instead of nR  in developing the tables of inertance and 

capacitance lump coefficients of the lumped parameter model.  

Since the Equation (5.37) is derived using the friction factor from Blasius [16], it is 

good for 53000 10nR< <  that is corresponding to 1 26.8rR< < . 

Therefore, we will consider using the value 0 ~ 40rR =  to develop the tables 

and show the results in figures to evaluate their polynomial equations.  

The following tables and corresponding figures of I ’s and C ’s coefficients for 

the lumped parameter model were obtained values of rR  for both Case 1 and Case 3 

with four dissipation numbers [0.04139 0.033112 0.024834 0.016556]Dn = ,.  

Case 1: 

Table 5.1 Case 1, 4th order lumped parameter model tapering, nD =0.04139 

rR  0 1 2 3 5 10 

wI(1) 0.67565 0.63807 0.666 0.66756 0.64684 0.85694 
wI(2) 0.62843 0.63237 0.67057 0.73826 0.53435 0.63461 
wC(1) 0.36092 0.39772 0.39337 0.41552 0.27422 0.22705 
wC(2) 0.04627 0.1445 0.16237 0.16711 0.21762 0.19415 

 



 

70 

 

rR  20 30 40 

wI(1) 1.2949 1.6989 2.0999 
wI(2) 0.87367 1.1094 1.3459 
wC(1) 0.1618 0.12696 0.10464 
wC(2) 0.14242 0.11144 0.091229 

 

Table 5.2 Case 1, 4th order lumped parameter model tapering, nD =0.033112 

rR  0 5 10 20 30 40 

wI(1) 0.70421 0.64838 0.74072 1.055 1.3418 1.6223 
wI(2) 0.5968 0.48054 0.51592 0.67018 0.82147 0.97269 
wC(1) 0.35947 0.2556 0.2535 0.18746 0.15118 0.12727 
wC(2) 8.0582e-

009 
0.24715 0.23023 0.17836 0.14472 0.12139 

 

Table 5.3 Case 1, 4th order lumped parameter model tapering, nD =0.024834 

rR  0 5 10 20 30 40 

wI(1) 0.71531 0.6227 0.67297 0.85005 1.0309 1.2098 
wI(2) 0.545 0.65156 0.4862 0.558 0.64872 0.74253 
wC(1) 0.37294 0.44008 0.26491 0.22279 0.18899 0.16422 
wC(2) 1.2074e-

013 
0.17758 0.25307 0.21754 0.18497 0.15996 

 

Table 5.4 Case 1, 4th order lumped parameter model tapering, nD =0.016556 

rR  0 5 10 20 30 40 

wI(1) 0.77202 0.621 0.53675 0.67328 0.78159 0.88038 
wI(2) 0.50403 0.57672 0.45742 0.47972 0.51201 0.55196 
wC(1) 0.37201 0.42995 0.27475 0.24696 0.22581 0.20801 
wC(2) 4.0381e-

013 
0.15957 0.25067 0.24818 0.23195 0.2129 

 
0 real + 2 complex eigenvalue 
1 real + 1 complex eigenvalue 

 

Table 5.1—Continued  
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Figure 5.7 Case 1, 4th order lumped parameter model tapering, nD =0.04139 (a) 

 

Figure 5.8 Case 1, 4th order lumped parameter model tapering, nD =0.04139 (b) 
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Figure 5.9 Case 1, 4th order lumped parameter model tapering, nD =0.04139 (c) 

 

Figure 5.10 Case 1, 4th order lumped parameter model tapering, nD =0.033112 (a) 
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Figure 5.11 Case 1, 4th order lumped parameter model tapering, nD =0.033112 (b) 

 

Figure 5.12 Case 1, 4th order lumped parameter model tapering, nD =0.024834 (a) 
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Figure 5.13 Case 1, 4th order lumped parameter model tapering, nD =0.024834 (b) 

 

Figure 5.14 Case 1, 4th order lumped parameter model tapering, nD =0.016556 (a) 
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Figure 5.15 Case 1, 4th order lumped parameter model tapering, nD =0.016556 (b) 

Case 3: 
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Table 5.6 Case 3, 4th order lumped parameter model tapering, nD =0.033112 

rR  0 1 3.35 5 7 10 

wI(1) 0.18931 0.16779 1.6457e-008 1.1163e-013 8.0521e-014 1.9305e-013 
wI(2) 0.71865 0.61118 0.89957 0.74697 0.76561 0.82039 
wC(1) 0.32575 0.31824 0.26666 0.16101 0.17651 0.16515 
wC(2) 0.5415 0.66768 1.2193 0.63565 0.75015 0.7998 

 

rR  20 30 40 

wI(1) 7.4052e-013 2.7134e-012 3.5392e-012 
wI(2) 1.0116 1.2063 1.4027 
wC(1) 0.13018 0.10678 0.090399 
wC(2) 0.85802 0.88625 0.9045 

 

Table 5.7 Case 3, 4th order lumped parameter model tapering, nD =0.024834 

rR  0 3.35 5 7 10 20 

wI(1) 0.17027 0.096278 0.0063061 2.1106e-013 8.3616e-015 2.2657e-013 
wI(2) 0.62898 0.55155 0.83925 0.70887 0.73362 0.86128 
wC(1) 0.36319 0.26593 0.23636 0.15711 0.17733 0.14763 
wC(2) 0.59609 0.87088 1.5269 0.67216 0.76955 0.84024 

 

rR  30 40 

wI(1) 3.441e-012 3.7482e-012 
wI(2) 0.98917 1.1173 
wC(1) 0.12704 0.11121 
wC(2) 0.86697 0.88493 

 

Table 5.8 Case 3, 4th order lumped parameter model tapering, nD =0.016556 

rR  0 5 7 10 20 30 

wI(1) 0.15929 0.095588 6.3845e-012 1.584e-013 1.4535e-012 2.178e-012 
wI(2) 0.5012 0.49182 0.90161 0.7416 0.72909 0.79905 
wC(1) 0.41248 0.29683 0.41744 0.17539 0.17727 0.1608 
wC(2) 0.6883 0.87896 0.41744 0.62584 0.80227 0.833 

 

rR  40 

wI(1) 1.1083e-012 
wI(2) 0.86875 
wC(1) 0.14633 
wC(2) 0.85112 
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Figure 5.16 Case 3, 4th order lumped parameter model tapering, nD =0.04139 (a) 

 

Figure 5.17 Case 3, 4th order lumped parameter model tapering, nD =0.04139 (b) 
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Figure 5.18 Case 3, 4th order lumped parameter model tapering, nD =0.033112 (a) 

 

Figure 5.19 Case 3, 4th order lumped parameter model tapering, nD =0.033112 (b) 
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Figure 5.20 Case 3, 4th order lumped parameter model tapering, nD =0.033112 (c) 

 

Figure 5.21 Case 3, 4th order lumped parameter model tapering, nD =0.024834 (a) 
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Figure 5.22 Case 3, 4th order lumped parameter model tapering, nD =0.024834 (b) 

 

Figure 5.23 Case 3, 4th order lumped parameter model tapering, nD =0.024834 (c) 
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Figure 5.24 Case 3, 4th order lumped parameter model tapering, nD =0.016556 (a) 

 

Figure 5.25 Case 3, 4th order lumped parameter model tapering, nD =0.016556 (b) 
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Figure 5.26 Case 3, 4th order lumped parameter model tapering, nD =0.016556 (c) 

5.4  Example Demonstrating Similarities of Transfer Functions 
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[ ] [ ](1) (2) (1) (2) 0.75003 0.58023 0.25022 0.20575wI wI wC wC =    

Therefore, with the same properties of line and fluid in Chapter 2, the lumps of 

inertance and capacitance will be 

 

9 9
1

9 9
2

14 14
1

14 14
2

(1)* 0.75003*2.1604*10 1.6204*10

(2)* 0.58023*2.1604*10 1.2535*10

(1)* 0.25022*8.6784*10 2.1715*10

(2)* 0.20575*8.6784*10 1.7856*10

s

s

s

s

I wI I
I wI I
C wC C
C wC C

−

− −

= = =

= = =

= = =

= = =

 (5.38) 

Then applying the lumps of inertance and capacitance to Equation (5.22) and 

(5.23) gives the transfer functions for the normalized flow perturbations bQ∆  and aQ∆ .  
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As demonstrated for Case 2 in Section 5.2, these tapered coefficients can also 

be used for an input of bP∆  and output of aQ∆  which are boundary conditions for Case 

2. This is possible as long as you swap wI(1) and wI(2) and also swap wC(1) and wC(2). 

Swapping these inertance and capacitance weighting parameters and recalculating the 

values for the lumped inertances and capacitances gives 

[ ] 9 9 14 14
1 2 1 2 1.2535*10 1.6204*10 1.7856*10 2.1715*10I I C C − =    

Substituting these values for the inertances and capacitances into Equations 

(5.25) and (5.26) gives the transfer functions for normalized aQ∆  and bQ∆ .  
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It is important to note that the transfer functions in Equations (5.41) and (5.42) 

are identical to the transfer functions in Equations (5.39) and (5.40) if the “ a ’s” and “ b ’s” 

are swapped and negative signs are added.  This is the reason that the tapering 

coefficients for Case 1 can be used in Case 2 if the weighting coefficients are swapped. 

To demonstrate the accuracy of the 4th order transfer function of the tapered 

lumped parameter model with turbulence, comparisons with the 10th order approximation 

of the distributed parameter model with added resistance for turbulence are shown in 

Figure 5.27 and Figure 5.28.  Considering that the tapered lumped model is only 4th order 

with a zero order numerator, the comparison reveals that both models formulated to 

account for turbulence are very closely matched in both the time domain and the 

frequency domain. 
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Figure 5.27 Comparison of step responses of 4th order tapered lumped parameter model 

and 9th/10th order approximate transfer function model 
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Figure 5.28 Comparison of bode plots of 4th order tapered lumped parameter model and 

9th/10th order approximate transfer function model 
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Chapter 6  

Conclusion and Future Work  

 

The overall objective of this research has been to formulate a method for 

simulating the time domain pressure/flow pulsations in fluid lines for conditions of 

turbulent flow.  The initial approach was to use a lumped parameter model for the 

inertance, capacitance, and resistance fluid properties where the size of the lumps was 

tapered so as to match the mode frequencies to a laminar flow distributed parameter 

model with an additional lumped resistance added to the end of the line to achieve the 

supposedly true steady flow resistance for turbulent flow through the line.  The rationale 

behind this approach was based on the assumption that the inertance and capacitance 

properties of the fluid in a line are not dependent on the Reynolds number whereas the 

flow resistance is very dependent on the Reynolds number.  In addition, it is a fact that 

equal size lumps, although many in number, will not provide either the true mode 

frequencies or a sufficiently accurate time domain response. 

Although this approach of using a tapered lumped model achieved the correct 

mode frequencies if the lumps were appropriately tapered, the time domain response of 

the lumped model in some cases was not acceptably accurate due to the fact that the 

transfer function for a lumped model is zero order.  That is, the transfer function has no 

numerator dynamics whereas an accurate transfer function approximation for a 

distributed parameter model may have up to (N-1) numerator terms where N is the order 

of the denominator. 

At this point in the research, it was realized that there was no need to try to 

formulate a tapered lumped parameter model with an additional resistance to obtain a 

model for time domain simulations since the distributed parameter model with the added 
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resistance could be converted directly to an approximate rational polynomial transfer 

function that would by default match the distributed parameter model very accurately.  

Thus, a transfer function with the required numerator terms could be achieved which 

would not only provide the true mode frequencies but also an accurate time domain 

transient response. For special cases where the modeling and simulation dictate the use 

of a lumped parameter model, equations for sizing the tapered lumps were presented.  

The procedure for determining the size of the lumped resistance to add to the 

end of the line to achieve the equivalent flow resistance for turbulence for a specific 

Reynolds number was presented in Chapter 4.  In terms of the ratio of the added 

resistance to the laminar flow resistance, rR , it is believed that large values of this ratio 

are not desirable as the model would tend to represent a nearly blocked line.  So, results 

for ratios of 1, 2, and 3, which correspond to increasing values of the Reynolds number, 

were formulated and presented.   

For larger Reynolds numbers requiring larger values of rR , it is proposed that 

the line be divided into distributed parameter sections divided by lumped resistances.  

The rational polynomial transfer function approximation for the entire line would then be 

obtained from this sectioned distributed parameter model with the lumped resistances.  

Demonstration and development of guidelines for obtaining such models for increasing 

Reynolds numbers was not included in the scope of this research but definitely 

recommended for future studies.  In addition, the technique of using the sectioned 

distributed parameter model with lumped resistances can be extended to compressible 

fluids using the explicit formula for compressible flow resistance in reference [7]; this topic 

is also recommended for future research.  And finally, an experimental study to verify the 

accuracy and limitations of using the laminar flow distributed parameter model with 
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lumped resistance to model pressure/flow pulsations in flow through lines with turbulent 

flow conditions is also recommended for future work.  
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Appendix A 

MATLAB Code for Laminar Flow Condition
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% Series set, ICIC+R, 4th order, for laminar flow 
%% Properties of liquid 
clear all 
format shortG 
fprintf('%%%% Properties of liquid \n'); 
r=1/8/2*2.54e-2     % m 
D=2*r; 
% L=20*[1 4/5 3/5 2/5 1/5 1/10 4/50 3/50 2/50 1/50 1/100] 
L=20                % m 
A=pi*r^2;           % m^2 
T1=27               % avg. temperature, C 
% KVis=7.6179e-006; Bulk=1.8246e+009; Den=855.24; c=1460.6; 
  
% Fluid: MIL-F-87257 
% query fluid properties of stock SimHydraulics fluids 
info = sh_stockfluidproperties; 
name = info.f_87257.name 
% info.f_87257.plot()  % plots fluid properties as a function of temperature 
[KVis, Den, Bulk] = info.f_87257.prop(T1) 
%      Input Units: 
%          Temperature ........... C 
%      Output Units: 
%          Kinematic Viscosity ... m^2/s 
%          Density ............... kg/m^3 
%          Bulk Modulus .......... Pa 
% KVis=KVis/20;      % Make the Viscosity a very small number 
  
c=sqrt(Bulk/Den)    % Speed of sound, m/sec 
DVis=KVis*Den;      % Dynamic (/Absolute) viscosity 
II=Den*L/A          % Inertance 
CC=A*L/Bulk         % Capacitance 
RR=128*DVis*L/(pi*D^4)  % Resistance (Laminar flow) 
Dn=KVis*L/(c*r^2)   % Dissipation number, dimensionless 
  
%% Distributed parameter model (only for Laminar flow) 
warning off all 
syms s C1 C2 
% B=2*besselj(1,j*sqrt(r^2*s/KVis))/(j*sqrt(r^2*s/KVis)*... 
%     besselj(0,j*sqrt(r^2*s/KVis)));     % using s 
B=2*besselj(1,j*sqrt(s))/(j*sqrt(s)*... 
    besselj(0,j*sqrt(s)));      % s here mean s_bar 
Zo=Den*c/(pi*r^2);  Z=Zo/sqrt(1-B); 
% Dn=KVis*L/(c*r^2) 
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% Gamma=Dn*(r^2*s/KVis)/sqrt(1-B);       % using s 
Gamma=Dn*(s)/sqrt(1-B);         % s here mean s_bar 
  
% Transfer function to be approximated. 
H=C2*RR;      % Q(s)/Ps(s)*R=Q2b(s)/U(s), (normalized Q2)/(unit step input) 
H=subs(H,'C1',cosh(Gamma)/(Z*sinh(Gamma))); H=subs(H,'C2',1/(Z*sinh(Gamma))); 
  
% Lambda_s: dimensionless root index for sinhG polynomials 
Lambda_s=[];Wn_bar=[];Wn=[];Damp=[]; 
for m=1:6 
    Lambda_s(m)=m/Dn; 
    Wn_bar(m)=10^(1.0178*log10(Lambda_s(m))+0.42966); 
    Wn(m)=Wn_bar(m)*KVis/r^2; % for varied m 
    Damp(m)=10^( 0.0032734*log10(Lambda_s(m))^5 ... 
        - 0.01333*log10(Lambda_s(m))^4 - 0.071493*log10(Lambda_s(m))^3 ... 
        + 0.36569*log10(Lambda_s(m))^2 - 1.1256*log10(Lambda_s(m)) ... 
        + 0.047715 ); 
%     W(m)=Wn(m)*(1-Damp(m)^2)^0.5; 
end 
Lambda_s, Wn_bar, Wn, Damp 
  
%% Approximation curve fit TF(freq. response), numerator order = (denominator order - 
1) 
fprintf('%%%% Approximation curve fit TF, numerator order = (denominator order - 1) \n'); 
% To have at least 1 complex term, (Nord-Nreal)>1 
Nord=10;     % number of denominator order 
Nreal=1;    % assume minimum number of real terms 
aa=Wn_bar( fix((Nord-Nreal)/2) ); bb=Wn_bar( fix((Nord-Nreal)/2)+1 ); % for s_bar 
% aa=Wn( fix((Nord-Nreal)/2) ); bb=Wn( fix((Nord-Nreal)/2)+1 ); % for s 
aaa=log10(aa); bbb=log10(bb);cc=10^((2*aaa+bbb)/3); 
Wmin=.11; Wmax=cc   
 
% Generate frequency data used for the curve fit and comparison plot. 
% NP is the number of frequency points per decade 
NP=200; 
[w,wc]=genfreqs(Wmin,Wmax,NP);  % sub m-file, genfreqs.m, is used 
N=length(w); 
NC=length(wc); 
TF=[];TFc=[]; 
for k=1:N 
    sw=j*wc(k); % Generate values for s. 
    TF(k)=subs(H,s,sw); % Generate tf data points for the curve fit. 
    TFc(k)=TF(k); 
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end 
N1=N+1; 
for k=N1:NC     % Additional frequencies for accuracy comparisons. 
    sw=j*wc(k); 
    TFc(k)=subs(H,s,sw);% Additional data for the accuracy comparison. 
end 
  
% Create a Transfer Function by curve fitting the frequency response 
    % Get numerator & denominator 
[num0,den0]=invfreqs(TF,w,Nord-1,Nord,[],100); 
% Rewrite TF, make coefficient of lowest order be 1 
n=length(den0); 
Nnum0=num0/den0(n); 
Nden0=den0/den0(n); 
Ht0=tf(Nnum0,Nden0); 
DCgainHt0=dcgain(Ht0) 
% Adjust the dcgain to 1 
Nnum0=Nnum0/DCgainHt0; 
Ht0=tf(Nnum0,Nden0) 
damp(Ht0) 
[PR_Ht0]=pfract(Nnum0,Nden0)    % Call partial fraction function, pfract.m 
DCgain_PR_Ht0=dcgain(PR_Ht0) 
  
% Mark the peak value of Freq. Resp. of Distributed parameter model & approx TF. 
    % Find damped natural frequencies, which correspond to peak values 
[Wn_Ht0,Z_Ht0] = damp(Ht0); 
Nw=length(Wn_Ht0); 
Wd_Ht0=[]; 
for k=1:Nw 
    if Z_Ht0(k)<1 
        Wd_Ht0(k)=Wn_Ht0(k)*(1-Z_Ht0(k)^2)^0.5; 
    else 
        Wd_Ht0(k)=Wn_Ht0(k); 
    end 
end 
    % Peak values of Distributed parameter model 
Ht0_c=[]; 
for k=1:Nw 
    sw=j*Wd_Ht0(k); % Generate values for s. 
    Ht0_c(k)=subs(H,s,sw); % Generate tf data points for the curve fit. 
end 
MTF_Wd_Ht0=20*log10(abs(Ht0_c));    % Convert to dB 
    % Peak values of approx TF. 
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Hc0_Wd_Ht0=freqs(Nnum0,Nden0,Wd_Ht0);   % Complex frequency response 
MHc0_Wd_Ht0=20*log10(abs(Hc0_Wd_Ht0));  % Convert to dB 
  
% Generate Freq. Resp. plots to determine the accuracy of curve fit. 
Hc0=freqs(Nnum0,Nden0,wc); 
MHc0=20*log10(abs(Hc0)); 
% AHc1=angle(Hc1)*180/pi; 
MTF=20*log10(abs(TFc)); 
% ATF=angle(TFc)*180/pi; 
figure 
semilogx(wc,MTF,'k',wc,MHc0,'b:',... 
    Wd_Ht0,MTF_Wd_Ht0,'k+', Wd_Ht0,MHc0_Wd_Ht0,'rx'); 
title('Magnitude Comparison Plots'); 
xlabel('Normalized Frequency, \omega/\omega_v');ylabel('Decibels'); 
 legend('Distributed Parameter Model','Normalized s, Approx TF, Ht0, 9/10 Order',... 
    'Peaks of Distributed Parameter Model','Peaks of Approx TF, Ht0',3) 
% xlim([10^0, 2*10^5]);% Dn=0.0001043 
% ylim([-70,5]); 
% xlim([10^0,10^3]);  % Dn=0.01043 
% ylim([-40,0]); 
% xlim([1, 1e4]);     % Dn=0.04139 *[2/50] 
% ylim([-50,5]); 
% xlim([1, 1e4]);     % Dn=0.04139 *[3/50] 
% ylim([-40,5]); 
% xlim([1, 5e3]);     % Dn=0.04139 *[1/5, 1/10, 4/50] 
% ylim([-40,5]); 
% xlim([1, 1e3]);     % Dn=0.04139 *[2/5] 
% ylim([-30,5]); 
xlim([1, 1e3]);     % Dn=0.04139 *[1, 4/5, 3/5] 
ylim([-20,5]); 
  
    % Define damped natural freq.& peak values for real and complex 
    % eigenvalues 
Wd_RealEig_Ht0=[]; Wd_CompEig_Ht0=[];Peak_Distrib_0=[];Peak_Ht0=[]; 
k=1; 
while k<length(Wd_Ht0) 
    if Wd_Ht0(k)~=Wd_Ht0(k+1) 
        Wd_RealEig_Ht0=[Wd_RealEig_Ht0, Wd_Ht0(k)]; 
        Peak_Distrib_0=[Peak_Distrib_0, MTF_Wd_Ht0(k)]; 
        Peak_Ht0=[Peak_Ht0, MHc0_Wd_Ht0(k)]; 
        k=k+1; 
    else 
        Wd_CompEig_Ht0=[Wd_CompEig_Ht0, Wd_Ht0(k)]; 
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        Peak_Distrib_0=[Peak_Distrib_0, MTF_Wd_Ht0(k)]; 
        Peak_Ht0=[Peak_Ht0, MHc0_Wd_Ht0(k)]; 
        k=k+2; 
    end 
end 
Wd_RealEig_Ht0, Wd_CompEig_Ht0, Peak_Distrib_0, Peak_Ht0 
  
%% Approximation curve fit TF (freq. response), numerator order = 0 
fprintf('%%%% Approximation curve fit TF, numerator order = 0 \n'); 
% To have at least 1 complex term, (Nord-Nreal)>1 
Nord=4;     % number of denominator order 
Nreal=1;    % assume minimum number of real terms 
aa=Wn_bar( fix((Nord-Nreal)/2) ); bb=Wn_bar( fix((Nord-Nreal)/2)+1 ); % for s_bar 
% aa=Wn( fix((Nord-Nreal)/2) ); bb=Wn( fix((Nord-Nreal)/2)+1 ); % for s 
aaa=log10(aa); bbb=log10(bb);cc=10^((2*aaa+bbb)/3); 
Wmin=.12; Wmax=cc 
  
% Generate frequency data used for the curve fit and comparison plot. 
% NP is the number of frequency points per decade 
NP=100; 
[w,wc]=genfreqs(Wmin,Wmax,NP);  % sub m-file, genfreqs.m, is used 
N=length(w); 
NC=length(wc); 
TF=[];TFc=[]; 
for k=1:N 
    sw=j*wc(k); % Generate values for s. 
    TF(k)=subs(H,s,sw); % Generate tf data points for the curve fit. 
    TFc(k)=TF(k); 
end 
N1=N+1; 
for k=N1:NC     % Additional frequencies for accuracy comparisons. 
    sw=j*wc(k); 
    TFc(k)=subs(H,s,sw);% Additional data for the accuracy comparison. 
end 
  
% Create a Transfer Function by curve fitting the frequency response 
    % Define a vector of weighting factors as default value 1 
wt=ones(1,N); 
    % Define a vector of weighting factors 
for k=1:N 
        % frequency range for real eigenvalue rad/sec 
    if w(k)>2 && w(k)<30 
        wt(k)=2; 
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        % frequency range for first complex eigenvalue rad/sec 
    elseif (w(k)>(Wd_CompEig_Ht0(1)*0.7)) && (w(k)<(Wd_CompEig_Ht0(1)*1.3)) 
        wt(k)=1; 
    end 
end 
    % Get numerator & denominator 
[num1,den1]=invfreqs(TF,w,0,Nord,wt,100); 
% Rewrite TF, make coefficient of lowest order be 1 
n=length(den1); 
Nnum1=num1/den1(n); 
Nden1=den1/den1(n); 
Ht1=tf(Nnum1,Nden1); 
DCgainHt1=dcgain(Ht1) 
% Adjust the DCgain to 1 
Nnum1=Nnum1/DCgainHt1; 
Ht1=tf(Nnum1,Nden1) 
damp(Ht1) 
[PR_Ht1]=pfract(Nnum1,Nden1)    % Call partial fraction function, pfract.m 
DCgain_PR_Ht1=dcgain(PR_Ht1) 
  
% Mark the peak values of Freq. Resp. of Distributed parameter model & Approx TF. 
[Wn_Ht1,Z_Ht1] = damp(Ht1); 
Nw=length(Wn_Ht1); 
    % Find damped natural frequencies, which correspond to peak values 
for k=1:Nw 
    if Z_Ht1(k)<1 
        Wd_Ht1(k)=Wn_Ht1(k)*(1-Z_Ht1(k)^2)^0.5; 
    else 
        Wd_Ht1(k)=Wn_Ht1(k); 
    end 
end 
    % Peak values of Distributed parameter model 
Ht1_c=[]; 
for k=1:Nw 
    sw=j*Wd_Ht1(k); % Generate values for s. 
    Ht1_c(k)=subs(H,s,sw); % Generate tf data points for the curve fit. 
end 
MTF_Wd_Ht1=20*log10(abs(Ht1_c));    % Convert to dB 
    % Peak values of Normalized s, Approx TF. 
Hc1_Wd_Ht1=freqs(Nnum1,Nden1,Wd_Ht1);   % Complex frequency response 
MHc1_Wd_Ht1=20*log10(abs(Hc1_Wd_Ht1));  % Convert to dB 
  
% Generate Freq. Resp. plots to determine the accuracy of curve fit. 
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Hc1=freqs(Nnum1,Nden1,wc); 
MHc1=20*log10(abs(Hc1)); 
% AHc1=angle(Hc1)*180/pi; 
MTF=20*log10(abs(TFc)); 
% ATF=angle(TFc)*180/pi; 
figure 
semilogx(wc,MTF,'k',wc,MHc1,'b:',... 
    Wd_Ht1,MTF_Wd_Ht1,'k+', Wd_Ht1,MHc1_Wd_Ht1,'rx'); 
title('Magnitude Comparison Plots'); 
xlabel('Normalized Frequency, \omega/\omega_v');ylabel('Decibels'); 
legend('Distributed Parameter Model','Normalized s, Approx TF, Ht1, 0/4 Order',... 
    'Peaks of Distributed Parameter Model','Peaks of Approx TF, Ht1',3) 
% xlim([10^-2, 10^6]);% Dn=0.0001043 
% ylim([-120,0]); 
% xlim([10^0,10^3]);  % Dn=0.01043 
% ylim([-70,-10]); 
% xlim([1, 1e4]);     % Dn=0.04139 *[2/50] 
% ylim([-50,5]); 
% xlim([1, 1e4]);     % Dn=0.04139 *[3/50] 
% ylim([-40,5]); 
% xlim([1, 5e3]);     % Dn=0.04139 *[1/5, 1/10, 4/50] 
% ylim([-40,5]); 
% xlim([1, 1e3]);     % Dn=0.04139 *[2/5] 
% ylim([-30,5]); 
xlim([1, 1e3]);     % Dn=0.04139 *[1, 4/5, 3/5] 
ylim([-20,5]); 
  
    % Define damped natural freq.& peak values for real and complex 
    % eigenvalues 
Wd_RealEig_Ht1=[]; Wd_CompEig_Ht1=[];Peak_Distrib_1=[];Peak_Ht1=[]; 
k=1; 
while k<length(Wd_Ht1) 
    if Wd_Ht1(k)~=Wd_Ht1(k+1) 
        Wd_RealEig_Ht1=[Wd_RealEig_Ht1, Wd_Ht1(k)]; 
        Peak_Distrib_1=[Peak_Distrib_1, MTF_Wd_Ht1(k)]; 
        Peak_Ht1=[Peak_Ht1, MHc1_Wd_Ht1(k)]; 
        k=k+1; 
    else 
        Wd_CompEig_Ht1=[Wd_CompEig_Ht1, Wd_Ht1(k)]; 
        Peak_Distrib_1=[Peak_Distrib_1, MTF_Wd_Ht1(k)]; 
        Peak_Ht1=[Peak_Ht1, MHc1_Wd_Ht1(k)]; 
        k=k+2; 
    end 
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end 
Wd_RealEig_Ht1, Wd_CompEig_Ht1, Peak_Distrib_1, Peak_Ht1 
  
%% Comparison of step response of 9th/10th order and 0/4th order transfer function 
approximation 
figure, step(Ht0,'g',Ht1,'b-.') 
legend('Normalized s, Approx TF, Ht0, 9/10 Order',... 
    'Normalized s, Approx TF, Ht1, 0/4 Order', 4) 
% title('Step Response') 
xlabel('Normalized Time, \omega_V t'); 
ylabel('Normalized Volumetric Flow Rate, \DeltaQ_b/Q_e '); 
  
%% Un-Normalized TF, convert above s_bar to s, s_bar=s*(r^2/KVis) 
fprintf('%%%% Un-Normalized TF, convert above s_bar to s, s_bar=s*(r^2/KVis) \n'); 
ord=length(Nnum0); 
uNnum0=[];uNden0=[]; 
for a=ord:-1:1 
    uNnum0(a)=Nnum0(a)*(r^2/KVis)^(ord-a); 
end 
ord=length(Nden0); 
for a=ord:-1:1 
    uNden0(a)=Nden0(a)*(r^2/KVis)^(ord-a); 
end 
uHt0=tf(uNnum0,uNden0) 
damp(uHt0) 
[PR_uHt0]=pfract(uNnum0,uNden0) 
DCgain_PR_uHt0=dcgain(PR_uHt0) 
  
ord=length(Nnum1); 
uNnum1=[];uNden1=[]; 
for a=ord:-1:1 
    uNnum1(a)=Nnum1(a)*(r^2/KVis)^(ord-a); 
end 
ord=length(Nden1); 
for a=ord:-1:1 
    uNden1(a)=Nden1(a)*(r^2/KVis)^(ord-a); 
end 
uHt1=tf(uNnum1,uNden1) 
damp(uHt1) 
[PR_uHt1]=pfract(uNnum1,uNden1) 
DCgain_PR_uHt1=dcgain(PR_uHt1) 
  
%% Equal Distributed Series set: ICIC+R, 4th order 
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fprintf('%%%% Equal Distributed Series set: ICIC+R, 4th order \n'); 
syms s Ps I0 I1 C1 C2 R1 
% let I0=Is*i0; I1=Is*i1; 
% C1=Cs*c1; C2=Cs*c2; 
% R1=Rs*1; 
H1=solve('Ps-P1=I0*s*Q0','Q0-Q1=C1*s*P1',... 
    'P1-P2=I1*s*Q1','Q1-Q2=C2*s*P2',... 
    'P2=R1*Q2','P1,P2,Q0,Q1,Q2'); 
% Q2(s)/(Ps(s)/R)=Q2b(s)/U(s), (normalized Q2)/(unit step input) 
h1=collect(H1.Q2/Ps*(R1),s); % TF=Q/(Ps/R) 
pretty(h1) 
  
% Equal distributed parameter 
digits(5); 
h11=subs(h1,[I0,I1,C1,C2,R1],[II/2,II/2,CC/2,CC/2,RR]);     % laminar 
%     % Use Resistance of turbulent, RRt 
% h11=subs(h1,[I0,I1,C1,C2,R1],[II/2,II/2,CC/2,CC/2,RRt]);    % turbulent 
h11=vpa(h11); 
pretty(h11) 
  
[numh1,denh1]=numden(h1); 
[CoeNum1,SS1]=coeffs(numh1,s);  % coefficient from high to low order 
[CoeDen1,SS2]=coeffs(denh1,s);  % coefficient from high to low order 
  
% let coefficient of lowest order be 1 
n=length(CoeDen1); 
NCoeNum1=CoeNum1/CoeDen1(n); 
NCoeDen1=CoeDen1/CoeDen1(n); 
  
% Assume this is a equal distributed parameter model 
NumLump1=subs(NCoeNum1,[I0,I1,C1,C2,R1],[II/2,II/2,CC/2,CC/2,RR]); 
DenLump1=subs(NCoeDen1,[I0,I1,C1,C2,R1],[II/2,II/2,CC/2,CC/2,RR]); 
%     % Use Resistance of turbulent, RRt 
% NumLump1=subs(NCoeNum1,[I0,I1,C1,C2,R1],[II/2,II/2,CC/2,CC/2,RRt]); 
% DenLump1=subs(NCoeDen1,[I0,I1,C1,C2,R1],[II/2,II/2,CC/2,CC/2,RRt]); 
  
TFLump1=tf(NumLump1,DenLump1) 
% eig(TFLump1) 
damp(TFLump1) 
[PF_TFLump1]=pfract(NumLump1,DenLump1) 
DCgain_PF_TFLump1=dcgain(PF_TFLump1) 
  
figure, step(TFLump1,':r',uHt0,'g',uHt1,'-.b') 
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% title('Step Response') 
ylabel('Normalized Volumetric Flow Rate, \DeltaQ_b/Q_e '); 
legend('Equal Lumped Parameter Model for ICIC+R',... 
    'Approx TF, uHt0, 9/10 Order',... 
    'Approx TF, uHt1, 0/4 Order', 4) 
  
figure, uH=bodeplot(TFLump1,':r',uHt0,'g',uHt1,'-.b'); 
p=getoptions(uH);    % Create a plot options handle p. 
p.PhaseMatching = 'on'; 
% p.Xlim{1} = [1e-2 5e2];   % Dn=0.00010431 
% p.Ylim{1} = [-80 0]; 
% p.Xlim{1} = [1 2e3];     % Dn=0.010431 
% p.Ylim{1} = [-40 0]; 
% p.Xlim{1} = [1 5e2];     % Dn=0.10431 
% p.Ylim{1} = [-15 6]; 
% p.Xlim{1} = [1 5e4];      % Dn=0.04139 *[2/50] 
% p.Ylim{1} = [-50 5]; 
% p.Ylim{2} = [-720 0]; 
% p.Xlim{1} = [1 1e4];      % Dn=0.04139 *[1/10, 4/50, 3/50] 
% p.Ylim{1} = [-40 5]; 
% p.Ylim{2} = [-720 0]; 
% p.Xlim{1} = [1 6e3];      % Dn=0.04139 *[1/5] 
% p.Ylim{1} = [-40 5]; 
% p.Ylim{2} = [-720 0]; 
% p.Xlim{1} = [1 2e3];        % Dn=0.04139 *[2/5] 
% p.Ylim{1} = [-30 5]; 
% p.Ylim{2} = [-720 0]; 
p.Xlim{1} = [1 1e3];        % Dn=0.04139 *[1, 4/5, 3/5] 
p.Ylim{1} = [-20 5]; 
p.Ylim{2} = [-720 0]; 
  
setoptions(uH,p);    % Apply plot options to the Bode plot and render. 
legend('Equal Lumped Parameter Model for ICIC+R',... 
    'Approx TF, uHt0, 9/10 Order',... 
    'Approx TF, uHt1, 0/4 Order', 'Location','Best') 
  
%% Paynter's lumped parameter model 
fprintf('%%%% Tapered lumped parameter model: ICI+R, 3th order \n'); 
syms s Ps I0 I1 C1 R1 
% let I0=Is*i0; I1=Is*i1; 
% C1=Cs*c1; C2=Cs*c2; 
% R1=Rs*1; 
H3=solve('Ps-P1=I0*s*Q0','Q0-Q1=C1*s*P1',... 
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    'P1-P2=I1*s*Q1',... 
    'P2=R1*Q1','P1,P2,Q0,Q1'); 
% Q2(s)/(Ps(s)/R)=Q2b(s)/U(s), (normalized Q2)/(unit step input) 
h3=collect(H3.Q1/Ps*(R1),s); % TF=Q/(Ps/R) 
  
% Paynter's lumped parameter 
[numh3,denh3]=numden(h3); 
[CoeNum3,SS1]=coeffs(numh3,s);  % coefficient from high to low order 
[CoeDen3,SS2]=coeffs(denh3,s);  % coefficient from high to low order 
  
% let coefficient of lowest order be 1 
n=length(CoeDen3); 
NCoeNum3=CoeNum3/CoeDen3(n); 
NCoeDen3=CoeDen3/CoeDen3(n); 
  
NumLump3=subs(NCoeNum3,[I0,I1,C1,C2,R1],[II*.25,II*.75,CC*.541,0,RR]); 
DenLump3=subs(NCoeDen3,[I0,I1,C1,C2,R1],[II*.25,II*.75,CC*.541,0,RR]); 
 
TFLump3=tf(NumLump3,DenLump3) 
% eig(TFLump1) 
damp(TFLump3) 
[PF_TFLump3]=pfract(NumLump3,DenLump3) 
DCgain_PF_TFLump3=dcgain(PF_TFLump3) 
  
figure, step(TFLump1,':r',TFLump3,'--k',uHt0,'g',uHt1,'-.b', .35) 
% title('Step Response') 
ylabel('Normalized Volumetric Flow Rate, \DeltaQ_b/Q_e '); 
legend('Equal Lumped Parameter Model for ICIC+R',... 
    'Paynter Tapered Lumped Parameter Model for ICI+R',... 
    'Approx TF, uHt0, 9/10 Order',... 
    'Approx TF, uHt1, 0/4 Order', 4) 
  
figure, uH=bodeplot(TFLump1,':r',TFLump3,'--k',uHt0,'g',uHt1,'-.b'); 
p=getoptions(uH);    % Create a plot options handle p. 
p.PhaseMatching = 'on'; 
% p.Xlim{1} = [1e-2 5e2];   % Dn=0.00010431 
% p.Ylim{1} = [-80 0]; 
% p.Xlim{1} = [1 2e3];     % Dn=0.010431 
% p.Ylim{1} = [-40 0]; 
% p.Xlim{1} = [1 5e2];     % Dn=0.10431 
% p.Ylim{1} = [-15 6]; 
% p.Xlim{1} = [1 5e4];      % Dn=0.04139 *[2/50] 
% p.Ylim{1} = [-50 5]; 
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% p.Ylim{2} = [-720 0]; 
% p.Xlim{1} = [1 1e4];      % Dn=0.04139 *[1/10, 4/50, 3/50] 
% p.Ylim{1} = [-40 5]; 
% p.Ylim{2} = [-720 0]; 
% p.Xlim{1} = [1 6e3];      % Dn=0.04139 *[1/5] 
% p.Ylim{1} = [-40 5]; 
% p.Ylim{2} = [-720 0]; 
% p.Xlim{1} = [1 2e3];        % Dn=0.04139 *[2/5] 
% p.Ylim{1} = [-30 5]; 
% p.Ylim{2} = [-720 0]; 
p.Xlim{1} = [1e1 1e3];        % Dn=0.04139 *[1, 4/5, 3/5] 
p.Ylim{1} = [-15 5]; 
p.Ylim{2} = [-360 0]; 
  
setoptions(uH,p);    % Apply plot options to the Bode plot and render. 
legend('Equal Lumped Parameter Model for ICIC+R',... 
    'Paynter Tapered Lumped Parameter Model for ICI+R',... 
    'Approx TF, uHt0, 9/10 Order',... 
    'Approx TF, uHt1, 0/4 Order', 'Location','Best') 
  
%% Solve symbolic equations of series set lumped parameter model 
fprintf('%%%% Solve symbolic equations of series set lumped parameter model \n'); 
warning on 
syms s Ps i0 i1 c1 c2 r1 Is Cs Rs 
% let I0=Is*i0; I1=Is*i1; 
% C1=Cs*c1; C2=Cs*c2; 
% R1=Rs*1;  
H2=solve('Ps-P1=Is*i0*s*Q0','Q0-Q1=Cs*c1*s*P1',... 
    'P1-P2=Is*i1*s*Q1','Q1-Q2=Cs*c2*s*P2',... 
    'P2=Rs*1*Q2','P1,P2,Q0,Q1,Q2'); 
% Q(s)/Ps(s)*R=Qb(s)/U(s), (normalized Q)/(unit step input) 
h2=collect(H2.Q2/(Ps/Rs),s); % TF=Q/(Ps/R) 
pretty(h2) 
  
[numh2,denh2]=numden(h2); 
[CoeNum2,SS1]=coeffs(numh2,s);  % coefficient from high to low order 
[CoeDen2,SS2]=coeffs(denh2,s);  % coefficient from high to low order 
  
% let coefficient of lowest order be 1 
n=length(CoeDen2); 
NCoeNum2=CoeNum2/CoeDen2(n); 
NCoeDen2=CoeDen2/CoeDen2(n); 
 



 

103 

% 0/4th order approximation numerical TF 
uHt1=tf(uNnum1,uNden1) 
 
F=solve(NCoeDen2(1)-uNden1(1), NCoeDen2(2)-uNden1(2),... 
    NCoeDen2(3)-uNden1(3), NCoeDen2(4)-uNden1(4),... 
    'i0,i1,c1,c2'); 
  
% the weight of each parameter 
wIs=[F.i0, F.i1]; 
wCs=[F.c1, F.c2]; 
wI=subs(vpa(wIs),{Is,Cs,Rs},{II,CC,RR}) 
wC=subs(vpa(wCs),{Is,Cs,Rs},{II,CC,RR}) 
.
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Appendix B 

MATLAB Code for Turbulent Flow Condition
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% Series set, ICIC+R+Rv(approx R, using slop), 4th order, turbulent flow 
% Varied Dn(=<0.04139) with Rn=10544 
%% Properties of liquid 
clear all 
% format shortG 
fprintf('%%%% Properties of liquid \n'); 
% D=1/8 *(2.54e-2) *[1,1.118,1.291,1.5811,2.2361,3.1623,3.5355,4.0825,5,7.0711,10] 
D=1/8 *(2.54e-2)    % diameter, m 
r=D/2;              % radius, m 
% L=20*[1 4/5 3/5 2/5 1/5 1/10 4/50 3/50 2/50 1/50 1/100] 
L=20                % m 
A=pi*r^2;           % m^2 
T1=27               % avg. temperature, C 
% KVis=7.6179e-006; c=1460.6; Den=855.24; 
  
% Fluid: MIL-F-87257 
% query fluid properties of stock SimHydraulics fluids 
info = sh_stockfluidproperties; 
name = info.f_87257.name 
% info.f_87257.plot()  % plots fluid properties as a function of temperature 
[KVis, Den, Bulk] = info.f_87257.prop(T1) 
%      Input Units: 
%          Temperature ........... C 
%      Output Units: 
%          Kinematic Viscosity ... m^2/s 
%          Density ............... kg/m^3 
%          Bulk Modulus .......... Pa 
% KVis=KVis/20;      % Make the Viscosity a very small number 
  
c=sqrt(Bulk/Den)    % Speed of sound, m/sec 
DVis=KVis*Den;      % Dynamic (/Absolute) viscosity 
II=Den*L/A          % Inertance 
CC=A*L/Bulk         % Capacitance 
RR=128*DVis*L/(pi*D^4)  % Resistance (Laminar flow) 
% For Turbulent flow (Rn > 4000) 
Rn=10544.37             % Reynolds number 
% Rn=558,602             % Reynolds number, Rv=100*RR 
Qr=Rn*KVis*A/D;     % Flow rate for Rn 
    % Resistance equation of turbulent flow; P=Cf*Q^1.75 
Cf=(0.2414*Den^0.75*DVis^0.25*L/D^4.75); 
fQr=Cf*Qr^1.75;     % P=f(Qr)+df(Qr)*(Q-Qr) 
dfQr=1.75*Cf*Qr^0.75; 
RRt=dfQr            % Resistance (Turbulent flow) 
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RRv=RRt-RR          % Resistance (added valve) 
Dn=KVis*L/(c*r^2)   % Dissipation number, dimensionless, 
                    % *[1,4/5,3/5,2/5,1/5,1/10,4/50,3/50,2/50,1/50,1/100] 
  
Rr=RRv/RR           % Define the ratio as Rr 
  
%% Distributed parameter model (only for Laminar flow) 
warning off all 
syms s C1 C2 
% B=2*besselj(1,j*sqrt(r^2*s/KVis))/(j*sqrt(r^2*s/KVis)*... 
%     besselj(0,j*sqrt(r^2*s/KVis)));     % using s 
B=2*besselj(1,j*sqrt(s))/(j*sqrt(s)*... 
    besselj(0,j*sqrt(s)));     % s here mean s_bar 
Zo=Den*c/(pi*r^2);  Z=Zo/sqrt(1-B); 
% Dn=KVis*L/(c*r^2) 
% Gamma=Dn*(r^2*s/KVis)/sqrt(1-B);       % using s 
Gamma=Dn*(s)/sqrt(1-B);       % s here mean s_bar 
  
% Transfer function to be approximated. 
H=C2/(1+C1*RRv)*(RR+RRv);   % Q(s)/Ps(s)*R=Q2b(s)/U(s), (normalized Q2)/(unit step 
input) 
H=subs(H,'C1',cosh(Gamma)/(Z*sinh(Gamma))); H=subs(H,'C2',1/(Z*sinh(Gamma))); 
  
% Lambda_s: dimensionless root index for sinhG polynomials 
Lambda_s=[];Wn_bar=[];Wn=[];Damp=[]; 
for m=1:6 
    Lambda_s(m)=m/Dn; 
    Wn_bar(m)=10^(1.0178*log10(Lambda_s(m))+0.42966); 
%     Wn(m)=Wn_bar(m)*KVis/m/r^2; % for varied Dn 
    Wn(m)=Wn_bar(m)*KVis/r^2; % for varied m 
    Damp(m)=10^( 0.0032734*log10(Lambda_s(m))^5 ... 
        - 0.01333*log10(Lambda_s(m))^4 - 0.071493*log10(Lambda_s(m))^3 ... 
        + 0.36569*log10(Lambda_s(m))^2 - 1.1256*log10(Lambda_s(m)) ... 
        + 0.047715 ); 
%     W(m)=Wn(m)*(1-Damp(m)^2)^0.5; 
end 
Lambda_s, Wn_bar, Wn, Damp 
  
%% Approximation curve fit TF, numerator order = (denominator order - 1) 
fprintf('%%%% Approximation curve fit TF, numerator order = (denominator order - 1) \n'); 
% To have at least 1 complex term, (Nord-Nreal)>1 
Nord=10;     % number of denominator order 
Wmin=1.1; Wmax=Wn_bar(Nord/2)    % Dn=0.04139 *[1] 
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% Wmin=1.1; Wmax=Wn_bar(Nord/2-1)*.97    % Dn=0.04139 *[4/5] 
% Wmin=1.1; Wmax=Wn_bar(Nord/2-1)*.97    % Dn=0.04139 *[3/5] 
% Wmin=1.1; Wmax=738 % Wn_bar(Nord/2-1)*1.00    % Dn=0.04139 *[2/5] 
% Wmin=1.1; Wmax=Wn_bar(Nord/2-1)*1.00    % Dn=0.04139 *[1/5] 
% Wmin=1.1; Wmax=Wn_bar(Nord/2-1)*1.00    % Dn=0.04139 *[1/10] 
% Wmin=1.1; Wmax=Wn_bar(Nord/2-1)*1.00    % Dn=0.04139 *[4/50] 
% Wmin=1.1; Wmax=Wn_bar(Nord/2-1)*1.00    % Dn=0.04139 *[3/50] 
% Wmin=1.1; Wmax=Wn_bar(Nord/2-1)*1.03    % Dn=0.04139 *[2/50] 
% Wmin=1.1; Wmax=Wn_bar(Nord/2-1)*1.03    % Dn=0.04139 *[1/50] 
% Wmin=1.1; Wmax=Wn_bar(Nord/2-1)*1.03    % Dn=0.04139 *[1/100] 
  
% Generate frequency data used for the curve fit and comparison plot. 
% NP is the number of frequency points per decade 
NP=200; % Dn=0.04139 *[1,3/5,2/5,1/5,1/10,4/50,3/50] 
% NP=300; % Dn=0.04139 *[2/50,1/50,1/100] 
[w,wc]=genfreqs(Wmin,Wmax,NP);  % sub m-file, genfreqs.m, is used 
N=length(w); 
NC=length(wc); 
TF=[];TFc=[]; 
for k=1:N 
    sw=1i*wc(k); % Generate values for s. 
    TF(k)=subs(H,s,sw); % Generate tf data points for the curve fit. 
    TFc(k)=TF(k); 
end 
N1=N+1; 
for k=N1:NC     % Additional frequencies for accuracy comparisons. 
    sw=1i*wc(k); 
    TFc(k)=subs(H,s,sw);% Additional data for the accuracy comparison. 
end 
  
% Create a Transfer Function by curve fitting the frequency response 
    % Get numerator & denominator 
[num0,den0]=invfreqs(TF,w,Nord-1,Nord,[],100); 
% Rewrite TF, make coefficient of lowest order be 1 
n=length(den0); 
Nnum0=num0/den0(n); 
Nden0=den0/den0(n); 
Ht0=tf(Nnum0,Nden0); 
DCgainHt0=dcgain(Ht0) 
% Adjust the dcgain to 1 
Nnum0=Nnum0/DCgainHt0; 
Ht0=tf(Nnum0,Nden0) 
damp(Ht0) 
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[PR_Ht0]=pfract(Nnum0,Nden0)    % Call partial fraction function, pfract.m 
DCgain_PR_Ht0=dcgain(PR_Ht0) 
  
% Mark the peak value of Freq. Resp. of Distributed parameter model & approx TF. 
    % Find damped natural frequencies, which correspond to peak values 
[Wn_Ht0,Z_Ht0] = damp(Ht0); 
Nw=length(Wn_Ht0); 
Wd_Ht0=[]; 
for k=1:Nw 
    if Z_Ht0(k)<1 
        Wd_Ht0(k)=Wn_Ht0(k)*(1-Z_Ht0(k)^2)^0.5; 
    else 
        Wd_Ht0(k)=Wn_Ht0(k); 
    end 
end 
    % Peak values of Distributed parameter model 
Ht0_c=[]; 
for k=1:Nw 
    sw=1i*Wd_Ht0(k); % Generate values for s. 
    Ht0_c(k)=subs(H,s,sw); % Generate tf data points for the curve fit. 
end 
MTF_Wd_Ht0=20*log10(abs(Ht0_c));    % Convert to dB 
    % Peak values of 9/10 order approx TF. 
Hc0_Wd_Ht0=freqs(Nnum0,Nden0,Wd_Ht0);   % Complex frequency response 
MHc0_Wd_Ht0=20*log10(abs(Hc0_Wd_Ht0));  % Convert to dB 
%     % Peak values of 0/10 order approx TF. 
% Hc02_Wd_Ht0=freqs(1,Nden0,Wd_Ht0);   % Complex frequency response 
% MHc02_Wd_Ht0=20*log10(abs(Hc02_Wd_Ht0));  % Convert to dB 
  
% Generate Freq. Resp. plots to determine the accuracy of curve fit. 
    % Ht0, 9/10 order approximate TF 
Hc0=freqs(Nnum0,Nden0,wc); 
MHc0=20*log10(abs(Hc0)); 
% AHc1=angle(Hc1)*180/pi; 
%     % Ht02, 0/10 order approximate TF 
% Hc02=freqs(1,Nden0,wc); 
% MHc02=20*log10(abs(Hc02)); 
    % distributed model 
MTF=20*log10(abs(TFc)); 
% ATF=angle(TFc)*180/pi; 
figure 
semilogx(wc,MTF,'k',wc,MHc0,'b:',... 
    Wd_Ht0,MTF_Wd_Ht0,'k+', Wd_Ht0,MHc0_Wd_Ht0,'rx'); 
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title('Magnitude Comparison Plots'); 
xlabel('Normalized Frequency, \omega/\omega_v');ylabel('Decibels'); 
legend('Distributed Parameter Model','Normalized s, Approx TF, Ht0, 9/10 Order',... 
    'Peaks of Distributed Parameter Model','Peaks of Approx TF, Ht0',3) 
xlim([1, 1e3]); % Dn=0.04139 *[1]  
ylim([-3,2]); 
% xlim([1, 5e2]); % Dn=0.04139 *[4/5],  
% ylim([-2.5,0.5]); 
% xlim([1, 1e3]); % Dn=0.04139 *[3/5],  
% ylim([-3.5,0]); 
% xlim([1, 1e3]); % Dn=0.04139 *[2/5], 
% ylim([-6,0]); 
% xlim([1, 2e3]); % Dn=0.04139 *[1/5],  
% ylim([-11,0]); 
% xlim([1, 4e3]); % Dn=0.04139 *[1/10],  
% ylim([-17,0]); 
% xlim([1, 5e3]); % Dn=0.04139 *[4/50],  
% ylim([-20,0]); 
% xlim([1, 1e4]); % Dn=0.04139 *[3/50],  
% ylim([-25,0]); 
% xlim([1, 1e4]); % Dn=0.04139 *[2/50],  
% ylim([-30,0]); 
% xlim([1, 3e4]); % Dn=0.04139 *[1/50] 
% ylim([-35,0]); 
% xlim([1, 5e4]); % Dn=0.04139 *[1/100],  
% ylim([-40,0]); 
 
    % Damped natural freq. of real and complex eigenvalues 
    % Peak values of distributed model and approx TF 
Wd_RealEig_Ht0=[]; Wd_CompEig_Ht0=[];Peak_Distrib_0=[];Peak_Ht0=[]; 
k1=1; 
while k1<length(Wd_Ht0) 
    if Wd_Ht0(k1)~=Wd_Ht0(k1+1) 
        Wd_RealEig_Ht0=[Wd_RealEig_Ht0, Wd_Ht0(k1)]; 
        Peak_Ht0=[Peak_Ht0, MHc0_Wd_Ht0(k1)]; 
        k1=k1+1; 
    else 
        Wd_CompEig_Ht0=[Wd_CompEig_Ht0, Wd_Ht0(k1)]; 
        Peak_Ht0=[Peak_Ht0, MHc0_Wd_Ht0(k1)]; 
        k1=k1+2; 
    end 
end 
if k1==length(Wd_Ht0) 
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    Wd_RealEig_Ht0=[Wd_RealEig_Ht0, Wd_Ht0(k1)]; 
    Peak_Ht0=[Peak_Ht0, MHc0_Wd_Ht0(k1)]; 
end 
k2=1; 
while k2<length(MTF_Wd_Ht0) 
    if MTF_Wd_Ht0(k2)~=MTF_Wd_Ht0(k2+1) 
        Peak_Distrib_0=[Peak_Distrib_0, MTF_Wd_Ht0(k2)]; 
        k2=k2+1; 
    else 
        Peak_Distrib_0=[Peak_Distrib_0, MTF_Wd_Ht0(k2)]; 
        k2=k2+2; 
    end 
end 
if k2==length(MTF_Wd_Ht0) 
    Peak_Distrib_0=[Peak_Distrib_0, MTF_Wd_Ht0(k2)]; 
end 
  
Wd_RealEig_Ht0, Wd_CompEig_Ht0, Peak_Distrib_0, Peak_Ht0 
Peak_difference0=(Peak_Ht0-Peak_Distrib_0) 
  
%% Approximation curve fit TF, numerator order = 0 
fprintf('%%%% Approximation curve fit TF, numerator order = 0 \n'); 
% To have at least 1 complex term, (Nord-Nreal)>1 
Nord=4;     % number of denominator order 
% Nreal=0;    % assume minimum number of real terms 
% aa=Wd_CompEig_Ht0( fix((Nord-Nreal)/2) );   % for s_bar 
% bb=Wd_CompEig_Ht0( fix((Nord-Nreal)/2)+1 ); % for s_bar 
% aaa=log10(aa); bbb=log10(bb);cc=10^((4*aaa+bbb)/5); 
% Wmin=1.1; Wmax=cc       % Dn=0.04139 *[1] 
Wmin=1.1; Wmax=73   % Wd_CompEig_Ht0(Nord/2-1)*1.9       % Dn=0.04139 *[1] 
% Wmin=1.1; Wmax=60       % Dn=0.04139 *[4/5] 
% Wmin=1.1; Wmax=110      % Dn=0.04139 *[3/5] 
% Wmin=1.1; Wmax=149      % Dn=0.04139 *[2/5] 
% Wmin=1.1; Wmax= Wd_CompEig_Ht0(Nord/2-1)*1      % Dn=0.04139 *[1/5] 
% Wmin=1.1; Wmax=802 % Wd_CompEig_Ht0(Nord/2-1)*1      % Dn=0.04139 *[1/10] 
% Wmin=1.1; Wmax=1040 % Wd_CompEig_Ht0(Nord/2-1)*1.1      % Dn=0.04139 *[4/50] 
% Wmin=1.1; Wmax=Wd_CompEig_Ht0(Nord/2-1)*1.1      % Dn=0.04139 *[3/50] 
% Wmin=1.1; Wmax=2480 % Wd_CompEig_Ht0(Nord/2-1)*1.3      % Dn=0.04139 *[2/50] 
% Wmin=1.1; Wmax=Wd_CompEig_Ht0(Nord/2-1)*1.3      % Dn=0.04139 *[1/50] 
% Wmin=1.1; Wmax=Wd_CompEig_Ht0(Nord/2-1)*1.3      % Dn=0.04139 *[1/100] 
  
% 4th order for the first mode 
% Wmin=1.1; Wmax=73 % Wd_CompEig_Ht0(Nord/2-1)*1.9    % Dn=0.04139, 
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% % 4th order for first 2 modes 
% Wmin=1.1; Wmax=Wn_bar(Nord/2)-10    % Dn=0.04139 *[1] 
  
% Generate frequency data used for the curve fit and comparison plot. 
% NP is the number of frequency points per decade 
NP=200; 
[w,wc]=genfreqs(Wmin,Wmax,NP);  % sub m-file, genfreqs.m, is used 
N=length(w); 
NC=length(wc); 
TF=[];TFc=[]; 
for k=1:N 
    sw=1i*wc(k); % Generate values for s. 
    TF(k)=subs(H,s,sw); % Generate tf data points for the curve fit. 
    TFc(k)=TF(k); 
end 
N1=N+1; 
for k=N1:NC     % Additional frequencies for accuracy comparisons. 
    sw=1i*wc(k); 
    TFc(k)=subs(H,s,sw);% Additional data for the accuracy comparison. 
end 
  
%% 
% Create a Transfer Function by curve fitting the frequency response 
    % Define a vector of weighting factors as default value 1 
wt=ones(1,N); 
    % Define a vector of weighting factors 
for k=1:N 
    % frequency range for real eigenvalue rad/sec 
    if w(k)>10 && w(k)<30  % Dn=0.04139 *[1,4/5] 
%     if w(k)>20 && w(k)<50  % Dn=0.04139 *[3/5,2/5,1/5,1/10,4/50,3/50,1/50] 
%     if w(k)>20 && w(k)<100  % Dn=0.04139 *[2/50,1/100] 
%         wt(k)=1;   % Dn=0.04139 *[3/5,2/5,1/5,1/10,4/50,3/50,1/50,1/100] 
%         wt(k)=2;   % Dn=0.04139 *[2/50] 
        wt(k)=1;   % Dn=0.04139 *[1] 
  
    % frequency range for first complex eigenvalue rad/sec 
    elseif (w(k)>(Wd_CompEig_Ht0(1)*0.9)) && (w(k)<(Wd_CompEig_Ht0(1)*1.2)) % 
Dn=0.04139 *[1,4/5] 
%     elseif (w(k)>(Wd_CompEig_Ht0(1)*0.9)) && (w(k)<(Wd_CompEig_Ht0(1)*1.2)) % 
Dn=0.04139 *[3/5,2/5,1/5,1/10,4/50,3/50] 
%     elseif (w(k)>(Wd_CompEig_Ht0(1)*0.9)) && (w(k)<(Wd_CompEig_Ht0(1)*1.4)) % 
Dn=0.04139 *[2/50,1/50,1/100] 
%         wt(k)=1;    % Dn=0.04139 *[3/5,2/5,1/10,4/50,3/50,1/100] 
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%         wt(k)=2;    % Dn=0.04139 *[1/5] 
%         wt(k)=6;    % Dn=0.04139 *[2/50] 
%         wt(k)=3;    % Dn=0.04139 *[1/50] 
%         wt(k)=3;    % Dn=0.04139 *[4/5] 
        wt(k)=1;    % Dn=0.04139 *[1] 
  
    % frequency range for second complex eigenvalue rad/sec 
    elseif (w(k)>(Wd_CompEig_Ht0(2)*0.9)) && (w(k)<(Wd_CompEig_Ht0(2)*1.4)) 
%         wt(k)=10;    % Dn=0.04139 *[1] 
    end 
end 
    % Get numerator & denominator 
[num1,den1]=invfreqs(TF,w,0,Nord,wt,100); 
% Rewrite TF, make coefficient of lowest order be 1 
n=length(den1); 
Nnum1=num1/den1(n); 
Nden1=den1/den1(n); 
Ht1=tf(Nnum1,Nden1); 
DCgainHt1=dcgain(Ht1) 
% Adjust the DCgain to 1 
Nnum1=Nnum1/DCgainHt1; 
Ht1=tf(Nnum1,Nden1) 
damp(Ht1) 
[PR_Ht1]=pfract(Nnum1,Nden1)    % Call partial fraction function, pfract.m 
DCgain_PR_Ht1=dcgain(PR_Ht1) 
  
% Mark the peak values of Freq. Resp. of Distributed parameter model & Approx TF. 
[Wn_Ht1,Z_Ht1] = damp(Ht1); 
Nw=length(Wn_Ht1); 
    % Find damped natural frequencies, which correspond to peak values 
Wd_Ht1=[]; 
for k=1:Nw 
    if Z_Ht1(k)<1 
        Wd_Ht1(k)=Wn_Ht1(k)*(1-Z_Ht1(k)^2)^0.5; 
    else 
        Wd_Ht1(k)=Wn_Ht1(k); 
    end 
end 
% Wd_Ht1 
    % Peak values of Distributed parameter model 
Ht1_c=[]; 
for k=1:Nw 
    sw=1i*Wd_Ht0(k); % Generate values for s. 
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    Ht1_c(k)=subs(H,s,sw); % Generate tf data points for the curve fit. 
end 
MTF_Wd_Ht1=20*log10(abs(Ht1_c));    % Convert to dB 
    % Peak values of approx TF. 
Hc1_Wd_Ht1=freqs(Nnum1,Nden1,Wd_Ht1);   % Complex frequency response 
MHc1_Wd_Ht1=20*log10(abs(Hc1_Wd_Ht1));  % Convert to dB 
  
% Generate Freq. Resp. plots to determine the accuracy of curve fit. 
Hc1=freqs(Nnum1,Nden1,wc); 
MHc1=20*log10(abs(Hc1)); 
% AHc1=angle(Hc1)*180/pi; 
MTF=20*log10(abs(TFc)); 
% ATF=angle(TFc)*180/pi; 
figure 
semilogx(wc,MTF,'k',wc,MHc1,'b:',... 
    Wd_Ht0(1:4),MTF_Wd_Ht1,'k+', Wd_Ht1,MHc1_Wd_Ht1,'rx'); 
 
title('Magnitude Comparison Plots'); 
xlabel('Normalized Frequency, \omega/\omega_v');ylabel('Decibels'); 
legend('Distributed Parameter Model','Normalized s, Approx TF, Ht1, 0/4 Order',... 
    'Peaks of Distributed Parameter Model','Peaks of Approx TF, Ht1',3) 
xlim([1, 1e3]); % Dn=0.04139 *[1],  
ylim([-3,2]); 
% xlim([1, 2e2]); % Dn=0.04139 *[4/5],  
% ylim([-1,1]); 
% xlim([1, 1e3]); % Dn=0.04139 *[3/5],  
% ylim([-3.5,0]); 
% xlim([1, 1e3]); % Dn=0.04139 *[2/5],  
% ylim([-6,0]); 
% xlim([1, 2e3]); % Dn=0.04139 *[1/5],  
% ylim([-11,0]); 
% xlim([1, 4e3]); % Dn=0.04139 *[1/10],  
% ylim([-17,0]); 
% xlim([1, 5e3]); % Dn=0.04139 *[4/50],  
% ylim([-20,0]); 
% xlim([1, 1e4]); % Dn=0.04139 *[3/50],  
% ylim([-25,0]); 
% xlim([1, 1e4]); % Dn=0.04139 *[2/50],  
% ylim([-30,0]); 
% xlim([1, 3e4]); % Dn=0.04139 *[1/50],  
% ylim([-35,0]); 
% xlim([1, 5e4]); % Dn=0.04139 *[1/100],  
% ylim([-40,0]); 
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    % Damped natural freq. of real and complex eigenvalues 
    % Peak values of distributed model and approx TF 
Wd_RealEig_Ht1=[]; Wd_CompEig_Ht1=[];Peak_Distrib_1=[];Peak_Ht1=[]; 
k1=1; 
while k1<length(Wd_Ht1) 
    if Wd_Ht1(k1)~=Wd_Ht1(k1+1) 
        Wd_RealEig_Ht1=[Wd_RealEig_Ht1, Wd_Ht1(k1)]; 
        Peak_Ht1=[Peak_Ht1, MHc1_Wd_Ht1(k1)]; 
        k1=k1+1; 
    else 
        Wd_CompEig_Ht1=[Wd_CompEig_Ht1, Wd_Ht1(k1)]; 
        Peak_Ht1=[Peak_Ht1, MHc1_Wd_Ht1(k1)]; 
        k1=k1+2; 
    end 
end 
if k1==length(Wd_Ht1) 
    Wd_RealEig_Ht1=[Wd_RealEig_Ht1, Wd_Ht1(k1)]; 
    Peak_Ht1=[Peak_Ht1, MHc1_Wd_Ht1(k1)]; 
end 
k2=1; 
while k2<length(MTF_Wd_Ht1) 
    if MTF_Wd_Ht1(k2)~=MTF_Wd_Ht1(k2+1) 
        Peak_Distrib_1=[Peak_Distrib_1, MTF_Wd_Ht1(k2)]; 
        k2=k2+1; 
    else 
        Peak_Distrib_1=[Peak_Distrib_1, MTF_Wd_Ht1(k2)]; 
        k2=k2+2; 
    end 
end 
if k2==length(MTF_Wd_Ht1) 
    Peak_Distrib_1=[Peak_Distrib_1, MTF_Wd_Ht1(k2)]; 
end 
Wd_RealEig_Ht1, Wd_CompEig_Ht1, Peak_Distrib_1, Peak_Ht1 
% Peak_difference1=(Peak_Ht1-Peak_Distrib_1) 
  
%% Comparison of step response of 9th/10th order and 0/4th order transfer function 
approximation 
figure, step(Ht0,'g-',Ht1,'b--') 
legend('Normalized s, Approx TF, Ht0, 9/10 Order',... 
    'Normalized s, Approx TF, Ht1, 0/4 Order', 4) 
% title('Step Response') 
xlabel('Normalized Time, \omega_V t'); 
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ylabel('Normalized Volumetric Flow Rate, \DeltaQ_b/Q_e '); 
  
%% Un-Normalized TF, convert above s_bar to s, s_bar=s*(r^2/KVis) 
fprintf('%%%% Un-Normalized TF, convert above s_bar to s, s_bar=s*(r^2/KVis) \n'); 
ord=length(Nnum0); 
uNnum0=[];uNden0=[]; 
for a=ord:-1:1 
    uNnum0(a)=Nnum0(a)*(r^2/KVis)^(ord-a); 
end 
ord=length(Nden0); 
for a=ord:-1:1 
    uNden0(a)=Nden0(a)*(r^2/KVis)^(ord-a); 
end 
uHt0=tf(uNnum0,uNden0) 
damp(uHt0) 
[PR_uHt0]=pfract(uNnum0,uNden0) 
DCgain_PR_uHt0=dcgain(PR_uHt0) 
  
ord=length(Nnum1); 
uNnum1=[];uNden1=[]; 
for a=ord:-1:1 
    uNnum1(a)=Nnum1(a)*(r^2/KVis)^(ord-a); 
end 
ord=length(Nden1); 
for a=ord:-1:1 
    uNden1(a)=Nden1(a)*(r^2/KVis)^(ord-a); 
end 
uHt1=tf(uNnum1,uNden1) 
damp(uHt1) 
[PR_uHt1]=pfract(uNnum1,uNden1) 
DCgain_PR_uHt1=dcgain(PR_uHt1) 
  
%% Equal Lumped Series set: ICIC+(R+Rv), 4th order 
fprintf('%%%% Equal Lumped Series set: ICIC+R+Rv, 4th order \n'); 
syms s Ps I0 I1 C1 C2 R1 
% let I0=Is*i0; I1=Is*i1; 
% C1=Cs*c1; C2=Cs*c2; 
% R1=Rs*1; 
H1=solve('Ps-P1=I0*s*Q0','Q0-Q1=C1*s*P1',... 
    'P1-P2=I1*s*Q1','Q1-Q2=C2*s*P2',... 
    'P2=R1*Q2','P1,P2,Q0,Q1,Q2'); 
% Q2(s)/(Ps(s)/R)=Q2b(s)/U(s), (normalized Q2)/(unit step input) 
h1=collect(H1.Q2/Ps*(R1),s); % TF=Q/(Ps/R) 
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% h1=collect(h1,Ps); 
pretty(h1) 
  
% Equal distributed parameter 
digits(5); 
% h11=subs(h1,[I0,I1,C1,C2,R1],[II/2,II/2,CC/2,CC/2,RR]);     % laminar 
%     % Use Resistance of turbulent, RRt 
h11=subs(h1,[I0,I1,C1,C2,R1],[II/2,II/2,CC/2,CC/2,RRt]);    % turbulent 
h11=vpa(h11); 
pretty(h11) 
  
[numh1,denh1]=numden(h1); 
[CoeNum1,SS1]=coeffs(numh1,s);  % coefficient from high to low order 
[CoeDen1,SS2]=coeffs(denh1,s);  % coefficient from high to low order 
  
% let coefficient of lowest order be 1 
n=length(CoeDen1); 
NCoeNum1=CoeNum1/CoeDen1(n); 
NCoeDen1=CoeDen1/CoeDen1(n); 
  
% Assume this is a equal distributed parameter model 
     % Use Resistance of turbulent, RRt 
NumLump1=subs(NCoeNum1,[I0,I1,C1,C2,R1],[II/2,II/2,CC/2,CC/2,RRt]); 
DenLump1=subs(NCoeDen1,[I0,I1,C1,C2,R1],[II/2,II/2,CC/2,CC/2,RRt]); 
  
TFLump1=tf(NumLump1,DenLump1) 
% eig(TFLump1) 
damp(TFLump1) 
[PF_TFLump1]=pfract(NumLump1,DenLump1) 
DCgain_PF_TFLump1=dcgain(PF_TFLump1) 
  
figure, step(TFLump1,':r',uHt0,'g',uHt1,'-.b', .12) 
% title('Step response') 
ylabel('Normalized Volumetric Flow Rate, \DeltaQ_b/Q_e '); 
legend('Equal Lumped Parameter Model for ICIC+R+Rv',... 
    'Approx TF, uHt0, 9/10 Order',... 
    'Approx TF, uHt1, 0/4 Order', 4) 
  
figure, uH=bodeplot(TFLump1,':r',uHt0,'g',uHt1,'-.b'); 
p=getoptions(uH);    % Create a plot options handle p. 
p.PhaseMatching = 'on'; 
p.Xlim{1} = [1 1e3];        % Dn=0.04139 *[1,4/5],  
p.Ylim{1} = [-3 5]; 
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p.Ylim{2} = [-360 0]; 
% p.Xlim{1} = [1 1e3];        % Dn=0.04139 *[3/5],  
% p.Ylim{1} = [-4 3]; 
% p.Ylim{2} = [-360 0]; 
% p.Xlim{1} = [1 1e3];        % Dn=0.04139 *[2/5],  
% p.Ylim{1} = [-6 2]; 
% p.Ylim{2} = [-360 0]; 
% p.Xlim{1} = [1 1e3];        % Dn=0.04139 *[1/5],  
% p.Ylim{1} = [-12 2]; 
% p.Ylim{2} = [-360 0]; 
% p.Xlim{1} = [1 1e3];        % Dn=0.04139 *[1/10],  
% p.Ylim{1} = [-18 2]; 
% p.Ylim{2} = [-360 0]; 
% p.Xlim{1} = [1 1e3];        % Dn=0.04139 *[4/50],  
% p.Ylim{1} = [-20 1]; 
% p.Ylim{2} = [-360 0]; 
% p.Xlim{1} = [1 1e3];        % Dn=0.04139 *[3/50],  
% p.Ylim{1} = [-23 1]; 
% p.Ylim{2} = [-360 0]; 
% p.Xlim{1} = [1 1e3];        % Dn=0.04139 *[2/50],  
% p.Ylim{1} = [-30 0]; 
% p.Ylim{2} = [-360 0]; 
% p.Xlim{1} = [1 1e3];        % Dn=0.04139 *[1/50],  
% p.Ylim{1} = [-35 0]; 
% p.Ylim{2} = [-360 0]; 
% p.Xlim{1} = [1 1e3];        % Dn=0.04139 *[1/100],  
% p.Ylim{1} = [-40 0]; 
% p.Ylim{2} = [-360 0]; 
  
setoptions(uH,p);    % Apply plot options to the Bode plot and render. 
legend('Equal Lumped Parameter Model for ICIC+R+Rv',... 
    'Approx TF, uHt0, 9/10 Order',... 
    'Approx TF, uHt1, 0/4 Order', 'Location','Best') 
  
%% Solve symbolic equations of series set lumped parameter model 
fprintf('%%%% Solve symbolic equations of series set lumped parameter model \n'); 
warning on 
syms s Ps i0 i1 c1 c2 r1 Is Cs Rs 
% let I0=Is*i0; I1=Is*i1; 
% C1=Cs*c1; C2=Cs*c2; 
% R1=Rs*1;  
H2=solve('Ps-P1=Is*i0*s*Q0','Q0-Q1=Cs*c1*s*P1',... 
    'P1-P2=Is*i1*s*Q1','Q1-Q2=Cs*c2*s*P2',... 
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    'P2=Rs*1*Q2','P1,P2,Q0,Q1,Q2'); 
  
% Q(s)/Ps(s)*R=Qb(s)/U(s), (normalized Q)/(unit step input) 
h2=collect(H2.Q2/(Ps/Rs),s); % TF=Q/(Ps/R) 
pretty(h2) 
  
[numh2,denh2]=numden(h2); 
[CoeNum2,SS1]=coeffs(numh2,s);  % coefficient from high to low order 
[CoeDen2,SS2]=coeffs(denh2,s);  % coefficient from high to low order 
  
% let coefficient of lowest order be 1 
n=length(CoeDen2); 
NCoeNum2=CoeNum2/CoeDen2(n); 
NCoeDen2=CoeDen2/CoeDen2(n); 
  
% 0/4th order approximation numerical TF 
uHt1=tf(uNnum1,uNden1) 
 
F=solve(NCoeDen2(1)-uNden1(1), NCoeDen2(2)-uNden1(2),... 
    NCoeDen2(3)-uNden1(3), NCoeDen2(4)-uNden1(4),... 
    'i0,i1,c1,c2'); 
  
% the weight of each parameter 
wIs=[F.i0, F.i1]; 
wCs=[F.c1, F.c2]; 
%     % Use Resistance of turbulent, RRt 
wI=subs(vpa(wIs),{Is,Cs,Rs},{II,CC,RRt}) 
wC=subs(vpa(wCs),{Is,Cs,Rs},{II,CC,RRt}) 
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Appendix C 

I ’s and C ’s Coefficients vs. nD  vs. rR  for Case 1
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C. 1 First I ’s coefficient, wI(1), vs rR  vs nD  

 

5 10 20 30 40 

0.016556 0.621 0.53675 0.67328 0.78159 0.88038 
0.024834 0.6227 0.67297 0.85005 1.0309 1.2098 
0.033112 0.64838 0.74072 1.055 1.3418 1.6223 
0.04139 0.64684 0.85694 1.2949 1.6989 2.0999 
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C. 2 Second I ’s coefficient, wI(2), vs rR  vs nD  

 

5 10 20 30 40 

0.016556 0.57672 0.45742 0.47972 0.51201 0.55196 
0.024834 0.65156 0.4862 0.558 0.64872 0.74253 
0.033112 0.48054 0.51592 0.67018 0.82147 0.97269 
0.04139 0.53435 0.63461 0.87367 1.1094 1.3459 
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C. 3 First C ’s coefficient, wC(1), vs rR  vs nD  

 

5 10 20 30 40 

0.016556 0.42995 0.27475 0.24696 0.22581 0.20801 
0.024834 0.44008 0.26491 0.22279 0.18899 0.16422 
0.033112 0.2556 0.2535 0.18746 0.15118 0.12727 
0.04139 0.27422 0.22705 0.1618 0.12696 0.10464 

 

 

 

  

0.04139 

0.024834 
0 

0.1 

0.2 

0.3 

0.4 

0.5 

5 10 20 30 40 
D

iss
ip

at
io

n 
nu

m
be

r,
 D

n 

C
oe

ff
ic

ie
nt

s m
ul

tip
lie

r 

Resisatance ratio, Rr 

0.4-0.5 

0.3-0.4 

0.2-0.3 

0.1-0.2 

0-0.1 

rR  
nD  



 

123 

C. 4 Second C ’s coefficient, wC(2), vs rR  vs nD  

 

5 10 20 30 40 

0.016556 0.15957 0.25067 0.24818 0.23195 0.2129 
0.024834 0.17758 0.25307 0.21754 0.18497 0.15996 
0.033112 0.24715 0.23023 0.17836 0.14472 0.12139 
0.04139 0.21762 0.19415 0.14242 0.11144 0.091229 
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