
 

A NOVEL MINIMALLY INVASIVE DUAL-MODALITY FIBER  

 OPTIC PROBE FOR PROSTATE CANCER DETECTION 

 

by 

 

VIKRANT SHARMA 

 

Presented to the Faculty of the Graduate School of 

The University of Texas at Arlington in Partial Fulfillment 

of the Requirements 

for the Degree of 

 

DOCTOR OF PHILOSOPHY 

 

THE UNIVERSITY OF TEXAS AT ARLINGTON 

August 2012 

 

 

  



 

Copyright © by Vikrant Sharma 2012 

All Rights Reserved



 

iii 

 

ACKNOWLEDGEMENTS 
 

 My Ph.D. journey was a wonderful expedition, full of accomplishments and rewards. 

There are many people I am grateful to, for giving me unique learning experiences and helping 

me in one way or the other towards my goal. First and foremost, I would like to thank my 

Mentor, Dr. Hanli Liu, who has been an excellent influence, always providing me an 

independent platform to work with, giving ample opportunities for leadership, research and 

development, and publications, thus making me a better researcher, and individual. Her passion 

and dedication to her work along with her kind heart and excellent collaborative skills have 

given me a lot of inspiration throughout times. I am very thankful to have her as my Mentor.  

I was extremely blessed to have an excellent Ph.D. committee, and would like to 

individually thank all my committee members from UT Arlington and UT Southwestern. It was a 

privilege to work with Dr. Jeffrey Cadeddu, and I thank him for the clinical collaboration, and for 

providing me with essential criticisms and suggestions, related to practical clinical 

implementation issues. It certainly gave a better shape to my dissertation. I am extremely 

grateful to Dr. Payal Kapur, for her help and support for histopathology aspect of my study. Her 

undying research spirit, willingness and availability for my project, and highly efficient 

throughput were essential components towards successful completion of my work.  I also 

express my gratitude to Dr. Jer-Tsong Hsieh, who is an excellent researcher and collaborator. 

Working with him was highly efficient and fruitful and at the same time seemed very effortless, 

given the resources and expertise he provided. Lastly but not the least, I am extremely thankful 

to Dr. Geroge Alexandrakis, for always being available for discussions, and for providing 

theoretical and technical support. I learned a lot from him inside and outside of the classroom.  

Apart from my committee members, there are other faculty members who have been 

very helpful for my study. I am grateful to Dr. Claus Roehrborn from UTSW, for his valuable 



 

iv 

 

suggestions and comments, and for clinical collaboration. I am also thankful to Dr. Ephrem 

Olweny for his help in patient selection and conduct of clinical study and to Dr. Wareef Kabbani 

and Dr. Yan Peng for histopathology evaluations. I am immensely thankful to Dr. David Euhus 

for presenting me with the clinical problem of breast cancer margin detection, and collaborative 

research thereafter. I sincerely thank Drs. Karol and Ignacy Gryczynski from TCU and 

UNTHSC, respectively, for their invaluable expert advice and collaboration during fluorescence 

lifetime validation experiments. I also acknowledge Dr. Khosrow Behbehani, Dr. Digant Dave, 

Dr. Liping Tang, Dr. Kytai Nguyen, and Dr. Mario Romero, and Dr. Baohong Yuan at UT 

Arlington, for positively influencing my work directly or indirectly through coursework and/or 

research collaborations. I am extremely grateful to Dr. Nancy Rowe, for her support in statistical 

analysis and her willingness for frequent and timely discussions.   

I was very fortunate to have support of my colleagues and friends inside and outside my 

laboratory. I specifically thank Dr. Dheerendra Kashyap, Ms. Sweta Narvenkar, Mr. Nimit Patel, 

Ms. Shivaranjani Shivalingaiah, and Ms. Ronak Patel, for their contributions at various points 

during the development of my work. I also thank my colleagues, Dr. Fenghua Tian, Mr. 

Venkaiah Kavuri, and Mr. Peter Leboullec, for excellent professional companionship and 

enriching discussions at various times. Outside my lab, I thank Dr. Ashwin Nair and Dr. Aniket 

Wadajkar, for their friendship and their help and willingness to provide appropriate resources. I 

am also thankful to all my other lab mates and colleagues.   

 My family is an integral part of my identity. I am blessed to have two loving sisters, 

Pooja Sharma and Aarti Sawhney, who along with my brother-in-laws, Vivek Sharma and 

Sumeet Sawhney, respectively, have shown immense faith in me and encouraged me at all 

times. My Parents, Dr. M.L. Sharma and Dr. Bimla Sharma are a constant source of inspiration 

for me, and their love and support has been a major asset towards my successes in past and 

present. I am also extremely grateful to my wife, Nidhi Sharma, who stepped into my life at the 



 

v 

 

start of my Ph.D., for her companionship during this momentous journey, and for enduring the 

idiosyncrasies that are integral part of a Ph.D. student’s life.   

 Finally, I as a believer in a higher power, I am grateful and dedicate my work to God 

almighty, for giving me the intellect and ability to get this far, and I pray for continuous 

improvement in both personal and professional domains, as long as I live. 

August 7, 2012 



 

vi 

 

ABSTRACT 
 

A NOVEL MINIMALLY INVASIVE DUAL-MODALITY FIBER  

OPTIC PROBE FOR PROSTATE CANCER DETECTION  

 

Vikrant Sharma, PhD 

 

The University of Texas at Arlington, 2012 

 

Supervising Professor:  Hanli Liu 

 Prostate cancer is the most common form of cancer in males, and is the second leading 

cause of cancer related deaths in United States. In prostate cancer diagnostics and theapy, 

there is a critical need for a minimally invasive tool for in vivo evaluation of prostate tissue. Such 

a tool finds its niche in improving TRUS (trans-rectal ultrasound) guided biopsy procedure, 

surgical margin assessment during radical prostatectomy, and active surveillance of patients 

with a certain risk levels. This work is focused on development of a fiber-based dual-modality 

optical device (dMOD), to differentiate prostate cancer from benign tissue, in vivo. dMOD 

utilizes two independent optical techniques, LRS (light reflectance spectroscopy) and AFLS 

(auto-fluorescence lifetime spectroscopy). LRS quantifies scattering coefficient of the tissue, as 

well as concentrations of major tissue chromophores like hemoglobin derivatives, β-carotene 

and melanin. AFLS was designed to target lifetime signatures of multiple endogenous 

fluorophores like flavins, porphyrins and lipo-pigments. Each of these methods was 

independently developed, and the two modalities were integrated using a thin (1-mm outer 

diameter) fiber-optic probe. Resulting dMOD probe was implemented and evaluated on animal 

models of prostate cancer, as well as on human prostate tissue. Application of dMOD to human 

breast cancer (invasive ductal carcinoma) identification was also evaluated.   
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 The results obtained reveal that both LRS and AFLS are excellent techniques to 

discriminate prostate cancer tissue from surrounding benign tissue in animal models. Each 

technique independently is capable of providing near absolute (100%) accuracy for cancer 

detection, indicating that either of them could be used independently without the need of 

implementing them together. Also, in case of human breast cancer, LRS and AFLS provided 

comparable accuracies to dMOD, LRS accuracy (96%) being the highest for the studied 

population. 

 However, the dual-modality integration proved to be ideal for human prostate cancer 

detection, as dMOD provided much better accuracy i.e., 82.7% for cancer detection in intra-

capsular prostatic tissues (ICT), and 92.4% for cancer detection in extra-capsular prostatic 

tissues (ECT), when compared with either LRS (74.7% ICT, 86.6% ECT) or AFLS(67.1% ICT, 

82.1% ECT) alone. A classification algorithm was also developed to identify different grades of 

prostate cancers based on Gleason scores (GS). When stratified by grade, each high grade 

prostate cancer (GS 7, 8 and 9) was successfully identified using dMOD with excellent accuracy 

in ICT (88%, 90%, 85%), as well as ECT (91%, 92%, 94%).    



 

viii 

 

TABLE OF CONTENTS 
 

ACKNOWLEDGEMENTS ........................................................................................... ……………..iii 
 
ABSTRACT ..................................................................................................................................... vi 
 
LIST OF ILLUSTRATIONS..............................................................................................................xii 
 
LIST OF TABLES ......................................................................................................................... xviii 
 
Chapter  Page 

 
1. INTRODUCTION……………………………………..………..….. .................................... .1 

 
1.1 Background and Motivation ............................................................................. .2 

 
1.1.1 Prostate Gland ................................................................................ .2 
 
1.1.2 Prostate Cancer Incidence and Current Clinical Needs ................. .2 
 

1.2 Dual Modality Optical Device (dMOD) as a solution ....................................... .7 
 
1.3 Thesis Workflow .............................................................................................. .9 
 

2.  METHOD I: LIGHT REFLECTANCE SPECTROSCOPY ............................................ 10 
 

 2.1 Introduction..................................................................................................... 10 
  
 2.2 Methods .......................................................................................................... 11 

 
2.2.1 Instrumentation .............................................................................. 11 
 
2.2.2 Analytical model for absolute quantification of 
optical parameters ................................................................................... 12 
 
2.2.3 Calculation and calibration of k1 and k2 .......................................... 14 
 
2.2.4 Inverse calculation ......................................................................... 18 
 

2.3 Testing and Validation .................................................................................... 20 
 

2.3.1 Validation of LRS method on tissue phantoms .............................. 20 
 
2.3.2 Algorithm Testing ........................................................................... 22 
 

2.4 Summary and Discussion .............................................................................. 27 
 



 

ix 

 

 
3.  METHOD II: AUTO-FLUORESCENCE LIFETIME SPECTROSCOPY ....................... 30 

 
 3.1 Introduction..................................................................................................... 30 
  
 3.2 Theory and Principles .................................................................................... 31 

 
3.2.1 Fluorescence .................................................................................. 31 
 
3.2.2 Fluorescence lifetime ..................................................................... 34 
 

3.3 Instrument Design and Description ................................................................ 35 
 

3.3.1 Time-domain fluorescence measurement using TCSPC ............... 35 
 
3.3.2 System components and description ............................................. 37 
 
3.3.3 Wavelength selection ..................................................................... 39 

 
3.4 Data Processing and Analysis ....................................................................... 40 
 

3.4.1 Analysis algorithm .......................................................................... 41 
 

3.5 Device Testing and Validation........................................................................ 44 
 

3.5.1 Instrument response function of TCSPC system ........................... 45 
 

3.6 Summary and Conclusions ............................................................................ 47 
 

4.  SYSTEM INTEGRATION AND ANIMAL STUDIES ..................................................... 48 
 

4.1 Animal Study I: Rat subcutaneous prostate cancer model ............................ 48 
 

4.1.1 Methods.......................................................................................... 48 
 
4.1.2 Results and Analysis ...................................................................... 50 
 
4.1.3 Discussion and conclusions of rat study ........................................ 54 
 

4.2 System Integration ......................................................................................... 55 
 

4.3 Animal Study II: Mouse orthotopic prostate cancer model ............................ 57 
 

4.3.1 Methods.......................................................................................... 57 
 
4.3.2 Results ........................................................................................... 58 
 
4.3.3 Discussion and Conclusions of mice study .................................... 64 

 
4.4 Chapter Summary and Conclusions .............................................................. 65 

 
 



 

x 

 

 
5.  HUMAN EX VIVO PROSTATE STUDY: PART I ......................................................... 67 

 
5.1 Introduction..................................................................................................... 67 

 
5.2 Patients and Methods .................................................................................... 68 
 

5.2.1 Patients selection and procedures ................................................. 68 
 
5.2.2 Experimental Protocol .................................................................... 69 
 
5.2.3 Instrumentation and measurements .............................................. 70 
 
5.2.4 Data Processing ............................................................................. 70 
 
5.2.5 Classification and ROC Analysis ................................................... 71 
 

5.3 Results ........................................................................................................... 75 
 
5.4 Discussion and Conclusions .......................................................................... 79 
 

6.  HUMAN EX VIVO PROSTATE STUDY: PART II ........................................................ 82 
 

6.1 Sample size and study protocol ..................................................................... 83 
 
6.2 Data Analysis ................................................................................................. 83 
 
6.3 Results and Discussion .................................................................................. 84 
 

7.  APPLICATION TO BREAST CANCER DETECTION .................................................. 87 
 

7.1 Introduction..................................................................................................... 87 
 
7.2 Methods .......................................................................................................... 88 
 

7.2.1 Measurement protocol and sample size ........................................ 89 
 
7.2.2 Data Analysis ................................................................................. 90 
 

7.3 Results ........................................................................................................... 92 
 
7.3.1 AFLS Results ................................................................................. 92 
 
7.3.1 LRS Results ................................................................................... 93 
 
7.3.1 Classification Results ..................................................................... 94 
 

7.4 Discussion and Conclusions .......................................................................... 96 
 
 

8.  DISCUSSION AND FUTURE SCOPE ....................................................................... 100 
 



 

xi 

 

8.1 Limitations and Future Scope ...................................................................... 103 
 

 
APPENDIX 
 

A.  EFFECT OF PROBE PRESSURE ON OPTICAL PROPERTIES ............................. 105 
 
 
REFERENCES ............................................................................................................................. 113 
 
BIOGRAPHICAL INFORMATION ................................................................................................ 127 

 



 

xii 

 

LIST OF ILLUSTRATIONS 

Figure           Page 
 
1.1  Prostate Anatomy ................................................................................................................... 2 
 
1.2  Gleason grading system diagram and illustration .................................................................. 3 
 
1.3  (a) schematic drawing of a TRUS probe inserted into a human rectum; 
      (b) an enlarged diagram showing the human anatomy, a TRUS probe  
      with our designed fiber probe attached; (c) a further enlarged drawing focusing  
      on the posterior of the prostate, the head of TRUS probe, the biopsy needle,  
      and the designed optical fiber tip ............................................................................................ 5 
 
1.4  A schematic depicting design of an optical fiber based endoscopic  
 margin assessment tool .......................................................................................................... 7 
 
2.1  LRS set-up and instrumentation: (a) LRS system components; (b) detailed 
       inside schematic of the detector (USB2000 spectrometer, Ocean Optics, Inc.)  ................. 12 
 
2.2  A schematic illustrating the experimental set-up for calibration of k1 and k2 ........................ 15 
 
2.3  Linear fit with a least-squares regression line to determine values  
       of k1 and k2. (a) A linear fit to the measured data using a phantom of total 
       hemoglobin ([HbT]) = 45 µM and μs′(750nm) = 11.2 cm

-1
, giving rise to k1= 9.89 cm

-1
  

       and k2 = 2.81. (b) Spectra predicted (red) by the model and measured (blue) using  
       a tissue phantom of [HbT] = 34 µM and µs′(750 nm)=8.31 cm

-1
 .......................................... 17 

 
2.4  Illustration of geometry for white sample measurement: the optical fiber  
       is placed on top of the pure reflectance sample (white sample), and the  
      distance from surface is adjusted based on the integration time of the 
      spectrometer. The distance should be chosen to have a relatively uniform 
      filed of illumination under the probe area ............................................................................. 18 
 
2.5  Comparison of parameters quantified from the LRS system and  
       ISS oximeter: (a) oxygen saturation values obtained from ISS oximeter 
       (black) and LRS system (red). (b) Average absolute errors in three  

        calculated parameters of O2 Sat (3.0±0.7%), [Hb] (0.9±0.2 M) and [HbO]  

       (0.9±0.2 M), with respect to those given by ISS oximeter. The error  
        bars indicate standard error of mean. (c) Changes in [HbT] and μs’  
       (at 750 nm and 830 nm) observed during the cycle of oxygen  
       saturation, as shown in (a). (d) Comparison of μs’ calculated at  
       830 nm using ISS oximeter (black) and LRS system (red)  ................................................. 21 
  
2.6.  Comparison of fitted [HbO] values obtained using three different  
        bounds with the expected values (solid circles) given by ISS oximeter.  
        The six data points were taken from the phantom study presented 



 

xiii 

 

        in Fig. 2.5(a). Here, ‘Mod’ represents the case with modified  
        bounds, ‘Inf’ represents the case with infinite bounds, ‘ISS’  
        represents the expected values determined by ISS oximeter,  
        and ‘Mean Org’ represents mean values obtained after 15  
        fitting-routine runs with original bounds; error bars mark  
        the respective standard deviations ....................................................................................... 25 
 
3.1  An illustration of Stokes’s experiment, showing no effect on  
       the solution of quinine when irradiated by the visible spectrum,  
       but emission of blue light when irradiated with UV ............................................................... 32 
 
3.2  A form of Jablonski diagram, illustrating the phenomenon of  
        fluorescence and phosphorescence. The diagram has been  
        modified from reference ........................................................................................................ 33 
 
3.3  Excitation-emission spectra of Quinine ................................................................................ 33 
 
3.4  Illustration of principle of TCSPC ......................................................................................... 35 
 
3.5  A simplified block diagram representation of the TCSPC based 
        lifetime system employed in this study ................................................................................. 36 
 
3.6 (a) CFD detection scheme; (b) SPC-130 TCSPC card;  
        (c) PMT (PMC-100) with DCC-100 controller card ............................................................... 38 
 
3.7  The excitation and emission spectra of endogenous  
        fluorophores, with the targeted fluorophores highlighted ..................................................... 39 
 
3.8  Lifetime  Data processing flow: (a) Raw data from ex vivo  
       prostate tissue; (b) Data Cropped to the peak, and normalized  
       from 0 to 1; (c) Result of data fitting to a two component exponent  
       model (i = 2 in Eq. (3.4)), with residuals plotted at the bottom ............................................. 41 
 
3.9  Effect of adding constant ‘c’ in the two exponent model: (left)  
        fitting without a constant term; (right) fitting with constant term 
        included. The difference is more evident in the residual ...................................................... 42 
 
3.10  A comparison of three exponent lifetime decay models  
         with one, two or three exponent terms included. The error bars  
         represent standard deviation across 16 curves.................................................................... 43 
 
3.11  Validation results obtained using reference dyes measured  
          by all four emission filters (F1 = 532 nm, F2 = 562 nm, F3 = 632 nm, 
         and F4 = 684 nm). TCU represents the readings taken at TCU  
         using the Fluotime system, and F2_DC represents the deconvolved 
         response from filter F2. The numbers below represent % error  
         compared to the reference lifetime from literature. Y-axis  
         represents mean lifetime in (ns)  .......................................................................................... 44 
 
3.12  IRF of AFLS system, measured using an optical mirror ....................................................... 46 
 
3.13  Comparison of curve fitting using de-convolution of IRF: 



 

xiv 

 

       (Left) results of commercial analysis software (FluoFit). Red is 
       IRF, blue the measured data, and black line is the fit;  
       (Right) results of software routine implemented in Matlab  
       to deconvolve the lifetime curve (blue) from measured data (red). 
       Black curve represents the fit; In both cases, bottom curve shows 
       the residual, which is comparable in each case. Also, note the  
       y-axis is plotted in log-scale in left curve .............................................................................. 46 
 
4.1  A block diagram illustrating experimental set-up for a LRS system 
      (left) and AFLS system (right). Measurements were made  
      sequentially, by placing the fiber tips on the tissue surface.   
      A closer view of bi-furcated fiber tips are shown for each  
      fiber (red = source; blue = detector)  .................................................................................... 49 
 
4.2  Animal experiment set-up showing LRS measurement: (Left)  
       LRS probe place in contact with the tissue using a stereotactic frame  
      holder; (Right) a closer view shows tumor location and morphology ................................... 50 
 
4.3  Comparison of averaged mean lifetime for cancer and control tissues (n=20)  ................... 51 
 
4.4  Comparison of (a) [HbO], (b) [HbR], (c) [HbT], and (d) μs’ values  
       at 750 nm derived from in vivo rat tumor tissue and control tissue  
       with LRS. Note that values of [HbR] are very heterogeneous,  
       having a large range from 20 µM to 0.1 µM, some of which  
       are unrecognizable in the figure ........................................................................................... 52 
 
4.5  Integrated Instrumentation: (a) Dual-modality optical device on a  
       portable cart (b) Inset showing probe positioning on the sample  
      (c) Front face of the probe tip showing arrangement of source  
      and detector fibers ................................................................................................................ 56 
 
4.6  (Left) Tumor bearing prostate of mouse exposed for measurement.  
        The prostate is circled in yellow. (Right) In vivo measurement set-up ................................. 58 
 
4.7  Comparison of lifetime (τ1) for cancer (M1 to M10) and control  
       mice (M11 to M21), at 562 nm emission, where M1 represents  
       mouse number 1 of 21. Ipsi (red) and Contra (blue) represent the  
       average of readings taken on ipsilateral (side of injection) and  
       contralateral readings for M1 to M10, whereas for M11 to M21,  
       Contra (blue bars) represents the average of all the readings on  
       the specific prostate. Error bars represent standard deviation............................................. 59 
 
4.8  Mean of various lifetime parameters, showing comparison of  
        cancer and control mice for all emission wavelengths. The error bars 
        indicate standard deviations. a1 (not presented here), did not show 
        much contrast between cancer and control as compared to a2 ........................................... 60 
 
4.9  (a) A histogram distribution of cancer (Can) and control (Norm) τ1  

       (at 532 nm) values for entire population, showing the separation in two 
       categories; (b) ROC curve generated for τ1 at all four emission  
       wavelengths. AUC was 1 for all except for 684 nm (AUC = 0.78)  ...................................... 61 
 



 

xv 

 

4.10  Contrast parameters obtained through LRS measurement for  
         cancer (n=26) and control(n=37) tissue. Units are presented with  
         x-axis labels. Notice that log-scale has been used for visibility. Bcar  
         represents β-carotene and % Sat is the oxygen saturation calculated 

         using [Hb] and [HbO]. Scattering coefficient, μs’(cm
-1

) shown here 

          was calculated at 750 nm. The error bars represent standard  

        error of mean (SEM)  ............................................................................................................ 62 
 
4.11  ROC curves for various LRS parameters ............................................................................. 63 
 
5.1  Measurement Protocol ......................................................................................................... 69 
 
5.2  An algorithm flow chart describing calculation of sensitivity (Sn), 
       specificity (Sp), accuracy (Acc) and generation of ROC curves 
       through cross-validated classification process ..................................................................... 75 
 
5.3  (a) Comparison of four AFLS-derived features, mean-lifetimes,  
        τm, at all four emission wavelengths across three tissue types.  
       (b) Comparison of five LRS-derived features across three tissue  
       types. μs' was calculated at 750 nm, and βcar is scaled down by 
       a factor of 10 for display purposes. In both (a) and (b), the ‘*’ above  
      nPZ and BPH bars indicates significant difference (p < 0.02) when  
      compared to PCa; error bars indicate standard error of mean ............................................. 77 
 
5.4  ROC curves obtained using the dMOD and the MLR classification  
        for identifying individual PCa grades (GS 9, GS 8, GS 7) and all 
        grades combined (All PCa types)  ........................................................................................ 79 
 
6.1  An Illustration showing normal prostate (top left), and spread of  
       prostate cancer during different stages. This illustrates how  
       prostate cancer can spread out to the capsule, bladder and  
       urethra, which poses a problem in obtaining clear margins  
       during radical prostatectomy ................................................................................................ 82 
 
6.2  ROC Curves obtained for different Gleason  
 scores (GS 9, GS 8 and GS 7) using 5-level classification algorithm,  
 and for all cancers (All), using 3-level classification algorithm ............................................. 86 
 
7.1  Histological findings showing an example of histological  
       difference between (a) invasive ductal carcinoma and  
      (b) benign breast stroma in pink color .................................................................................. 90 
 
7.2  (a) Mean AFLS parameters that showed a significant difference 
        between IDC (n=34) and FT (n=31), as well as IDC and AT (n=28).  
       (b) Average of τm plotted for all three tissue types as a function of  
       emission wavelength. . The error bars in both (a) and (b) represent 
       standard error of the mean ................................................................................................... 92 
 
7.3  (a) Average reflectance spectra of IDC (n=34), FT (n=31) and  
        AT (n=28). Vertical black lines indicate the 20-nm spectral  
        windows (S1-S17) selected for spectral slope analysis.  The gray  
        bars on the bottom of figure mark the spectral windows whose  



 

xvi 

 

        spectral slopes are significantly different between IDC and two 
        other types of breast tissue. (b) Means of scaled spectral  
        slopes (Slope x 103) along with standard errors, for 5  
        selected spectral regions, which showed a significant difference  
        between IDC and the other two breast tissue types ............................................................. 94 
 
8.1 A comparison of scattering coefficient for different prostate  
 cancer, benign prostatic and extra-prostatic tissues. Bars represent  
 the mean across all measured points, and error bars represent  
 standard error of mean ....................................................................................................... 102   
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 



 

xvii 

 

LIST OF TABLES 

 
Table               Page 
 
2.1  Calculated values of k1 and k2 at different oxygenation  
      levels of a blood-intralipid-yeast phantom. Blue numbers  
      represent data acquired during de-oxygenation and red numbers  
      represent data acquired using re-oxygenation ..................................................................... 17 
 
2.2 Three sets of parameter bounds that are chosen to study their  
       effects on the performance of  fitting routine ........................................................................ 24 
 
2.3  A comparison of number of iterations, niteration, and value  
      of the objective function, vobj, for a specific O2 Sat data point  
      using three different bounds ................................................................................................. 25 
 
4.1  Summary of AFLS mean lifetimes for tumor and control tissue ........................................... 51 
 
4.2  Sensitivity and specificity values calculated for different pairs  
      of obtained parameters using two modalities ....................................................................... 53 
 
5.1  Patient Characteristics .......................................................................................................... 76 
 
5.2  Number of measurements classified by tissue type ............................................................. 77 
 
5.3  Classification metrics of PCa (all cancer grades combined)  
      against non-cancer tissue types (nPZ and BPH)  ................................................................ 77 
 
5.4  Classification metrics of PCa graded by Gleason scores.  
      The values listed in the left-most column implicate each PCa tissue  
      group (e.g., GS 9) against rest of the tissue groups ............................................................ 78 
 
5.5  Results of feature selection for each method in the two classification categories ............... 79 
 
6.1  The sample size distribution table for ECT study ................................................................. 83 
 
6.2  Classification metrics depicting performance of dMOD in presence of ECTs ...................... 84 
 
6.3  Selected Features from both modalities for each classification routine ............................... 84 
 
6.4  Classification results for individual modalities. For LRS, all  
 parameters were used for classification. AFLS used 16/20 in  
 5-level and 11/20 in 3-level classification ............................................................................. 85 
 
7.1  The p-values of significant features of both modalities, derived  
        from mixed model regression analysis for test of significant  



 

xviii 

 

        differences between IDC and other two breast tissue types. 
        ‘λ’ represents wavelength ..................................................................................................... 93 
 
7.2  Classification statistics obtained using three methods:  
       (a) AFLS-only, (b) LRS-only, (c) dMOD method .................................................................. 95 
 
8.1 Comparison of current work with major competing  
 studies (ICT = intra capsular prostatic  
 tissue; ECT – extra capsular tissues) ................................................................................. 101 
 
 
 
 
 

 



 

 1 

CHAPTER 1 

INTRODUCTION 

 Cancer detection is the first step towards the management of this deadly disease. 

Current gold standards in cancer diagnosis rely on histopathology for final decisions. However, 

there are many critical situations in clinical settings where waiting for a histopathology decision 

poses significant drawbacks. One such clinical situation is prostate biopsy, where due to of the 

lack of definitive imaging techniques, the prostate tissue is sampled in a pseudo-random 

fashion. Multiple cores (sometimes more than 30) typically measuring 18 mm X 1 mm are 

resected for pathological analysis. This crude way of biopsy causes injury and related side 

effects to the prostate tissue, while still missing about 30% of the cancers. Another critical 

situation is the surgical removal of the cancer bearing tissue, where the goal of a Surgeon is to 

remove either partial (e.g. Lumpectomy, breast cancer) or whole organ (e.g. Prostatectomy) that 

has cancer. However, whether there is any cancer left over in the body is decided by 

histopathology results, where the margins of the resected tissues are analyzed, and labeled as 

positive if cancer is found on the surface, or negative otherwise. In case of positive margins (20-

50% incidence in lumpectomies), the patients either have to go through re-surgery, or explore 

other treatment options to overcome the leftover traces of cancer. Either of these options would 

lead to increased cost, and distress to the patient, and are highly undesirable.    

 The goal of my research is to develop a minimally invasive fiber optic probe that can 

detect prostate cancer in vivo, in a minimally invasive way, with clinically acceptable sensitivity 

and specificity, so clinicians can make decisions on-site in the above mentioned situations to 

improve the outcome of biopsy/surgical procedures.  
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1.1 Background and Motivation 

1.1.1 Prostate Gland 

 Prostate gland is a walnut sized male organ that surrounds the urethra, is located just 

below the urinary bladder, in front of the rectum and above the penis (see Fig. 1.1). The primary 

function of the gland is to provide enzymes to the seminal fluid, to maintain its fluid nature, and 

to also provide nutrients that protect sperms, which originated from the testes and travel through 

vas deferens into the prostatic urethra before ejaculation.  

 

Fig. 1.1 Prostate Anatomy (Image source: http://men.webmd.com/picture-of-the-prostate)  

1.1.2 Prostate Cancer Incidence and Current Clinical Needs 

 Prostate cancer is the most commonly found male cancer in the United States and is 

the second leading cause of death from cancer in men
1
. In 2011 alone, the number of new 

prostate cancer cases were estimated to be 240,890, resulting in estimated 33,720 deaths in 

US
2
. At present, digital rectal examination (DRE), prostate specific antigen (PSA) blood test, 

and transrectal ultrasound (TRUS) guided biopsy are the clinically available techniques for 

http://men.webmd.com/picture-of-the-prostate
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prostate cancer screening and diagnosis. Among these, DRE and PSA are the used as 

screening tools for prostate cancer. For example, a hard lump felt though DRE and/or an 

elevated PSA level (> 3.0g/ml)
3
 could be an indicator of prostate cancer. With abnormal 

screening results, the gold standard for prostate cancer diagnosis is TRUS guided needle 

biopsy, which involves resection of multiple cores of prostate tissue with the guidance of an 

ultrasound probe.  

1.1.2.1 Gleason Grading system 

Gleason grading system is named after Dr. Donald F. Gleason
4
, and is used to predict the 

aggressiveness of prostate cancer. Gleason grading system is the current gold standard for 

reporting the histological analysis. Gleason score, which is calculated on TRUS-guided biopsy 

samples, is critical for further prognostic planning and management.  

 

Fig. 1.2 Gleason grading system diagram and illustration (image source: 
http://www.prostate-cancer.org/pcricms/node/165) 
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 As shown in Fig. 1.2, a grade is assigned based on loss of normal glandular structure 

including size, shape and differentiation of glands. Grade 1&2 represent closely packed glands 

forming a nodule. They represent indolent disease, which is rarely progressive. Grade 3 is 

characterized by small infiltrating glands and complete lumen formation. This is the most 

commonly observed pattern. In Grade 4, the glands are fused, has incomplete lumen formation, 

and indicates tumor progression. Grade 5 is characterized by solid sheet or single cell, with no 

lumen formation
5
. Gleason sum or Gleason score (GS) is assigned by identifying two major 

Gleason grades present during histological evaluation, and adding them. For example, if 

primary pattern observed is Grade 3, and secondary pattern observed is Grade 4, then GS is 

reported to be 7(3+4). Typically, there are multiple foci of prostate cancer, of which primary and 

secondary patterns are identified. Sometimes, tertiary pattern is also reported
5
.  

According to EAU (European Association of Urology) guidelines
3
 of prostate cancer, 

active surveillance of the disease is recommended for prostate cancer with GS ≥ 7, which is 

termed high grade cancer. Thus identifying GS 7, 8, and 9 is highly relevant for clinical 

prognosis.  

Staging of prostate cancer is done based on various factors, like GS, DRE results, PSA 

levels, and imaging (MRI) results. A detailed description of different stages of prostate cancer is 

out of scope of this work, and can be found here
5
. 

1.1.2.2 Clinical problem I: Prostate Biopsy  

In TRUS guided biopsy procedure, although ultrasound is able to provide high 

resolution anatomical images, it lacks the sensitivity in differentiating tumor from normal tissue, 

especially at early stages, making TRUS guided biopsy a rather “blind” procedure involving 

quasi-random sampling of the prostate tissue
6
. This drawback leads to a high rate of false 

negatives, missing cancer in 25% or more cases
7
 and requires oversampling of tissue due to 

non-specific targeting. The current standard biopsy procedure involves resection of 10-12 

needle cores, in a predetermined systematic random pattern. Patients often have to go for 
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secondary biopsies, if the symptoms do not subside, for example: if PSA levels continue to 

elevate.  

It was also hypothesized that by increasing the number of core biopsies, the accuracy 

in detecting cancer could be improved
8
.  However, recent studies 

9,10
, have shown that there is 

no significant improvement in detection rates with saturation biopsies (although further studies 

are warranted to confirm with larger sample size
11

) which typically involve 20-30 cores and 

could be up to 80 cores. Moreover, increasing the number of cores often results in medical 

complications associated with the biopsy procedure
8
.  

 

 

Fig. 1.3 (a) schematic drawing of a TRUS probe inserted into a human rectum; (b) an enlarged 
diagram showing the human anatomy, a TRUS probe with our designed fiber probe attached; 

(c) a further enlarged drawing focusing on the posterior of the prostate, the head of TRUS 
probe, the biopsy needle, and the designed optical fiber tip. 

 
It is thus imperative to develop a technique that addresses the drawbacks of current 

biopsy procedure, increasing the accuracy of detection, as well as reducing injury and 

inflammation caused by conventional biopsy procedure. A TRUS guided minimally invasive 

Prostate 

Bladde
r 
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optical probe could provide real time detection of cancer tissue, which in turn would allow the 

surgeons to search for cancer on-site, thus providing them with more flexibility to explore the 

prostatic tissue for cancer, as well as enabling them to assess the extent of tumor once found. 

Such a probe would be highly significant in clinical practices as it will improve the accuracy of 

prostate cancer diagnosis, while reducing the related injury to the tissue.Figure 1.3 represents a 

conceptual implementation of optical aid for prostate biopsy procedure
12

. Fig. 1.3(a) shows a 

conventional end-fire TRUS probe, with a biopsy needle. Fig. 1.3(b) and (c) show a possible 

design improvement for optical biopsy of prostate. Incorporation of optical fiber is highly 

compatible with the way biopsy is currently performed.  

The major advantages of optical biopsy for prostate would be:  

a) Real time feedback of tissue condition, allowing clinicians to optimize the sampling 

on site, to improve the outcome of biopsy, potentially reducing number of secondary 

biopsies.  

b) Since optical biopsy does not involve removal of tissue, the number of cores or the 

volume of tissue sampled would be drastically reduced, minimizing injury and 

related complications
13,14

.  

c) This minimally invasive approach can also be useful for active surveillance of the 

disease, especially useful, if the optical approach can distinctly identify different 

grades of prostate cancer.  

1.1.2.3 Clinical problem II: Positive Surgical Margins in Radical Prostatectomy  

Another critical clinical problem that needs an in vivo monitoring tool is surgical margin 

assessment during radical prostatectomy (RP) for localized prostate cancer
15

. A comprehensive 

review
16

 reported occurrence of positive surgical margins (PSM) in RP for up to 38% of the 

cases. Presence of PSM is an adverse outcome
17

 leading to various prognostic effects based 

on margin location and its extent
18

. At present, histopathology is the gold standard for detecting 

positive surgical margins, which takes a few days, whereas an alternative that could assess the 
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margins during RP procedure is much desired. In this way, surgeons can remove the residual 

cancer on-site, thus eliminating the need for post-surgical treatment options, which comes with 

additional trauma and associated costs. Fig. 1.4 shows an example of fiber optic probe, that 

could be used with different number of fiber channels (4 in this illustration), and be compatible 

with the robotic RP surgery set-up. The exact design could be customized for desired coverage 

area and resolution, but the illustration (Fig. 1.3) essentially provides a possibility of 

implementation.  

 

Fig. 1.4 A schematic depicting design of an optical fiber based endoscopic margin 
assessment tool. 

 
1.2 Dual-Modality Optical Device (dMOD) as a solution 

There is multitude of optical technologies available for tissue spectroscopy and imaging. 

Cancer tissue is known to have different morphological and physiological properties when 

compared to normal tissues given their abnormal growth, with a possibility of an underlying 

different biochemical environment. In order to exploit these differences from the non-cancer 

tissue environment, I chose two optical techniques to identify biomarkers (or pre-biomarkers, 

PB’s) of prostate cancer. The proposed dual-modality optical device (dMOD) incorporates two 

independent optical techniques, namely light reflectance spectroscopy (LRS) and auto-

fluorescence lifetime spectroscopy (AFLS), in a thin, needle-like fiber optic probe, to detect 

prostate cancer. 

Light reflectance spectroscopy (LRS), also referred to as optical reflectance 

spectroscopy (ORS) or diffuse reflectance spectroscopy (DRS), has been utilized in various 
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medical applications to identify tissue types
19

, or to differentiate diseased/cancerous tissue from 

normal/benign tissue
20-22

. Tissue optical properties may themselves serve as biomarkers to 

differentiate cancerous lesions as light scattering and absorption are highly dependent on 

morphological and physiological state of the tissue. Typically, LRS uses a broadband light 

source, and a spectrometer to collect the diffuse reflectance spectra of the tissue in visible and 

near-infrared range, and uses the spectra to either quantify the absorption and scattering of 

biological tissues
23

, or use characteristic signatures in the spectrum to differentiate tissue 

types
19

. Quantifying absorption yields the concentrations of chromophores like hemoglobin, and 

scattering gives an assessment of cell size and density. Given that most tumor 

microenvironments have abnormal vasculature and cell morphology, LRS makes an excellent 

candidate for detecting cancer biomarkers.   

Fluorescence emission, in contrast to light scattering methods, is shifted towards longer 

wavelengths as compared to the impinging illumination. The contrast in this case originates 

from intrinsic properties of certain biomolecules, and is sensitive to the surrounding biochemical 

environment. Fluorescence spectroscopy has been used for detection of various cancers
24,25

. 

As compared to steady-state auto-fluorescence spectroscopy, the advantage of time resolved 

auto-fluorescence lifetime measurement is the intrinsic nature of lifetime measurements, 

independent of the intensity of excitation light, providing clear finger prints for cancer 

identification
26,27

.  

As stated above, the origins of contrast in both these modalities are distinct, which 

makes them complimentary to each other. The dual-modality approach is thus expected to have 

a higher discriminatory power compared to single modality alone, especially in cases like 

prostate tissue where is contrast is inherently low, as evident by its detectability using 

conventional imaging modalities. This forms the hypothesis of my work which states that “It is 

possible to differentiate prostate cancer from benign tissue with high accuracy, using a dual-
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modality optical device based on LRS and AFLS, with further stratification of prostate cancer by 

grade, in a fiber-based, minimally invasive, surface sensing geometry”. 

 

1.3 Thesis Workflow 

 In Chapters 2 & 3, a detailed description of LRS and AFLS methods, respectively are 

given, including theoretical principles, instrumentation and algorithm design. Each of these 

chapters includes instrument validation with phantom models in comparison with gold standards 

methods in each modality. Followed by description of each method, Chapter 4 starts with 

implementation of each modality on a subcutaneous ectopic rat prostate cancer model. 

Followed by that, the integration of the two modalities using a single fiber-optic probe is 

described. Lastly, Chapter 4 also describes a second animal study where dMOD is evaluated 

on an orthotopic mice prostate cancer model.  

 After successful implementation on animal models of prostate cancer, Chapters 5 & 6 

describe the ex vivo study of human prostate cancer, where the capability of dMOD to detect 

different grades of human prostate cancer in presence of benign tissues is evaluated. The 

human ex vivo implementation is described in two parts. In Chapter 5 (Part I), prostate cancer 

detection in intra-capsular prostatic tissue is discussed, which is congruent with the optical 

biopsy application of dMOD. In Chapter 6 (Part II), capability of dMOD for detecting prostate 

cancer in extra-capsular prostatic tissue is discussed, which is congruent with the application of 

dMOD to surgical margin assessment.   

Chapter 7, describes extension of dMOD’s applicability to other types of cancer, 

specifically, human breast cancer.  An ex vivo feasibility study for detecting breast cancer 

(invasive ductal carcinoma), is described. 

Finally, in Chapter 8, major conclusions of this research are presented, along with the 

future scope and limitations of this work.  

 



 

 10 

CHAPTER 2 

METHOD I: LIGHT REFLECTANCE SPECTROSCOPY 

2.1 Introduction 

 Light reflectance spectroscopy (LRS) (also termed diffuse reflectance spectroscopy 

(DRS) or optical reflectance spectroscopy (ORS)), with small source-detector (SD) separation is 

based on the spectral changes introduced into the light that traverses the tissue. Light 

absorption and scattering are the two major optical parameters that determine the path of light 

into the tissue and are highly dependent on the morphological and physiological properties of 

the tissue. Characterization of these optical parameters allows distinguishing tissue types, 

enabling the use of LRS for various clinical and preclinical applications.  Previously, LRS has 

been applied to diverse focus areas such as cancer diagnosis
20,22,28,29

, neurosurgical 

guidance
19

, pre-clinical disease models
30

, and measurement of neural activities
31

,among other 

applications. Due to its potential applicability to a variety of clinical settings, researchers have 

continuously made efforts to quantify the concentration of absorbers as well as the scattering in 

the tissue. While theoretical derivations are technically challenging
23

, semi-empirical models
32,33

 

have also been developed for quantification.  

Theoretically, a widely used mathematical model to understand the propagation of light, 

including near infrared (NIR) light, in biological tissues is the diffusion approximation. However, 

such an approximation has its limitations for LRS with short S-D separation, as the diffusion 

model is not valid when light travels within a few millimeters or less. Also, the diffusion 

approximation requires that the absorption coefficient, μa, be much smaller in magnitude than 

the reduced scattering coefficient, μs′. Such disparity of magnitudes holds well for larger S-D 

separations and in region of NIR wavelengths; but in the visible range, μa and μs′ can have 

comparable magnitudes.  It is conspicuous that conventional diffusion theory (without inclusion 



 

 11 

of empirical parameters) is not a correct model for probe geometry with small (< 1mm) S-D 

separation. In 2006, Zonios and Dimou 
23

 proposed an approach to solve this problem and 

provided a simple expression associating measured reflectance to light absorption and 

scattering coefficients. This model was also successfully applied to measure optical properties 

of benign and malignant skin tissue
29,34

.  

As compared to empirical models, the absolute quantification of scattering and 

absorption provides a standardized technique for LRS measurements, attributing physiological 

meaning to the measured signals. This chapter focusses on quantification of these optical 

properties based on Zonios’s model. The effort was initiated in a previous work
35

, where the 

mathematical model was implemented using an ant colony optimization method, which is a 

robust global optimization method. However, there were some limitations of the previous model, 

mainly due to scattering model, therefore leading to larger errors at shorter wavelength 

ranges
35

. My dissertation work includes improvement of the existing methods to complete 

implementation of Zonios’s model, with evaluation on laboratory phantoms and application to in 

vivo and ex vivo studies.  

2.2 Methods  

2.2.1. Instrumentation 

A typical LRS set-up involves shining light into the tissue using a broadband light 

source, and detecting the returning light using a spectrometer, that separates the light into its 

spectral components, and outputs a wavelength dependent intensity profile of the detected light.   

Therefore, essential components of LRS set-up are a light source, a spectrometer, a bifurcated 

optical fiber probe for light delivery and collection, and a computer for control and data 

acquisition. Fig. 2.1 shows a block diagram of LRS measurement set-up. comprised of a 

tungsten-halogen light source (HL2000HP, Ocean Optics Inc., Dunedin, FL, USA), a single 

channel CCD (charge-coupled device) array spectrometer (USB 2000, Ocean Optics, Dunedin, 

FL USA) in the spectral range of ~350-1000 nm, and a laptop computer. The system was 
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interfaced with the computer using OOIBase32 software provided by the manufacturer. In Fig 

2.1b, components of a USB spectrometer are shown
36

. The detector fiber is connected to the 

spectrometer through the SMA connector port (1). The detected light is first passed through a 

slit (2) that determines the amount of incoming light and controls spectral resolution. Then the 

light is passed through a filter (3) to the collimating mirror (4), which focusses the light onto the 

grating (5). The grating diffracts the light and directs it to the focusing mirror (6) which focusses 

the light to L2 detector collection lens (7), which in turn focusses the light onto CCD detector 

elements (8).    

  

Fig. 2.1 LRS set-up and instrumentation: (a) LRS system components; (b) detailed inside 
schematic of the detector (USB2000 spectrometer, Ocean Optics, Inc.)

36
 

 

2.2.2. Analytical model for absolute quantification of optical parameters 

The model developed by Zonios and Dimou
23

 establishes a relationship between the 

optical reflectance, Rp(λ), measured with a short-distance optical probe, the reduced scattering 

coefficient, μs′(λ), and absorption coefficient, μa(λ), of the medium, as given below: 

.
)(akk

)('
s)(pR






21 


                                                     

(2.1)        

   

 

All measured spectra, Rp(λ),  are referenced to a calibration standard (Ocean Optics, 

Dunedin, FL, USA), which will be referred to as “the white sample” from here onwards. 

Specifically, Rp(λ) represents the spectrum obtained by dividing the measured reflectance, R, by 

the reference reflectance taken from the white sample. This white sample reference is used to 

Fig. 1.1 LRS instrumentation schematic  

(a) (b) 
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eliminate the spectral effect of the probe, light source, and detector on the measured 

reflectance data. In Eq. (2.1), k1 and k2 are two calibration parameters depending only on the 

geometrical characteristics of the optical probes and the optical spectroscopic system, i.e., the 

light source and detector.  In principle, k1 and k2 of a selected LRS system can be calibrated 

experimentally using tissue phantoms. Then, Eq. (2.1) is utilized to quantify both μa(λ) and μs′(λ) 

for an unknown tissue sample based on its LRS measurements. 

 It is well known that μa(λ) is a function of chromophore concentrations, most dominant 

chromophores in 500-800 nm range being deoxygenated hemoglobin, [Hb], oxygenated 

hemoglobin, [HbO], and water, H2O.  The spectral dependence of µa on [HbO], [Hb], and H2O 

for blood-perfused tissues can be written as 

2
2

( ) [ ] ( ) [ ] ( ) [% ] ( ),HbO Hb H O
a HbO Hb H O

         
                        

(2.2)
 

where ‘λ’ is the wavelength in nm, εHbO (λ), εHb (λ) and εH2O (λ) are the wavelength dependent 

extinction coefficients of [HbO], [Hb], and water, respectively
37

. [%H2O] represents the 

percentage of water in the medium. Other chromophores, such as fat, melanin, and beta-

carotene may be added to this equation, depending on the wavelength range of interest and 

tissue type under investigation. The spectral dependence of µs′ can be approximated as given 

by Mie theory
38

:  

,)1058.0(1.1 3 g
                                                       (2.3)                                                                                                                                                                                                                                                                                                   

),1(' gss  
                                                            (2.4) 

,b

s a  
                                                              (2.5) 

where μs is the effective scattering coefficient, μs’ is the reduced scattering coefficient, and g is 

the anisotropy factor.  In eq. (5), parameters of a and b are constants and depend on scatterer 

sizes and types. For 10% intralipid solution
38

, the calculated values are a = 2.54x10
9
 cm

-1
 and b 

= 2.4.  
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2.2.3. Calculation and calibration of k1 and k2  

The values of k1 and k2 can be determined using the least-squares regression 

approach. By rearranging Eq. (2.1), we obtain 

)(
)(

)(
21

'





a

p

s kk
R

                                                   (2.6) 

Eq. (2.6) shows that k1 and k2 can be determined by obtaining a linear regression line that best 

fits μs’(λ)/Rp(λ) versus µa (λ).  It is possible to obtain the measured spectra of Rp(λ) from the LRS 

system in the range of 500-850 nm and also achieve quantification of µa  and μs’ at 750 nm and 

830 nm from ISS oximeter if the measurements by both LRS and ISS oximeter are taken 

simultaneously.  Besides μa values, ISS oximeter is also able to provide derived values of [Hb], 

[HbO], and μs’ at two wavelengths
39

. Then, wavelength-dependent absorption spectra, μa(λ), can 

be quantified using Eq. (2.2) if the measured [Hb] and [HbO] as well as the hemoglobin 

extinction coefficients
40

 are available. Moreover, given two μs’ values at two measured 

wavelengths (750 nm and 830 nm), it is reasonable to interpolate and extrapolate μs’(λ) over the 

desired wavelength range using Eqs. (2.3)-(2.5) based on Mie theory.  

During the system calibration phase in my study, I followed the exact principle or 

procedures given above to acquire Rp(λ), µa (λ), and μs’(λ) from a set of blood-intralipid tissue 

simulating phantoms (see section 2.1.3.1). A corresponding set of k1 and k2 at various total 

hemoglobin concentrations and reduced scattering coefficients were obtained, averaged, and 

calculated for their means and standard deviations. If the relative errors for both k1 and k2 were 

less than 10%, then the corresponding set of k1 and k2 were accepted as the system calibration 

parameters for the specific LRS system (i.e., the light source, fiber probe, and spectrometer).  

2.2.3.1 Phantom design and experimental set-up 

The phantom experiments were designed to simultaneously measure optical properties 

using two independent optical systems, namely, LRS (which needs to be calibrated), and a gold 

standard, dual-channel tissue oximeter (OxiplexTS, ISS Inc., IL, USA). The OxiplexTS 
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measures absolute values of µa and μs’ of the sample under interrogation, thus providing a 

reference for LRS readings. However, the geometries of the two systems are quite different, i.e. 

LRS probe is usually ~ 1mm in diameter, whereas OxiplexTS measurement spans a surface 

area of at least 3.5 cm in longitudinal direction, sensing optical properties over a much larger 

volume. To account for this mismatch, a large homogenous volume of liquid phantom was used, 

in a rectangular tank, as shown in Fig. 2.2. Additionally, a magnetic stirrer (not shown) was 

placed under the tank, to avoid the liquid from settling down, and maintain homogeneity.  

 

 

Fig. 2.2 A schematic illustrating the experimental set-up for calibration of k1 and k2  

 

The optical fiber probe utilized for this study was a custom built (TechEn, Inc., Milford, 

MA, USA) bifurcated probe with two multimode fibers: one fiber for light delivery and other for 

light detection (Fig. 2.1a). The diameter of each multimode fiber was 400 μm, with an average 

source detector separation of 800 µm. The outer diameter of the fiber probe was 2 mm at the 

tip. The fiber probe was immersed into the liquid phantom solution with the help of a tripod 

stand (Fig. 2.2), a few inches away from ISS probe.  

To simulate optical properties of biological tissue, blood-intralipid phantoms were 

utilized for this study. To create a homogenous phantom, a blood-intralipid solution was made 

by diluting a stock intralipid solution (concentration = 20%, Baxter Healthcare Corporation, 
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Deerfield, IL) with phosphate buffered saline (PBS) and adding defibrinated horse blood 

(Hemostat Laboratories, Dixon, CA). The perturbations in absorption and scattering properties 

were introduced two major methods: (a) Since the intralipid acts as the major scattering agent in 

the phantom, changing the concentration of intralipid directly introduces a change in scattering 

coefficient of the phantom; (b) Change in absorption can be achieved either by changing blood 

volume, or changing relative concentration of the absorbers (i.e., oxy- and deoxy-hemoglobin), 

by changing oxygenation levels of the phantom. De-oxygenation (reduced oxygen saturation) 

was achieved by adding yeast to the phantom. 3-4 grams of yeast was enough to deoxygenate 

a 3 liter phantom in 10-12 minute time frame. Re-oxygenation was then achieved by bubbling 

100% oxygenation into the liquid phantom. For the dynamic oxygen saturation phantoms as well 

as the static phantoms, the uniformity of optical properties was maintained using a magnetic 

stirrer at all times.  

2.2.3.2 Calibration Results  

As described earlier (see Eq. 2.6), the calculation of k1 and k2 can be achieved by 

measuring one set of optical properties using both ISS and LRS systems. However, for a robust 

estimate, k1 and k2 were calculated at various oxygenation levels using a dynamic oxygen 

saturation phantom described above. Table 2.1 shows the values of k1 and k2 obtained at 

various time points of a dynamic phantom, each corresponding to a different oxygenation level. 

Since the de-oxygenation and re-oxygenation were rapid and did not have a well-defined time 

constant, the saturation readings are spaced randomly. As can be observed from Table 2.1, the 

calculated calibration coefficients are stable across a wide oxygenation range with standard 

deviation of less than 2% about mean. Figure 2.3(a) shows one of the measured set of 

measured Rp(λ), µa (λ), and μs’(λ) and the linear regression line for probe with k1 being the y-

intercept and k2 being the slope. While the inverse calculations for an unknown sample will be 

described in the next sub-section, an illustration of the measured and fitted reflectance is shown 

in Fig. 2.3(b). The accuracy of parameters k1 and k2 critically affects the ‘goodness of fit’ in the 
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inverse calculations, and thus influences the accuracy of measured optical properties of tissues 

under interrogation.   

Table 2.1 Calculated values of k1 and k2 at different oxygenation levels of a blood-intralipid-
yeast phantom. Blue numbers represent data acquired during de-oxygenation and red numbers 

represent data acquired using re-oxygenation. 

% Sat 66 56 50 45 38 31 25 42 47 55 57 64 71 83 
Mean 
(SD) 

K1 9.89 9.89 9.92 9.95 9.97 9.99 10.04 10.04 10.03 10.02 9.97 9.90 9.89 9.84 
9.95 

(0.07) 

K2 2.73 2.78 2.8 2.77 2.76 2.73 2.73 2.79 2.74 2.71 2.75 2.89 2.81 2.85 
2.77  

(0.05) 

 

 

 

Figure 2.3 Linear fit with a least-squares regression line to determine values of k1 and k2. (a) A 
linear fit to the measured data using a phantom of total hemoglobin ([HbT]) = 45 µM and 

μs′(750nm) = 11.2 cm
-1

, giving rise to k1= 9.89 cm
-1

 and k2 = 2.81. (b) Spectra predicted (red) by 
the model and measured (blue) using a tissue phantom of [HbT] = 34 µM and µs′(750 nm)=8.31 

cm
-1

. 
 

2.2.3.3 A note on white sample measurement 

It is noteworthy to point out that k1 and k2 depend highly on the white sample 

measurement for eliminating instrumentation effects on the measured spectrum of the sample 

under examination. Incorrect measurement of the white sample will lead to serious errors for the 

fitted parameters, i.e., [Hb], [HbO], a and b in Eqs. (2.2, 2.5).  

White sample measurement can vary with the following parameters: distance between 

the fiber tip and sample surface; integration time; or light source intensity. Measuring different 

types of tissues may require a different integration times for the detector. Fig 2.4 shows the 

typical measurement geometry for the white sample. Since each reflectance curve needs to be 
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divided by a reference curve from the white sample, care should be taken to standardize the 

procedure. This can be done either by fixing the distance between the fiber and the white 

sample (Fig. 2.4) and collecting reflectance reading at various integration times to create a look-

up table, or by linearly scaling the white sample reflectance curve to match the integrations time 

to the measured tissue reflectance spectrum. The latter method is based on our observation 

that the relationship between reflectance spectra and integration times is approximately linear. 

In my dissertation research, I use the latter method.  

 

Fig 2.4 Illustration of geometry for white sample measurement: the optical fiber is placed on top 
of the pure reflectance sample (white sample), and the distance from surface is adjusted based 
on the integration time of the spectrometer. The distance should be chosen to have a relatively 

uniform filed of illumination under the probe area.  
 

2.2.4 Inverse calculation 

The inverse calculation of Eq. (1) deals with determination of tissue chromophore 

concentrations and effective scattering coefficients from the measurements of LRS taken on the 

tissue surface. The mathematical problem of inversion can be practically solved by an approach 

of function minimization using an optimization algorithm. The algorithm searches for an optimal 

set of values, as represented by x = ([Hb], [HbO], afactor, b), from the given multi-parameter 

space that best match the measured Rp() using  the least- squares analysis.  Here, afactor 

represents the scaling term for the parameter ‘a’, in Eq. (2.5). Notice that a scaling term is used 

instead of using ‘a’ as a fitting parameter, given the large magnitude of a (2.54 X 10
9
, for 10% 
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intralipid) which can lead to an unbalanced solution space. The function minimization problem 

can be mathematically expressed as follows:  

 
2

1

)()( )()()( 



M

i

predicted

ip

measured

ip RRxf  ,                        (2.7) 

where f(x) represents an objective function and needs to be minimized by finding an optimal set 

of the parameters, xopt, M is the number of wavelengths, Rp (i)
(measured)

 and Rp (i)
(predicted)

 are 

the reflectance values (at wavelength λi) measured by the optical probe and predicted by Eqs. 

(2.1) - (2.5), respectively, with the parameter set, x, to be optimized.  

Evolutionary algorithms are widely utilized in the field of optimization 
41-43

. The algorithms work 

on a population of values rather an initial guess, making the solution independent of an initial 

guess. Their inherent characteristics make them suitable to search for a global minimum, rather 

than being stuck in local minima. The ant colony optimization (ACO) algorithm, introduced by M. 

Dorigo 
44

, is a probabilistic evolutionary technique for solving computational problems. This 

basic technique was modified to suit function minimization for this study, by a previous PhD 

student, Dheerendra Kashyap 
35

. Since ACO requires the bounds to be set for the fitting 

parameters, it allows the algorithm to search for the global minimum only within the bounds.  It 

is important to make sure that the global minimum is within these bounds. A detailed 

explanation of this phenomenon can be found in Section 2.3.2.1.  

Equation (2.1) is very non-linear and spans a wavelength range of 500 nm to 850 nm.  

In order to obtain optimal fit between the measured and calculated reflectance curve, I 

incorporated a multiple-step sequence; within each step the objective function for minimization, 

Eq. (2.7), was selected somewhat differently. First, the entire spectrum (500 nm – 850 nm) was 

utilized for fitting, and the fitted values of [Hb], [HbO], afactor and b in Eq. (2.5) were obtained. 

Second, the μs() parameters (i.e., afactor and b) were further re-fitted with 15% bounds around 

the values found  in step one; in this step, a smaller spectral region of 520-590 nm that has a 

strong hemoglobin absorption band was selected for re-fitting to improve ‘goodness of fit’ for 
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[Hb] and [HbO].  Third, after refining the fitted parameters of [Hb] and [HbO], they were re- fitted 

within 20% bounds around the values found in step two while μs() values (or a and b) were 

also refitted without the 15% bounds refinement. In the third (last) step, the entire spectrum 

(500-850 nm) was utilized, leading to the finally optimized values of xopt ([Hb]opt, [HbO]opt, afactor-

opt and bopt). Overall, three fitting steps with changing parameter bounds and spectral regions 

were utilized in order to obtain an optimal fit for scattering and absorption parameters. An 

example to show comparison between the measured and fitted reflectance for blood-intralipid 

phantom is already given in Fig. 2.3(b).  It is possible to add additional absorbers to the 

problem, as will be seen in following chapters, when measurements are made on tissues 

instead of phantoms. Additionally, in certain cases, it is reasonable to assume that scattering 

parameter ‘b’ is a constant, and fit only for ‘afactor‘ to obtain μs’. Further discussion on the bounds 

selection and robustness of the algorithm are presented in Section 2.3.1. 

2.3 Testing and Validation 

2.3.1 Validation of LRS method on tissue phantoms  

In order to validate the algorithm for absolute quantification, I created dynamic tissue 

phantoms (explained in Section 2.2.3.1) and performed the measurements with both LRS 

system and a tissue oximeter (ISS Oximeter), which was used as a gold standard device for 

comparison.  Figure 2.5(a) shows comparisons between the values obtained from ISS tissue 

oximeter and those quantified with the algorithm, when a change in oxygen saturation (O2 Sat) 

was achieved by adding yeast to the liquid phantom. The measurements were made at 12 

different time points in the O2 Sat range of ~20%-80% during the oxygenation and 

deoxygenation process, as described previously in Section 2.2.3.1. It is clear from Fig. 2.5(a) 

that oxygen saturation(O2 Sat) values measured by both modalities are very consistant in the O2 

Sat range of 20%-80%. The absolute errors were also calculated at each data point (n=12) and 

are plotted in Fig. 2.5(b): average absolute errors for O2 Sat, [Hb] and [HbO], along with 

standard error of mean (SEM), were 3.0±0.7 %, 0.9±0.2 M, and 0.9±0.2 M, respectively. 
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Similar experiments were repeated several times, and the results were very similar to those 

seen in Figs. 2.5(a) and 2.5(b). 

 
Fig. 2.5 Comparison of parameters quantified from the LRS system and ISS oximeter: (a) 
oxygen saturation values obtained from ISS oximeter (black) and LRS system (red). (b) 

Average absolute errors in three calculated parameters of O2 Sat (3.0±0.7%), [Hb] (0.9±0.2 M) 

and [HbO] (0.9±0.2 M), with respect to those given by ISS oximeter. The error bars indicate 
standard error of mean. (c) Changes in [HbT] and μs’ (at 750 nm and 830 nm) observed during 

the cycle of oxygen saturation, as shown in (a). (d) Comparison of μs’ calculated at 830 nm 
using ISS oximeter (black) and LRS system (red). 

 
 

The reasons for limiting the comparison in the O2 Sat range of 20% - 80% are as 

follows: (1) The ISS oximeter being used as a gold standard device in this study is a tissue 

oxygen saturation monitoring apparatus that is known to work well in the chosen physiological 

range 
45,46

. The errors in measurement beyond this range tend to increase, contingent upon one 

of the parameters (either [HbO] or [Hb]) approaching zero under either 100% or 0% hemogobin 

oxygen saturation. (2) Optical measurements through fiber probes interrogate a 3-dimensional 

volume with a banana pattern. The interrogated tissue volume in general includes both blood-
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perfused vessels and bloodless tissue background. The mixture of these two components will 

create a partial volume effect, leading to an averaged O2 Sat value lower than a regular arterial 

O2 Sat, and most likely to be in the region around 80% or lower. (3) It is almost physiologically 

impossible to have any  value of O2 Sat lower than 20%. Therefore, it is reasonable to select the 

range of vascular O2 Sat to be 20-80% used for algorithm validation.                  

The reliability of the LRS device was also evaluated by comparing the changes in total 

hemoglobin concentration, [HbT], and μs’ for each set of the above measurement. Since yeast 

does not induce much change in either [HbT] or μs’, these two parameters should ideally remain 

constant when the oxygenation state is altered.  Figure 2.5(c) shows the measured values of 

[HbT] and μs′ ( at 750 nm and 830 nm) with changing O2 Sat. As expected, those values are 

found to be constant across the saturation range of 20-80% with small SEMs as [HbT] = 28.0 

±0.4 M, μs’ (750 nm) = 10.46±0.05 cm
-1

, and μs’ (830 nm) = 9.34±0.04 cm
-1

.  

Another set of experiments were conducted to test the consistency of μs’ when Intralipid 

volume was varied from 75 ml to 170 ml within the given liquid phantom volume. Figure 2.5(d) 

shows a comparison of values obtained by the ISS oximeter and LRS system at 830 nm. The 

mean difference (with standard deviation) between the scattering values obtained by two 

methods was calculated to be 0.02±0.13 cm
-1

,  demonstrating almost perfect match between 

the outcome of two methods. 

2.3.2 Algorithm Testing  

In this section, I will evaluate two practical aspects of a data fitting and optimization 

algorithm. First, I will address the effects of changing bounds of individual fitting parameters on 

the final outcome of the optimization algorithm. Second, I will compare the three-step fitting 

routine described here, versus single-step fitting routine, to highlight the significance of using 

three-step process.  

 

2.3.2.1 Effects of different bounds on optimization outcome 
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As stated above, the ant colony optimization (ACO) requires upper and lower bounds to 

be given for each variable implicitly used in Eq. (2.7) when we search for the optimal set of 

absolute values of [HbO], [Hb], afactor, and b, where afactor, and b account for µs’ seen in Eqs. 

(2.4) and (2.5). ACO allows the algorithm to arrive at the global minimum only within the given 

bounds. While the bounds that I use in my data analysis are reasonable based on the tissue of 

interest, the final outcome of fitted parameters of xopt are in theory affected by the selected 

bounds. It is therefore important to examine whether the global minimum for Eq. (2.7) exists 

outside the selected bounds or how much the fitted results depend on the selection of different 

bounds. To answer these questions, I investigated if expanding the bounds would affect the 

results. Specifically, I chose three different ranges of bounds for all four parameters of [HbO], 

[Hb], afactor, and b as follows: (1) the original set of bounds that were used in the current data 

analysis presented in Section 2.3.1, (2) a modified set of bounds broader than the original set, 

(3) and an infinite set of bounds that represent the values much beyond their physiologically 

possible limits.  

The normal levels of hemoglobin concentrations in pure blood are up to 10.7 mM in 

human adults
47

; in general NIRS measures vascular hemoglobin concentrations in tissue 

vasculature, which are much lower than those in pure blood
48

. For comparison, the three 

regions of bounds for both [HbO] and [Hb] are tabulated in Table 2.2. It is also well known that 

the range of s’ values for biological tissues is from 1-40 cm
-1

, and might extend up to 200 cm
-1

 

under extreme conditions in a highly light-scattering medium, such as white matter in brain 

tissues. I also included three regions of bounds for s’, afactor and b in Table 2.2, where a = (2.54 

X 10
9
)/afactor and b are associated with s’ through Eqs. (2.3) - (2.5).   

As seen in Section 2.2.2, Eq. (2.1) is coupled with Eqs. (2.2) - (2.5) and is very non-

linear with a broad spectral span from 500 nm to 850 nm.  In order to obtain an optimal fit 

between the measured and calculated reflectance curve, I have incorporated a three-step fitting 

sequence. Each of the three bounds (for all fitting parameters) listed in Table 2.2 was initially 
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set as broad bounds for step-1 fitting routine; the fitting bounds for step-2 and step-3 sequence 

were determined according to the fitting outputs in step-1, as explained in Section 2.2.4. The 

criteria to stop the fitting iterations at each step were defined either by a chosen number for 

maximum iterations or when a desired value of the objective function (i.e., eq. (2.7)) was 

achieved. I evaluated the fitting efficiency by comparing three output parameters by the end of 

fitting routine: (1) the number of total iterations (niteration), (2) the actual value of the objective 

function (vobj), and (3) final fitted [HbO] values. The numbers of minimum and maximum 

iterations were chosen to be 20 and 50 during step-1 fitting, 20 and 300 for step-2 and step-3. 

The criterion value of vobj to end the iterations was chosen to be 2, 0.01, and 0.05 during the 

three steps of fitting, respectively.  

Table 2.2. Three sets of parameter bounds that are chosen to study their effects on the 
performance of fitting routine 

 
[Hb], [HbO] (mM) afactor= 2.5410

9
/a b 

s’ =a-b
 (cm

-1
) 

(=750 nm) 

upper 

bound 

lower 

bound 

upper 

bound 

lower 

bound 

upper 

bound 

lower 

bound 

upper 

bound 

lower 

bound 

Original 0.9 0.0001 1000 0.01 2.6 2.3 1.810
4
 2.510

-2
 

Modified  3 0.0001 1000 0.1 3.0 1.7 9.810
4
 1.810

-3
 

Infinite  20 0.0001 100000 0.01 10 0.1 3.910
10

 1.310
-25

 
 

It was found that by increasing the bounds, the number of iterations increased significantly, 

as illustrated in Table 2.3, which was created using one of the data points shown in Fig. 2.5(a) 

as an example. Five more data points with different O2 Sat values were also utilized for fitting-

routine testing; the results obtained were similar to results listed in Table 2.3. It is also clear 

from this Table 2.3 that the number of iterations increases significantly when the  bounds 

become broader, from the original bounds to the modified bounds and then to the infinite 

bounds. The actual objective function values obtained when the fitting was complete were often 

correspondingly higher in most cases using either modified or infinite bounds than the original 

bounds.  
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Table 2.3. A comparison of number of iterations, niteration, and value of the objective function, vobj, 
for a specific O2 Sat data point using three different bounds 

 

 Fitting step 1 Fitting step 2 Fitting step 3 

niteration vobj niteration vobj niteration vobj 

Original 
bound set 

21 0.11 21 0.001 21 0.046 

Modified 
bound set 

86 0.94 300 0.015 22 0.050 

Infinite 
bound set 

300 8.01 300 0.147 300 0.153 

 

 

Fig 2.6. Comparison of fitted [HbO] values obtained using three different bounds with 
the expected values (solid circles) given by ISS oximeter. The six data points were 

taken from the phantom study presented in Fig. 2.5(a). Here, ‘Mod’ represents the case 
with modified bounds, ‘Inf’ represents the case with infinite bounds, ‘ISS’ represents the 
expected values determined by ISS oximeter, and ‘Mean Org’ represents mean values 

obtained after 15 fitting-routine runs with original bounds; error bars mark the 
respective standard deviations. 

 
 

Furthermore, to directly compare the results with different bounds, a set of fitted [HbO] 

values are shown in Fig. 2.6 using 6 different O2 Sat values. This figure shows [HbO] values 

obtained using all three fitting bounds, plotted along with the expected values determined by the 

standard ISS oximeter.  The fitted results may vary somewhat each time when the fitting routine 
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runs due to the nature of least squares fitting. I executed the 3-step fitting routine 15 times using 

the original bounds to create a mean fitted value of [HbO] with standard deviation, as 

represented by the black vertical bars in Fig. 2.6.  The results shown in this figure confirm that 

the fitted [HbO] values are in good agreement with the expected ones when either original or 

modified bounds were used. The infinite bounds are still able to provide us with reasonable 

fitted parameters with a certain degree of under-estimation, as seen in the figure, where the 

fitted results lie slightly below the range of mean fitted [HbO] values obtained by either the 

original or modified bounds.  

Overall, this part of study demonstrates that the 3-step fitting sequence based on ACO in 

my earlier fitting routine with physiologically determined bounds should be robust to create 

reliable results. Selections of different upper and lower bounds have insignificant effects on the 

final output of fitted parameters, which establishes this implementation of ACO as a global 

optimization routine in a true sense.  

2.3.2.2 Comparison of three-step fitting with single-step fitting 

My optimization algorithm is designed to vary wavelength ranges when executing the 3-

step fitting sequence: in step 1, 500-850 nm was used with bounds as given in Table A1; in step 

2, the wavelength range was narrowed down to 520-590 nm with restricted scattering bounds 

(15% variation around the fitted a and b parameters); in step 3, the spectral range returned to 

500-850 nm with restriction in [Hb] and [HbO] bounds (20% variation around the fitted values 

of [Hb] and [HbO] given in step 2) but without restriction in scattering bounds (i.e., having the 

same bounds for afactor and b as the ones used in step 1). Next, I compare and evaluate the 

difference in optimization outcome between 3-step fitting and 1-step fitting in the wavelength 

range of 500-850 nm.  

Single-step fitting routine was utilized to fit the same data set as those in Section 

2.3.2.1, with the same bounds listed in Table 2.2. The maximum number of iterations was set to 

600, and the minimum objective function value, vobj, was set to be 0.05, as in case of 3-step 
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fitting. It was found that the objective function could not converge to the preset vobj within 600 

iterations for all three kinds of bounds. In the case of using infinite bounds, the results were not 

usable since the output values of objective function were as high as (up to) 7. When the original 

and modified bounds were employed, the objective function values were around 0.1, but the 

[HbO] values were overestimated in most cases. Careful inspection on the fitted curves in the 

wavelength region of 500-600 nm revealed that the fitting was not adequate in that range, 

although the overall objective function values were relatively low.  

To summarize, in this implemention, 1-step fitting is not satisfactory or adequate, 

particularly with infinite bounds. The accuracies of fitting parameters are improved gradually as 

3-step fittings are performed: step-1 fitting routine results in a set of parameters close to the 

expected set in the overall spectral range, but not good enough as the final output. Step-2 fitting 

provides us with more accurate values of [HbO] and [Hb] based on 500-600 nm spectra. Step-3 

refines the fitting in the overall wavelength region again (500-850 nm) and outputs the best set 

of fitting parameters. 

One way to improve the accuracy of 1-step fitting may be weighted-fitting with more 

weight in the 500-600 nm range. The results of this study indicate that with the current fitting 

method, a good set of fitting parameters can be more accurately and quickly achieved with prior 

knowledge on the physiological bounds of the measurement. With tighter and narrower bounds, 

the speed and accuracy of the fitting algorithm increases. Also, computational cost or speed 

may be improved if parameter b is assumed to be constant (b = 2.4), as previously determined 

for intralipid
38

, reducing a major dimension in the solution space.  

2.4 Summary and Discussion  

In this chapter, I developed and evaluated a quantification method that can be used to 

determine tissue optical properties based on LRS with the use of small S-D separation fiber 

probes. The quantification approach originates from Zonio’s reflectance model 
23

 for absolute 

calculation of [Hb], [HbO], and μs’. This method utilizes the wavelength range of 500-850 nm 
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and obtains the absolute values of [Hb], [HbO], and μs’ by least-squares regression using a 

multi-step sequence, optimization approach. This method was evaluated by comparison with a 

commercial oximeter (ISS, inc.) by performing laboratory experiments on homogenous liquid-

tissue phantoms, both static and dynamic, and the results were found to be in close agreement 

with chosen gold standard. A systematic calibration procedure for finding the system 

parameters, k1 and k2, is also described.  

Previously published studies
29,34,49

 utilized the same reflectance model but a different 

mathematical expression (i.e., a linear function) for the spectral dependence of light scattering
23 

 

when investigating skin properties. My observation is that if adequate bounds are applied for the 

optimization function, similar results of fitted [Hb], [HbO], and μs’ could be obtained using either 

a linear or Mie function for light scattering pattern. However, the goodness of fit in that case is 

best governed by the true scattering profile of the tissue under investigation.   

In general, the volumes measured by ISS and LRS are not necessarily comparable, 

depending on the places where the probes are placed. The ISS probe measures the optical 

properties of the medium 1-2 cm below the sources and detectors which are usually separated 

ranging from 2.0 cm to 3.5 cm.  The LRS probes usually have a S-D separation of several 

hundred microns and thus sense the optical properties 0.5-1.5 mm right beneath the probe tip. 

Since the tissue phantom was constructed using homogenous intralipid solution mixed with 

blood, and continuously stirred through the measurement, the phantom to be measured by both 

ISS and LRS was completely uniform throughout the container. Thus, the optical properties of 

the phantom would not vary when being measured in different interrogation volumes; the results 

obtained from both modalities are comparable and appropriate, as shown in Fig. 2.5(a). 

It seems intuitive that standard deviation would be a valuable parameter to compare the 

results from both modalities, i.e., ISS and LRS. In the case for Fig. 2.5, however, standard 

deviation could not be obtained for Figs. 2.5(a) and 2.5(c) because these readings were single 

point measurements as explained below. The blood de-oxygenation (controlled by yeast) and 
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re-oxygenation (controlled by oxygen bubbling) processes were dynamically varied, i.e., the 

values of optical properties under study were changing as a function of time.  Only one 

simultaneous reading could be taken at one specific oxygenation level during de-oxygenation or 

re-oxygenation process. Similar experiments were repeated several times, but each time it was 

impossible to take the readings at the exact oxygen saturation level, O2 Sat (%).  Instead, the 

average errors between the two modalities could be quantified by collectively taking into 

account all the readings at different levels of O2 Sat (%), along with the standard error of mean 

(SEM) plotted for each parameter in Fig. 2.5(b). 

The absolute quantification method of evaluating LRS provides insight into structural 

and functional changes happening inside the tissue and can be applied to various clinical 

applications, such as for cancer diagnosis
50

 and neurosurgery guidance
19

 as well as perhaps for 

neuro-functional monitoring, as demonstrated by application of this technique, published in 

Neuroimage
51

. In my dissertation, I applied this method for cancer diagnosis, both in animal 

models and in human tissue, as will be described in Chapters 4-6. In the next Chapter 3, I will 

describe the second technique/modality that I used in addendum to LRS to strengthen the 

diagnostic ability. 
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CHAPTER 3 

 
METHOD II: AUTO-FLUORESCENCE LIFETIME SPECTROSCOPY 

3.1 Introduction  

 Fluorescence has been widely utilized in biological sciences including biochemistry and 

biophysics among other disciplines, since its discovery in later part of the 19
th
 century. In 

biological tissues, there are various chemical compounds that re-emit light after excitation with 

light. These chemical compounds are called fluorophores, a lot of which have been studied 

extensively. Auto-fluorescence is simply a term used for fluorescence originating from 

endogenous fluorophores (i.e., those which are intrinsic to the biological tissue, as opposed to 

injectable contrast agents), which include extracellular structural proteins like collagen and 

elastin, as well as components of intracellular metabolism like NADH, flavins, porphyrins, 

lipopigments among others 
27,52

. Among a plethora of biological applications of fluorescence, 

fluorescence spectroscopy and fluorescence lifetime measurements have also been studied by 

various researchers for application to tissue differentiation in various pathological conditions 

including cancer diagnosis in clinical as  well as pre-clinical setting
26,53-60

. Fluorescence 

spectroscopy is relatively simpler, and involves measuring the emission spectrum followed by a 

specific photo-excitation, whereas fluorescence lifetime measurement involves measuring time-

resolved fluorescence in nanosecond time range, using ultrafast sophisticated hardware 

systems. Fluorescence spectroscopy although a sensitive technique, has a few limitations like 

high false positive rates as well as lack of its ability to discern various fluorophores due to 

overlap in their emission spectra 
27

. Fluorescence lifetime, on the other hand, can provide 

improved fluorophores specificity, and has a potential to assess local environment through 

changed in radioactive and non-radioactive decay constants
27

. Overall, time resolved 

measurements are richer in information than the steady-state measurements
61

.  
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As mentioned above, fluorescence techniques have been applied to various cancer types. 

Specifically, fluorescence lifetime has been applied to differentiate cancerous tissue from 

healthy tissue in breast tissues
58

, colon
62

, and brain 
63

, and other human and animal biological 

tissues
27,64

. However, application of fluorescence spectroscopy to prostate tissue has been 

limited
15

, with no publications exploring use fluorescence lifetime as an endogenous contrast.  

Given the promising nature of the technique which provides a contrast that is 

complementary in nature to that of LRS described in Chapter 2, auto-fluorescence lifetime 

spectroscopy (AFLS) was chosen as the second modality to enhance prostate cancer detection. 

In this chapter, initially  I will briefly explain the principles of fluorescence, and time-domain 

measurements using a time correlated single photon counting (TCSPC) system, then describe 

the design of the custom-built (ISS Inc., IL, USA) fluorescence lifetime system that is employed 

for this study, and finally describe the analysis algorithms, followed by testing and validation of 

the device.   

3.2 Theory and Principles 

3.2.1. Fluorescence  

 Incandescence and luminescence are two ways in which light can be observed from an 

object. While incandescence refers to light produced as a result of high temperatures (for 

example, Sun, electric bulb), luminescence refers to ‘cold light’ that can be emitted at 

lower/regular temperatures. In the latter case, a source of energy excites an electron to move to 

higher energy levels, and during relaxation process, light energy is produced based on the 

energy gap between the excited and ground states. Luminescence can be of various types, 

based on the source of excitation, namely, bioluminescence (eg. firefly), electroluminescence 

(LCD screen), photoluminescence, etc. Fluorescence is a subtype of photoluminescence, which 

is a luminescence arising from direct photoexcitation of emitting species. Fluorescence, by 

current definition, is “spontaneous emission of radiation (luminescence) from an excited 
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molecular entity with retention of spin multiplicity”
65

. There are other types of 

photoluminescence like phosphorescence, which are out of scope for present study.  

The first observarrtion of fluorescence phenomenon was published by J.F.W. Herschel in 1845, 

using quinine solution. However, the term “Fluorescence” was coined by G.G. Stokes in his 

paper “On the change of Refrangibility of light”, in 1852
66

, after he observed blue emission from 

quinine solution that was irradiated using ultraviolet (UV) light.  

 

Fig 3.1 An illustration of Stokes’s experiment, showing no effect on the solution of quinine when 

irradiated by the visible spectrum, but emission of blue light when irradiated with UV light
67

. 

Fluorescence phenomenon is best explained by the use of a Jabloknski energy 

diagram, a typical form of which is represented in Fig. 3.2. In the figure, S0,S1, and S2 represent 

the ground, forst and second singlet states, respectively. Whithin each state, a number of 

vibrational levels can exists, depicted by 0,1 and 2 in S0. Once a fluorophores is excited with 

appropriate energy photons, the electrons in the singlet ground state jump to a higher state (S1, 

S2) in a time scale of about 10
-15 

seconds. There is internal conversion followed by absorption, 

in a time frame of about 10
-12 

sec, during which in most cases the electron relaxes to the lowest 

vibrational level of S1. Finally, when the electron relaxes to the ground state, which happens in 

nanosecond range (~10
-8 

sec), it emits a photon with an energy less than the incident energy, 

i.e. a higher wavelength photon. When the photon relaxes to the ground state, it may return to a 

higher vibrational level, and then reach thermal equilibrium. Relaxation to higher vibrational 
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states also causes a spread in the emission spectrum, which is usually a mirror image of the 

excitation spectrum.  

 

Fig. 3.2. A form of Jablonski diagram, illustrating the phenomenon of fluorescence and 
phosphorescence. The diagram has been modified from reference

61
.   

 

 

Fig. 3.3 Excitation-emission spectra of Quinine (Image Source: 

http://www.olympusconfocal.com/theory/fluoroexciteemit.html).  

http://www.olympusconfocal.com/theory/fluoroexciteemit.html
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A typical excitation-emission spectrum for quinine is shown in Fig 3.3. There is a lack of 

symmetry in absorption and emission spectra, in this case, as the singlet state S2 is involved 

too. Since the fluorescence emission results only after internal conversion, i.e. after relaxation to 

singlet state S1, the emission spectrum is always a mirror image of the absorption spectra for 

first singlet state only
68

. The difference in the excitation and emission energies is so-called 

stokes shift as this phenomenon was first observed by Sir G.G. Stokes 
66

.  

3.2.2 Fluorescence lifetime 

As mentioned earlier (Fig. 3.2), the fluorescence phenomena takes place at a time 

scale of nanoseconds, typically in 10
-7 

to 10
-9 

sec. If rather than a single molecule, a bulk of 

fluorophore substance is excited, the fluorescence emission is rather a stochastic process, with 

a decay of fluorescence emission intensity as a function of time. Also, not all the electrons that 

are excited follow the radiative decay, i.e. some also follow non radiative decay to the ground 

state. This difference also defines the quantum efficiency of a fluorophore:  

 r

r nr

Q



 

   (3.1) 

Where, Q is the quantum efficiency, Γr is the emissive rate of fluorophore, and Γnr is the 

rate of non-radiative decay. The total decay rate is given by defined by the sum of radiative and 

non radiative decay rates, i.e., Γ + Γnr. Thus, for an initial population (no) of fluorophores, the 

decay can be expressed as,  

 
( )

( ) ( )r nr

dn t
n t

dt
     (3.2) 

 Where, n(t) represents number of excited fluorophores at a given time instant t. Solving 

Eq. (3.2) results in first order kinetics describing the exponential decay of excited population, 

given as: n(t) = noexp(-t/τ); where τ is the lifetime of the decay [τ = (Γ + Γnr)
-1

]. Since n(t) is 

directly proportional to the intensity, I(t), the above expression can also be written as:  
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 0( ) exp( / )I t I t     (3.3) 

As seen in Eq. (3.3), fluorescence decay for a fluorophore is typically described by a 

single exponential. However, in case of multiple fluorophores, more complex models can be 

used, which will be addressed later in section 3.3. Fluorescence lifetime is a representative of 

average time spent by a fluorophore in the excited state, and is a very important characteristic 

of a fluorophore, as it is a function of the environment in which the fluorophore resides.   

However, given the timescale of the process, measuring fluorescence lifetime is not 

trivial. Next section will describe one of the most robust methods available for lifetime 

measurement, that is, time correlated single photon counting (TCSPC).  

3.3 Instrument Design and Description 

3.3.1 Time-domain fluorescence measurement using TCSPC 

 

Fig. 3.4. Illustration of principle of TCSPC (Image source: TCSPC Handbook, 4
th
 Ed. Becker 

and Hickl GmbH)  
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The principle of TCSPC is illustrated in Fig. 3.4. TCSPC detection involves 

measurement of timing of a single photon upon excitation by very narrow pulse of light. 

Typically, the system is configured such that less than one photon per laser pulse is emitted, 

and as a result there are many empty periods. Each arriving photon is stored into a memory 

location corresponding to its arrival time. As seen in 3.4, after many photons, a histogram based 

on the arrival times is constructed, which represents the lifetime of the fluorophore. The total 

acquisition time is determined by the concentration and quantum efficiency of the fluorophore, 

the power of the excitation source, and the desired signal to noise ratio. 

 

Fig. 3.5. A simplified block diagram representation of the TCSPC based lifetime system 
employed in this study. 
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3.3.2. System components and description 

A block diagram of the TCSPC system is shown in Fig. 3.5. This system was custom 

built by ISS, Inc. (ISS Inc., Champaign, IL, USA) to do measurements with an optical fiber probe 

in reflectance geometry. The system essentially consists of a picosecond pulsed 

supercontinuum laser source (SC - 450, Fianium Inc., Eugene, Oregon) , with a 5 picosecond 

(ps) pulse width and a broadband spectrum (~ 440 nm - 2 μm) at a repetition rate of 20 MHz. 

The laser is coupled to an excitation chamber, which contains a 5-slot filter wheel with excitation 

filters. The excitation beam is passed through the desired excitation filter, and coupled though  a 

variable neutral density (ND) filter into the excitation channel of a multi-furcated fiber optic probe 

using an SMA connector and a collimator. The resulting fluorescence is collected through 

emission channel of the multi-furcated fiber optic probe and is coupled to emission chamber, 

also through an SMA connector and a collimator. The emission chamber also contains a 5-slot 

filter wheel, where emission filters are installed. The filtered emission light is directed to a 

cooled photomultiplier tube (PMT) detector (PMC 100, Becker & Hickl, GmbH), which is 

sensitive to a spectral range of 185 – 820 nm.  The PMT has an excellent TCSPC instrument 

response of <200 ps FWHM and is controlled through a detector control card (DCC-100, Becker 

and Hickl, GmbH) which controls the cooling and PMT (Fig. 3.6(c)) gain and has overload 

protection.  

Individual photons are detected using the PMT followed by the pulsed excitation. The 

detection is achieved through a TCSPC card (SPC-130, Becker and Hickl, GmbH). The TCSPC 

card (Fig. 3.6(b)) has multiple essential components included onto a single board, as shown in 

Fig. 3.5. These are two constant fraction discriminators (CFD), and a time to amplitude 

convertor (TAC), programmable gain amplifier (PGA), analog to digital convertor (ADC), and 

window discriminator (WD). Since the working of this module is the heart of TCSPC detection, 

each of these is will be described in further detail below.   
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The function of a CFD is to accurately detect the timing of each photon pulse, 

irrespective of the amplitude. Since there is a lot of jitter in the amplitude of the pulse, which is 

so called “gain noise” and is inherently present in all PMT detectors, a simple thresholding 

approach would be inaccurate. The working of a CFD is illustrated in Fig. 3.6 (a), where the 

input pulse is first split into two, one of them is delayed, and then a difference is obtained 

between the original and the delayed pulse. Zero crossing point is then considered as the time 

of arrival of pulse, which is essentially independent of the pulse amplitude.  

 

Fig. 3.6. (a) CFD detection scheme; (b) SPC-130 TCSPC card; (c) PMT (PMC-100) with DCC-
100 controller card (Source: TCSPC Handbook, 4

th
 Ed. Becker and Hickl, GmbH).  

 
The two CFD’s each give a pulse to TAC, one of which acts as ‘start’ pulse and the 

other as ‘stop’ pulse. When TAC receives start pulse, it starts charging a capacitor, till the ‘stop’ 

pulse is received. SPC-130 works in reverse start-stop configuration, where ‘start’ pulse is given 

only when a photon is detected by the PMT, and the voltage is decreased from maximum, till 

the next excitation pulse is received. The TAC signal is amplified by the PGA and sent to ADC 

for digital conversion. The output is the appropriately stored in the memory based on its arrival 

time. A window discriminator is used to check for false reading by limiting the range of detected 

voltage. Signals outside the range are suppressed by WD and the TAC is reset to maximum 

value.  

(a) 

(c) 

(b) 
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The TCSPC card is installed in the desktop PC, which is also interfaced to rest of the 

system (excitation/emission chambers). The system is operated using a software package 

provided by the manufacturer (Vinci, ISS, Inc.).  

3.3.3 Wavelength selection 

In this study, I utilized one excitation filter, with center wavelength 447 nm, and 

bandwidth 60 nm, also written as 447(60) nm, and four emission filters, namely, 532(10) nm, 

562(40) nm, 632(22) nm, and 684(24) nm.  

 

Fig. 3.7. The excitation and emission spectra of endogenous fluorophores, with the targeted 
fluorophores highlighted (Figure modified from 

52
).  

 
As can be observed from Fig 3.7, the specified excitation band excites three 

endogenous fluorophores: lipo-pigments, porphyrins and flavins to various degrees. On the 

emission side, each vertical line represents the center wavelength of the filter used. At each 

given emission wavelength, multiple (or in most cases 2) fluorophores display emission bands.  

The choice of the wavelength combination was governed by a few factors:  

a) Longer wavelengths allow deeper penetration into the tissue, thus providing better 

depth sensitivity, which is often a concern while assessing tissue margins.  
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b)  A preliminary evaluation with ex vivo tissue from a prostate cancer animal model 

showed fluorescence emission peaks as well as good lifetime signal with excitation 

at ~450 nm (data not available).  

c) A pilot study on subcutaneous prostate cancer rat model revealed excellent 

contrast between cancer and benign tissue (data presented in Chapter 4).  

d) The emission wavebands cover multiple combinations of fluorophores. Since this 

region is relatively unexplored for prostate tissue, a wide coverage was also an 

experimental decision.  

Therefore, the excitation filter wheel contains only one filter, and remains static for the 

duration of experiment, while data were sequentially acquired by rotating the emission filter 

wheel after each lifetime curve acquisition. The automation and control for data acquisition was 

achieved through Vinci software (ISS, Inc.).  

 

3.4. Data Processing and Analysis  

Eq. (3.3) describes typical fluorescence decay of a fluorophore. With such a model, a 

non-linear least square approach is typically used to fit the exponential model to the measured 

data, obtain value of the lifetime constant, τ. However, biological tissues are more complex than 

a standard fluorophore dye, such that there can be multiple fluorophores that can be excited 

within the tissue with same excitation. In such cases, a multi-exponent model can be utilized to 

model the fluorescence decay, a general form of which is given by Eq. (3.4)  
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Where ai is the amplitude of lifetime component τi, and fi represents the fractional 

contribution of i
th
 lifetime decay component. The constant ‘c’ was added in Eq. (3.4), to account 

for baseline (DC) noise. Equations (3.5-3.6) describe the calculation of integral-intensity-

weighted or fractional-weighted mean lifetime (τm), which is the most common way of 

representing mean lifetime in presence of multiple exponents. The above model was utilized for 

data analysis, and non-linear least square curve fitting using trust-region optimization method 

was implemented in Matlab (The Mathworks, Inc., USA).  

 

Fig. 3.8 Lifetime  Data processing flow: (a) Raw data from ex vivo prostate tissue; (b) Data 
Cropped to the peak, and normalized from 0 to 1; (c) Result of data fitting to a two component 

exponent model (i = 2 in Eq. (3.4)), with residuals plotted at the bottom.  
 
 

3.4.1 Analysis algorithm 

The raw data was cropped till the peak intensity value, and the resulting decay cuve 

was normalized between 0 and 1. This normalization process was done to remove the effects of 
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fluctuations or changes in laser intensity on the obtained lifetime values in my longitudinal study. 

The normalized data was then fitted using multi-exponent model, described by Eq. (3.4). A 

stepwise graphical representation of data processing using a two component model using one 

of human ex vivo prostate lifetime reading is presented in Fig. 3.8.  

There were two important findings in the data processing routine. First, the addition of a 

constant term in Eq. (3.4) is essential to account for the baseline noise. In absence of constant 

term, the model tries to compensate for the baseline noise by the exponent terms, which often 

leads to features in the residual, as can be seen from Fig. 3.9. Although the curves overlap well, 

features observed in the residual indicate an inadequate fit. The error also leads to unstable 

values of longer lifetime component (τ2), especially for noisy data.    

 

Fig. 3.9. Effect of adding constant ‘c’ in the two exponent model: (left) fitting without a constant 
term; (right) fitting with constant term included. The difference is more evident in the residual. 

 

The second important finding for data fitting is the selection of two-exponent model. 

Looking at Fig. 3.7 again, it can be observed that all chosen emission bands predominantly 

cover two fluorophores, hinting towards the use of a two component exponent model biological 

tissues. However, to establish this fact, three different models were compared, including single-

exponent (Exp 1), two-exponent (Exp 2), and three-exponent (Exp 3) models. To do so, 16 

lifetimes curves from ex vivo human prostate tissue were selected at 532 nm emission, and 
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each curve was analyzed using all three exponent models. To assess the goodness of fit, three 

metrics were calculated for each fit, names, sum squared error (SSE), coefficient of 

determination (R-square) and adjusted R-square. Mean and standard deviation obtained using 

all 16 curves for 532 nm is plotted in Fig. 3.10.  

 

Fig. 3.10. A comparison of three exponent lifetime decay models with one, two or three 
exponent terms included. The error bars represent standard deviation across 16 curves.   

 

It was observed that Exp 2 showed significant improvement over Exp 1 whereas, Exp 2 

and Exp 3 were comparable, as indicated by all three goodness of fit parameters. Since Exp 2 

and Exp 3 are comparable, I decided to choose Exp 2 for data analysis, to avoid overfitting, and 

also to be consistent with theory observed in Fig. 3.7. Similar results as shown in Fig. 3.10 were 

also obtained for other three emission wavelengths, i.e. 562 nm, 632 nm and 684 nm.  

To summarize, it has been established that a two-exponent model is an adequate fit for 

the designed excitation-emission wavelength combinations, and explains the obtained curves 

well. For each lifetime curve, five parameters will be extracted, namely, a1, τ1, a2, τ2, and τm, as 

decribed by Eqs. (3.7-3.8) below:   
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3.5 Device Testing and Validation 

 In section 3.4, a data processing routine was established, which fits the tissue lifetime 

data very well. However, the accuracy of the lifetimes measured still needs to be validated. In 

this section, the testing procedure will be described and the results will be presented.  

 The best way validate the system is to evaluate it against a known standard. This was 

achieved by establishing a doubly scrutinized test protocol. Two standard dyes with well 

separated lifetimes were chosen, and the lifetimes were compared with the lifetimes obtained 

with the AFLS system described here. Also, to add one more standardization aspect, same 

solutions were also measured with an independent gold standard fluorescence lifetime 

measurement system (Courtesy: Dr. Ignacy Gryczynski and Dr. Zygmunt Gryczynski at The 

University of North Texas Health Science Center and Texas Christian University, respectively).  

 

Fig. 3.11. Validation results obtained using reference dyes measured by all four emission filters 
(F1 = 532 nm, F2 = 562 nm, F3 = 632 nm, and F4 = 684 nm). TCU represents the readings 
taken at TCU using the Fluotime system, and F2_DC represents the deconvolved response 
from filter F2. The numbers below represent % error compared to the reference lifetime from 

literature. Y-axis represents mean lifetime in (ns).    
 

The details of this experiment were as follows: two standard fluorescence dyes, one 

with longer lifetime (Fluorescein, 4.0 ns), and one with shorter lifetime (Rhodamine B, 1.74 ns)
69

 

were selected. These dyes were dissolved in water, and a solution of each was prepared. First, 

a part of this solution was measured by fiber-based AFLS system in reflectance geometry by 
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placing the solution in a black well-plate. The measured integral-intensity-weighted mean 

lifetimes calculated using a two component exponent model using all four filters (F1 to F4) are 

shown in Fig. 3.11. Considering the emission spectra of these dyes, F1 & F2 in case of 

Fluorescein and F3 & F3 in case of Rhodamine are closest to the peak, so should present the 

estimate with best signal to noise ratio. They are highlighted in Fig. 3.11.  As can be seen, the 

maximum errors were less than 7% in all cases. These results were also confirmed by 

measuring a part of the same solution with another commercial TCSPC system (FluoTime 200, 

PicoQuant GmbH, Germany), using 1 mm thick cuvette and front-face geometry as described 

in
70

. The system is equipped with a micro-channel plate (MCP) detector
71

 and excitation 

wavelength is selected from tunable laser system (Fianium SC400-4) with opto-acoustic filter 

system. This data set was analyzed using a commercial FluoFit software package (PicoQuant 

GmbH). The calculated integral-intensity-weighted lifetimes were 4.02±0.03 ns and 1.67±0.03 

ns, for Fluorescein and Rhodamine B, respectively (TCU in Fig. 3.11), displaying an error of 

less than 5%. Overall, the deviations between measured lifetimes by our AFLM system and the 

PicoQuant unit were within 10% of each other. 

3.4.1 Instrument response function of TCSPC system 

While analyzing fluorescence lifetime data using any system, instrument response 

function (IRF) is one important aspect that should be considered. So far in my analysis, I have 

ignored this factor, for a good reason, that will be described in this section.  

One of the advantages of TCSPC systems lies in the fact that its IRF is not limited by 

the IRF or single electron response (SER) of the PMT. Since it counts one photon at a time, the 

resolution is rather limited by transit time spread (TTS) of the detector which is typically an order 

of magnitude shorter than the SER, rendering a much better temporal resolution to TCSPC 

system. The IRF of the system is shown in Fig. 3.12, which was measured using a silver coated 

optical mirror. As can be seen, the FWHM for the IRF is about 300 ps. Considering such small 
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FWHM, it can be hypothesized that for considerably long lifetimes, de-convolution of IRF may 

not affect the measured lifetimes to a significant degree.  

 

Fig. 3.12 IRF of AFLS system, measured using an optical mirror.  

 

Fig. 3.13 Comparison of curve fitting using de-convolution of IRF: (Left) results of commercial 
analysis software (FluoFit). Red is IRF, blue the measured data, and black line is the fit; (Right) 
results of software routine implemented in Matlab to deconvolve the lifetime curve (blue) from 
measured data (red). Black curve represents the fit; In both cases, bottom curve shows the 

residual, which is comparable in each case. Also, note the y-axis is plotted in log-scale in left 
curve. 

 
 The stated hypothesis is supported by the results reported in Fig. 3.11, where the TCU 

lifetime was obtained after de-convolution of IRF, whereas, F1-F4 lifetimes were obtained 
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without de-convolution. Also, for comparison, a de-convolution routine was implemented in 

Matlab, and the measured IRF (Fig. 3.12) was de-convolved from F2 filter curve for both dyes 

(F2_DC in Fig. 3.11). Two observations can be made at this point: (1) The errors between 

convolved and de-convolved lifetimes are within 7%, and (2) the errors are smaller for longer 

lifetimes (Fluorescein, Fig. 3.11).  

Also, an illustration of de-convolution based fitting is shown in Fig. 3.13. While both 

commercial software and in-house algorithm result in similar residuals, a comparison with Fig. 

3.9 does not convincingly show improvement. Additionally, the process of de-convolution is not 

trivial, and may itself induce some variability (although small) in the results. Based on the above 

arguments, a de-convolution free data processing approach will be employed throughout this 

dissertation.  

3.6 Summary and Conclusions  

 Auto-fluorescence lifetime spectroscopy (AFLS) technique has been developed, with 

excitation at 447(60) nm and four emissions at 532(10) nm, 562(40) nm, 632(22) nm, 684(24) 

nm, acquired sequentially. For the given design, a two-component exponential decay model is 

found adequate for data analysis. Comparison with a commercial TCSPC system was 

conducted to validate the accuracy of the custom AFLS system, and the results were 

satisfactory (less than 10% error in measurement), with even better repeatability (assessed by 

standard deviation, Fig. 3.12). In the next Chapter, integration of the two modalities described in 

Chapters 2 & 3 will be given, and two animal studies based on dual-modality optical system will 

be described.    
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CHAPTER 4 

 
SYSTEM INTEGRATION AND ANIMAL STUDIES 

4.1 Animal Study I: Rat subcutaneous prostate cancer model   

The first tissue feasibility study for the proposed dual modality optical device was 

conducted on a subcutaneous tumor model on rat fore back. The AFLS part of this study was 

conducted mainly by Nimit Patel, who was a Research Associate at UT Arlington at the time of 

the study, which was published
59

 in 2011.  

The feasibility of both LRS and AFLS systems to be able to differentiate between 

cancerous and non-cancerous tissues using a rat prostate cancer model was assessed with 

both ex vivo and in vivo measurements. LRS was used to calculate the absolute concentrations 

of oxy-hemoglobin, deoxy-hemoglobin and scattering properties of the tissue, while AFLS 

provided auto-fluorescence lifetime of the tissues at four emission wavelengths (as described in 

Chapter 3), followed by excitation at 447 nm. Various measured parameters were analyzed to 

assess the contrast between the tumor and benign tissue, and the efficacy of using these 

parameters as classifiers for identification of the tumor was determined using support vector 

machine classification.  

4.1.1 Methods  

4.1.1.1 Animal model and preparation 

 Four one-year old, Copenhagen rats weighing 300-400 g were used in this study. 

Dunning R 3327 AT3.1 rat prostate carcinoma cells (~5×10
6
) were injected subcutaneously on 

the fore back of each rat, followed by everyday monitoring of the tumor growth till it reached the 

volume of ~1.5 cm
3
. Once the desired volume was reached (in about a week), the rat was then 

anesthetized using a Ketamine/Xylazine combination. An incision was then made on the rat’s 

fore back to expose the tumor and also part of normal fore back tissue. The exposed 
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tissue/tumor surface was cleaned by flushing phosphate buffered saline (PBS), followed by 

multiple optical measurements with a bifurcated optical probe (see Fig. 1 and next sub-section). 

All procedures for the animal studies were approved by IACUC at University of Texas at 

Arlington. 

 4.1.1.2. Instrumentation and measurement protocol 

 The instrumentation used for this study has been described in Chapters two and three 

in detail. A block diagram schematic of this implementation is shown in Fig. 4.1. A separate fiber 

optic probe was used for each modality.  

For LRS, a bifurcated fiber with source and detector fiber diameters of 100 μm, and 

core-to-core separation of ~110 μm, was utilized. Calibration constants k1 and k2 (see Chapter 

2, Section 2.2.3 ) for this system were calculated to be 3.08 and 16.821, respectively.  

 

Fig. 4.1 A block diagram illustrating experimental set-up for a LRS system (left) and AFLS 
system (right). Measurements were made sequentially, by placing the fiber tips on the tissue 
surface.  A closer view of bi-furcated fiber tips are shown for each fiber (red = source; blue = 

detector). 
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LRS probe was placed in contact with the tissue, and a stereotactic frame was used 

(Fig. 4.2) to make sure the pressure on the tissue was minimal, and consistent across 

measurements. Rat 1 readings were obtained without the use of sterotactic frame, and were 

thus excluded from the analysis for consistency.  

For AFLS, another bifurcated fiber probe with source fiber diameter 100 μm, and 

detector fiber diameter 400 μm was utilized (Fig. 4.1). For AFLS measurements, the probe was 

held at ~1 mm above the tissue. The readings were obtained sequentially for both modalities. 

Up to 5 readings were obtained on each tissue type. The measured locations were not co-

localized across two modalities, and represent the bulk average readings across the two tissue 

types.  

 
Fig. 4.2 Animal experiment set-up showing LRS measurement: (Left) LRS probe place in 

contact with the tissue using a stereotactic frame holder; (Right) a closer view shows tumor 
location and morphology.  

 

4.1.2. Results and Analysis 

4.1.2.1 AFLS results* 

(*Disclaimer: The analysis presented in this section was performed by Nimit Patel, 

Research Associate in our Laboratory, at that time)  
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 The lifetime curves obtained for each emission wavelength were analyzed using a two 

component exponent model (Eq. 4.1), without the use of constant term. The mean lifetime for 

each emission wavelength was selected as contrast parameter, and was averaged over all 4 

rats. Figure 4.3 shows the comparison for averaged mean lifetime with standard deviation for in 

vivo measurements.  
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It can be noticed from the plots that the averaged mean lifetime from cancer is lower 

than that from normal tissue at all emission wavelengths, as summarized in Table 4.1. This 

table also contains p-values that were obtained using a mixed model repeated measures 

ANOVA between the cancer and normal group.  In addition, the average mean lifetime over 4 

emission wavelengths was found to be 1.52±0.09 ns and 2.61±0.22 ns for in vivo cancer and 

control, respectively.  

 

Fig. 4.3 Comparison of averaged mean lifetime for cancer and control tissues (n=20). 
 

Table 4.1 Summary of AFLS mean lifetimes for tumor and control tissue 

 
Emission Wavelength (nm) 

532 562 632 684 

Mean 

Lifetime 

(ns) 

Tumor 1.43 1.65 1.48 1.55 

Control 2.7 2.74 2.74 2.29 

p-value 2.85×10
-13

 5.70×10
-8

 9.04×10
-11

 2.0×10
-4
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4.1.2.2. LRS results 

LRS data was analyzed using the absolute quantification algorithm explained in 

Chapter 2. The fitted parameters obtained were concentrations of oxy-hemoglobin ([HbO]) and 

deoxy-hemoglobin ([Hb]), scattering coefficient (μs’), and derived parameter, (HbT] = [HbO] + 

[Hb]). Figure 4.4 shows the results of these four parameters derived through LRS. The spectra 

were averaged over multiple points of each tissue type (either cancer or control) from each rat, 

and standard error of mean (SEM, represented by error bars) was calculated and shown. The 

values of [HbO] and [HbT] exhibited an increase in concentration in the tumor tissue as 

compared to the normal tissue in all 3 rats.   

 

Fig. 4.4 Comparison of (a) [HbO], (b) [HbR], (c) [HbT], and (d) μs’ values at 750 nm derived from 
in vivo rat tumor tissue and control tissue with LRS. Note that values of [HbR] are very 

heterogeneous, having a large range from 20 µM to 0.1 µM, some of which are unrecognizable 
in the figure. 

 
The values of [HbR], on the other hand, were found to be very small compared to those 

of [HbO], and the standard error was relatively higher. Furthermore, the values of μs’ were found 

to be smaller with a relatively small SEM in tumor tissue, as compared to those in the normal 
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tissue. A mixed model analysis for repeated measures revealed significant differences between 

tumor and control tissue in [HbO] (p = 0.03), [HbT] (p = 0.03), and μs’ (p = 0.01). Difference in 

[Hb] was found to be insignificant with p-value of 0.22.  

 4.1.2.3. Classification accuracy 

In order to evaluate whether any of the parameters hold potential to be used as an 

intrinsic biomarker, a support vector machine (SVM) classification algorithm was employed
72

. In 

this approach, first, any two independent parameters are chosen from the list of fitted 

parameters, such as four mean lifetimes at the four emission wavelengths, [HbO], [HbT], and 

light scattering coefficient, as classifiers; second, the leave-one-out cross validation method is 

used to determine the sensitivity and specificity for the chosen paired classifiers. Since more 

than two parameters were available as classifiers, various combinations of parameters were 

tested (see Table 4.2) to examine which pairs of parameters could be selected as best 

classifiers. For AFLM, with 20 data points available in each category (tumor and control) for 

testing, and perfect sensitivity and specificity of 100% was obtained for all possible pairs in 

wavelength combinations. Table 4.2 lists only a couple of wavelength pairs as an example. For 

LRS, 14 data points were available in each category, and the best pair as classifiers was 

determined to be of [HbO] and μs’ at 750 nm, which gave both sensitivity and specificity of 

92.86%.  

 

Table 4.2 Sensitivity and specificity values calculated for different pairs of obtained parameters 
using two modalities. 

 Classification Parameters 

LRS (n = 14) AFLM (n = 20) 

[HbO] and 

[HbT] 

μs’  (750nm) 

and 

μs’  (830nm) 

[HbO]  

and 

μs’ (750nm) 

532nm  

and  

562nm 

632nm 

and 

684nm 

Sensitivity 

(%) 
71.43 78.57 92.86 100 100 

Specificity 

(%) 
71.43 92.86 92.86 100 100 
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4.1.3 Discussion and conclusions of rat study 

This study shows the feasibility of using LRS and AFLS as independent techniques for 

differentiating rat cancer tissue from normal tissue. Several optical parameters were obtained 

which could serve as potential biomarkers to identify cancerous tissue. Specifically, Fig. 4.3 

presents significant differences in
 
mean lifetime between cancer and non-cancerous tissue, in 

vivo. Such results are expected since AFLS is sensitive to biochemical environment of the 

fluorophores, which is expected to differ in diseased and healthy tissues. Because of such good 

sensitivity to local tissue environment, AFLS was found to be very robust, with 100% sensitivity 

and specificity when the mean lifetimes from any two wavelengths out of the four emission 

wavelengths were selected to classify cancer from normal tissue. Table 4.2 shows examples of 

two groups of wavelength combinations.  

In case of LRS, an increase in total blood concentration was found, which is indicative 

of increased vasculature of tumor tissue (Fig. 4.4) as compared to normal tissue. It was also 

found that in most cases [HbR] levels were very low, indicating a very high level of hemoglobin 

oxygen saturation (~99%). This could be partially attributed to the fact that the optical readings 

were taken on the surface of the tissue which was exposed to room air. For deeper tumor 

regions, we may expect higher values of [HbR] as tumors are generally known to be hypoxic 

due to their leaky vasculature
73

. Furthermore, light scattering, which is closely associated with 

cell size and morphology, was found to be significantly different between tumor and normal 

tissues. This set of results is also expected as cell size and morphology are known to be 

different in cancerous cells compared to normal cells. It was further observed that μs’ variability 

was relatively low at the individual level (indicated by error bars in Fig. 4.4), and that the μs’ 

values were well significantly separated between the cancer and control groups, as indicated by 

a lower p value of 0.01.  

While AFLM seems to be able to optimally determine or detect rat prostate cancer with 

perfect sensitivity and specificity, the following studies will still explore dual-modality approach 
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for an improved power of discrimination of tissues. One reason is that human prostate is quite 

different from a solid rat tumor and often has multi-focal cancer lesions with different grades 

(Gleason scores). It is quite likely that AFLM alone may not be able to clearly identify low-grade 

prostate cancer lesions, and a second detection modality, such as LRS, may provide a 

complementary solution. Secondly, in this study a subcutaneous tumor was utilized, which has 

a morphology that is quite distinctively aggressive (see Fig. 4.2) as compared what may be 

expected from an orthotopic tumor growing in the prostate itself.  An orthotopic model of 

prostate cancer
74

.  

In summary, from this limited population pilot study, there is an indication that both 

AFLM and LRS are robust methods to differentiate prostate tumor from normal tissue in rat 

prostate cancer model. The sensitivity and specificity of this technique is high, especially for 

AFLM, which showed 100% accuracy. However, there were certain limitations as mentioned 

above, including small population size, and tumor not being in its natural environment (prostate 

tissue). In the next step (Section 4.3), the dual-modality approach will be utilized to investigate 

discrimination ability in an orthotopic mice model.  

4.2 System Integration 

In Section 4.1, both the systems were utilized for cancer demarcation in a 

subcutaneous rat prostate cancer model. Although the results obtained are great, one limitation 

of the study is that due to two sets of fiber optic probes, different regions of tissue are probed, 

although belonging to the same tissue. This is fine for independent assessment of the 

techniques, but to use them as combined dual-modality method, co-localization of obtained 

readings is essential.  

The integration two modalities, LRS and AFLS, into a dual-modality optical device 

(dMOD) was achieved using a custom designed (FiberTech Optica Inc., Montreal, QC, Canada) 

quad-furcated fiber optic probe. Fig. 4.5 shows the complete set-up of integrated dual-modality 

system, which works by sequentially acquiring the LRS and AFLM data through the same fiber 
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optic probe. As can be seen in a schematic of probe tip in Fig. 4.5(c), there are four fiber 

channels, two dedicated to each modality. Among the two channels, one acts as a source and 

other as detector. For LRS, both source and detector fibers diameters were 200 μm, with 370 

μm core-to-core separation. These fibers are arranged in an orthogonal geometry to AFLS 

fibers, which comprise of a 100 μm source fiber and a 400 μm detector fiber, with a core-to-core 

separation of 272 μm. Fig. 4.5(a) shows the system assembled on a portable cart, with various 

components labeled. Fig 4.5(c) shows an inset of probe with an adjustable probe holder, which 

was used to make sure all the measurements were made with minimal pressure on the tissue, 

by eliminating the effect of weight of the probe on sample under interrogation.  

 

 

Fig. 4.5 Integrated Instrumentation: (a) Dual-modality optical device on a portable cart (b) Inset 
showing probe positioning on the sample (c) Front face of the probe tip showing arrangement of 

source and detector fibers. 
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4.3 Animal Study II: Mouse orthotopic prostate cancer model 

After successfully evaluating the two techniques in vivo in a subcutaneous model in 

Section 4.1, this part of my study aims at discrimination of prostate cancer in its natural 

environment, from the surrounding benign prostatic tissue by utilizing a mouse model of 

orthotopic prostate cancer. The dMOD system shown in Fig. 4.5 was utilized for this study.  

4.3.1 Methods 

4.3.1.1 Animal procedures for tumor implantation and measurement 

10 SCID (Severe Combined ImmunoDeficiency) mice were injected with cancer cells for 

this study. All the animal procedures were performed by researchers in Dr. J.T. Hsieh’s 

laboratory (Crystal Gore and Timothy Dobin) at the Department of Urology at UTSW Medical 

Center, Dallas, TX. All the animal procedures were approved by the IACUC committee at 

UTSW Medical Center.  

Briefly, the tumor was grown on the site of prostate gland by orthotopic prostate 

injection. The mouse was briefly anaesthetized with mouse cocktail (ketamine / xylazine / 

acepromazine) with a dose of 1ml/kg via IP (intra-peritonial) route. An incision of 1 – 2 cm was 

made right across the abdomen above the fat pad and the muscle layer was cut. The bladder 

was then carefully pulled outside the body; if full, it was emptied using a gauze pad. The 

prostate was localized at the base of the bladder. PC3-DAB2IP-KD cells (1X10
6
, transfected 

with luciferin gene), were then injected into the ventral lobes of the prostate using a 28 ½ gauge 

syringe. The prostate and the bladder were placed back into the body cavity. The muscle wall 

was then carefully closed by using absorbable sutures. Also, the skin was completely closed 

using autoclips.  

5 days after the injection, bioluminescence imaging (BLI) was performed for all 10 mice 

to monitor the tumor growth. Gaseous anesthesia was administered by small animal anesthesia 

machine following manufacturer's instructions (with oxygen and 1% isoflurane). Animals 
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received anesthetic via a facemask. Anesthetized animals were held in place by use of Velcro 

straps. A solution was prepared of D−luciferin, sodium salt monohydrate (Biosynth, Chicago, IL; 

L−8240) in phosphate buffered saline (PBS; pH 7.4; Invitrogen Corporation, Carlsbad, CA) to a 

concentration of 17 mg/ml. The tumor was observed in all 10 mice, with varying BLI intensities, 

indicating different sizes. The optical measurement was done on day 7, day 8 and day 10, 

depending on the tumor size observed on BLI.   

On the day of measurement, the mouse was anesthetized using mouse cocktail 

(ketamine / xylazine / acepromazine) with a dose of 1ml/kg via IP route. An incision was made 

in a manner similar to the tumor cell implantation; the prostate was localized at the base of the 

bladder, and was exposed for optical measurement. The tissue was then resected and 

preserved in formalin for further histological analysis 

 

Fig. 4.6 (Left) Tumor bearing prostate of mouse exposed for measurement. The prostate is 
circled in yellow. (Right) In vivo measurement set-up.  

 
4.3.1.1 Optical Measurement 

Once the prostate was exposed, the probe was gently placed on the prostate tissue, 

and readings from both LRS and AFLS were obtained sequentially. Foe each prostate, 2-3 

readings were obtained each on ipsi-lateral and contra-lateral sides, given the small size of 

prostate tissue.  

 4.3.2 Results 

As mentioned in methods, 10 mice were injected with prostate cancer cells. However, 

this population would be sufficient to compare ipsilateral and contralateral sites of injection for 



 

 59 

tumor and benign tissue, iff the growth of tumor could be contained only on one side. However, 

in practice, it is not possible to precisely control the growth especially since the mice prostate is 

very small. Therefore, additional control mice were used to compare the cancer vs. non-cancer 

tissue (n =11, 7 SCID mice and 4 B6/129 mice).   

4.3.2.1 AFLS Results 

Each lifetime curve was used to derive 5 parameters using the two component 

exponent model, as described in Chapter 3 (Eq. 3.7, 3.8), namely, τ1, τ2, τm, a1, a2. Each of 

these parameters was analyzed for differences between cancer and control side.  

 

Fig. 4.7 Comparison of lifetime (τ1) for cancer (M1 to M10) and control mice (M11 to M21), at 
562 nm emission, where M1 represents mouse number 1 of 21. Ipsi (red) and Contra (blue) 

represent the average of readings taken on ipsilateral (side of injection) and contralateral 
readings for M1 to M10, whereas for M11 to M21, Contra (blue bars) represents the average of 

all the readings on the specific prostate. Error bars represent standard deviation.  
 

 Figure 4.7 shows the averaged readings of τ1 for all mice at 562 nm. For mouse number 

1 to 10 (M1 to M10), red bars represent the readings taken on the side of injection, whereas the 

blue bars represent the readings taken on the opposite side (contralateral). 2-3 readings were 

taken on each side and the plot shows average and standard deviation (error bars) in each 

case. For control mice (M11 to M21) only blue bar is plotted, which represents the average of 
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~4 readings taken on either side of the prostate along with the error bar. It can be observed 

from Fig. 4.7 that τ1 is longer in cancer mice (ipsilateral side), as compared to control mice. 

Within mice comparison of ipsilateral and contralateral side of cancer mice shows that some 

mice (M2, M3, M7, and possibly M5) show contralateral signals similar to control mice, 

indicating that the tumor may not have spread to the opposite side, while in the other cases, the 

cancer was most likely spread.  

 

Fig. 4.8. Mean of various lifetime parameters, showing comparison of cancer and control mice 
for all emission wavelengths. The error bars indicate standard deviations. a1 (not presented 

here), did not show much contrast between cancer and control as compared to a2.  
 

 Based on the information obtained from Fig. 4.7, the contralateral readings on the 

cancer mice will be ignored for further analysis, for true comparison between cancer and control 

tissues. Figure 4.8 shows such comparison of four lifetime parameters, τ1, τ2, τm, and a2. As 

evident, τ1 provided the highest contrast between cancer and tumor tissue at three of four 
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emission wavelengths, namely, 532 nm, 562, nm, and 632 nm. τ2 and a2 also show good 

contrast, at these three emission wavelengths.  

 
Fig. 4.9 (a) A histogram distribution of cancer (Can) and control (Norm) τ1 (at 532 nm) values for 
entire population, showing the separation in two categories; (b) ROC curve generated for τ1 at 

all four emission wavelengths. AUC was 1 for all except for 684 nm (AUC = 0.78).   
 

Figure 4.9(a) shows the  distributions of cancer (n=30) and control (n=44) tissues for τ1 

at 532 nm.  Also observed in Fig. 4.8, these distributions are distinct with no overlap. Therefore 

the receiver operating characteristic (ROC) curve has an area under the curve (AUC) = 1. This 



 

 62 

is also true for 562 nm and 632 nm. Also, seen in Fig. 4.9(b), AUC for 684 nm is 0.78, which is 

consistent with results shown in Fig. 4.8.  

4.3.2.1 LRS Results 

LRS results were obtained using quantification algorithm described in Chapter 2. k1 and 

k2, the calibration constants for this set-up were calculated to be 16.732 and 3.505, respectively.  

An additional absorber, β-carotene was added to the μa equation (Eq. 2.2), to account for the 

pigment in tissue. Some fitted values of total hemoglobin ([HbT] = [HbO] + [Hb]) were found to 

be in the range of [200 to 1500 μM].  These values were found to be much above the mean 

observed values of HbT, which was typically below 150. Since the measurement was made in 

vivo, to exclude the possibility of measuring blood vessels directly, the values exceeding 2 

standard deviations were excluded as outliers, reducing the sample size for cancer (n = 26) and 

control (n = 37) measurements. The resulting mean of contrast parameters along with standard 

error of mean (SEM) is plotted in Fig. 4.10.  

 

Fig. 4.10 Contrast parameters obtained through LRS measurement for cancer (n=26) and 
control(n=37) tissue. Units are presented with x-axis labels. Notice that log-scale has been used 

for visibility. Bcar represents β-carotene and % Sat is the oxygen saturation calculated using 

[Hb] and [HbO]. Scattering coefficient, μs’(cm
-1

) shown here was calculated at 750 nm. The error 

bars represent standard error of mean (SEM).   
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 Out of the 6 parameters shown in Fig. 4.10, 3 exhibited significant contrast: [HbO] was 

found to be significantly lower in cancer tissue compare to control tissue (p<0.01); scattering 

coefficient (μs’) was calculated at 750 nm and was also found to be lower in cancer tissue 

compared to control tissue; finally, oxygen saturation [or % Sat = ([HbO]/[HbT])*100], was also 

lower in cancer tissue compared to control tissue.  

 

Fig 4.11. ROC curves for various LRS parameters.  

Corresponding ROC curves of the four significantly different LRS parameters are 

plotted in Fig. 4.11. The AUC’s for independent parameters were as follows: [HbO] = 0.789; β-

carotene = 0.506; μs’ = 0.928, %Sat = 0.90.  It can be observed that the none of these individual 

parameters compare to the accuracy provided by AFLS (see Fig. 4.9(b)). However, it is possible 

to take a combination of these parameters in a logistic regression model, and generate a 

probability value corresponding to each data point (or measured LRS spectrum). Different 

combination of parameters were tested for logistic regression model, and it was found that 

combining μs’ and %Sat provided complete separation between cancer and control tissues 

(AUC = 1, Sensitivity/Specificity = 100%), as shown in Fig. 4.11. The detailed implementation of 
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logistic regression (classification algorithm) is provided in Chapter 5. Here, a binomial logistic 

regression  was implemented using ‘glmfit’ function in Matlab.  

4.3.3 Discussion and Conclusions of mice study 

 In this part of the study, an orthotopic mouse model of prostate cancer was successfully 

implemented, and dMOD was evaluated for its capability to differentiate cancer bearing prostate 

tissue from benign tissue. Both LRS and AFLS techniques were able to provide complete 

differentiation, with 100% accuracy.  

 AFLS data suggested that excellent contrast can be obtained using only a single 

emission wavelength (532 nm, 562 nm, or 632 nm), making the design of the system simpler for 

this implementation. Another noteworthy observation in this study was that τ1, τ2, τm for cancer 

tissue were very similar to each other, whereas the control tissues had a short and a long 

component in τ1 and τ2. (see Fig. 4.8). One possible explanation for this could be that there is a 

single dominant fluorophore in cancer bearing tissue, as compared to control tissue. 

Alternatively, there could be two fluorophores in each case, with similar and dissimilar lifetime 

distributions, depending upon pathological condition. In either case, there is a stark biochemical 

contrast between the two tissue types.  

 In case of LRS, four parameters were found to have significantly different means 

between cancer and control tissues. However, further ROC analysis suggested that scattering 

and oxygen saturation provided better contrast, and a combination of both yielded complete 

tissue differentiation. However, an important observation in this case is that some points had to 

be excluded from analysis due to contamination with blood. This is a practical issue that is 

inherent to in vivo LRS measurements. A possible solution to this problem is to set a threshold 

value for total hemoglobin, based on population studies of absolute maximum tissue [HbT] 

levels to identify outliers. In this case, 2 times standard deviation was chosen as exclusion 

criteria.  
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Finally, this study utilized a control population of two different species, one same as the 

cancer bearing species (SCID), while the other was different (B6/129). The results therefore 

suggest that the prostate cancer differentiation in mice may be species independent, although 

further studies will be needed to confirm this across various species.   

4.4 Chapter Summary and Conclusions 

In this chapter, LRS and AFLS were evaluated in two distinct animal models: a 

subcutaneous (SC) rat model, and an orthotopic (OT) mice model. While the first one was a 

pilot study, the other one was a more statistically and methodically advanced study, with a 

sufficiently large sample size and in prostate tissue itself.  

In both animal studies, excellent contrast was found between cancer and control tissues 

using AFLS. Each of these studies suggested that use of a single emission wavelength is 

sufficient to obtain enough contrast for cancer differentiation. However, the contrast parameters 

were different in both cases, e.g. τm being robust for SC model did not provide much contrast 

for OT model, where τ1 provided best distinction. This could be attributed to different species in 

each model, as well as apparently distinctive morphology of both tumors (see Figs. 4.2 and 4.6). 

Nevertheless, AFLS is proven to be a robust cancer identification tool in different prostate 

cancer animal models.    

In case of LRS, scattering was found to be the most robust contrast parameter in both 

animal models. Also, the trend was same, scattering being higher in control tissue compared to 

tumor tissue, although the values were different in both models. However, [HbO] and [HbT] 

showed different behavior in both animal models. In SC model, both [HbO] and [HbT] were 

higher in cancer tissue, whereas in OT model, [HbT] was found to be similar, where [HbO] was 

lower in cancer tissue leading to lower oxygen saturation (% Sat) in cancer tissue. The latter 

(OT model) finding is consistent with well-known hypoxic nature of tumors 
73

.  

So far, I have established the feasibility and proven the applicability of dMOD in animal 

models of prostate cancer. However, naturally growing human prostate cancer can be very 
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different from animal models, and it is very hard to exactly mimic progression or human prostate 

cancer in mice model. Accordingly, although it appears at this point that only one modality 

(especially AFLS) may be enough to differentiate prostate cancer from benign tissues, that too 

with limited emission filters, the true validity of this can only be established after studying human 

prostate tissue. In light of the above discussion, next chapter will focus on a study of ex-vivo 

human samples using dMOD to examine the feasibility of differentiating human prostate cancer 

using this novel probe.  
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CHAPTER 5 

HUMAN EX VIVO PROSTATE STUDY: PART I 

5.1 Introduction 

 After the successful evaluation in animal models, the next logical step is to evaluate                                                                                                             

dMOD for human prostate cancer detection. An ex-vivo study was conducted in clinical 

collaboration with a team of surgeons (urologists) and pathologists to achieve this goal. 

Prostatectomy samples were selected, and optical readings were taken from fresh tissue (within 

1-2 hours of prostate resection), from three types of prostate tissues, namely, prostate cancer 

(PCa), benign peripheral zone tissue (nPZ), and benign prostatic hyperplasia (BPH, 

predominantly in transition zone). Different grades of prostate cancer were included in the 

study, ranging from Gleason grades 7 to 9, which are considered high-grade cancer. About 70% 

of prostate cancer occurs in peripheral zone, therefore, nPZ was chosen as a discriminatory 

region. Additionally, BPH was selected as third tissue type, as it is very commonly found in 

prostate cancer patients, and covers the transition zone, therefore covering the majority of 

tissues in a typical prostate gland. The goal of this study was to use optical signals obtained 

from dMOD, and distinguish these tissue types based on their characteristic optical signatures.  

Few studies have been reported in recent past, in effort to distinguish prostate cancer from 

benign prostate tissue
15,50,75-78

, mainly utilizing optical methods
15,50

 or electrical impedence
15,76-

78
. Salomon et. al.

15
 reported a sensitivity and specificity of 75% and 87.3%, respectively, for 

detecting prostate cancer, using a triple spectroscopy method tested on ex vivo prostate tissue. 

More recently, Halter et. al.
78

 reported the use of electrical properties to differentiate prostate 

cancer from benign tissue, reporting areas under curve (AUC) of 0.9 for discriminating between 

benign and malignant tissue, and 0.75 for discriminating between low and high grade cancer 

tissue.  
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The approach used here to detect prostate cancer is distinct, such that it employs two 

complimentary optical approaches in dMOD, both of which have applied successfully in cancer 

detection 
28,79

, but their application to human prostate has been limited, with one publication in 

LRS
50

, by our group, and no published work for AFLS, especially with my current design, as per 

literature search in July 2012. 

 In this study, I evaluated dMOD, as a potential tool to differentiate prostate cancer from 

benign tissues. Since the vasculature, morphology and biochemical composition of prostate 

cancer-bearing tissue is expected to differ from that of benign tissues, with the differences being 

presumably more pronounced with higher grade and advanced disease, it was hypothesized 

that LRS and AFLS, alone or in combination, could be used in the identification of prostate 

cancer. The ability of the dMOD optical probe to discriminate between PCa, nPZ and BPH was 

determined. Also, the performance of this probe in the detection efficiency of individual Gleason 

grades of prostate cancer, among men with Gleason 7 or higher prostate cancer was evaluated. 

For each of the above cases, tissue discrimination was achieved through classification 

algorithm, and sensitivity (Sn), specificity (Sp), Accuracy (Acc) andAUC for a receiver operating 

characteristic (ROC) curve were obtained as classification measures.  

5.2 Patients and Methods 

5.2.1 Patient selection and procedures 

 The study was conducted as per the guidelines of Institutional Review Board at UT 

Southwestern Medical Center, Dallas, TX, and each patient’s informed consent was obtained 

before the surgery. Patients were selected for intermediate to high grade disease (Gleason 

score ≥ 7) and moderate to high volume prostate cancer (at least two contiguous biopsy cores 

each with 20% or more cancer involvement and/or bulky disease by endorectal MRI) so as to 

optimize spectral yield in this initial proof-of-concept study. 

 Each patient underwent robotic-assisted radical prostatectomy by one of three 

surgeons (J.A. Cadeddu, C.G. Roehrborn, and G. Raj) via a transperitoneal anterior or posterior 
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approach. In each case, the prostate glands were extracted after having completely been 

disconnected from their blood supply for at least 30 minutes.  

5.2.2 Experimental Protocol 

Resected prostate glands were immediately immersed in saline, and submitted for 

dMOD measurements. Each gland was first inked as per standard protocol at UTSW for 

histological evaluation (blue for the left lobe, orange for the right lobe, green for the anterior 

zone) (Fig 5.1). Dyes were fixed using acetic acid washes. The specimens were divided in a 

coronal plane, cutting through the location of the tumor nodule as determined by pre-operative 

biopsy mapping, pre-operative MRI and/or palpation, such that tumor was clearly visible at the 

cut surface.  When necessary, a Diff quick stained touch-prep slide was made of suspected 

cancer-bearing tissue, confirming the location of prostate cancer cells cytologically. The location 

of nPZ, and BPH regions on the cut surfaces of the specimens was also identified (Fig 5.1).  

 

Fig. 5.1 Measurement Protocol 

The dMOD probe (See Fig 4.5, Chapter 4) was placed in contact with the cut surface of 

the prostate gland and LRS and AFLS spectra were recorded from each of the pre-specified 

regions (PCa, nPZ, and BPH). Eight measurements were obtained from each region. Each 

measured region was then marked with colored dye, and a ~ 1 mm thick section of each 

measured region was labeled and separately submitted for histological evaluation. Hematoxylin 

and eosin stained sections from these separately submitted tissue were evaluated by urologic 
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pathologist for presence and extent of tumor and Gleason grade. Optical measurements were 

then categorized according to the histologically confirmed regions of interest. 

5.2.3 Instrumentation and measurements 

The instrument set-up has been described previously in Chapter 4 (see section 4.2). 

The same set-up as described for mice study was used for this study. The specific procedural 

changes are described in the next paragraph.  

Since the study was carried out in a busy pathology room at UTSW/Zale Lipshy 

hospital, a light-blocking black fabric was used to cover the measurement area, to avoid 

ambient light during the measurement. LRS and AFLS data were acquired sequentially for each 

measured location, without any specific order. The integration time for LRS measurement was 

in the range of 20-60ms. For AFLS, 5 sec integration time was used for each fluorescence 

curve. Since 4 wavelengths were utilized, total acquisition time was 20 s. Considering manual 

switching between the two modalities, and time lag of filter wheels for AFLS measurements, the 

average acquisition time for each measured location was about 60 s.  

5.2.4 Data Processing 

For LRS, a spectral width of 500-850 nm was chosen; the corresponding data were 

fitted to a mathematical model (Eq. 2.1 to 2.5), the details of which have been previously 

described in Section 2.2.2. Briefly, the measured reflectance R(λ), is used to extract are 

absorption and scattering coefficients (μa and μs’) of the tissue, using an analytical model
23

. In 

this study, absorption equation (Eq. 5.1) was modified from Eq.(2.2) to add additional absorbers 

present in the tissue: 
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  (5.1) 

Where, [Mel], [βcar], [DyeOr] and [DyeBl] are concentrations of melanin, β-carotene, 

orange dye and blue dye, respectively. The ε’s are the corresponding extinction coefficients for 

[Mel], and [βcar] were obtained through Oregon Medical Laser Center (OMLC) online database 
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created by Scott Prahl (http://omlc.ogi.edu/spectra/; http://omlc.ogi.edu/spectra/Photochem-

CAD/html/041.html). The εOr and εBl on the other hand, were the absorption spectra of the dyes, 

measured using a UV/VIS benchtop spectrometer (Perkin Elmer, Inc.). The dye spectra were 

added to account for the possible contamination during the bivalving of the prostate, although 

care was taken to fix the dyes before the cut (see Section 5.2.2). However, it should be noted 

that since the initial molar concentrations of dyes were not known, the concentrations [DyeOr] or 

[DyeOr] do not reflect the true concentrations, but are used to remove their weighted contribution 

to the absorption spectrum, thus giving more accurate values of other absorber concentrations.  

Since the water concentration was fixed at 80%, 5 usable parameters were derived 

from absorption coefficient for tissue discrimination, namely, [Hb], [HbO], [HbT], [Mel] and [βcar]. 

Cell size and density dependent μs’ was also calculated at 750 nm, yielding overall 6 LRS 

parameters per measured region. Statistical differences in spectral parameters for PCa, nPZ 

and BPH were analyzed using a linear mixed model regression analysis implemented in SAS 

(SAS Institute Inc., NC, USA).   

AFLS data analysis has been described in detail in Chapter 3, Section3.3. Briefly, each 

lifetime curve was fitted with a two-component exponent model, to obtain two lifetimes, τ1, and 

τ2, and their respective weights, a1 and a2. Integral-intensity-weighted mean lifetime (τm) was 

also calculated, generating 5 usable contrast parameters per emission wavelength. Since there 

are four emission curves per measured locations, overall 20 (5X4) parameters were obtained at 

each location. Each of these parameters were then evaluated for statistical differences between 

PCa and nPZ, as well as PCa and BPH, using a linear mixed model analysis for repeated 

measures, implemented in SAS.  

5.2.5 Classification and ROC Analysis 

As explained above, both LRS and AFLS methods resulted in 20 lifetime-driven, 4-

wavelength-dependent parameters from AFLS and 6 absorption and scattering dependent 

parameters from LRS at each measured location on the prostate specimens. These 20 plus 6 
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characteristic parameters can be utilized as classification features for PCa discrimination. A 

two-step process was implemented in order to assess the classification ability of each technique 

independently, as well as of the combined dual-modality approach: step one was to implement 

a feature selection algorithm in order to select the best feature set for tissue type classification; 

step two was to develop a multinomial logistic regression model along with 10-fold cross 

validation to classify three tissue types and obtain respective classification parameters for each 

tissue type. Each of the two steps is explained in detail below.  

5.2.5.1 Multinomial logistic regression classification 

A multinomial logistic regression (MLR) based generalized linear model
80

 was used as 

a classification tool. Details of MLR method can be found in reference 
80

. Briefly, MLR is an 

extension of binary logistic regression, where one of the outcomes is considered as a baseline, 

and odds ratio of other outcomes against the baseline are computed. Our problem consists of 

three possible outcomes, namely, PCa (Y = 0), nPZ (Y = 1) and BPH (Y = 2), where Y is an 

index that represents the nominal outcome. The MLR model can then be constructed to obtain a 

classifier for predicting the presence of cancer, as described by Eqs. (5.2)-(5.4)
80

:  
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where P(Y=j) represents the probability for outcome j; gj(x) is logit function; xn is the n
th
  

feature characteristically identified in either AFLS or LRS, and βjn is the corresponding 

coefficient for the n
th
 parameter of the j

th
 model.  

This model was implemented in Matlab
81

 with the use of “mnrfit” function. A 10-fold 

cross validation method was used to calculate the classification parameters, as described 

below. First, the data was partitioned into 10 segments using ‘crossvalind’ function, while 
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making sure that each tissue type had equal distribution. One of the segments was chosen as 

test set and the rest as training set. Second, for a given training set, ‘mnrfit’ and ‘mnrval’ were 

used to compute probabilities P(Y=j), for each of three tissue type, j (Eq. (5.2)). Third, the three 

probability distributions were used to create an ROC for each tissue type (PCa, nPZ, BPH), 

followed by determination of Youden index
82

 to obtain an optimum cut off value for the 

classification. Fourth, Sn, Sp and Acc of all three tissue classes were calculated on the test set. 

Fifth, steps one to four were repeated while selecting a different test set each time out of 10 

partitions of data generated during cross validation process, and Sn, Sp, and Acc were 

averaged over the ten iterations. Similarly, an averaged value of AUC was also obtained for 

each set from all 10 ROC curves that were generated in cross validation. Finally, steps one to 

five were repeated 10 times, to obtain 10 independent performance evaluations of cross-

validated classification parameters. Means and standard deviations of Sn, Sp, Acc and AUC 

were then calculated, across the 10 values of each obtained in the fourth step. A flow chart 

describing the ROC analysis is given in Fig. 5.2. 

By selecting different sets of parameters or features, [x], in Eq. (5.2), the above 

classification algorithm was implemented to evaluate the ability of discriminating PCa by three 

methods: (a) AFLS-only, (b) LRS-only, and (c) dMOD with combined features of AFLS and LRS. 

For each of the three methods, a feature selection algorithm was first used to select a “best 

feature set” for classification, as further explained in the next section.  

The above algorithm is for a 3-level classification, where there are 3 tissue types (PCa, 

nPZ, and BPH). A similar algorithm was implemented also for 5-level classification, where j in 

Eq. 5.2 varies from 0 to 4 instead of 0 to 2, the class levels are PCa (GS 9), PCa (GS 8), PCa 

(GS 7), nPZ and BPH.  

5.2.5.2 Feature Selection 

As described in Section 5.2.4, the measured data resulted in a large feature set, 

consisting of 6 features from LRS and 20 features from AFLS. However, all these features may 
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not contribute equally and constructively to the classification model, which was described in 

Section 5.2.5.1. Also, using a relatively large feature set could lead to the over-fitting problem 

for the classification model, especially for sparse datasets. A feature selection algorithm was 

therefore developed to select an optimum feature set from a given set of features: i.e., 6 in case 

of LRS, 20 in case of AFLM, and 26 (6+20) in case of dMOD method. In this study, a sequential 

feature selection algorithm was implemented in Matlab
81

. Sequential feature selection is a 

commonly used method for feature selection
83,84

, and will only be briefly discussed here. In 

general, sequential feature selection involves adding [sequential forward selection (SFS)] or 

removing [sequential backward selection (SBS)] features, one at a time, to or from an empty/full 

feature set, and evaluates a given model using a chosen criterion. This process continues until 

adding or removing more features does not improve the model prediction, as defined by a 

specified criterion. Both SFS and SBS can be used independently as feature selection methods, 

and can produce varying results for different datasets.  

I implemented both of these methods to select a set of features, along with two criteria, 

which gave a total of four independent “feature sets”.  The two criteria used to select significant 

features were: (a) In criterion A, I computed the deviance of the multinomial logistic regression 

model fit (mnrfit, see Section 5.2.5.1), and tested if the new deviance after adding/removing the 

new feature was significantly (p < 0.05; chi-square test) reduced. (b) In criterion B, I used the 

same multinomial model as in criterion A, but instead of using deviance, I utilized 10-fold cross 

validation to compute classification accuracy of cancer. The misclassification rate, computed 

using average of 10 test sets, was then used as the criterion value. If there was no decrease in 

the criterion value, the new feature was not added or removed for SFS or SBS, respectively. For 

more details, the interested reader can refer to the Matlab documentation for “sequentialfs” 

function
81

.  

Thus, for each initial feature set obtained from LRS, AFLS or LRS + AFLS, a total of 

four algorithms were implemented, based on the direction (SFS or SBS) and inclusion/exclusion 
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criteria (A or B), namely, SFS+A, SBS+A, SFS+B, and SBS+B.  The four algorithms generated 

four independent sets of selected features, one out of which could be the “best feature set” 

determined by its best classification performance, as reflected through Sn, Sp, Acc, and AUC. 

Such best feature sets were selected for each of the three approaches: LRS-only, AFLS-only, 

and dMOD.      

 

Fig. 5.2 An algorithm flow chart describing calculation of sensitivity (Sn), specificity (Sp), 
accuracy (Acc) and generation of ROC curves through cross-validated classification process. 

 
5.3 Results 

A total of 29 patients were enrolled in the study, of whom 6 were excluded from the final 

analysis after histologic evaluation revealed 25% or less PCa in the tissue evaluated. Clinical 

characteristics of the included 23 patients are shown in Table 5.1. Mean (SD) patient age was 
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60.7 (6.0) years. Several patients had multiple foci of PCa, resulting in 27 PCa regions 

measured from 23 different patients. As previously mentioned, multiple spectral measurements 

were obtained from each region yielding a total of 221 PCa, 176 nPZ and 142 BPH 

measurements (Table 5.2).  

Table 5.1 Patient Characteristics* 

Subject 

No. 
Age 

pre-treatment 

PSA 

Primary 

Gleason 

grade 

Secondary 

Gleason 

grade 

Gleason 

sum 
p stage 

N 

stage 

1 62 6.89 4 5 9 3a 0 

2 68 7.9 4 5 9 3a 0 

3 58 12.2 4 5 9 3b 1 

4 53 3.2 4 5 9 3a 0 

5 61 4.2 4 5 9 3b 0 

6 69 5.7 4 4 8 3a 0 

7 72 7.4 4 3 7 3b 0 

8 56 5.9 4 4 8 2c 0 

9 56 3.6 4 4 8 2c 0 

10 54 6 4 3 7 3a 0 

11 57 18 4 3 7 3b 0 

12 48 6.1 4 3 7 3a 0 

13 63 16.6 4 4 8 3b 0 

14 66 2 3 4 7 2c 0 

15 62 4.49 4 5 9 3a 0 

16 55 3.2 3 4 7 3a 0 

17 69 3.5 3 4 7 2c 0 

18 64 2.7 4 4 8 3b 0 

19 55 6.2 4 3 7 3a x 

20 64 4.9 4 3 7 2c 0 

21 65 3.5 3 4 7 2c 0 

22 60 3.1 3 4 7 2b 0 

23 59 21.8 4 3 7 3b 0 

* The Gleason sums presented here are based on whole prostate (final pathology), which 
matched the optically measured region in all cases except case 8, where measured region was 

Gleason 7 (4+3). 
 

Of the 20 measured AFLS parameters, 16 showed statistically significant differences 

(p<0.001) between PCa vs nPZ in the multinomial logistic regression model while 19 showed 
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significant differences (p<0.001) between PCa vs BPH. As an example, Fig. 5.3(a) shows four 

of those parameters, representing mean-lifetimes (τm) at four emission wavelengths. It was 

observed that the mean-lifetimes of PCa at all four wavelengths were significantly longer than 

those of nPZ, but shorter than those of BPH at respective wavelengths.  

Table 5.2 Number of measurements classified by tissue type* 

 GS-7 GS-8 GS-9 Total 

NSubjects 13 4 6 23 

NRegions 15 5 7 27 

Nmeas (PCa)  125 40 56 221 

Nmeas (nPZ) 104 32 40 176 

Nmeas (BPH) 88 24 30 142 

* For each column, values for nPZ and BPH reflect measurement from these regions from 
glands containing the Gleason sum classification shown. 

 

 
Fig. 5.3 (a) Comparison of four AFLS-derived features, mean-lifetimes, τm, at all four emission 
wavelengths across three tissue types. (b) Comparison of five LRS-derived features across 

three tissue types. μs' was calculated at 750 nm, and βcar is scaled down by  a factor of 10 for 
display purposes. In both (a) and (b), the ‘*’ above nPZ and BPH bars indicates significant 
difference (p < 0.02) when compared to PCa; error bars indicate standard error of mean. 

 
Table 5.3 Classification metrics of PCa (all cancer grades combined) against non-cancer tissue 

types (nPZ and BPH). 

Mode Sensitivity Specificity Accuracy AUC*100 

AFLS 64.2 ± 2.5 69.2 ± 1.8 67.1 ± 0.7 72.9 ± 0.5 

LRS 63.0 ± 1.5 82.9 ± 1.6 74.7 ± 1.0 80.4 ± 0.2 

dMOD 79.0 ± 1.7 85.2 ± 1.1 82.7 ± 0.7 90.8 ± 0.4 

 

In LRS analysis, 5 of 6 parameters showed significant differences (p < 0.001) between 

PCa vs nPZ, and 3 of 6 were significantly different (p < 0.02) between PCa vs BPH (Fig. 5.3b). 

Classification results are presented in Tables 3 & 4. Table 3 shows outcomes of the 
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classification analysis for PCa (all cancer grades combined) versus benign tissue types 

(nPZ+BPH), using AFLS and LRS parameters individually, and in combination (dMOD). 

Table 5.4 Classification metrics of PCa graded by Gleason scores. The values listed in the left-
most column implicate each PCa tissue group (e.g., GS 9) against rest of the tissue groups.  

PCa Type Mode Sensitivity Specificity Accuracy AUC*100 

GS 9 

LRS 84.4 ± 2.3 56.5 ± 0.7 59.4 ± 0.6 72.9 ± 0.5 

AFLS 76.5 ± 3.2 75.9 ± 1.0 76.0 ± 0.9 85.4 ± 0.6 

dMOD 82.3 ± 2.4 85.4 ± 0.7 85.1 ± 0.6 91.5 ± 0.7 

GS 8 

LRS 71.8 ± 2.6 72.6 ± 1.8 72.5 ± 1.6 77.1 ± 0.7 

AFLS 76.3 ± 4.9 86.7 ± 0.8 86.0 ± 0.6 90.0 ± 0.6 

dMOD 81.5 ± 3.4 90.8 ± 0.9 90.1 ± 0.8 93.6 ± 0.7 

GS 7 

LRS 71.9 ± 2.2 82.7 ± 1.3 80.2 ± 0.7 87.9 ± 0.2 

AFLS 70.9 ± 2.0 72.4 ± 0.9 72.1 ± 0.7 78.6 ± 0.7 

dMOD 86.0 ± 2.4 88.5 ± 0.7 87.9 ± 0.6 94.7 ± 0.4 

 

 
Fig. 5.4 ROC curves obtained using the dMOD and the MLR classification for identifying 

individual PCa grades (GS 9, GS 8, GS 7) and all grades combined (All PCa types).   
 

Sensitivity, specificity, accuracy and AUC were found to be highest for dMOD. Table 5.4 

shows outcomes of the ROC analysis for individual grades of PCa versus benign tissue types. 

For each tumor grade, overall accuracy and AUC were once again highest for dMOD among all 

methods. The ROC curves obtained using dMOD for individual cancer grades, as well as all 

cancers combined (All PCa) are plotted in Fig. 5.4.  
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Table 5.5 shows the “best feature set” that were selected for each classification 

category (3 Level and 5 Level), and each modality. Sequential forward selection with criterion A 

(SFS+A) method was found to be optimal for 3 level classification whereas sequential backward 

selection with criterion B (SBS+B) was found to be optimal for 5 level classification. It should 

also be noted that feature set of LRS was reduced to 5 from 6, because only 2 out of [HbO], 

[Hb], and [HbT], can be selected as independent parameters, and will lead to multicollinearity if 

all three are used. It can also be noted that in LRS only case, no feature selection method was 

used. This was because all four methods selected all the features during the run.   

Table 5.5 Results of feature selection for each method in the two classification categories. 

Classification Modality 

Feature 

Selection 

Method 

Selected Features 
No. of 

Features 

3 Level 

dMOD SFS+A 

[HbO], [Mel], μs',[βcar], HbT, 532 nm 

[τ1, τ2, τm, a1, a2], 562 nm [τ1, τ2, τm, 

a1, a2], 632 nm [τ1, a1], 684 nm [τ1, 

τ2, τm] 

20/25 

AFLS SFS+A 

532 nm [τ1, τm, a1], 562 nm [τ2, τm, 

a1, a2], 632 nm [τ1, a1, a2], 684 nm 

[τ1, τ2, τm, a1, a2] 

15/20 

LRS none [HbO], [Hb], [Mel], μs',[βcar] 5/5 

5 Level 

dMOD SBS+B 

[HbO], μs',[βcar],[HbT],532 nm [τ1, 

τ2, τm, a2], 562 nm [τ2, τm, a1, a2], 632 

nm [τ1, τm, a1], 684 nm [τ2, τm, a2] 

18/25 

AFLS SBS+B 

532 nm [τ2, a1, a2], 562 nm [τ1, τm, a1, 

a2], 632 nm [τ1, τ2, τm, a1, a2], 684 nm 

[τ2, τm, a1, a2] 

16/20 

LRS none [HbO], [HbT], [Mel], μs',[βcar] 5/5 

 

5.4 Discussion and Conclusions 

 The results of this study suggest that both LRS and AFLS provide significant contrasts 

to detect or discriminate prostate cancer against non-cancer tissues (i.e., nPZ and BPH), as 

shown in Table 5.2. However, the accuracy is much improved when both modalities are used 
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together (dMOD), which could be expected, as each individual modality has distinct contrast 

parameters resulting from different physiological, morphological, and biochemical origins.  

The contrast in LRS originates from changes in light absorption and scattering caused by 

prostate cancer tissues: light scattering is highly influenced by the cell size and density, 

whereas light absorption is closely related to various physiological markers, such as oxygenated 

and deoxygenated hemoglobin concentrations. By obtaining a wide-range (500-850 nm) 

reflectance spectrum, it is possible to decouple these properties and to quantify absolute values 

of respective physiological parameters, which can in turn serve as bio-markers and signatures 

of cancer. Specifically, nPZ showed a higher concentration of total hemoglobin ([HbT]) as 

compared to PCa (see Fig. 5.4(b)). This observation is consistent with a  previous independent 

study by our group
85

. Additionally, light scattering (μs’) was found to have a much higher value in 

PCa as compared to those retrieved in both nPZ and BPH. Although limited literature can be 

found on changes in physiological and morphological properties due to prostate cancer, my 

observation that prostate cancer leads to increased μs’ and reduced [βcar] is consistent with a 

report given on breast cancer tissue
86

.  

In AFLS, the 447-nm excitation (with a 60-nm bandwidth) excited multiple endogenous 

fluorophores, i.e., flavins, prophyrins and lipo-pigments
52

. From Table 5.5 it can be observed 

that all four emission wavelengths provided contrast for classification. Therefore, all emission 

wavelengths used in the design are an essential part of the system to achieve the reported high 

accuracy (Table 5.3, 5.4). Considering spectral overlap in the emission spectra of these 

fluorophores, it is hard to determine which fluorophore has the biggest contribution in the 

determination of contrast, but the unanimity of the results across the emission range (Fig. 5.4) 

suggests that multiple fluorophores must contribute to the observed contrast (Fig. 3.7). This 

theory is also supported by the fact that a two component model provides an adequate fit. 

Although determination of exact biochemistry remains as a limitation of this study, it certainly 

provides a proof that biochemical environment pertaining to the given excitation-emission 
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domain significantly differs in prostate cancer and benign tissues, to provide an excellent 

contrast for tissue discrimination. 

While studies and reports on methods designed towards discriminating prostate cancer 

tissues in vivo in a minimally invasive environment are limited, different approaches have been 

reported to address this issue, based on different methodologies
15,78

. Salomon et. al.
15

 used a 

used a triple spectroscopy approach on frozen then thawed prostate tissue (16 malignant, 75 

benign samples), to discriminate malignant tissue from benign tissue. They reported a cross 

validated sensitivity (Sn) and specificity (Sp) of 75% and 87.3%, respectively. Halter et. al.
78

 

measured electrical properties in a relatively large sample size (71 malignant, 465 benign). 

They reported tissue differentiation based on a detailed stratification by GS, also comparing the 

low grade cancer (GS < 7) to high grade (GS > 7). The maximum accuracy for GS 7 or greater 

was reported to be 81.8%. In comparison, an accuracy of 85 to 90% was obtained with dMOD 

(Table 5.4). This study also report the largest sample size utilized in comparative studies, 

making the results more robust.  

In summary, the dMOD system, which combines auto-flourescence and light 

reflectance spectroscopy, discriminates between Gleason 7 or higher PCa and benign prostate 

tissue with excellent sensitivity, specificity and accuracy ex vivo. With further development, it 

has the potential to be used as: (a) an intraoperative aid for the assessment of adequate 

margins during radical prostatectomy; (b) to help improve the diagnostic yield of prostate 

biopsies, and (c) monitoring of tumor foci within the prostate during active surveillance.  
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CHAPTER 6 

HUMAN EX VIVO PROSTATE STUDY: PART II 

 In Chapter 5, prostate cancer was successfully identified in presence of benign 

peripheral zone and benign prostate hyperplasia (transition zone) tissues. However, application 

of dMOD to intraoperative margin detection also requires the ability to distinguish prostate 

cancer from other benign extra-capsular tissues that line the prostate. Figure 6.1
87

 shows an 

illustration of cancer spread in different stages. The cancer can spread out to the capsule and 

outer tissues in 3 of 4 of the stages. The extra-capsular tissues include bladder base muscle, 

prostate capsule, and urethra at the apex of prostate.    

 
Fig. 6.1. An Illustration showing normal prostate (top left), and spread of prostate cancer during 
different stages. This illustrates how prostate cancer can spread out to the capsule, bladder and 
urethra, which poses a problem in obtaining clear margins during radical prostatectomy.  (Image 

Source: Ohio State University Cancer Center website
87

).   
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6.1 Study protocol and sample size  

In this study, 8 freshly resected radical prostatectomy samples were randomly selected 

for measurement. The measurement protocol followed was same as explained in Chapter 5, 

except that the prostate glands were measured before inking, since the surface was to be 

measured. Three types of extra capsular tissues (ECT) were measured, namely, bladder 

muscle at prostate base (BM), urethra at prostate apex (UT), and prostate capsule (CAP). For 

each prostate gland, one or more regions of each type were identified, and 5 optical readings 

were taken on each region. Table 6.1 shows a distribution of sample size.  

Each of the measured regions was submitted to pathology for analysis and all the 

tissues were confirmed to be benign after histopathology examination. As can be seen from 

Table 6.1, a total of 185 locations were measured.  

    

Table 6.1 The sample size distribution table for ECT study. 

 
No. of regions (data points) 

Subject BM UR CAP 

1 1 (5) 1 (5) 3 (15) 

2 1 (5) 1 (5) 2 (10) 

3 2 (10) 1 (5) 2 (10) 

4 2 (10) 1 (5) 2 (10) 

5 1 (5) 1 (5) 2 (10) 

6 2 (10) 1 (5) 2 (10) 

7 1 (5) 1 (5) 2 (10) 

8 2 (10) 1 (5) 2 (10) 

Total  60 40 85 N(ECT) = 185 
 

6.2 Data Analysis 

The LRS and AFLM data was first quantified using the data analysis methods to extract 

6 LRS ([HbO], [Hb], [HbT], [Mel], [β-car], and μs’ at 750 nm) and 20 lifetime related AFLS 

parameters for each measured location, as described in Chapter 5.  
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 Next, multinomial classification with 10-fold cross validation was performed to evaluate 

the accuracy of dMOD to discriminate PCa from ECTs, along with nPZ. As explained in Chapter 

5, 3-level and 5-level classification was performed: in 3-level, the three tissue levels included 

PCa (n = 221) ,nPZ (n = 175) and ECT (n = 185); in 5-level classification, five levels included 

PCa (GS 9,n=56), PCa (GS 8, n=40), PCa (GS 7, n=125), nPZ(n=221) and ECT (n = 185). 

Therefore, 3-level classification tested the accuracy for identifying any type of high grade PCa in 

presence of benign ECTs, as well as nPZ tissue, whereas, 5-level classification tested the 

accuracy to identify high grade PCa by Gleason scores in presence of these benign tissues. 

  

Table 6.2. Classification metrics depicting performance of dMOD in presence of ECTs. 

 Type Sensitivity Specificity Accuracy AUC 

3 Class 

PCa 92.08 ± 1.03 92.42 ± 0.78 92.29 ± 0.52 0.98 ± 0.00 

nPZ 89.35 ± 1.01 94.13 ± 0.49 92.68 ± 0.24 0.98 ± 0.00 

ECT 99.13 ± 0.46 98.91 ± 0.27 98.98 ± 0.26 1.00 ± 0.00 

5 Class 

GS 9 82.80 ± 1.83 95.48 ± 0.46 94.26 ± 0.49 0.96 ± 0.01 

GS 8 83.50 ± 3.16 92.48 ± 0.25 91.87 ± 0.28 0.95 ± 0.01 

GS 7 91.44 ± 1.43 90.96 ± 0.34 91.07 ± 0.26 0.97 ± 0.00 

nPZ 92.00 ± 1.53 95.50 ± 0.53 94.44 ± 0.53 0.98 ± 0.00 

ECT 98.14 ± 0.70 99.59 ± 0.18 99.14 ± 0.20 1.00 ± 0.00 

 

Table 6.3. Selected Features from both modalities for each classification routine 

Classification 
Type 

LRS AFLM 

3-level All 6 features 
17/20 Features: 532 nm (τ2,τm,a1,a2); 562 nm 

(τ1,τ2,τm,a2); 632 nm (τ1,τ2,τm,a1,a2); 684 (τ1,τm,a1,a2) 

5-level All 6 features 
10/20 Features: 532 nm (τ1,τm,a2); 562 nm (τ1, a2); 

632 nm (τ1,τ2,τm, a2); 684 (a1) 

 

6.3 Results and Discussion 

From Table 6.2, it can be observed that dMOD provided excellent accuracy of above 

90%, in discriminating PCa from benign ECT, both overall (92.29%) and by gleason scores 

(91.07% to 94.26%). In comparison, each modality alone did not perform as well (see Table 
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6.4), although the accuracy was still high for classifying combined PCa (82% AFLS, 87% LRS), 

and PCa by GS (78-91% AFLS, and 78-82% LRS). It can also be seen that when stratified by 

grade, AFLS provides very high accuracy of approx. 91% for both GS 9 and GS 8, which is 

comparable to the values obtained by dMOD. However, the accuracy for identifying GS 7 is 

much better in case of dMOD, once again justifying the use of dual-modality approach for 

prostate cancer diagnosis.    

Table 6.4 Classification results for individual modalities. For LRS, all parameters were used for 
classification. AFLS used 16/20 in 5-level and 11/20 in 3-level classification. 

5 -level Sensitivity Specificity Accuracy AUC 

AFLS 

GS9 88.07 ± 2.65 91.70 + 0.23 91.36 + 0.36 0.95 + 0.01 

GS8 76.75 + 2.06 92.32 + 0.32 91.25 + 0.33 0.93 + 0.01 

GS7 83.34 + 1.20 75.97 + 0.90 77.54 + 0.73 0.88 + 0.00 

LRS 

GS9 80.17 ± 2.04 78.17 + 0.46 78.35 + 0.33 0.85 + 0.01 

GS8 70.25 + 5.33 79.72 + 0.77 79.07 + 0.75 0.81 + 0.00 

GS7 87.06 + 2.26 80.43 + 1.02 81.84 + 0.78 0.92 + 0.00 

3 -level Sensitivity Specificity Accuracy AUC 

AFLS 
PCa 

86.60+1.66 79.37+1.15 82.12+0.79 0.92+0.00 

LRS 76.67+0.49 92.62+0.73 86.55+0.39 0.93+0.00 

 

The corresponding ROC curves pertaining to the classification using dMOD are shown 

in Fig. 6.2. For each algorithm, the features/parameters were also selected in each case based 

on the feature selection algorithm described in Chapter 5. As can be seen from Table 6.3, 23 

features were used for 5-level classification, and 16 features were used for 3-level classification. 

All parameters from LRS were used in each case, and in case of AFLS, at least one parameter 

from each emission wavelength was used, suggesting no redundancy in design.  

The accuracy observed here for detecting cancer in presence of extra-prostatic tissues, 

which applies to margin assessment during radical prostatectomy, is superior to that obtained in 

presence of transition zone tissue (BPH) in Chapter 5, which is more applicable to biopsy 
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application. The results in this strongly suggest that dMOD is an excellent tool for margin 

assessment during prostatectomy, thus improving the prostate cancer treatment approach.  

 

Fig. 6.2 ROC Curves obtained for different Gleason scores (GS 9, GS 8 and GS 7) using 5-level 
classification algorithm, and for all cancers (All), using 3-level classification algorithm.  

 
In future work, in vivo evaluation of dMOD is warranted, where the results will be 

contingent upon the contrast alteration due to change in tissue perfusion. However, in vivo 

studies on animal models are supportive of dMOD’s in vivo applicability. In addition, there may 

be other types of extra-prostatic tissues that need to be considered like pedicles and nerve 

bundles. Also, while a 1 mm fiber optic probe seems ideal for a biopsy set-up, the probe will 

have to be modified for margin assessment in a laparoscopic setting. In an ideal case, a thick 

fiber probe, possibly involving multiple channels, that covers a surface area of ~ 5mm diameter 

would make an excellent margin assessment tool. One possible design would be to have an 

array of source detector fibers in a probe, which can be alternately illuminated/detected using 

fiber optic multiplexer/s.  

This chapter concludes the studies on prostate cancer detection. In the next chapter, 

the applicability of dMOD towards human breast cancer is discussed.  
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CHAPTER 7 

APPLICATION TO BREAST CANCER DETECTION 

 dMOD works on the basic principles that probe the morphology and biochemistry of the 

localized tissue. Therefore, it would not be improbable to extrapolate that dMOD can be applied 

to discriminate other cancer types. In this chapter, the application of dMOD to detect breast 

cancer in the localized tissue was explored, which presents a critical clinical need, i.e., 

intraoperative margin detection.   

7.1 Introduction 

Breast cancer is one of the most common forms of cancers among American women 

with an estimated 230,480 new cases and 39,520 deaths in 2011
2
. With the advancement in 

diagnostic techniques, it is now possible to diagnose breast cancer in early stages while it is still 

localized. A standard treatment procedure for women with early breast cancer is breast 

conserving therapy
88

, a surgical procedure known as the lumpectomy (or partial mastectomy) 

followed by irradiation therapy. Surgery is imminent in treating breast cancer, with many early 

stage patients being cured without recurrence. The goals of the surgery include complete 

resection of the primary tumor, with negative margins to reduce the risk of local recurrences. 

However, due to lack of definitive tools for intra operative assessment of cancer margin during 

lumpectomy, there is incidence of positive margins in 20-50% of patients who undergo the 

procedure
89,90

. Patients with positive margins must undergo a second surgery, leading to higher 

risk of wound infection, associated psychological distress, compromised cosmesis, and added 

medical expenses. Hence, an accurate diagnostic tool that helps in assessing these margins 

intra operatively is essential.  

Many optical techniques have been evaluated for diagnosing breast cancer for more 

than a decade
91

. In particular, auto-fluorescence spectroscopy (AFS) and diffuse reflectance 
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spectroscopy (DRS) [also termed light reflectance spectroscopy (LRS)] have been developed 

and extensively evaluated by multiple groups of researchers to achieve clinically relevant results 

for cancer demarcation
20,53-55,86,92,93

. Many of these studies were focused on breast cancer: 

some were focused on the detection of breast cancer for clinical diagnosis
20,53,54,92

; some others 

were focused on the surgical margin detection
55,86,93

. Brown et. al.
86

 recently developed a fiber-

based DRS imaging system for breast cancer margin detection, with an overall sensitivity and 

specificity of 79.4% and 66.7%, respectively. Around the same time, Keller et. al.
55

 evaluated 

DRS and AFS for using a point based approach with sensitivity and specificity of 85% and 96%, 

respectively, while also demonstrating the feasibility of converting the point based approach into 

an imaging system for larger area assessment.  

In this feasibility study, I wish to explore the optical characteristics of AFLS and LRS of 

breast cancer in order to determine if LRS can serve either as a stand-alone method or as a 

combined approach with AFLS for breast cancer detection and classification. A protocol was 

designed to obtain measurements from freshly excised breast samples. A fiber optic probe of 1 

mm diameter was utilized in collecting AFLS and LRS from human ex vivo breast specimens of 

7 cases with invasive ductal carcinoma (IDC). Three tissue types were measured, namely, IDC, 

benign fibrous tissue (FT) and adipose tissue (AT).  

The motivation and goal of this pilot study was to examine the feasibility of finding 

optical pre-biomarkers through each or both of the two optical modalities that could serve as 

intrinsic classifiers for IDC, which is the most common form of breast cancer in lumpectomies. If 

such pre-biomarkers can be found in a prompt time frame, this methodology may have a 

potential to become a quick assessment tool for accurate detection of positive breast cancer 

margins during breast conserving surgery.  

7.2 Methods 

The instrumentation used was the same (dMOD) as in case of prostate ex vivo study, 

as described in previous chapters.  



 

 89 

7.2.1 Measurement protocol and Sample Size 

AFLM and LRS readings of human breast cancer specimens were acquired at The 

University of Texas Southwestern (UTSW) Medical Center, Dallas, TX. The optical 

measurement protocols were compliant with the UTSW IRB requirements. The data were 

collected ex vivo from the breast specimens immediately after their resections through 

mastectomies or lumpectomies. Selection criteria for this pilot study included tissue samples 

with biopsy confirmed IDC, with no prior exposure to chemotherapy, and having a tumor size of 

5 mm in at-least one dimension confirmed via imaging history. Seven such breast cases were 

selected for collecting optical measurements.  

Prior to measurement, the excised breast samples were inked at the margins by the 

pathologist as per standard pathology protocol. Based on the surgical markings on the sample, 

multiple cuts were made across the breast tissue, and the tumor was located visually; Fig. 

7.1(c) shows an example. Further, after the pathologist visually identified regions of cancer 

tissue, benign fibrous tissue, and adipose tissue, multiple (approximately 3-6) AFLM and LRS 

readings were obtained on each of the three pathological regions. AFLM and LRS readings 

were taken sequentially (in no particular order) at each measurement point. The integration time 

was for AFLM was 5 sec per emission wavelength for IDC and FT, and 10 sec per emission 

wavelength for AT. For LRS measurements, up to 100 ms integration times were used. With 

manual switching between the two modalities, the acquisition time was about 60 sec per 

measured point. After data acquisition, the measured regions (i.e., three pathological types of 

tissues) were marked with ink, sliced out from the rest of the breast tissue, and sent for 

histological analysis. The corresponding histology results for all of the specimens sent were 

later obtained, confirming 100% correctness in initial identification of breast cancer versus 

benign tissues. According to the histology results, the measured optical points were categorized 

as cancer or controls. 
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One of the 7 cases was excluded from the analysis due to contamination from 

Isosulphan Blue, a surgical dye commonly used to trace the lymphatic drainage during surgery. 

The presence of the dye in this case was confirmed by the occurrence of an odd spectral 

feature around 570 nm - 650 nm in the LRS data
94

. Therefore, a total of 93 locations across 6 

breast cancer cases were measured: 34 from IDC regions, 31 from FT regions and 28 from AT 

regions.    

 
Fig. 7.1: Histological findings showing an example of histological difference between (a) 

invasive ductal carcinoma and (b) benign breast stroma in pink color. 
  

Figure 7.1(a) is a histopathology illustration of invasive ductal carcinoma showing 

malignant infiltrative ducts with blue cellular nuclei in a background of abundant purplish stroma. 

The tumor can be viewed differently from normal breast tissue on physical examination as well 

as histomorphological evaluation. The overall histological alteration is evident, from a 

homogeneous stroma, as seen in Fig. 7.1(b), and two-layer epithelium ductal structure, not 

shown here, to a highly heterogeneous stroma admixed with many disorganized ducts, as 

demonstrated in Fig. 7.1(a). 

7.2.2 Data Analysis     

 7.2.2.1 AFLS Analysis 

The data analysis for AFLS was same as described previously for in Chapter 3 (please 

see Section 3.3). Briefly, each lifetime curve was fitted with a two-component exponent model, 

to obtain two lifetimes, τ1, and τ2, and their respective weights, a1 and a2. Integral-intensity-

weighted mean lifetime (τm) was also calculated, generating 5 usable contrast parameters per 
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emission wavelength. Since there are four emission curves per measured locations, overall 20 

(5X4) parameters were obtained at each location. Each of these parameters were then 

evaluated for statistical differences between IDC and AT, as well as IDC and FT, using a linear 

mixed model analysis for repeated measures, implemented in SAS. 

7.2.2.2 LRS Analysis 

For LRS data analysis, a different empirical approach was implemented, compared to 

quantification approach described previously. Each acquired LRS spectrum was divided by the 

calibration reflectance spectrum obtained from a diffuse reflectance standard (WS-1, Ocean 

Optics, FL, USA). While the acquired LRS included data from 475-1100 nm, we selected the 

spectral segments between 500-840 nm for further analysis. This selection was based on the 

quantification algorithms described in Chapter 2, which covers major absorbers including 

hemoglobin
59

, and the fact that the signal to noise ratio of the system falls off outside this range. 

However, it is possible to include the wavelengths beyond 500-840 nm in the analysis. Given 

the chosen spectral region, each spectrum was divided into multiple 20-nm segments [as 

marked by dashed lines in Fig. 7.3(a)]. A spectral slope of each region was calculated using 

linear regression, resulting in 17 slopes (S1 to S17) for each measured spectrum: S1 

representing the slope in 500-520 nm region, S2 representing the slope in 520-540 nm region, 

and so on. Each slope was then compared among all three breast tissue types, followed by 

statistical significance tests using linear mixed model regression analysis.  

7.2.2.3 Classification and ROC analysis 

The classification ability of each of the three methods, namely, LRS only, AFLS only, 

and dMOD were assessed independently. Among these multiple parameters/features were 

available for classification using each method: 17 slopes for LRS, 20 fluorescence lifetime 

parameters for AFLS, and a combination of both, 37 (17 + 20) for dMOD. As we have observed 

in Chapter 5, feature selection is an essential process which provides a best set of features that 

can provide improved classification, based on certain criteria. This works especially well in 
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cases where the data matrix is sparse, which means that the number of features is comparable 

to the number of observations (or data points), or typically less than 5 times the number of 

observations.  

As explained in Section 5.2.5, the feature selection was achieved using one of the four 

methods involving two feature selection algorithms and two independent selection criteria: 

[SFA+A, SFS+B, SBS+A, SBS+B]. The selected features were used for classification of three 

tissue types (IDC, AT and FT) using the 3-level multinomial logistic regression algorithm (see 

Section 5.2.5). The Sensitivity (Sn), specificity (Sp), accuracy (Acc) and area under the curve 

(AUC) for the receiver operating curve were obtained as classification metrics, for each of the 

three methods.  

7.3 Results 

7.3.1 AFLS Results 

Each lifetime curve was used to obtain 4 fitted parameters (τ1, τ2, a1 and a2) and a 

derived parameter (τm).  With four emission wavelengths, overall 20 AFLS parameters were 

obtained from each measured location. 

 

Fig. 7.2 (a) Mean AFLS parameters that showed a significant difference between IDC (n=34) 
and FT (n=31), as well as IDC and AT (n=28). (b) Average of τm plotted for all three tissue types 

as a function of emission wavelength. . The error bars in both (a) and (b) represent standard 
error of the mean. 

 
A mixed model repeated measures linear regression analysis was performed, revealing 

significant differences between means of cancer and the other two types of breast tissue, in 5 

out of 20 AFLM parameters, as seen in Fig. 7.2(a). The p-values associated with all 5 significant 
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AFLM features are tabulated in Table 7.1. All these significant parameters were derived from 

emission wavelengths 532 nm and 562 nm. Among the rest of the parameters, some showed 

significant differences either between IDC and FT or between IDC and AT, but not 

differentiating IDC from both FT and AF, whereas some did not show any significant difference 

among any tissue types. 

As shown in Fig. 7.2(a), IDC lifetimes were overall found to be shorter than those of FT, 

and longer than those of AT. Figure 7.2(b) shows the variation of mean lifetimes as a function of 

wavelength, for the three tissue types. As can be seen, the τm values of IDC and FT are similar 

in their spectral trends across wavelength, but exhibit stark contrast at first two emission 

wavelengths. AT, on the other hand, follows a different mean lifetime pattern over the emission 

spectral range, with an increased then followed by a decreased τm; nevertheless, τm of AT still 

shows even more significant contrast at 532 nm and 562 nm, with respect to the τm values of 

both IDC and FT. 

 Table 7.1: The p-values of significant features of both modalities, 
derived from mixed model regression analysis for test of significant differences 

between IDC and other two breast tissue types. ‘λ’ represents wavelength. 

LRS Features 

λ range (nm) 

IDC vs. 

 FT 

IDC vs.  

AT 

LRS Feature   

λ range (nm) 

IDC vs. 

 FT 

IDC vs.  

AT 

AFLM  

Features 

IDC vs.  

FT 

IDC vs.  

AT 

S1  

(500-520) 
0.001 < 0.001 

S13 

 (740-760) 
< 0.001 < 0.001 τ1_532nm 0.022 < 0.001 

S3  

(540-560) 
< 0.001 < 0.001 

S14  

(760-780) 
0.01 < 0.001 τ2_532nm < 0.001 < 0.001 

S4  

(560-580) 
< 0.001 0.052 

S15  

(780-800) 
0.003 < 0.001 τm_532nm < 0.001 < 0.001 

S7  

(620-640) 
0.03 < 0.001 

S16  

(800-820) 
< 0.001 < 0.001 τ2_562nm 0.012 0.001 

S12 

 (720-740) 
0.004 < 0.001 

S17  

(820-840) 
< 0.001 < 0.001 τm_562nm 0.032 < 0.001 

 

7.3.2 LRS Results 

Figure 7.3(a) shows a comparison of mean LRS spectra of the three breast tissue 

types. As described previously in Section 7.2.2.2, 17 spectral windows of 20 nm width were 

generated (as marked by dotted vertical lines); corresponding spectral slope of each region was 
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computed for all the data points using a linear regression curve fit, giving us overall 17 

parameters to compare IDC with FT and AT. Statistical significance was tested using a mixed 

model repeated measures analysis model, which revealed that 10 out of 17 mean spectral 

slopes was significantly different between IDC and the other two types of breast tissues (note: 

S4 is marginally significant for IDC vs. AT with p = 0.052). The p-values of these significant 

features have been tabulated in Table 7.1. As an example, Fig. 7.3(b) shows a comparison of 

scaled slopes (slope x 10
3
) among the three breast tissue types at several spectral windows, 

whose slopes are statistically different between IDC and the other two tissue types. Note that 

S12 to S17 shared similar slope patterns for all three breast tissue types, so only slope values 

of S13 among those are plotted in Fig. 7.3(b). It was also observed that within S12 to S17, IDC 

has the maximum absolute slope values as compared to FT and AT.  

 

Fig. 7.3 (a) Average reflectance spectra of IDC (n=34), FT (n=31) and AT (n=28). Vertical black 
lines indicate the 20-nm spectral windows (S1-S17) selected for spectral slope analysis.  The 

gray bars on the bottom of figure mark the spectral windows whose spectral slopes are 
significantly different between IDC and two other types of breast tissue.  (b) Means of scaled 

spectral slopes (Slope x 10
3
) along with standard errors, for 5 selected spectral regions, which 

showed a significant difference between IDC and the other two breast tissue types. 

7.3.3 Classification Results 

While statistical analyses given in Sections 7.3.1 and 7.3.2 showed 5 and 10 significant 

features in AFLM and LRS, respectively, I still fed all the features (i.e., 20 in case of AFLS, 17 in 

case of LRS, and 37 for both) as input parameters to the feature selection algorithm. The 

underlying reason is that the feature selection algorithm has an ability to identify unique features 

which otherwise may not be significantly different among classes, but add value to the 
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classification of data. Specifically, as described earlier in Section 7.2.2.3, classification ability 

was assessed for three cases: (a) AFLS only, (b) LRS only, and (c) dMOD (i.e., LRS + AFLS 

together). In each of these three cases, a best set of features was selected from one of the four 

feature selection methods.  For AFLS only, “SFS + A” gave the best feature set that included [τ1 

(532 nm), τm (532 nm), τ1 (562 nm), and τ2 (562 nm)]. For LRS only, the best results were 

obtained using “SBS + B” feature selection routine, and the selected feature set consisted of 

[S1, S5, S6, S7, S8, S9, S17]. Similarly, for dMOD, the routine used was “SBS + B”, and the 

selected feature set was [τ2 (562 nm), a1 (562 nm), a2 (562 nm), S1, S8, S9, S14, S17]. 

Table 7.2. Classification statistics obtained using three methods: (a) AFLS-only, 
(b) LRS-only, (c) dMOD method. 

Modality Tissue Type 
Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 
AUC 

LRS 

IDC 93.8 ± 1.3 98.0 ± 1.0 96.4 ± 0.8 1.00 

FT 82.3 ± 6.1 82.8 ± 2.6 82.6 ± 2.3 0.96 

AT 77.3 ± 4.2 88.8 ± 3.0 85.6 ± 2.1 0.96 

AFLM 

IDC 89.8 ± 2.1 93.8 ± 1.9 92.3 ± 0.8 0.99 

FT 90.0 ± 1.6 95.2 ± 0.6 93.5 ± 0.6 0.97 

AT 91.8 ± 2.0 100.0 ± 0 97.5 ± 0.6 0.98 

dMOD 

IDC 91.4 ± 3.4 98.6 ± 1.1 96.0 ± 1.3 1.00 

FT 87.3 ± 4.1 93.6 ± 1.2 91.6 ± 1.1 1.00 

AT 86.0 ± 2.1 94.4 ± 2.0 92.0 ± 1.7 1.00 

 

Interestingly, classification model utilizes certain features which otherwise may not be 

significantly different among classes, but add value to the classification of data, for example, S8, 

S9, a1 (562 nm), a2 (562 nm).  The four parameters (Sn, Sp, Acc, AUC) that summarize the 

classification ability are tabulated in Table 7.2 for each case. As can be clearly observed, the 

accuracy of classifying IDC is greater than 90% using any of the three cases, i.e., either 

technique alone, or in combination. In fact, the best accuracy for cancer detection in this study 

is for LRS alone (96.4±0.8) which is quite close to both methods used together (96.0±1.3). 

AFLS provides slightly better results for the other two tissue classes, when compared with LRS 

and the combined technique. 
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7.4 Discussion and Conclusions 

Changes in cellular metabolism caused by cancer development in vivo can result from a 

number of factors including genetic changes, changes in tissue vascularization, and changes in 

metabolic demand
57,95

. Flavins (co-enzymes) that are involved in cellular oxidative 

phosphorylation
96

, porphyrins, and lipo-pigments were the targeted auto-fluorophores in this 

study for AFLM measurements. At 447 nm excitation, it was found that the mean auto-

fluorescence lifetimes quantified by the two exponential components were significantly different 

between IDC and two other types of benign breast tissue, predominantly at 532 nm and 562 

nm. This implies that the detected fluorescence signals stem mainly from flavins and lipo-

pigments
52,96

. Also, there were significant differences within the LRS between the cancerous 

and benign breast tissue, in the predominantly hemoglobin absorption range (500-640 nm), as 

well as in predominantly scattering domain (700-840 nm) (see Table 7.1). These findings are 

consistent with previously published work
20,53-55

, as well as with the expected morphology of 

cancer.  

In this study, I chose a relatively straightforward and empirical approach for LRS data 

analysis (i.e., quantification of segmented spectral slopes), as opposed to model-based or 

feature-extraction algorithms that quantify physiological and other feature-based parameters. 

The spectral slopes are light-intensity independent, and do not require frequent calibration of 

the instrument, thus making the measurement and tissue classification faster, simpler, with a 

lower computational cost. In particular, empirical approaches may be practically useful to extract 

distinct characteristics due to cancer when non-contact imaging-based approaches (e.g., multi-

spectral imaging) are utilized. In these cases, there often exist spectral broadening and other 

factors that lead to low-resolution spectra
55

  and thus make model-based fitting difficult or 

inaccurate. The classification results that I obtained (see Table 7.2) are comparable to the ones 

published using absolute-quantification methods
54,86,92,93

 and other empirical methods
20,55

. 

Therefore, while the sample size of the breast specimens in this pilot study is relatively limited 
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(n=6), the results from LRS are consistent and convincing to show that a simple, empirical 

approach using selected spectral slopes can provide high sensitivity and specificity to identify 

IDC.  

Both AFLS and LRS methods independently provided contrast parameters to 

differentiate IDC from benign breast tissue types, with excellent accuracy (see Table 7.2). LRS 

was found to be the most robust and accurate (Acc = 96.4±0.8 %) in IDC identification in this 

implementation. However, AFLS was not too far (Acc = 92.3±0.8 %) in accuracy, and provided 

better accuracies when being used to identify other two classes of breast tissues. Nevertheless, 

it can be argued that “high accuracy in identifying IDC” would be a better qualifier when we 

select a cancer-detection method. Thus, LRS would be a preferred approach over the others 

(i.e., AFLS and dMOD) since it provides highest accuracy for IDC discrimination in the given 

sample set. It is also observed from Table 7.2 that dMOD approach does not significantly 

improve the results.  It should be noted however, that there are multitudes of methods available 

for data classification and feature selection, and application of other methods may provide 

slightly different results.  

As shown in Section 7.3.1, integral-intensity-weighted mean lifetimes at 532 nm for 

cancer, fibrous and adipose tissue were 3.27±0.43 ns, 3.77±0.25 ns, and 1.62±0.57 ns, 

respectively. There has been limited report in literature on lifetimes of fresh breast tissues, 

especially with excitation near 450 nm. However, these results are comparable to a previous 

report on lifetimes of IDC and fibroadenoma
79

. There are various endogenous fluorophores that 

could be excited within 400-500 nm range; their lifetimes range from <0.01 ns for protein bound 

FAD at the shorter end, and up to 15 ns for protoporphyrin IX at the longer end [31]. It is thus 

difficult to determine the individual fluorophores that are exactly responsible for the two lifetime 

components.  

In Sections 7.3.1 and 7.3.2, 5 AFLM and 10 LRS features were identified that showed 

statistical significance (p< 0.05) between breast cancer and other breast tissue types (i.e., 
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fibrous and adipose tissues). It is important, however, to point out that some of the significant 

(p<0.05) features may not contribute uniquely to the classification model in a separate or 

combined LRS, AFLM or LRS + AFLM case, possibly due to multi-collinearity. Namely, a set of 

individually significant contrast features may not form the best feature set for tissue 

classification. Therefore, in Section 7.3.3, I still utilized all the parameters (20 for AFLM, 17 for 

LRS and 37 for LRS+AFLM) for feature selection. Feature selection algorithms then revealed a 

reduced set of features (4 for AFLM, 7 for LRS, and 8 for LRS+AFLM), including some features 

that were found to be statistically different between cancer and other two types, and some 

additional features which were not. In addition, to account for overfitting, we also used a 10-fold 

cross validation routine, and the results were evaluated on the test data, which was separate 

from training data. 

The short-term goal of this study was to examine and demonstrate the feasibility of 

identifying and predicting IDC based on ex vivo breast tissue samples using AFLS, LRS, or 

combined approaches. The long term goal of this investigation is to assess LRS and AFLS for 

clinical translation towards breast cancer margin detection. Among three possible methods, this 

study suggests that LRS is a highly sensitive and accurate technique to differentiate a solid IDC 

mass from surrounding fibrous tissue or adipose tissue with a localized point measurement.  

However, there are other tissue types in the breast that need to be evaluated or identified 

besides IDC, such as preneoplastic proliferative changes (pre-cancer) and ductal carcinoma in 

situ (DCIS). Again, a continuous study is warranted in order to develop a more comprehensive 

and robust classification algorithm for identification of normal, pre-cancer, DCIS, and IDC. Such 

a study may also allow us to take into account the demographics of patients in analysis
93

, 

including the population with prior chemotherapy
55

. Surgical margin detection would rather 

require an imaging platform for fast surface assessment of excised samples. Both LRS and 

AFLS have the ability to be implemented in a non-contact imaging geometry, and the data 

(Table 7.2) suggest either of these methods could be a useful tool. A larger pool of breast tissue 
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specimens involving the rest of the tissue types may provide an insight into the clear dominance 

of either technique, but for now, LRS displays an edge over AFLS given cost as a consideration 

factor.   
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CHAPTER 8 

DISCUSSION AND FUTURE SCOPE 

A dual-modality optical device was successfully developed and evaluated in vivo on 

animal models of prostate cancer, as well as on ex vivo human prostate gland. While multiple 

research groups have explored these two modalities individually for various types of cancers in 

human and animal models, my approach is unique in multiple ways. Firstly, the implementation 

of quantification algorithm in LRS is novel to this research. Secondly, the excitation-emission 

design used in AFLS is also novel, and is a relatively less explored region in fluorescence 

based cancer detection, targeting flavins, porphyrins and lipo-pigments. Lastly, there are limited 

or no reports in literature for these methods towards prostate cancer detection especially in 

human tissue.  

Recently, few studies have been reported towards the detection of prostate cancer ex 

vivo in human prostate tissue
15,76-78

, using either multimodality approach of combining 

fluorescence spectroscopy, white light reflectance and high-frequency impedance 

measurement
15

, or electrical properties of prostate tissue
76-78

.  Table 8.1 shows a comparison of 

current work with the previously published studies. The accuracy obtained using dMOD is 

comparable or better than reported works. In addition, this work includes transition zone tissue 

(BPH) in the classification, and extra-capsular tissues, which makes the results more robust 

both for optical biopsy for prostate cancer diagnosis, and intra-operative margin assessment 

during radical prostatectomy for improved surgical outcome. Lastly, in an optical biopsy set-up a 

probe diameter of 1mm, used in this study, is more compatible, along with a better spatial 

sampling accuracy.  

It should be noted that in the animal studies (Chapter 4), and in case of breast cancer 

(Chapter 7), either optical method (LRS or AFLS) proved to be sufficient for cancer 
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discrimination. However, in case of human prostate cancer study (Chapters 5 & 6), either 

modality alone provided insufficient contrast, in comparison to dMOD. This justifies the use of 

dual-modality technique for detection of prostate cancer in humans. This also suggests that 

prostate cancer is a harder problem to solve, which is evident from the fact that non-invasive 

imaging modalities are still under development for a robust diagnosis of prostate cancer. On the 

other hand, animal models are certainly more aggressive as compared to naturally growing 

human prostate cancer, providing enough contrast to be differentiated using single modality. 

Similarly, small lesions in breast cancer are also identified easily with X-ray imaging modalities 

indicating a good contrast, which was consistent with our finding. In fact, there have been 

several studies in the literature using LRS-like set-up for breast cancer detection 
20,55,86

.  

Table 8.1 Comparison of current work with major competing studies (ICT = intra capsular 

prostatic tissue; ECT – extra capsular tissues) 

 Current Work (2012) Halter et. al., 2011 Salomon et. al., 2009 

Ex vivo Sample 
condition 

Fresh (Within 2 Hours 
of resection) 

Fresh (exact time not 
specified) 

Frozen fresh, then 
thawed later for 
measurement  

Sample size  

PCa (221 [GS-7 (125); 
GS-8 (40); GS-9 (56)]) 
Benign 503 [PZ (176) 
TZ (142), ECT (185)]) 

PCa (71 [GS-6 
(28);GS-7 (28); GS-8 

(13); GS-9 (2)]) 
Benign (465) 

79(PCa), 16 (Benign) 

Results 

[AUC = area under 

ROC curve;  
Sn = Sensitivity  
Sp = Specificity] 

ICT: AUC (Sn/Sp)  

All = 0.91(79/85%) 
GS-7 = 0.95 (86/89%) 
GS-8 = 0.94 (82/91%) 
GS-9 = 0.92 (82/85%) 

AUC  

All = 0.82 
Low Grade = 0.8         
High grade = 0.9 

Sn/Sp = 87.3/75% 

ECT: AUC (Sn/Sp)  

All = 0.98(92/92%) 
GS-7 = 0.97 (91/91%) 
GS-8 = 0.95 (83/92%) 
GS-9 = 0.96 (83/95%) 

Tissues identified  
GS-7,8,9; Benign [nPZ, 

BPH (TZ), ECT] 
GS-6,7,8,9; Benign PCa, non-PCa 

Cancer 
Stratification? 

Yes Yes  No 

Sampled area / 
sampling 
resolution 
(diameter) 

< 1 mm  3.5 mm Not reported 
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The animal studies were conducted in vivo, whereas the human studies were 

conducted ex vivo in this research. One of the main differences in these two scenarios is blood 

perfusion. While changes in oxygen saturation and hemoglobin concentrations are highly 

affected by blood perfusion, one can expect scattering to change less. A comparison of 

scattering coefficient in both scenarios reveals that in comparison to benign control tissue, 

scattering coefficient decreases in tumor tissue for subcutaneous rat model (Fig.4.4) as well as 

for mice orthotopic model (Fig.4.10). However, a reverse effect is observed in human ex vivo 

study (Fig. 5.3), where scattering coefficient is larger in cancer tissue compared to benign 

tissues.  

 

Fig. 8.1 A comparison of scattering coefficient for different prostate cancer, benign prostatic and 
extra-prostatic tissues. Bars represent the mean across all measured points, and error bars 

represent standard error of mean.   
 

Since animal models of prostate cancer usually present a very aggressive form of 

prostate cancer, it would be interesting to compare scattering coefficient by Gleason 

scores/grades. Interestingly, Fig. 8.1 shows that the scattering coefficient decreases as the 

tumor becomes more aggressive. Specifically, scattering coefficient of GS 7 > GS 8 > GS 9, 

which is comparable to intra-prostatic benign tissues (nPZ and BPH) in this case. Although this 
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does not completely explain why scattering coefficient in animal models is lower, the 

observation does seem to follow the logic that more aggressive the cancer is, the lower the 

scattering.  

Another interesting observation that can be made from the results of this study is that 

different contrast parameters were obtained in different models of cancer, especially for AFLS. 

For instance, in rat ectopic model study, mean-lifetime (τm) was the major classifier, whereas in 

mice orthotopic model study, the first lifetime component (τ1), was the major classifier, whereas 

τm did not exhibit much contrast. Similarly, whereas most of the 20 lifetime parameters exhibited 

contrast in case of prostate cancer, only a few (mainly for 532 nm and 562 nm emission) 

showed contrast for breast tissue. Although it is difficult to determine the exact biochemical 

differences that lead to variability in AFLS contrast in different cancer models, their environment 

is expected to be different given the difference in origin of the cancer types. This observation 

certainly illustrates how sensitive AFLS technique is to various tissues, residing in distinct 

biochemical environments.  

8.1 Limitations and Future Scope 

While the results obtained in this research are promising, there are various translational 

steps required for dMOD to be realized as a clinical tool. These points are listed below:  

a) The human prostate study was performed ex vivo, within 2 hours of the resection. In an in 

vivo setting, these parameters could be expected to change which could either enhance or 

diminish the contrast. In vivo study of human prostate is warranted to explore this issue.  

b) Four emission wavelengths were initially used for AFLS, to determine the best combination 

of wavelengths based on contrast obtained. The results suggest that unlike animal in-vivo 

studies, where even one emission wavelength is sufficient, all four emission wavelengths 

contribute to the tissue discrimination in humans. Since switching of emission filter 

increases the acquisition time, a time multiplexing approach could be implemented in AFLS 

for data faster acquisition
97

.  



 

 104 

c) LRS acquisition is currently in milliseconds, but the data processing algorithms require 

much iteration and are not real time. Implementation on dedicated processors or 

alternatively exploring empirical methods of LRS analysis as shown in Chapter 7 is 

warranted for clinical applicability.  

d) To develop a better understanding of contribution of various fluorophores (flavins, 

porphyrins and lipo-pigments) probed, a multi-band excitation-emission protocol would 

enhance the understanding of contrast observed.  

e) Practical implementation of dMOD for prostate biopsy, would require a motorized set-up, 

similar to one described in Chapter 1 (Fig. 1.3). Similarly, for intraoperative margin 

detection, a thicker probe, with a 5mm diameter field of view would be more appropriate, 

which would require either a multiplexing, or scanning approach to be implemented in 

hardware, to increase the current field of view, which is less than 1mm.      

f) A contact measurement probe is always susceptible to pressure related changes, and it is 

important to account for those. Studies have shown that while AFLS is not very sensitive to 

small pressure changes
98

, LRS readings can be heavily affected by pressure applied on the 

tissue
99,100

. An independent study conducted using dMOD (please see Appendix A) was 

also consistent with these findings. Therefore, incorporating a pressure sensor at the tip of 

fiber optic probe with real-time pressure feedback should enhance the diagnostic ability of 

dMOD.  
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EFFECT OF PROBE PRESSURE ON OPTICAL PROPERTIES
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Measurements with a fiber optic probe such as the one in dMOD require contact with 

the tissue, which may induce pressure onto the tissue under investigation, based on the 

application geometry. In my study, I used an optical frame that held the weight of the probe, and 

gently place the probe on tissue surface to avoid pressure related changes. Additionally, the 

sample size used in this study is large, and should average out the inconsistencies related to 

pressure. However, it is important to understand how different pressures may affect the 

measured optical properties. In the past, a few groups have investigated the effect of probe 

pressure on the tissues for both LRS
99,100

 and fluorescence measurements
98,100

.  

 Here, I investigated the pressure effect that could possibly exist in dMOD 

measurements. I used three different types of animal tissue from a fresh meat market, with 

different structural appearances, as shown in Fig. A1. To measure pressure, I placed the probe 

on a manual linear stage, with a resolution of 0.001 inches (see Fig. A2).  

 

Fig. A1. Tissue types measured: (I) Lamb muscle; (II) Chicken thigh muscle; (III) Chicken Skin 
and soft tissue 

 
The tissue was placed on a weighing scale, which had a resolution of 0.01 grams. The 

probe was first placed slightly above the tissue, and then lowered 0.005 or 0.01 at a time. 3 

locations on each tissue type were measured, and 10 pressure readings were 10 readings were 

taken, lowering the probe by 0.005 or 0.01 inches per iteration. At each point, the gram weight 

I II III 
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was noted, which was later converted to Newtons (N) (1 g = 0.0098 N). Pressure (in N/mm
2
) 

was also calculated by dividing Newton force by area of the probe, which was 1mm
2
.   

 

Fig. A2. Experimental set-up for pressure measurements. 

 

Fig. A3. Results for AFLS experiment. In both plots, red lines = tissue Type I, blue lines = tissue 
Type II, black lines = tissue Type III. (a) Mean lifetime (τm) at 562 nm as a function of distance 

pushed down from surface. (b) Change in pressure against plotted against the distance 
travelled by the probe from tissue surface.   

 
AFLS Results:  

 For AFLS, τm at 562 nm is shown in Fig. A3(a) as a function of distance from surface. It 

can be seen that there is no relationship between mean lifetime and distance from surface for 

tissue types I and III. However, for Tissue type II, there a slight change is observed after 1 mm, 
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which is of the order of ~200 ps. Comparing the pressure against distance for Type II in Fig. 

A3(b) suggests that this may be due to higher pressures ( > 0.02 N/mm
2
) observed after 1 mm. 

It can also be observed from Fig. A3(b) that pressure perceived by the tissue also depends on 

the tissue type, with lowest perception by the soft tissue. In other words, the placement of the 

probe on a soft tissue (Type III) is less prone to induce pressure related changes, as compared 

to a harder tissue (Type I or II).  Results from 562 nm have been presented here, because the 

signal to noise ratio was the highest for 562 nm. However, other wavelengths demonstrated 

similar results.  

  

Fig. A4. Results for LRS experiment. In both plots, red lines = tissue Type I, blue lines = tissue 

Type II, black lines = tissue Type III. (a) μs’ at 750 nm as a function of distance pushed down 

from tissue surface. (b) Change in pressure against plotted against the distance travelled by the 
probe from tissue surface. 

 

LRS Results:  

LRS experiments were carried out on a different set of tissues, although similar in 

categories to Type I, II and III described in Fig. A1. The data fitting algorithm was used to 

extract μs’, [HbO], and [Hb].  As evident from Fig. A4(b), tissue Type II (blue lines) was relatively 

soft in comparison to the Type II measured for AFLS. Fig. A4(a) shows the effect of probe 

distance on scattering coefficient (μs’). It can be seen that while Type I and Type III do not 

exhibit a definite pattern or dependency on distance, Type II shows a linear increase in 
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scattering after approx. 0.6-0.7 mm, which corresponds to pressures of greater than 0.005 

N/mm
2
.  

 

 
Fig. A5. Effect of probe distance from tissue surface on [Hb] (blue) and [HbO] (red) for (a) tissue 

Type I, (b) tissue Type II, and (c) tissue Type III.  
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Fig. A5 shows the effect of probe placement on hemoglobin concentrations ([Hb] and 

[HbO] for all three tissue types. There is a strong linear relationship between change in 

hemoglobin and probe placement. In all three tissue types, which possess different baseline 

levels of hemoglobin to start with, a similar trend is observed showing an increase in [Hb] and 

decrease in [HbO] indicating a decrease in oxygen saturation.  

 
Fig. A6. Oxygen Saturation as a function of probe distance from surface for tissue types I (red), 

II (blue) and III (black).   
 

Table A1. Linear Fit statistics for curves in Fig. B6.  

Tissue  R-squared Slope Intercept 

Ia 0.9796 -19.5 72.66 

Ib 0.8986 -25.83 72.83 

Ic 0.9166 -21.36 66.8 

IIa 0.9772 -18.82 39.59 

IIb 0.8988 -14.07 37.86 

IIc 0.8802 -11.57 33.45 

IIIa 0.169 -12.02 73.97 

IIIb 0.0431 -5.96 75.96 

IIIc 0.9577 -23.22 51.92 

 

Fig. A6 shows changes in oxygen saturation, with the probe distance. A decrease in 

saturation is observed in all curves, except in tissues IIIa and IIIb, where the hemoglobin levels 

are extremely low (see Fig. A5). Also, except for IIIa and IIIb, which exhibit a noisy saturation 

0 0.5 1 1.5 2
0

20

40

60

80

100

Distance (mm)

O
x

y
g

e
n

 S
a

tu
ra

ti
o

n
 (

%
)



 

 

 

111 

behavior (Fig. A6), the relationship is largely linear with distance, as evident from R-square 

values in Table A1.  

Discussion and Conclusions:  

The results obtained here indicate that when using a thin fiber optic probe in contact 

with the tissue, the perceived pressure on the tissue varies in different tissue types, and in 

general is perceived less for softer tissue types. AFLS measurements seem to be almost 

insensitive to the probe pressures up to 0.02 N/mm
2
, after which a small linear effect can be 

observed. These findings are also consistent with previously published work by Nath et. al.,
98

 

which suggested that “pressure does not significantly affect fluorescence intensity or lineshape”.  

In case of LRS, a decrease in oxygen saturation was observed along with the increase 

in scattering coefficient, which is consistent with the previously published work by Reif et. al.
99

. 

However, Reif et. al. reported a much slower decrease in oxygen saturation (less than 10% per 

0.05 N/mm
2
), which is much smaller than observed here. One possible reason could be that 

they measured tissue in vivo, where the dynamics were different. Another possible explanation 

is that they quantified the pressure based on weight applied to the probe, whereas here the 

perceived pressure is measured by weighing the tissue under pressure. It has been 

demonstrated in Fig. A3(b) and A4(b), that perceived pressure can vary based on tissue type. 

Lastly, the diameter of the probe used in this study is much smaller (1 mm compared to 2.7 

mm), which could lead to different dynamic changes. However, this needs to be investigated 

further for any definitive reasoning.  

In context of the studies conducted in this thesis, the probe placement was simulated 

on different tissue types blindly, and the gram-weight was measured to assess the possible 

pressures induced on prostate tissues during the measurement. It was found that the gram-

weight ranged from 0 to 0.5 g in most cases, with up to 0.8 g in a few cases. In terms of 

pressure, this corresponds to a maximum of 0.008 N/mm
2
. Thus, while AFLS measurements 
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should not be affected by pressure, this could cause some variability in LRS measurements, 

especially [Hb] and [HbO] which appear to be highly sensitive to small changes in pressure. 

This conclusion is also supported by high standard deviations observed in case of LRS as 

compared to AFLS, as shown in Table A2.  

Table A2. Mean and standard deviations of various AFLS and LRS parameters for PCa (all 
cancers combined) 

 LRS AFLS 

 [HbO] [Hb] μs’ (750 nm) τm(532 nm) τm(562 nm) 

Mean 
(PCa) 

2.853882 4.335498 11.47353 3.123961 4.280118 

Standard 
Deviation 

4.00564 3.185203 5.006287 0.43747 0.759722 

% 
Deviation 

140.3576 73.46798 43.63338 14.00369 17.75002 

  

This study suggests that including a measure for the pressure on the probe tip may help 

increase the sensitivity of the technique, since pressure seems to affect the optical parameters 

in a predictable manner, especially in case of LRS. Also, for margin assessment application, it is 

possible to increase the probe surface area, which can reduce the overall pressure on tissue, 

when same force is applied
100

.   

 

 



 

 

 

113 

REFERENCES 

1. Jemal, A. et al. Cancer statistics, 2009. CA Cancer J Clin 59, 225-49 

(2009). 

2. American Cancer, S. Cancer Facts & Figures 2011. Atlanta  (2011). 

3. Heidenreich, A. et al. [EAU guidelines on prostate cancer]. Actas Urol 

Esp 33, 113-26 (2009). 

4. Gleason, D.F. & Mellinger, G.T. Prediction of prognosis for prostatic 

adenocarcinoma by combined histological grading and clinical staging. 

J. Urol 111, 58-64 (1974). 

5. Burger, M., Steginga, S., Williams, S. & Gardiner Robert A, R. 

Prostate Cancer. Endocrinology of male reproduction  (2006). 

6. Delongchamps, N.B. & Haas, G.P. Saturation biopsies for prostate 

cancer: current uses and future prospects. Nat Rev Urol 6, 645-52 

(2009). 

7. Rocco, B. et al. Sensitivity and detection rate of a 12-core trans-

perineal prostate biopsy: preliminary report. Eur. Urol 49, 827-33 

(2006). 

8. Patel, U. TRUS and prostate biopsy: current status. Prostate Cancer 

Prostatic Dis 7, 208-10 (2004). 



 

 

 

114 

9. Descazeaud, A. et al. Saturation biopsy protocol enhances prediction 

of pT3 and surgical margin status on prostatectomy specimen. World J 

Urol 24, 676-80 (2006). 

10. Jones, J.S. et al. Saturation technique does not improve cancer 

detection as an initial prostate biopsy strategy. J. Urol 175, 485-8 

(2006). 

11. Pushkar,  .D. & Govorov,  .A. Re: Saturation technique does not 

improve cancer detection as an initial prostate biopsy strategy - Jones 

JS, Patel A, Schoenfield L, Rabets JC, Zippe CD, Magi-Galluzzi C - J 

Urol 2006;175 : 485-8. European Urology 50, 157-158 (2006). 

12. Unknown,  OPTICALLY GUIDED NEEDLE BIOPSY SYSTEM 

USING MULTI-MODAL SPECTROSCOPY.  (2011). 

13. Berger, A.P. et al. Complication rate of transrectal ultrasound guided 

prostate biopsy: a comparison among 3 protocols with 6, 10 and 15 

cores. J. Urol 171, 1478-80; discussion 1480-1 (2004). 

14. Pinkhasov, G.I. et al. Complications following prostate needle biopsy 

requiring hospital admission or emergency department visits - 

experience from 1000 consecutive cases. BJU international  

(2012).doi:10.1111/j.1464-410X.2011.10926.x 

15. Salomon, G. et al. The feasibility of prostate cancer detection by triple 

spectroscopy. Eur. Urol 55, 376-83 (2009). 



 

 

 

115 

16. Yossepowitch, O. et al. Positive surgical margins in radical 

prostatectomy: outlining the problem and its long-term consequences. 

Eur. Urol 55, 87-99 (2009). 

17. Wieder, J.A. & Soloway, M.S. Incidence, etiology, location, 

prevention and treatment of positive surgical margins after radical 

prostatectomy for prostate cancer. J. Urol 160, 299-315 (1998). 

18. Sammon, J.D. et al. Risk factors for biochemical recurrence following 

radical perineal prostatectomy in a large contemporary series: A 

detailed assessment of margin extent and location. Urologic oncology  

(2012).doi:10.1016/j.urolonc.2012.03.013 

19. Giller, C.A., Liu, H., German, D.C., Kashyap, D. & Dewey, R.B. A 

stereotactic near-infrared probe for localization during functional 

neurosurgical procedures: further experience. J Neurosurg 110, 263-73 

(2009). 

20. Bigio, I.J. et al. Diagnosis of breast cancer using elastic-scattering 

spectroscopy: preliminary clinical results. J Biomed Opt 5, 221-8 

(2000). 

21. Perelman,  .L.T. et al. Observation of periodic fine structure in 

reflectance from biological tissue: A new technique for measuring 

nuclear size distribution. Physical Review Letters 80, 627-630 (1998). 



 

 

 

116 

22. Utzinger, U. et al. Reflectance spectroscopy for in vivo 

characterization of ovarian tissue. Lasers Surg Med 28, 56-66 (2001). 

23. Zonios, G. & Dimou, A. Modeling diffuse reflectance from semi-

infinite turbid media: application to the study of skin optical 

properties. Opt Express 14, 8661-74 (2006). 

24. Izuishi,  .K. et al. The histological basis of detection of adenoma and 

cancer in the colon by autofluorescence endoscopic imaging. 

Endoscopy 31, 511-516 (1999). 

25. RICHARDSKORTUM,  .R. et al. SPECTROSCOPIC DIAGNOSIS 

OF COLONIC DYSPLASIA. Photochemistry And Photobiology 53, 

777-786 (1991). 

26. McGinty, J. et al. Wide-field fluorescence lifetime imaging of cancer. 

Biomed Opt Express 1, 627-640 (2010). 

27. Munro, I. et al. Toward the clinical application of time-domain 

fluorescence lifetime imaging. J Biomed Opt 10, 051403 (2005). 

28. Backman, V. et al. Detection of preinvasive cancer cells. Nature 406, 

35-6 (2000). 

29. Zonios, G. & Dimou, A. Optical properties of human melanocytic nevi 

in vivo. Photochem Photobiol 85, 298-303 (2009). 

30. Radhakrishnan, H., Senapati, A., Kashyap, D., Peng, Y.B. & Liu, H. 

Light scattering from rat nervous system measured intraoperatively by 



 

 

 

117 

near-infrared reflectance spectroscopy. J Biomed Opt 10, 051405 

(2005). 

31. Liu, H. et al. Near infrared and visible spectroscopic measurements to 

detect changes in light scattering and hemoglobin oxygen saturation 

from rat spinal cord during peripheral stimulation. NeuroImage 40, 

217-27 (2008). 

32. Johns, M. & Liu, H. Limited possibility for quantifying mean particle 

size by logarithmic light-scattering spectroscopy. Applied Optics 42, 

2968-2971 (2003). 

33. Graaff, R. et al. Reduced Light Scattering Properties for Mixtures of 

spherical particles: a simple approximation derived from Mie 

calculations. Applied Optics 31, 1370-1376 (1992). 

34. Zonios, G. & Dimou, A. Light scattering spectroscopy of human skin 

in vivo. Opt Express 17, 1256-67 (2009). 

35. Kashyap, D. Development of a Broadband Multi-Channel NIRS 

System for Quantifying Absolute Concentrations of Hemoglobin 

Derivatives and reduced scattering Coefficients. Thesis dissertation  

(2007). 

36. Ocean Optics, I. USB2000 Fiber optic spectrometer: Installation and 

Operation Manual.  (2005). 



 

 

 

118 

37. Zijlstra, W.G., Buursma, A. & Assendelft, O.W. Visible and Near-

infrared Absorption Spectra of Human and Animal Hemoglobin: 

Determination and Application (VSP: 2000). 

38. van Staveren, H.J., Moes, C.J.M., van Marie, J., Prahl, S.A. & van 

Gemert, M.J.C. Light scattering in Intralipid-10% in the wavelength 

range of 400GÇô1100 nm. Applied Optics 30, 4507-4514 (1991). 

39.  Online Brochure: 

http://www.iss.com/products/oxiplex/oxiplexTS.pdf.  (0). 

40. Matcher, S.J., Cope, M. & Delpy, D.T. Use of the water absorption 

spectrum to quantify tissue chromophore concentration changes in 

near-infrared spectroscopy. Phys Med Biol 39, 177-96 (1994). 

41. Spector, L. Advances in Genetic Programming (1999). 

42. Ashlock, D. Evolutionary Computation for Modeling And 

Optimization (2006). 

43. Eiben, A. & Smith, J. Introduction to Evolutionary Computing (2003). 

44. Dorigo, M., Maniezzo, V. & Colorni, A. Ant system: optimization by a 

colony of cooperating agents. IEEE Trans Syst Man Cybern B Cybern 

26, 29-41 (1996). 

45. Franceschini, M.A., Gratton, E. & Fantini, S. Noninvasive optical 

method of measuring tissue and arterial saturation: an application to 

absolute pulse oximetry of the brain. Opt Lett 24, 829-31 (1999). 



 

 

 

119 

46. Hueber, D.M. et al. Non-invasive and quantitative near-infrared 

haemoglobin spectrometry in the piglet brain during hypoxic stress, 

using a frequency-domain multidistance instrument. Phys Med Biol 46, 

41-62 (2001). 

47. Dugdale, D.C. Hemoglobin. 2010,  (2010). 

48. Mitsuharu, M., Yukio, U., Britton, C., Britton, C. & Robert, A.R. 

Development of time-resolved spectroscopy system for quantitative 

noninvasive tissue measurement. 2389, 142-149 (1995). 

49. Zonios, G. & Dimou, A. Melanin optical properties provide evidence 

for chemical and structural disorder in vivo. Opt Express 16, 8263-8 

(2008). 

50. Sharma, V. et al. Optical reflectance spectroscopy for detection of 

human prostate cancer. Conf Proc IEEE Eng Med Biol Soc 2009, 118-

21 (2009). 

51. Sharma, V., He, J.W., Narvenkar, S., Peng, Y.B. & Liu, H. 

Quantification of light reflectance spectroscopy and its application: 

determination of hemodynamics on the rat spinal cord and brain 

induced by electrical stimulation. Neuroimage 56, 1316-28 (2011). 

52. Wagnieres, G.A., Star, W.M. & Wilson, B.C. In vivo fluorescence 

spectroscopy and imaging for oncological applications. Photochem 

Photobiol 68, 603-32 (1998). 



 

 

 

120 

53. Palmer, G.M. et al. Comparison of multiexcitation fluorescence and 

diffuse reflectance spectroscopy for the diagnosis of breast cancer 

(March 2003). IEEE Transactions on Biomedical Engineering 50, 

1233-1242 (2003). 

54. Volynskaya, Z. et al. Diagnosing breast cancer using diffuse 

reflectance spectroscopy and intrinsic fluorescence spectroscopy. J 

Biomed Opt 13, 024012 (2008). 

55. Keller, M.D. et al. Autofluorescence and diffuse reflectance 

spectroscopy and spectral imaging for breast surgical margin analysis. 

Lasers Surg Med 42, 15-23 (2010). 

56. Skala, M.C. et al. In vivo multiphoton fluorescence lifetime imaging of 

protein-bound and free nicotinamide adenine dinucleotide in normal 

and precancerous epithelia. J Biomed Opt 12, 024014 (2007). 

57. Chen, H.M., Chiang, C.P., You, C., Hsiao, T.C. & Wang, C.Y. Time-

resolved autofluorescence spectroscopy for classifying normal and 

premalignant oral tissues. Lasers Surg Med 37, 37-45 (2005). 

58. Tadrous, P.J. et al. Fluorescence lifetime imaging of unstained tissues: 

early results in human breast cancer. J Pathol 199, 309-17 (2003). 

59. Sharma, V. et al. A dual-modality optical biopsy approach for in vivo 

detection of prostate cancer in rat model. JIOHS 4, 269-277 (2011). 



 

 

 

121 

60. Sharma, V. et al. Auto-fluorescence lifetime and light reflectance 

spectroscopy for breast cancer diagnosis: potential tools for 

intraoperative margin detection. Biomed. Opt. Express 3, 1825-1840 

(2012). 

61. Lakowicz, J. Principles of Fluorescence Spectroscopy (2006). 

62. Mycek, M.A., Schomacker, K.T. & Nishioka, N.S. Colonic polyp 

differentiation using time-resolved autofluorescence spectroscopy. 

Gastrointest. Endosc 48, 390-4 (1998). 

63. Marcu, L. et al. Fluorescence lifetime spectroscopy of glioblastoma 

multiforme. Photochem. Photobiol 80, 98-103 (2004). 

64. Siegel, J. et al. Studying biological tissue with fluorescence lifetime 

imaging: microscopy, endoscopy, and complex decay profiles. Applied 

Optics 42, 2995-3004 (2003). 

65. Braslavsky,  .S.E. Glossary of terms used in Photochemistry 3(rd) 

Edition (IUPAC Recommendations 2006). Pure And Applied 

Chemistry 79, 293-465 (2007). 

66. Stokes, G. On the refrangibility of light. Phil. Trans. Royal Soc. 

London 142, 463-562 (1852). 

67. Valeur,  .B. & Berberan-Santos,  .M.N. A Brief History of 

Fluorescence and Phosphorescence before the Emergence of Quantum 

Theory. Journal Of Chemical Education 88, 731-738 (2011). 



 

 

 

122 

68. Herman, B., Lakowicz, J., Murphy, D., Fellers, T. & Davidson, M. 

Fluorescence Excitation and Emission Fundamentals.  (2009). 

69. Berezin, M.Y. & Achilefu, S. Fluorescence lifetime measurements and 

biological imaging. Chem Rev 110, 2641-84 (2010). 

70. Mukerjee, A. et al. Spectroscopic properties of curcumin: orientation 

of transition moments. J Phys Chem B 114, 12679-84 (2010). 

71. Luchowski, R. et al. Instrument response standard in time-resolved 

fluorescence. Rev Sci Instrum 80, 033109 (2009). 

72. Gunn, S. Support Vector Machines for Classification and Regression. 

Technical Report, Image Speech and Intelligent Systems Research 

Group, University of Southampton  (1998). 

73. Vaupel, P. & Mayer, A. Hypoxia in cancer: significance and impact on 

clinical outcome. Cancer Metastasis Rev 26, 225-39 (2007). 

74. Conn, P. Sourcebook of Models for Biomedical Research (2008). 

75. Kommu, S.S., Andrews, R.J. & Mah, R.W. Real-time multiple 

microsensor tissue recognition and its potential application in the 

management of prostate cancer. BJU Int 97, 222-3 (2006). 

76. Halter, R.J., Schned, A., Heaney, J., Hartov, A. & Paulsen, K.D. 

Electrical properties of prostatic tissues: I. Single frequency 

admittivity properties. J. Urol 182, 1600-7 (2009). 



 

 

 

123 

77. Halter, R.J., Schned, A., Heaney, J., Hartov, A. & Paulsen, K.D. 

Electrical properties of prostatic tissues: II. Spectral admittivity 

properties. J. Urol 182, 1608-13 (2009). 

78. Halter, R.J., Schned, A.R., Heaney, J.A. & Hartov, A. Passive 

bioelectrical properties for assessing high- and low-grade prostate 

adenocarcinoma. Prostate 71, 1759-67 (2011). 

79. Elson, D. et al. Time-domain fluorescence lifetime imaging applied to 

biological tissue. Photochem Photobiol Sci 3, 795-801 (2004). 

80. Hosmer, D.W. & Lemeshow, S. Applied Logistic Regression (Wiley, 

John & Sons, Inc: 2000). 

81. MATLAB,  version 7.13.0 (R2011b) (The Mathworks, Inc., Natick, 

Massachusetts) (2011). 

82. Perkins, N.J. & Schisterman, E.F. The inconsistency of "optimal" 

cutpoints obtained using two criteria based on the receiver operating 

characteristic curve. Am J Epidemiol 163, 670-5 (2006). 

83. Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical 

Learning, Data Mining, Inference, and Prediction (Springer: 2008). 

84. Ng, A. Machine Learning Course at Stanford (CS229) Lecture notes.  

(2011). 



 

 

 

124 

85. Sharma, V. et al. Optical reflectance spectroscopy for detection of 

human prostate cancer. Conf Proc IEEE Eng Med Biol Soc 2009, 118-

21 (2009). 

86. Brown, J.Q. et al. Optical assessment of tumor resection margins in the 

breast. IEEE J Sel Top Quantum Electron 16, 530-544 (2010). 

87. The Ohio State University,  All about prostate cancer.  (2012). 

88. Rahman, G.A. Breast Conserving Therapy: A surgical Technique 

where Little can Mean More. J Surg Tech Case Rep 3, 1-4 (2011). 

89. Pleijhuis, R.G., Graafland, M. & De Vries, J. Obtaining adequate 

surgical margins in breast-conserving therapy for patients with early-

stage breast cancer: current modalities and future directions. Annals of 

surgical 16, 2717-2730 (2009). 

90. Singletary, S.E. Surgical margins in patients with early-stage breast 

cancer treated with breast conservation therapy. Am J Surg 184, 383-

93 (2002). 

91. Demos, S.G., Vogel, A.J. & Gandjbakhche, A.H. Advances in optical 

spectroscopy and imaging of breast lesions. J Mammary Gland Biol 

Neoplasia 11, 165-81 (2006). 

92. Nachabe, R. et al. Diagnosis of breast cancer using diffuse optical 

spectroscopy from 500 to 1600 nm: comparison of classification 

methods. J Biomed Opt 16, 087010 (2011). 



 

 

 

125 

93. Kennedy, S. et al. Optical breast cancer margin assessment: an 

observational study of the effects of tissue heterogeneity on optical 

contrast. Breast Cancer Res 12, R91 (2010). 

94. Burgoyne, L.L., Jay, D.W., Bikhazi, G.B. & De Armendi, A.J. 

Isosulfan blue causes factitious methemoglobinemia in an infant. 

Paediatr Anaesth 15, 1116-9 (2005). 

95. Liu, H., Gu, Y., Kim, J.G. & Mason, R.P. Near-infrared spectroscopy 

and imaging of tumor vascular oxygenation. Methods Enzymol 386, 

349-78 (2004). 

96. Ramanujam, N. Fluorescence spectroscopy of neoplastic and non-

neoplastic tissues. Neoplasia 2, 89-117 (2000). 

97. Shrestha, S. et al. High-speed multispectral fluorescence lifetime 

imaging implementation for in vivo applications. Opt Lett 35, 2558-60 

(2010). 

98. Nath, A. et al. Effect of probe pressure on cervical fluorescence 

spectroscopy measurements. J Biomed Opt 9, 523-33 (2004). 

99. Reif, R. et al. Analysis of changes in reflectance measurements on 

biological tissues subjected to different probe pressures. J Biomed Opt 

13, 010502 (2008). 



 

 

 

126 

100. Lim, L., Nichols, B., Rajaram, N. & Tunnell, J.W. Probe pressure 

effects on human skin diffuse reflectance and fluorescence 

spectroscopy measurements. J Biomed Opt 16, 011012 (2011). 

 

 



 

 

 

127 

BIOGRAPHICAL INFORMATION 

 

Vikrant Sharma, born July 27
th
 1980, received his Bachelor of Engineering degree in 

Biomedical Engineering from University of Mumbai, India in August 2001. He worked as a 

Biomedical Engineer in P.D. Hinduja Hospital and Medical Research Center, Mumbai, India for 

2 years as a Biomedical Engineer before he started his graduate studies in United States of 

America. Vikrant received his Master of Science degree in Biomedical Engineering at the Joint 

Program of University of Texas at Arlington and University of Texas Southwestern Medical 

Center at Dallas, Texas in August 2005, with a thesis titled “Near Infrared Spectroscopy: A 

Study Of Cerebral Hemodynamics During Breathholding And Development Of A System For 

Hot Flash Measurement”. He continued his research with NIH funded project at Baylor 

Research Institute, Dallas, Texas, for a few years on optical spectroscopy and imaging for 

applications in neuroscience and oncology. In 2008, he joined a start-up effort, assuming role of 

company President to lead project proposals and conduct research and development for optical 

spectroscopy devices. In Spring 2010, he started his Ph.D. in Biomedical Engineering at the 

Joint Program of University of Texas at Arlington and University of Texas Southwestern Medical 

Center at Dallas, Texas, completing it by Summer 2012. His research expertise is in medical 

imaging, optical spectroscopy and signal processing, for applications in medical diagnostics and 

therapy. His interests include developing novel methods, problem solving and providing 

engineering solutions to medical problems. In near future, he hopes to contribute in 

improvement of global healthcare through his work in medical device industry.  


