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ABSTRACT

SYSTEM FOR INTERPRETATION OF REVIEWER

FEEDBACK ON SOCIAL WEB

SHRIKANT DESAI, M.S

The University of Texas at Arlington, 2012

Supervising Professor: Gautam Das

The increasing popularity of social media web sites such as Amazon, Yelp and

others has influenced our online decision making. Before making selection decisions on

movies and restaurants, we investigate its reviewer feedback. Social media web sites

provide reviewer feedback in the form of ratings, tags, and user reviews. However,

overwhelming feedback details will leave the user in a quandary as to decide whether

the item is desirable or not. Potential buyers either make a snap judgment based on

the aggregate ratings/tags or spend a lot of time in reading reviews.

In this thesis, we build a system that can analyse the reviewer feedback in

the form of ratings or tags and generate meaningful interpretations. One of major

component is rating interpretation that generates meaningful interpretation of the

reviewer ratings associated with the item of interest. For example, given the movie

Titanic, our system returns results such as, Young female from California like this

movie instead of average rating 7.6 from all reviewers. Furthermore, end users will be

allowed to systematically explore, visualize, and observe rating patterns. Additionally,

our system can also explore the social tagging behavior on the input items. For
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example, our system can identify movies where similar users have assigned similar

tags on diverse items. The tagging behavior of different subpopulation is compared

using tag clouds. We use movieLens data set to demonstrate our experiments.
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CHAPTER 1

INTRODUCTION

Most of the users on social web rely on collaborative reviewer feedback to make

online purchasing decisions. For example, one can examine ratings and tags associated

with restaurants from web sites like Yelp1 before visiting it, and online buyers shop

items relying on reviews of Amazon2. Large Number of feedbacks in terms of ratings,

tags and/or reviews may be received on one single item. The movie Dark Knight Rises

received more than 400,000 ratings and 2000 reviews within 4 months on IMDb. Such

an overwhelming feedback information makes impossible for a user to make informed

decisions about the movie. For a movie-goer , it is not possible to read each and

every review. In such situation users makes decision about the item of interest by

overall aggregate ratings(average rating for Dark Knight Rises is 8.8 ). It is obvious

that most of the users choose aggregate ratings over spending lot a of time reading

reviews.

Most of collaborative feedback sites provide some options/features to reduce

the information overload to end users. For example, Amazon web site for buying an

electronic item provides aggregate ratings but these aggregate ratings do not facilitate

detailed decision making. However, IMDb provides single aggregate ratings distribu-

tions over predefined user demographics such as age and gender but these ratings do

not justify ideal decision making.

In other words, most of the collaborative feedback sites will not allow users to

explore the customer feedback and generate meaningful patterns that will help users.

1http://www.yelp.com
2http://www.amazon.com
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Users are left on their own to make a decision about their item of interest. Most of

the collaborative sites contain profile information of reviewers who provide feedback

on items they purchased/experienced. Such information can be utilized to provide

better and more meaningful interpretation of the reviewers feedback.

Meaningful Interpretation of Reviewer Feedback: The mail goal of work is to build

a system that can provide meaningful interpretation of customer feedback in terms

of ratings and tags by utilizing the additional details about items and user demo-

graphics available. We utilize the user demographics from the social web to interpret

the feedbacks. [1] and [2] provide frameworks for interpretation of ratings and tags

respectively. we build a practical system based on [1] and [2] to help movie goers

make better decisions. We achieve this goal by, providing meaning interpretation

of reviewer feedback and allowing user to explore and visualize the feedbacks. We

introduce two different approaches used in this thesis for the analysis of reviewer

feedbacks.

Interpretation of Ratings: We introduce two mining measures, Similarity Mining(SM)

and Diversity Mining(SM) for the interpretation of ratings. The task of Similarity

Mining(SM) is to identify the user groups who agree on each others ratings.

Consider the movie Batman that has received more than 150,000 ratings in IMDb.

Sites like IMDb either provide overall aggregate information (Batman has 8.8 av-

erage rating) or aggregate rating along pre-defined populations (such as Male users

give 9.1 rating). In Similarity mining, we identify groups of users who have similar

rating/tagging behavior. For example, given the query Batman, we might identify

Young Female users from California and Male students from New York have rated

the movie similarly.In Diversity Mining task, we identify groups of users who have

different rating/tagging behavior. query Batman, we identify Old male from Texas

and Young Male from California have rated differently. We apply these mining mea-

2



Figure 1.1. Tag Cloud for California and New York.

sures for multiple input items such as ratings of all the Jack Nicholson movies. End

users can also provide conjunctive query like ratings of all drama movies by Jack

Nicholson.

Furthermore, results of such input query will be displayed on a geographic map,

where user groups are rendered over the map as icons. Users are further allowed to

explore the user groups and rating distribution of sub-populations of user group and

observe the change in rating patterns over time period.

Interpretation of Tags: We utilise the algorithms defined in [2] to build a system that

can mine interesting tagging behaviors by applying the notion of similarity/diversity

on all the three dimensions (user,item,tags). As an example our system can identify

that Young male users and old male users have similar tagging behavior for the

movie Godfather but different behavior for Star Wars. Also, women tag Quentin

Tarantino’s movies negatively while men tag it positively. We use tag clouds to

visualize the tagging behavior of users. End users will be allowed to explore and

compare the tag clouds belonging to different user groups.

Figure 1.1, shows the tag cloud for California and New York generated for

the input Toy Story Movies. We can observe that tags such as Disney, Animation,

children are common to both. In this thesis, we allow end users compare the tag

clouds and identify interesting patterns.
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We explain data models used for system in section 2. In section 3, we explain

dual mining approach used in interpretation of tags. Dual mining for tags interpre-

tation will be discussed in section 4. Furthermore, we discuss architecture and user

interface of our system in section 5 and 6 respectively.
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CHAPTER 2

DATA MODEL

In this section we define data model of a reviewer feedback system. First, we

define data model for rating interpretation system. Second, we define data model for

tags interpretation system.

Data Model For Rating Interpretation: For a collaborative rating site D, we represent

model as a triple 〈I, U,R〉, that represents a set of items, reviewers, and ratings

respectively. A rating r ∈ R, is a triple 〈i, u, s〉, where i ∈ I, u ∈ U and s ∈ [1, 5]

(represents a scalar rating given to item i by a reviewer u). Ratings are converted

in to a scale ranging from one to five. Each item i ∈ I, is represented as schema,

IA = {i.a1, i.a2, . . .} where i.aj represents the attributes of the item i. Furthermore,

each tuple i is presented as, i = {i.v1, i.v2, . . .} where each i.vj is the value for the item

attribute i.aj . Similarly, every reviewer u ∈ U is described by a set of attributes

represented as schema, UA = {u.a1, u.a2, . . .} where u.aj represents the attributes

of user u. Furthermore, each tuple in u is presented as u = {u.v1, u.v2, . . .} where

each u.vj is the value of the attribute reviewer attribute u.aj . Therefore each rating

r = {i, u, s} is a set {i.v1, i.v2, . . . , u.v1, u.v2, . . . , s} which is concatenation of item

attributes from I, reviewer attributes from U , and an integer rating s. This rating

set is represented as A = {a1, a2, . . .}.

Collaborative rating sites such as Yelp, CNET, Amazon, and IMDb usually

provide item attributes. For an instance, in IMDb web site, for a movie: Dark knight

as an item, provides attributes such as Genre, Title, and Released date and some
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Figure 2.1. Sample data cube lattice.

multi valued attributes such as actors and directors. Similarly,Yelp web site describe

the items by attributes such as category, cuisine, price range, and Attire.

The availability of user demographic information is rarer. However some sites

such as movieLens, Yelp etc provide anonymized user demographic details. Common

attributes are age, gender, location, and occupation. Sometimes the user attributes

can collected from social network sites such as twitter, Facebook as many of collab-

orative sites integrated with social network sites. In this thesis, we present a system

that accepts inputs as item attributes and show meaningful results as groups of user

attributes that allows reviewers to decide on item desirability. Our system provides

geo-visualization of the user groups and allows the reviewers explore the ratings.

We present the results as data cube. The notion of user groups will be modeled

as data cube [1] [3]. The data cubes can be constructed from user and item dimen-

sions. Each cube contain a combination of one or more user/item attributes with the

average rating. A sample user data cube look like

〈Location, Texas〉,〈Actor, TomCruise〉,4.2
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means, average rating for actor Tom Cruise by users of Texas is 4.2. Cube can be

formally defined as c = {〈a1, v1〉, 〈a2, v2〉, . . .} where vi is the value of an attribute

ai ∈ A and A is the set of all attributes from reviewers,items and rating. Figure 2.1,

represents the sample lattice constructed out of four attributes A ,G, L, and O cor-

responds to user attributes age, gender, location, and occupation respectively.

Data Model For Tags Interpretation: In this section we model data on social tagging

site as a triple 〈U, I, T 〉, Where U , I, and T represents set of users, a set of items

and a set of tags respectively. Furthermore, tagging action is again triple represented

as 〈u, i, t〉, where u ∈ U , i ∈ I, t ⊂ T . Therefore, we denote tagging action group

as g = {〈u1, i1, t1〉, 〈u2, i2, t2〉, . . . , }. We represent user schema as, U = 〈a1, a2, . . .〉,

attributes values for user schema is denoted as u = 〈u.a1, u.a2, . . .〉, where each u.ax

is a value for the attribute ax ∈ U . For example, let U = 〈age, gender, state, city〉, a

sample tuple for such schema is represented as 〈Y oung,Male, Texas,Dallas〉 shown.

Similarly, we define Item schema as I = 〈a1, a2, . . .〉, attributes values for user schema

is denoted as, i = 〈i.a1, i.a2, . . .〉, where each i.ay is a value for the attribute ay ∈ I.

Therefore, every tagging action is concatenation of item attributes, user at-

tributes, and the set of tags. A tuple of tagging action is represented as, r = 〈ru.a1,

ru.a2, . . . , ri.a1, ri.a2, . . . , t〉. For example, a sample tuple from movieLens data set

look like

{〈Gender,male〉, 〈Location, California〉, 〈Movie, Toy story〉,

〈Disney, Children,Anime〉}.

Where,

{〈Gender,male〉, langleLocation, California〉} ∈ u,

{〈Movie, Toy Story〉} ∈ i and

{〈Disney, Children,Anime〉} ∈ t

We define T is a set of such tuples. Social web contains large number of such tuples.
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CHAPTER 3

COLLABORATIVE RATING INTERPRETATION

In this section, we describe our approach to generate meaningful interpretation

of reviewer ratings. Our work is inspired by the description and difference mining

problems in [1] [4]. In our system, we provide interpretations through the prism

of similarity and diversity. As noted before in the section 1 existing social content

sites provide either overall aggregate ratings or aggregate based on predefined user

demographics. Our main goal is identifying the user describable groups dynamically

that can help users to make immediate decisions on item of interest. For example,

suppose movie is Social Network, we display user cuboid that describe Male Student

from Massachusetts like movie social network with aggregate rating 8.2 instead of just

saying aggregate rating is 7.9.

3.1 Dual Mining on Collaborative Ratings

Our system allows users to specify search query as an item or set of items and

return user groups represented as data cubes. We select such user groups by building

a lattice structure.Data cube in lattice represents the user groups. For example, we

build a lattice from the user attributes, Age(A), Gender(G), Location(L), and Occu-

pation (O). Each cube in the lattice corresponds to a distinct number of tuples(user

groups) and their average rating. The edges between the nodes represent parent and

child relationship. One example of such lattice built on user demographics is as shown

in Figure. 2.1.

8



Even for a single input item the number of possible cuboids generated is too

large. It is not possible for an end user to browse all the cuboids. Therefore, we

select a good groups of cuboids, k from the all the available cuboids, n. We adopt

following techniques to identify the good groups [1]. A group belongs to qualifying

group by satisfying following criteria. First, ratings must be consistent within the

group, the consistency within a group is the significance of similar opinion within the

group where as opinion across the groups is the measure of diversity among the user

groups. Second, collective ratings by the user groups must cover significant portion

of available ratings. Third, groups must be easy to understand and interpret. For the

purpose of visualization of the groups on geo-conditions, we discard the data cubes

without location attribute. This factor adds in reducing the number of cuboids.

3.1.1 Similarity Mining for ratings

In this section we define Similarity Mining. Given a set if items I, our main

task is to identify the user groups such that user groups agree each others ratings. To

achieve this, we consider following factors. First, the number of user groups(number

of cuboids), k identified must be a small number because end users must not be

confused with overwhelmed cuboids. End users will be given a choice to restrict the

number of cuboids while specifying search query. Second, user groups provided to

the users must cover enough part of ratings which is mentioned as a part of end

users query. Third, for the purpose of visualization, we select the cuboids at least

having attributes containing geo-location. Finally, we select the group which that has

minimum aggregate error.

We define notion for coverage and aggregate error [1] as follows:

coverage(C,RI) =
|CRI |
|RI |

(3.1)
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error(C,RI) =
∑
r∈RI

(Er) = avg(|r.s− avgc∈C∧r<c(C)|) (3.2)

where ri.s is the score for the tuple i

3.1.2 Diversity Mining for ratings

In this section we define another measure to interpret reviewers rating called

diversity mining. In this method we identify the set of user groups who disagree each

others rating. More formally, given a set of items I and ratings set RI identify the

set of user groups (cuboids), UA such that opinion across the user group is differing.

To identify the such groups, we divide rating set RI into two sets i.e, RI
+ = {r|r ∈

RI ∧ r.s ≥ θ+} and RI
− = {r|r ∈ RI ∧ r.s ≥ θ−}, where θ+ and θ− are the thresholds

defines rating positivity and negativity. According to mean and variance of rating

set, RI θ
+ and θ− are calculated statistically or dynamically. In our system we use

dynamic approach to set θ+ above the standard deviation and θ− below standard

deviation.

Given sets RI
+ and RI

i, and set of cuboids C, we measure the diversity of user

groups using balance factor defined as [1]:

balance(C,RI
+, RI

−) =

∑
r1∈RI

+∧r2∈RI
− I(r1, r2)

|RI
+| × |RI

−|
(3.3)

where, I(r1, r2) = 1 if and only if ∃c ∈ C s.t r1 < c ∧ r2 < c. The high balance

is indication that ratings are mingled togethers and low balance indicates ratings are

separated apart.

Implementation of Similarity and Diversity Mining: We describe the algorithms used

in our system for similarity mining and diversity mining. Our goal is, given a set of

items I and the set of RI identify k number of user groups such that 1) aggregate

error error(C,RI) is minimised and ratings cover α percentage of ratings (k and α are

10



specified by the end users). 2) balance factor, balance(C,RI
+, RI

−) is minimised and

coverage constraint, coverage(C,RI
+) ≥ α and coverage(C,RI

−) ≥ α is satisfied.For

this purpose we use Randomized Hill Exploration (RHE) algorithm [1].

Randomized Hill Exploration (RHE): Randomized Hill Exploration algorithm selects

k cuboids randomly as a first step initialization. In the next steps, it starts exploring

the parent/child nodes that satisfy the coverage constraints α instead of improving

the aggregate error (Er) immediately. Once new set of cuboids that satisfy coverage

constraint is identified, new cuboids will be replaced. Furthermore, these algorithms

are used for error optimization and balance optimization on cuboids for similarity

mining and diversity mining respectively.

In our system, end user specify the input set I, constraints like number of

cuboids, k and percentage of coverage α as search query. Furthermore, we build a

lattice for set RI as shown in Figure 2.1. RHE algorithm will be run on the lattice.

Suppose lattice contain C cuboids, k random cuboids will be selected from the set

C. coverage constraint, coverage(C,RI) for k cuboids will be checked for coverage

constraint, α. If coverage(C,RI) is not satisfied, each cuboid ci that belongs to C

will be replaced with its neighbor(parent/child) cuboid cj until coverage(C,RI) is

greater than or equal to α.

For similarity mining, the k cuboids that satisfies coverage(C,RI) > α with

minimum aggregate error error(C,RI) are returned to the end user. For diversity

mining, the k cuboids that satisfies coverage(C,RI
+) ≥ α and coverage(C,RI

−) ≥ α

with minimum aggregate balance balance(C,RI
+, RI

−) are returned to the end user.

Our system support visualization of the such cuboids on geographical map. We make

location attribute mandatory while constructing the lattice that reduces number of

cuboids and achieve computational efficiency also.
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CHAPTER 4

COLLABORATIVE TAGS INTERPRETATION

4.1 Dual Mining on Collaborative Tags

In this section we explore tagging behaviour on social web. A typical tagging

action involves three components: users, items, and, tags. We build our tagging

interpretation system by applying two alternative measures similarity and diversity on

tagging components [2]. These mining measure produce groups of similar or diverse

items tagged by similar or diverse user groups with similar or diverse tags. For

example, Male aged under 18 and female aged more than 45 use diverse tags for the

movie Mission Impossible. A large number of such problem instances arise as we

would like to explore similar and diverse nature of the each components.

In the following sections we describe our approach of dual mining on tags com-

ponent. We consider user and item dimensions together as they resemble to each

other while mining. However, mining tag dimension will be different from user/item

mining.

Dual Mining on Tag Components: User group is a set of 〈attribute, value〉 pairs.

Therefore given user groups, we compute similarity/diversity ( Dual mining) between

the user groups in two different ways, 1) Structural distance between user group de-

scription and 2) Set distance between the user groups based on the items rated by

them.

12



Given two user describable tagging action groups, u1 and u2 and UA is the set

of attributes shared between u1 and u2. a.v1 and a.v2 are set of user attribute value

pair, where a ∈ UA. Therefore, user similarity function is defined as shown in 4.1.

f(u1, u2, users, similarity) =
∑
a∈UA

sim(v1, v2) (4.1)

sim is the domain aware similarity function that computes distance between two or

more values. Similarly, f(u1, u2, users, diversity) will function that measures diverse

user groups.

Suppose u1.I and u2.I is the set of items tagged by user groups u1 and u2. The

set difference will be percentage of items tagged by both groups. Similarity function

set difference is as shown in 4.2.

f(u1, u2, users, similarity) =
{r|r ∈ u1.I ∧ r ∈ u2.I}
{r|r ∈ u1.I ∨ r ∈ u2.I}

(4.2)

Similarly, f(u1, u2, users, diversity) will function that measures diverse user groups.

Unlike user and item dimensions, two or more tag dimensions cannot be com-

pared with each other easily. The reason being, tags are chosen freely from diverse

vocabularies as a result tag dimension might have large number of tags and tag di-

mension will not contain fixed set of attributes as compared to user/item dimension.In

this thesis, we follow two step process handle tag dimensions [2]. First, we build set

of tag signatures ( a smaller representation) from the tagging actions. Second, we

compare two or more tag signatures by comparing the distance between them.

Tag Signature: A typical tagging action will be as defined in section 2 represented

as g = {〈u1, i1, t1〉, 〈u2, i2, t2〉, . . .}. Let tg = {t1 ∪ t2 ∪ . . .} represents a set of all tags

from tag component. There are several ways to build a tag signature. For example,

if tags are manually chosen then number of unique tags will be small. In such case

tag signature is represented as Ts = {t, freq(t)|t ∈ tg} where freq(t) is number of

occurrences of tag t ∈ tg.
13



However, most of the tags created in social web are diverse and sparse which

makes tg very large. Therefore we use technique called Latent Dirichlet Allocation

(LDA) for generating tag signature. LDA a reduces the tag set by aggregating tags

into topics based on their relevance hence by reducing tags long tail issue [5]. In

our work we decide the topics such that all tag signatures generated must belong to

predefined topics.

Tag Signature Comparison: The second step will be comparing the tag signatures.

The distance between tag signature is computed using cosine similarity function as

define in 4.3, where θ is angle between tag vectors Ts(g1) and Ts(g2).

f(u1, u2, users, similarity) = cos(θ(Ts(g1), Ts(g2))) (4.3)

Similarly, f(u1, u2, users, similarity) = cos(θ(Ts(g1), Ts(g2))) can be defined as diver-

sity.

We use algorithms Locality Sensitive Hashing(LSH) based algorithm for similar-

ity mining and FDP facility dispersion problem (FDP) based algorithm for diversity

mining [2]. Our main goal is given input from item/user components with constraints

like similarity/diversity, identify set of tag components that maximize similarity and

diversity. In the following sections we explain each of the algorithms briefly.

Similarity Mining of Tag Component by LSH Algorithm: We use LSH based algo-

rithm to perform similarity mining on tag components. LSH algorithm solves nearest

neighbor problem in higher dimensions [6]. The main idea of LSH is similar in-

put items are hashed into same bucket such that input items that are close to each

other in higher dimension gets mapped to the same item in lower dimension with

higher probability. LSH guarantees that probability of two close points falling into

same bucket is higher than probability of probability of two far points falling into

same bucket. We use a family of hash function based on cosine similarity [7]. Co-

14



sine similarity between tag signature will be computed as defined in 4.3. We apply

pairwise comparison function, f(u1, u2, users, similarity) on tag signatures vectors

to optimizes the tag similarity. Furthermore, k closest vectors with minimum pair

wise distance, are identified as the result set that maximize the tag similarity. It is

obvious that diversity of cannot be computed using hash function with retention of

LSH properties. Therefore, we use FDP based algorithms to maximize the diversity

of tag components.

Diversity Mining of Tag Component by FDP Algorithm: We adopted the Facil-

ity dispersion problem (FDP) based algorithm from [2] in this thesis to maxi-

mize the tag components diversity. We can compute the average pair-wise distance

from FDP problem. The tagging action groups having maximum average pair-wise

distance are considered to de dissimilar groups. We consider n tagging actions

groups with d-dimensional tag signature groups and our aim is to identify k vectors

with maximum average pair-wise distance. We use pairwise comparison function,

f(u1, u2, users, diversity) to compare the distance between tagging action groups.
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CHAPTER 5

ARCHITECTURE

In this section we explain system architecture. Our system will have three

major components: front end, web service, and back end as show in the Figure 5.1.

We explain each of these components in detail with respect to rating mining and tags

mining.

5.1 Architecture of Rating Mining

The architecture of the rating mining system as shown in Figure 5.1. The four

major components of this architecture are explained in the following sections.

Front end: We design our front end using technologies like HTML5, Javascript,

Jquery, raphael, bootstrap and ajax. User interface of rating system is divided into

three components: input, visualization, and exploration.

First, the input screen will have an option for user to enter the query. User can

enter the query by specifying the one or more item attributes from set IA. End user

can specify the parameters like number of cuboids (k), coverage constraint (α),and

the time interval. Second part, will be a visualization of the k cuboids. Visualiza-

tion will have tabs for similarity mining and diversity mining. Each tab contains,

a geographical map. Cuboids will be overlayed on the map as icons displaying the

user attributes like age, gender, and occupation. Third part will be, exploring the

icons. End users are allowed to click on the icons rendered over the geographical

map. Furthermore, statistical distribution of rating of the group will be displayed

on the screen. Similarly, diversity mining tab can be selected and experience the
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Figure 5.1. Architecture of Reviewer Feedback System.

visualization as well as exploration options.

Web Service: We host our system in using Apache web server. We use mod wsgi

along with Apache because of its suitability to host high performance production web

sites that run on python applications.

Back end: In the back end, we use Drongo, a open source web 2.0 application frame-

work which follows model-view-controller architectural pattern. As shown in the 5.1

django framework acts as intermediate system between dual mining system and web

service. Input sets from user interface will be sent dual mining system through django

framework. Dual mining system perform similarity mining and diversity mining on

the available data set.

Data set: We use movieLens 1M 1 data set for experiments which contains, 3900

movies and 6400 users with one million ratings. The data set contain three files.

First, user file with details such as age, gender, zip code, and occupation. Second,

1http://www.grouplens.org/node/73
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movie file containing attributes such as movie id, movie title, and genre. Third,

Ratings file contains movie id, user id, rating and time stamp.

We require more additional information such as actors, directors and their pic-

tures for the purpose of user interface. We extract these information from IMDb

API 2 which provides a json with addition detail such as actors, directors, and poster.

As our user interface allows users to query on any of the movie attributes (Movie

Title, Actors, Director, and Genre), we create separate rating files for each of the

attribute to improve the performance and avoid latency.

5.2 Architecture of Tags Mining

The Architecture of the tag mining framework is almost similar to the rating

mining architecture as shown in Figure.5.1. In this section we explain the Tags mining

architecture.

Front End: We use the same technologies used in rating mining. However,

input for tags mining is more complex than the rating mining. In this case end users

are allowed to specify the search query that involves attributes of user dimension(ua)

and/or item dimensions(ia). End users are also given an option to specify thresh-

old for user/item attribute inputs and maximization constraint for tags similarity or

diversity. Furthermore, similarity and diversity mining is performed on tagging com-

ponents based on input query. Output of such query will be a results corresponding

to similarity and diversity measures. Results will be displayed on geographic map.

User and item dimensions in the result set overlayed on the map. Furthermore, we

display tag clouds associated with each result on screen to allow users to compare the

results.

Web Service: We use the same web service used in rating mining.

2http://www.imdbapi.com
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Back End: We use same technologies used in rating mining except the dual mining

framework. We use different set of algorithms to process tagging components.

Data set: For tag interpretation we use movieLens 10M 3 data set which contain,

100,000 tags by applied to 10,000 movies by 72,000 users. The data set contain tag

file with 100,000 tags, user IDs and movie IDs associated with it.

3http://www.grouplens.org/node/73
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CHAPTER 6

USER INTERFACE DESCRIPTION

6.1 Rating Interpretation System

We build rating interpretation system similar to MapRat system [4]. Our rat-

ing system can work on any of the collaborative rating site which provides data as

described in section 2.

Our rating interpretation system will have web based user interface. Users

will allowed to enter one or more items attributes. The list of input parameters

include: movie, actor, director, genre and mandatory parameters such as coverage

and number of groups. As an additional input we allow user to specify the time frame

with a slider. As shown in the Figure 6.1, user enters the movie as Toy Story with

number of cuboids, k = 10 and coverage α = 30 and time frame between Jan 2000

to Dec 2001. Clicking on Explain Ratings button generates the output.

The result of such query is as shown in the Figure 6.2. The groups of similar and

diverse users are placed in two separate tabs. The tabs are the solutions to the two

sub-problems (similarity mining and diversity mining) described in the section 3.1.

For the visualization of user groups on geographical map, our systems always identifies

the user groups which have at least location attribute in it. We use raphael1 to build

and color the geographical map. We represent the average ratings with colors such

red for rating 1 and green for rating 5. We use icons to describe the user attributes.

Color of pin holding icons describe the age group of the user group. We display other

attributes like Gender and occupation with the specific icons. Legend for ratings age

1http://raphaeljs.com/
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Figure 6.1. User Interface for Ratings mining .

group and icons will be shown on the right hand side of the map. User can hover over

the groups for the description of the group.

As shown in the Figure 6.2, 10 user groups who agree on each other ratings is

shown on the geographical map. The example of user hovered over icon on Michigan

a tool tip with a description Young Male student from Michigan. Similarly, user can

identify each of the user group by moving cursor or manually with the help of legend.

User can click on one of icons (user groups), to explore the ratings. Additional

statistics about the user group rating will be displayed on the screen. For example,

End user can click on male icon on California.User groups statistics will be displayed

on the screen. Which contains a ratings patterns for all male user from California,

Rating distribution of all California users, and Rating distribution of all male users.

Hence, such user groups and statistics helps user in decision making about the item

of interest.
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Figure 6.2. Geo-visualization of Ratings mining .

Figure 6.3. User Group exploration. .

6.2 Tags Interpretation System

Our tags interpretation works on social web that provides the data model de-

scribed in section 2.

Tagging interpretation will have a web based interface as shown in the figure 6.4.

The left hand side of the input screen contain a drop down that allows a end user

to choose different attributes from user and item dimension. On selecting user/item

attributes, it will be added to the query part of user interface. Right hand side of the

input screen contains settings for the mining(Similarity/Diversity) of tag components.

In this way user can specify query to identify similar( or diverse) tags on similar( or
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Figure 6.4. User Interface for Tags Mining. .

Figure 6.5. Geo-visualization of tags mining .

diverse) items tagged by similar (or diverse users). In addition, Settings also include

coverage and number of groups. For example, as shown in the figure 6.4, suppose

end user selects item attribute, Toy Story and apply settings such as item:similarity,

user:diversity, and tags: similarity with coverage as 50% and Number of groups as

2. The conjunctive query for such input will be displayed input screen. Before user

clicks on show results button, she can add more or remove user/item attributes and

change settings if required. On finalizing the query user can click on the show results

button for the results.
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Figure 6.6. Tag Clouds for Tags Mining. .

Result of such input query will be displayed on geographical map and tag clouds

side by side. Output screen will be divided into two parts. Left hand side of the screen

contain a carousel that contains geographical map. User components that describe

user attributes will be rendered as icons on the geographical map. The number of

items in carousel will be equal to number of groups, k specified in input query. Right

hand side of the output contain tag clouds. The number of tag clouds is also same

as the number of user groups. Each tag cloud represents, set of tags given to an item

by users from the result set.

Suppose, a user wants two user groups who tagged similarly on movie Toy Story,

output of such input query will be two diverse user groups, (Male from Texas and

student from California) and (Artist from Minnesota and Female from New York)

who tag similarly on movie Toy Story as shown in Figure. 6.5. Both the items in

carousel are expanded for the clarity purpose. Attributes of user components such

as gender, location, and occupation will be rendered over geographical map. The tag

clouds on the right hand side represents tags by each of the group on item Toy Story.
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As user selected similar tags, it can be observed that most of the tags are similar on

both tag clouds (such as disney, animationetc )as shown in Figure 6.6. This helps

end user to interpret the tagging behaviour over set of items and decide upon the

item of interest.
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CHAPTER 7

CONCLUSION

In this thesis we built system that can interpret the rating and tagging be-

haviours on social web. First, we described our rating interpretation system which

takes item or set of items as input and on dual mining, returns user groups as cuboids.

These cuboids are rendered over geographical map to allow end users to visualize rat-

ings. We also provide option for end users to explore ratings by providing aggregate

statistics of user sub-population rating. Second, we introduce tags interpretation sys-

tem which accepts attributes from user/item dimension and on dual mining, returns

set of results that contain user and/or item dimensions, and also tag component.

Every Item/User dimensions are visualized on geographical map and set of tags are

displayed as tag clouds. This allows user to compare tag clouds and make informed

decision about interested items.
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