

MEASUREMENTS OF A LATENCY-BIASED EXPANDER TOPOLOGY IN THE TOR

ANONYMITY SYSTEM

by

SUBHASISH DUTTA CHOWDHURI

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2012

Copyright © by Subhasish Dutta Chowdhuri 2012

All Rights Reserved

To my parents without whom I would not be where I am today and my brother Souvik for his

unconditional support.

iii

ACKNOWLEDGEMENTS

 I would like to express my sincere gratitude to Dr. Matthew Wright for supervising me

on this thesis and helping me in every step of my work. His patience, motivation and guidance

helped me immensely during my research and the writing of this thesis. I am grateful to Dr.

Donggang Liu and Dr. Manfred Huber for their invaluable advice and interest in my research

and for taking time to serve on my thesis committee. I would like to thank all the members of the

Information Security Lab for creating a positive and enjoyable work environment and being

available at any time to discuss problems. I would also like to thank my friends Gaurav Hansda,

Jaineel Mehta and Ankit Upadhyay for being there with me in my difficult times and supporting

me throughout.

Finally, I thank my parents for their constant encouragement and unconditional support

and my brother for his consistent motivation.

August 6, 2012

iv

ABSTRACT

MEASUREMENTS OF A LATENCY-BIASED EXPANDER TOPOLOGY IN THE TOR

ANONYMITY SYSTEM

Subhasish Dutta Chowdhuri, M.S.

The University of Texas at Arlington, 2012

Supervising Professor: Matthew Wright

 Anonymous communication systems protect the privacy of their users by hiding who is

communicating with whom. With the widespread use of the Internet, anonymity systems are all

the more essential to support applications having strong privacy requirements such as

intelligence gathering, military communications, or e-voting protocols. Anonymity systems must

balance security and performance to remain popular with their users.

In this work, we perform measurements on anonymity systems to improve their

performance. We use the Vivaldi network coordinate system to efficiently map out the relative

delays between hosts. Using this data, we create an overlay expander network topology that is

biased to use lower latency links instead of randomly selecting nodes. Our primary contribution

is the design and execution of a set of experiments to evaluate the performance of this

approach. These experiments are performed using a private deployment of Tor, a popular

anonymity system, running on PlanetLab, a globally distributed testbed. Our testbed is

comprised of 100 Tor relay nodes, five trusted directory servers and 10 geographically

distributed clients, with each of the relays running a common implementation of Vivaldi to

compute its virtual coordinates and reporting the same to a trusted directory server. The

v

directory server uses this information to construct an expander graph topology with a bias

towards faster links. We show that when the network topology is created with a bias towards

lower latency edges, there is a significant improvement in performance compared to using

random links on our topology.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ..iii

ABSTRACT ... iv

LIST OF ILLUSTRATIONS... viii

LIST OF TABLES .. ix

Chapter Page

1. INTRODUCTION……………………………………..………..….. 1

1.1 Anonymous Communication Systems ... 1

1.2 Types of Anonymous Communication Systems .. 2

 1.3 Tor: The Second Generation Onion Routing Design 3

2. BACKGROUND .. 7

 2.1 Improving the performance of Tor .. 8

 2.2 Impact of Network Topology on Anonymity Networks 11

3. MEASUREMENTS OF A LATENCY-BIASED EXPANDER TOPOLOGY 14

3.1 Vivaldi: A decentralized network coordinate system 14

3.2 Expander Graph topologies and construction .. 15

3.3 Shaping and Routing Bias .. 16

4. EXPERIMENTS AND RESULTS ... 18

4.1 Experimental Parameters and Evaluation Metrics ... 18

4.2 Results ... 20

5. DISCUSSION ... 27

6. CONCLUSION AND FUTURE WORK ... 28

6.1 Conclusion .. 28

6.2 Future Work .. 28

vii

REFERENCES ... 30

BIOGRAPHICAL INFORMATION .. 34

viii

LIST OF ILLUSTRATIONS

Figure Page

1.1 Anonymous Communication System ... 2

1.2 Tor’s System Architecture .. 6

2.1 Mix Topologies ... 13

4.1 Tor client’s time-to-first byte for different values of RBIAS .. 22

4.2 Tor client’s time-to-first byte for different values of SBIAS... 23

4.3 Tor client’s time-to-first byte for different values of SBIAS
 and RBIAS .. 24

4.4 Tor client’s download time for different values of SBIAS
 and RBIAS .. 25

ix

LIST OF TABLES

Table Page

4.1 Top-20 countries by average daily Tor users (direct and
 bridge) for June 2012 ... 19

4.2 Time-to-first-byte in seconds for different values of SBIAS
 and RBIAS .. 24

4.3 Download time in seconds for different values of SBIAS
 and RBIAS .. 25

 1

CHAPTER 1

INTRODUCTION

 With the increased use of the internet in all aspects of daily life, the realization has

dawned that privacy and confidentiality are essential and important requirements for the

success and wide-spread use of many applications. Encryption alone does not provide the level

of confidentiality required by users. It focuses primarily on protecting the confidentiality of the

transmitted data, while the identities of the communicating parties remain unprotected. Traffic

analysis can easily uncover information about the participants in a distributed application. User

anonymity is the most important confidentiality criteria for many internet applications such as

electronic voting, various forms of electronic commerce, peer-to-peer file sharing and

anonymous web-browsing or email. Anonymity systems also benefit the government and law

enforcement agencies enabling a medium of safe communication for whistle blowers and

citizens willing to submit leads in criminal investigations as well as corporations seeking a

means of doing competitive research and business deals.

 Anonymity, however, has a few drawbacks. Abuse and illegal activity are the biggest

drawbacks. Controlling illegal activity on the Internet is virtually impossible since anonymity

ensures the identity of the perpetrator cannot be discovered or linked to specific actions. As a

result, many organizations are dissuaded from fully embracing anonymity.

1.1 Anonymous Communication Systems

 Anonymous communication systems were first proposed by Chaum [1] in which the

message to be anonymized is relayed through a series of nodes called mix nodes. A mix can

be thought of as a server which accepts incoming connections and forwards them in such a way

that an eavesdropper cannot easily determine which outgoing connection corresponds to which

incoming connection. Moreover, since any given mix can be compromised, traffic is usually

 2

routed through a chain of mixes. Fig 1.1 shows an overview of an anonymous communication

system.

Figure 1.1 Anonymous Communication System

According to Pfitzmann and Waidner [14], there are three types of anonymities that can

be provided by anonymous communication systems: sender anonymity, receiver anonymity,

and unlinkability of sender and receiver. Sender anonymity means that the identity of the

information sender is hidden, and receiver anonymity means that the identity of the information

receiver is hidden. Unlinkability of sender and receiver refers to the property that the sender and

receiver of a communication cannot be identified even if the sender and receiver are known to

be of communicating with someone. Since anonymity is the state of lacking identity, anonymous

communication can only be achieved by removing all the identifying characteristics from the

network flows.

1.2 Types of Anonymous Communication Systems

 Anonymous communication systems can be classified into two categories: systems

catering to high-latency applications and systems for low-latency applications. High latency

applications are those which do not require quick responses such as email systems. Low

latency applications on the other hand are those that need real-time responses such as secure

shell (SSH), web applications and instant messenger. Both types of systems are built on the

idea proposed by Chaum [1] whereby unlinkability is provided by using a sequence of nodes

 3

between the sender and its receiver and encryption is used to hide the message content. An

intermediate node knows only its predecessor and its successor. An important difference

between these two types of systems is that high-latency systems are message-based systems

whereas low-latency ones are connection-based. Hence, high-latency systems have one

message per path and new path is created for a new message whereas low-latency systems

use a path for a period of time and send data as a stream of packets over the same path. High

latency techniques attempt to hide timing information that could be used to perform traffic

analysis. However, they are often impractical because of the fact that traffic must be delayed,

reordered or manipulated in a manner to hide timing information. In contrast to high latency

techniques, a number of approaches have been proposed to enable low latency anonymous

communications that provide lower security guarantee but performance sufficient enough to

support interactive web traffic.

A number of anonymous communication systems have been designed to provide

anonymity to the communicating parties (e.g. Anonymizer.com [2], Web Mixes [3], Tor [4],

Onion Routing [5], Crowds [6], Hordes [7]). We focus on low-latency systems whose main

purpose is to protect the privacy of interactive internet communications such as web browsing.

Tor is one of the most popular overlay networks for anonymizing TCP traffic. It is a low latency

service that provides strong anonymity to its users.

1.3 Tor: The second generation onion routing design

Tor is the second generation of the onion routing design which provides low latency

anonymity for TCP-based applications [4]. It is the most widely deployed anonymous

communication system with an estimated 250000 users. The primary design goal of Tor is to

ensure low enough latency to facilitate the use of interactive applications such as instant

messaging and web browsing. Tor’s system architecture consists of Tor routers, which are

volunteer-operated servers, a set of trusted directory servers that advertise information about

the Tor routers such as their IP addresses, public keys, exit policies, self-reported bandwidth

 4

capacities etc. and Tor proxies (or clients). Tor clients query one of the authoritative directory

servers to obtain a signed list of the available Tor routers and then establish paths, or virtual

circuits, through the Tor network by choosing precisely three Tor routers and establishing a

shared symmetric key with each, using authenticated Diffie-Hellman and a telescoping key

agreement procedure. The client encrypts their data in fixed 512 byte cells in a layered fashion

with each key and sends the encrypted cell to the first router on the circuit, called the entry

guard. The entry guard removes one layer of encryption using the symmetric key shared with

the client, revealing the IP address of the middle router. The cell is forwarded in this manner,

removing one layer of encryption at each router until the final router in the circuit, called the exit

router, removes the last layer of encryption, revealing the cell’s destination. The exit router

finally forwards the message to the destination. The entry guard only knows the client’s identity

and only the exit router knows the destination’s identity. For efficiency, the Tor software uses

the same circuit for connections that happen within the same ten minutes or so. Later requests

are given a new circuit, to keep people from linking your earlier actions to the new ones. More

details about Tor can be found in its design document [4].

Entry guards are Tor routers that are used as the first node in a client’s circuit. To

mitigate the threat from adversaries setting up Tor routers and profiling a large number of clients

over time, only those routers are chosen as entry guards which have high uptime and high

bandwidth. Clients choose a fixed number of entry guards (three by default) to use on their

circuits. A router is marked as a Guard node by the authoritative directory servers only if its

mean time between failures is above the median of all “familiar” routers (A router is “familiar” if

one-eighth of all active routers have appeared more recently) than it and its bandwidth is

greater than or equal to 250KB/s [17]. By default, clients choose precisely three entry guards to

use for their circuits. To ensure that there is sufficient guard bandwidth available, guard node

selection is weighted by (G − (T/3))/G, where G is the amount of available guard bandwidth and

T is the total bandwidth available. If G < T/3, then guard nodes are not considered for non-guard

 5

positions. Exit routers are the Tor routers that allow connections to leave the Tor network.

Anonymous communication systems are sometimes used for abusive or malicious purposes [9].

Hence Tor allows router operators to exercise control over the types of traffic they wish to exit.

Routers can be configured to exit to specific ports or they can be configured to connect only to

other Tor routers (in which case the router may be only used as an entry guard or a middle

router). The router’s exit policy specifies the ports to which an exit router may connect to. In

order to ensure that there is sufficient exit bandwidth available, the bandwidth of Exit routers is

weighted differently depending on the fraction of bandwidth that is available from non-Exit

routers. Suppose that the total exit bandwidth is E and the total bandwidth available is T. If E <

T/3, then Exit routers are not considered for non-exit positions. Otherwise, their bandwidth is

weighted by (E − (T/3))/E [10].

Each router’s entry guard status and exit policy are advertised by the trusted directory

servers. Tor’s router selection algorithm [10] chooses routers with the following constraints:

 A router may only be used once per circuit.

 Only one router per /16 network and two routers per IP address may be used on a

circuit. This prevents an attacker who controls a single network from deploying a large

number of routers in an attempt to attract traffic.

 The first router on the circuit must be marked as an entry guard by the authoritative

directory servers. Clients select precisely three entry guards to use on their circuits, and

choose new guards periodically.

 The exit router must allow connections to the client’s chosen destination host and port.

Tor clients query one of the authoritative directory servers to obtain a signed list of the

available Tor routers, their public keys, bandwidth advertisements, exit policies, uptime, and

other flags indicating their entry guard status and other information. Routers for each

position of the circuit are chosen in proportion to their self-advertised bandwidth. Fig. 1.2

provides an illustration of Tor’s system architecture.

 6

Figure 1.2 Tor’s system architecture [8]

 Persistent applications such as FTP and SSH that establish long-lived sessions require

more stable circuits than applications with short-lived sessions like HTTP. For such long-

lived applications, Tor builds circuits solely with routers that are marked as stable by the

trusted directory servers. A router is stable if it has been observed by the directory servers

for 30 days or if it is above the median of all routers in terms of mean time between failures

[11]. Routers for each position of the circuit are chosen in proportion to their self-advertised

bandwidth. Since Tor routers self-advertise their bandwidth capabilities, an adversary can

falsely report high bandwidth values and increase the probability of attracting traffic and

controlling the end points of circuits [12], [13]. To mitigate the effectiveness of this attack, all

bandwidth advertisements are capped at 10 MB/s. More details about Tor’s path selection

algorithm may be found in the Tor path specification [10].

 7

CHAPTER 2

BACKGROUND

 Tor is the second generation of the onion routing design which provides low

latency anonymity for TCP-based applications [4]. It is the most widely deployed anonymous

communication system with an estimated 250000 users. The primary design goal of Tor is to

ensure low enough latency to facilitate the use of interactive applications such as instant

messaging and web browsing. Tor’s system architecture consists of onion routers, which are

volunteer-operated nodes, a set of trusted directory servers that advertise information about the

Tor routers such as their IP addresses, public keys, exit policies, self-reported bandwidth

capacities etc. and Tor proxies (or clients). Tor clients query one of the authoritative directory

servers to obtain a signed list of the available Tor routers and then establish paths, or virtual

circuits, through the Tor network by choosing precisely three onion routers and establishing a

shared symmetric key with each. More details about Tor can be found in its design document

[4].

Low latency anonymity systems strive to achieve a balance between security and

performance. One of the frequent problems faced by Tor users is that it significantly slows down

Web browsing speed. For an average user, the performance penalty introduced by Tor is very

high for daily use. Efforts to improve the performance of Tor may decrease user’s anonymity.

For example, Tor does not add intentional delays or use cover traffic to ensure performance that

is sufficient to support interactive applications such as Web browsing or instant messaging.

However, this increases Tor’s vulnerability to end-to-end traffic correlation. Another important

design decision in Tor is the length of the circuits. Tor uses exactly three routers in a circuit to

mitigate any single router’s ability to link a source and destination. However, three-hop paths

incur a performance cost over shorter circuits. The current Tor design tries to find a compromise

 8

that satisfies both those users who desire strong anonymity and those for whom performance is

more of a priority.

 Another reason for the slow performance of Tor can be attributed to the volunteer-

operated nature of the onion routers-many of them are on slow connections or shared with other

activity [30]. Therefore, when selecting the nodes in the circuit, it is important to make the best

use of the limited capacity available. The onion routers on each path are selected by the initiator

to prevent an attacker from manipulating path selection. For best performance, the path

selection algorithm must fairly distribute connections based on the capacities of the onion

routers.

2.1 Improving the performance of Tor

When Tor was first released for public use, it was composed of only a few high-

bandwidth routers and had few users. Hence, selecting routers uniformly at random did not

have any impact on performance. However, as the number of Tor users keeps growing [31],

random selection of routers led to the degradation in performance for its users.

There are a lot of factors that influence the performance of Tor. Tor’s design decision to

build paths with precisely three routers strikes a correct balance between security and

performance [16]. However, compared to two-hop paths, three-hop paths incur a performance

penalty. Bauer et al. [16] experimentally evaluate several key benefits and drawbacks of two-

hop and three-hop paths. Though two-hop paths may improve performance, a disadvantage of

a two-hop design from the security perspective is that exit routers can discover client’s entry

guards since they communicate directly. Two-hop paths are vulnerable to adaptive surveillance

and introduce potential liabilities for exit node operators. Though shorter paths result in an

improvement in performance, there is no strong argument to reduce Tor’s path length.

The Tor users are heterogeneous in their requirements. Some users require high

anonymity whereas other users may be less privacy-sensitive. The Tor router selection

algorithm is a compromise between performance and anonymity. The bandwidth values used in

 9

the Tor load-balancing algorithm are self-reported by each node and are not verified in any way.

This can lead to attacks where malicious nodes can report a higher-than-actual bandwidth so

that a larger fraction of tunnels are routed through them. To mitigate the effectiveness of this

attack, all bandwidth advertisements are capped at 10 MB/s [10]. Despite the enforced upper

bound on the reported bandwidth, the attack can be quite successful: Bauer et al. [13] report

that a small fraction of attacker nodes can attain the first and last node positions on nearly half

the tunnels. Even when the nodes are honest, the reported values can be a poor indicator of the

available bandwidth at a node due to changing network conditions and other factors. This

makes the performance of Tor highly variable. The current Tor load-balancing algorithm is a

compromise between performance and anonymity. Snader and Borisov propose that end-users

should have the ability to decide whether to weigh router selection towards higher bandwidth

routers or to select routers uniformly at random, eliminating bias in router selection [15]. They

propose to replace the self-reported bandwidth mechanism in Tor with a scheme for

opportunistic bandwidth measurement. The topology of the Tor network allows each router to

interact with most other routers and observe their performance over time. This mechanism

accurately predicts the performance of the routers and is less susceptible to low-resource

attacks in which low-resource nodes are perceived to be high-resource ones by reporting false

resource claims to centralized directory authorities. A user-tunable mechanism for selecting

routers based on their bandwidth capabilities is proposed which lets users select between

anonymity and performance and make router selections accordingly.

While the current Tor path selection algorithm picks nodes with a probability

proportional to their contribution to the total network bandwidth, the Snader Borisov (S-B)

tunable variant only uses advertised node capacity to produce a rank ordering of nodes. The

probability that a particular node will be selected depends solely on its position within this

ordering. Let the family of functions fs be defined as follows:

 10

 fs(x) =
1− 2𝑠𝑥

1− 2𝑠
 (for s ≠ 0) (1)

 f0(x) = x (2)

To select each node, the n nodes are sorted based on the descending order of their bandwidth

and a number x is selected uniformly at random from the interval [0, 1). The selected node is at

index n X fs(x) . The value of s is selected by the client according to their preference for the

type of performance they need. For s = 0, nodes are selected uniformly (for users requiring high

anonymity) but as s increases, faster nodes will be preferred (for users willing to compromise

anonymity for better performance). Experiments show that users can achieve great

improvements in performance without much compromise in anonymity or significantly increase

anonymity protection without any loss in performance. Moreover, this approach is dynamic: if a

router’s available bandwidth fluctuates over time, it will be noticed by its peers and used

accordingly [15,28]. We use this tuning method in our proposal which is explained in detail in

Chapter 3.

In [32], the authors describe a link-based path selection strategy that chooses in favor

of higher performing links. Link-based relay selection supports more flexible routing, enabling

anonymous paths with low latency, jitter, and loss, in addition to high bandwidth. In comparison

to node-based techniques in which relay selection is biased by the relay node characteristics

(i.e., bandwidth), link-based selection enables the generation of high performance paths across

multiple metrics: latency, jitter, loss, and bandwidth. Another area of investigation is the

improper application of TCP’s congestion control mechanisms which degrade the performance

of Tor. Traffic between any pair of routers is multiplexed over a single TCP connection. This

results in interference across circuits during congestion control resulting in packet dropping or

packet reordering.

In [33], the authors propose to use a TCP-over-DTLS (Datagram Transport Layer

Security) between routers. Each stream of data has its own TCP connection with the TCP

 11

headers being protected with DTLS which would otherwise give stream identification information

to an attacker. Through experiments, they demonstrate that their proposal resolves the cross-

circuit interference. In [34], the authors propose a fair resource allocation among circuits. Tor’s

circuit scheduling algorithm allows busy circuits (those with continuous traffic) to crowd out

bursty circuits (those with short bursts of traffic). The authors in [34] propose to implement an

advanced scheduling algorithm that treats circuits differently based on their recent activity. As a

result, bursty circuits such as those used for web browsing can gain higher priority over busy

ones such as used for bulk transfers. This improves the performance of Tor with minimal added

overhead. In [35], the author’s seek to improve Tor’s performance by reducing unnecessary

delays due to poor flow control and excessive queuing at intermediate routers. To improve flow

control while reducing congestion, they implement N23, an ATM-style per-link algorithm that

allows Tor routers to explicitly cap their queue lengths and signal congestion via back-pressure.

Experimental results show that N23 offers better congestion and flow control, resulting in

improved web page response times and faster page loads compared to Tor’s current design

and the other window-based approaches.

In addition to the above factors that have an impact on the performance of Tor, another

important factor is the network topology. Basically, Tor forms an overlay network through which

clients build circuits and forward traffic. Our works deals with the impact of the network topology

on the performance and anonymity of low-latency anonymity systems.

2.2 Impact of Network Topology on Anonymity Networks

Mix networks were introduced by Chaum [1] as a technique to provide anonymous

communication where messages are relayed through a sequence of intermediate nodes called

mixes. A mix hides the relation between incoming and outgoing messages. This is done by

collecting a number of messages and reordering them before sending them on their way. The

topology of a mix network plays an important role in its efficiency and traffic analysis resistance

properties.

 12

The proposal by Chaum [1] assumes a fully connected graph, whereby all nodes can

communicate with all other nodes, therefore forming a fully connected network. Clients relay

their messages by choosing at random a sequence of nodes from the set of all existing mix

nodes. The fully connected nature of the mix networks would seem to improve the anonymity

provided by the system. However, they are vulnerable to intersection attacks, especially if many

of the mixes in the network are compromised [23]. If an adversary controls all the mix nodes

except one, an attacker can use intersection attacks to reduce the anonymity set of the sender

and the anonymity of the messages going through the mix will most likely be compromised.

Moreover, if two or more messages follow the same route, attacks become easier.

As a solution, a cascade of mixes was proposed [23]. Each cascade is a sequence of

mixes with an equal number of mixes in every cascade. Users of the network cannot choose the

route to take and must route their messages through a predefined sequence of mixes. Using a

cascade of mixes allows only a fixed routing position for each mix for all the messages it

processes. This prevents the partitioning of the input message batches and so prevents the

intersection attack. However, mix cascades have some disadvantages. Cascades do not scale

well to handle heavy loads and are vulnerable to denial of service attacks, since disabling one

node in the cascade will stop the functioning of the whole system. Another disadvantage of a

mix cascade is that the cascade consists of default mixes which have to be used. A user cannot

express his trust in certain mixes by using them or his distrust by not using them. But a user

may choose that cascade he wants to use and trust in.

 13

 (a) Cascades (b) Free-route

Figure 2.1 Mix Topologies [22]

Danezis [24] proposed a middle path between free-route mix networks and mix

cascades that uses a restricted-route mix network based on expander graphs-graphs with low

degree and short paths between any pair of nodes. An expander graph GN,D is a random graph

that has a homogeneous topology, having N nodes each with a degree D. Compared to a

complete graph topology, this topology has fewer edges and fewer possible paths. Thus, traffic

is concentrated through fewer mixes instead of dispersing traffic through many mixes as in a

complete graph topology. To choose a path in the network, the user does a random walk on the

topology graph of the network. Additionally, restricted topologies offer better anonymity

properties. Danezis [24] showed that a restricted network topology such as an expander graph

improves security against intersection attacks. Intuitively, more cover traffic and messages flow

over the same links, allowing them to provide cover for each other.

Our work also leverages expander topologies, but in the context of low-latency

anonymity systems.

 14

CHAPTER 3

MEASUREMENTS OF A LATENCY-BIASED EXPANDER TOPOLOGY

 We propose the creation of an underlying network topology using network latency

based on expander graphs. The topology is created with a bias towards low-latency edges. The

latency between the nodes is measured using a decentralized network coordinate system that

allows an efficient estimation of the latency between any pair of nodes.

3.1 Vivaldi: A Decentralized Network Coordinate System

 Network coordinate systems assign virtual coordinates to every node in the network

which allows the efficient estimation of latency between any pair of nodes. The communication

costs are greatly reduced compared to directly measuring the O(n
2
) pairwise latencies because

each of the nodes in the network computes its coordinates based on the round-trip time to a few

other nodes. Coordinates are assigned to hosts such that the distance between their

coordinates predicts the RTT between those hosts.

Vivaldi is a decentralized network coordinate system which has a low convergence

time, low error and an accurate mapping of the virtual coordinate network. It calculates the

coordinates as a solution to the spring relaxation problem. Its behavior is analogous to a

physical model made of springs and balls, in which each ball represents a network node. The

spring connecting any two balls is longer when the latency between those nodes is larger. Over

a period of time, such a model reaches a stable state. The resting position of the spring equals

the network latency between the pair of nodes. At the beginning, a Vivaldi node selects an

arbitrary set of peers, and sets its initial coordinate to the origin. It then begins an iterative

algorithm that pulls it closer to peers with lower latencies, and pushes it away from peers with

higher latencies. After many iterations, the coordinate system reaches an equilibrium, and

subsequent changes are due only to the changing latency between the nodes. On each

 15

iteration, a Vivaldi node sends a probe packet to each of its peers. It receives a response to

each probe packet containing the peer’s current coordinate and self-reported error estimate,

and learns its latency to that peer from the round trip time of the transaction. It then computes a

new position that is closer to the peer if the estimated latency is too large, and farther from the

peer if the estimated latency is too small. Vivaldi uses Euclidean coordinates of d dimensions

with an additional height value: x = x1,……,xd,xh. To calculate the distance between two nodes x

and y, the distance of their Euclidean coordinates is calculated first and then the heights of both

nodes are added.

 Vivaldi distance(x,y) = 𝑥𝑖 – 𝑦𝑖
2

𝑑

𝑖=1
 + 𝑥ℎ + 𝑦ℎ (1)

3.2 Expander Graph topologies and construction

Expander graphs are graphs which are sparse, show high connectivity and are well

known to have excellent expansion properties. Intuitively, they are graphs for which any “small”

set of vertices has a relatively “large” neighborhood. They are used to model social networks

and relationships between species and organizations.

A graph G = (V,E) in which every vertex has exactly D neighbors is called D-regular

graph. A D-regular graph is an (A,K)-expander if for every subset S⊆V of vertices in G, such

that | S |≤ K, then | N(S) |> A | S |. Here | S | is the number of vertices in S and | N(S) | is the

number of vertices in S′ that share an edge with any vertex in S. Although expander graphs

contain a relatively small number of edges per vertex compared to a complete graph with the

same number of vertices, they possess excellent connectivity properties enabling them to be

extremely fast mixing. Mixing time of a graph is the time that it takes a random walk on the

graph to approach the stationary distribution of that graph. In fast mixing graphs, a random walk

will converge to a stationary distribution in a fewer number of hops. The property of having

fewer numbers of edges per vertex in combination with the fast mixing property makes

 16

expander graphs an attractive alternative to build the underlying topology of anonymity networks

which could be leveraged to provide better security and performance.

The expander graphs are constructed using the distributed method described in [26].

The method begins with an initial set of three nodes that are connected to each other with D/2

hamiltonian cycles, where D is the vertex degree of the expander graph. The graph grows

incrementally from the initial three nodes when new nodes join the existing nodes. When a new

node joins the network, a random existing node is selected as the new node’ neighbor. The

process of random neighbor selection continues until the new node is connected to D other

nodes in the network. An expander graph constructed in such a manner is a randomly-

constructed expander.

We propose an expander topology that is biased toward low-latency edges which would

simultaneously achieve both the security benefits of an expander topology and improved

performance. If the topology is based on the latency between nodes, the resulting expander will

have a greater number of high performance links as compared to a random expander. A path or

circuit chosen through this shaped expander network has a higher probability of experiencing

better performance than a path chosen through a random expander or a fully connected

topology. The topology which we get is a shaped expander topology.

3.3 Shaping and Routing Bias

Snader and Borisov [15] propose a method to choose nodes to use in a circuit in a way

so as to bias selection towards nodes that provide higher performance or higher security. This

tuning method is used in our work to bias neighbor selection during the construction of the

expander graph. We use two parameters SBIAS and RBIAS to bias the selection of neighbors

during the creation of the expander topology. The parameter SBIAS is used to vary the shaping

bias of the topology. As the value of SBIAS increases, the resulting graph that is generated is

more highly shaped and contains a greater number of high performance links. The tuning

function in [15] is also used to pick nodes in the anonymity network thereby introducing a

 17

routing bias. RBIAS is the parameter for routing bias and is used to vary the amount of routing

bias in the expander topology. We measure the performance of a shaped expander topology on

a private deployment of Tor for varying values of SBIAS and RBIAS.

One area of concern is that the topology generated by biased edge selection is not

theoretically an expander and may lack the expansion properties of a random expander.

However, previous work has shown that biasing the expander construction does not lead to a

topology that requires significantly more hops to reach maximum entropy [27]. Therefore,

shaped expander graphs can be used to improve link performance without substantial loss of

anonymity.

 18

CHAPTER 4

EXPERIMENTS AND RESULTS

 To demonstrate the efficacy of our proposed improvements, we design and execute a

set of experiments. These experiments are performed using a private deployment of Tor

running on PlanetLab [18]. PlanetLab is a geographically distributed platform for deploying,

evaluating and accessing planetary-scale services and serves as a testbed for computer

networking and distributed systems. As of June 2010, it was composed of 1090 nodes at 507

sites worldwide.

Our testbed is comprised of 100 Tor relay nodes, five trusted directory servers, and 10

geographically distributed clients, with each of the relays running Pyxida [19], a common

implementation of Vivaldi, to compute its virtual network coordinates and reports the same to a

trusted directory server. We use Pyxida in our experiments since it uses the Vivaldi algorithm to

compute the coordinates of the nodes in the network, is a stable deployment of the network

coordinate system and has been used in large scale deployments. The directory server uses

the coordinate information to construct an expander graph topology with a bias towards faster

links. Using this topology, Tor builds circuits for routing data from the source to the destination.

We measure the performance of a normal deployment of Tor compared with one using a biased

underlying network topology for different values of SBIAS and RBIAS.

4.1 Experimental Parameters and Evaluation Metrics

 Our testbed is comprised of 100 Tor relay nodes, five trusted directory servers, and 10

geographically distributed clients. Since PlanetLab is a globally distributed testbed, we have

chosen the Tor relays to be as geographically diverse as possible so as to obtain a realistic

model of the actual Tor network. We deployed a standalone Pyxida service on the relay nodes

with each of the nodes reporting its virtual coordinates to the directory server. We wait until the

 19

network stabilizes before constructing the expander graph topology. The shaped expander

graph constructed has a degree of 20. After the graph is constructed, the Tor client randomly

chooses a guard node from its downloaded network consensus and builds its circuit in

accordance with the expander topology.

We pick 10 PlanetLab nodes to use as Tor clients, in keeping with the distribution

across countries of Tor clients [20]. The top 20 countries having the highest number of daily Tor

users (direct and bridge) for June 2012 are shown in Table 4.1. We use this data to select 10

clients which would be used in all the experiments.

Table 4.1 Top-20 countries by average daily Tor users (direct and bridge) for June 2012 [20]

Country

Average
daily Tor

users (direct
and bridge)

Percentage of
users

USA 61193

13.2%
Iran 45835 9.9%

Italy 43791 9.4%

Germany 41362 8.9%

France 30885 6.6%

Spain 30286 6.5%

Syria 17976 3.8%

Brazil 14696 3.1%

Great Britain 11182 2.4%

Russia 11165 2.4%

Saudi Arabia 9998 2.1%

Poland 7128 1.5%

Israel 6988 1.5%

Canada 6952 1.5%

South Korea 6532 1.4%

Netherlands 6487 1.4%

Japan 5087 1.1%

Argentina 4059 0.87%

Australia 3966 0.85%

India 3963 0.85%

Since Tor is primarily used for low-latency communication such as web browsing, the

evaluations that we do focus on the performance metrics that is particularly important to the

 20

quality of service of an end-user from that perspective. We measure the time-to-first-byte

(TTFB) which is the time a user must wait from the time they issue a request for data until they

receive the first byte (duration from the web client making a HTTP request to the first byte of the

page being received by the browser). The time-to-first-byte is two end-to-end circuit RTTs: one

RTT to connect to the destination web server, and a second RTT to issue a request for data

(e.g., HTTP GET) and receive the first byte of data in response. We also measure the download

time which is how long a user must wait for a web page to load.

To evaluate the time-to-first-byte, we measure the latency between the 10

geographically distributed clients and the top 100 websites as reported by Alexa [21]. We also

resolve the URLs of these websites in advance to exclude the DNS lookup time. We measured

the latency between every client node and every website as the median latency of 5 requests.

We first measured the latencies when Normal Tor was running on the PlanetLab nodes. Next,

we repeat the same with communication happening over a Tor network using a shaped

expander topology for different values of SBIAS and RBIAS.

Next, we evaluate the download time where a 1 MB file was fetched over HTTP via the

Tor network. According to HTTP Archive [29], the average size of a web page as on July 2012

is 1097 KB. The list of URLs used by HTTP Archive to come to get this figure is based on the

Alexa [21] top 1,000,000 sites. We measure the download time of 1 MB data which roughly

corresponds to the size of an average web page from 10 geographically distributed clients.

Each experiment concludes after the web client completes 100 downloads. The clients use the

wget web browser. We first perform the experiments using a normal deployment of Tor running

on the PlanetLab nodes. Next, we repeat the same with communication happening over a Tor

network using an expander topology for different values of SBIAS and RBIAS.

4.2 Results

We first evaluate the time-to-first byte for accessing the top 100 websites as reported by

Alexa [21] from 10 clients using a shaped expander topology. We compared the performance of

 21

normal Tor with one using a shaped expander topology for SBIAS and RBIAS values of 0, 1, 8

and 15. Fig 4.1 shows the cumulative distribution of the time-to-first-byte for normal Tor and Tor

with a shaped expander topology using RBIAS = 0, 1, 8 and 15. Fig 4.2 shows the cumulative

distribution of the time-to-first byte for normal Tor and Tor with a shaped expander topology

using SBIAS = 0, 1, 8 and 15. The time-to-first byte for normal Tor is 0.748 seconds at the

median. As shown by Fig 4.1 and Fig 4.2, as the values of the parameters SBIAS and RBIAS

are increased, the performance of the shaped expander topology improved compared to normal

Tor.

Next, we evaluate the download time of 1 MB of data from 10 clients using a shaped

expander topology. We compared the performance of normal Tor with one using a shaped

expander topology for SBIAS and RBIAS values of 0, 1 and 8. The download time for normal

Tor is 4.3 seconds at the median. Table 4.3 and Fig 4.4 show the download times for different

values of SBIAS and RBIAS. We observe that as the values of SBIAS and RBIAS increase,

their in a significant improvement in the download times.

 22

 (a) (b)

 (c) (d)

Figure 4.1 Tor client’s time-to-first byte for different values of RBIAS (a) RBIAS=0 (b)
RBIAS=1 (c) RBIAS=8 (d) RBIAS=15.

 23

 (a) (b)

 (c) (d)

Figure 4.2 Tor client’s time-to-first byte for different values of SBIAS (a) SBIAS=0 (b)
SBIAS=1 (c) SBIAS=8 (d) SBIAS=15.

 24

Table 4.2 Time-to-first-byte in seconds for different values of SBIAS and RBIAS.

 RBIAS=0 RBIAS=1 RBIAS=8 RBIAS=15

SBIAS=0 0.747 0.728 0.671 0.616

SBIAS=1 0.723 0.712 0.640 0.588

SBIAS=8 0.653 0.645 0.615 0.521

SBIAS=15 0.649 0.636 0.611 0.511

Figure 4.3 Tor client’s time-to-first-byte for different values of SBIAS and RBIAS.

 25

Table 4.3 Download time in seconds for different values of SBIAS and RBIAS.

 RBIAS=0 RBIAS=1 RBIAS=8

SBIAS=0 4.2 3.8 3.4

SBIAS=1 3.9 3.7 3.3

SBIAS=8 3.4 3.3 3.0

Figure 4.4 Tor client’s download time for different values of SBIAS and RBIAS.

 26

From Table 4.2, we observe that as the values of SBIAS and RBIAS increase, the

performance of Tor improves. We find that the time-to-first byte reduces by roughly 13% to 22%

compared to an unbiased topology. If we observe the shaping bias parameter, we see that there

is significant improvement in the performance up to a value of SBIAS=8 for a fixed value of

RBIAS after which we do not see much improvement. However, with a simultaneous increase in

both SBIAS and RBIAS, we observe a significant improvement in the performance of Tor.

From Table 4.3, we observe that as the values of SBIAS and RBIAS increase, the

download time reduces significantly. We find that the download time reduces by roughly 7% to

28% compared to an unbiased topology. The best performance is obtained when both the

SBIAS and RBIAS parameters are 8.

From the above results, we can conclude that using a shaped expander topology

biased towards low-latency links as the underlying network topology for Tor leads to a

significant improvement in the performance of Tor.

 27

CHAPTER 5

DISCUSSION

In our work, we propose to use a latency-biased network topology in Tor. This requires

a significant revamp of the Tor architecture. In this section, we compare our work with [36]

which shows that the performance of Tor can be improved with only client-side modifications.

The author’s design and implement a new Tor client, LASTor. They show that LASTor can

deliver significant latency gains over the default Tor client by simply accounting for the inferred

locations of Tor relays while choosing paths. Since the preference for low latency paths reduces

the entropy of path selection, LASTor’s path selection algorithm is designed to be tunable. A

user can choose an appropriate tradeoff between latency and anonymity by specifying a value

between 0 (lowest latency) and 1 (highest anonymity) for a single parameter. An efficient and

accurate algorithm is proposed to identify paths on which an anonymity system can correlate

traffic between the entry and exit segments. This algorithm enables LASTor to avoid such paths

and improve a user’s anonymity, while the low runtime of the algorithm ensures that the impact

on end-to-end latency of communication is low.

By applying techniques similar to those used in our work for their experiments and

evaluations, the authors in [36] show that in comparison to the default Tor client, LASTor

reduces median latencies by 25% which is roughly the same as we have achieved in our

experiments. However, LASTor is better compared to our proposal because it does not require

any change in the Tor architecture and can be implemented by client-side modifications only.

 28

 CHAPTER 6

CONCLUSION AND FUTURE WORK

 This thesis seeks to improve the performance of Tor, the most widely used privacy

enhancing technology, using an underlying shaped expander network topology comprised of

low-latency links. To that end, we offer a detailed analysis of Tor with the aim of improving its

performance problems.

6.1 Conclusion

 We propose to improve the performance of Tor by using an underlying shaped

expander graph network topology that is biased towards low-latency edges rather than using

random links. We evaluate our proposal on a private deployment of Tor on PlanetLab. We

measure the time-to-first-byte of popular websites and the download time of 1 MB of data which

corresponds to the size of an average web page. We observe that compared to a normal

deployment of Tor, using a biased expander topology leads to a performance improvement of

roughly 7% to 28% in Tor.

6.2 Future Work

 Our proposal creates an underlying network topology that favors the nodes and links in

the network which have high bandwidth and low latency. As a result, different parts of the

network may have skewed traffic volumes. High performing nodes will carry majority of the

traffic and the nodes having low bandwidth will have low utilization. The bandwidth distribution

of all the nodes should be taken into consideration when constructing a shaped expander.

 Another important area of interest is the churn in the network. Considering the fact that

nodes may join or leave the network, an interesting area of study would be to evaluate how long

an expander topology remains stable and accurate in such a scenario. Future work could

 29

involve evaluating how long an expander topology sustains itself in a dynamic network

environment after which it would need to rebuild itself.

30

REFERENCES

[1] D. Chaum, “Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms,” in

Communications of the ACM, 4(2), Feb.1981.

[2] Anonymizer Inc. http://anonymizer.com.

[3] O. Berthold, H. Federrath, and M. Kohntopp, “Project anonymity and unobservability in the

internet,” in Proceedings of Computers Freedom and Privacy, April 2000.

[4] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second generation onion router,”

in Proceedings of the 13th USENIX Security Symposium, August 2004.

[5] M. Reed, P. Syverson, and D. Goldschlag, “Anonymous connections and onion routing,” in

IEEE JSAC Copyright and Privacy Protection, 1998.

[6] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for web transactions,” in ACM

Transactions on Information and System Security, 1(1):66–92, November 1998.

[7] C. Shields and B. N. Levine, “A protocol for anonymous communication over the internet,” in

Proceedings of the 7th ACM Conference on Computer and Communications Security (CCS

2000), pages 33–42, 2000.

[8] K. Bauer, D. Grunwald and D. Sicker, “Predicting Tor Path Compromise by Exit Port,” in

Proceedings of 2nd IEEE International Workshop on Information and Data Assurance , Phoenix,

AZ, December, 2009.

[9] D. McCoy, K. Bauer, D. Grunwald, T. Kohno, and D. Sicker, “Shining light in dark places:

Understanding the Tor network,” in Proceedings of the 8th Privacy Enhancing Technologies

Symposium, July 2008.

[10] R. Dingledine and N. Mathewson, “Tor path specification,” https://git.

torproject.org/checkout/tor/master/doc/spec/path-spec.txt.

http://anonymizer.com/

31

[11] N. Matthewson, “Base “stable” flag on mean time between failures,”

https://svn.torproject.org/svn/tor/branches/hidserv-perf/doc/spec/proposals/108-mtbf-based-

stability.txt.

[12] L. Øverlier and P. Syverson, “Locating hidden servers,” in Proceedings of the IEEE

Symposium on Security and Privacy, May 2006.

[13] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. Sicker, “Low resource routing attacks

against Tor,” in Proceedings of the ACM Workshop on Privacy in the Electronic Society,

October 2007.

[14] A. Pfitzmann and M. Waidner, “Networks without user observability - design options,”

Computers and Security, 6(2):158–166, 1987.

[15] R. Snader and N. Borisov, “A Tune-up for Tor: Improving Security and Performance in the

Tor Network,” in Proceedings of the Network and Distributed Security Symposium - NDSS '08,

February 2008.

[16] K. Bauer, J. Juen, N. Borisov, D. Grunwald, D. Sicker and D. McCoy, “On the Optimal Path

Length for Tor,” 3rd Hot Topics in Privacy Enhancing Technologies, July 2010.

[17] R. Dingledine and N. Mathewson, “Tor directory protocol, version 3,”

https://gitweb.torproject.org/torspec.git/blob/HEAD:/dir-spec.txt.

[18] PlanetLab: https://www.planet-lab.org.

[19] Pyxida: http://pyxida.sourceforge.net.

[20] “Tor metrics portal: Users,” https://metrics.torproject.org/users.html.

[21] “Alexa top websites,” http://www.alexa.com/topsites.

[22] K. Sampigethaya and R. Poovendran, “A Survey on Mix Networks and Their Secure

Applications,” IEEE, vol. 94, no. 12, pp. 2142-2181, 2006.

[23] O. Berthold, A. Pfitzmann, and R. Standtke, “The disadvantages of free MIX routes and

how to overcome them,” in Designing Privacy Enhancing Technologies, LNCS Vol. 2009, pages

30-45. Springer-Verlag, 2000.

https://svn.torproject.org/svn/tor/branches/hidserv-perf/doc/spec/proposals/108-mtbf-based-stability.txt
https://svn.torproject.org/svn/tor/branches/hidserv-perf/doc/spec/proposals/108-mtbf-based-stability.txt
https://gitweb.torproject.org/torspec.git/blob/HEAD:/dir-spec.txt
https://www.planet-lab.org/
http://pyxida.sourceforge.net/
https://metrics.torproject.org/users.html
http://www.alexa.com/topsites

32

[24] G. Danezis, “Mix-networks with restricted routes,” in Proceedings of Privacy Enhancing

Technologies workshop (PET 2003). Springer-Verlag, LNCS 2760, March 2003.

[25] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A Decentralized Network

Coordinate System,” in the Proceedings of ACM SIGCOMM (2004).

[26] C. Law and K.Y. Siu, “Distributed construction of random expander networks,” in IEEE

Infocom (2003) 2133–2143.

[27] N. Mallesh and M. Wright, “Shaping Network Topology for Privacy and Performance,” in

Proceedings of ACM Conference on Computer and Communications Security (CCS '11),

[Poster Session], Oct 2011.

[28] S.J. Murdoch and R.N.M. Watson, “Metrics for Security and Performance in Low-Latency

Anonymity Networks,” in the Proceedings of the Eighth International Symposium on Privacy

Enhancing Technologies (PETS 2008), Leuven, Belgium, July 2008, pages 115-132.

[29] HTTP Archive: http://httparchive.org.

[30] T. Ngan, R. Dingledine and D.S. Wallach, “Building Incentives in Tor,” in Proceedings of the

14th international conference on Financial Cryptography and Data Security(FC’10), January

2010, pages 238-256.

[31] K. Loesing, “Evaluation of client requests to the directories to determine total numbers and

countries of users,” Technical report, The Tor Project, June 2009.

[32] M. Sherr, M. Blaze, and B. T. Loo, “Scalable Link-Based Relay Selection for Anonymous

Routing," in 9th Privacy Enhancing Technologies Symposium (PETS '09), August 2009.

[33] J. Reardon and I. Goldberg, “Improving Tor Using a TCP-over-DTLS Tunnel,” in the 18th

USENIX Security Symposium, August 2009.

[34] C. Tang and I. Goldberg, “An Improved Algorithm for Tor Circuit Scheduling ,” in the

Proceedings of the 17th ACM Conference on Computer and Communications Security (CCS

'10), October 2010.

http://petsymposium.org/2008/
http://petsymposium.org/2008/
http://petsymposium.org/2008/
http://httparchive.org/
http://www.cs.uwaterloo.ca/~iang/pubs/ewma-ccs.pdf
http://www.sigsac.org/ccs/CCS2010/
http://www.sigsac.org/ccs/CCS2010/
http://www.sigsac.org/ccs/CCS2010/

33

[35] M. AlSabah, K. Bauer, I. Goldberg, D. Grunwald, D. McCoy, S. Savage and G. M. Voelker,

“DefenestraTor: Throwing out Windows in Tor,” in the 11th Privacy Enhancing Technologies

Symposium, July 2011.

[36] M. Akhoondi, C. Yu, and H. V. Madhyastha, “LASTor: A Low-Latency AS-Aware Tor Client,”

In the Proceedings of the 2012 IEEE Symposium on Security and Privacy, May 2012.

34

BIOGRAPHICAL INFORMATION

Subhasish Dutta Chowdhuri was born in Calcutta, India in 1983. He received his B.E.

(Computer Science and Engineering) degree from the University of Burdwan, India in 2005.

From 2005 to 2010, he was with IBM in Calcutta, India as a UNIX Systems Administrator. He

has been a part of ISec, the Information Security Lab, from 2010. From August 2012, he will join

LinkedIn Corporation as an Operations Engineer.

