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ABSTRACT 

 
MEASUREMENTS OF A LATENCY-BIASED EXPANDER TOPOLOGY IN THE TOR 

ANONYMITY SYSTEM 

 

Subhasish Dutta Chowdhuri, M.S. 

 

The University of Texas at Arlington, 2012 

 

Supervising Professor:  Matthew Wright 

 Anonymous communication systems protect the privacy of their users by hiding who is 

communicating with whom. With the widespread use of the Internet, anonymity systems are all 

the more essential to support applications having strong privacy requirements such as 

intelligence gathering, military communications, or e-voting protocols. Anonymity systems must 

balance security and performance to remain popular with their users.  

In this work, we perform measurements on anonymity systems to improve their 

performance. We use the Vivaldi network coordinate system to efficiently map out the relative 

delays between hosts. Using this data, we create an overlay expander network topology that is 

biased to use lower latency links instead of randomly selecting nodes. Our primary contribution 

is the design and execution of a set of experiments to evaluate the performance of this 

approach. These experiments are performed using a private deployment of Tor, a popular 

anonymity system, running on PlanetLab, a globally distributed testbed. Our testbed is 

comprised of 100 Tor relay nodes, five trusted directory servers and 10 geographically 

distributed clients, with each of the relays running a common implementation of Vivaldi to 

compute its virtual coordinates and reporting the same to a trusted directory server. The 
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directory server uses this information to construct an expander graph topology with a bias 

towards faster links. We show that when the network topology is created with a bias towards 

lower latency edges, there is a significant improvement in performance compared to using 

random links on our topology.  
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CHAPTER 1 

INTRODUCTION 

 With the increased use of the internet in all aspects of daily life, the realization has 

dawned that privacy and confidentiality are essential and important requirements for the 

success and wide-spread use of many applications. Encryption alone does not provide the level 

of confidentiality required by users. It focuses primarily on protecting the confidentiality of the 

transmitted data, while the identities of the communicating parties remain unprotected. Traffic 

analysis can easily uncover information about the participants in a distributed application. User 

anonymity is the most important confidentiality criteria for many internet applications such as 

electronic voting, various forms of electronic commerce, peer-to-peer file sharing and 

anonymous web-browsing or email. Anonymity systems also benefit the government and law 

enforcement agencies enabling a medium of safe communication for whistle blowers and 

citizens willing to submit leads in criminal investigations as well as corporations seeking a 

means of doing competitive research and business deals.  

 Anonymity, however, has a few drawbacks. Abuse and illegal activity are the biggest 

drawbacks. Controlling illegal activity on the Internet is virtually impossible since anonymity 

ensures the identity of the perpetrator cannot be discovered or linked to specific actions. As a 

result, many organizations are dissuaded from fully embracing anonymity.  

1.1 Anonymous Communication Systems 

 Anonymous communication systems were first proposed by Chaum [1] in which the 

message to be anonymized is relayed through a series of nodes called mix nodes.  A mix can 

be thought of as a server which accepts incoming connections and forwards them in such a way 

that an eavesdropper cannot easily determine which outgoing connection corresponds to which 

incoming connection. Moreover, since any given mix can be compromised, traffic is usually 
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routed through a chain of mixes. Fig 1.1 shows an overview of an anonymous communication 

system. 

 

 

  

 

 

 

 

Figure 1.1 Anonymous Communication System 

According to Pfitzmann and Waidner [14], there are three types of anonymities that can 

be provided by anonymous communication systems: sender anonymity, receiver anonymity, 

and unlinkability of sender and receiver. Sender anonymity means that the identity of the 

information sender is hidden, and receiver anonymity means that the identity of the information 

receiver is hidden. Unlinkability of sender and receiver refers to the property that the sender and 

receiver of a communication cannot be identified even if the sender and receiver are known to 

be of communicating with someone. Since anonymity is the state of lacking identity, anonymous 

communication can only be achieved by removing all the identifying characteristics from the 

network flows. 

1.2 Types of Anonymous Communication Systems 

 Anonymous communication systems can be classified into two categories: systems 

catering to high-latency applications and systems for low-latency applications. High latency 

applications are those which do not require quick responses such as email systems. Low 

latency applications on the other hand are those that need real-time responses such as secure 

shell (SSH), web applications and instant messenger. Both types of systems are built on the 

idea proposed by Chaum [1] whereby unlinkability is provided by using a sequence of nodes 
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between the sender and its receiver and encryption is used to hide the message content. An 

intermediate node knows only its predecessor and its successor. An important difference 

between these two types of systems is that high-latency systems are message-based systems 

whereas low-latency ones are connection-based. Hence, high-latency systems have one 

message per path and new path is created for a new message whereas low-latency systems 

use a path for a period of time and send data as a stream of packets over the same path. High 

latency techniques attempt to hide timing information that could be used to perform traffic 

analysis. However, they are often impractical because of the fact that traffic must be delayed, 

reordered or manipulated in a manner to hide timing information. In contrast to high latency 

techniques, a number of approaches have been proposed to enable low latency anonymous 

communications that provide lower security guarantee but performance sufficient enough to 

support interactive web traffic. 

A number of anonymous communication systems have been designed to provide 

anonymity to the communicating parties (e.g. Anonymizer.com [2], Web Mixes [3], Tor [4], 

Onion Routing [5], Crowds [6], Hordes [7]). We focus on low-latency systems whose main 

purpose is to protect the privacy of interactive internet communications such as web browsing. 

Tor is one of the most popular overlay networks for anonymizing TCP traffic. It is a low latency 

service that provides strong anonymity to its users.  

1.3 Tor: The second generation onion routing design 

Tor is the second generation of the onion routing design which provides low latency 

anonymity for TCP-based applications [4]. It is the most widely deployed anonymous 

communication system with an estimated 250000 users. The primary design goal of Tor is to 

ensure low enough latency to facilitate the use of interactive applications such as instant 

messaging and web browsing. Tor’s system architecture consists of Tor routers, which are 

volunteer-operated servers, a set of trusted directory servers that advertise information about 

the Tor routers such as their IP addresses, public keys, exit policies, self-reported bandwidth 
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capacities etc. and Tor proxies (or clients). Tor clients query one of the authoritative directory 

servers to obtain a signed list of the available Tor routers and then establish paths, or virtual 

circuits, through the Tor network by choosing precisely three Tor routers and establishing a 

shared symmetric key with each, using authenticated Diffie-Hellman and a telescoping key 

agreement procedure. The client encrypts their data in fixed 512 byte cells in a layered fashion 

with each key and sends the encrypted cell to the first router on the circuit, called the entry 

guard. The entry guard removes one layer of encryption using the symmetric key shared with 

the client, revealing the IP address of the middle router. The cell is forwarded in this manner, 

removing one layer of encryption at each router until the final router in the circuit, called the exit 

router, removes the last layer of encryption, revealing the cell’s destination. The exit router 

finally forwards the message to the destination. The entry guard only knows the client’s identity 

and only the exit router knows the destination’s identity. For efficiency, the Tor software uses 

the same circuit for connections that happen within the same ten minutes or so. Later requests 

are given a new circuit, to keep people from linking your earlier actions to the new ones. More 

details about Tor can be found in its design document [4].  

Entry guards are Tor routers that are used as the first node in a client’s circuit. To 

mitigate the threat from adversaries setting up Tor routers and profiling a large number of clients 

over time, only those routers are chosen as entry guards which have high uptime and high 

bandwidth. Clients choose a fixed number of entry guards (three by default) to use on their 

circuits. A router is marked as a Guard node by the authoritative directory servers only if its 

mean time between failures is above the median of all “familiar” routers ( A router is “familiar” if 

one-eighth of all active routers have appeared more recently) than it and its bandwidth is 

greater than or equal to 250KB/s [17]. By default, clients choose precisely three entry guards to 

use for their circuits. To ensure that there is sufficient guard bandwidth available, guard node 

selection is weighted by (G − (T/3))/G, where G is the amount of available guard bandwidth and 

T is the total bandwidth available. If G < T/3, then guard nodes are not considered for non-guard 
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positions. Exit routers are the Tor routers that allow connections to leave the Tor network. 

Anonymous communication systems are sometimes used for abusive or malicious purposes [9]. 

Hence Tor allows router operators to exercise control over the types of traffic they wish to exit. 

Routers can be configured to exit to specific ports or they can be configured to connect only to 

other Tor routers (in which case the router may be only used as an entry guard or a middle 

router). The router’s exit policy specifies the ports to which an exit router may connect to. In 

order to ensure that there is sufficient exit bandwidth available, the bandwidth of Exit routers is 

weighted differently depending on the fraction of bandwidth that is available from non-Exit 

routers. Suppose that the total exit bandwidth is E and the total bandwidth available is T. If E < 

T/3, then Exit routers are not considered for non-exit positions. Otherwise, their bandwidth is 

weighted by (E − (T/3))/E [10]. 

Each router’s entry guard status and exit policy are advertised by the trusted directory 

servers. Tor’s router selection algorithm [10] chooses routers with the following constraints: 

 A router may only be used once per circuit. 

 Only one router per /16 network and two routers per IP address may be used on a 

circuit. This prevents an attacker who controls a single network from deploying a large 

number of routers in an attempt to attract traffic. 

 The first router on the circuit must be marked as an entry guard by the authoritative 

directory servers. Clients select precisely three entry guards to use on their circuits, and 

choose new guards periodically. 

 The exit router must allow connections to the client’s chosen destination host and port. 

Tor clients query one of the authoritative directory servers to obtain a signed list of the 

available Tor routers, their public keys, bandwidth advertisements, exit policies, uptime, and 

other flags indicating their entry guard status and other information. Routers for each 

position of the circuit are chosen in proportion to their self-advertised bandwidth. Fig. 1.2 

provides an illustration of Tor’s system architecture. 
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Figure 1.2 Tor’s system architecture [8] 
 

 Persistent applications such as FTP and SSH that establish long-lived sessions require 

more stable circuits than applications with short-lived sessions like HTTP. For such long-

lived applications, Tor builds circuits solely with routers that are marked as stable by the 

trusted directory servers. A router is stable if it has been observed by the directory servers 

for 30 days or if it is above the median of all routers in terms of mean time between failures 

[11]. Routers for each position of the circuit are chosen in proportion to their self-advertised 

bandwidth. Since Tor routers self-advertise their bandwidth capabilities, an adversary can 

falsely report high bandwidth values and increase the probability of attracting traffic and 

controlling the end points of circuits [12], [13]. To mitigate the effectiveness of this attack, all 

bandwidth advertisements are capped at 10 MB/s. More details about Tor’s path selection 

algorithm may be found in the Tor path specification [10]. 
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CHAPTER 2 

BACKGROUND 

 Tor is the second generation of the onion routing design which provides low 

latency anonymity for TCP-based applications [4]. It is the most widely deployed anonymous 

communication system with an estimated 250000 users. The primary design goal of Tor is to 

ensure low enough latency to facilitate the use of interactive applications such as instant 

messaging and web browsing. Tor’s system architecture consists of onion routers, which are 

volunteer-operated nodes, a set of trusted directory servers that advertise information about the 

Tor routers such as their IP addresses, public keys, exit policies, self-reported bandwidth 

capacities etc. and Tor proxies (or clients). Tor clients query one of the authoritative directory 

servers to obtain a signed list of the available Tor routers and then establish paths, or virtual 

circuits, through the Tor network by choosing precisely three onion routers and establishing a 

shared symmetric key with each. More details about Tor can be found in its design document 

[4].  

Low latency anonymity systems strive to achieve a balance between security and 

performance. One of the frequent problems faced by Tor users is that it significantly slows down 

Web browsing speed. For an average user, the performance penalty introduced by Tor is very 

high for daily use. Efforts to improve the performance of Tor may decrease user’s anonymity. 

For example, Tor does not add intentional delays or use cover traffic to ensure performance that 

is sufficient to support interactive applications such as Web browsing or instant messaging. 

However, this increases Tor’s vulnerability to end-to-end traffic correlation. Another important 

design decision in Tor is the length of the circuits. Tor uses exactly three routers in a circuit to 

mitigate any single router’s ability to link a source and destination. However, three-hop paths 

incur a performance cost over shorter circuits. The current Tor design tries to find a compromise
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that satisfies both those users who desire strong anonymity and those for whom performance is 

more of a priority. 

 Another reason for the slow performance of Tor can be attributed to the volunteer-

operated nature of the onion routers-many of them are on slow connections or shared with other 

activity [30]. Therefore, when selecting the nodes in the circuit, it is important to make the best 

use of the limited capacity available. The onion routers on each path are selected by the initiator 

to prevent an attacker from manipulating path selection. For best performance, the path 

selection algorithm must fairly distribute connections based on the capacities of the onion 

routers.  

2.1 Improving the performance of Tor 

When Tor was first released for public use, it was composed of only a few high-

bandwidth routers and had few users. Hence, selecting routers uniformly at random did not 

have any impact on performance. However, as the number of Tor users keeps growing [31], 

random selection of routers led to the degradation in performance for its users.  

There are a lot of factors that influence the performance of Tor. Tor’s design decision to 

build paths with precisely three routers strikes a correct balance between security and 

performance [16]. However, compared to two-hop paths, three-hop paths incur a performance 

penalty. Bauer et al. [16] experimentally evaluate several key benefits and drawbacks of two-

hop and three-hop paths. Though two-hop paths may improve performance, a disadvantage of 

a two-hop design from the security perspective is that exit routers can discover client’s entry 

guards since they communicate directly. Two-hop paths are vulnerable to adaptive surveillance 

and introduce potential liabilities for exit node operators. Though shorter paths result in an 

improvement in performance, there is no strong argument to reduce Tor’s path length.  

The Tor users are heterogeneous in their requirements. Some users require high 

anonymity whereas other users may be less privacy-sensitive. The Tor router selection 

algorithm is a compromise between performance and anonymity. The bandwidth values used in 
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the Tor load-balancing algorithm are self-reported by each node and are not verified in any way. 

This can lead to attacks where malicious nodes can report a higher-than-actual bandwidth so 

that a larger fraction of tunnels are routed through them. To mitigate the effectiveness of this 

attack, all bandwidth advertisements are capped at 10 MB/s [10]. Despite the enforced upper 

bound on the reported bandwidth, the attack can be quite successful: Bauer et al. [13] report 

that a small fraction of attacker nodes can attain the first and last node positions on nearly half 

the tunnels. Even when the nodes are honest, the reported values can be a poor indicator of the 

available bandwidth at a node due to changing network conditions and other factors. This 

makes the performance of Tor highly variable. The current Tor load-balancing algorithm is a 

compromise between performance and anonymity. Snader and Borisov propose that end-users 

should have the ability to decide whether to weigh router selection towards higher bandwidth 

routers or to select routers uniformly at random, eliminating bias in router selection [15]. They 

propose to replace the self-reported bandwidth mechanism in Tor with a scheme for 

opportunistic bandwidth measurement. The topology of the Tor network allows each router to 

interact with most other routers and observe their performance over time. This mechanism 

accurately predicts the performance of the routers and is less susceptible to low-resource 

attacks in which low-resource nodes are perceived to be high-resource ones by reporting false 

resource claims to centralized directory authorities. A user-tunable mechanism for selecting 

routers based on their bandwidth capabilities is proposed which lets users select between 

anonymity and performance and make router selections accordingly.  

While the current Tor path selection algorithm picks nodes with a probability 

proportional to their contribution to the total network bandwidth, the Snader Borisov (S-B) 

tunable variant only uses advertised node capacity to produce a rank ordering of nodes. The 

probability that a particular node will be selected depends solely on its position within this 

ordering. Let the family of functions fs be defined as follows: 
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                                    fs(x) = 
1− 2𝑠𝑥

1− 2𝑠
   (for s ≠ 0)                                                   (1) 

                                   f0(x) = x                                                                              (2)                                                                                            

To select each node, the n nodes are sorted based on the descending order of their bandwidth 

and a number x is selected uniformly at random from the interval [0, 1). The selected node is at 

index   n X fs(x)   . The value of s is selected by the client according to their preference for the 

type of performance they need. For s = 0, nodes are selected uniformly (for users requiring high 

anonymity) but as s increases, faster nodes will be preferred (for users willing to compromise 

anonymity for better performance). Experiments show that users can achieve great 

improvements in performance without much compromise in anonymity or significantly increase 

anonymity protection without any loss in performance. Moreover, this approach is dynamic: if a 

router’s available bandwidth fluctuates over time, it will be noticed by its peers and used 

accordingly [15,28]. We use this tuning method in our proposal which is explained in detail in 

Chapter 3. 

In [32], the authors describe a link-based path selection strategy that chooses in favor 

of higher performing links. Link-based relay selection supports more flexible routing, enabling 

anonymous paths with low latency, jitter, and loss, in addition to high bandwidth. In comparison 

to node-based techniques in which relay selection is biased by the relay node characteristics 

(i.e., bandwidth), link-based selection enables the generation of high performance paths across 

multiple metrics: latency, jitter, loss, and bandwidth. Another area of investigation is the 

improper application of TCP’s congestion control mechanisms which degrade the performance 

of Tor. Traffic between any pair of routers is multiplexed over a single TCP connection. This 

results in interference across circuits during congestion control resulting in packet dropping or 

packet reordering.  

In [33], the authors propose to use a TCP-over-DTLS (Datagram Transport Layer 

Security) between routers. Each stream of data has its own TCP connection with the TCP 
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headers being protected with DTLS which would otherwise give stream identification information 

to an attacker. Through experiments, they demonstrate that their proposal resolves the cross-

circuit interference. In [34], the authors propose a fair resource allocation among circuits. Tor’s 

circuit scheduling algorithm allows busy circuits (those with continuous traffic) to crowd out 

bursty circuits (those with short bursts of traffic). The authors in [34] propose to implement an 

advanced scheduling algorithm that treats circuits differently based on their recent activity. As a 

result, bursty circuits such as those used for web browsing can gain higher priority over busy 

ones such as used for bulk transfers. This improves the performance of Tor with minimal added 

overhead. In [35], the author’s seek to improve Tor’s performance by reducing unnecessary 

delays due to poor flow control and excessive queuing at intermediate routers. To improve flow 

control while reducing congestion, they implement N23, an ATM-style per-link algorithm that 

allows Tor routers to explicitly cap their queue lengths and signal congestion via back-pressure. 

Experimental results show that N23 offers better congestion and flow control, resulting in 

improved web page response times and faster page loads compared to Tor’s current design 

and the other window-based approaches. 

In addition to the above factors that have an impact on the performance of Tor, another 

important factor is the network topology. Basically, Tor forms an overlay network through which 

clients build circuits and forward traffic. Our works deals with the impact of the network topology 

on the performance and anonymity of low-latency anonymity systems.   

2.2 Impact of Network Topology on Anonymity Networks 

Mix networks were introduced by Chaum [1] as a technique to provide anonymous 

communication where messages are relayed through a sequence of intermediate nodes called 

mixes. A mix hides the relation between incoming and outgoing messages. This is done by 

collecting a number of messages and reordering them before sending them on their way. The 

topology of a mix network plays an important role in its efficiency and traffic analysis resistance 

properties.  
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The proposal by Chaum [1] assumes a fully connected graph, whereby all nodes can 

communicate with all other nodes, therefore forming a fully connected network. Clients relay 

their messages by choosing at random a sequence of nodes from the set of all existing mix 

nodes. The fully connected nature of the mix networks would seem to improve the anonymity 

provided by the system. However, they are vulnerable to intersection attacks, especially if many 

of the mixes in the network are compromised [23]. If an adversary controls all the mix nodes 

except one, an attacker can use intersection attacks to reduce the anonymity set of the sender 

and the anonymity of the messages going through the mix will most likely be compromised. 

Moreover, if two or more messages follow the same route, attacks become easier.  

As a solution, a cascade of mixes was proposed [23]. Each cascade is a sequence of 

mixes with an equal number of mixes in every cascade. Users of the network cannot choose the 

route to take and must route their messages through a predefined sequence of mixes. Using a 

cascade of mixes allows only a fixed routing position for each mix for all the messages it 

processes. This prevents the partitioning of the input message batches and so prevents the 

intersection attack. However, mix cascades have some disadvantages. Cascades do not scale 

well to handle heavy loads and are vulnerable to denial of service attacks, since disabling one 

node in the cascade will stop the functioning of the whole system. Another disadvantage of a 

mix cascade is that the cascade consists of default mixes which have to be used. A user cannot 

express his trust in certain mixes by using them or his distrust by not using them. But a user 

may choose that cascade he wants to use and trust in. 
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                  (a) Cascades                                                   (b) Free-route 

Figure 2.1 Mix Topologies [22] 

Danezis [24] proposed a middle path between free-route mix networks and mix 

cascades that uses a restricted-route mix network based on expander graphs-graphs with low 

degree and short paths between any pair of nodes. An expander graph GN,D is a random graph 

that has a homogeneous topology, having N nodes each with a degree D. Compared to a 

complete graph topology, this topology has fewer edges and fewer possible paths. Thus, traffic 

is concentrated through fewer mixes instead of dispersing traffic through many mixes as in a 

complete graph topology. To choose a path in the network, the user does a random walk on the 

topology graph of the network. Additionally, restricted topologies offer better anonymity 

properties. Danezis [24] showed that a restricted network topology such as an expander graph 

improves security against intersection attacks. Intuitively, more cover traffic and messages flow 

over the same links, allowing them to provide cover for each other. 

Our work also leverages expander topologies, but in the context of low-latency 

anonymity systems. 



 

 14 

CHAPTER 3 

 
MEASUREMENTS OF A LATENCY-BIASED EXPANDER TOPOLOGY 

 We propose the creation of an underlying network topology using network latency 

based on expander graphs. The topology is created with a bias towards low-latency edges. The 

latency between the nodes is measured using a decentralized network coordinate system that 

allows an efficient estimation of the latency between any pair of nodes. 

3.1 Vivaldi: A Decentralized Network Coordinate System 

 Network coordinate systems assign virtual coordinates to every node in the network 

which allows the efficient estimation of latency between any pair of nodes. The communication 

costs are greatly reduced compared to directly measuring the O(n
2
) pairwise latencies because 

each of the nodes in the network computes its coordinates based on the round-trip time to a few 

other nodes. Coordinates are assigned to hosts such that the distance between their 

coordinates predicts the RTT between those hosts. 

Vivaldi is a decentralized network coordinate system which has a low convergence 

time, low error and an accurate mapping of the virtual coordinate network. It calculates the 

coordinates as a solution to the spring relaxation problem. Its behavior is analogous to a 

physical model made of springs and balls, in which each ball represents a network node. The 

spring connecting any two balls is longer when the latency between those nodes is larger. Over 

a period of time, such a model reaches a stable state. The resting position of the spring equals 

the network latency between the pair of nodes. At the beginning, a Vivaldi node selects an 

arbitrary set of peers, and sets its initial coordinate to the origin. It then begins an iterative 

algorithm that pulls it closer to peers with lower latencies, and pushes it away from peers with 

higher latencies. After many iterations, the coordinate system reaches an equilibrium, and 

subsequent changes are due only to the changing latency between the nodes. On each
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iteration, a Vivaldi node sends a probe packet to each of its peers. It receives a response to 

each probe packet containing the peer’s current coordinate and self-reported error estimate, 

and learns its latency to that peer from the round trip time of the transaction. It then computes a 

new position that is closer to the peer if the estimated latency is too large, and farther from the 

peer if the estimated latency is too small. Vivaldi uses Euclidean coordinates of d dimensions 

with an additional height value: x = x1,……,xd,xh. To calculate the distance between two nodes x 

and y, the distance of their Euclidean coordinates is calculated first and then the heights of both 

nodes are added. 

  Vivaldi distance(x,y) =    𝑥𝑖  – 𝑦𝑖 
2

 
𝑑

𝑖=1
 + 𝑥ℎ  + 𝑦ℎ                    (1)                     

 
3.2 Expander Graph topologies and construction 

Expander graphs are graphs which are sparse, show high connectivity and are well 

known to have excellent expansion properties. Intuitively, they are graphs for which any “small” 

set of vertices has a relatively “large” neighborhood. They are used to model social networks 

and relationships between species and organizations.  

A graph G = (V,E) in which every vertex has exactly D neighbors is called D-regular 

graph. A D-regular graph is an (A,K)-expander if for every subset S⊆V of vertices in G, such 

that | S |≤ K, then | N(S) |> A | S |. Here | S | is the number of vertices in S and | N(S) | is the 

number of vertices in S′ that share an edge with any vertex in S. Although expander graphs 

contain a relatively small number of edges per vertex compared to a complete graph with the 

same number of vertices, they possess excellent connectivity properties enabling them to be 

extremely fast mixing. Mixing time of a graph is the time that it takes a random walk on the 

graph to approach the stationary distribution of that graph. In fast mixing graphs, a random walk 

will converge to a stationary distribution in a fewer number of hops. The property of having 

fewer numbers of edges per vertex in combination with the fast mixing property makes 
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expander graphs an attractive alternative to build the underlying topology of anonymity networks 

which could be leveraged to provide better security and performance. 

The expander graphs are constructed using the distributed method described in [26]. 

The method begins with an initial set of three nodes that are connected to each other with D/2 

hamiltonian cycles, where D is the vertex degree of the expander graph. The graph grows 

incrementally from the initial three nodes when new nodes join the existing nodes. When a new 

node joins the network, a random existing node is selected as the new node’ neighbor. The 

process of random neighbor selection continues until the new node is connected to D other 

nodes in the network. An expander graph constructed in such a manner is a randomly-

constructed expander. 

We propose an expander topology that is biased toward low-latency edges which would 

simultaneously achieve both the security benefits of an expander topology and improved 

performance. If the topology is based on the latency between nodes, the resulting expander will 

have a greater number of high performance links as compared to a random expander. A path or 

circuit chosen through this shaped expander network has a higher probability of experiencing 

better performance than a path chosen through a random expander or a fully connected 

topology. The topology which we get is a shaped expander topology. 

3.3 Shaping and Routing Bias 

Snader and Borisov [15] propose a method to choose nodes to use in a circuit in a way 

so as to bias selection towards nodes that provide higher performance or higher security. This 

tuning method is used in our work to bias neighbor selection during the construction of the 

expander graph. We use two parameters SBIAS and RBIAS to bias the selection of neighbors 

during the creation of the expander topology. The parameter SBIAS is used to vary the shaping 

bias of the topology. As the value of SBIAS increases, the resulting graph that is generated is 

more highly shaped and contains a greater number of high performance links. The tuning 

function in [15] is also used to pick nodes in the anonymity network thereby introducing a 
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routing bias. RBIAS is the parameter for routing bias and is used to vary the amount of routing 

bias in the expander topology. We measure the performance of a shaped expander topology on 

a private deployment of Tor for varying values of SBIAS and RBIAS. 

One area of concern is that the topology generated by biased edge selection is not 

theoretically an expander and may lack the expansion properties of a random expander. 

However, previous work has shown that biasing the expander construction does not lead to a 

topology that requires significantly more hops to reach maximum entropy [27]. Therefore, 

shaped expander graphs can be used to improve link performance without substantial loss of 

anonymity.  
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CHAPTER 4 

EXPERIMENTS AND RESULTS 

 To demonstrate the efficacy of our proposed improvements, we design and execute a 

set of experiments. These experiments are performed using a private deployment of Tor 

running on PlanetLab [18]. PlanetLab is a geographically distributed platform for deploying, 

evaluating and accessing planetary-scale services and serves as a testbed for computer 

networking and distributed systems. As of June 2010, it was composed of 1090 nodes at 507 

sites worldwide. 

Our testbed is comprised of 100 Tor relay nodes, five trusted directory servers, and 10 

geographically distributed clients, with each of the relays running Pyxida [19], a common 

implementation of Vivaldi, to compute its virtual network coordinates and reports the same to a 

trusted directory server. We use Pyxida in our experiments since it uses the Vivaldi algorithm to 

compute the coordinates of the nodes in the network, is a stable deployment of the network 

coordinate system and has been used in large scale deployments. The directory server uses 

the coordinate information to construct an expander graph topology with a bias towards faster 

links. Using this topology, Tor builds circuits for routing data from the source to the destination. 

We measure the performance of a normal deployment of Tor compared with one using a biased 

underlying network topology for different values of SBIAS and RBIAS. 

4.1 Experimental Parameters and Evaluation Metrics 

 Our testbed is comprised of 100 Tor relay nodes, five trusted directory servers, and 10 

geographically distributed clients. Since PlanetLab is a globally distributed testbed, we have 

chosen the Tor relays to be as geographically diverse as possible so as to obtain a realistic 

model of the actual Tor network. We deployed a standalone Pyxida service on the relay nodes 

with each of the nodes reporting its virtual coordinates to the directory server. We wait until the
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network stabilizes before constructing the expander graph topology. The shaped expander 

graph constructed has a degree of 20. After the graph is constructed, the Tor client randomly 

chooses a guard node from its downloaded network consensus and builds its circuit in 

accordance with the expander topology.  

We pick 10 PlanetLab nodes to use as Tor clients, in keeping with the distribution 

across countries of Tor clients [20]. The top 20 countries having the highest number of daily Tor 

users (direct and bridge) for June 2012 are shown in Table 4.1. We use this data to select 10 

clients which would be used in all the experiments. 

 
Table 4.1 Top-20 countries by average daily Tor users (direct and bridge) for June 2012 [20] 

 

Country 

Average 
daily Tor 

users (direct 
and bridge) 

Percentage of 
users 

USA 61193 
 

13.2% 
Iran 45835 9.9% 

Italy 43791 9.4% 

Germany 41362 8.9% 

France 30885 6.6% 

Spain 30286 6.5% 

Syria 17976 3.8% 

Brazil 14696 3.1% 

Great Britain 11182 2.4% 

Russia 11165 2.4% 

Saudi Arabia 9998 2.1% 

Poland 7128 1.5% 

Israel 6988 1.5% 

Canada 6952 1.5% 

South Korea 6532 1.4% 

Netherlands 6487 1.4% 

Japan 5087 1.1% 

Argentina 4059 0.87% 

Australia 3966 0.85% 

India 3963 0.85% 

 

Since Tor is primarily used for low-latency communication such as web browsing, the 

evaluations that we do focus on the performance metrics that is particularly important to the 
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quality of service of an end-user from that perspective. We measure the time-to-first-byte 

(TTFB) which is the time a user must wait from the time they issue a request for data until they 

receive the first byte (duration from the web client making a HTTP request to the first byte of the 

page being received by the browser). The time-to-first-byte is two end-to-end circuit RTTs: one 

RTT to connect to the destination web server, and a second RTT to issue a request for data 

(e.g., HTTP GET) and receive the first byte of data in response. We also measure the download 

time which is how long a user must wait for a web page to load. 

To evaluate the time-to-first-byte, we measure the latency between the 10 

geographically distributed clients and the top 100 websites as reported by Alexa [21]. We also 

resolve the URLs of these websites in advance to exclude the DNS lookup time. We measured 

the latency between every client node and every website as the median latency of 5 requests. 

We first measured the latencies when Normal Tor was running on the PlanetLab nodes. Next, 

we repeat the same with communication happening over a Tor network using a shaped 

expander topology for different values of SBIAS and RBIAS.  

Next, we evaluate the download time where a 1 MB file was fetched over HTTP via the 

Tor network. According to HTTP Archive [29], the average size of a web page as on July 2012 

is 1097 KB. The list of URLs used by HTTP Archive to come to get this figure is based on the 

Alexa [21] top 1,000,000 sites. We measure the download time of 1 MB data which roughly 

corresponds to the size of an average web page from 10 geographically distributed clients. 

Each experiment concludes after the web client completes 100 downloads. The clients use the 

wget web browser. We first perform the experiments using a normal deployment of Tor running 

on the PlanetLab nodes. Next, we repeat the same with communication happening over a Tor 

network using an expander topology for different values of SBIAS and RBIAS. 

4.2 Results 

We first evaluate the time-to-first byte for accessing the top 100 websites as reported by 

Alexa [21] from 10 clients using a shaped expander topology. We compared the performance of 
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normal Tor with one using a shaped expander topology for SBIAS and RBIAS values of 0, 1, 8 

and 15. Fig 4.1 shows the cumulative distribution of the time-to-first-byte for normal Tor and Tor 

with a shaped expander topology using RBIAS = 0, 1, 8 and 15. Fig 4.2 shows the cumulative 

distribution of the time-to-first byte for normal Tor and Tor with a shaped expander topology 

using SBIAS = 0, 1, 8 and 15. The time-to-first byte for normal Tor is 0.748 seconds at the 

median. As shown by Fig 4.1 and Fig 4.2, as the values of the parameters SBIAS and RBIAS 

are increased, the performance of the shaped expander topology improved compared to normal 

Tor. 

Next, we evaluate the download time of 1 MB of data from 10 clients using a shaped 

expander topology. We compared the performance of normal Tor with one using a shaped 

expander topology for SBIAS and RBIAS values of 0, 1 and 8. The download time for normal 

Tor is 4.3 seconds at the median. Table 4.3 and Fig 4.4 show the download times for different 

values of SBIAS and RBIAS. We observe that as the values of SBIAS and RBIAS increase, 

their in a significant improvement in the download times. 
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                              (a)                                                                                           (b) 

                              (c)                                                                                            (d) 

Figure 4.1 Tor client’s time-to-first byte for different values of RBIAS (a) RBIAS=0 (b) 
RBIAS=1 (c) RBIAS=8 (d) RBIAS=15. 
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                     (a)                                                                                         (b) 

                                 (c)                                                                                         (d) 

Figure 4.2 Tor client’s time-to-first byte for different values of SBIAS (a) SBIAS=0 (b) 
SBIAS=1 (c) SBIAS=8 (d) SBIAS=15. 
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Table 4.2 Time-to-first-byte in seconds for different values of SBIAS and RBIAS. 

 RBIAS=0 RBIAS=1 RBIAS=8 RBIAS=15 

SBIAS=0 0.747 0.728 0.671 0.616 

SBIAS=1 0.723 0.712 0.640 0.588 

SBIAS=8 0.653 0.645 0.615 0.521 

SBIAS=15 0.649 0.636 0.611 0.511 

 

Figure 4.3 Tor client’s time-to-first-byte for different values of SBIAS and RBIAS. 
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Table 4.3 Download time in seconds for different values of SBIAS and RBIAS. 

 RBIAS=0 RBIAS=1 RBIAS=8 

SBIAS=0 4.2 3.8 3.4 

SBIAS=1 3.9 3.7 3.3 

SBIAS=8 3.4 3.3 3.0 

 

Figure 4.4 Tor client’s download time for different values of SBIAS and RBIAS. 

 

 

 

 

 

 

 



 

 26 

From Table 4.2, we observe that as the values of SBIAS and RBIAS increase, the 

performance of Tor improves. We find that the time-to-first byte reduces by roughly 13% to 22% 

compared to an unbiased topology. If we observe the shaping bias parameter, we see that there 

is significant improvement in the performance up to a value of SBIAS=8 for a fixed value of 

RBIAS after which we do not see much improvement. However, with a simultaneous increase in 

both SBIAS and RBIAS, we observe a significant improvement in the performance of Tor.  

From Table 4.3, we observe that as the values of SBIAS and RBIAS increase, the 

download time reduces significantly. We find that the download time reduces by roughly 7% to 

28% compared to an unbiased topology. The best performance is obtained when both the 

SBIAS and RBIAS parameters are 8. 

From the above results, we can conclude that using a shaped expander topology 

biased towards low-latency links as the underlying network topology for Tor leads to a 

significant improvement in the performance of Tor. 
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CHAPTER 5 

DISCUSSION 

In our work, we propose to use a latency-biased network topology in Tor. This requires 

a significant revamp of the Tor architecture. In this section, we compare our work with [36] 

which shows that the performance of Tor can be improved with only client-side modifications. 

The author’s design and implement a new Tor client, LASTor. They show that LASTor can 

deliver significant latency gains over the default Tor client by simply accounting for the inferred 

locations of Tor relays while choosing paths. Since the preference for low latency paths reduces 

the entropy of path selection, LASTor’s path selection algorithm is designed to be tunable. A 

user can choose an appropriate tradeoff between latency and anonymity by specifying a value 

between 0 (lowest latency) and 1 (highest anonymity) for a single parameter. An efficient and 

accurate algorithm is proposed to identify paths on which an anonymity system can correlate 

traffic between the entry and exit segments. This algorithm enables LASTor to avoid such paths 

and improve a user’s anonymity, while the low runtime of the algorithm ensures that the impact 

on end-to-end latency of communication is low. 

By applying techniques similar to those used in our work for their experiments and 

evaluations, the authors in [36] show that in comparison to the default Tor client, LASTor 

reduces median latencies by 25% which is roughly the same as we have achieved in our 

experiments. However, LASTor is better compared to our proposal because it does not require 

any change in the Tor architecture and can be implemented by client-side modifications only. 
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                                                             CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 This thesis seeks to improve the performance of Tor, the most widely used privacy 

enhancing technology, using an underlying shaped expander network topology comprised of 

low-latency links. To that end, we offer a detailed analysis of Tor with the aim of improving its 

performance problems.  

6.1 Conclusion 

 We propose to improve the performance of Tor by using an underlying shaped 

expander graph network topology that is biased towards low-latency edges rather than using 

random links. We evaluate our proposal on a private deployment of Tor on PlanetLab. We 

measure the time-to-first-byte of popular websites and the download time of 1 MB of data which 

corresponds to the size of an average web page. We observe that compared to a normal 

deployment of Tor, using a biased expander topology leads to a performance improvement of 

roughly 7% to 28% in Tor. 

6.2 Future Work 

 Our proposal creates an underlying network topology that favors the nodes and links in 

the network which have high bandwidth and low latency. As a result, different parts of the 

network may have skewed traffic volumes. High performing nodes will carry majority of the 

traffic and the nodes having low bandwidth will have low utilization. The bandwidth distribution 

of all the nodes should be taken into consideration when constructing a shaped expander. 

 Another important area of interest is the churn in the network. Considering the fact that 

nodes may join or leave the network, an interesting area of study would be to evaluate how long 

an expander topology remains stable and accurate in such a scenario. Future work could 
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involve evaluating how long an expander topology sustains itself in a dynamic network 

environment after which it would need to rebuild itself. 
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