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Abstract

TORSIONAL ANALYSIS OF A COMPOSITE I-BEAM

Vishal Sanghavi, M.S.

The University of Texas at Arlington, 2012

Supervising Professor: Wen S. Chan

A simple methodology for analysis of thin walled composite I-Beam subjected to
free torsion and restrained torsion is developed. Classical Lamination Theory is extended
from the laminate level to the structural level for analysis purpose.

The developed expressions for shear center, equivalent torsional rigidity and
equivalent warping rigidity for a composite mono-symmetric I-Beam depends on the
material properties, ply stacking sequence, fiber orientation and geometry

The results from the proposed theory gives better agreement with the ANSYS™

results than the traditional smeared property approach.
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Chapter 1
Introduction

1.1 General Introduction

A composite material is the one in which two or more materials are combined on
a macroscopic scale to get the useful third material whose mechanical performance and
properties are superior to those of the constituent materials acting independently. The
basic difference in a composite material and an alloy is the macroscopic examination of
the material wherein the components can be identified by the naked eye in the former. A
composite material has two phases: one is called as reinforcement which is stiffer &
stronger and the less stiff, continuous phase is called the matrix. Composites have the

following advantages over monolithic materials

e High Specific stiffness e Design flexibility

¢ High Specific strength e Low thermal expansion
e Low density e Parts count reduction

e Corrosion resistance e Easy fabrication

The basis of the superior structural performance of composite material lies in
high specific strength, high specific stiffness and in the anisotropic & heterogeneous
character of the material.

The technology of composite materials has experienced a rapid development in
last two decades. Because of the aforementioned reasons composites are now replacing
isotropic materials and one of the major revamp is taking place in the aerospace
industries where weight saving and cost competitiveness are of major importance.
Composites are now used as primary load carrying structural members in aircrafts.

Thin-walled beams with open and closed cross-sections made of isotropic and

composite materials are used extensively in the aerospace industry, both as direct load



carrying member and as stiffeners in panel construction. Most composite structures are
designed as assemblies of beams, column, plates and shell. Beams are structural
members that carry bending loads and have one dimension much larger than the other
two dimensions (width and height). From geometric point of view,

e Beams and columns are one dimensional elements

e Plates and shells are two dimensional elements

Most of the beams are thin-walled and composed of assembly of flat panels. In

addition to weight savings generated by certain composite materials, a thin walled
composite beam has the extra advantage of allowing the designers to tailor the material
properties of different parts of the beam cross section. This enables the shape of the
cross section to be exploited to the fullest by arrangement of the unidirectional plies
within the laminated composite panels. But due to lack of well established analytical

solutions we are yet not able to explore the maximum use of composite materials.

Design Validation
Presently, design can be validated by the following methods:

e Closed form Analytical solutions

e Finite Element Method

e Testing

Composite structures are normally certified by test and not by analysis. But testing in
nature is very tedious, expensive in terms of cost and time and cannot be performed for
bulk specimens. In such cases, Finite Element Methods (FEM) and software are handy
as they can analyze large complex structures with high accuracy. However, the accuracy
of FEM is mostly dependent upon the quality of modeling and boundary conditions

applied. An incorrect model will result in meaningless solutions. Hence, it is



recommended to perform an initial analysis on a simplified structure using the classical or
analytical solutions. Added advantage of analytical solutions are, that once they are
programmed into a mathematical software like MATLAB, the parameters can be easily
modified to study the changes and effect of each variables. The FEM and analytical
solutions should be checked for the validation of FEM model as well as analytical
solution. Thus at initial stages of development we should rely on analytical closed form
solutions. Once the parameters are finalized we should go for FEM as here we can add
more complexities in modeling the structure and once the design passes the FEM we
should go for real time testing of article. This will ensure saving of time, cost and more
insightful design experience.

1.2 Why Torsion of Composite [-Beam structure?

As a guide line for designers, if a section has to carry torsional load then a closed
beam should be preferred. Although the open sections are not designed to carry torsional
loads they have to resist some magnitude of torsion for e.g. when an I-beam is used as
stiffeners for airplane wings. Torsional loading causes warping displacements. Warping,
in broader terms can be defined as the axial displacements taking place in a thin-walled
beam due to a non axial loading. The torsional analysis of thin walled beams forms a
basis in determining the longitudinal behavior of beams which are either restrained
against warping or that induce warping. If a thin walled beam is restrained against
warping in any way leads to warping stresses, which are axial and direct.

Warping stresses are quite significant compared with the bending stresses
predicted by the classical theories and they are usually not considered in preliminary

designs.



1.3 Literature Review

As torsional loads are normally applied to closed sections, there are number of
direct analytical methods for the torsional analysis of thin walled composite box beams.
But not many literatures were found which discusses the torsional analysis of an open
section.

Springer and Kollar [1] in their book have described the warping and torsional
stiffness and the location of shear center of open cross-section beams which possess an
orthotropic layup of each wall segment. The formulation can be applied for the beams
with unsymmetrical laminate layup and stresses and strains for the individual plies can
also be evaluated.

Kollar and Pluzsik [2] formulated the stiffness and compliance matrices of a
beam with arbitrary layup with plain strain consideration and further extend the theory to
formulate expressions for torsional, axial, bending and shear loads on the open and
closed section beams [1].The algebraic steps for this theory are long and laborious.

Ata and Loughlan [3] & [4] proposed the approach which simply makes use of
existing theories of torsion for isotropic beams and modifying them suitably to account for
the composite materials. It is basically intended for symmetrical laminates which exhibits
membrane orthotropy that is 4, = A, = 0 (No axial shear coupling). They compared
their analytical solution with FEM as well as experimental results and found good
correlations between all the 3 methods.

A simple methodology for analysis of thin walled composite beams subjected to
bending, torsion, shear and axial forces was developed by Massa and Barbero
[5].Geometric properties used in classical beam theory such as area, first moment of
area, center of gravity etc were replaced by mechanical properties such as axial stiffness,

mechanical 1% moment of area, mechanical center of gravity to incorporate both



geometry and material properties. The methodology takes into account the balanced and
symmetrical configuration as they are widely used. They also included the assumptions
of Wu and Sun for slender thin walled laminated beams in the formulation of the
constitutive equation.

Salim and Davalos [6] expanded the Vlasov’s theory to perform the linear
analysis of open and closed sections composite sections. All the possible elastic
couplings were taken into account and beam assumptions from Gjelsvik’ book,” The
theory of thin walled bars” was used to derive the equations for N, V., 1, T, M,,, M,,, and
G, and G, defined by Chandra and Chopra by equating the strain energy per unit length.
Warping effects were also studied and analytical solution for closed section was
compared to the experimental results for the verification purpose.

Pultruded FRP bars with open section have relatively low transverse shear
modulus in relation to their axial and flexural modulii. Thus it might be expected that
shear deformation would influence the restrained torsional warping. But Roberts and
Ubaidi [7] claims that their theory indicates that the influence of shear deformation on
restrained warping torsional stiffness of such members is not significant. They developed
an approximate theory based on Vlasov’s thin walled elastic beam theory and compared
the theoretical results with experimental results which support their claims of negligible
influence of shear deformation. For the experiments they considered I-beam with equal
flange width and thickness.

Ramesh Chandra and Inderjit Chopra [8] studied the static structural response of
composite [-Beam with elastic couplings subjected to bending and torsional load by
neglecting the shear deformation and an analytical solution developed on the basis of
Vlasov’s theory. They also studied the constrained warping effects, slenderness ratio and

fiber orientation and stacking of plies of beam and validated the results with experiments.



According to the theory the bending torsion behavior of I-Beam is influenced by bending-
twist and extension-twist couplings of plate segment, transverse shear deformation has a
negligible influence on the structural behavior of symmetric I-Beam under bending and
torsional loads and the torsional stiffness of I-beams is significantly influenced by
restraining the warping deformation of the beams.

Jaehong Lee [9] combined the classical lamination theory with the Vlasov and
Gjelsivk theory of thin walled elastic beam to find the closed form solution for center of
gravity (C.G.) and shear center. The method is application to any arbitrary layup and
cross-section. He showed that the location of C.G. and shear center is dependent on the
fiber angle changes in flanges and web.

Skudra, Bulavs, Gurvich and Kruklinsh in their book [10] discussed about the free
and pure torsion of a laminated beam considering the interply shear stresses thus
including the edge effects. Using the basic equilibrium conditions and the Classical
lamination theory they developed equations for torsional stiffness in free and pure torsion
condition along with the expressions for stresses and strains

Gay, Hoa and Tsai have describes an equivalent Prandtl stress function for

composite beams and developed the torsion equations of the laminated beams [11].



Chapter 2
Torsional Behavior of an Isotropic [-Beam
2.1 Overview

An aircraft is basically an assembly of stiffened shell structures ranging from the
single cell closed section fuselage to multi-cellular wings and tail- surfaces each of them
subjected to bending, shear, torsional and axial loads. It also consists of thin walled
channel, T -, Z-, “top hat” or | — sections, which are used to stiffen the thin skins of
cellular components and provide supports for internal loads from floors and engine
mounting. Thin-walled structures have a high load-carrying capacity, despite their small
thickness [12]. The flat plates develop shear forces, bending and twisting moments to
resist transverse loads. The twisting rigidity in isotropic plates is quite significant and
hence considered stiffer than a beam of comparable span and thickness. Thin plates
combine light weight and form efficiency with high load-carrying capacity, economy and
technological effectiveness. As a result of all these advantages thin walled structures are
preferred in all fields of engineering. Structural members are normally classified as open
section beams and closed section beams. | -, Z- , C — channel are examples of open
section beams as shown in Figure 2-1 while box beam, hat section, tubular sections are

all examples of closed section beams as in Figure 2-2.

L 1 | S—

Figure 2-1 Open Section



Figure 2-2 Closed Section

Usually closed sections are considered if the beam is to be designed for torsion
as they have greater torsional stiffness and also less warping due to twisting. Any
structural arrangement in which the loads are transferred to an open section by torsion is
not an efficient design for resisting loads. In large number of practical designs, the loads
are usually applied in such a manner that their resultant loads and forces pass through
the centroid. If the sections are doubly symmetric than the shear center and centroid
coincides thus eliminating torsional loads.

In some cases, it is inevitable and we have to ensure open sections can carry
small magnitude of torsional loads.

2.2 Torsional behavior of noncircular and open sections

When a circular cross-section shaft is twisted and the deformations are small, the
cross-section remains in the plane. The shearing stresses which are induced due to
torsion acts only in the direction perpendicular to the radius vector and hence they only
twist without any axial displacement. But this is only true for the circular sections. For
other sections the shearing stress has component both perpendicular to the radius vector
and in the direction of the radius vector. This extra shearing force results in a shearing
strain both within the plane of the cross section and normal to it. This out- of -plane
distortion is called as warping and it will exist for all but circular cross sections subjected
to twisting [14].

For bars of non - circular sections subjected to twisting, two types of phenomena

are observed. If the member is allowed to warp freely, then the applied torque is resisted



only by torsional shear stresses called as St. Venant’s torsional shear stresses. If the
member is not allowed to warp freely, that is if the cross section is axially constrained the
applied torque is resisted by St. Venant’s torsional shear stresses along with the Wagner
torsion bending torque also called as Warping Torsion both exist in the section.

Cross-section of a thin walled beam subjected to a restrained torsion
experiences two types of warping, one is the primary warping and other is the secondary
warping. Warping of the mid-plane of the cross section which is assumed constant across
the wall thickness is classified as primary warping. Warping of the section across its wall
thickness is termed as secondary warping. A section undergoes primary warping if the
constraints cause the development of two opposite flange shear forces which in turn
reduces the effect of the torsional load applied. Cross-sections which possess primary
warping are as shown below in Figure 2-3. Along with primary warping these sections
also undergo secondary warping. The Figure 2-3 also shows the cross-sections which
undergoes secondary warping only. In sections which possess primary warping,
secondary warping and effects of restrained secondary warping are usually neglected as
they are generally much less than primary warping and the effects of restrained primary
warping. However if the section exhibits only secondary warping, then the effect of
restrained secondary warping is quite significant and should not be ignored. For closed
beams the warping displacements are considered to be of primary nature. For the

analysis of I-beam we consider primary warping only.



—— | L ———1 — —
Z-Section Channel Section -Saction
(a)

_{_

Angle Section T-Section Cruciform Section
(b)

Figure 2-3 a) Open Sections possessing primary warping and secondary warping
b) Open sections possessing secondary warping only
The assumptions in evaluation of the theory of torsion of thin walled beams are
as follows [3]:
1. Cross-section of any beam, whether of open or closed section, is stiffened against
distortion, i.e., remains undistorted in their own plane after loading.
2. Shear stresses normal to beam surfaces are neglected

3. ltis generally agreed that thin wall theory many be applied with reasonable accuracy

¢
to sections for which the ratio % <0.1

where t,,,, is the maximum thickness in the section and b is a typical cross sectional

dimension.
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2.3 Calculation of Shear Center of | — Beam

Shear Center is defined as the point in the cross section where the bending and
torsion are decoupled. That is if the lateral or transverse load pass through this point it
produces only bending without twisting. It may also be shown by the use of reciprocal
theorem that this point is also the center of twist of section subjected to torsion. In most of
the cases it is difficult to guarantee that a shear load will act through the shear center. But
the shear load may be represented by the combination of shear load through the shear
center and torque. The stresses can then be super positioned. Therefore, it is essential to
calculate and locate the shear center in the cross section. When a cross-section has an
axis of symmetry the shear center must lie on that axis.

Thus if we assume that the cross section supports the shear loads V, and V, such
that there is no twisting of the cross section and also as there are no hoop stresses in the
beam the shear flow and direct stresses acting on an element of the beam wall are

related by the below mentioned equilibrium equation [12]:

aq do,
ds + 0x 1)
Where, . = M,I, — M1, N M, 1, — M,L,, 2.2)
x LI, — 12, L1, — 1%, '

g = shear flow = shear force per unit length = 7 * t
T = shear force

t = thickness

o, = axial stress

M, = Moment about z axis

M,, = Moment about y axis

I, = Moment of Inertia about y —y Axis
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I, = Moment of Inertia about z —z Axis
L,,, = Product Moment of Inertia
V, = Shear Force in y — direction
V, = Shear Force in z - direction

Therefore we get,

oo, [ May Oy My, - My,
ox LL—1z, )P\ T L, mr | 23)
We also have
Vv, = aa% (2.4)
= a;;lcz (2.5)
from Egs. (2.3), (2.4) and (2.5) we get
e e Y
Substituting Eqgs. (2.6) in (2.1) gives

Integrating from s = 0 to s =s which would be the integration of complete cross — section

we have,

50 V,L, — V,I s VI, — V,I s
—qu = - (”7223”)} tyds — (”7?)] tzds (2.8)
o 0s L, — 1%, ] ), LI, — 1%, ) J,

If the origin for s is taken at the open edge of the cross — section, then g =0 whens =0

and Eq (2.8) becomes,

VI, — VI s VI, — V,I s

vy z'yz z'z yiyz
qs = — <—>f ty ds—(—)f tzds (2.9)
s L, — 12, ) ) L, — 12, ) J,
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Now, considering | — Beam, as symmetrical about Z — axis I, = 0 and also to find

the shear center we would apply only V. We assume that V, is applied at shear center

which is denoted by S.C in the Figure 2-4 and is z,, away from the center of the I-beam

Figure 2-4.

Now shear flow would be,

]/y S
qs = — (—)f ty ds
1,7 ),

I, is moment of Inertia about the z — z axis and is of the form of:

L te1b}y N te2b} N h,t3
z 12 12 12

7
A
| | l tr1
e )
¥
l sc|=| V,y
------------------ . * > Y
A S— ; N hy,
[ |
. e
: hy,
I T — ——
| trs

Figure 2-4 I-Beam
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Calculating shear in each flange and web:
Top flange:

From Eq. (2.10) we can write the shear flow in the top flange as:

AV
q1 = — (Z)fo try ds;

therefore,
v b s
w= - (Den(E-3)s
vy bs1s1 st
0 = - <E)tf1< S (2.12)
Similarly shear flow in the bottom flange can be written as:
Vy bfzsz 522
0 = — <E)tf2< 22 (2.13)

Shear flow for web would be zero (0).

Now considering the force balance at the center of the | beam we get

h h
Wase= ar 5+ @ % (-5) (2.14)

Substituting Egs (2.12) and (2.13) in (2.14) we get,

bpr oy bris;  SE\ h br2 11 brys, s2\ h
Yy f1°1 1 'y 252 2
Vy Zse = J(; (Z) tfl ( 2 — 7) * Edsl - J(; (Z) th <—2 — ?) * Eds2

h (teb?  teb?
Therefore Zg = ﬁ(fizfl— fizfz) (2.15)
z

The above shear center is at a distance of z,, from the center of the | - beam.
Now, in the above case we did the force balance with respect to the midpoint of I- Beam,
but if we take the force balance with respect to the mid-plane of the bottom flange and if e
represents the distance of the shear center from that point, then we get the following

equation
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brr 1 brys; s?
_ y F151 1
wem [ (@) (53 v

h (tqb?
Thus, e= —(%) (2.16)

I, can be calculated using Eq. (2.11).
Also, if we assume that the thickness of the plates considered are too thin we can ignore

the higher powers of thickness in the moment of inertia.

tflbfsl thbf32
= + 217
Iz < 12 12 ( )

Substituting Eq. (2.17) in Eq. (2.16),

e =

h . (tflbﬁl)
<tf1b/§1> N <tf2b/§2> 12

12 12

3
hts1bs,

Thus, e= ————————
tflbﬁ1 + tfzb}?2

(2.18)

The above Eq (2.18) is similar to the equation of shear center mentioned in [15].

If tfl = th = t, then

hb},

e= —S———
bf31+ b}z

(2.19)

The above Eq (2.19) is similar to the equation of shear center mentioned in [16].
The comparison of the shear centers with different forms is as shown in the Table 2-2 for

cases discussed in Table 2-1
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Table 2-1 Description of Case 1, 2, 3

Table Dimensions (inches) | Case 1 | Case 2 | Case 3 Material Properties
Width of top flange 0.25 0.5 0.625

Width of bottom flange 1.0 0.75 0.625 E =1.02x107 psi,
Height of web 0.5 0.5 0.5 G = 4.08x10° psi,
Thickness of top flange 0.04 0.04 0.04 v =025,
Thickness of bottom flange 0.05 0.05 0.05

Thickness of web 0.02 0.02 0.02

The shear centers mentioned are measured from the base of the bottom flange.

Table 2-2 Isotropic Shear center comparison

f,: girsi%néeé :R'A Shear center by | Shear center by | Shear center by
Geometry TOOL Eq._ (2.15) Eq._ (2.18) Eq.l (2.19)
(inch) (inch) (inch) (inch)
Case 1 0.0321 0.0317 0.0317 0.0333
Case 2 0.1297 0.1294 0.1294 0.1495
Case 3 0.2672 0.2672 0.2672 0.2975

2.4 Uniform Torsion in Rectangular Section

When a torque is applied to non- circular cross sections like the rectangular cross
section in our case, the transverse section which are plane prior to twisting, warp in the
axial direction and the plane section no longer remains plane after twisting. But as long
as the warping is not constrained we can apply the same theory of St. Venant’s Torsion
(Ty,) which is for the circular cross-section by replacing it with the appropriate torsional
constant (K) for the rectangular section.

dos,

Ty = GK—~

(2.20

Where
G = shear Modulus
8, = the total angle of twist in free torsion case

K = polar moment of inertia / torsional constant
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x = direction along the axis of the member

The behavior of I-Beam under free torsion condition is shown in Figure 2-5. It has
been shown that when a cross — section is of the open type and consists of several thin
plate elements rigidly attached with one another to form the “thin walled” shape, K can be
taken as the sum of the torsional constants of each of the part. K is the factor dependent
on the form and dimensions of the cross-section. For circular section, K is the polar
moment of inertia equal to J; for other sections K is less than J and may be only a very
small fraction of J. I-Beam is made of 3 rectangular sections viz. upper flange, bottom
flange and web.

The torsional constant K, for a rectangular section is usually assumed to be:

3
K = b% (2.21°

where,
b = width of the section and t = thickness

Thus, for I-beam the torsional constant would be:

3 3 3
Method 1 K = bfl;fl + bfz;fz + hw;w (2.22)

But, this condition is true only if the ratio of b/t approaches infinity or is very
large; however for the ratio in excess of 10 the error is of the order of only 6 percent.
Obviously the approximate nature of the solution increases as b/t decreases. Therefore,
in order to retain the usefulness of the analysis a factor u is included in the torsional

constant, viz.

_ pbt?

. (2.23)

K

Values of u for different types of sections are found experimentally and quoted in various

references [30] and listed below in Table 2-3:
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Table 2-3 Width reduction factor table

b/ | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 6.0 | 100 | =

p | 0423 | 0.588 | 0.687 | 0.747 | 0.789 | 0.843 | 0.873 | 0.897 | 0.936 | 0.999

Thus, for I-beam the torsional constant would be:

Method 2 K= lif1b;1tf13 + #fzbfsztfz3 + .Uwh;/tWS (2.24)

Also, the width correction factor can be computed by the method mentioned
below. The torsional constant for rectangular section as found in [15] can be used to
calculate the K for overall I-Beam.

The equations mentioned are in a simplified form involving an approximation,

with a resulting error no greater than 4 percent.

b tr1\3
Ke = ﬂ*<£)

2 2
. Y 2.25
*{16 3-36*(:/2)* Y (tf/) } .
3 ( f1/2) bfl/
2
[16 (tfz ) (tfz /2)4 ‘ (2.26)
[ 3 (bfz/z) 12 % (bf2/2>4
W tw/ ) \]
K, = %W* (%)3 x ?— 3.36 * E ;2)) ( (}/12) )4 (2.27)
M/, 12+ (/)
Method 3 K=Kq + Kpp, + Ky (2.28)

GK is also known as the Torsional rigidity of the section.
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pLoh

(a) (o)

Figure 2-5 Free Torsion to I-Beam
A comparison of the Torsional stiffness GK for an isotropic I-Beam, where K is calculated
by 3 different methods mentioned above is presented below in Table 2-4:

Table 2-4 Torsional Stiffness comparison for Isotropic I-Beam

Torsional Stiffness, GK or GJ (Ib — in?)
Case Method 1 Method 2 Method 3
Egs (2.22) Egs (2.24) Egs (2.28)
1 197.2 188.79 189.51
2 176.46 168.35 168.77
3 166.09 159.45 158.4

We observe that the torsional stiffness by method 2 and method 3 are quite
comparable and hence we can use any of the width correction method to calculate the
torsional stiffness.

2.5 Non-Uniform Torsion in Rectangular Section

When the warping deformation is constrained, the member undergoes non-
uniform torsion. The presence of warping normal stresses in a thin walled, open cross-
section member depends upon how the member is supported and how it is loaded. We
will consider a cantilever type of arrangement where one end of the I-Beam is

constrained and not allowed to warp while the other end is allowed to warp freely. The
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warping restraint causes bending deformation of the flanges in their plane in addition to

twisting. The Bending deformation is accompanied by a shear force in each flange.

AN

AL

N

Figure 2-6 Restrained warping condition in I-Beam
Since, the flanges bend in opposite directions, the shear forces in two flanges are
oppositely directed and form a couple. This couple, which acts to resist the applied
torque, is called as the Warping torsion (T,,) as shown in Figure 2-6. This theory was
originally developed by Wagner and Kappus, and is most generally known as the Wagner
torsion bending theory. The complete derivation of T, is very well documented in [12],
[13], [14] and also [15].

d36
T, = —ET— (2.29)

E = Axial Stiffness
I' = Warping Constant, analogous to K, torsional constant
ET = warping rigidity of the section, analogous to GK, St. Venant’s torsional stiffness.

For | beam [15],

_ h? * tey * tp, * b)§1 * b)§2
12 (tp1bf) + trob7,)

(2.30)

The Torque will be resisted by a combination of St. Venant’s shearing stresses

and warping torsion. That is
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T=T,+T, (2.31)

From Egs. (2.20), (2.25) and (2.31) we have,
T=GK——~El— (2.32)

de . . GK
may now be solved for = Rearranging and writing ,uz = or Ve have,

d36 daeo T
I R S 2.33
dx3 K dx K GK ( )

Applying the boundary conditions
e The slope of the beam is zero when x = 0 and
e The Bending momentis zeroat x =L

a T (1 _cosh,u(L—x))

= (2.34)

cosh uL

The first term in Eq. (2.32) is seen to be the rate of twist derived from the St.
Venant torsion theory. The hyperbolic second term is therefore the modification
introduced by the axial constraint. The Eq. (2.32) can be further integrated to find the

distribution of angle of twist 6, thus,

T sinhpu (L —x) sinhyul
o = —( - ) (2.35)
GK pcosh uL pcosh uL
Thus we can also get the following,
dao T coshyu (L —x)
== —=|l-——F— .
o dx GK( cosh uL ) (2:36)
d*o T inhpu (L —
g =LY _<—“ sinh ¢ ( x)> (2.37)
dx?> GK cosh ulL
., de T (u?coshp (L —x)
0" = dx3 _ﬁ< cosh uL ) (2.38)
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St. Venant Shearing stresses in flanges:

Ty = 26n— (2.39)

where n varies from -tfl/2 to +tf1/2 for upper flange and -tfz/2 to +tf2/2 for
bottom flange. 74, is zero in the mid-plane of the flanges and maximum shear stresses
occurs on the surface at the mid-point of the thickest part of the section. By Eq (2.35)and
Eq (2.39) we get,

T (1 _M) (2.40)

= 26n—
tsw "GK cosh uL

Warping normal stresses:
. . ae .
In the presence of axial constraints, —-isno longer constant so that the

longitudinal strains are not zero and direct stresses (o) are induced and given by the
below equation.

d?6

s (2.41)

or = —ZARE

where Ay is the area swept out by a generator, rotation about the center of twist,
from the point of zero warping and given as below. Detailed description of A, py are

avoided in this literature but described in detail in reference [12].

S
24, = f Prds (2.42)
0
PR above = h—e (243)
hts,b?
PR above = L (2.44)

tflbj:’1 + tfzb;2
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PR below = € (2.45)

htg b}y
PR betow = m (2.46)
b b b b
Sf121 = _%:51%23 = %.Sf154 = % »Sf156 = —g (2.47)
From Eqgs (2.37) (2.41) (2.42) (2.43) (2.44) (2.45) (2.46) & (2.47) we get,
hts,b? b T ¢usinhyu (L — x)
U”lma"zi{t b2 +£2b3 *%*EG_K( h L )
19F1 120f2 cosh u
(2.48)
hts b} b T (usinhpu (L —x)
orem = et P ()
f1%f1 f2¥f2 coshu

The above expression for stresses matches with the stress formulation in reference [15].

Warping

The expression for primary warping (w) is as below.
= — —_— 2.49
w 245 e ( )

From Egs (2.35) (2.42) (2.43) (2.44) (2.45) (2.46) (2.47),
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Shearing force:

as,

" hts,bf, ‘s
21 — 121
trbd + tpbd

T sinhu (L —x) sinhulL
* GK z ucosh uL ucosh uL
htq, b}
f2of2
Wy3 = —————————*5§
B tab3 + tb3, T
T sinhu (L —x) sinhulL
* — _
GK z ucosh uL ucosh uL
(2.50)
hte b}y
Wy = ———————*5§
2T b3 + tepb3, Tt
T sinhu (L —x) sinhulL
* — —
GK z pucosh uL ucosh uL
hte b}y
Wy = ———————*5§
21 tflbf31 + tfzbf32 f156
T sinhu (L —x) sinhulL
* — —
GK z pcosh uL pcosh uL

dM,,

F™ dx

Ve = EFdsg
F dx3

coshu (L —x
b= (R0

cosh ulL
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The shearing force (V) induced in the flanges due to the constraints are given

(2.51)

(2.52)

) (2.53)



Warping bending moment:

The expression for maximum bending moment which is creating in the flanges

due to restrained torsion is as below:

te b3 hte, b3 d?e
walmax= _E*(fl fl)* 3f2 2 EE )
12 tflbfl + tfzbfz dx

r T (u sinh u (L —x))

M = —ET —
wf1max GK cosh uL

sinhu (L — x)
walmax == (7)

cosh uL

sinhp (L — x))

My r2max = _T( cosh uL
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Chapter 3
Finite Element Method
3.1 Overview

Most of the real-world problems are too complicated to be solved analytically,
because of various reasons like line geometry, boundary conditions, environmental
conditions, etc. The complexity increases if we consider orthotropic material properties. If
all these things are considered the analytical solutions are practically unreachable.
Numerical Methods become the only feasible methods to solve those problems. The finite
element method is one of the most successful numerical methods for boundary-value
problems.

A basic idea of finite element method is to divide the entire structural body into
many small and geometrically simple bodies, called elements, so that equilibrium
equations can be written down and all the equilibrium equations are then solved
simultaneously. The elements have finite size and hence the method is named Finite
Element Methods (FEM). Nowadays, a large number of commercial programs exist with
many finite element analysis capabilities for different engineering disciplines. They help
solve a variety of problems from a simple linear static analysis to nonlinear transient
analysis. A few of these codes, such as ANSYS™ or ABAQUS™, have special
capabilities to analyze composite materials and they accept user programmed element
formulations and custom constitutive equations. These softwares are commonly
organized into three different blocks: the pre-processor, the processor and the post
processor.

In the first block, commonly called pre-processor, we define the geometry,
material properties and elements for the FEM. One should have good knowledge about

these things as they have major contribution in the final results. With this information, the
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processor computes the stiffness matrix of the model. In the second stage, we apply the
boundary conditions and forces, which help in the formation of equilibrium equations that
are later solved simultaneously. In the last block, the post processor, the derived results,
such as strain, stress and failure ratios are computed and can be reviewed using graphic
tools. We are going to use ANSYS™ 13 as the FEM tool to solve the isotropic and
composite | — Beam problem.

3.2 Element Type

ANSYS™ has a variety of elements in its library. One should carefully select
elements for modeling as it determines the element formulation used like the degree of
freedom set, the interpolation functions, 1D, 2D or 3D space etc, Some of the element
types are listed below which are used in ANSYS™ for composite modeling. For detailed
understanding one can refer ANSYS™ help files [22]. Below are some highlights from the
mentioned references.
1-Dimensional Elements:

BEAM188 and BEAM189 — These are 3-D finite strain beam elements. They are

based on Timoshenko Beam Theory.

2-Dimensional Elements:

2-D elements are widely used in composite analysis. ANSYS™ offers a wide
range of shell elements with different properties. Classical Lamination Theory of
composites is based on Kirchhoff thin shell theory. In classical Kirchhoff thin shell theory
it is difficult to derive finite element for other than very simple rectangular geometries.
This is because to derive the bending strains we need to differentiate the transverse
displacement twice. It is also difficult to derive shape function and Jacobian matrix for

arbitrary shaped elements. So typically, to overcome the shortcomings of Kirchhoff theory
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we use Mindlin theory. Mindlin theory takes transverse shear deformation into account.
Also the Kirchhoff theory only provides acceptable deflections, natural frequencies and
critical buckling loads for thin plates whose ratio of thickness to the characteristics
dimension of mean surface is less than 1/20. Mindlin theory, in which the transverse
shear strains are constant through the plate thickness, gives satisfactory results for
flexure, vibration and buckling of moderately thick plates whose ratio of thickness to the
characteristic dimension of mean surface is between 1/5 and 1/20. Hence, shell
elements in ANSYS™ are based on Mindlin theory. Also the elements can be layered or
non-layered that is, one can specify individual layer properties or can specify the ABD
matrices directly. All shell elements assumes plane stress condition.
SHELL93:

e It's a 4 node element

o Typically used for sandwitch applications

e Normally not a preferred type of element
SHELL181:

e Suitable for analyzing thin to moderately thick shell structures

e 4 node element with 6 degrees of freedom at each node

o Well suited for linear, large rotation and large strain non-linear applications

o Works on first order shear deformation theory (usually referred as Mindlin shell

theory)
e Layered shell element and specific forms are highly accurate even in coarse
mesh
¢ Includes linear effects of transverse shear deformation and also Interlaminar

shear stresses evaluated at the layer interface are available
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e A maximum of 250 elements are supported
SHELL281:

e Suitable for analyzing thin to moderately thick shell structures

8 node element with 6 degrees of freedom at each node

o Finite strain shell. Well suited for linear, large rotation and large strain non-linear
applications

e Works on first order shear deformation theory (usually referred as Mindlin shell
theory)

¢ Includes linear effects of transverse shear deformation and also Interlaminar
shear stresses evaluated at the layer interface are available

o Layered shell element

Shell elements like SHELL91, SHELL99, and SHELL43 etc are no longer

available in ANSYS™ 13,

3-Dimentional Elements;

A 2D element assumes plane stress conditions, so we will never be able to get
the stress in the third direction. Also for thick composite laminates SHELL elements are
normally avoided. 3-dimensional elements are preferred when we are modeling
micromechanics model, when edge stresses are important as in the case of delamination
analysis, also when we are interested in the stresses near the high stress concentration
area, discontinuities etc. Use of 3D elements should be done wisely as they need high
computer space to store the data, high computer configuration to solve the large amount
of equations and thus directly related to cost of the analysis.

SOLID46:

e Layered version of 8-node 3D element SOLID45
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e Can be used to model thick layered solids and allow 250 uniform thickness layers
per element
o Finer meshes are necessary for accuracy
SOLID185:
e 3-D layered element with 8 nodes with 3 degrees of freedom on each node
o The element has plasticity, hyper-elasticity, stress stiffening, creep, large
deflection and large strain capabilities
e Allows for prism and tetrahedral degenerations when used in irregular regions
SOLID186:
e Layered Solid with 20 node 3-D element with 3 degrees of freedom at each node
e Allow up to 250 layers and full nonlinear capabilities including large strain
SOLID191:
e Layered Solid with 20 node 3-D element with 3 degrees of freedom at each node
o Allows 100 layers per element
o Element does not support non linear materials or large deflections
3.3 Meshing
It is advisable to use mapped mesh for meshing the composite structure in
ANSYS ™. Also rectangular mesh should be used and triangular mesh should be avoided
for composite modeling. The detailed explanations for this section can be found in the
Master’s thesis work of Farhan [21] and Chen [20]. Mesh density is also a critical aspect.
It is normally preferred to have finer mesh in the region where load is applied, the region
in which we are interested to get the stress and strain results and coarse mesh is
acceptable in the other region of the structure. This can help to reduce the element

numbers and make the model run faster and also cost effective.
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In addition, the aspect ratio of the elements used is very critical. ANSYS™
recommends an aspect ratio of less than 10. Aspect Ratio of more than 20 could lead to
inaccurate answers. But it is not easy to achieve aspect ratio of less than 10 always, so it
is usually recommended to have it as low as possible. It is usually true that finer the mesh
more accurate the solution [18]. Below are few points which validate the above
statement.

e The nodal displacements are single valued, that is each node has a unique
value. The displacement fields are continuous but not necessarily smooth. The
use of continuous shape functions within the element guarantees the
displacement fields piecewise smooth, but not necessarily smooth across the
element boundaries. Stress values are calculated from strain and the calculations
are element by element. The nodes may have multiple stress values, since the
nodes may be connected to multiple elements and each element calculation
results a value. Thus the stresses are not continuous across the element
boundaries. By default, stresses are averaged in the nodes and the stress fields
are recalculated. After that the stress values are continuous. Thus in general
getting finer mesh, solution is more accurate and stress discontinuity is less.

e For an element, strain energies calculated using average stresses and un-
averaged stresses respectively are different. The difference between these two
energies is called as structural error of element. Finer the mesh, smaller the
structural error. The structural error can be used for 2 purposes:

o As an indicator of global mesh adequacy. In general, we want the values
as small as possible.
o As an indicator of local mesh adequacy. In general, we want the

structural error distribution as uniform as possible to maximize the
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efficiency of the computing resources. This implies that in the region of
large values of structural error, we need to refine our mesh.
The final results are depended on the kind of elements used for the analysis.
Always quadrilateral elements converge faster than triangular elements. Skewness is
also one of the important mesh qualities. Skewness is calculated for each element
according to the geometry. Definition of skewness can be found in the Help section of
ANSYS™, But we can state that lower the skewness, better the answer. So as guideline,
element skewness of more than 0.95 are considered un-acceptable.

3.4 Boundary Conditions

Type of boundary conditions (B.C) is specific to a particular composite problem.
Symmetric B.C should be carefully enforced. It has been extensively studied by Chen
[20] and Farhan [21] that if the symmetric conditions are applied to composite structures
similar to that of isotropic material structures the results are not always correct. One
should have an in-depth knowledge about composite materials and its axial-bending-
torsional coupling behavior.

3.5 Geometry and Material Properties

Three cases of I-beam with different length of the flanges are considered for
parametric study. However, all of the three I-beams have the same total length of
laminates and with even and uneven top and bottom flanges. The dimensions and layup

of the top, bottom flanges and web laminates are listed in Table 3-1.
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Table 3-1 Dimensions and Stacking sequence of Flanges and Web of |-Beam for

CASE1,2,3
Width Height
CASE Top Flange, in Bottom Flange, in Web, in
[+45/0/90]5 [+£45/0,/90]5 [£45],
1 0.25 1 0.5
2 0.5 0.75 0.5
3 0.625 0.625 0.5

The material used in this study is T300/977-2 graphite/epoxy laminate. The
unidirectional layer orthotropic properties for the material are given as
E; =21.75x10° psi, E, = 1.595x10%psi, E; = 1.595 x 10°psi
Gy, = 0.8702x 106 psi, G,3 = 0.5366 x 106 psi, G5 = 0.8702 x 10° psi
Vi, = 0.25, Vy3 = 0.45, vi3 = 0.25, tpiy = 0.005 in.
where E;, E,, and E; are the Young’s moduli of the composite lamina along the
material coordinates. G,,, G,3, and G5 are the Shear moduli and v, ,, v,3, and v,5 are
Poisson’s ratio with respect to the 1-2, 2-3 and 1-3 planes, respectively and t, is the
cured ply thickness.
The stacking sequences for the top and bottom flanges are [+45/0/90], and

[£45/0,/90], respectively.

3.6 Composite [-Beam Modeling in ANSYS

ANSYS™ Classic (APDL) version 13 is used to carry out all the FEM modeling
and solutions in this thesis work. Simple steps are used to model the composite/isotropic
[-Beam in ANSYS™ 13. Also the I-beam is considered to be an assembly of 3
rectangular cross section. The tool radius, ply drop-off and other features of a realistic |-

beam are ignored. Details are as follows:

33




e Define Element type:
2D SHELL 181 is used for modeling the I-Beam. 3D elements are not used as 2D

model will suffice our needs. In this thesis we are not interested in the 3D stresses, edge
stresses and also the geometry is simple.

e Define Material type:
We will define orthotropic properties so that the same model can be used for isotropic
and composite |I-Beam by just modifying the material properties.

¢ Define Shell layup:
As we have different layups for bottom & top flange and web we will define all the 3
different types of layups. For converting composite model into isotropic we will just
change all the angles to 0°.

¢ Define Keypoints:
As we are constructing 2D model, we need to create Areas and one of the simplest
method is by defining the keypoints. The outer dimensions of the I-Beam would serve as
the keypoints. For case 2, the keypoints are as listed in Table 3-2

Table 3-2 Keypoints for modeling I-Beam in ANSYS™

Keypoints X- Axis Y- Axis Z- Axis
1 0 0 0
2 10 0 0
3 0 -0.375 0
Top Flange 4 10 20.375 0
5 0 0.375 0
6 10 0.375 0
7 0 0 -0.545
Web 8 10 0 20.545
9 10 -0.25 -0.545
Bottom Flange 1(1) 100 822 :8222
12 0 -0.25 -0.545
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As we are modeling 2D [-Beam, in ANSYS™ we define the midsection of web

and flanges. So we need to modify the web height as it would be equal to

Top flange thickness + Bottom flange thickness

Modified web height = Original web height + 2 5

Figure 3-1 below shows the Solid I-Beam and the Shell I-Beam.

bf1 : bfl
tre <
D T v
t t
hy, h,, + % + /;2
S N
teo |
by, by,
(a) Solid I-Beam Cross-Section (b) Shell I-Beam Cross- Section

Figure 3-1 2D |-Beam cross-section

o Define Areas:
We define areas by connecting the keypoints defined earlier. Figure 3-2 depicts the areas

created with the help of keypoints to form I-Beam in ANSYS™ 13.

Table 3-3 shows the list of keypoints connected to form areas for I-Beam for Case 2.

Table 3-3 Areas created by connection key-points

Area Keypoints connected
Top Flange g 1 3 2
Web 1,7,8,2
Bottom Flange 111’ 77’ Sé 190
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AREAS

AREA NUK

Figure 3-2 Different Areas created with the help of Keypoints to model [-Beam in
ANSYS™ 13
e Define Local co-ordinate system:
The Global co-ordinate system is assigned to the flanges such that X-Axis represents the
length of flange and Y-Axis will represent the width. But for the web we need to define a
local co-ordinate system so that X-axis will be the length and Y-Axis will be the height.
For doing this we rotate the co-ordinate system by -90° with respect to global X-axis.

Figure 3-3 shows that different co-ordinate system are assigned to web and flanges
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Figure 3-3 Flange Areas assigned global co-ordinate system and Web assigned local co-
ordinate system

o Define Meshing Attributes:
This is the most important step. Here we assign properties like element type, material
type, co-ordinate system, layup to the areas we modeled.

o Define element Size:
Element sizing will define our mesh which in turn will decide the accuracy of our results.
To get good fine mesh manual meshing option is used. For case 2, the bottom flange is
divided into 150 elements in width and 200 elements in length, top flange is divided into
100 elements in width and 200 elements in length and web is divided into 110 elements
in height and 200 elements in length. This assures a very fine mesh with an Aspect ratio
less than 10 all over the I-Beam. We can also use the smart size option where we ensure
a dense mesh in the areas where loads are applied and results are recorded, and a
coarse mesh in the remaining area. For the I-Beam with the number of elements chosen

we do get satisfactory results and hence smart meshing is not used.
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e Meshing
After defining the meshing attributes and element size, all the areas are meshed. As the
element size is manually decided we do get a mapped mesh all over the I-Beam. Figure

3-4 shows the I-Beam with mesh generated with different meshing attributes.

Figure 3-4 Mesh generated, different meshing attributes to all the 3 areas
o Define Loads and Boundary Conditions:
For Constrained torsion:
The load is the torsional moment for the I-Beam considered. So we apply moment in X-

direction to all the nodes on one of the extreme cross-section. The Moment magnitude is

specified as ( ) as shown in Figure 3-6. This

1/Number of Nodes in the cross section
ensures that the total torsional moment is 1 Ib-in. To apply cantilever boundary
conditions, we constrained all the degrees of freedom (DOF) of all the nodes on the other
extreme cross-section as shown in Figure 3-5. This will ensure a constrained torsion

condition.
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I-Beam Case 2: Length 10 inches (Contrained Werping)

Figure 3-6 Torsional load applied to all the nodes of the I-Beam cross section on the
other end
For Free Torsion (unrestrained torsion):
To get free torsion, we locate the shear center in the middle of beam length and constrain
all the degrees of freedom of the node present there. We apply moment on the other two

free ends as discussed above. On one side, torsional moment would be

1 . .
( /Number of Nodes in the cross section) and on the other side it would be
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( /Number of Nodes in the cross section)‘ This loading and Boundary conditions will

ensure a free torsion in I-Beam.
e Solve
After applying all the required loads and boundary conditions we give the solve command

to ANSYS™ and get the desired results. Figure 3-7 shows the deformed I-beam.

Figure 3-7 Deformed I-Beam under restrained Torsion

3.7 Validation of ANSYS™ |-Beam Model

We need to validate our ANSYS™ |-Beam Model. For this purpose we will
compare our ANSYS™ results for the Isotropic I-Beam case. The closed form solution for
Isotropic I-Beam is discussed in Chapter 2. The isotropic properties used for validation
purpose are:

E = E;; = E;, = E33 = 1.02x 107 psi

V =Vip = V3 =Vi3 = 025

G = G12 = G23 = Gl3 = = 4.08 x 106 pSl

2(1+v)
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Length of the I-Beam considered for Free Torsion is 20 inches and for
constrained condition it is 10 inches if not specified. At first, we will compare the following
properties for all the 3 cases of [-Beam mentioned in Table 2-1:

K = Torsional constant

' = Warping Constant

GK = Torsional Rigidity

El" = Warping rigidity of the section

e = Shear Center

65y = Angle of twist in free torsion case

Owarp = Angle of twist in constrained torsion case

3.8 Methodology adapted to get the above mentioned properties:

The |-Beam is subjected to free torsion and the deformed shape is obtained. The
shear center can be located as the point which has the least or no displacement that is,
the point which remained stationary. Figure 3-8 shows the deformed and original | beam

cross section. The Shear Center locations documented are all from the base of the

thickness of bottom flange
2

bottom flange. So ( ) is added to the result obtained from the

ANSYS™. The angle of twist is evaluated by applying the Pythagorean Theorem to the
triangle formed as shown in Figure 3-8. 'A' is the point of intersection of web with bottom
flange and A' denotes the displacement of point "A", SC denotes the Shear Center. We
can also consider the other triangle but it was noticed that the error in calculating the 85,
is less when considered the smaller triangle. Distance AA' is the displacement result by
ANSYS™. Thus

displacement of point A

O, = tan™! < )radians

Distance of point A from the Shear Center
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Figure 3-8 Cross section of I-Beam Twisting at its Shear Center
ANSYS™ FEM model would also give the angle of rotation of each node as part
of result. One can directly use this rotation result as 6g,,. Once 8y, is calculated we can
calculate Torsional constant and Torsional Rigidity by applying the below given

expressions respectively:

_ T =L
TG Oy

T *L
GK =

65‘V
To evaluate the warping constant and warping rigidity the I-Beam is given a
constrained torsion and 6,,,4,-, is evaluated in the similar method as mentioned for 6.
Warping constant is evaluated by the using equation (2.35) for x = L, the equation

simplifies to:

0 _ T*L( tanh(uL))
warp T T op ('u L)

The only unknown in the above expression is y, so it can be easily evaluated by

solving the above expression.
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,  GK
K= %r

Thus warping constant and warping rigidity are calculated by using the
relationship mentioned above.
We can also get the above properties from the BEAM TOOL in ANSYS™. So the result
from the ANSYS™ BEAM TOOL, Analytical and from the ANSYS™ |-Beam model which
is modeled are tabulated in Table 3-4, Table 3-5 & Table 3-6. By observing the data
presented we can ensure that SHELL 2D ANSYS™ model gives satisfactory results and
the same model can be used for the study of composite material | -Beam torsional
analysis by making suitable modifications in material properties and defining the layups.

Also the analytical torsional stiffness GK values mentioned in the tables are the
once which are calculated by method 3 in chapter 2 by Egs (2.28). We conclude that the
width correction is necessary to calculate the torsional constant K, so as to get better

comparable results with ANSYS™ FEM model.
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Table 3-4 Comparison of Torsional properties and angle of twist of Isotropic I-Beam with

ANSYS™ results for CASE 1

Case 1: Isotropic material
Difference
ANSYS™ %
BEAM Analytical ANSYS™ |-BEAM (Analytical
TOOL Model and
ANSYS™
model)
K (in*)
Torsional 47x107° 4.645x107° 4.6838x107° -0.84
Constant
I(in*)
Warping 1.61x1075 | 1.528x 1075 1.4859x 1075 2.75
Constant
GK(psi — in®)
Torsional 192.17 189.51 191.09 -0.84
Rigidity
El (psi — in%)
WARPING 164.22 155.85 151.56 2.75
Rigidity
Shear. 0.0319 00317 0.0329 (cc_)nstralned 386
Center(in) torsion)
By (rad) - 0.0528 0.0523 0.88
Bwarp (rad) - 0.0480 0.0482 -0.41
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Table 3-5 Comparison of Torsional properties and angle of twist of Isotropic I-Beam with

ANSYS™ results for CASE 2

Case 2: Isotropic material

Difference
ANSYS™ %
BEAM . ANSYS™ |-BEAM (Analytical
TOOL Analytical Model and
ANSYS™
model)
K(in*)
Torsional 42x107° | 4.1366x107° 4.1855x107° -1.18
Constant
I(in*)
Warping 1.0x10™* | 1.0005x 107* 9.4372x 1075 5.67
Constant
GK (psi — in%)
Torsional 171.36 168.77 170.77 -1.19
Rigidity
El (psi — in*)
WARPING 1020 1020.47 962.59 5.67
Rigidity
Shear 0.1385
Center(in) 0.1296 0.1295 (constrained torsion) -6.92
Bgy (rad) - 0.0593 0.0585 1.27
Bwarp (rad) - 0.0447 0.0446 0.14
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Table 3-6 Comparison of Torsional properties and angle of twist of Isotropic I-Beam with

ANSYS™ results for CASE

3

Case 3: Isotropic material

Difference
ANSYS™ %
BEAM Analytical ANSYS™ |-BEAM (Analytical
TOOL Model and
ANSYS™
model)
K (in*)
Torsional 3.94x107° 3.8825x107° 3.8395x107° 1.11
Constant
I(in*)
Warping 1.34x107% 1.3429x 107* 1.2536x 107* 6.65
Constant
GK (psi — in%)
Torsional 160.75 158.4 156.65 1.10
Rigidity
El (psi — in%)
WARPING 1366.8 1369.74 1278.72 6.65
Rigidity
c Shear 02673 02672 0.2757 (cqnstralned 318
enter(in) torsion)
Bsy (rad) 0.0631 0.0638 -1.06
Bwarp (rad) 0.0446 0.0456 -2.23

Effect of Warping constraint on the twist angle was also studied. Comparison

between angle of twist with free torsion and warping torsion with varying length of I-Beam

for Case 2 is tabulated in Table 3-7. Observing the data we can conclude that:

The effect on twisting is significant in shorter |-Beams due to Constrained

Warping as shown in Figure 3-9. Shear center results of ANSYS™ converges to the

theoretical value when the I-Beam is longer as observed in

Figure 3-10.
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Table 3-7 Comparison of angle of twist and shear center for Isotropic Case 2 with

ANSYS™ results

Diff
Total 0 0 Effect of 0 (Owarp Shear Shear
length ware Sv. warping waw Analytical Center Center Diff SC
(Case A”a'yé'ca' A?ggg‘)’a' on | beam ANSESTM and 6,..,, | Analytic | ANSYS | (%)
2) (rad) (%) (rad) ANSYS™ | al(inch) | ™ (inch)
(%)
3 0.0055 0.0178 68.83 0.0054 2.00 0.1216 6.09
4 0.0102 0.0237 56.90 0.0096 5.82 0.1365 | -5.39
5 0.0155 0.0296 47.52 0.0149 4.35 0.1295 | 0.1409 | -8.83
7 0.0270 0.0415 34.89 0.0269 0.31 0.1399 | -8.06
10 0.0447 0.0593 24.58 0.0451 -0.81 0.1375 | -6.15
20 0.1039 0.1185 12.30 0.1039 -0.01 0.1335 | -3.09
Graph showing the effect of warping constraint
0.1400
0.1200
— 0.1000 =¢- Angle Calculated
% Analytically
§ 0.0800 (radians)
S .
o 0.0600 —I—FreelTorS|on
2 (Radians)
c
< 0.0400
Angle Calculated
0.0200 from ANSYS
(radians)
0.0000 T T T T T 1

5

7 10

20

Different length of | beam (inches)

Figure 3-9 Graphical representation showing effect of warping constraint on the angle of

twist
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Shear center variation with length
0.1450 -
0.1400 -
®0.1350 -
=
(%)
£
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E Analytically
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& 0.1200 -
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0.1150 - ANSYS
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3 4 5 7 10 20
I-Beam Length (inches)

Figure 3-10 Graphical representation of Shear center variation with respect to length
Variation of twisting angle at different location lengthwise was also studied. For
this purpose, a 20 inch long I-Beam with cross-sectional properties of case 2 was studied
and it was found that the relationship is linear. ANSYS™ and theoretical results have a
very good match after 3 inches from the constrained boundary. Results are tabulated in
Table 3-8 and shown graphically in Figure 3-11. Also the variation in the shear center

location at different length is plotted.
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Table 3-8 Study of angle of twist variation along the I-Beam length

(cantilever)

Case 2 considered for this study

Study of angle of twist variation in a 20 inch long | beam

Le.ng.th Angle in Angle in Difference Shear
vgrlatlon (radlaps) (radians) in angle center
(inches) Analytical | ANSYS™ (ANSYS™)

0 0.0000 0.0000 0.00 0.0000
1 0.0011 0.0018 -69.51 0.0869
2 0.0037 0.0047 -25.94 0.1087
3 0.0075 0.0084 -12.16 0.1191
4 0.0120 0.0128 -6.80 0.1241
5 0.0170 0.0177 -4.35 0.1266
6 0.0223 0.0230 -3.37 0.1276
7 0.0278 0.0287 -3.38 0.1276
8 0.0334 0.0340 -1.84 0.1291
9 0.0391 0.0398 -1.79 0.1291
10 0.0449 0.0457 -1.73 0.1291
11 0.0508 0.0514 -1.20 0.1295
12 0.0566 0.0573 -1.20 0.1295
13 0.0626 0.0633 -1.10 0.1295
14 0.0684 0.0693 -1.30 0.1295
15 0.0743 0.0754 -1.44 0.1295
16 0.0803 0.0816 -1.68 0.1295
17 0.0862 0.0876 -1.61 0.1300
18 0.0921 0.0931 -1.08 0.1310
19 0.0980 0.0992 -1.18 0.1315
20 0.1040 0.1039 0.05 0.1335
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Figure 3-11 Graphical representation of shear center and angle of twist variation
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Chapter 4
Torsional Behavior of a Composite [-Beam

4.1 Brief overview of lamination theory

Lamina Constitutive Equation:

Since composite lamina is very thin, a state of plane stress is assumed for the analysis

purpose. Two co-ordinate systems as shown in Figure 4-1 are used to completely

describe the properties of lamina

e 1-2-3 co-ordinates refer to the lamina (local co-ordinate system) where 1 is the

fiber direction, 2 is the transverse direction and 3 is perpendicular to the ply

plane.

e Xx-y-z co-ordinate system are the global co-ordinate system and are selected at

mid-plane of laminates.

A

/|

2

Figure 4-1 Local and Global co-ordinate system in lamina

Therefore, orthotropic stress strain relation reduces to 3 x 3 matrix in a composite

lamina. The strain-stress relation is written as

leli—2 = [Sli-2[o]i-;
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&1 Si1 S1z 07141
|:€2 ] B [512 522 0 l [azl (4.1)
V12 0 0 SeellT12

and stress-strain relationship is

01 Qi1 Q2 07[&
O2|= |01z Q22 O []|& (4.2)
T12 0 0  Qgellyr2

where,

g and g, = strainin 1 and 2 directions, respectively

y1, = shear strain in 1-2 plane
[S],_, = compliance matrix of the order 3 x 3 in 1-2 co-ordinate system

[Q]l,_; = reduced stiffness matrix of the order 3 x 3 in 1-2 co-ordinate system

1 1 Uqy (% 1
S11 = 1S = = Sy === ——; =
11 ) 2= piou E, E, %= G,
S - b 4.3
O = 1= 0505 Cz2 = 1 =550 (4-3)
U1 Ey v E;
Q12 = ; Qe = G12

where,

E,, E5,v44, G;, are 4 independent material constants.

Axis Transformation relationship:
The relationship of the compliance matrix in x-y co-ordinate system and 1-2 co-ordinate
system is as follows:

[Sley = [Te(=0)]1[S]1-2[T5(6)] (4.4)
The relationship of the reduced stiffness matrix in x-y co-ordinate system and 1-2 co-

ordinate system is as follows:
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[@]x—y = [Ta(_e)][Q]l—Z[Tscg)] (45)
where,
[§]x_y = Compliance matrix in x-y co-ordinate system

[()]x_y = Reduced stiffness matrix in x-y co-ordinate system

m? n? mn
[T.(8)] = | n? m? —mn
—2mn 2mn m? —n?

m?  n? 2mn (4.6)
[T,(®]=| n> m?> -2mn
-mn mn m?—n?
m = cosf ; n = sinf
where,
0 = angle by which the axis is rotated about z-axis
Thus, the stress-strain relationship for angle ply with 6 degree fiber orientation in x-y co-
ordinate system is,
I“y] = (G2 %2 O Igy]
Fxy Q6 Q26 Qeel Vv

(4.7)
or

[U]x—y = [Q]x—y [S]x—y

4.2 Classical Lamination Theory (CLT):

The gist of classical lamination theory is described below. For thorough
understanding of CLT one can refer any textbook or reference books on the mechanics of
composite materials. The theory provided below is from Ref. [23] and [24]. CLT is
commonly used to analyze the behavior of laminated composite to evaluate str