
COMPARING WEB APPLICATION SCANNERS FOR XSS ATTACKS

by

DENGFENG XIA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2012

Copyright © by DENGFENG XIA 2012

All Rights Reserved

iii

ACKNOWLEDGEMENTS

 This project would not have been possible without the continuous guidance,

encouragement, and support of many people.

First and foremost, I would like to express my most sincere gratitude to my supervising

professor, Dr. Yu Lei, who has given me invaluable guidance and assistance all the time. His

timely inspirations and willingness to motivate contributed tremendously to our project.

I would like to thank our supervising committee members, Dr. Christoph Csallner and Dr.

Donggang Liu, for their interests in this project and assistance in the defense scheduling.

I would like to thank Dr. Matthew Wright for the help in his excellent Secure Programming

course, which helped me learn related back ground knowledge which inspired this project.

I would like to thank all students in Software Engineering Lab who helped me during my

experiments.

And also, I would like to express my gratitude to all my family members, who have given

me unselfish support and encouragement for my academic work, which was the key factor of

my concentration on this project. Their understanding and love provided me motivation for

pursuing my interests.

 May 8, 2012

iv

ABSTRACT

COMPARING WEB APPLICATION SCANNERS FOR XSS ATTACKS

DENGFENG XIA, M.S.

The University of Texas at Arlington, 2012

Supervising Professor: Yu Lei

As the software industry pays increasing attention to web application security, various black

box web security scanners have been developed. XSS attacks are one of the major attacks that

can make severe damages to victim systems, and we focus on the XSS detection effectiveness

for a number of scanners in this project. Most existing projects evaluate the scanning

performance for various vulnerability types, and they do not give an adequate evaluation on XSS

issues. Further, their evaluations either use vulnerable applications in real life, or use test

applications created by themselves. As a result, their evaluation results might be biased due to

the limited number of test applications. Finally, most projects only compare the final scanning

results, without giving a deeper analysis of the inner scanning mechanisms of the different

scanners.

v

In this project, we evaluate web application scanners that are widely used in practice. We

not only compare their performance, but also explain reasons causing the differences. In our

evaluation, we first use real life vulnerable web applications to evaluate the performance of the

scanners in different scanning phases. Then we use JSP test applications created by ourselves

to evaluate their abilities of sending fuzzed data and analyzing the scanners’ responses. At last,

we explain their performance differences by comparing their injection patterns. Our evaluation

results indicate that their different scanning outputs in various phases have influenced their final

scanning results. However, the performance of crawling does not seem to be the only key factor,

which is different from conclusions of many related projects. Our deeper study about injection

patterns suggests that all scanners have a certain variety of patterns we have compared, and

their injection effectiveness may result from multiple factors.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iii

ABSTRACT ... ivv

TABLE OF CONTENTS ... vii

LIST OF ILLUSTRATIONS .. ixx

LIST OF TABLES ... x

Chapter Page

 1. INTRODUCTION ... 1

 2. RELATED WORK .. 5

 3. CROSS-SITE SCRIPTING ATTACKS ... 11

 3.1 Reflected XSS .. 11

 3.2 Stored XSS ... 15

 3.3 DOM-based XSS .. 16

 3.4 XSS Preventions .. 18

 4. A GENERAL DETECTION FRAMEWORK .. 22

 4.1 Crawling.. 23

 4.2 Deciding Injection Points .. 24

 4.3 Making Injections .. 24

vii

 4.4 Reporting .. 25

 4.5 Case Study ... 26

 5. EVALUATION .. 29

 5.1 Web Application Scanners ... 29

 5.1.1 Overview .. 29

 5.1.2 Netsparker Community Edition .. 30

 5.1.3 Acunetix Web Vulnerability Scanner Free Edition 31

 5.1.4 Skipfish ... 33

 5.1.5 Wapiti .. 35

 5.1.6 Summary .. 37

 5.1.7 Other Tools ... 37

 5.2 Case Studies .. 38

 5.2.1 Subject Applications ... 38

 5.2.2 Evaluation Method .. 41

 5.2.3 Results and Discussion .. 42

 5.2.4 Summary .. 52

 5.3 Evaluation with Controlled Test Applications .. 52

 5.3.1 Motivation ... 53

 5.3.2 Evaluation Method .. 53

viii

 5.3.3 Result and Discussion .. 59

 5.4 Further Comparison ... 62

 5.4.1 Comparison Method ... 63

 5.4.2 Comparison of Injection Contexts .. 65

 5.4.3 Advanced Injection Techniques Comparison 68

 5.5 Summary .. 73

 6. CONCLUSIONS AND FUTURE WORK .. 75

 6.1 Crawling.. 75

 6.2 Deciding Injection Points .. 76

 6.3 Injection Effectiveness .. 77

 6.4 Future Work .. 77

APPENDIX

 A. FALSE POSITIVE VALIDATIONS ... 79

REFERENCES ... 85

BIOGRAPHICAL STATEMENT .. 88

ix

LIST OF ILLUSTRATIONS

Figure Page

3.1 Reflected XSS Attack Steps ... 13

5.1 Netsparker GUI .. 31

5.2 Acunetix Login Sequence Recorder ... 32

5.3 Acunetix Test Result ... 33

5.4 Skipfish Command Line Interface .. 34

5.5 Skipfish Report ... 35

5.6 Wapiti Report Overview .. 36

5.7 Wapiti Report In Detail ... 36

x

LIST OF TABLES

Table Page

5.1 Usability Comparison for 4 scanners ... 37

5.2 Statistics of Subject Applications .. 39

5.3 Vulnerabilities Overview ... 41

5.4 Type 1 Issues Scanning Results .. 44

5.5 Acunetix Scanning Result .. 46

5.6 Netsparker Scanning Result .. 47

5.7 Skipfish Scanning Result ... 48

5.8 Wapiti Scanning Result .. 49

5.9 OSVDB Issues Scanning Statistics .. 50

5.10 Non OSVDB Issues Scanning Statistics .. 51

5.11 Controlled Test Applications Overview ... 58

5.12 Controlled Test Applications Scanning Results .. 60

5.13 Comparison of Structural Tags ... 66

5.14 Comparison of Modifier Tags.. 67

5.15 Comparison of Element Tags ... 67

5.16 Comparison of Encoding Techniques ... 70

xi

5.17 Comparison of Injection Techniques .. 72

5.18 Injection Tag Patterns Summary .. 74

A.1 Validations for Acunetix Results ... 80

A.2 Validations for Netsparker Results ... 82

A.3 Validations for Skipfish Results .. 83

1

CHAPTER 1

INTRODUCTION

Due to wide-spread information sharing through the internet, the software industry is

paying increasing attention to various issues in web application security. Preventing Cross-site

scripting (XSS) attacks is always very important. In this thesis, we give a detailed evaluation of

several scanners on the XSS detection effectiveness, study their detection mechanisms, and

compare their performance in different scanning phases.

Among various web application security threats, statistics have suggested that XSS

vulnerabilities are among the most widely exploited. The Web Application Security Statistics

Project
 [24]

 showed that XSS is the most common vulnerability type. Among all the vulnerabilities

analyzed by this project, XSS accounted for 59% in their report of year 2007, and 43% in the

report of year 2008. According to the 7
th
 Website Security Statistics Report

 [25]
 by WhiteHat

Security in 2009, about 65% of websites contained XSS vulnerabilities. In a report named 2011

CWE/SANS Top 25 Most Dangerous Software Errors
[4]

, XSS was also claimed to be the most

prevalent threat type. Apart from its wide spread nature, the consequences of XSS attacks can

range from minor malice threats to serious security damages. Attackers can steal cookies, forge

requests of valid users, redirect users to malicious websites, install Trojan horse programs, and

execute malicious code on the victim’s browser. Various scanners that can detect XSS

2

vulnerabilities have been developed. They have similar detection mechanisms at a high level, but

their detection effectiveness is different. This thesis is helping us have a good understanding of

strengths and limitations of different tools.

XSS attacks rely on injecting crafted attack strings in user inputs to vulnerable web

applications. Since those applications do not have proper input validation mechanisms, they

return responses contaminated by malicious scripts, which can perform unexpected attacks in the

victim browsers. Most web application scanners detect XSS vulnerabilities by sending benign

XSS attacks to the target applications and checking the responses for the “traces” of the previous

injections. Although several projects have provided evaluations for web application scanners, they

do not focus on the XSS detection effectiveness. Instead, they provide a general evaluation for

various vulnerability types, such as SQL injection, information leak, command injection, etc.

Moreover, most projects either use case studies of real-life applications, or controlled studies with

crafted applications, but not both. Finally, these projects do not give an in-depth and

comprehensive analysis of the detection mechanisms employed by different scanners.

In our project, we conduct a comprehensive evaluation for four popular web application

scanners, including Skipfish
[29]

, Wapiti
[27]

, Netsparker community edition
[14]

, and Acunetix free

edition
[1]

. We also provide deep analysis for their detection effectiveness. Our evaluation includes

case studies for real-life web applications and controlled studies with test applications created by

ourselves. We choose five vulnerable web applications having XSS vulnerabilities reported by the

3

OSVDB website, which is online database supported by the web security community, providing

information of discovered vulnerabilities in various web applications. To better represent web

application vulnerabilities populated “in the wild”, we keep five applications belonging to different

categories. For controlled studies, we create a total number of more than 50 simple test

applications. Among them, we have base test applications, which have various XSS vulnerabilities

but not any input validation mechanism. For each of base applications, we have some variation

test applications, which add some input validations to the base test applications, escaping certain

special characters. As discussed in chapter 2, an existing study
 [7]

 suggests that many web

application scanners cannot bypass very advanced input validation mechanisms. Thus, the

escaping techniques we use are simple and common, paying attention to some typical symbols

such as quotation marks and angle brackets. To analyze the scanning results, we not only present

the statistics, but also study how each scanner is working in detail, by tracking and analyzing

network packets. We explain the detection mechanisms in different web application scanners,

compare their performances in different scanning phases, such as crawling, deciding injection

points, making injections, etc, and analyze the factors affecting their detection effectiveness. For

example, in case studies, for a reported issue, if scanners fail to detect it, we identify whether they

can only reach the vulnerable location during the crawling phase, or they can take a further action

sending injections to exploit the vulnerability. We study how the injection contents look like if

scanners succeed at detecting the vulnerability, capture and compare attack strings of different

4

scanners during the XSS injection phase, trying to discover the relationship between the variety of

injection strings and their injection effectiveness.

Based on our evaluation results and analysis, we have several useful findings. Our evaluation

results suggest that two scanners, Netsparker and Acunetix perform better than the other two

scanners, Skipfish and Wapiti. Our analysis shows that the differences in the overall detection

effectiveness are mainly due to their different performances in the phase of deciding injection

points and making injections. It is worth noting that in our evaluation, the effectiveness of the

crawling stage is not the only factor that affects the overall detection effectiveness. This is different

from many existing projects which emphasize on the importance of crawling. By comparing

injection strings, we find that even though many scanners use similar injection patterns, their

injection effectiveness is different. There can be multiple reasons affecting the injection

effectiveness.

 The structure of this thesis is described as the following:

In chapter 2, several projects in related work are discussed, including their contributions and

limitations.

In chapter 3, we give background information for the cross-site scripting vulnerability,

introducing various types of XSS attacks and prevention techniques.

In chapter 4, we introduce the XSS detection mechanisms of web application scanners.

5

In chapter 5, we give a detailed description of our evaluation. First, we introduce web

application scanners we evaluated in this project. Then we describe case studies of several

real-life applications, followed by controlled studies of several test applications we created. At last,

we compare the injection patterns used by different scanners.

In chapter 6, we provide concluding remarks. In particular, we discuss the key factors

affecting the detection effectiveness of different scanners. Discussion for future work is also

included.

5

CHAPTER 2

RELATED WORK

In this section, we introduce several related projects and compare our work to them.

The project that has inspired us the most is the one by Shay Chen[2]. In particular, we

created our test applications based on his work. He conducted a comprehensive evaluation for

over 40 popular scanners. In his evaluation, a number of test applications having XSS

vulnerabilities were created. In our project, after studying some documents about XSS

prevention techniques, such as the XSS prevention cheat sheet provided by OWASP

(open-source application security project), we create a number of test applications based on his

work. There are some differences in our projects. First, we organize the test applications and

present the evaluation results in a more systematic way. We create test applications according to

different scenarios. For each scenario, we create base test application(s) and optional derived

test applications having certain character escaping mechanisms. Moreover, apart from the test

applications from Shay’s project, we add into our project several new test applications, including

some variation test applications in several scenarios, and the applications in which there are

some XSS vulnerabilities in javascripts.

Several projects conducted a general evaluation for various vulnerability types. For example,

Jason
[2]

 Bau's team from Stanford conducted experiments on both real-life vulnerable web

applications and a controlled test bed. The vulnerability types in the

6

evaluation included XSS, SQL injection, Cross Channel Scripting, Information leak, etc. The

scanners they used were Acunetix, HailStorm, WebInspect, Rational AppScan, McAfee Secure,

N-Stalker, Qualysguard, and Nexpose. For real-life vulnerable applications, they chose Drupal,

phpBB, and Wordpress, and each application had several vulnerabilities of each vulnerability type.

In the evaluation with the controlled test bed, they compared the detection effectiveness for the

vulnerabilities in the sub-categories they identified. They compared scanning results, execution

time, and amount of data transmitted for the scanners they used. Their work and our approach

adopted similar methods, since both of us include case studies for real-life web applications and

controlled test applications. The difference is that they made general comparisons for various

vulnerability types, but did not provide a detailed analysis on the factors causing the differences;

our work focuses on the XSS detection effectiveness, and we have further analysis on scanners’

performance in all scanning phases.

Some projects created effective test applications to better differentiate the scanning

performance of scanners. For example, Elizabeth Fong
[8]

 and her team from NIST created a

banking application containing 3 types of vulnerabilities, XSS, SQL injection, and File inclusion.

They proposed the concept of defense levels in web applications, which indicates how difficult for

scanners to exploit the vulnerabilities. When constructing the test applications, they applied this

idea by crafting multiple vulnerabilities in different defense levels, and making the test suite able to

configure its defense levels according to the needs of different tests. Their scanning results

7

showed that most tools could not detect vulnerabilities having a defense level more than 2,

indicating that most tools were not able to bypass some advanced input validation mechanisms.

The similarity of their work to our approach is that we both apply the concept of defense levels

when creating test applications. We add escaping mechanisms into our variation test applications,

having different difficulties for scanners to exploit the vulnerabilities. Since very advanced

escaping mechanism cannot help much in differentiating scanners’ detection effectiveness, our

escaping functions are quite simple and common. One difference between the two projects is that

we use multiple real life vulnerable web applications for our evaluation, having more diversity and

more practical challenges than their single banking application.

In the evaluation process, some projects paid attention to several practical problems which

could hardly be ignored. Adam Doupe
[5]

 and his team created a test application with several types

of vulnerabilities, called Wackopicko. They evaluated 11 scanners, and they used the scanners in

three modes, representing different challenges in the crawling phase. During their evaluation

process, they discussed many practical problems hindering the crawling process, such as parsing

malformed HTML pages, reaching pages in multi-step processes, being stuck within infinite loops,

failures in automatic authentications, etc. This is similar to our evaluation experience, as we have

found that scanners can fail to maintain session states in several situations, and they sometimes

even fail to pass the authentications at the beginning of the crawling phase. This can make it

harder for crawlers to detect web pages that can only be reached after logging into a website.

8

Their work had some differences comparing to our work. They had an evaluation about various

vulnerability types, but we only focus on XSS issues. Their evaluation results showed that the

crawling quality of a tool is vital to its overall performance, but our work suggests that many other

factors also have significant impact on a scanner’s detection effectiveness.

Apart from the method of using real life vulnerable applications in case studies, some people

like Suto[20] conducted evaluations using test sites provided by different scanner vendors, as he

believed they could be a good representation of various vulnerabilities in the wild. His evaluation

had tests with two types of crawling configurations. One of them is called point and shoot tests,

which used the default crawling options. Another is called trained tests, which used various

advanced configurations to reach the best page coverage possible. Most scanners had only

moderate improvements benefit from trained crawling. One difference comparing to our project is

that our findings were based on case studies of real-life vulnerable web applications.

Jose
[8]

 and his team proposed another way to create test applications and used them in the

evaluation for three scanners, Acunetix, Rational AppScan, and QualysGuard. They injected faults

into web applications to create potential security vulnerabilities, generating test cases once the

vulnerabilities were confirmed. They modified two web applications by injecting typical software

faults. After every injection, they used scanners to detect XSS vulnerabilities, and identified the

reported issues as vulnerabilities already existed before the injection, or newly generated ones. If

the newly generated issue is a true positive, they created a test case based on the injection. They

9

injected hundreds of faults into a single application, and found dozens of XSS and SQL injection

vulnerabilities with the help of different scanners. Since the process was very time consuming and

required repetitive work for every single injection, they wrote a java program to automate their

evaluation process. The similarity between their method and our approach is that both projects try

to use vulnerabilities in real-life web applications. The difference is that their vulnerabilities came

from fault injections, which had sufficient quantity but might not be representative enough for

vulnerabilities in real life; ours come from real problems reported in the community.

Many other resources have given us help when we were trying to conduct a deeper study

about XSS attacks. The Open Web Application Security Project (OWASP)
 [19]

 is one of them. It is a

non-profit project open to the community, providing tutorials, guidelines, methodologies,

technology information, and other detailed and up-to-date resources for projects in web application

security area. It is supported by a large community composed of industrial companies, educational

organizations, individual students, and IT workers. It avoids affiliation with any commercial

organization to ensure independence. It provides us tutorials presenting XSS attacking techniques,

testing principles and guidelines, and useful resources of related work. For example, it introduces

tutorial projects like WebGoat to teach web application security lessons in which users can learn to

exploit vulnerabilities in several applications in the projects; it has projects like SiteGenerator

allowing users to create vulnerable web sites for learning and testing; it provides prevention cheat

sheets for XSS attack, illustrating attacking theories and prevention rules, which gives us

10

background knowledge to understand injection patterns of web application scanners, and

guidance to create our test applications.

11

CHAPTER 3

CROSS-SITE SCRIPTING ATTACKS

In this chapter, we will give background knowledge of XSS attacks. We will discuss three

types of XSS vulnerabilities, give several attack examples, and give an introduction to XSS

prevention techniques at a high level.

Cross-Site Scripting (XSS) is one of the most common web application vulnerabilities. Many

XSS attacks happen because vulnerable applications fail to sanitize malicious input at either

server side or browser side, allowing them to be injected into response pages. By altering the

original page structures, the injected code is able to achieve malicious intentions in victim

browsers.

3.1 Reflected XSS

Traditionally, XSS vulnerabilities reside in the process when the server-side code preparing

html responses to users. This is different from the DOM-based XSS after the advent of web 2.0,

which will be discussed in section 3.3. Traditional XSS vulnerability can be classified as reflected

XSS and stored XSS. A reflected XSS vulnerability allows users to inject malicious input which

can be reflected back immediately in the response. It is considered as “non-persistent”. A typical

scenario of reflected XSS attack can be:

12

A user types in search strings on a search website. After clicking the “search” button, the user

input is supposed to be reflected back in the result page. If there are some malicious scripts within

the input, and there is no proper input validation on the server side, the malicious scripts will be

executed in the browser when the response is received. Based on this kind of injections, attackers

can create a benign-looking URL containing XSS vectors. Users are lured to click on these URLs

and the injected scripts will be run in the victim browsers.

To better illustrate the steps in a reflected XSS attack, we give a detailed example in this

section. Imagine there is an online-shopping application having reflected XSS vulnerabilities. It

allows registered users to post business transaction information, and communicate with other

users through the message system within the website. To facilitate transactions, every registered

user saves his bank account information in the web site, which can only be viewed and changed

by the owner himself after authentication. Tony is one of the frequent users of this web site. He

posts a message looking for sellers who can sell him some video games at a low price. Gary is an

attacker. After seeing Tony’s posting, he performs the following attack steps, which are illustrated

in figure 3.1.

13

 Figure 3.1 Reflected XSS Attack Steps

1. In the browse page, Gary chooses to view products of a particular seller. In an ordinary

scenario, the content of the “user_name” parameter in a post message is accepted and

stored in the server side, the PHP code in the server can be like:

$name = $_POST[“user_name”];

14

The variable “name” will be used for composing search queries. If the user is not found in

the database, the website will display a message using PHP code:

echo ”The user $name is not found”;

Since the application does not have a proper input sanitation mechanism, the content of

“user_name” will be echoed back directly. After identifying the parameter “user_name” as

a injection point, Gary uses a crafted script to replace the normal seller name, for example,

the script used can be:

<script>var cookies=document.cookie;

document.write(“”);</script>.

When a browser tries to display the response page, the “img” tag generated will send the

cookie information to www.Gary.com, which is a website created and monitored by the

attacker, having certain functions in the file phisher.php to process the cookie information

in requests.

2. Based on the request URL with fuzzed string in the parameter “user_name”, attacker Gary

can craft an URL string which seemed benign. He may keep the part www.site.com, which

is the legitimate name of the shopping website, and encode the malicious script part,

making the URL looks as coming from a trust source.

3. Gary sends a message to Tony through the website message, providing him the crafted

URL string, telling him to click the link to view the products that Gary can provide.

15

4. After logging on and seeing the new message from Gary, Tony clicks the link, and a

response page containing the XSS vector is returned.

5. Tony’s browser is redirected to the attacker’s website. Tony’s cookie information is sent to

www.Gary.com and captured by the script in phisher.php

6. Using the cookie information, Gary can log on the website with the identity of Tony, and

view his sensitive information stored in the account.

Note that in Figure 3.1, since the process that the attacker monitors his own website is a

consistent action, the arrow representing this is different from others. The arrows for step 1 and

step 4 are bidirectional. In step 1, the attacker makes a XSS injection, and records the URL

reflected in the response page. In step 4, there is a conversation consists of requests and

responses between the victim and the website.

In various reflected XSS attacks, step 5 and step 6 may be different, since attackers may not

want to steal the victims’ cookies every time. As long as they can make victims’ browsers run their

malicious scripts, they can do many things as they wish.

3.2 Stored XSS

Different from reflected XSS, stored XSS can accept a user's input and keep it on the web

page, and it is considered as “persistent”. It may have the same steps as those after step 3 in the

reflected XSS attack illustrated above, but it does not require attackers to use phishing techniques

16

to lure victims to visit another website, and the XSS vector is injected onto the web page

permanently. A typical scenario of a stored XSS attack can be:

There is a blog application allowing readers to post their messages. An attacker may post

some malformed content for the value of the regular message title and body. If the website cannot

validate the user inputs, malicious scripts will be injected into the attacker’s posting permanently,

which can be viewed by others. Whenever the posting page is visited, the malicious scripts will be

run in the victim browsers.

3.3 DOM-based XSS

Apart from traditional XSS attacks, including reflected XSS attacks and stored XSS attacks,

another XSS attack type is called DOM-based XSS. Unlike traditional XSS attacks which rely on

having malicious payloads embedded in the reflected pages, DOM-based XSS attacks modify the

DOM environment in the victim browsers, without changing the actual HTML response contents.

DOM, which is the abbreviation for Document Object Model, is a convention representing objects

in HTML, XHTML, or XML documents. It provides interfaces for Java scripts to manage the

structure and attributes of page contents. For example, the “getElementById” method of the

Document object can return a reference to the first object having the specified id in the web page;

the “host” attribute of the Location object has the information of the current host name and port

number.

17

To better illustrate DOM based XSS attacks, we take the example in the previous reflected

XSS attack again. Imagine the application does not use the content stored in the variable “name”

at the server side when displaying the error message. Instead, it uses JavaScript in response

pages to extract the information in the DOM objects:

var pos=document.URL.indexOf("user=")+5;

 document.write(document.URL.substring(pos,document.URL.length));

To print the name of the authenticated user, the JavaScript extracts the information from the “URL”

attribute of the “document” object. To exploit this vulnerability, attackers may craft their request

URL to:

 http://www.site.com/products.html?user=<script>...</script>

the malicious script is injected after the string “user=”, polluting the DOM object environment, and

the content of “document.URL” at the client side in changed. When the browser tries to display the

web page, it parses the JavaScript, and the malicious script is added to the html content

dynamically. Attackers can craft this URL string, making it look benign, and use it to lure victims

with phishing techniques.

To prevent DOM-Based XSS attacks, input validations on the server side might not work in

many cases, since the code handling the user input might not reside at the server side, and

attackers may try to avoid sending malicious data to the server, leaving no track for their attacks at

all. For example, attackers may use certain symbols, such as “#”, in the URL string, making the

18

malicious content as fragment which will not arrive at the server. For example, attackers can

modify the previous URL string to:

http://www.site.com/products.html#user=<script>...</script>

The content after “#” will be interpreted as a fragment by some web browsers, and the actual URL

string sent to the server will be:

http://www.site.com/products.html

Since input validations on the server side might not work in this situation, XSS preventions

should be performed at the client side. In the example above, certain input validation mechanisms

can be added into the JavaScript code in the response page, which is responsible for extracting

the URL information from the DOM object. When a browser displays the web content, certain

characters are filtered out at the client side directly.

3.4 XSS Preventions

To prevent XSS attacks, many web applications adopt certain input validation mechanisms. In

this section, we discuss at a high level about common injection techniques employed by attackers,

and the common mechanisms to prevent them.

Web applications usually treat user inputs as data, and place them into a context which

should be treated by web browsers as data only. In this thesis, we refer this kind of context as data

context, like <textarea>data context</textarea>. For the context which is usually treated as code

having certain functionalities, we refer it as code context, such as <script>alert(‘XSS’)</script>.

19

XSS injections usually use special characters, such as quotation marks and angle brackets, to

convert data contexts to code contexts, altering the original page structures. For example, an

injection into a data context between the tags <textarea> and </textarea> can change the content

to:

<textarea><script>alert(“XSS”)</script></textarea>

This makes the original data context contain a code context having a java script.

The most common method of switching context is closing the current context and starting a

new one, which is called injection up. For example, a successful injection to the “userinput” in the

context <div>userinput</div> can change it to

 <div></div><script>alert(“XSS”)</script><div></div>.

 This injection has closed the data context within the original “div” tag pair by dividing it to two

data contexts. A new code context containing the script is generated between the two newly

generated “div” tag pairs.

Another injection type is called injection down, which creates a sub context within the

original content, without closing it. An example can be

<INPUT TYPE=”IMAGE” SRC=”javascript:alert(“XSS”);”>

where the string “javascript:alert(“XSS”);” is provided by attackers to convert the data context into

a code context containing a java script.

 Based on the fact that the essence of XSS attacks is converting data contexts into code

20

contexts, web application developers have added functionalities of input validations to their

products, including some filtering and escaping mechanisms focusing on certain symbols and

characters. The filtering mechanisms are used to remove suspicious content, trying to leave no

chance for misinterpretations by browsers. A disadvantage of filters is that legitimate inputs can

also be filtered out unexpectedly. For this reason, the widely used method is escaping certain

characters, which help the browsers to treat user inputs as a part of data only. It usually encodes

special symbols in the user input and considers them as part of data content, distinguishing them

from the same symbols in the original html structural code. When displaying the encoded content,

they are recognized by browsers and displayed in the correct format after decoding. Table 3.1

illustrates the hex entity encoding method for several symbols. The five symbols in the table are

the ones escaped by many web applications, and they are also escaped in some of our test

applications in controlled studies, which will be discussed in chapter 5.

Table 3.1 HTML Escape Characters

Special Symbol After encoded

& &

< <

> >

“ "

‘ '

21

To better illustrate the concept of escaping, consider the same example used to illustrate the

concept of injection up. This injection has changed the content between the tags <div> and </div>

to:

</div><script>alert(“XSS”)</script><div>

 If a proper escaping mechanism is used to encode the special symbols quotation marks and

angle brackets, the content after escaping will be:

</div><script>alert("XSS")</script><div>

This can help the applications to differentiate the “<div>” tag in the data context and the “<div>”

tag in the code context. When this content is added in the response page, the original page

structure is not changed, and a new code context running the script will not be generated.

22

CHAPTER 4

A GENERAL DETECTION FRAMEWORK

There are several scanners in the market trying to detect XSS vulnerabilities. In this

chapter, we will discuss about their detection mechanisms. We will introduce the four scanning

phases of many scanners, including crawling, deciding injection points, making injections, and

reporting. In our in-depth comparison for injection mechanisms in Chapter 5, we focus on the

phase making injections, which affects the injection effectiveness. To have an intuitive

understanding of the injection mechanisms, we have a source code study of Skipfish, an open

source web application scanner developed by Google. For the phases crawling and deciding

injection points, since the evaluations focusing on them can be separate topics in related work,

we do not cover detailed comparisons for scanning performance in these two phases in this

thesis.

According to our scanning experience, most scanners use automated fuzz testing

techniques. At first, scanners inject invalid inputs to certain input fields, which are referred as

injection points in this thesis. Then, they search for certain predefined patterns in the

response pages, trying to show that there is no proper sanitization on the inputs in vulnerable

locations. A scanning process typically includes the following phases:

1. Crawling

23

2. Deciding injection points

3. Making Injections

3.1 Generate and send fuzzed data to injection points

3.2 Analyze response content

4. Classifying vulnerabilities and sending alerts

4.1 Crawling

Given a starting URL, the first step of scanning is crawling. By scanning html pages,

scanners are able to explore subdirectories, forms, and links to other resources. A successful web

application scanning process depends a lot on how much the scanner knows about the target

website’s structure. In order to detect a new resource, scanners make various efforts. For

example, some scanners append crafted strings at the end of existing URLs, hoping to reach

pages matching the generated URLs, or to be redirected to pages having similar URLs. In the

crawling phase of Skipfish, crafted resource name such as “sfi9876” with various types, such as

“.asp”, “.pdf”, ”zip”, etc, are appended to several existing URLs. For this reason, crawling efforts

usually generate a large amount of attempting requests, and require scanners to deal with

massive data transmission. For a large web application, it usually takes quite a long time to finish

a complete and in-depth crawling process, or bring a high memory requirement for the machine

using the scanner. To improve our user experience, certain configuration options can help us

control the crawling process according to our needs. For example, Skipfish uses the “-d”

24

command option to limit the crawling depth to a specified number of subdirectories, and

Netsparker has options to set a total page limit.

4.2 Deciding Injection Points

After the crawling phase, scanners identify injection points in the obtained resources as the

fuzz targets. Certain parameters, URL directories, and fields in forms can be identified as injection

points. For example, in a Get request with the URL in the format

http://www.sitename.com/index.php?¶meter1=string1¶meter2=string2/,

values of the parameters string1 and string2 can be replaced with fuzzed data, attack strings can

be appended at the end of this URL. For a Post request submitting forms, field values within the

forms can be identified as injection points. Since the number of pages resulting from the crawling

phase is always huge, the effectiveness of deciding injection points, which reduces the scope for

the later stages, can greatly improve the overall detection effectiveness and shorten the length of

the scanning time.

4.3 Making Injections

Focusing on the injection points, fuzzed data is generated and inserted. Typically, fuzzing can

be classified as mutation-based fuzzing and generation-based fuzzing. They are discussed below:

Mutation-based fuzzing: A fuzzing technique that mutates certain values in valid data without

much knowledge of the context. This kind of fuzzers is also known as “dumb” fuzzers, since they

do not know the details of the format or structure in the original data.

25

Generation-based fuzzing: A fuzzing technique that creates data values from scratch based on

the knowledge of the data types and formats.

Most scanners adopt mutation-based fuzzing. For “Get” and “Post” requests, some scanners

treat content in certain parameter fields as fuzz targets, such as the field values after the strings

“name=”, “style=”, or “page=”. They are easy to be identified in the response check process. The

fuzzed data always follow the same format for different applications being scanned, indicating that

the data are fuzzed without knowing the actual contexts in different applications. For example,

within an injection, Skipfish always uses the key word “sfi” for a tag attribute value, N-Stalker

always uses the key word “nstalker” for a tag name. In this thesis, for every scanner, we refer the

templates of attacking strings as injection patterns, which involve injection tag types and

injection techniques.

After sending fuzzed data, the scanner checks whether or not the response pages contain

any content matching the pattern of previous injections, which shows the existence of XSS

vulnerabilities. In this process, scanners always check certain tags and parameter values used in

the injection phase.

4.4 Reporting

As the final step, a scanner classifies the detected XSS vulnerabilities based on their severity

levels and generates a report, which usually present the vulnerability descriptions, vulnerable

locations, attack strings used in the successful injections, and request and response data focusing

26

on the vulnerable locations.

4.5 Case Study

To gain a better understanding of the injection mechanism, we illustrate the injection process

of Skipfish, an open source tool developed by Google. In this section, we focus on its detection

mechanism for reflected XSS vulnerabilities. Its code dealing with sending fuzzed data and

response checking reside in the files Crawler.c and Analysis.c. Its injection patterns are consistent

with the observation of the sniffed packets during scanning processes, which will be discussed in

chapter 5. After the crawling phase, Skipfish modifies values within requests in the following ways:

a).Optionally append certain parameter fields with values in the format

"-->\">'>'\"<sfi%06uv%06u>", where the two strings, "%06u", represent the current xss id and scan

id, which are generated as different values in different injections. The scanner can identify XSS

vulnerabilities by checking whether the response contains any tag matching the format of the

injection tag;

b).Optionally change parameter fields with a value in the format like

".htaccess.aspx-->\">'>'\"<sfi%06uv%06u>", where two "%06u" represent the same values as

described in step a.

In its response analysis phase, it mainly checks if there are some contents matching the

following patterns:

a). A tag name is in the format "sfi%06uv%06u";

27

b). Within a tag, a parameter name is in the format "sfi%06uv%06u";

c). Within a “script” tag, for parameters not named with “src”(it checks for the “src” parameter in the

scanning for URL redirection issue separately), the content contains tag in the format like

"sfi%06uv%06u";

Since the xss id and scan id are unique for every injection, it is easy for Skipfish to identify the

information of every injection during the response check process, helping classify the

vulnerabilities in the reporting phase. For example, the scanner generates different alert

information for the injections from the current scan and the injections from previous scans.

The above source code observation presents us a real-life example of the XSS injection

mechanism in a web security scanner. The injection effectiveness depends a lot on the injection

strings’ abilities of exploiting vulnerabilities after bypassing certain input validations. A powerful

scanner should have attack strings which can cover contexts in various XSS attacks and have

certain injection techniques. In chapter 5, we will compare the injection strings of different

scanners in detail.

In this thesis, we will have a deep understanding about several scanners’ XSS detection

effectiveness. We will compare their scanning performance in the phase of crawling, deciding

injection points, and making injections. Since most scanners only provide an overall final report,

with limited information of requests and responses focusing on the vulnerable locations detected,

it is difficult for us to know more about their efforts in each scanning phase. For example, by

28

looking at the final scanning report, we have no way to know what efforts a scanner has made

focusing on a vulnerable location if it cannot detect the vulnerability. Whether the scanner fails at

reaching the location in the crawling phase, or it does not identify the vulnerable location as an

injection point, or its injection strings are not effective enough to exploit the vulnerability, the final

report cannot show anything. To make an in-depth analysis about the scanning performance in

different phases, we sniff transmission packets for each scanner with Wireshark, observe and

compare their efforts in details.

29

CHAPTER 5

EVALUATION

This chapter describes the details of our evaluation process. In the following sections, we

will introduce the web application scanners we use, case studies of real life applications and

controlled test applications. To study the reasons causing the different scanning performance,

we also present our comparisons for injection mechanisms.

5.1 Web Application Scanners

5.1.1 Overview

This section introduces the web application scanners used in our project. In many cases,

commercial scanners are easier to use. They have more advanced user interfaces helping

control their scanning activities. In contrast, many open source tools have rudimentary

configuration support, and some of them only rely on command line operations to configure

their scanning processes. They usually take more time to set up. But on the other hand, open

source scanners have no restriction for users to access their technical details, which is helpful

for further studying their detection mechanisms.

Our experiments mainly focus on four scanners. Netsparker community edition and

Acunetix free edition are commercial, and Skipfish and Wapiti are open source. According to

the evaluation results from Shay Chen in his blog posts
 [3]

, which have been discussed in the

related work section, NetSarker, Acunetix, and Skipfish have relatively low false positive rates.

30

For each scanner, we discuss its major features, such as user interface, reporting module, and the

session maintenance mechanism, which maintains the login state, allowing the scanner to reach

more web resources. They are major factors affecting our scanning experience.

5.1.2 Netsparker Community Edition

The edition we use is Netsparker community edition, version 1.7.2.13. It is a commercial

scanner claimed to be free from false-positives, as described in the product website. It shares the

same user interface with the professional edition. To perform automatic authentications,

Netsparker allows users to use cookie strings of authenticated sessions. In our evaluation, cookie

information is obtained by the network tamper tool, i.e., the tamper data plug-in of Firefox, which

can help view and modify the contents in request headers and parameters. To maintain the

authenticated session status, Netsparker allows users to specify the key words that should be

included or excluded in the web pages being scanned, and users can use this method to detect

and avoid logout pages. This feature is quite useful, since it is often that the session has a logout

state when a logout page is visited, and many web pages cannot be reached afterwards. Although

several advanced reporting functionalities are disabled in this free version, it still provides

sufficient information, such as the severity type, background description, request and response

content focusing on the reported locations, and attack strings used to exploit the vulnerabilities.

The crawling results of the target websites can also be viewed in the report page.

31

Figure 5.1 Netsparker GUI

5.1.3 Acunetix Web Vulnerability Scanner Free Edition

 Acunetix free edition is another free scanner without any period limitation, and the version we

use is 7.0. It has an advanced graphic user interface. To perform the login operations

automatically, Acunetix has a recorder with a mini browser to record the users’ logging actions,

including the URLs visited, the password entered, etc. The scanner is able to retrieve the recorded

information, which is referred as login sequence, to perform automatic authentications at later

scanning phases. A screen shot of the login sequence recorder is presented in Figure 5.2. To

maintain a valid session status for reaching more web pages, the recorder allows users to specify

key words indicating whether the session is in the login state or logout state. In this way, the

scanner is able to avoid pages with the specified key words and avoid unexpected status changes.

32

After the crawling phase, Acunetix allows users to choose which web resources should be

included or excluded in later scanning phases.

Figure 5.2 Acunetix Login Sequence Recorder

In its final report, users can see descriptions of vulnerabilities and attack strings. But it does

not provide the details of the requests and responses related to the reported issues.

33

Figure 5.3 Acunetix Test Result

5.1.4 Skipfish

Skipfish is an open source scanner written in C, and it need to be compiled and run in the

Linux environment. The version we use is 1.84b. According to the descriptions on the project

website, it is highly efficient at maintaining a network transmission rate of more than 200 requests

per second. This allows extensive brute force functionalities in its crawling process. For example,

in order to reach more resources in a particular folder, users can specify numerous guessed file

names in a wordlist, which can be configured before scanning. The high request transmission rate

can help the scanner try every entry in the wordlist in a brute force way. For this reason, it is

34

Figure 5.4 Skipfish Command Line Interface

important for users to learn various crawling configuration options and choose their own scanning

strategies, such as picking a suitable wordlist. It may take a very long time to finish a complete

crawling process if all extensive crawling configurations are enabled.Skipfish only has command

line mode to configure scanning. To perform automatic authentications, it uses a “–C” option to

append cookie strings to the request content. Our evaluation experience shows that this method

can help bypass certain authentication pages, but the performance is not as good as that of some

commercial scanners. The report is generated in html format, including the information of the

vulnerable locations, vulnerability descriptions, and the request and response data used to

indentify vulnerabilities.

35

Figure 5.5 Skipfish Report

5.1.5 Wapiti

Wapiti is an open source scanner written in Python, and the version we use is 2.2.1. Similar

to Skipfish, it only uses a command line interface to configure its scanning processes. To perform

automatic authentications, it has programs to generate cookie files according to the login page

URLs and credential data provided by the users. Different from cookie strings which are used

directly by many scanners, the cookie files embed the cookie information in their text content, and

the scanner can obtain the information from the files to perform authentication activities. Our

evaluation experience shows that it cannot bypass authentication web pages in several scanning

runs. The scanner also has commands to exclude certain URLs during the crawling phase,

avoiding logout pages.

36

Figure 5.6 Wapiti Report Overview

.

Figure 5.7 Wapiti Report In Detail

The reports are generated as html pages, which present brief vulnerability descriptions,

vulnerable locations and parameters, and attack strings. They do not have detailed information

about the crawling results, such as detailed content in requests and responses focusing on the

vulnerable locations, vulnerability classifications in deeper levels, and more detailed descriptions,

etc.

37

5.1.6 Summary

Table 5.1 gives a comparison for various usability-related features of the scanners mentioned

above.

Table 5.1 Usability Comparison for 4 scanners

 Netsparker

CE

Acunetix free

edition

Skipfish Wapiti

Overall

Usage

GUI Yes Yes No No

Crawling Stop after

Crawling

No

(disabled)

Yes No No

Exclude URL Yes Yes Yes Yes

Session

Maintenance

Login method Cookie Login

Sequence

Cookie Cookie

File

Exclude

Logout

Yes Yes Yes Yes

Reporting Show crawl

result

Yes Yes Yes No

Severity

classification

Yes Yes Yes Yes

Request&

Response detail

Yes No Yes No

Attack pattern Yes Yes Yes Yes

5.1.7 Other Tools

In the evaluation for injection patterns, we used some other tools, including IBM Rational

AppScan version 7.8 trial edition, NStalker free edition 2012, and Nikto version 2.1.4. IBM

AppScan is quite powerful at detecting various types of vulnerabilities, but its trial edition has a 30

days period limitation and can only scan applications deployed on the test websites specified by

the vendor. NStalker does not support session maintenance in its free edition. Nikto has many

38

features for detecting problems on the server side, but XSS detection is not its specialty. For these

reasons, we do not evaluate these scanners in our case studies of real-life web applications.

5.2 Case Studies

5.2.1 Subject Applications

In our case studies of real-life web applications, we select several vulnerable web

applications reported to have XSS vulnerabilities in the Open Source Vulnerability Database

(OSVDB), which is online database providing information about security vulnerabilities of various

web applications in the market. It is created and maintained by the web security community.

Companies and individuals can better collaborate with each other through their postings. We

believe that its reported vulnerabilities can represent various real-life security issues. The reasons

are the following. First, the database is aimed at providing unbiased and most current security

postings, and the information is independent from product vendors. Second, the database covers

over 80,000 vulnerabilities, spanning over 40,000 products from over 4,000 researchers,

according to the description in the website. To compose a group of real-life test applications,

according to the information in several XSS issue postings in OSVDB, we randomly pick 5

vulnerable open source products belonging to different categories, with the versions reported to

have vulnerabilities. Some statistics about them are shown in table 5.2.

eFront is an online learning application which allows administrators to create and edit their

studying materials and share with others. Users can use it to create and upload online tests,

manage uploaded content such as text files, videos, and flashes. It can also help users

39

communicate with others through messages and forums within the site.

webERP is an open source accounting and business management web application written in

PHP. It can manage company invoices, orders, and tickets, analyze market sales, and provide

strategic decision supports. It has hundreds of PHP files, and XSS vulnerabilities in a number of

files have been reported.

Table 5.2 Statistics of Subject Applications

 Version Size on Disk Number of

Files

Number of

Lines of Code

Reported Issue IDs

eFront 3.6.9 23MB 818 62328 76745,76750

webERP 4.0.2 65MB 534 193492 77194,72048

Kaibb 2.0.1 500KB 66 6652 76603,76604

OsCommerce 2.2 2MB 529 31968 79330,78619

Orangehrm 2.5.0.6 10MB 570 160794 77416,77417,71286

Kaibb is a small but comprehensive bulletin board application written in PHP. Its

functionalities include login authentication and message board discussion.

40

OsCommerce is an e-commerce solution used by thousands of shop owners, application

developers, and service providers. It has typical shopping cart functionalities such as searching

and browsing product information, making and tracking orders, and managing personal accounts.

It allows site administrators to employ a MySQL database storing information of products,

manufacturers, customer accounts, and comment messages.

OrangeHRM is a human resource management application written in PHP. According to the

information in its official website, OrangeHRM has been claimed to be the world’s most popular

open source human resource management software. It can help users to manage employee

information, and evaluate employee performance.

A reported issue usually provides the information of product version, publish and disclosure

date, vulnerability descriptions, and available solutions if there are some. A summary of OSVDB

reported issues about our 5 real-life vulnerable applications are listed in table 5.3, where each

issue is identified with a unique OSVDB ID.

41

Table 5.3 Vulnerabilities Overview

OSVDB 76745 Located at index.php of efront

Does not validate parameter ‘course’ and ‘message_type’

Allows user to craft an URL by appending an attack string to the end.

OSVDB 76750 Located at administrator.php of efront

Does not validate parameter ‘ctg’,’user’, ‘view_calendar’

OSVDB 77194 Allows user to craft an URL by appending an attack string to the end. This

type of vulnerability can be found in various locations.

OSVDB 72048 Located at AccountGroups.php

Does not validate parameter ‘CompanynameField’

OSVDB 76603 Located at index.php of Kaibb

does not validate the 'Referer' HTTP header

OSVDB 76604 Located at acp/index.php of Kaibb

does not validate the 'Referer' HTTP header

OSVDB 79330 Located at index.php

Does not validate parameter “Cart”

OSVDB 78619 Allows user to craft URL by appending to the end in various locations.

OSVDB 77416 Located at index.php

Does not validate parameter 'uniqcode' and 'isAdmin'

OSVDB 77417 Located at lib/controllers/CentralController.php

Allows user to craft URL by appending to the end.

OSVDB 71286 Located at templates/recruitment/jobVacancy.php

Does not validate parameter 'recruitcode'

5.2.2 Evaluation Method

For every case study application, our evaluation uses scanners Acunetix, Netsparker, Wapiti,

and Skipfish. For each scanner, we use its default configuration for XSS detection. In the crawling

phase, all applications require session maintenance mechanisms, and some applications are very

complex to crawl. To have better scanning results, for a particular scanner and application

42

combination, we run the scanning for several times, and the results of multiple runs are not exact

the same, as there might be differences at maintaining the session status for different runs. During

every scanning run, we use Wireshark
[28]

, a well-known network traffic analyzer, to capture

transmission packets, and the packet data are used in further analysis about scanning

performance. Since many scanning processes involve thousands or millions of request and

response packets, we create several small programs to analyze the packet text files exported

from Wireshark.

5.2.3 Results and Discussion

We divide the OSVDB reported issues described in table 5.3 into the following three types:

1) The reported issue does not provide specific vulnerable URLs, files, or parameters, only gives

a general description.

2) The reported issue gives information of specific vulnerable URLs and files, which lack proper

input validations for particular parameters.

3) The reported issue gives information of vulnerable URLs, where the attacking strings can be

appended to generate attacks.

In the following paragraphs, we will discuss the scanning performance of the four scanners.

First, we will compare their scanning results for the OSVDB type 1 issues. Since this type of issue

only provides a general description for multiple vulnerable locations, for all problems detected by

43

scanners matching the issue description, we will validate false positives. Then, we will give each

scanner a table to present its detection results for the OSVDB type 2 and type 3 issues, making an

in-depth comparison about the performance in different scanning phases. Next, we will compare

detection performance for the issues not reported in OSVDB website, but detected by our

scanners. The validation of false positives for them is included. At last, we will have a discussion

for their overall performance and draw our conclusions.

In our evaluation, the OSVDB type 1 issues include the issue with OSVDB ID 77194 from the

application webERP and the issue with OSVDB ID 78619 from the application OsCommerce. We

use table 5.4 to show the detection performance of the four scanners. It is possible that for a

reported type 1 issue, during a scanning run, there are too many detected vulnerable locations for

us to validate the false positives. We only select a few of them for validation. For example, in the

situation that dozens of vulnerable locations are reported to have the vulnerability matching the

description of a type 1 issue, we only select the top 10 locations, according to the time being

detected in the scanning report. If there are over hundreds of vulnerable locations reported, we

select 15 of them. To validate the vulnerabilities in these locations, we try to perform actual XSS

attacks using the attacking strings provided by the scanners. For some large applications, the

scanning results for different scanning runs of the same scanner might not always be the same, as

the scanner might have different performance in session maintenance every time. For this

situation, Table 5.4 shows an approximately average number of the detected issues.

44

Table 5.4 Type 1 Issues Scanning Results

 OSVDB 77194 OSVDB 78619

Acunetix XSS issues are reported at around

50 locations in average. There is 0

false positives out of 10 selected

issues

XSS issues are reported in 31 positions of

17 files. There is 0 false positive out of 10

selected issues

Netsparker It can detect hundreds of related

XSS issues. There is 0 false

positive out of 15 selected issues

XSS are reported at around 50 locations in

average. There is 0 false positive out of 10

selected issues

Skipfish It cannot detect any XSS issue Various XSS issues are at 15 locations.

Wapiti Failed at session authentication No XSS issues reported

We can see that Netsparker and Acunetix detected more vulnerabilities than Skipfish. Wapiti

failed at bypassing the login phase for the application webERP, and could not find any XSS issue

for the application OsCommerce.

For the type 2 and type 3 issues, which provide specific vulnerable locations, we summarize

the scanning results of each scanner in a separate table. Since all issues are reported in OSVDB

website, we do not validate false positives for them. For each vulnerable location or parameter, we

use the term attack level to describe how many scanning phases the scanner has accomplished

focusing on it. The descriptions of attack level values are listed below:

1. For the situation that the reported URL or parameter does not appear in any request

header, we conclude that the scanner has failed in the crawling phase, and the attack

level is marked as 0;

45

2. For the situation that there are requests making the reported vulnerable location or

parameter as a request target, but no attack strings have been used for injections, we

conclude that the scanner has failed at the phase of deciding injection points, and the

attack level is marked as 1;

3. For the situation that the scanner has sent fuzzed data to the vulnerable location or

parameter, but no vulnerability is reported, we conclude that the scanner has failed at

the injection phase, and the attack level is marked as 2;

4. For the situation that the vulnerability has been correctly reported, we mark the attack

level as 3, and list the attack string used in the successful injection.

In each table, for the situations with attack level value less than 3, since there is no

successful injection, we do not list the attack strings used by scanners.

46

Table 5.5 Acunetix Scanning Result

Vulnerability Location Attack Level Attack pattern

OSVDB 76745

at “message_type”

3 “onmouseover=prompt(983420) bad=”

OSVDB 76745 at “course” 3 “onmouseover=prompt(983420) bad=”

OSVDB 76745 URL

appending

2

OSVDB 76750 at “ctg” 1

OSVDB 76750 at “user” 1

OSVDB 76750 at

“view-calendar”

1

OSVDB 72048 0

OSVDB 76603 1

OSVDB 76604 0

OSVDB 79330 0

OSVDB 77416 at 'isAdmin' 3 “onmouseover=prompt(927004) bad="

OSVDB 77416 at 'uniqcode' 3 “onmouseover=prompt(9540484) bad="

OSVDB 77417 1

OSVDB 71286 0

47

Table 5.6 Netsparker Scanning Result

 Attack

Level

Attack pattern

OSVDB 76745

at “message_type”

1

OSVDB 76745 at

“course”

1

OSVDB 76745 URL

appending

3 /index.php/’style=’x:expre/**/ssion(alert(9))

OSVDB 76750 at “ctg” 3 /administrator.php?ctg=’stYle=x;expre/**/ssion(alert(9))’

OSVDB 76750 at “user” 3 /administrator.php?user=’stYle=x;expre/**/ssion(alert(9))

OSVDB 76750 at

“view-calendar”

2

OSVDB 72048 1

OSVDB 76603 1

OSVDB 76604 0

OSVDB 79330 2

OSVDB 77416 at

'isAdmin'

1

OSVDB 77416 at

'uniqcode'

3 '"--></style></script><script>alert(0x005124)</script>,

OSVDB 77417 2

OSVDB 71286 0

48

Table 5.7 Skipfish Scanning Result

 Attack

Level

Attack pattern

OSVDB 76745

at “message_type”

1

OSVDB 76745 at “course” 2

OSVDB 76745 URL

appending

3 /index.php/.htaccess.aspx-->">'>'"<sfi000023v821211>”;

OSVDB 76750 at “ctg” 1

OSVDB 76750 at “user” 1

OSVDB 76750 at

“view-calendar”

1

OSVDB 72048 1

OSVDB 76603 1

OSVDB 76604 0

OSVDB 79330 0

OSVDB 77416 at 'isAdmin' 1

OSVDB 77416 at

'uniqcode'

2

OSVDB 77417 1

OSVDB 71286 0

49

Table 5.8 Wapiti Scanning Result

 Attack Level Attack pattern

OSVDB 76745

at “message_type”

0

OSVDB 76745 at “course” 2

OSVDB 76745 URL

appending

1

OSVDB 76750 at “ctg” 0

OSVDB 76750 at “user” 0

OSVDB 76750 at

“view-calendar”

0

OSVDB 72048 0 Failed at session authentication

OSVDB 76603 0

OSVDB 76604 0

OSVDB 79330 0

OSVDB 77416 at 'isAdmin' 0 Failed at session authentication

OSVDB 77416 at 'uniqcode' 0 Failed at session authentication

OSVDB 77417 0 Failed at session authentication

OSVDB 71286 0 Failed at session authentication

Among the above 4 scanners, Wapiti can only detect very few XSS issues, and its run time is

relatively short. By observing the packets transmitted, we find that Wapiti fails to perform auto

authentications in several scanning runs, since it can only reach the login page and some related

resources in the crawling phase for several applications. For the other three scanners, i.e.,

Acunetix, Netsparker, and Skipfish, each of them can detect several XSS issues. Table 5.9 shows

the statistics of the scanners’ performance for the 14 vulnerable locations in total. We count the

number of locations where scanners have achieved attack levels no less than 1, 2, and 3

50

respectively.

Table 5.9 OSVDB Issues Scanning Statistics

 Attack Level>=1 Attack Level>=2 Attack Level>=3

Acunetix 10 5 4

Netsparker 12 7 4

Skipfish 11 3 1

For the OSVDB type 2 and type 3 issues, we have following observations for the performance

of these three scanners

a. Three scanners have similar performance during the crawling phase, since they all can

reach more than 10 out of a total of 14 vulnerable locations.

b. The commercial scanners Acunetix and Netsparker have better performance in the phase

of deciding injection points. Among the vulnerable locations they reached in the crawling

phase, they both choose at least half of them as the targets to make injections. Skipfish

can only decide 3 out of 10 injection points.

c. Acunetix and Netsparker detect more vulnerabilities, and they have better injection

effectiveness. Acunetix identifies 4 vulnerabilities based on 5 injection points, and

Netsparker identifies 4 vulnerabilities based on 7 injection points. Skipfish can only

identify 1 vulnerability based on 3 injection points.

Apart from the XSS issues reported in OSVDB website, scanners have detected several

51

other XSS issues which are not reported before. We use table 5.10 to present the comparison

focusing on the detection performance for them. For each application, we give the total number of

issues detected by different scanners respectively, and the false positive rates. To identify false

positives, we try to make benign XSS attacks according to the attack string information in report

descriptions. If our attacks are successful, the reported issues are identified as true positives;

otherwise, if we find input sanitization mechanisms focusing on the reported locations in our

source code study, and the injection within response cannot cause actual XSS attacks as

expected, we identify the reported issues as false positives. For example, an injection can cause

the response page contain a database error message injected with part of attack string content.

The scanner recognizes this content and generates a warning. But actually, the original attack

string has been sanitized, having certain special symbols escaped, and the remaining content in

the response page cannot cause actual XSS attacks. For these situations, we identify the reported

issue as false positive.

Table 5.10 Non OSVDB Issues Scanning Statistics

 Acunetix Netsparker Skipfish Wapiti

Count FP Rate Count FP Rate Count FP Rate Count FP Rate

eFront 0 0 0 0

webERP 0 3 0% 0 0

Kaibb 1 100% 1 100% 0 0

Oscommerce 0 0 0 0

OrangHRM 6 0% 2 100% 0 0

52

5.2.4 Summary

For the five web applications we studied, the commercial scanners Netsparker and Acunetix

have better performance in all phases except crawling, and there is no significant difference

between them two. The factors affecting a scanner’s detection effectiveness can be found in

various scanning phases. In the crawling phase, except for the difference of the crawling algorithm,

whether it is able to successfully manage the session status is important. In the injection phase,

the ability of choosing appropriate injection points and fuzzed data is important. In our evaluation

with the test applications created by ourselves, which will be described in the next section, we will

have a more detailed comparison for the performance in phases after crawling.

5.3 Evaluation with Controlled Test Applications

As we have seen in the case studies of real-life web applications, except for the crawling

phase, the scanners have different performance in the phase of deciding injection points and

making injections, which significantly impact their overall XSS detection effectiveness. In this

section, we evaluate our scanners with test applications created by ourselves. Most of our

applications are created based on the work of Shay Chen, as discussed in the related work

section, and we have made some improvements. Since each application has only one PHP file, all

scanners do not have significant difference in the crawling phase. For this reason, we are able to

focus on the performance excluding the crawling phase. In our test applications, we are trying to

embody various contexts where XSS vulnerabilities can reside, and several simple escaping

mechanisms, which are often used in many web applications for sanitizing user input. In this

53

section, at first, we identify the significance of the evaluation with controlled test applications. Next,

we introduce our test applications. At last, we present our scanning results and discuss about

them in detail.

5.3.1 Motivation

The evaluation using real-life vulnerable web applications has the advantage of providing

practical scanning experience, but it has certain limitations as well. First, the vulnerabilities of

selected applications might not be complete enough, since it is difficult for them to cover various

XSS vulnerabilities. Second, when we are trying to analyze the injection effectiveness only, it is

very difficult to isolate it from other factors in the crawling process, such as session maintenance,

since correlations among various files in large real-life applications are complicated and achieving

consistent session maintenance after login operations might be difficult for some scanners. To

have a more complete, convincing evaluation about the injection effectiveness, we need to have a

series of test applications which are simple enough to eliminate the influence of crawling, and

complete enough to cover various XSS vulnerability scenarios.

5.3.2 Evaluation Method

Our test applications are written in JSP. Since we are trying to use them to represent various

XSS vulnerabilities in different contexts, each of them only achieves a simple and common use

case of real life applications, such as page login, message posting, etc. To simulate the web

applications in real life and embody the concept of defense levels, which has been discussed in

54

the related work section, we add to some applications some escaping mechanisms for special

symbols, like what we usually see in many real-life applications. In this section, we will first

discuss about the XSS vulnerability contexts that our test applications are designed to cover, and

then introduce the escaping techniques used by some of the scanning applications.

Most XSS attacks rely on injections in web pages containing various html tags. Malicious

input can be injected into different HTML contexts, such as within the contents of tag attributes,

between the two tags of a pair, etc. According to the relationship between the injection content

and existed HTML tags, we classify the XSS issues as tag scope issues and tag structure issues,

and they are discussed in the following paragraphs.

 In a tag scope issue, the input is reflected back in the content between a pair of html tags.

For example, in the following html code, the malicious input, which is marked in bold font, is

injected between the tags <textarea> and </textarea>:

<textarea> <script>alert(“XSS”)</script></textarea>

In our test applications, in order to embody the tag scope issues of various tags, we choose

to create applications having XSS vulnerabilities in the tag scopes of <body>, , <table>,

<textarea>, and <title>. One reason for choosing these 5 tags is that they are good

representations of various html tags. For example, the tags <body> and <title> can represent tags

helping lay out page structures, since the <body> tag defines the scope of the “body” part in an

55

html page, and the <title> tag defines the title content; the tag is an example of the tag

modifying attributes for page content, since it can change the font to be bold for the content within

its scope; the tags <table> and <textarea> represent tags used to define page elements, which

are optional in web content. Another reason for choosing them is that examples exploiting the

vulnerabilities related to these tags can be easily found in related XSS attack introduction

documents, such as XSS cheat sheet from ha.ckers.org.

Different from tag scope issues, in a tag structural issue, injections are in the value of a tag

attribute, which usually reside in the tag content within an angle bracket pair. For example in the

following code, the user input, which is displayed in bold font, is injected into the value of the “src”

attribute in the ‘img” tag:

Our test applications use tag <Frame>, <Object>, <Table>, and to cover several tag

structure issues, in which the injected content is in the attribute content. One reason for choosing

them is that several examples of XSS injections in these 4 tags can be found in the XSS

introduction document, XSS Cheat Sheet
 [20]

.

There are some tag structure issues in which the malicious data is reflected back in dynamic

content, such as javascript or event-handler code. Some examples are listed in the following code,

where the reflected user input is marked in bold font:

56

Within JS event: <script>alert(‘userinput’)</script>

Within JS expression: <script>string x=’userinput’</script>

Event-handler code: <body onload=”x=’userinput’”>

VB script: <script type=”text/vbscript”>alert(‘userinput’)</script>

To cover this kind of issue, we create test applications in which inputs can be reflected back

within Java scripts, VB scripts, and other event handler code.

Except for the situation that malicious input is reflected back in the functional part of a page

which actually organize page content or implement certain functionalities, user inputs can also be

reflected back in comments and exception messages. For example, user input can be found

within the following comment:

HTML Comment: “<!—“ +userinput + “-->”

If the user input is not properly validated, an attacker may make injections to jump out of the

comment context. For example, he might change his input to “--><script>alert('xss')</script><!—“,

and the script will be separated from the comment area and be executed.

Apart from implementing various XSS vulnerability contexts, some of our test applications

adopt simple input validation mechanisms. An effective scanner should be able to exploit the

vulnerabilities after bypassing these validation mechanisms. According to the work by Fong
[7]

,

57

which has been discussed in the related work section, most scanners cannot detect vulnerabilities

in applications with advanced defense mechanisms. For this reason, our test applications only

have simple escaping mechanisms. We do not consider escaping all the special characters that

have been handled in several web security libraries, such as ESAPI of OWASP project and

Microsoft Anti Cross-Site Scripting Library. We add simple escaping functions for symbols <, >, ‘, “,

and &. The reason of choosing them is that they are described as “5 characters significant in XML”,

in the XSS Prevention Cheat Sheet provided by OWASP project
 [19]

. As we will see in the result

and discussion section, adopting the escaping mechanisms about these 5 symbols is helpful for

distinguishing scanners’ performance in bypassing validation mechanisms.

To help understand the descriptions for our test applications in this thesis, we define a few

terms below:

Scenario: Describe situations having a particular type of context where XSS vulnerabilities

reside. A scenario is involved with a type of context, such as comments, tag scope, or tag

structure.

Test Case(s): A group of test application(s) focusing on a particular scenario.

Base Test Application(s): Test application(s) about the simplest situation of a scenario

where no escaping mechanism is implemented.

58

Table 5.11 Controlled Test Applications Overview

Scenarios Description Variations

Scenario 0 Input is reflected back in page content not involved with any tag

content.

No variation

Scenario 1 HTML tag JS event for button input type, input is integrated into event

code.

1,2,3,4

Scenario 2 Input is reflected back in VB event code within an html tag.

1,2,3,4

Scenario 3 Input is assigned to a variable which is reflected in Javascript context

within tag attribute.

1,2,3,4

Scenario 4 Input is assigned to a variable which is reflected in Javascript

content.

1,2,3,4

Scenario 5 Input reflected in Javascript content directly.

1,2,3,4

Scenario 6 Input is reflected in the <script> a tag attribute value.

1,2,3,4

Scenario 7 Input reflected in VB script context within a tag attribute.

1,3,4

Scenario 8 Input reflected in VB script content.

1,3,4

Scenario 9 Input is reflected in javascript comment. Have cases for single line

comment and double line comment.

No variation

Scenario

10

Input is reflected in VB script comment.

No variation

Scenario

11

Input is reflected in html comment.

No variation

Scenario

12

Input is reflected in exception message.

No variation

Scenario

13

Have test applications for tag scope issues, including applications

about tags <body>, <bold>, <table>, <textarea>, and <title>.

No variation

Scenario

14

Have test applications for tag structure issues, focusing on tags

<frame>, <table>, , and <object>

1,2,3,4 only

for

and

<object>

59

Variation Test Application(s): A group of test applications derived from a base test

application by adding different escaping mechanisms, which usually has 4 situations:

1. Escaping “<”, “>”, and single quotation marks,

2. Escaping “<”, “>”, and double quotation marks,

3. Escaping “<”, “>”, and both quotations marks,

4. Escaping “<”, “>”, “&”, and both quotation marks.

All scenarios are described in table 5.11: For each scenario, we give a brief description. The

numbers in the “Variations” column lists the types of the variation test applications that are used,

corresponded to the 4 variation test application types described above.

5.3.3 Result and Discussion

We use Acunetix, Netsparker, Skipfish, and wapiti to scan the test applications. Since the

structure of these test applications are quite simple, and we do not have to perform auto

authentications and maintain the session statuses, all scanners are able to crawl them

successfully. Since all scanners report at most one issue for each small test application, which is

the only XSS vulnerability the application has, there is no false positive for all scanners. Table 5.12

shows the scanning results for the four tools.

60

Table 5.12 Controlled Test Applications Scanning Results

 Acunetix Netsparker Skipfish Wapiti

Base Variations Base Variations Base Variations Base Variations

Application 0 Y Y Y Y

Application 1 Y Y Y 1/4 Y

Application 2 Y Y N Y

Application 3 Y 3/4 Y Y Y

Application 4 Y 3/4 Y 3/4 Y 1/4 N

Application 5 Y Y N N

Application 6 Y 2/4 Y 2/4 N Y

Application 7 Y Y N Y

Application 8 Y 2/3 Y 2/3 N N

Application

9A

Y N N N

Application

9B

Y N N N

Application

10

Y N Y N

Application

11

Y Y Y N

Application

12

Y Y Y N

Application

13A

Y Y N Y

Application

13B

Y Y N Y

Application

13C

Y Y N Y

Application

13D

Y Y N N

Application

13E

Y Y Y Y

Application

14A

N Y Y Y

61

Table 5.12 - Continued

Application

14B

Y Y N Y

Application

14C

Y 2/4 Y 3/4 N 1/4 Y

Application

14D

Y 2/4 Y 2/4 N 1/4 Y

Base Tests 22/23 20/23 9/23 14/23

Variation

Tests

14/38 12/38 4/38 None

 For applications without corresponding variation test applications, we use Y or N to indicate

whether their vulnerabilities are detected by the scanner or not; for each test application having

variation test applications, we add a column in the n/m format to show that n out of its m variation

test applications are reported to have XSS vulnerabilities. In the last two rows, we count the total

number of base test applications and variation test applications detected by different scanners

respectively. We use the format n/m to identify that n out of m applications have been reported to

have vulnerabilities. From the table, we have following observations:

a. Acunetix and Netsparker have better performance than skipfish and wapiti. They both can

detect the vulnerabilities in most base test applications, and some variation test

applications.

b. Among Acunetix and Netsparker, Acunetix has slightly better performance in scanning for

both base applications and variation applications.

62

c. Among Skipfish and Wapiti, Skipfish can detect more vulnerabilities in variation

applications, but Wapiti can detect more vulnerabilities in base applications.

5.4 Further Comparison

From the case studies of real-life web applications, we found that the performance in the

phase of making injections is affecting the overall evaluation result. To better understand the

detection performance of various scanners, we used test applications created by ourselves to get

rid of the influence of crawling and the incompleteness of real life applications. In this section, we

conduct an in-depth study about the injection mechanisms of the various scanners, with the help

of Wireshark, which can capture and analyze data packets during network transmission.

Wireshark has filters for capturing packets and displaying their information, which can help us

track the data transmissions for web pages of interests and remove irrelevant information in

thousands or millions of packets. Comparing to several message logging tools often used on the

server side, Wireshark can provide more detailed information for requests and responses in

different network layers, and its exporting module can generate report documents for further

analysis. By analyzing the packet data exported from Wireshark, we can summarize the attack

strings used by each scanner. We compare their injection efforts by comparing their attack

patterns within the attack strings. Our comparison criteria include various tag types and injection

techniques used in attack strings. The objective of our work is having more detailed knowledge

about how each scanner is working in its injection phase, hoping to find some correlations

63

between its detection performance and its injection effort.

In this section, we will first give an overview of several XSS attack techniques. Then we will

compare html tags, encoding techniques, and advanced injection techniques used in injection

strings of different scanners. We will give some discussion and a summary at last. One reason for

choosing those comparison criteria is that there are examples about them in related documents

discussing XSS injections, such as the XSS Cheat Sheet
 [20]

, HTML Code Injection and Cross-site

Scripting
 [18]

, and Advanced XSS Knowledge
 [17]

. From our observation, we can see that those tags

and injection techniques are also commonly used in various web application scanners.

5.4.1 Comparison Method

To better understand and evaluate injection techniques, we describe common XSS attack

techniques, from the perspective of a XSS attacker. Below we give some examples where a page

has been polluted by XSS injection strings:

<BODY ONLOAD=alert(document.cookie)>

XSS

Attackers inject scripts having unexpected functionalities to the locations where data are are

supposed to be received. To prevent from malicious inputs, web applications apply certain input

validation techniques， like the escaping mechanisms we tried in creating controlled test

applications. Thus, attackers can always create injections to bypass these preventions. Generally

64

speaking, most injection techniques make effort in two aspects:

a. Where to make injections, what are the contexts of the injection;

b. How the injections will be made, which advanced injection techniques are adopted to

bypass the defense mechanisms.

Since the scanners send benign injections which have formats similar to actual XSS attacks,

we evaluate their injection techniques in the above two aspects. During the process of scanning

real-life web applications and test applications we created, we use Wireshark to capture packets

for each scanner. Based on the XSS issues reported, with the help of the display filter of

Wireshark, we randomly select several confirmed issues and use their destination host IP

numbers, URLs and parameter information as search criteria to filter out irrelevant packets. We

export the content of packets in a format which can be analyzed by the small Java programs we

wrote. We study the injection effort each scanner has made to successfully exploit the focused

vulnerabilities. After combining the analysis results of different vulnerabilities, for each scanner we

come up with a list of injection patterns, which are the formats of common attack strings that the

scanner uses. For example, if a request has the following URL:

http://www.somesite.com/index.php?input="><ScRiPt>alert('tg7x4l60vu')</sCrIpT>

The attack string will be “"><ScRiPt>alert('tg7x4l60vu')</sCrIpT>”, and the injection

pattern obtained will be ><ScRiPt>….</sCrIpT>, which uses “a” tag, “script” tag, and an

injection technique obfuscating tag names.

65

Comparing to other scanners which have tried various tags and injection techniques, Skipfish

only has what is claimed to be “a complex string that is guaranteed to break out of many different

parsing modes” by its developer Michał Zalewski, in his blog article, Understanding and Using

Skipfish
[29]

. Since there is not enough variety of Skipfish’s attack strings, we only include the other

3 scanners in the controlled case studies, Netsparker, Acunetix, and Wapiti.

5.4.2 Comparison of Injection Contexts

Typically, malicious input can be injected into the context of various html tags. To better

analyze the injections of different scanners, we classify several tags that are often used for

injections. As described in the previous section, these tags come from related XSS tutorial

documents and our study for injection patterns in different scanners.

First, there are some tags organizing html page structures, such as <body> and <title>. In

this thesis, we call them structural tags. If the structural tags in a web page are not properly

validated, the injections can exploit the vulnerabilities, and the malicious inputs can be reflected

back. The comparison results for the structural tags used by the 6 scanners in their attack strings

are reported in table 5.13, where “yes” indicates the scanner uses this tag in its injection, and “no”

indicates that it does not.

66

Table 5.13 Comparison of Structural Tags

Structural

Tags

IBM App Scan Nikto Netsparker NStalker Acunetix Wapiti

<body> no no yes no yes no

<iframe> yes no yes no yes no

<div> no no no no yes no

<title> yes yes no yes no no

Total

Count

2 1 2 1 3 0

Secondly, there are several html tags used to define the attribute values of HTML elements or

the format of a web page. For example, we use the <style> tag to define the HTML page format,

like <style type=”text/css”>……<style>; we use the <base> tag to define the default link address,

like <base href=www.attacker.com />, etc. In this thesis, we call them modifier tags. According to

our observation, this type of injection tag is rarely adopted by the scanners we evaluated. A

detailed comparison is reported in table 5.14.

67

Table 5.14 Comparison of Modifier Tags

Modifier

tags

IBM App Scan Nikto Netsparker NStalker Acunetix Wapiti

<meta> no no no no no no

<base> no no no no no no

<style> yes yes yes no no no

Total

Count

1 1 1 0 0 0

Table 5.15 Comparison of Element Tags

Element

tags

IBM App Scan Nikto Netsparker NStalker Acunetix Wapiti

 yes yes yes no yes yes

<script> yes yes yes yes yes yes

<input> no yes no no no no

<table> no no no no no no

<object> no no yes no no yes

<form> no yes no no no yes

<textarea> yes no no yes yes no

<a> yes yes yes yes yes yes

Total

Count

4 5 4 3 4 5

Finally, among the various tag patterns in our observation, many tags can be classified as

68

tags representing a page element. For example, the <script> tag indicates that the input might be

embedded into a script; the <textarea> tag means that the input data might be reflected back

within a text field. In this thesis, we call them element tags. Web application scanners usually try

several element tags in their injections. A comparison about element tags can be found in table

5.15.

5.4.3 Advanced Injection Techniques Comparison

The comparison of injection tags can help us gain some understanding about the variety of

the injection methods used by different scanners. However, scanners also distinguish themselves

from their injection techniques, which are used to bypass input sanitization mechanisms. For a

scanner, the more advanced injection skills it adopts, the more likely it will detect vulnerabilities

while others cannot.

As we know, the plain text of attacker’s input, such as <script>alert(‘XSS attack’)</script>, is

relatively easy to be sanitized by web applications and recognized by users. There are always

some escaping mechanisms in web applications, and some servers even have methods to

escape certain symbols automatically. For example, if the PHP setting “magic_quotes_gpc=ON” is

set, every single quote and double quote are escaped with backslash. Attackers usually try to

evade the sanitization mechanisms by encoding their input. This technique can work in many

situations since filters may fail to recognize the attack strings, but browsers can always interpret

the content correctly after decoding the content, and run malicious code. Some typical encoding

69

techniques can be concluded as:

1). URL encoding

This encoding technique is widely used by most scanners. The following is an example of String

before and after encoding:

String before encoding:

String after encoding: %3CIMG%20SRC%3Djavascript%3Aalert('XSS')%3E

2). UTF-8 representation in XML

This is another very popular encoding method. An example is:

String before encoding:

String after encoding:

<IMGSRC=javascript:al

;ert('XSS')>

3). Hex representation in XML

An example is

String before encoded:

String after encoded:

<IMG

SRC=javascript:ale

rt('XSS')>

4). Base 64 encoding

70

An example is:

String before encoding:

String after encoding: PElNRyBTUkM9amF2YXNjcmlwdDphbGVydCgnWFNTJyk+

Table 5.16 Comparison of Encoding Techniques

Encoding

Techniques

IBM App

Scan

Nikto Netsparker NStalker Acunetix Wapiti

Function to

encode like

fromCharCode()

no no yes no no yes

UTF-8 Unicode

encoding

no yes no yes no yes

Hex encoding no no no yes no no

Base 64

encoding

no no yes no no no

HTML

entities(",

etc)

no yes no no yes no

URL encoding yes yes yes yes yes yes

Totoal Count 1 3 2 3 2 3

71

5). Html entities

Some characters are reserved in html, such as the symbol “<“can be represented as “<”, and the

symbol “&” can be represented as “&” etc. The following is an example:

Original String:

String after using html entities:

6). Using certain functions to generate input strings

An example is the static method fromCharCode() function. For example, we can use the function

call “document.write(String.fromCharCode(72,69,76,76,79))” to generate string “HELLO”.

Table 5.16 illustrates the comparison for encoding techniques.

Except for the above encoding techniques, there are several other advanced injection

techniques making effort to bypass input validation mechanisms. They generate variations to their

injection strings. Some of them are described below:

To avoid the situation that the input within an injected string is sanitized, as it matches certain

fixed key words defined by the filters, attackers mutate XSS expressions in their injections to

break the match, by adding other characters. An example can be found in Netsparker, where,

some injection strings are in the following format

“</a style=x:expre/**/ssion(Netsparker(0xXXXXXX))>”

The normal word “expression” is divided by the comment symbol “/**/”.

Since some browsers are capable of appending the closing bracket for incomplete tags

72

automatically, HTML tags in some injections are left unclosed, such as

<IMG SRC="javascript:alert('XSS')";

Sometimes web applications put certain tag names on their “bad word list”. As some browsers

might not strictly check for tag structures, some injections use malformed tags, which are called

obfuscated tags in this thesis. For example, tag “<script>” can be mutated as <sCrIpT>.

Table 5.17 Comparison of Injection Techniques

Advanced

Injection

Techniques

IBM App Scan Nikto Netsparker NStalker Acunetix Wapiti

Embedded

characters in

XSS

expression

yes no yes no no yes

VB script yes no no no no no

Extraneous

open brackets,

No closing

script tags, etc

no yes yes yes yes yes

Anonymous

tags

yes no no yes no no

Obfuscated

tags

no yes yes no yes yes

Total Count 3 2 3 2 2 3

73

Apart from Javascript, VB script also are used, such as

.

 Anonymous tags are found in some injections. For example, NStalker uses the

<nstalker> tag, and Skipfish uses the <sfi> tag.

Table 5.17 gives a detailed comparison among several tools.

5.5 Summary

For Netsparker, Acunetix, and Wapiti, we can conclude that:

In the comparison for the injection tags, Netsparker and Acunetix have slightly better variety

than Wapiti. Except for element tags, Wapiti does not use any modifier or structural tags.

For injection techniques, the three scanners have quite similar variety.

Overall, the performance of the injection patterns of these three scanners is very close. Since

the evaluations of real-life vulnerable web applications and controlled test applications suggest

that Wapiti has worse performance in XSS detection effectiveness, the observation of injection

patterns cannot clearly indicate this point.

By comparing injection patterns of 6 tools together, we can see that all scanners have similar

performance in tag patterns. The total number of tag patterns out of totally 15 tags each scanner

uses can be found in table 5.18:

74

Table 5.18 Injection Tag Patterns Summary

IBM AppScan Nikto Netsparker NStalker Acunetix Wapiti

7 7 7 8 7 5

No scanner has outstanding performance in the total number of injection patterns.

All scanners have similar performance in encoding techniques. Most of them adopt 2 or 3

encoding methods.

All scanners have similar performance in the advanced injection techniques. Most of them

have 2 or 3 types of injection techniques.

By simply observing injection patterns, all the scanners make some effort in injections, and it

is difficult to tell which one is better so far. According to the evaluation results from case studies of

real-life applications and test applications we created, there are some differences in the injection

effectiveness of the four scanners, but the minor differences in their injection patterns cannot

clearly indicate this. Apart from the injection patterns, there are also many other factors influencing

the injection effectiveness, and we will discuss about them in chapter 6.

75

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Based on our evaluation, we can see that among Netsparker, Acunetix, Wapiti, and

Skipfish, commercial scanners Netsparker and Acunetix have overall better performance in

both case studies of real life web applications and controlled studies of the test applications we

created. Comparing to Wapiti, Skipfish has better performance in the real-life application case

studies, and it can bypass some validation mechanisms in controlled test applications, whereas,

Wapiti cannot. We have analyzed the differences of each scanner’s efforts behind the scanning

reports. In the following paragraphs, for the phases of crawling, deciding injection points, and

making injections, we discuss the scanners’ performance, summarize our observations, and

propose our improvements.

6.1 Crawling

Although we have not evaluated scanners’ performance in the crawling phase in detail,

there are factors in this phase influencing the scanning experience, such as the effectiveness of

session management. Only with well-controlled session management can the functionalities of

a scanner be utilized to its limit. In case studies for real-life web applications, due to several

failures in keeping stable session states, Wapiti could not reach enough web resources in the

crawling phase during several scanning runs, and did not reach its full

76

potential in XSS detection. In order to improve this, scanners should have good usability in the

functionalities like auto login and session maintenance. Many scanners have options to use the

cookie string of an authenticated session in their configurations, which is easy to use and control,

but this is the only method for many scanners. If the most frequent login method is not working, a

good scanner should have several other methods as back up, since this can greatly increase a

scanner’s usability.

6.2 Deciding Injection Points

In the case studies of real-life web applications, it is clear that the ability of deciding injection

points is affecting the overall scanning performance. Scanners Netsparker, Acunetix, and Skipfish,

can reach a similar number of web pages in the crawling phase. However, Netsparker and

Acunetix can identify more injection points. Due to their better performance in this step, they both

are able to send injections to more locations which are actually vulnerable to XSS attack, thus

have better scanning results. We find in Skipfish’s source code, an injection request usually stores

the information about which parameters should be fuzzed. Scanners should have certain

algorithms to choose which web resources should be chosen as injection targets, and the

differences in these algorithms make scanners have different performance in the phase deciding

injection points.

77

6.3 Injection Effectiveness

 The phase making injections involves the process of sending fuzzed data and analyzing

response content. Based on our evaluation results, scanners have close performance in the

injection patterns we focused on. So far, we have not found direct and obvious connections

between the variety of injection patterns and the overall detection effectiveness.

Perhaps there are many other factors influencing the injection effectiveness. At first, the

injection strategies of different scanners might be different. As we see in Skipfish source code, for

different parameters the scanner has different injection actions, either replacing normal values

with attack strings or appending different injection strings. Second, the logic in content analysis

might also be a factor. To identify locations affected by previous injections, many scanners search

for certain tag names and content injected with attacking strings. This pattern searching process

might not be complete, and it is also possible to generate false positives.

6.4 Future Work

Our evaluation only includes the XSS detection performance of the four scanners so far. We

can evaluate more tools or the newest version for the four tools in the future.

 Netsparker and Acunetix have very close performance according to our evaluation results. To

distinguish the performance of different scanners, we can have more case studies of real-life

vulnerable web applications, written in different languages. We can also improve our test

applications to cover more scenarios, e.g., the scenario that malicious input is injected into CSS

78

properties.

 We did not make a detailed comparison about the crawling performance. Since the crawling

process is always separated from the injection process, and it is very important, we plan to

evaluate crawling abilities of different scanners in the future.

79

.

APPENDIX A

FALSE POSITIVE VALIDATIONS

80

Table A.1 Validations for Acunetix Scanning Results

 Vulnerability Location T/F Description

eFront Index.php at “course” TP OSVDB 76745, type 2

Index.php at

“message_type”

TP OSVDB 76745, type 2

webERP URL appended at index.php TP OSVDB 77194, type 1

Attack string:

%22onmouseover=prompt('XSS')%3E

URL appended at

accountgroups.php

TP

URL appended at

agedsuppliers.php

TP

URL appended at

bankreconciliation.php

TP

URL appended at

contracts.php

TP

URL appended at

customertransinquiry.php

TP

URL appended at

custwherealloc.php

TP

URL appended at

dailysalesinquiry.php

TP

URL appended at

factors.php

TP

URL appended at

glaccounts.php

TP

Kaibb rss.php at forum FP Part of input is reflected within SQL error

message. There is a proper input

escaping mechanism preventing actual

XSS attacks

OrangHRM index.php at “repcode” TP %22onmouseover=prompt('XSS')%3E

centralcontroller.php at

captureState

TP %22%3E%3Cscript%3Ealert('xss')

%3C%2Fscript%3E%3C

centralcontroller.php at

Loc_name

TP

centralcontroller.php at

PageNo

TP

centralcontroller.php at

TxtFromdate

TP %22%20onmouseover%3dprompt

%28998236%29%20bad%3d%22

81

Table A.1 - Continued

 centralcontroller.php at

TxtTodate

TP

OsCommerce URL appended at

advanced_search.php

TP OSVDB 78619, type 1

Attack string:

%22onmouseover=prompt(998974)%3E URL appended at

conditions.php

TP

URL appended at

contact_us.php

TP

URL appended at

create_account.php

TP

URL appended at

shipping.php

TP

URL appended at

default.php

TP

 URL appended at

password_forgotten.php

TP

URL appended at

privacy.php

TP

URL appended at

product_info.php

TP

URL appended at

reviews.php

TP

82

Table A.2 Validations for Skipfish Scanning Results

 Vulnerability Location T/F Description(attack string)

eFront Index.php (URL appending) TP OSVDB 76745, type 2. Attack string:

%22onmouseover=prompt('XSS')%3E

OsCommerce advanced_search.php

confirmed attack

TP OSVDB 78619, type 1

Attack string:

%22onmouseover=prompt('XSS')%3E create_account.php TP

conditions.php TP

contact_us.php TP

create_account_success.php TP

login.php TP

logoff.php TP

password_forgotten.php TP

privacy.php TP

product_reviews_write.php TP

reviews.php TP

shipping.php TP

shopping_cart.php TP

specials.php TP

tell_a_friend.php TP

83

Table A.3 Validations for Netsparker Scanning Results

 Vulnerability Location T/F Description(attack string)

eFront Index.php at “course” TP OSVDB 76745, type 2. Attack string:

%27%22%20ns=netsparker(0x0003E

2)%20

Index.php (URL appending) TP OSVDB 76745, type 2. Attack string:

%22onmouseover=prompt('XSS')%3

E

webERP index.php TP OSVDB 77194, type 1, URL

appending

Attack string:

%22onmouseover=prompt('XSS')%3

E

SelectCreditItems.php TP

SelectCustomer.php TP

SelectProduct.php TP

doc/Manual/ManualContents.php TP

PrintCustStatements.php TP

SalesAnalRepts.php TP

SalesGraph.php TP

SelectOrderItems.php TP

CustomerReceipt.php TP

DailySalesInquiry.php TP

SelectContract.php TP

Contracts.php TP

SuppPaymentRun.php TP

PDFRemittanceAdvice.php TP

UserSettings.php(parameters

DisplayRecordsMax and email)

TP Issue not reported. Attack string:

%27%22%20ns=netsparker(0x0003E

2)%20

SelectSupplier.php(parameters

Keywords, SupplierCode)

TP Issue not reported. Attack string:

%27%22%20ns=netsparker(0x0003E

2)%20

CustWhereAlloc.php(parameter

TransNo)

TP Issue not reported. Attack string:

%27%22%20ns=netsparker(0x0003E

2)%20

Kaibb Index.php FP Issue not reported. URL appending.

No actual XSS attack can be

generated

84

Table A.3 - Continued

OrangHRM lib/controllers/CentralController.php

(parameter sortOrder0)

FP Issue not reported. There are

escaping mechanisms, and no actual

XSS attack can be generated

/orangehrm/templates/hrfunct/empp

op.php

(parameter sortOrder0, sortOrder1)

FP

OsCommer

ce

advanced_search.php: TP OSVDB 78619, type 1

Attack string:

%22onmouseover=prompt('XSS')%3

E

create_account_success.php TP

contact_us.php TP

login.php TP

password_forgotten.php TP

privacy.php TP

product_info TP

 reviews.php TP

shipping.php TP

shopping_cart.php TP

85

REFERENCES

[1] Acunetix Web Application Security. http://www.acunetix.com/. Accessed June 20, 2012.

[2] Bau, J., Bursztein, E., Gupta, D., and Mitchell, J. State of the Art: Automated Black-Box Web

Application Vulnerability Testing. 2010 IEEE Symposium on Security and Privacy. 2010. pp.

332-345.

[3] Chen, S. Web Application Scanners Accuracy Assessment. Security Tools Benchmarking.

December 26, 2010.

http://sectooladdict.blogspot.com/2010/12/web-application-scanner-benchmark.html. Accessed

February 14th, 2012.

[4] CWE. 2011 CWE/SANS Top 25 Most Dangerous Software Errors. September 13, 2011.

http://cwe.mitre.org/top25/. Accessed May 17
th
, 2012.

[5] Doup´e, A., Cova, M., and Vigna, G. Why Johnny Can’t Pentest: An Analysis of Black-box

Web Vulnerability Scanners. Proceedings of the 7th international conference on Detection of

intrusions and malware, and vulnerability assessment. 2010, pp. 111-131.

[6] Fong, E. and Okun, V. Web application scanners: definitions and functions. Proceedings of

the 40th Annual Hawaii International Conference on System Sciences. 2007, pp. 280b.

[7] Fong, E., Gaucher, R., Okun, V., and Black, P.E. Building a Test Suite for Web Application

Scanners. Proceedings of the 41st Hawaii International Conference on System Sciences. 2008,

pp. 478.

[8] Fonseca, J., Vieira, M., and Maderia, H. Testing and comparing web vulnerability scanning

tools for SQL injection and XSS attacks. 13th IEEE International Symposium on Pacific Rim

Dependable Computing. 2007, pp. 365-372.

[9] Gordeychik, S. Web Application Security Statistics. Web Application Security

Consortium.http://projects.webappsec.org/w/page/13246989/Web%20Application%20Security

%20Statistics. Accessed March 20
th
, 2012.

[10] Hammersland, R. and Snekkenes, E. Fuzz testing of web applications.

86

http://www.idi.ntnu.no/emner/tdt60/Hammersland-FTW.pdf. Accessed April 10th, 2012.

[11] Kiezun, A., Guo,P.J., Jayaraman, K., and Ernst, M.D. Automatic creation of SQL Injection

and cross-site scripting attacks. Proceedings of the 31st International Conference on Software

Engineering. 2009. pp. 199-209.

[12] Klein, A. DOM Based Cross Site Scripting or XSS of the Third Kind. July 4, 2005.

http://www.webappsec.org/projects/articles/071105.shtml. Accessed May 16th, 2012.

[13] Loh, P.K.K. and Subramanian, D. Fuzzy classification metrics for scanner assessment and

vulnerability reporting. The IEEE Transactions on Information Forensics and Security. 2010.

Volume 5, Issue 4, pp. 613 – 624.

[14] Mavituna Security. http://www.mavitunasecurity.com/netsparker/. Accessed June 12th,

2012.

[15] McAllister, L., Kirda,E., and Kruegel, C. Leveraging User Interactions for In-Depth Testing

of Web Applications. Proceedings of the 11th international symposium on Recent Advances in

Intrusion Detection. 2008. pp. 191-210.

[16] Menczer, F., Pant, G., Srinivasan, P., Ruiz, M. E. Evaluating topic-driven web crawlers.

Proceedings of the 24th annual international ACM SIGIR conference on Research and

development in information retrieval. New York, NY, USA. 2001. pp. 241-249.

[17] Novacaine. Advanced XSS Knowledge. March 23, 2010.

http://www.exploit-db.com/papers/13646/. Accessed July 8th, 2012

[18] Ollmann, G. HTML Code Injection and Cross-site Scripting.

http://www.technicalinfo.net/papers/CSS.html. Accessed May 6th, 2012.

[19] Open Web Application Security Project (OWASP): OWASP Top Ten Project.

http://www.owasp.org/index.php/Top_10 (2010). Accessed April 6th, 2012.

[20] RSnake: XSS (Cross Site Scripting) Cheat Sheet. http://ha.ckers.org/xss.html. Accessed

March 7th, 2012.

[21] Suto,L. Analyzing the Effectiveness and Coverage of Web Application Security Scanners.

October, 2007. http://www.stratdat.com/webscan.pdf. Accessed March 20th, 2012.

87

[22] Suto,L. Analyzing the Accuracy and Time Costs of Web Application Security Scanners.

February, 2010.

http://ha.ckers.org/files/Accuracy_and_Time_Costs_of_Web_App_Scanners.pdf. Accessed

March 20th, 2012.

[23] Wassermann, G., Su, Z. Sound and precise analysis of web applications for injection

vulnerabilities. Proceedings of the 2007 ACM SIGPLAN conference on Programming language

design and implementation. 2007. Volume 5, Issue 4, pp. 32-41.

[24] Web Application Security Consortium. Web Application Security Statistics Project 2007.

https://files.pbworks.com/download/Ay5UB8nfZw/webappsec/13247068/wasc_wass_2007.pdf

?ld=1. Accessed March 10
th
, 2012.

[25] WhiteHat Security. 7th WebSite Security Statistics Report. May 19, 2009.

http://www.slideshare.net/jeremiahgrossman/whitehat-security-website-security-statistics-report-q1

09. Accessed April 15th, 2012.

[26] Wagner, S. The use of application scanners in software product quality assessment.

Proceedings of the 8th international workshop on Software quality. New York, NY, USA. 2011.

pp. 42-49.

[27] Wapiti – Web Application Vulnerabiliy Scanner / Security Auditor.

http://wapiti.sourceforge.net/. Accessed October 11th, 2011.

[28] Wireshark. http://www.wireshark.org/. Accessed August 20th, 2011.

[29] Zalewski, M. Understanding and Using Skipfish.

http://lcamtuf.blogspot.com/2010/11/understanding-and-using-skipfish.html. Accessed March

15th, 2012.

[30] Zalewski, M., Heinen, N., Roschke, S. Skipfish – Web Application Security Scanner.

http://code.google.com/p/skipfish/wiki/SkipfishDoc. Accessed June 20th, 2011.

88

BIOGRAPHICAL STATEMENT

 Dengfeng Xia was born on 26
th
 January 1986. His current research interests include

Software Testing and Web Security. He obtained his Master of Science degree from the

University of Texas at Arlington in May 2012.

