
ENERGY-EFFICIENT PROTOCOLS AND SYSTEMS FOR

WIRELESS SENSOR NETWORKS AND

SMART ENVIRONMENTS

by

GIACOMO GHIDINI

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2012

Copyright c© by GIACOMO GHIDINI 2012

All Rights Reserved

To my family.

ACKNOWLEDGMENTS

During my graduate studies, I have been very fortunate to receive the constant

support of many great family, friends, and colleagues. Prof. Das has been a great

supervisor, and I especially appreciate how he has always known when to motivate

and push me, as well as when to let me search for the right path on my own. My

Ph.D. committee members are experts in their research areas, and I am very proud

to have discussed my research work with them. The Center for Research in Wireless

Mobility and Networking is a great community of researchers, and I am thankful to its

current and past members, as well as all the visitors who have shared their knowledge

with us during seminars and meetings. The Department of Computer Science and

Engineering at UT Arlington is a great place to work at, and its faculty and staff

have always helped me sort out any issue related to my studies. Many other people

have played important roles in my graduate studies, and I would like to especially

thank Dr. Vipul Gupta of Oracle Labs. My family and friends deserve a lot of credit

for always being there for me: cheering me up when I was going through hard times,

as well as rejoicing at my achievements. It is thank to all these great people that I

was able to achieve my research goals and graduate from the Ph.D. program.

November 12, 2012

iv

ABSTRACT

ENERGY-EFFICIENT PROTOCOLS AND SYSTEMS FOR

WIRELESS SENSOR NETWORKS AND

SMART ENVIRONMENTS

GIACOMO GHIDINI

The University of Texas at Arlington, 2012

Supervising Professor: Sajal K. Das

In a wireless sensor network, small computing devices, called sensors, sense the

surrounding environment and relay the sensed data to a base station over a multi-hop

wireless network, eventually processing them en-route. Wireless sensor networks and

other devices, such as smartphones, smart meters, and smart appliances, cooperate

in smart environments to obtain information about the environment, and then use

this information to improve the experience of the users. Since most of these systems

rely on battery power, there is a need for energy-efficient solutions for their operation.

The objective of this dissertation is to design algorithms and protocols to improve

the energy efficiency of such systems, and validate them using mathematical analysis,

software simulations, and testbed experiments.

In the first part of the dissertation, we look at two fundamental problems in

wireless sensor networks: localization and duty cycling. In the area of localization,

we describe a novel protocol for duty cycling wireless actor and sensor networks, and

present a mathematical analysis based on the coupon collector’s problem and the the-

v

ory of coverage processes, as well as simulation results. Our analysis and results show

that the proposed protocol achieves the user-requested localization accuracy while

maximizing the sleep time of sensor nodes. As far as duty cycling is concerned, we

present novel Markov chain-based randomized schemes, and discuss the probabilis-

tic analysis, as well as the experiments we conducted on Sun SPOT sensors. These

results show that our proposed schemes reduce the sleep latency, while not affecting

other performance metrics such as the energy efficiency, or vice versa.

In the second part of the dissertation, we shift our focus to smart environments,

and present our research work on data fusion and visualization aimed to provide lay

users with actionable information. We introduce a framework, called FuseViz, to

leverage already existing data sources such as smartphones, online databases and ser-

vices, and wireless sensor networks, while addressing the challenges posed by large,

live, heterogeneous, and autonomous data streams. We demonstrate the concepts

behind our framework with a case study in building energy efficiency, and introduce

E2Home, a Web-based application for this problem developed on top of the frame-

work. Preliminary experiment results for the proposed E2Home system not only

show that the actionable information can be easily computed, but also demonstrate

energy savings of about 10%. Finally, we conclude our dissertation with an overview

of a system-level energy model, built using data from the above-mentioned sources,

that can be tailored for each home, its location, and residents, and can help further

minimize energy consumption.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS . iv

ABSTRACT . v

LIST OF ILLUSTRATIONS . xi

LIST OF TABLES . xiv

Chapter Page

1. INTRODUCTION . 1

2. AN INTRODUCTION TO WIRELESS SENSOR NETWORKS AND

THE COMMUNICATION STACK . 4

2.1 MAC Layer . 6

2.1.1 MAC Protocol Classes . 7

2.2 Network Layer . 12

2.2.1 IPv6 in Low-Power Wireless Personal Area Networks 13

2.2.2 The Routing Protocol for

Low Power and Lossy Networks (RPL) 14

2.2.3 RPL Implementations . 16

2.2.4 RPL Analyzes . 18

2.3 Application Layer . 21

2.3.1 The Constrained Application Protocol (CoAP) 22

2.3.2 CoAP Implementations . 25

2.3.3 Internetworking Between HTTP and CoAP 28

2.4 Discussion . 28

2.4.1 MAC Layer . 29

vii

2.4.2 Network Layer . 31

2.4.3 Application Layer . 32

2.5 Summary . 34

3. A SEMI-DISTRIBUTED LOCALIZATION PROTOCOL FOR

WIRELESS SENSOR AND ACTOR NETWORKS 36

3.1 Related Work . 39

3.1.1 Our Contributions . 41

3.2 Models . 43

3.2.1 Virtual Infrastructure . 43

3.2.2 Actor Communications . 44

3.2.3 Sensor Communications . 45

3.2.4 Working (or Sleep-Awake) Schedules 47

3.2.5 Deployment Model . 48

3.3 Localization Protocol . 48

3.3.1 Sensor and Actor Algorithms 49

3.3.2 Analysis of Localization Protocol 54

3.3.3 Simulation Results . 67

3.4 Summary . 71

4. ENERGY-EFFICIENT MARKOV CHAIN-BASED

DUTY CYCLING SCHEMES . 73

4.1 Motivation and Preliminary Experiments 76

4.1.1 Randomized Scheme Model 77

4.1.2 Aggregate Duty Cycle . 78

4.1.3 Connection Delay . 78

4.1.4 Connection Duration . 81

4.1.5 Time and Energy Efficiency 81

viii

4.1.6 Rationale Behind Markov Chain-based Scheme 84

4.2 Markov Chain-based Duty Cycling Scheme 86

4.3 Analysis of Markov Chain-based Randomized Scheme 89

4.3.1 Assumptions and Pairwise Markov Chain Model 90

4.3.2 Aggregate Duty Cycle . 91

4.3.3 Connection Delay . 92

4.3.4 Connection Duration . 95

4.3.5 Time Efficiency . 96

4.4 Experimental Results for Randomized Scheme 99

4.5 Related Work . 103

4.6 Summary . 105

5. MARKOV CHAIN-BASED PARTIALLY RANDOMIZED

DUTY CYCLING SCHEMES . 107

5.1 Partially Randomized Markov Chain-based Duty Cycling Schemes . . 108

5.2 Analysis of Partially Randomized Duty Cycling Scheme 109

5.2.1 Assumptions and Pairwise Markov Chain Model 109

5.2.2 Aggregate Duty Cycle . 111

5.2.3 Connection Delay . 112

5.2.4 Connection Duration . 114

5.2.5 Time Efficiency . 115

5.3 Experimental Results for Partially Randomized Scheme 118

5.4 Comparison of Randomized Schemes 122

5.5 Optimal Duty Cycling for Wireless Sensor Networks 124

5.6 Summary . 126

6. FuseViz: A FRAMEWORK FOR WEB-BASED DATA FUSION AND

VISUALIZATION IN SMART ENVIRONMENTS 127

ix

6.1 Related Work . 132

6.2 Requirements and Challenges . 134

6.3 Proposed FuseViz Framework . 136

6.3.1 Architecture . 137

6.3.2 Application . 144

6.3.3 Implementation . 144

6.4 Case Study: E2Home . 145

6.5 Discussion . 150

6.6 Summary . 153

7. CONCLUSIONS . 155

REFERENCES . 157

BIOGRAPHICAL STATEMENT . 170

x

LIST OF ILLUSTRATIONS

Figure Page

1.1 Sample wireless sensor network . 2

1.2 Scenario and research work . 3

2.1 Internet and WSN communication stacks 6

2.2 Sample scheduled MAC protocol . 9

2.3 Example of schedule distribution in SMAC 10

2.4 Example of preamble sampling-based MAC protocol 11

2.5 Directed acyclic graph constructed by RPL 15

2.6 Unicast routing with RPL . 17

2.7 Internetworking between the Internet and WSN 22

2.8 ReSTful networking between Internet device and sensor node 23

2.9 Examples of exchanges between CoAP client and server 24

2.10 Dynamic selection of MAC protocol 30

3.1 WSAN scenario . 37

3.2 Duty cycling WSAN . 39

3.3 Example of coordinate polar system on top of WSAN 40

3.4 Virtual infrastructure for WSAN . 43

3.5 Analytical results for varying number of coronas 64

3.6 Analytical results for varying duty cycle 65

3.7 Analytical and experimental results for varying number of coronas . . 68

3.8 Analytical and experimental results for varying duty cycle 69

3.9 Experimental results for seeds, trained, and mistrained sensors 70

xi

3.10 Analytical and experimental results for varying number of coronas with

suboptimal density . 70

3.11 Experimental results for varying number of coronas and density . . . 71

4.1 Block diagram for randomized scheme operation 77

4.2 Sample random working schedules . 79

4.3 Experimental results for randomized scheme with i.i.d. r. v.’s 80

4.4 Ideal and real duty cycling transitions 82

4.5 Problem space for Markov chain-based duty cycling 85

4.6 Markov chain used in duty cycling scheme 87

4.7 Pairwise Markov chain model for randomized scheme 90

4.8 Analytical and experimental results for scheme with i.i.d. r.v.’s 95

4.9 Experimental results for Markov chain-based duty cycling scheme . . 101

5.1 Block diagram for partially randomized scheme operation 108

5.2 Pairwise Markov chain model for partially randomized scheme 111

5.3 Analytical and experimental results for partially randomized scheme

with i.i.d. r.v.’s . 113

5.4 Equivalent Markov chain model for computation of time efficiency in

partially randomized scheme . 116

5.5 Experimental results for Markov chain-based partially randomized duty

cycling scheme . 120

5.6 Comparison of analytical results for randomized and partially random-

ized duty cycling schemes . 124

6.1 Smart environment scenario . 127

6.2 DIKW pyramid and the FuseViz framework 131

6.3 Architecture of FuseViz-based application 138

6.4 Architecture of data visualization subsystem 143

xii

6.5 Architecture of E2Home application 146

6.6 JSON documents in the E2Home app 148

6.7 Brush-and-linking on E2Home data 149

6.8 Observed energy consumption 08/24/2011 – 09/30/2011 151

6.9 Projected energy consumption 08/24/2011 – 09/30/2011 152

xiii

LIST OF TABLES

Table Page

3.1 Values of cp and cq when L = 8. 61

4.1 Examples of different Markov chain transition probabilities yielding

same duty cycle . 88

4.2 Experimental results for Markov chain-based randomized duty cycling

scheme . 102

5.1 Experimental results for Markov chain-based partially randomized duty

cycling scheme . 121

6.1 Electric energy consumption 08/24/2011 – 09/30/2011 151

xiv

CHAPTER 1

INTRODUCTION

A wireless sensor network (WSN), depicted in Figure 1.1, consists of a set

of sensor nodes, small battery-powered computing devices connected via a multi-

hop wireless network [1, 2]. These nodes, also called sensors or motes, measure

physical quantities of the surrounding environments using on-board sensors. Thanks

to advances in micro-electronic mechanical systems (MEMS), there exist small form-

factor sensors to measure a wide array of physical quantities: from temperature to

humidity, from strain to electromagnetic field, to name a few. These analog data

are then converted to digital values and relayed to the base station, or sink, along

a multi-hop route formed by the motes in the wireless network. These data may be

stored in memory at the source node, en route, or the base station, and processed by

these nodes, in order to remove redundancy or noise, add error correction, or verify

authenticity. Once the data reach the base station, they may be used to monitor

the environment in which the WSN is deployed, build a model thereof, and make

decisions as to what actions need be taken by actuators or humans. As such, WSNs

have a wide range of applications from wildlife [3] and structural health monitoring

[4] to traffic management [5] and industrial processes [5].

In a smart environment, advanced sensing, computing, and communications are

employed to bring intelligence in the physical environment to the advantage of the

users. Among the many technologies used in smart environments, wireless sensor

networks play a key role due to their ability to sense potentially large areas at a fine

1

Figure 1.1. A wireless sensor network consisting of motes connected to a base station
via a multi-hop wireless network.

temporal and spatial resolution, and make the (aggregated) information available to

the users themselves, as well as artificial intelligence and control systems.

This dissertation presents our research work in the areas of wireless sensor

networks and smart environments. Figure 1.2 offers a visual summary of the research

work presented in this dissertation. Our research focuses mainly on the design and

analysis of energy-efficient protocols and systems for WSNs and smart environments.

Before presenting our research work, we survey state-of-the-art research in wireless

sensor networks with a special focus on the communication stack and the standards

developed by the Institute of Electrical and Electronics Engineers (IEEE) and the

Internet Engineering Task Force (IETF) in Ch. 2.

In Ch. 3, we introduce an improved version of a localization protocol for wireless

sensor and actor networks, and discuss its performance by means of our mathematical

analysis based on results for the coupon collector’s problem and the theory of coverage

processes, and simulation results. The mathematical analysis, also validated by the

simulation results, shows that the proposed algorithm can successfully localize the

desired share of sensors in the network with minimum operations of these energy-

constrained devices.

2

Figure 1.2. Scenario and research work.

In Ch. 4 and Ch. 5, we present our proposed Markov chain-based random-

ized schemes for increased duty cycling energy efficiency in wireless sensor networks,

and discuss their performance using our analysis based on probability theory and

experimental results for Sun SPOTs. We prove mathematically and demonstrate ex-

perimentally that the energy efficiency of randomized duty cycling schemes can be

improved using our Markov chain-based solution while not negatively affecting other

performance metrics such as the connection delay.

In Ch. 6, we move from wireless sensor networks to smart environments and

look at the problem of leveraging present and future large, live, heterogeneous and

independent data sources for acquiring actionable information for lay users. We

demonstrate the feature of the proposed framework in E2Home, a Web-based system

for a case study in home energy efficiency. Initial experiments in homes show that

the contextual information provided by the E2Home system can help residents reduce

electricity consumption by more than 10%. Finally, in Ch. 7 we draw our conclusions

and suggest directions for future work.

3

CHAPTER 2

AN INTRODUCTION TO WIRELESS SENSOR NETWORKS AND

THE COMMUNICATION STACK

Given their nature as a direct connection between the physical and cyber worlds,

WSNs have potential applications in many diverse fields, and are one of the funda-

mental components to develop greener computing systems. In fact, one can imagine

that most problems humankind is facing could be addressed in a more precise and

(energy) efficient manner, if accurate data from the physical environment (be it a

forest hosting an endangered species, a crop needing the appropriate quantity of wa-

ter and fertilizers, or a freeway network often jammed by traffic) were available. So

far, WSNs have been applied in several areas, including natural environments [6],

rural areas [7], and urban domains [8]. Constraints on the motes due to the current

technology, such as battery lifetime, size of the devices, and manufacturing costs,

may temporarily delay the widespread application of WSNs to certain domains and

scenarios. While WSNs are a necessary component towards more energy efficient sys-

tems in many domains, it is also important that the WSN protocols and applications

be designed with energy efficiency as one of the driving objectives in order to make

the overall system greener.

In this chapter, we aim to provide an overview of state-of-the-art algorithms

and protocols for wireless sensor networks with a special focus on the communication

stack1. In all distributed systems, the protocols for the communication stack play

1The research work presented in this chapter is under review for publication in Design Technolo-

gies for Green and Sustainable Computing Systems [9].

4

a vital role by enabling interoperability of different subsystems. In wireless sensor

networks, the communication stack is even more important because it accounts for

the largest share of energy consumption in many application scenarios, and thus well-

designed, energy-efficient protocols have a strong impact on the overall lifetime of the

WSN.

In the past decade, several organizations, including the Institute of Electrical

and Electronics Engineers (IEEE) and the Internet Engineering Task Force (IETF),

have defined standards for physical layer, MAC layer, and network layer. In particu-

lar, we observe a trend towards the adoption of IEEE 802.15.4 [10] for physical (PHY)

and medium access control (MAC) layers, and IETF 6LoWPAN [11, 12] as the IPv6

protocol at the network layer. Standards for routing and ReSTful communication are

also being proposed within the IETF. The IETF Routing over Low Power and Lossy

Networks (RoLL) working group (WG) is developing the Routing Protocol for LLNs

(RPL) [13], a standard for routing in WSNs, while the Constrained ReSTful Envi-

ronments (CoRE) [14] is developing the Constrained Application Protocol (CoAP), a

standard for ReSTful communication with WSNs. Figure 2.1 displays these protocols

side-by-side with the corresponding ones already being used in the Internet.

We argue that it is important to provide an overview of the existing and pro-

posed standards and their implementations not limiting the analysis to one layer, but

rather discussing them as part of this developing communication stack for WSNs. To

this extent, in our presentation of state-of-the-art solutions and proposed standards

we attempt to bring to the foreground the interdependencies between different layers

and the implications that design decisions at one layer have on the performance at

other ones. Ultimately, our analysis of the communication stack is aimed to help

researchers who are new to the area of WSN communications understand its overall

5

functioning, while also offering to more seasoned researchers an insight into protocols

at different layers and the interplay among them.

Figure 2.1. Comparison of the communication stacks used in the Internet and in
WSNs.

The rest of the chapter is organized as follows. In Section 2.1, we review the

different classes of MAC protocols, and describe the major features of IEEE 802.15.4.

In Section 2.2, we present 6LoWPAN and RPL, respectively the standards for IPv6

and routing in WSNs, and survey implementations and results. In Section 2.3, we

summarize the major features of CoAP, and then analyze recent evaluations of the

protocol. Finally, we draw our conclusions in Section 3.4.

2.1 MAC Layer

In a WSN, the MAC layer plays a vital role as it enables the actual commu-

nication among nodes over a common medium. As such, a MAC protocol is often

evaluated along several dimensions, including delay, throughput, and energy efficiency.

However, constraints such as scarce battery capacity, limited computational power,

and small memory size, make the design of MAC protocols that can perform well

with respect to the performance metrics very difficult. Finally, the diversity of traffic

6

patterns generated by applications in diverse domains further complicate the design

of a general, effective, and efficient MAC protocol for WSNs.

Likely because of the challenges discussed above, researchers have dedicated

a lot of efforts to developing MAC protocols that meet all the requirements. As a

results, dozens, if not hundreds, of MAC protocols have been proposed by the research

community in the past 15 years. In the past, and to a certain extent, still today,

authors tried to classify MAC protocols based on the technique that they employ to

coordinate access to a common medium by multiple nodes. These classifications are

often variations of the one considering reservation-based protocols, contention-based

protocols, and hybrid solutions. In this classification, reservation-based protocols

usually feature some form of time-division multiple access (TDMA) and/or frequency-

division multiple access (FDMA), while contention-based protocols are built around

ALOHA or carrier-sense multiple access (CSMA), and hybrid protocols feature a mix

of the two. The requirement for knowledge of the topology and strict synchronization

are among the major drawbacks of the first class of protocols (i.e., reservation-based).

Instead, the second class of protocols (i.e., contention-based) does not require this

information, but experiences degraded performance in case of heavy traffic load and

high energy consumption per bit (i.e., poor energy-efficiency) even in presence of light

traffic loads.

2.1.1 MAC Protocol Classes

Recently, [15] proposes a classification of MAC protocols based on traffic pat-

terns. The important assumption behind this classification is that the ultimate MAC

protocol for WSNs with optimal performance for all traffic loads does not exist. In-

stead, there exist MAC protocols that are optimal for certain classes of WSN traffic.

7

The authors first summarize the causes of wasteful energy consumption at the

MAC layer. In particular, they list: collisions, overhearing, overhead, and idle listen-

ing. Then they define three classes of traffic load: heavy, medium, and low. They

observe how certain kinds of wasteful energy consumption are more likely to arise in

presence of specific traffic loads. For instance, collisions are more common in case of

heavy traffic, while idle listening is usually a cause of wasteful energy consumption

in presence of light traffic. The authors then introduce three basic classes of MAC

protocols: scheduled protocols, common active period-based protocols, and preamble

sampling-based protocols. Hybrid protocols, such as IEEE 802.15.4, present features

of different classes, and thus are grouped in a separate class.

2.1.1.1 Schedule-based Protocols

In a scheduled protocol like TSMP [16], medium access is controlled by a sched-

ule in the time and/or frequency domains. In a first version, communication links

for each pair of neighboring nodes can be scheduled. Figure 2.2 portrays the commu-

nication between all pairs of nodes in a clique of four sensors. Alternatively, simply

the senders or the receivers can be scheduled. The first option performs very well

in presence of heavy traffic loads, but brings about major overhead since all pairs of

neighboring nodes must be scheduled a slot for communication. Overhead is reduced

by scheduling only senders or receivers, but other sources of wasteful energy con-

sumption become relevant. In the solution where senders are scheduled, all neighbors

have to listen to each sender, because the message may be addressed to them, thus

resulting in overhearing. If receivers are scheduled instead, collisions may occur, so

that this variant is not as effective in case of heavy traffic loads.

8

(a) t = 0 (b) t = 1 (c) t = 2

(d) t = 3 (e) t = 4 (f) t = 5

Figure 2.2. Sample scheduled MAC protocol. Black lines depict communication links;
and orange and blue arrows depict scheduled communication on two different channels
in (a) through (f) for time slots 0 through 5.

2.1.1.2 Common Active Period-based Protocols

The next class of MAC protocols is that of those based on common active

periods and targeted to medium traffic loads such as SMAC [17]. As depicted in

Figure 2.3, protocols in this class attempt to achieve a coarse synchronization between

the active periods of neighboring nodes, so that they can communicate during these

times, and turn off the radios at all other times. This is based on the assumption that

a medium traffic load can be taken care of during a fraction of the node lifetime, and

thus precious battery power can be saved by operating the radio only during these

times. In the common active periods, nodes usually operate according to a contention-

based mechanism such as CSMA to transmit their frames. In a common active period-

based protocol, schedules are distributed so that all neighbors turn on their radios at

the same time. As a result of this schedule distribution, clusters of nodes with the

9

same schedule can be formed. As depicted in Figure 2.3, in order to support inter-

cluster communication, certain nodes are required to keep their radio on according

to the union of all known schedules, and incur into higher energy consumption as a

result.

Figure 2.3. Example of schedule distribution in SMAC. Two different schedules (or-
ange and blue) are distributed to nodes, and eventually border nodes have to accept
both.

2.1.1.3 Preamble Sampling-based Protocols

In the third class of MAC protocols, targeted to low traffic loads, nodes use

preamble sampling to synchronize communications. In a preamble sampling-based

protocol such as the low-power listening (LPL) mechanism used in TinyOS and BMAC

[18], the sender transmits a beacon to announce that it has a message to relay to a

neighboring node. As depicted in Figure 2.4, all nodes periodically turn on their

radios for brief periods of time, and sample the channel looking for these beacons. If

such a beacon is received, then the node keeps its radio on and waits for the actual

transmission from the sender. There exist several variations of this basic mode of

10

operations. For instance, synchronization information can be piggybacked on the

beacon like in WiseMAC [19], so that the potential receivers do not have to keep

their radios on, but rather can turn them off and then turn them on again at the time

of communication as announced by the sender. In other protocols such as X-MAC

[20], senders transmit the beacon in periodic short preambles instead of a single long

one, so that receivers can acknowledge the reception of the preamble without waiting

for its end. Finally, in a reversal of the original protocol, receivers may transmit the

beacon to initiate transmission from the senders as it is the case in RICER [21].

Figure 2.4. Example of preamble sampling-based MAC protocol.

2.1.1.4 Hybrid Protocols

Besides the three classes described above, there exist also hybrid MAC pro-

tocols. The objective of these protocols is to optimize performance across different

traffic loads. To achieve this goal, hybrid protocols employ several techniques. For

instance, they may rely on flexible MAC frame structure like IEEE 802.15.4, so that

different modes of operation can be applied. In particular, the non-beacon mode of

this standard protocol is basically a CSMA with collision avoidance (CSMA/CA).

Instead, in the beacon-enabled mode so-called collision free period (CFPs) may be

scheduled by the coordinator for specific nodes, while CSMA is still available for the

rest of the time. Another solution is to blend a reservation-based protocol with a

11

contention-based mechanism. In a hybrid protocol like ZMAC [22], nodes operate ac-

cording to CSMA whenever traffic load is light, but can set up a schedule and switch

to TDMA when they observe heavier traffic. Finally, in protocols such as Funneling

MAC [23], nodes can operate according to a contention-based mechanism if they are

further away from the sink where traffic load is low, and use reservation-based tech-

niques if they are in the surroundings of the sink, where convergecast traffic brings

about heavier loads.

2.2 Network Layer

In the past several decades, the Internet has thrived also thank to the avail-

ability of IP (the Internet Protocol) across different devices and networks. There is

widespread agreement within the WSN research community that WSNs and other

constrained networks will fulfill their potential, if they can seamless interoperate with

the Internet. In order to enable seamless internetworking not requiring complex gate-

ways between the Internet and constrained networks such as WSNs, it is necessary to

bring the Internet network layer protocols to these novel networks. However, WSN

specific features such as limited battery power and memory size make the direct

implementation of network layer protocols for sensor nodes impossible. For this rea-

son, several organizations, including the IETF, have embarked on projects to design

network layer protocols that enable efficient operation of WSNs and straightforward

internetworking between these and the broader Internet. As far as the IETF is con-

cerned, the two major standard efforts are the 6LoWPAN WG with its IPv6-like

protocol, and the RoLL WG with its RPL routing protocol, both depicted in Figure

2.1. In this section, we briefly introduce 6LoWPAN and then focus our attention on

the RPL routing protocol.

12

2.2.1 IPv6 in Low-Power Wireless Personal Area Networks

After approximately a decade of very active research in WSNs, the IETF char-

tered the 6LoWPAN working group to develop an IPv6-like protocol for these con-

strained networks using IEEE 802.15.4 at the physical and MAC layers. In order to

be IPv6-compatible and work on top of IEEE 802.15.4, 6LoWPAN has to implement

fragmentation, since IEEE 802.15.4 PHY frames have a maximum payload of 127

bytes, whereas IPv6 requires a 1280-byte minimum MTU. The standard implements

fragmentation using a 3-field fragmentation header. Besides a tag field for keeping

track of the IPv6 packet the fragment belongs to and an offset field to keep track of

its position within the IPv6 packet, 6LoWPAN also tracks the datagram size with an

additional fragmentation header field as this is useful to pre-allocate a buffer of the

appropriate size on resource-constrained nodes [24].

Since IEEE 802.15.4 PHY frame payload is only 127 bytes long and MAC

headers use up several of them, as many as possible of the approximately 80 remaining

bytes should be dedicated to carry the IPv6 payload, not the header fields. For

this reason, 6LoWPAN performs stateless header compression. The adopted solution

is stateless to minimize complexity on resource-constrained nodes, and is based on

assigning short representations for common values in header fields while removing

redundant information at the link, network, and transport layers [24]. 6LoWPAN

also uses assumptions on the link layer, such as that IPv6 addresses are derived from

MAC layer ones, to implement the IPv6 neighbor discovery protocol [24] for WSNs.

Thanks to its support of fragmentation, header compression, and simplified neighbor

discovery mechanism, 6LoWPAN is a viable solution for IPv6-based networking in

WSNs. As 6LoWPAN moved through the standardization process, the need for an

effort to standardize a protocol to route 6LoWPAN packets became more relevant,

and the IETF RoLL working group was chartered.

13

2.2.2 The Routing Protocol for Low Power and Lossy Networks (RPL)

RPL is the routing protocol for low power and lossy networks under development

within the IETF RoLL WG. The working group defined four different application do-

mains for this distance vector protocol: urban environments, industrial networks,

home automation, and building automation [24]. As a consequence of the selected

application areas, the protocol is optimized for convergecast, supports multicast, and

makes unicast communications also possible [25]. In the current version of the proto-

col, there is no direct support for mobility [25]. Similar to what happened within the

6LoWPAN working group, the IETF RoLL WG had to make decisions as to what

would be the most important use cases and scenarios. The decision to primarily tar-

get convergecast and not to support directly mobility are rooted in the analysis of the

application scenarios and the need to limit the complexity and footprint of the pro-

tocol, so that it can be adopted in novel products and applications. The correctness

of these design decisions is being validated during the standardization process, and

will be put to the ultimate test when the standard is released and made available to

be used in real-life applications.

2.2.2.1 RPL Basics

The protocol relies on an iterative process inspired by the Trickle algorithm [24]

featuring one-hop DODAG (destination-oriented directed acyclic graph) Information

Objects (DIOs) [25] used to propagate routing state. Instead of relying on a single

node to relay packets to the root, sensors feature a parent set to achieve resilience

to dynamically changing wireless links [24]. The actual next-hop neighbor is selected

based on the metrics in the objective function used in the current instance of RPL

[25]. RPL supports dynamic link metrics (for quality, latency, and throughput among

14

others) in DIO messages such as ETX (estimated number of transmissions for one-hop

packet transfer) [26] [24]. Figure 2.5 portrays a DAG constructed by RPL. The root

also uses DODAG Confirmation Objects (DCOs) to distribute root-defined network-

wide parameters [25], which are used for instance in the mechanism to repair loops.

Finally, optional security mechanism is proposed [24].

Figure 2.5. The directed acyclic graph constructed by RPL. Solid lines indicate the
currently selected next-hop on the route to the root, while the dashed lines show the
other nodes in the parent set.

2.2.2.2 Multicast and Unicast Communications

For multicast and unicast communications, RPL offers storing mode and non-

storing mode [25]. In storing mode, nodes keep track of the forwarding nodes to

all their descendants, so that they can re-route packets addressed to one of them,

thus lowering congestion near the root. However, storing mode incurs into a larger

memory footprint as nodes in the WSN must store the set of all their descendants as

well as the corresponding forwarding nodes. In non-storing mode, all packets have to

travel all the way to the root, which then source routes them to the destination. The

15

routes resulting from the two modes are depicted in Figure 2.6. The advantage of non-

storing mode is that nodes are relieved of the need to store information regarding their

descendants. Nevertheless, non-storing mode has to surrender in terms of bandwidth

and route length what it gains in terms of memory footprint. In fact, in a source

routing solution, information about all hops should be included in the packet header.

Since the IEEE 802.15.4 MAC frame allows approximately 80 bytes for its payload

and 6LoWPAN uses several of them for its other header fields, source routing can

be implemented over approximately 8 hops if uncompressed IPv6 addresses are used,

and still takes away valuable payload space for upper layer (i.e., UDP) datagrams.

For these reasons, we expect RPL instances to rely on storing mode more and more

as memory size on resource-constrained devices slowly increases. Mixed operation

with a subset of nodes using storing mode and the rest using non-storing mode is not

supported [24].

2.2.3 RPL Implementations

In [27], the TinyRPL implementation of RPL and Collection Tree Protocol

(CTP) [28] are evaluated by means of experiments on a testbed of 51 TelosB motes

using BLIP, the Berkeley Low-Power IP stack, as the IPv6 implementation, where

packets are generated every 5 and 10 seconds. Packet reception ratio is above 99.8%

for both RPL and CTP, and between 8-10 control packets per hour are generated

by each mote on average. The results also show that only 1.13 transmissions per

hop and 1.86 end-to-end transmissions are required by TinyRPL. Unfortunately, the

relevance of these results is hampered by the fact that no information is provided

about the network topology, such as the average hop length of routes, on which they

were collected. The authors also test the performance of bi-directional links set up

by RPL, and show that a PC on the Internet sending requests to RPL motes through

16

the edge router receives a response approximately 98% of the times. These results

on round-trip packet reception ratio seem to disprove the claim in [25] discussed

previously that the RPL mechanism for route construction does not select reliable bi-

directional links. Finally, the authors make several suggestions for the improvement

of the standard and its implementation, including a stricter definition for Trickle

(a) Non-storing mode

(b) Storing mode

Figure 2.6. Unicast routing with RPL. In (a) non-storing mode, the packet is routed
all the way to the root, whereas in (b) storing mode it is routed only up to the first
common ancestor.

17

timer reset, trade-off solutions between storing and non-storing modes, and IPv6

fragmentation.

In [29], the authors present ContikiRPL, an implementation of RPL for Contiki

OS, and discuss the results of simulations and experiments. According to the results,

the ContikiRPL implementation uses approximately 3 KB ROM and 800 B RAM,

which is more than an order of magnitude smaller than the 50 KB reported for it in

[25]. The results for energy efficiency are encouraging as all motes maintain a duty

cycle below 3% while generating 40 UDP packets per minute. However, similar to

other experimental setups, the network size is limited to a few dozens motes and no

information about the route hop length is provided.

2.2.4 RPL Analyzes

In [30], the authors survey the research work in the area of routing as it evolved

from mobile ad-hoc networks (MANETs) to WSNs. In particular, they detail flooding

protocols, clustering protocols, and geographical protocols, and then the so-called self-

organizing coordinate protocols. For each protocol class, the authors provide a brief

overview and describe its most relevant instances. They conclude their survey by

presenting RPL, an instance of gradient-based routing in the class of self-organizing

coordinate systems. Thanks to its chronological approach and classification of over

40 protocols in 4 well-defined classes, this survey offers a very good insight in the

research work in the area of routing for WSNs.

A detailed survey of RPL is performed in [31]. After describing the features

provided by RPL and the assumed network model, the authors present the mech-

anisms and messages used to build the routes from the root to the sensors (used

for multicast), and from the sensors to the root (used for convergecast). Unicast

between sensors is implemented by using these two sets of routes in what is called

18

dog-leg routing. The authors then present RPL mechanisms for route and loop repair,

discuss several objective functions (performance metrics) used to provide QoS, and

summarize security support in RPL.

RPL is experimentally evaluated on a small TelosB testbed running ContikiRPL

with the Minimum Rank with Hysteresis Objective Function (MRHOF) and ETX.

The results show that DODAG construction may take several minutes in a WSN

of 30 nodes between 1 and 4 hops apart. The authors also measure an average

power consumption of 2.2 mW during the construction of the DODAG in such a

network. A packet loss ratio of 20% is observed when the RPL routes are used for

multi-hop communications. The authors argue that other metrics may yield a better

performance than ETX. Overall, they are satisfied with packet delays of 2.5 s in the

4-hop network. Finally, the performance of the reactive mechanism used for fault

detection is also tested.

After reporting on these experiments, the authors describe other existing rout-

ing protocols and compare them to RPL. They also survey simulation and experiment

results obtained by other researchers using several implementations, including Con-

tikiRPL and TinyRPL. Finally, they point out some of the open issues in RPL,

including the definition of appropriate objective functions and security mechanisms.

In [24], an overview of 6LoWPAN and RPL is presented. The survey first recaps

how the research community did not consider the Internet architecture as a viable so-

lution for communication in WSNs, thus developing many interesting, but also usually

non-interoperable, ideas. It is argued that the push for the implementation of smart

grids and home area networks for which WSNs are a core component prompted the

adoption of the Internet architecture in WSNs. After this shift in opinion within the

research community, the IETF chartered two working groups to define standards for

IPv6 (6LoWPAN) and routing (RoLL) in these low-power and lossy networks, whose

19

efforts and proposed standards are then described. The survey also briefly describes

BLIP 2.0 and TinyRPL, resp. the 6LoWPAN and RPL implementations for TinyOS.

According to the authors, TinyRPL with non-storing mode (the implementation with

highest memory requirements) uses approximately 9 KB ROM and 300 B RAM, thus

being much smaller than ContikiRPL, which uses approximately 50 KB of memory

according to [25].

In [25], a critique of the current version of RPL is offered. The protocol is first

described, and then analyzed by the researchers who eventually support their state-

ments with simulation and/or experiment results, whenever feasible. It is pointed out

that traffic patterns other than convergecast are also common in certain application

scenarios such as building automation, but RPL has limited support for them. Fur-

thermore, complex metrics may bring about IP fragmentation as the ICMPv6 packets

carrying RPL control messages may be larger than the approximately 80 bytes al-

lowed by IPv6 on IEEE 802.15.4. Data traffic routed using RPL in non-storing mode

may also risk fragmentation, as the route needs to be incorporated in the message.

With respect to storing and non-storing modes to support downward routes, it is

observed that storing mode limits the route length to 64 hops if IP fragmentation is

to be avoided, while the non-storing mode restricts the network size to a few dozen

devices as the ones near the root need to store paths to a large subset of the WSN

in their limited memory. A proposed solution to this issue when operating in storing

mode consists in assigning IP addresses in the sub-tree in a hierarchical fashion as it

is the case in the Internet. However, this solution limits the ability of RPL routers to

change preferred parent, as all the neighbors featuring in the parent set should share

a common parent for the IP address hierarchy to be maintained.

As far as bidirectional links are concerned, it is argued that selecting a preferred

parent based on the link quality from it to the RPL router may not be the optimal

20

solution as the quality of the link in the opposite direction may be very different. Fur-

thermore, the Neighbor Unreachability Detection (NUD) mechanism proposed with

RPL may be unable to detect whether the problem is indeed at this link and not

farther away along the route, and to do so in a timely manner. The authors also

criticize the complexity of RPL, and claim that most implementations will not be

interoperable as they will have to pick a feature subset (as it is already the case for

ContikiRPL [29]) in order to limit the memory footprint. They also criticize an insuf-

ficiently detailed specification, such as in the case of DAO message timing, which may

lead to poor performance, and warn against Trickle performance in real-life WSNs,

as its convergence is not as fast as stated by simulation results. While conceding that

the RPL mechanism to support convergecast is elegant and well-understood, [25] also

points out that reactive loop repair in RPL brings about potentially unacceptable

delays and eventually packet losses if not all messages can be buffered at the RPL

router while the loop is repaired. Furthermore, [25] also argues that mechanisms to

enable unicast communication are underspecified and are likely to bring about IP

fragmentation or require lots of memory for storing routes.

2.3 Application Layer

The World Wide Web is arguably one of the most successful applications en-

abled by the Internet. Among the several technologies making up what we call the

Web, there are three fundamental ones: the HyperText Markup Language (HTML),

the Hypertext Transfer Protocol (HTTP), and uniform resource identifiers (URIs). As

discussed in [32, 33], HTTP implements the so-called representational state transfer

(ReST) architecture thanks to which resources (often consisting of HTML-formatted

data) are accessed via their URIs. In particular, ReSTful HTTP enables interaction

with remote resources identified by their URIs via four basic methods: PUT, GET,

21

POST, and DELETE, used to create, retrieve, update, and remove resources, respec-

tively. As the Internet of Things is slowly coming into being, researchers have started

to design and analyze mechanisms to bring the powerful ReSTful paradigm to this

new Internet that could potentially connect billions of devices across the world.

2.3.1 The Constrained Application Protocol (CoAP)

The Constrained Application Protocol is an application layer protocol that

brings the ReST programming model of the Web to the Internet of Things and its

embedded devices. Similar to HTTP, CoAP implements the four request methods of

ReST; and uses similar response codes. By implementing the same ReSTful archi-

tecture as HTTP, internetworking between Web clients and CoAP-enabled WSNs as

depicted in Figure 2.7 will be streamlined.

Figure 2.7. Internetworking via CoAP and HTTP between the Internet and WSNs.

As detailed in Figure 2.8, this will be made possible by using a simple gateway

or proxy. In order to reduce complexity, CoAP relies on UDP instead of TCP, and

defines its own simple mechanism to manage packet losses and retransmissions.

Figure 2.9 portrays the sequence diagrams for communication modes provided

by CoAP. CoAP supports the transfer of large payloads such as it is the case when

22

Figure 2.8. ReSTful networking between Internet device and sensor node.

the application or the firmware on the embedded devices need to be updated. Large

payload transfer is achieved in CoAP by having multiple request-response exchanges

in the so-called block mode, thus avoiding solutions involving IP fragmentation under

UDP (although this is implemented by 6LoWPAN as described in Section 2.2), or

having a stateful CoAP server. CoAP also provides a push-based mechanism, called

observation, for monitoring a resource accessed via a GET request. In its GET

request, the client asks the server to send a response with the current version of a

resource not just once, but rather each time it changes. Finally, CoAP also addresses

problems related to resource discovery for machines by defining standard resource

paths on constrained devices.

In [34], the authors provide an introduction to the CoAP protocol. They first

point out how standardization efforts at the network layer have brought IPv6 to

WSNs (IETF 6LoWPAN), and are defining a common flexible routing protocol for

these networks (IETF RoLL). Then they argue that an application layer protocol is

needed that can support the growth of applications in the Internet of Things like

23

(a) Successful request-response exchange. (b) With packet loss and retransmission.

(c) Using separate responses. (d) In observation mode.

Figure 2.9. Examples of exchanges between CoAP client and server when (a) there
are no errors, (b) the packet is lost, (c) the response is delayed, and (d) observation
mode is active.

HTTP has supported the growth of the Web. After summarizing the features of

ReST, the programming model underlying the Web, the authors introduce CoAP,

discussing internetworking with HTTP, and block transfer, resource observation, re-

source discovery, and security in the protocol. An earlier introduction to CoAP by

one of the authors of [34] is provided in [35].

24

In [36], the authors initially summarize the major features and issues in the

Internet of Things that led to the design of CoAP, and offer a brief overview thereof.

The rest of the survey presents and discusses the state-of-the-art of research on CoAP

in several areas: performance evaluation, comparison between CoAP-over-HTTP and

SOAP-based CoAP, tools and frameworks to ease development and usage of CoAP,

solutions for network configuration and service discovery, and applications to build-

ing management and the smart grid. After listing CoAP-related applications and

libraries, the authors point out that support for quality of service is missing in CoAP,

and argue that the dominant design for the Internet of Things (i.e., what combination

of CoAP, SOAP, JSON, EXI, etc.) has not arisen yet.

2.3.2 CoAP Implementations

In [37], an implementation of CoAP for ContikiOS is presented. By relying on

ContikiMAC [38], a sampling-based MAC layer protocol, it is possible to deploy an

energy-efficient CoAP-enabled WSN. After summarizing MAC protocols with duty

cycling and CoAP, the authors report on their implementation of CoAP for Con-

tikiOS. This implementation provides all the protocol’s major features, including

block-wise transfer, resource observation, resource discovery, and separate response

mechanism.

The authors run experiments on a linear 4-hop TmoteSky WSN with IEEE

802.15.4 and 6LoWPAN. The experiments show that energy-efficient operation of the

CoAP-enabled WSN can be achieved simply by using an energy efficient protocol,

in this case ContikiMAC, at the MAC layer without any changes to the application

layer. In fact, the CoAP-enabled WSN can operate at a duty cycle around 1%, thus

saving precious battery power, while latency is only lightly affected. However, the

results also show that the rate of increase in latency for a CoAP exchange is higher

25

when a duty cycling MAC protocol is used. This implies that simply relying on a

duty cycling MAC for energy efficiency may result in very high latency, if the route

consists of more than just a few hops as in this experimental setup.

The authors also demonstrate how ContikiMAC can help limit latency in case

of block-wise transfer or 6LoWPAN fragmentation for large CoAP payloads. In Con-

tikiMAC, a sensor achieves this by signaling its next-hop neighbor that it will be

sending a link-layer burst, i.e., a series of frames, so that the neighbor stays awake

and is ready to receive them right away without going through the channel sampling

stage again.

In [39], an implementation of CoAP for TinyOS and Contiki is presented, along

with its application to monitor a container and its content. After introducing the

application scenario and the major features of CoAP, the authors describe libcoap,

their C implementation of the protocol. As such it can be readily used for the com-

munication between the WSN and the backend, thus reducing the amount of data

to be transferred over a satellite or cellular link. In order to use the CoAP library

on more constrained embedded devices, it had to be stripped of some features when

it was being ported to ContikiOS and TinyOS. Unfortunately, the authors do not

evaluate the performance of the proposed CoAP library over a multi-hop network,

but just test it over a two-node TelosB WSN. Instead, to evaluate the proposed CoAP

library, the authors compare the latency and amount of data transferred over a GPRS

network, which has a round-trip time similar to that of a WSN, when using CoAP

and different HTTP settings, including one with bare HTTP server and client over

UDP. The results show that CoAP requires 107 bytes and 1.029 seconds, while bare

HTTP over TCP uses 885 bytes and 3.076 seconds.

Another comparison of CoAP and HTTP is presented in [40]. The authors

first recap the adoption and adaptation of IPv6 as the standard network protocol

26

in WSNs, and the ReSTful programming model. They then proceed to introduce

two alternative stacks on top of 6LoWPAN, the IPv6 standard for embedded devices.

One stack features TCP and HTTP similar to what is found in the Internet, while

the other one uses UDP and CoAP. The two stacks are implemented in ContikiOS,

and the authors use libcoap [39] and cURL (http://curl.haxx.se) as the respective

clients to access resources on motes. In these experiments, the server and client are

only one hop away from each other. The results show that CoAP exchanges consist

of approximately between 10-20% as many bytes as HTTP ones, which is consistent

with results presented in [39]. Furthermore, the authors also perform experiments

using the Cooja simulator for Contiki to measure the energy consumption associated

with the two stacks. The greater amount of bytes exchanged when using HTTP turns

into a greater energy consumption for this protocol over CoAP. Preliminary results

for transferred bytes and energy consumption were presented in [41]. The authors also

perform simulations for varying request inter-arrival time and find that the energy

consumption when using CoAP is not affected when requests become more frequent

as it is the case for HTTP. However, the discussion of these specific results does not

seem to be convincing. Finally, experiments on one-hop and two-hop routes confirm

that CoAP achieves much shorter latency than HTTP.

CoAPP, an implementation of CoAP for TinyOS, is presented in [42]. Both

server and client interfaces are provided in the CoAPP component with TinyOS com-

mands in the client triggering TinyOS events in the server, and vice versa. Experi-

ments show that 20 servers on a MEMSIC TelosB can successfully serve 90% of the

50 requests per second sent by another TelosB. Therefore, the proposed CoAP server

and client implementation is deemed to be effective and scale well. The authors

also implemented a library to support the encoding and decoding of XML docu-

ments into and from EXI data streams. For the EXI processing library to be used

27

on resource-constrained microcontroller such as the Texas Instruments MSP430, the

XML schemas need to be pre-processed into a set of grammars and data structures.

Experiments show that the proposed EXI library is very efficient as the size of the

output EXI data stream is usually around 10% of that of the original XML document

containing sensor data, if a byte-aligned schema is used.

2.3.3 Internetworking Between HTTP and CoAP

A gateway and a proxy for ReSTful internetworking of CoAP and HTTP are

introduced in [43]. A preliminary design of the gateway was presented in [41]. The

proposed gateway consists of a Web server that presents a HTTP interface to the

Web client and a CoAP client running ContikiOS that interacts with CoAP-enabled

devices in the WSN. Web clients, such as browsers, are unaware of CoAP, and retrieve

data from the WSN by connecting via HTTP to the Web server. The Web server

then retrieves cached data from a database (Apache CouchDB [44] in this case), or

uses the CoAP client to pull data from the deployed sensors.

Since a HTTP/CoAP gateway is a complex system, the authors also propose a

simple HTTP-CoAP proxy. Given that both HTTP and CoAP implement the ReST

programming model, the development of a HTTP-CoAP proxy is relatively straight-

forward. In fact, the proposed proxy offers a fully transparent protocol-agnostic

resource access, so that any Web client can access a WSN using HTTP using this

proxy. While the authors state that the proposed proxy does not implement resource

observation, they do not list which other features have been implemented.

2.4 Discussion

Although research work on the MAC, network, and application layers of the

wireless communication stack for WSN has brought about several important results,

28

there are still several open problems in this area of research. In the rest of this section,

we break down the discussion of the communication stack along the each layer and

point out several open issues and problems for each one of the surveyed layers.

2.4.1 MAC Layer

At the MAC, many protocols for each one of the traffic classes have been pro-

posed. As far as the MAC layer is concerned, an interesting question is whether

the flexibility offered by IEEE 802.15.4 is sufficient for the diverse WSN applications

looming ahead. In particular, it will be important to establish whether this standard

MAC protocol can meet the requirements in terms of network lifetime for environ-

mental monitoring applications, as well as the requirements in terms of delay and

throughput of industrial applications. If research prototypes, but even more so, com-

mercial applications demonstrate the effectiveness of IEEE 802.15.4 to achieve these

different and conflicting objectives, then the standard will be widely adopted. Oth-

erwise, there is the risk of a fragmentation in terms of the adopted MAC protocols.

In that case, it may be beneficial to revisit the standard and define a more flexible

solution such that nodes in a WSN, or a subnetwork thereof, can switch to the op-

timal operating mode within the standard for the current traffic load, be it heavy,

medium, or light. Given the diversity of real-life application scenarios, we would not

be surprised if they required performance levels beyond those achievable with IEEE

802.15.4.

Independent of the potential need for a more flexible standard MAC protocol,

there is another important question regarding MAC protocols that has not been fully

answered yet. Although MAC protocol classes have been defined for different traffic

loads, there is no algorithm that can select the optimal MAC protocol given the

observed traffic in a WSN. Such an algorithm should take into consideration the

29

characteristics of the traffic. The algorithm could be employed not only for network-

wide pre-deployment MAC protocol selection, but also for dynamic changes both in

space and time. For instance, a preamble sampling-based protocol could be initially

selected for the WSN, while a subnetwork may switch to a scheduled protocol later

on to carry heavy traffic loads in a more energy-efficient manner than the original

protocol. This behavior is portrayed in Figure 2.10. Although there exist hybrid

protocols and solutions that offer a simple version of this (e.g., Funneling MAC [23]

with TDMA in subnetwork near the sink and CSMA in rest of the WSN), they address

special situations, and do not provide a mathematical proof of their performance. This

is undoubtedly a very complex problem, but advances in this area are likely to greatly

benefit WSN applications by improving most performance metrics, including delay,

throughput, and lifetime.

Figure 2.10. Example of dynamic MAC protocol selection for time-varying traffic
load.

30

Finally, IEEE 802.15.4 or any other proposed standard MAC protocol should

be extensively analyzed within the broader horizon of the communication stack. To

provide the necessary background, in the following sections we introduce and discuss

recent developments and advances at the network and application layers to help with

this task.

2.4.2 Network Layer

After more than a decade of research work in the very important area of routing

for WSNs, we are finally witnessing a strong effort by the IETF to design a standard

protocol. The slightly earlier definition of an IPv6-like protocol for the WSN network

layer, namely 6LoWPAN, gave the necessary boost for the chartering of IETF RoLL.

Unlike application-specific protocols such as the ones in the ZigBee or Z-Wave stacks,

RPL is designed to be deployed in several different scenarios, from home automation

to industrial environments. Given the important role of the network layer in the

Internet communication stack, it is instrumental for the growth of WSNs that the

protocol be not only appropriately timed, but also flexible enough to be used in more

than just one vertical market. For this reason, it is instrumental that open issues and

problems be addressed swiftly during the standardization process.

An important issue is the support of traffic beyond convergecast, in particular

unicast to nodes in the WSN. As we describe in more detail in Section 2.3, the Internet

of Things is thought of as an extension of the current Internet where data collected

from embedded devices such as sensor nodes can be remotely accessed via CoAP,

an application layer protocol similar to HTTP. In this scenario, there is a need for

requests to be sent through the WSN root over a multi-hop route to individual sensor

nodes. However, the current support for this kind of communications in WSN relies

on the storing or non-storing modes described above. Therefore, we argue that the

31

performance of RPL in storing and non-storing modes be more thoroughly evaluated

using CoAP traffic. Due to their shortcomings, it may be that these modes do not

enable proper functioning of CoAP. In this case, the protocol should be promptly

revised, and other solutions to better support unicast, such as the one suggested in

[25], should be considered.

Overall, there is a need for more implementations of RPL beyond the two

for TinyOS and ContikiOS, and extensive experiments on larger testbeds. In fact,

several issues may arise when the protocol is tested on real-life larger deployments.

First of all, there may be problems with the stability of the routes. Since the wireless

medium is very noisy and its dynamics highly variable, it is unknown whether the

RPL mechanism to select a forwarding node within the parent set is both optimal and

stable enough in all the different application domains, from suburban homes to factory

floors. In fact, it is likely that the current metrics (e.g., ETX) and objective functions

(MRHOF) bring about frequent route updates in real-life noisy environments. As a

result, timely communications in WSNs consisting of a few dozens nodes and several

hops between root and leaf may become impossible. Once the performance of the

protocol and, more specifically, the link metrics and objective functions is assessed,

novel objective functions may be needed, that achieve (sub-)optimal but stable routes.

2.4.3 Application Layer

Although the CoAP protocol is still in the stage of Internet Draft and a standard

has not been proposed yet within the IETF CoRE WG, the community around it is

overall very active. This activity is demonstrated by the surveyed articles, including

several ones presenting implementations of the protocol. The many analyzes and

implementations of the protocol also bring out several directions of further research.

32

First of all, we argue that the existing body of work on experimental analysis of

the protocol falls short of thoroughly validating CoAP, especially when other commu-

nication stack layer are considered. For instance, while it is reassuring to know that

CoAP (which uses UDP) is indeed better than HTTP (which uses TCP) in terms of

transferred bytes, energy consumption, and latency, [40] this was somewhat expected

as it was one of CoAP’s goals from its inception. Since implementations of CoAP are

already available for two of the major WSN operating systems, namely TinyOS and

ContikiOS, it would be beneficial to perform an extensive experimental evaluation of

this protocol. In terms of comparison of different implementations, [39] is a welcome

first step, but additional effort should be dedicated to this task. Most importantly,

CoAP should be evaluated on larger testbeds. Small setups such as the one consisting

of 4 nodes on a path used in [37] can provide an initial validation of the protocol, but

results obtained on them cannot be taken as a final proof.

Another important open issue is the necessity of energy-efficient mechanisms

at the application layer. As reported in our survey of existing experiment results, it

appears that the usage of an energy-efficient MAC protocol such as ContikiMAC is

sufficient to greatly improve the energy efficiency of the whole communication stack

[37]. While this is an important finding, we argue that it is insufficient to discard

the pursuit of energy-efficient solutions at the application layer. In fact, the results

in [37] were obtained for a specific traffic load, MAC protocol, and network topology.

However, as we remarked in Section 2.1, different combinations of traffic load and

MAC protocols present greatly varying behavior. For this reason, we argue that more

extensive experiments with CoAP on different network topologies, or at least all traffic

classes should be performed. Only the experiment results will show if the behavior

observed in [37] for ContikiMAC and CoAP in presence of a relatively low traffic

load extends to heavier loads and different classes of MAC protocols. In case these

33

experiments highlight a significant performance degradation, countermeasures will

have to be adopted. First of all, existing mechanisms within CoAP may be employed.

For instance, separate responses could be used to counteract the increased number

of retransmissions that would derive from timeouts at the client side. Alternatively,

CoAP should be re-assessed and extended with novel mechanisms to support more

energy-efficient operations.

Although the proposed and existing standards try to accommodate different

use cases, not all application scenarios can be optimally addressed even by the most

flexible standards. For instance, the proposed standards for the communication stack

do not readily support in-network fusion, because the content of packets on their

way from sensors to the base station cannot be inspected and modified, unless the

boundaries between layers in the communication stack are broken. We argue that in

most application scenarios the advantages of standardized solutions, such as interop-

erability of different systems, will be preferred over the positive features of customized

solutions, such as a slightly reduced cost. Therefore, any solution involving in-network

fusion should design, implement, and optimize it at the application layer while relying

on the standard protocols at the underlying layers, rather than proposing customized

cross-layer approaches.

2.5 Summary

In this chapter, we introduced several protocols and solutions developed to

support communications in WSNs. We focused especially on the MAC, network,

and application layers, due to their relevance within the communication stack. Af-

ter pointing out a slow convergence of different solutions towards an Internet-like

WSN communication stack featuring IEEE 802.15.4 at the physical and MAC layer,

IETF 6LoWPAN and IETF RPL at the network layer, UDP at the transport layer,

34

and IETF CoAP at the application layer, we discussed specific protocols and solu-

tions more in detail. We observed that the research community is very active in

the synthesis of many research ideas, which were proposed in the past 15 years, into

well-designed standard protocols. In our discussion, we pointed out several open

problems, including the selection of optimal MAC protocol for a given traffic load,

objective functions that select stable routes, and the importance of energy-efficient

mechanisms at layers beyond the MAC one. All these problems require more experi-

ments to be fully modeled, and novel ideas to be solved. To conclude, we argue that,

now more than ever, novel ideas solving these open problems will have the opportunity

to shape standard protocols and the WSN applications of the (near) future.

35

CHAPTER 3

A SEMI-DISTRIBUTED LOCALIZATION PROTOCOL FOR

WIRELESS SENSOR AND ACTOR NETWORKS

Despite the tremendous potential for a multitude of application domains, wire-

less sensor networks pose unique challenges in the design of protocols for their opera-

tion. This is due to the network characteristics, such as the high-density deployment

of sensors, anonymity of individual sensors, limited resources including battery en-

ergy budget per sensor, and possibly hostile environment. For example, the design

of localization protocols is critical for the collected data because sensor nodes may

not know their actual position. In fact, the sensed data might be meaningless unless

related to the exact position or at least a sufficiently small region of the monitored

area. Moreover, the limited energy budget requires the design of energy-efficient pro-

tocols to prolong the network lifetime, thus forcing the sensors to alternate between

sleep and awake periods.

In addition, efficient techniques must be developed to allow sensors to commu-

nicate with the outside world, the receiver of the data harvested by the WSNs. A

viable solution involves the use of one or several actors, i.e., special long-range radios

deployed along with the sensors. Each actor has a full range of computational capa-

bilities, can send long-range directional broadcasts to the sensors up to distance R,

can receive messages from nearby sensors, and has a steady power supply. This im-

plies that the sensor network must be able to communicate with multi-hop paths and

only a small number of sensors have an actor as one of their one-hop neighbors. The

actors organize the sensors in their vicinity into a short-lived, actor-centric network

36

in support of a specific mission; when the mission terminates the network is dissolved

and the sensors return to their unorganized state. As an example, imagine a blind

person attempting to cross a street in a sensor-instrumented city block. The sensors

in his/her immediate vicinity organize themselves into a short-lived network whose

stated goal is to help the pedestrian to chart a safe course to his/her destination.

Once the person has been assisted, the sensor network is disbanded [45]. Such WSNs,

in which sensors and actors collaborate to accomplish a mission, are called wireless

sensor and actor networks (WSANs) [46, 47].

Figure 3.1. In environmental monitoring applications with mobile nodes, randomly
deployed static wireless sensor nodes (white circles) collect data and relay them to
mobile actors (white squares).

In this chapter, we investigate mission-oriented WSANs with an additional

feature: the sensors follow a periodic working schedule. In such networks, called

duty-cycle wireless sensor and actor networks (DC-WSANs), the actor calls for a

specific mission, while the sensors in the actor’s vicinity asynchronously wake up and

37

follow a working schedule for the rest of the mission duration1. In other words, the

sensors alternate between awake and sleep periods of fixed lengths. During the awake

period, the sensor is active and hence can sense, transmit/receive data to/from other

sensors or the actor. During the sleep period, all the sensor components are inactive,

except for the internal clock.

Our work is mainly addressed to environmental monitoring applications (see

Figure 3.1), where the sensed data are collected by wireless sensors densely deployed

over wide areas that can span several square kilometers in urban, rural, or natural

environments. In such applications, sensors are usually deployed by an unmanned

vehicle and remain unattended in a vast, possibly hostile, geographical area for long

periods of time. The sensors are periodically awake in order to sense the area to

be monitored. According to a predefined monitoring schedule, actors can roam the

environment to collect data because effective data communications over the entire

network are difficult to achieve due to the large number of communication hops [50, 2].

Abstracting from this real world application, we envision a DC-WSAN as shown in

Figure 3.2, where each actor is mobile and, upon reaching a specific location, stations

there to organize an actor-centric network (gray disks in Figure 3.2) for collecting

sensed data.

This chapter deals with one of the fundamental problems arising in the context

of DC-WSAN: localization. Our solution methodology relies on network modeling

at different levels of abstraction. In particular, we model the DC-WSAN as a dense

network whose underlying graph has a vertex for each sensor and an edge for each

pair of sensors that can directly communicate. Since the sensors follow a working

1The research presented in this chapter has been published in the Proc. of the 8th IEEE Inter-

national Conference on Pervasive Computing and Communications (PerCom 2010) Workshops [48],

and Wiley Networks [49].

38

Figure 3.2. A DC-WSAN featuring several awake sensors (black circles), sleeping
sensors (white circles), and a few actors (squares). Actors C and D are temporarily
static and have corresponding actor-centric subnetworks (gray disks), while actors A,
B, and E are moving to new positions as indicated by their trajectories.

schedule, such a network is dynamic, that is, an edge appears only when the involved

sensors are simultaneously awake.

3.1 Related Work

Wireless sensor networks have been extensively studied in recent years. By

reducing the deployment overhead in terms of unit cost and installation time, the de-

velopment of dense distributed sensor systems has become feasible and dense networks

can be active all the time even though individual sensors may follow a working sched-

ule alternating between sleep and awake states. In this way, the network noticeably

extends its lifetime while sensors save energy.

The objective of localization is to provide sensors with geographic coordinates

or with a position relative to a node in the network itself [2]. A straightforward but

costly solution may use global positioning system (GPS). Other solutions may assume

the existence of anchor nodes which are aware of their location and allow other sensors

to infer their locations by exchanging information with them.

Although the above-mentioned solutions attempt to provide the exact posi-

tion for each sensor, in several applications sensors only require coarse positioning

39

with respect to a reference point. Location training is a family of techniques for

coarse positioning. Recently, a number of papers presented location training proto-

cols which achieve coarse-grained localization by imposing a polar coordinate system

(see Figure 3.3) by an actor [51, 45, 52, 53]. Such a coordinate system divides the

actor-region into h equiangular circular sectors and k concentric coronas (i.e., areas

between two concentric circles both centered at the actor) with equal widths, and

the coarse-grained position of a sensor is given by the corona and the sector where it

resides. Clearly, many sensors share the same position. For example, in Figure 3.3,

all the sensors in corona 3 and sector 0 learn position (3, 0). In all algorithms except

the distributed one in [53], sensors compute coarse-grained positions based on the in-

formation received from the actor without performing any additional communication.

(3,0)

(6.2)

Figure 3.3. The ordinary virtual infrastructure with k = 7 coronas and h = 8 sectors.

In particular, the centralized protocol presented in [52] assumes that all the

sensors are synchronized to the master clock running at the actor and that sensors

are aperiodic, that is, their sleep-awake schedules depend on the computation required

for the localization protocol. The Flat localization protocol and its variations, pre-

40

sented in [51], are suitable for sensors that harvest energy from the environment and

thus follow periodic sleep-awake schedules. The protocols in [51, 52] apply to sensors

which are homogeneous in terms of sleep-awake schedules. In contrast, the training

protocols proposed in [45] can simultaneously handle both aperiodic and periodic sen-

sors. Finally, a new distributed protocol for training, called Cooperative, is proposed

in [53]. This is the first protocol that exploits the sensor co-operation in massively

and randomly deployed sensor networks. The key idea is to train only a subset of

sensors, uniformly distributed in the network. Then, by means of local inexpensive

transmissions, the trained sensors relay the acquired coordinates to the largest num-

ber of remaining untrained sensors in their vicinity. Since each sensor stays awake

for a constant number of awake periods, the Cooperative algorithm performs better

than previous algorithms, and it is suitable for dynamic contexts where the actor

moves and the actor-centric network needs to be quickly and often re-organized. In

this work, a thorough analysis of the density required by a new simplified version

of the co-operative process is conducted both theoretically and experimentally, thus

demonstrating that the distributed protocol is indeed feasible and of practical interest.

3.1.1 Our Contributions

In this chapter, we assume that sensors wake up randomly for the first time and

then maintain their own periodic sleep-awake schedule, independent of the network

status or of the protocol they perform. Under such assumptions, we investigate one

of the fundamental aspects of the actor-centric network, namely the organization of

the sensors into a virtual infrastructure with clusters spanning over similar areas.

We adopt a new generalized polar coordinate system. The coordinate systems

employed in training protocols so far have the same number of sectors in any corona,

although the areas of the coronas constantly increase moving out from the center

41

to the fringe of the actor-region (see Figure 3.3). When the number of sectors is

fixed, the clusters in the outer coronas have an area greater than those in the inner

coronas. We instead propose to keep the areas of clusters almost equal to that of

the inner-most corona. To impose such a new coordinate system (see Figure 3.4),

we investigate a simplified version of the localization algorithm proposed in [53].

The protocol consists of two phases: in the first phase, a subset of sensors, referred

to as seeds, are trained in a centralized manner by the actor; in the second phase,

seeds broadcast the acquired location information to their neighbors for two periods.

The second phase is fully distributed. In this chapter, we provide the mathematical

analysis of the sensor density in each corona required to guarantee the effectiveness of

the algorithm. We show that, when the sensors are deployed according to a Poisson

point process [54], all of them are trained with high probability, if the sensors deployed

in a region of area πr2 follow a Poisson distribution of parameter L lnL, where r is

the sensor transmission radius for intra-cluster communications and L is the period

of the sleep-awake schedules. Thus, the required average number of sensors in each

neighborhood is only a function of the length L of the sleep-awake cycle of each sensor

because we need to guarantee a local connectivity within a sensor’s communication

radius, and not the connectivity of the whole network. As a consequence, our analysis

improves on the preliminary result derived in [53].

The remainder of this chapter is organized as follows. Section 3.2 defines the

network model. Section 3.3 presents the localization protocol by specifying the actor

and sensor behaviors. Section 4.3 presents a thorough analysis of the conditions under

which the algorithm guarantees, with high probability, the propagation of the location

information to all sensors. Simulation results that confirm the analytical results for

localization are also presented in Section 3.3.3.

42

3.2 Models

Let us describe the virtual infrastructure to be imposed on the actor-region

and the underlying model for both actor and sensor communications, sleep-awake

schedules, and sensor deployment model. From now on, let |i|j denotes the modulo

operation, that is the non-negative remainder of the division of i by j.

Figure 3.4. The virtual infrastructure with numbered clusters when ` = 4.

3.2.1 Virtual Infrastructure

We define a new virtual infrastructure with clusters of roughly the same area. It

consists of k ≥ 2 coronas, numbered from 0 (the innermost) to k− 1 (the outermost).

Corona c is partitioned into hc sectors, where

hc =

1 if c = 0

` if c = 1

` · 2blog2 cc if 2 ≤ c ≤ k − 1

(3.1)

43

Indeed corona 0 is not divided into sectors as it is managed by the actor, while

corona 1 will be divided into a preset number of ` sectors. Then, the number of

sectors will be doubled at each corona c = 2p, 0 < p ≤ blog2(k − 1)c because corona

c = 2p has area π(2p+1 + 1) which is almost the double of the area π(2p + 1) of corona

c = 2p−1. This partition guarantees that the area spanned by a cluster in corona

1 is at most the double of any other cluster in corona c > 1. Figure 3.4 illustrates

the virtual infrastructure when ` = 4. The sectors in corona c are numbered from 0

to hc − 1 in counterclockwise direction, starting to count from the sector above the

horizontal x-axis.

Noting that the outermost corona c = k−1 will be divided into h = `·2blog2(k−1)c

sectors, the virtual infrastructure can be viewed as an ordinary polar coordinate

system with k coronas and h sectors, in which the inner coronas just ignore further

subdivisions of their coronas.

3.2.2 Actor Communications

Each actor is equipped with two antennae: one isotropic and one directional.

The transmitting power waTx of the isotropic antenna can be modulated in the interval

[waTx,min, w
a
Tx,max], for which we assume waTx,min = 0. This enables the actor to reach

any circle c of radius ρ(c) ∈ [0, R] centered at the actor’s position, where R is the

radius corresponding to the maximum transmitting power waTx,max. Supposing the

existence of a bijective function g(·) that maps transmitting power and circle radius

according to the radio propagation model, the circle radius ρ(c) due to communication

of transmission power waTx can be computed as ρ(c) = g(waTx). Similar to the trans-

mitting power of the isotropic antenna, the transmitting angle φaTx of the directional

antenna can be set in the interval [φaTx,min, φ
a
Tx,max], for which we assume φaTx,min = 0

and φaTx,max = 2π. This enables the actor to reach circular sectors of different size

44

around its position. Given the above assumptions, we define the actor region as the

complete disk of radius R covered when the actor transmits at the maximum power

waTx,max. Finally, we assume that the actor can directly retrieve the messages that

have reached corona 1.

3.2.3 Sensor Communications

Each sensor is equipped with an isotropic antenna for which only a pair of trans-

mitting power settings (wsTx,min, w
s
Tx,max) is available. Transmitting power wsTx,min

enables a sensor to reach a disk of radius r = g(wsTx,min) such that r is much

smaller than the width R
k

of each corona of the polar coordinate system, and thus

it is used for intra-cluster communications. The intra-cluster communications occur,

for instance, during the distributed phase of the localization algorithm. The second

transmitting power setting wsTx,max enables a sensor to cover the corona width (i.e.,

radius R
k

) thus making such a power suitable for inter-cluster communication. The

inter-cluster communications occur, for instance, in the routing protocols or during

the leader election algorithm. From now on, for the sake of simplicity, we assume

that the corona width R
k

= 1, and thus the radius of the actor region R = k.

As regard to the communication channels, sensors have the ability of transmit-

ting and receiving over different frequency bands, or channels. Frequency division

multiple access (FDMA) is assumed in our model to enable continuous transmission

in the time domain, and it will be proved that no more than 2` channels are needed in

our protocols if ` is the number of sectors in corona 1 (see Eq. (3.1) in Section 3.2.1).

Such a number of channels can be easily obtained in most existing sensor chips. Cur-

rently, typical radio communication chips support a number of channels that vary

from 16 to 169 [55].

45

We assume that each sensor transmits always on the same channel, which de-

pends on the cluster where it resides, but it listens to communications on its trans-

mission channel, as well as on the channels of all adjacent clusters. Thus, sensors have

one active queue for each channel they can use in reception. If sensors do not have the

ability of transmitting and receiving over different frequency bands, they can work

in time division multiple access (TDMA). Each time slot is expanded into several

sub-slots, with one sub-slot for each different channel. A sensor transmits always on

the sub-slot associated with its channel, but it can listen to its transmission sub-slot

as well as to the sub-slots associated with the channels of all adjacent clusters.

A collision happens when two sensor transmissions using the same channel are

simultaneously received by a single sensor. We assume that intra-cluster messages

are concordant and are received correctly even if simultaneous transmissions collide

at a receiving sensor, whereas inter-cluster messages, if discordant, collide and get

corrupted. Therefore, to avoid message collisions, a channel assignment problem has

to be solved whose aim is to avoid that two clusters, say A and B, adjacent to the

same cluster, say C, are assigned to the same channel. In fact, if this is the case,

simultaneous and discordant transmissions of the sensors in A and B will use the

same channel and will collide at the receiving sensor in C.

We also assume that actor and sensors share at least one channel and that

the actor messages are tagged with a specific marker so as to distinguish them from

packets originated from sensors.

46

3.2.4 Working (or Sleep-Awake) Schedules

As far as working schedules are concerned, we assume that they are periodic.

Each period lasts for L time slots, during which a sensor is awake for d ≥ 2 time slots2

and sleeps for the remaining L − d time slots. Moreover, for the sake of simplicity,

we assume that L divides k, that is |k|L = 0.

Although sensors and actor use equally long, in-phase time slots, they do not

necessarily wake up at the same time slot t. Denoting the 0-th time slot as the one

when the actor wakes up, each sensor asynchronously wakes up for the first time in

one time slot chosen uniformly at random during the interval [0, . . . , L−1]. Formally:

Definition 1. A sensor of time zone z, for 0 ≤ z < L, is a sensor that is awake in

each time slot t such that |t|L = z + i, with 0 ≤ i ≤ d − 1, and sleeps in each time

slot t with |t|L = z + i with d ≤ i ≤ L− 1. We use notation z(s) to indicate the time

zone of sensor s.

In order to save energy, a sensor can skip the awake state staying in sleep mode

for L time slots, if it is not required to be active in a period. Moreover, at any

time slot t, only sensors belonging to the d time zones |t − (d − 1)|L, . . . , |t|L are

simultaneously awake.

During the leader election, a sensor is active only in the first time slot of its

awake period. Moreover, when a sensor is selected as a leader, it dedicates the first two

awake time slots of its sleep-awake period to the inter-cluster transmissions. Thus,

a leader of time zone x listens to the incoming channels in its first awake time slot,

i.e., any time slot t such that |t|L = x, and transmits in the second time slot, i.e.,

|t|L = |x+1|L, using the channel assigned to the cluster where it resides. This implies

2The requirement of at least 2 time slots for awake time is explained in the analysis of the

algorithm in Lemma 1.

47

that a message transmitted by a leader of time zone x is only received by a leader of

time zone |x+ 1|L.

3.2.5 Deployment Model

The sensor geographical positions can be modeled by a 2-dimensional Poisson

point process [56]. Precisely, denoting the density of the Poisson point process as Λ,

where Λ is measured as the number of sensors per unit area, the number N(A) of

sensors in a region A follows a Poisson probability distribution of parameter Λ||A||,

where ||A|| represents the area of the region A. Thus, the probability that ψ sensors

reside in region A is given by:

P (N(A) = ψ) =
e−Λ||A||(Λ||A||)ψ

ψ!
(3.2)

Furthermore, since sensors are uniformly distributed among L time zones, the number

of sensors within the same time zone z in a region A can be modeled by a Poisson

distribution of parameter Λ||A||
L

, as shown in [54]. Therefore:

Definition 2. In the actor region of area πR2, we assume that there are on the

average N = ΛπR2 sensors, which are partitioned into L groups, one for each time

zone, and each group has on average size N
L

= ΛπR2

L
where 0 ≤ z ≤ L − 1. Thus, at

each time slot, on average there are dN
L

awake sensors in the network.

Clearly, the same stochastic argument can be adopted to count the average

number of sensors in the area covered by an inter-cluster sensor transmission.

3.3 Localization Protocol

The coronas and sectors are imposed by using, respectively, the isotropic and

the directional antennas. Since the procedure to impose h sectors is the same as

that to impose h coronas once each isotropic broadcast of radius a is replaced by a

48

directional broadcast of angle a2π
h

, let us focus on the corona localization protocol

only. First, we call a sensor covered when it has acquired corona location information.

If covered, a sensor is trained when the location is correct, otherwise it is mistrained.

Moreover, by time zone we will also mean the sensors that belong to it.

In this section, we present the pseudo-code of the proposed localization algo-

rithm. Then, in Section 4.3, we analyze which sensors become seeds in each corona,

and we apply probabilistic tools to derive the network density which guarantees that

the training process does not prematurely terminate. Finally, Section 3.3.3 presents

the simulation results on the performance of the new protocol.

3.3.1 Sensor and Actor Algorithms

The proposed corona localization protocol for DC-WSANs consists of two phases:

Phase I, driven by the actor and thus centralized; and Phase II in which only sensors

participate.

In the first phase, the actor broadcasts for k times over successively larger

radii. Specifically, as illustrated in Algorithm 1, at time slot t, with 0 ≤ t ≤ k − 1,

the actor broadcasts beacon t using the isotropic antenna with transmitting power

waTx = g−1(R
k

(t + 1)), which is sufficient to reach the external radius of corona t.

Once Phase I has been completed, the actor does not participate in the localization

protocol any further.

When a sensor is awake in Phase I, as soon as it receives a beacon (Algorithm

2, line 7), it synchronizes itself with the actor and sets the flag heard (Algorithm 2,

line 9). Then, it listens to the channel in order to possibly extrapolate information

about its corona coordinate based on received beacons. Specifically, in Algorithm 2,

a sensor that receives beacon c = 0 is in corona 0 (Algorithm 2, line 12). When a

sensor receives for the first time (Algorithm 2, line 9) a beacon c not in the first time

49

Algorithm 1 Actor algorithm

1: procedure Actor-I(k)

2: for t← 0 to k − 1 do

3: transmit beacon t up to corona t

4: end for

5: end procedure

slot of its awake period (Algorithm 2, line 12), it realizes that it is covered by the

current actor transmission up to corona c but not from the previous transmission up

to corona c− 1, since it is aware of the actor transmission pattern. Thus, the sensor

learns that it belongs to corona c. Note that, whenever a sensor acquires location

information from the actor, such information is correct. Therefore, sensors covered

in Phase I are trained. In the rest of this paper, such trained sensors will be termed

as seeds.

After k
L

sleep-awake periods, sensors enter Phase II. During this phase, the

seeds disseminate the location information to their uncovered and awake neighbors

by means of intra-cluster communication. In this way, a chain effect on the time zones

starts. Seeds cover the sensors which are awake while they disseminate and which

reside in a seed’s transmission range. The sensors covered by the seeds, in their turn,

continue the chain effect towards their awake and uncovered neighbors. This process

iteratively expands until all the time zones in the corona are covered.

Observe that, if a sensor is seed in its corona, we assign to it an index that

varies from 0 to −(d− 2) (Algorithm 2, line 15) and that indicates in which time slot

of the awake period of the seed the actor transmitted beacon c−1. In other words, by

means of index, all the seeds know the global time c− 1 = z(s)− index when beacon

c−1 was broadcast. Each seed s sets its alarm clock to the local time k (Algorithm 2,

50

Algorithm 2 Sensor algorithm for Phase I

1: procedure Sensor-I(d, L, k)

2: covered← false, corona←∞
3: heard← false, index← +∞, t← 0

4: while wakeup ∧ t < k do

5: for i← 0 to d− 1 do

6: listen to the channel

7: if received beacon c from the actor then

8: t← c

9: if ¬heard then

10: heard← true

11: if ¬covered then

12: if c = 0 ∨ i > 0 then

13: corona← c

14: covered← true

15: index← −(i− 1)

16: set alarm at time slot k and jump to Algorithm 3

17: end if

18: end if

19: end if

20: end if

21: if received beacon c from a sensor then

22: jump to line 11 of Algorithm 3

23: end if

24: t← t+ 1

25: end for

26: if ¬covered then

27: t← t+ L− d
28: set alarm at time slot t

29: end if

30: end while

31: end procedure

51

line 16), that is, at the global time k+z(s) and jumps to line 1 of Algorithm 3. When

a seed wakes up at time k, it enters in Phase II. Thus, seed s disseminates in Phase II

at the local time −index+1, that is at the global time k+z(s)− index+1 = k+c. In

this way, using index, all the seeds start the dissemination of the location information

(Algorithm 3, line 6) to their neighbors at the same time slot.

If a sensor does not happen to become a seed in its corona, it can detect that it

is in Phase II whenever it receives a beacon c not originated by the actor (recall that

each beacon has a tag indicating the originator and both actor and sensors transmit

on the same channel) (Algorithm 2, line 21). Thus, such a sensor jumps to Phase II

at line 11 of Algorithm 3. Note that, if a sensor is not a seed, index remains set to

+∞. Then, when a sensor becomes covered at the i-th time slot (with 0 ≤ i ≤ d− 1)

of any awake period in Phase II (Algorithm 3, line 11), the sensor will retransmit the

beacon in its neighborhood because i > −∞ holds.

Finally, during both phases, a sensor not yet covered alternates between an

awake period of d time slots and a sleep period of L − d time slots (Algorithm 2,

line 26; and Algorithm 3, line 17).

Summarizing:

Theorem 1. Given fixed d, L, and k, the corona localization protocol requires overall

k+ 2L time slots. Each sensor stays awake for at most 2 + k
L

awake periods of length

d, and transmit for at most d time slots.

Our algorithm requires O(k) time as the fastest algorithm presented in the

literature [52]. However, the algorithm in [4] is centralized and applies to sensors

that behave synchronously, while ours is semi-distributed and applies to sensors that

behave asynchronously.

52

Algorithm 3 Sensor algorithm for Phase II

1: procedure Sensor-II(d, L)

2: t← 0

3: while wakeup ∧ t < 2L do

4: for i← 0 to d− 1 do

5: if covered then

6: if i > −index then

7: transmit beacon corona over radius r

8: end if

9: else

10: listen to the channel

11: if received beacon c then

12: corona← c, covered← true

13: end if

14: end if

15: t← t+ 1

16: end for

17: if ¬covered then

18: t← t+ L− d

19: set alarm at time t

20: end if

21: end while

22: end procedure

53

3.3.2 Analysis of Localization Protocol

In this section, the proposed algorithm is mathematically analyzed from three

perspectives. First, we analyze the results achieved in the deterministic Phase I,

outlining which sensors become seeds in each corona, and describe the chain effect

of the localization process in Phase II. Second, we apply probabilistic tools, such as

results for the coupon collector’s problem [57] and Chernoff bounds [57], to derive

the density required to guarantee that the chain effect does not terminate before the

last time zone is reached. Third, we leverage results of the previous step to compute

the ratio of sensors which are covered by the positioning information originated from

the seeds of Phase I. Besides the analytical evaluation of the algorithm, we make a

few observations regarding the chance of mistraining and explain how some features

of the algorithm limit this occurrence.

3.3.2.1 Seeds

Since each sensor in corona c has exactly one chance to get trained as a seed in

time slot c, it holds:

Lemma 1. A sensor residing in corona 0 becomes seed when it receives beacon 0,

while a sensor in corona c ≥ 1 becomes seed if it does not hear beacon c − 1 and

receives beacon c in the same awake period.

Proof. By corona definition, sensors in corona c can only receive actor transmissions

of radius equal to or larger than c + 1, which transmit beacons b ≥ c. Thus, sensors

in corona c ≥ 1 are the only ones that cannot be reached by the actor transmission

of radius c, but which are reached by the transmission of radius c+ 1 with beacon c.

Similarly, sensors in corona 0, are the only ones that can receive the actor transmission

of radius 1 with beacon 0.

54

When c ≥ 1, since a sensor requires two time slots to be trained, we assume

d ≥ 2. Moreover:

Lemma 2. In corona c, the seeds are the sensors that belong to time zone z such that

z =

0 if c = 0

[0, c− 1] if 1 ≤ c ≤ d− 2

[|c− d+ 1|L, . . . ,

. . . , |c− 1|L] if d− 1 ≤ c ≤ k − 1

(3.3)

Let Zc and |Zc| denote the set of time zones whose sensors are seeds in corona c and

its cardinality, respectively. Then we have |Z0| = 1, |Zc| = c for 1 ≤ c ≤ d − 2, and

|Zc| = d− 1 for c ≥ d− 1.

Proof. Consider a corona c ∈ [d−1, k]. By the training condition in Phase I, a sensor

is trained in corona c, if it is awake while the actor transmits beacons c − 1 and c.

Since a sensor of time zone z is in its b c−1
L
c-th sleep-awake period while the actor

broadcasts c− 1, such a sensor is trained if z + b c−1
L
cL ≤ c− 1 ≤ z + b c−1

L
cL+ d− 2,

that is, if |(c−1)−(d−2)|L ≤ z ≤ |c−1|L. Moreover, in corona 0 only sensors of time

zone 0 can hear the actor broadcasting corona 0, and thus become seeds, whereas in

coronas 1 ≤ c ≤ d−2 the seeds are sensors of time zone z such that 0 ≤ z ≤ c−1.

55

3.3.2.2 Chain Effect

Lemma 3. Under suitable density property, in corona c, all sensors can be covered

at the end of the interval

t ∈

[k + |c|L, k + |c|L + L− |Zc| − 1]

if 0 ≤ c ≤ d− 2 or d− 1 ≤ |c|L ≤ L− 1

[k + L+ |c|L, k + L + |c|L + L− |Zc| − 1]

if c ≥ L and 0 ≤ |c|L ≤ d− 2

(3.4)

Proof. Consider a corona c such that d − 1 ≤ |c|L ≤ L − 1. Since c ≥ d − 1, by

Lemma 2, time t = k + L+ |c− 1|L is the first time slot in which all seeds of corona

c are awake. In the subsequent time slot t+ 1, while all the seeds broadcast, sensors

of time zone |t + 1|L wake up and listen to their neighbors in order to be trained.

As discussed later, if the density is sufficiently high, each sensor of time zone |t+ 1|L

has high probability to be in the transmission range of at least one seed; thus it

will hear a corona information and will be covered. In each time slot of the interval

[k+ |c|L), . . . , k+ |c|L)+L−|Zc|−1], the chain effect continues and the time zone that

wakes up is covered. Since |Zc| sensors were seeds in corona c, and L−|Zc| are trained

in Phase II, all the different time zones are trained by the end of the claimed interval.

A similar reasoning can be repeated for coronas c ≥ L such that 0 ≤ |c|L ≤ d − 2,

observing that one has to wait the second awake period of the last seed |c − 1|L to

have all the seeds awake simultaneously.

It is easy to see from Eq. (3.4), that Phase II terminates within time slot k+2L.

56

3.3.2.3 Density

To ensure that the chain effect is not terminated prematurely, the localization

protocol relies on the presence in the area covered by sensor si of at least one sensor

sj of time zone z(si) < z(sj) ≤ z(si) + (d − 1). Thus, it is important to identify

the density Λ of the Poisson point process behind the sensor network for which this

condition holds. We first derive the result for d = 2, for which the constraint simplifies

to z(sj) = z(si) + 1, and then we extend the result to the case d > 2.

In our model, in the transmission area πr2 of each sensor, there are m neighbors

which choose their time zone uniformly and independently at random in the interval

[0, L − 1]. Since sensors are distributed in the area uniformly at random, the actual

number of neighbors in such area is not deterministically set but given by a random

variable Y that follows a Poisson probability distribution of mean µY = E[Y] = Λπr2

as stated in Eq. (3.2). Moreover, the neighbors of time zone z in the transmission

area have a Poisson distribution of mean µYz = E[Yz] = Λπr2

L
. Clearly, the chain effect

does not terminate prematurely if all the time zones are present in each transmission

area. The trivial bound m = L for the neighbors in a sensor transmission area does

not work because it only guarantees an average of one (and not at least one) sensor

for each time zone.

The problem of finding the required number m of neighbors so that there is,

with high probability, at least one sensor of each time zone is equivalent to the coupon

collector’s problem (CCP) in which there are L different kinds of coupons and the

objective is to identify the number of trials m that are to be performed in order

to collect a sample of each kind with high probability [57]. The solution to the

57

CCP states that the following number of trials is necessary to achieve the given

objective [57]:

m = L lnL+O(L) (3.5)

Therefore:

Theorem 2. Fixed p → 1, the number mCCP of neighbors in a sensor transmission

area of radius r which guarantees that with high probability p there is at least one

sensor of each time zone is:

mCCP = L lnL+ cpL (3.6)

where

cp = − ln(− ln p) (3.7)

Proof. Eq. (3.5) provides the solution to the number m of neighboring sensors that is

required in order to guarantee that the chain effect does not terminate prematurely

in the domain of the DC-WSAN localization protocol. Since an actual number m

is needed to apply the proposed algorithm, a constant cp ≥ 0 is to be derived such

that each sensor has got all time zones among its neighbors with a required high

probability p → 1. To this extent, X is defined as the random variable representing

the number of trials required to collect all coupons. Then, for any constant cp ∈ R

the following result holds [57]:

Pr[X > m = L(lnL+ cp)] ≈ 1− e−e−cp

Thus, a specific value of constant cp can be computed from the requested probability

p = 1 − Pr[X > m = L(lnL + cp)] of having all time zones among the neighbors of

sensor s by the following formula:

cp = − ln(− ln p)

58

By substituting cp into Eq. (3.5), the required number of neighbors mCCP = L lnL+

cpL is derived.

From Eq. (3.6), a density ΛCCP = L lnL+cpL

πr2
can be computed for the Poisson

point process modeling the sensor network. However, density ΛCCP does not guar-

antee that there are exactly, or at least, mCCP sensors in a sensor’s neighborhood as

this is only the expected value E[Y] of the random variable Y . Thus, further anal-

ysis is necessary to provide additional constraints to guarantee that there is indeed

a sufficient number of neighbors, and Chernoff bounds can provide a solution to this

problem [57]. Applying Chernoff bounds to the distribution of the random variable

Y , we obtain:

Theorem 3. Given fixed p, q → 1, a Poisson point process of density

ΛCB,CCP =
cq(L lnL+ cpL)

πr2
(3.8)

where

cq =

(
1− ln(1− q)

mCCP

)
±

√(
ln(1− q)
mCCP

− 1

)2

− 1, cq > 1 (3.9)

and

cp = − ln(− ln p)

provides that, with high probability q, there are at least mCCP = L lnL+ cpL sensors

in each sensor’s neighborhood and that each neighborhood has, with probability p, at

least one sensor per time zone.

Proof. As far as the left tail of the random variable Y is concerned, the following

bound applies [57]:

Pr[Y ≤ µY − δµY] ≤ e−
δ2µY

2 with 0 < δ ≤ 1.

59

Since our objective is to find µY = cqmCCP such that there is a given high probability

q → 1 that there are at least mCCP sensors in a sensor’s neighborhood, we can retrieve

the constant factor cq > 1 by solving the following system of equations:
1− q = e−

δ2µY
2

mCPP = (1− δ)µY
(3.10)

From simple algebraic manipulation of Eq. (3.10), one can derive the claimed value

of cq and thus the desired density ΛCB,CCP .

The result in Eq. (3.5) and Eq. (3.8) can be extended to the case d > 2. In this

situation the chain effect propagates as long as there is among the neighbors of sensor

si at least one sensor sj of time zone z(si) < z(sj) ≤ z(si) + (d − 1). Since there is

not only one time zone that fulfills this requirement, the coupon collector’s problem

can be restated to gather at least one sample of L
d−1

different kinds of coupons, thus

lowering the network density requirement. However, this does not guarantee that the

chain effect propagates as the following example demonstrates.

Let Zd
i and Zd

i+1 be respectively the set of time zones in the ith and (i + 1)th

groups of size d − 1. The CCP solution with L
d−1

states that there is one sensor

si ∈ Zd
i of time zone z(si) ∈ [j − d, j − 1] and one sensor si+1 ∈ Zd

i+1 of time zone

z(si+1) ∈ [j, j + (d − 1)]. Nonetheless, sensors si and si+1 can be of time zones

z(si) = j − d, z(si+1) = j + (d − 1), and thus be more than d − 1 time zones apart

(e.g., z(si+1)− z(si) = j + (d− 1)− (j − d) = 2d− 1 > d− 1) so that the chain effect

terminates. Therefore, the group size has to be set so that the smallest time zone in

set Zd
i can cover all time zones in set Zd

i+1, which yields a set size G = |Zd
i | = bd

2
c.

Finally, when d > 2, the general formula for the number of neighbors m can be

rewritten as

mCPP =
L

G
ln

(
L

G

)
+O

(
L

G

)
(3.11)

60

q = 0.99 q = 0.95
d = 2 d = 4 d = 2 d = 4

cp cq cq
p = 0.99 4.600149 1.510192 1.841638 1.5103 1.6407
p = 0.90 2.2503673 1.665466 2.172956 1.5112811 1.8799505
p = 0.85 1.8169607 1.711033 2.280284 1.5449350 1.9564874

Table 3.1. Values of cp and cq when L = 8.

and the density as

ΛCB,CCP =
cq
(
L
G

ln
(
L
G

)
+ cp

L
G

)
πr2

(3.12)

In Table 3.3.2.3, the values of cp and cp are computed when L = 8, d = 2 or 4,

p = 0.99, 0.9 or 0.85, and q = 0.99 or 0.95.

3.3.2.4 Coverage

We now turn to the analysis of the coverage area, that is the ratio of sensor

locations that are covered by the algorithm. Recall that the set of covered sensors

includes both the ones that are successfully trained and the ones that are mistrained.

In order to perform such analysis, let us call sensor s in corona c(s) a reference

seed if s becomes seed in the second time slot of its awake period. Moreover, the time

zone z(s) of s is referred to as the reference time zone. We now index the time zones

with respect to the reference time zone. Precisely, the reference time zone gets index

j = 0, and time zone z gets index z − z(s). Thus, negative indices are attributed to

the d − 2 time zones corresponding to seeds in corona c(s) preceding the reference

seed, whereas time zones following the reference seed feature positive indexes. Finally,

we define the chain effect coverage function f(j) as the coverage area of time zone

|z(s) + j|L of index j with f : [−(d− 2), L− (d− 2))→ [0, 1]. This definition of the

chain effect coverage function makes the following analysis independent of the actual

61

corona, as far as it has d− 1 seeds, since the indexes are accordingly shifted in each

corona. As it will be apparent later, the proposed analysis is slightly more optimistic

for coronas 0 ≤ c ≤ d− 1 since there is a smaller number of seeds in such coronas as

stated by Lemma 2. Thus, a comprehensive analysis of both the first and the second

phase can be performed by means of the defined chain effect coverage function.

For simplicity, the chain effect coverage function is first derived for the case

d = 2, where f : [0, L − 1] → [0, 1] because in each corona c (except corona 0), only

the time zone |c− 1|L becomes seed and gets index 0. Given the deterministic nature

of the first phase of the algorithm, we can state that the whole area is covered as far

as seeds are concerned, from which we obtain

f(0) = 1 (3.13)

According to previous research work on Poisson point processes [56], the area

being covered by seeds is

f(1) = 1− e−λπr2f(0) (3.14)

where λ = Λ
L

is the density of seeds within a time zone. By iterating over the time

zones, the area which is covered can be computed for each index j as follows:

f(j) =

1 if j = 0,

1− e−λπr2f(j−1) if 1 ≤ j < L.

(3.15)

Note that the chain effect coverage function f(j) can be intended both as the

ratio between the covered area and the total area, and the ratio between the number

of covered sensors in time zone of index j and the total number of sensors in time

zone of index j, since sensors are deployed uniformly at random. Thus, we generically

refer to the covered ratio in the mathematical analysis and the discussion of simulation

results.

62

When d > 2, several time zones of sensors are awake and ready to eventually

cover the set of awakening ones. Thus, the result in Eq. (3.15) can be generalized to

any value of d by substituting the single term f(j − 1) with a sum
∑j−1

i=j−(d−1) f(i) of

d− 1 terms as follows:

f(j) =

1 if −(d− 2) ≤ j ≤ 0,

1− e
−λπr2

j−1∑
i=j−(d−1)

f(i)

if 1 ≤ j < L− (d− 2).

(3.16)

The chain effect coverage function f(j) as defined in Eq. (3.16) applies when

there is, with high probability, a sensor of each time zone in the neighborhood as

guaranteed by Eq. (3.6). However, if the number of neighbors is reduced by consid-

ering groups of size G as in Eq. (3.11), the sum of d− 1 terms in Eq. (3.16) collapses

into one single term as the density in Eq. (3.12) guarantees the presence of at least

one time zone among the d − 1 preceding time zones [j − (d − 1), j − 1]. Thus, in

case of reduced density as in Eq. (3.12), the chain effect coverage function defined in

Eq. (3.15) should be used to model the performance of the algorithm.

Although a closed-form equation for the chain effect coverage function f(j)

would be useful, we could not find it so far. Thus, a numerical evaluation of f(j) has

been carried out along with that of the cumulative coverage function F (j) defined as:

F (j) =

j∑
i=−(d−2)

f(i)

L
for −(d− 2) ≤ j ≤ L− (d− 1) (3.17)

which evaluates the comprehensive coverage of the algorithm. In the following, we

denote with F ∗ = F (L− (d− 1)) the final coverage of the algorithm.

In Figure 3.5, the chain effect coverage function f and the cumulative coverage

function F are plotted for d = 2, for different values of L and for their corresponding

density ΛCB,CCP computed from Eq. (3.8) with cp = 0 and cq = 1. It is worthwhile

63

observing that for all values of L the chain effect coverage function approaches a hor-

izontal asymptote within few time zones from the seed. This represents an important

result as we can claim that the coverage does not degrade as sensors belonging to

time zones further away from the seed awake.

The plots also show a coherent behavior between density and coverage. A

smaller number of time zones L, and thus lower density, implies a smaller number of

sensors and also a lower area coverage. However, one has to bear in mind that Eq.

(3.17) obtains an upper bound for the ratio of sensors to which data are disseminated.

This is due to the fact that the method behind Eq. (3.16) assumes that there is exactly

the expected number of sensors within a sensor’s communication range. Clearly, this

is not the case due to the random Poisson point process, and thus a sensor might be

within two seeds’ communication range, and another have none.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

R
at

io

Time zone index j

d = 2, R = L, k = L, Λπr2 = L ln(L), r = 0.2

f(j), L = 8
F(j), L = 8
f(j), L = 16

F(j), L = 16
f(j), L = 32

F(j), L = 32
f(j), L = 64

F(j), L = 64

Figure 3.5. Chain effect coverage function f(j) and cumulative coverage function
F (j) for constant d and different values of L.

64

If a better performance in terms of coverage is requested, while keeping the

same density, the value of d can be tuned accordingly. Figure 3.6 portrays results for

constant L = 8 and increasing d demonstrating how an increase from d = 2 to d = 3

can bring about a significant improvement on the area coverage from 0.84 to slightly

more than 0.98. This shows a trade off between area coverage and sensor awake time.

0

0.2

0.4

0.6

0.8

1

-2 0 2 4 6 8

R
at

io

Time zone index j

L = 8, R = L, k = L, Λπr2 = L ln(L), r = 0.2

f(j), d = 2
F(j), d = 2
f(j), d = 3

F(j), d = 3
f(j), d = 4

F(j), d = 4

Figure 3.6. Chain effect coverage function f(j) and cumulative coverage function
F (j) for constant L and different values of d.

3.3.2.5 Mistraining

While in Section 3.3.2.4 general analytical results were presented for the area

coverage provided by the algorithm, similar results for the mistrained sensors are more

difficult to derive due to the random deployment of sensors and the complexity of the

communication patterns among them. However, few observation can be made about

this issue. First of all, seeds (i.e., sensors covered in the first phase) are all correctly

trained since we make the assumption that the actor reaches perfectly shaped circles

65

while it broadcasts its beacons. In the second phase, the worst case scenario arises

when sensors in corona c are awake and listening and only sensors in corona c − 1

are broadcasting. The localization algorithm addresses this problem by stating that

seed si of time zone z(si) ∈ [|c(si) − (d − 1)|L, |c(si) − 1|L] in corona c(si) starts

broadcasting in the second phase at time slot t = |c(si)|L as enforced by conditional

statement on line 6 of Algorithm 3.

Thus, a sensor in corona c can become mistrained only if it is awake at time

t = L+ c− 1 and close enough to the border with corona c− 1 so that it can receive

messages from the seeds in corona c. Indeed, from the next time slot t = L + c, the

seeds in both corona c − 1 and corona c broadcast the corona they have learnt and

since such coronas are different, the uncovered sensors cannot learn. In conclusion, the

use of the variable index to synchronize the seed transmissions in each corona during

Phase II and the fact that each neighborhood has at least one seed (see Eq. (3.10))

contribute to keeping the probability that a sensor becomes mistrained low. However,

to further control the impact of the mistrained sensors on the network behavior, one

can introduce a third phase that lasts L time slots. During such a phase, while awake,

the trained sensors repeatedly devote one time slot to broadcast and one time slot

to listen. Specifically, trained sensors with even (resp., odd) time zones broadcast

their learnt corona in the even (resp., odd) time slots and listen to their neighbors

in the odd (resp., even) time slots. If during all the time slots of the third phase a

sensor receives concordant messages, coinciding with its own corona, it apprehends to

be trained correctly and can eventually participate to the time zone leader election3.

Instead, if during at least one time slot of the third phase a trained sensor receives

3Note that a sensor cannot discover to be mistrained if all the sensors in a neighborhood have

learnt the same faulty corona. Nonetheless, this event happens quite rarely if the network density

satisfies Eq. (3.10).

66

discordant messages, it recognizes either to be mistrained or to be very close to the

corona border. In both cases, it does not participate to the leader election protocol

and eventually performs only local computations.

3.3.3 Simulation Results

A simulator was developed to study the performance of the proposed algo-

rithm and validate the mathematical analysis presented in Section 4.3. The simu-

lator employed to perform the following experiments was implemented in C++. It

relies on the Boost C++ Library (http://www.boost.org) and the GNU Scientific Li-

brary (http://www.gnu.org/software/gsl) to manage the network graph and generate

samples from random distributions, respectively. Although a large set of configu-

rations were simulated, including experiments demonstrating how densities derived

from p, q → 1 yield a coverage of up to 0.95 for d = 2 and L = 8, due to lack of space

the discussion in this section is limited to the experiments with cp = 0 and cq = 1 to

demonstrate that the chain effect is actually ignited and kept alive already when the

minimal density requirements derived in Section 3.3.2.3 are fulfilled. Second, results

are presented that verify the algorithm coverage capability. Finally, the issue of mis-

training is addressed by presenting experimental results that show how a very small

ratio of sensors is actually mistrained.

Experimental results for chain effect coverage and cumulative coverage functions

are presented for L = 8, 16 in Figure 3.7. Such results follow the same pattern of

the analytical function derived in Sections 3.3.2.3 and 3.3.2.4, though approximating

slightly lower asymptotes. This difference between simulation results and analytical

functions is due to the asymmetric random nature of the sensors and network model.

In fact, although the random variable Y representing the number of neighbors has

expected value E[Y] = L ln(L) in the optimal case, the actual values vary around

67

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

R
at

io

Time zone index j

d = 2, R = L, k = L, Λπr2 = L ln(L), r = 0.2

f(j), L = 8
Experimental f(j), L = 8

F(j), L = 8
Exp. F(j), L = 8

f(j), L = 16
Exp. f(j), L = 16

F(j), L = 16
Exp. F(j), L = 16

Figure 3.7. Experimental results, analytical chain effect coverage function and cumu-
lative coverage function for constant d and different values of L.

the mean, and sensors with more neighbors than the required number to be covered

do not compensate for sensors with less neighbors (i.e., a sensor with twice as many

neighbors is not covered twice, thus not making up for a sensor with no neighbors

which is not covered). Therefore, the analytical result is always better than the

simulation except when all sensors are covered by the algorithm.

Finally, as discussed in Section 3.3.2.4, the algorithm performance can be im-

proved by increasing the awake time d. Experimental results for L = 8 are depicted

along with the cumulative coverage function in Figures 3.8 and 3.9. It is worthwhile

observing that the ratio of mistrained sensors over the total number of sensors (which

is represented by the difference between experimental F (L− (d− 1)) and the ratio of

sensors trained in Phases I and II) is constant across different values of d. Further-

more, we were also able to verify that all such instances of mistrained sensors feature

an absolute error of 1, that is, sensors in corona c are mistrained to belong to corona

68

0

0.2

0.4

0.6

0.8

1

-2 0 2 4 6 8

R
at

io

Time zone index j

L = 8, R = L, k = L, Λπr2 = L ln(L), r = 0.2

f(j), d = 2
Exp. f(j), d = 2

F(j), d = 2
Exp. F(j), d = 2

f(j), d = 3
Exp. f(j), d = 3

F(j), d = 3
Exp. F(j), d = 3

f(j), d = 4
Exp. f(j), d = 4

F(j), d = 4
Exp. F(j), d = 4

Figure 3.8. Experimental results and analytical chain effect coverage function and
cumulative coverage function for constant L and different values of d.

c − 1 or c + 1 but not beyond, and their occurrence is limited to the area within a

distance of 0.4 from the border, when r = 0.2 and R
k

= 1.

Once the performance of the algorithm featuring an optimal density is analyzed,

it is worthwhile studying what is the effect of a decay of the network density on

the chain effect coverage function, assuming that the chain effect is not prematurely

terminated due to the lower density itself. An error term can be added to the definition

of Λ as follows:

Λ =
L(lnL)1−ε

πr2
0 ≤ ε ≤ 1 (3.18)

Figure 3.10 shows the analytical and experimental chain effect coverage function

when Λ = L (or, ε = 1). The asymptotes in Figure 3.10 are radically different from

those observed in Figure 3.7.

Finally, Figure 3.11 portrays coverage as a function of density decay ε. While

69

0

0.2

0.4

0.6

0.8

1

2 2.5 3 3.5 4

R
at

io

Sensor awake time d

L = 8, R = L, k = L, Λπr2 = L ln(L), r = 0.2

Exp. F(L - (d - 1))
F(L - (d - 1))

Ratio of sensors trained in Ph. I, II
Ratio of sensors trained in Ph. I

Figure 3.9. Experimental results, including ratio of seeds, trained, and mistrained
sensors, and analytical cumulative coverage for constant L and different values of d.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

R
at

io

Time slot j from seed

d = 2, R = L, k = L, ε = 1, Λπr2 = L (ln(L))(1 - ε) = L, r = 0.2

Exp. f(j), L = 8
f(j), L = 8

Exp. F(j), L = 8
F(j), L = 8

Exp. f(j), L = 16
f(j), L = 16

Exp. F(j), L = 16
F(j), L = 16

Figure 3.10. Experimental results and analytical chain effect coverage function and
cumulative coverage function for suboptimal density for constant d and different val-
ues of L.

70

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R
at

io

ε

d = 2, R = L, k = L, Λπr2 = L (ln(L))(1 - ε), r = 0.2

Exp. F(L-1), L = 8
F(L-1), L = 8

Exp. F(L-1), L = 16
F(L-1), L = 16

Figure 3.11. Experimental results and cumulative coverage F (L− 1) as a function of
density decay ε.

instances with a larger number of time zones L perform better when the density

constraint is upheld, they feature a steeper degradation compared to solutions with

a smaller number of time zones L until they eventually perform worse, as indicated

by the pattern of intercepts in the right-hand side of the plots.

3.4 Summary

In this chapter, we addressed one of the fundamental problems arising in the

context of DC-WSAN when mobile actors set up actor-centric networks: localization.

We investigated a virtual organization of an actor-centric subnetwork, consisting of

a single actor and of many sensors that follow periodic sleep-awake schedules. We

imposed a generalized polar coordinate system whose goals are i) to provide a coarse-

grained location that partitions the network in clusters; and ii) to easily support a

geographic routing algorithm as well as a leader election algorithm.

71

To impose the coordinate system, we propose a localization algorithm that

consists of a centralized phase and a distributed phase. At the end of the algorithm

execution, sensors have learned the polar coordinate of the region they belong to. Our

new contribution to localization is the analysis of the sensor coverage with respect to

the sensor density. We applied well-known stochastic analysis tools such as coupon

collector’s problem and Chernoff bounds to derive bounds on the density required

to achieve coverage of all sensors with high probability. The analytical bounds were

verified with experimental results from a software simulator that we developed. The

simulation results demonstrate that very good results (in terms of final coverage ratio

and chain effect without interruptions) can be achieved already when cp = 0 and

cq = 1.

72

CHAPTER 4

ENERGY-EFFICIENT MARKOV CHAIN-BASED DUTY CYCLING SCHEMES

Since WSNs consisting of several hundreds or thousands of wireless nodes are

deployed in almost every domain of our life to solve many different problems, the

design of sustainable and green solutions for wireless nodes will have a large impact

in terms of resource consumption. Energy consumption is an overarching problem

for any operation in a WSN, because wireless sensor nodes usually have a limited

energy budget. This is due to the deployment environment (for example, sensor nodes

embedded in a wall or air-dropped on a difficult terrain), or high density deployment

such that replacing batteries on hundreds or thousands of devices is infeasible, no

matter how accessible they are. Even if the sensor nodes harvest energy from the

environment, such as using tiny solar panels, the power supply is limited and sensor

nodes cannot operate at maximum speed at all times [58].

In order to increase the network life-time, wireless sensor nodes switch between

active and dormant states. The ratio of time during which a sensor is awake is

called duty cycle. Transitions between the active and dormant states cost time and

energy, and thus it is important to minimize the frequency of switching. In most

duty cycling schemes, sensor nodes do not decide on their next state step by step, but

rather compute the working schedules ahead of time during an initialization phase.

Sensor nodes can exchange information with neighboring nodes in order to generate

working schedules that improve network connectivity and latency. Latency can also

be reduced by having shorter time slots. To reduce the overhead due to coordination,

partially randomized duty cycling schemes have been proposed [59].

73

In a randomized duty cycling scheme, each sensor node randomly generates

a working schedule that yields the required duty cycle. The random variables that

define the state at each time slot are usually considered as independent and identically

distributed (i.i.d.). In partially randomized schemes, the random working schedules

can be exchanged among neighboring nodes, so that the latency can be reduced. For

instance, in the data dissemination protocol proposed in [59], wireless sensor nodes

can use information about their neighbors’ working schedules to anticipate message

forwarding. Since wireless nodes can turn into active state beyond their working

schedules, the aggregate duty cycle (θ), i.e., the actual posterior duty cycle, is usually

greater than the working schedule duty cycle (µ), i.e., the planned prior duty cycle.

The difference between the working schedule and aggregate duty cycles depends on

the number of neighbors and their schedules.

The time slot length (T) has an impact on the time and energy efficiency (η)

of the duty cycling scheme. The shorter the time slot, the more significant is the

overhead in terms of time and energy due to operations such as opening or closing

radio connections, when a sensor node transitions from and into deep sleep mode

(or dormant state). The time slot length also affects the connection delay (δ) (or

latency) after which two neighboring nodes are simultaneously active, as well as the

connection duration (ω). The longer the time slot, the higher the connection delay

and connection duration. This is because these metrics are linear functions of the

time slot length, for a given working schedule.

The goals of lower connection delay and higher efficiency clearly pull the knob

controlling the time slot length in opposite directions. The former requires shorter

time slots, while the latter requires longer ones. Nonetheless, there exists a solution

that can improve the performance along either dimension without affecting the other.

74

In this chapter, we propose a randomized duty cycling scheme that reduces the

connection delay and maintains a comparable level of time and energy efficiency with

a constant aggregate duty cycle, and thus constant energy consumption1. Alterna-

tively, time and energy efficiency can be improved, yet keeping an almost constant

connection delay. Our solution is based on the combination of shorter time slots (to

achieve lower delay) and a Markov chain (to achieve higher efficiency). Shorter time

slots yield schedules that pack more time slots in the same period of time, so that

neighboring nodes are more likely to be simultaneously active earlier on. A Markov

chain generates a schedule whose active time slots are more likely to be consecu-

tive, thus yielding longer active time instances, which in turn correspond to higher

time efficiency. Our novel Markov chain-based solution expands the design space of

randomized duty cycling schemes by adding a third dimension, namely memory, rep-

resented by a memory coefficient (γ), to the two other dimensions, namely time slot

length and working schedule duty cycle. We derived mathematical expressions for

the aggregate duty cycle, connection delay, connection duration, and time efficiency

in terms of the working schedule duty cycle, time slot length, and memory.

Experiments on Sun SPOTs [62] validate our analytical model and show that

the expected connection delay can be reduced by at least 31.54%, while keeping a time

efficiency of 0.9563, as opposed to a 2.48% reduction in a scheme using i.i.d. random

variables. In turn, this corresponds to a saving between 312-536 mJ per minute per

wireless node. The improvement in terms of efficiency is higher when considering

more realistic (hence time and energy consuming) set up and tear down operations,

such as MEMS sensor warm up and neighbor discovery.

1The research work presented in this chapter has been published in the Proc. of the 31st IEEE

International Conference on Distributed Computing Systems (ICDCS 2011) [60], and the ACM

Journal on Emerging Technologies in Computing (JETC) [61].

75

The rest of the chapter is organized as follows. Section 4.1 describes the concepts

behind our randomized duty cycling scheme and makes the case for a Markov chain-

based solution. The randomized duty cycling scheme is presented in Section 4.2 with

its mathematical analysis in Section 4.3, while experimental results are discussed in

Section 4.4. We review the related work on duty cycling schemes for WSNs in Section

4.5 and draw our conclusions in Section 4.6.

4.1 Motivation and Preliminary Experiments

Energy consumption is one of the most important aspects to achieve sustainable

and green computing systems. In WSNs, energy consumption minimization is also

required because of the limited energy budget of battery-powered wireless nodes. The

aggregate duty cycle is the ratio of time spent in normal mode, and thus is a metric

directly related to the energy consumption of a wireless sensor network.

An important metric of any duty cycling scheme is the connection delay. While

in the dormant state, the connection between a sensor node and its neighbor is tem-

porarily interrupted until both sensors switch into active state, thus introducing a

delay in the communication. As such, the vast majority of research on duty cycling

schemes aims at improving this metric (also referred to as sleep latency).

The connection duration is the time during which a pair of neighboring sensors

are active simultaneously and uninterruptedly. As such, this metric is directly related

to the connection delay, and thus often ignored. The time (energy) efficiency is

defined as the ratio of the time (energy) dedicated to the wireless sensor network

application over the total amount of time (energy) spent in normal operation mode.

Given that a sensor node incurs into a time (energy) overhead when switching from

and into deep sleep mode (e.g., opening or closing radio connections, warming up

sensors), the time (energy) efficiency is less than 1.

76

We argue that the time and energy efficiency of a duty cycling scheme are also

important metrics. Interestingly, they are the subject of much attention in deep

sleep mode operation for larger systems such as laptops and mobile phones [63].

However, to the best of our knowledge, they have not received much attention at

all in the context of duty cycling schemes for WSNs. In this section, we present

preliminary results from real experiments on the connection delay and time efficiency

that motivated us to develop duty cycling schemes that bring the time efficiency

metric to the foreground.

4.1.1 Randomized Scheme Model

For our research on the performance of randomized schemes, we refer to the

model depicted in Fig. 4.1. In this model, each wireless node (i) generates its

own random working schedule, (ii) synchronizes its clock with neighboring wireless

nodes (e.g., using the Flooding Time Synchronization Protocol in [64]), and then (iii)

operates switching between dormant and active states according to its own working

schedule. When the wireless node has gone through all the time slots in the working

schedule, it restarts the process generating a new working schedule, or stops depending

on the application.

Start
Generate
working
schedule

Synchronize
clocks with
neighbors

Run according to
working schedule

Stop

Figure 4.1. Block diagram for randomized scheme operation.

77

4.1.2 Aggregate Duty Cycle

The working schedule duty cycle µ might not represent the actual duty cycle,

because the wireless node might switch into active state at additional times depending

on the randomized scheme. For instance, this is the case for the partially randomized

scheme presented in Section 5.1, where a wireless node can switch to active state

in order to anticipate message forwarding to a neighbor. Therefore, we provide this

definition for the aggregate duty cycle2.

Definition 3 (Aggregate duty cycle). Given a duty cycling scheme, the aggregate

duty cycle θ is the ratio between the actual time spent in the active state and the total

time.

Clearly, for a randomized scheme as the one depicted in Fig. 4.1 the aggregate

duty cycle θ is equal to the working schedule duty cycle µ, as confirmed by the results

of our experiments on Sun SPOT sensors [62] plotted in Fig. 4.3(a). In Section 5.2.2,

we show that this is not the case for partially randomized schemes where wireless

nodes can switch into active state beyond their working schedules.

4.1.3 Connection Delay

Figures 4.2(a) and 4.2(b) depict working schedules of two nodes for different

time slot lengths. Although both systems yield equivalent duty cycles of 4
20

= 0.20 =

2
10

, the nodes in Fig. 4.2(a) are likely to be simultaneously active earlier than the

nodes in Fig. 4.2(b). Based on the above intuition, we define the connection delay as

follows.

2In the literature this is simply referred to as the duty cycle. We add the adjective “aggregate”

to distinguish it from the working schedule duty cycle µ.

78

Definition 4 (Connection delay). Given a pair of sensors, the connection delay δ is

the time interval between the current time slot and the first time slot at which both

sensors are active.

(a) Short time slot (b) Long time slot

Figure 4.2. Sample random working schedules for different time slot lengths ((a)
T = 50 and (b) T = 100 ms), but equal duty cycle µ = 0.20, and thus equal
energy consumption. Connection delays at each time slot are depicted on the top,
while connection durations are between the schedules. Shorter time slots yield better
connection delay (δ = 550+500+···+50+0+250+···+50+0

18
= 225 ms when T = 50 ms, as

opposed to δ = 700+600+···+100+0
8

= 350 ms when T = 100 ms). However, longer time
slots yield better connection duration (ω = 100 ms when T = 100 ms, as opposed to
ω = 50 ms when T = 50 ms).

We performed experiments on Sun SPOT sensors to measure the connection

delay for different time slot lengths. The results plotted in Fig. 4.3(b) validate our

intuition that shorter time slots yield smaller average connection delay. With respect

to Fig. 4.3(b), for a duty cycle µ = 0.05, the connection delay goes from δ = 69, 896

ms when T = 200 ms, to δ = 17, 474 ms when T = 50 ms. Thus, it is important

that the time slot length be minimal, in order to increase the likelihood of an early

connection between neighboring sensor nodes. Furthermore, for a given time slot

length, the expected connection delay is smaller for sensors with higher duty cycles.

79

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

A
vg

. a
gg

re
ga

te
 d

ut
y

cy
cl

e
θ

Working schedule duty cycle µ

(a) Aggregate duty cycle

100

1000

10000

100000

1e+06

40 60 80 100 120 140 160 180 200

A
vg

. c
on

ne
ct

io
n

de
la

y
δ

[m
s]

Time slot length T [ms]

µ = 0.01
µ = 0.05
µ = 0.25
µ = 0.50

(b) Connection delay

10

100

1000

40 60 80 100 120 140 160 180 200

A
vg

. c
on

ne
ct

io
n

du
ra

tio
n

ω
 [m

s]

Time slot length T [ms]

µ = 0.01
µ = 0.05
µ = 0.25
µ = 0.50

(c) Connection duration

0.75

0.8

0.85

0.9

0.95

1

1.05

40 60 80 100 120 140 160 180 200

A
vg

. a
ct

iv
e

tim
e

ef
fic

ie
nc

y
η

Time slot length T [ms]

µ = 0.01
µ = 0.05
µ = 0.25
µ = 0.50

(d) Time efficiency

Figure 4.3. (a) Aggregate duty cycle vs. working schedule duty cycle; and (b) con-
nection delay, (c) connection duration, and (d) time efficiency vs. time slot length
for different working schedule duty cycles in a randomized scheme, when the working
schedule is generated with independently and identically distributed (i.i.d.) random
variables .

This simple experiment demonstrates that shorter time slots provide a better

performance in terms of connection delay of the wireless sensor network. However,

there exists a lower threshold for the time slot length in order for the sensor node to

operate. This threshold depends on the communication (e.g., MAC layer), sensing

(e.g., MEMS and analog/digital conversion), and processing features of the sensor

node.

80

4.1.4 Connection Duration

In a WSN, the time interval during which a pair of neighboring nodes are

simultaneously and uninterruptedly active is another important metric. In fact, the

impact of headers in communication protocols can be reduced by transmitting longer

messages, thus improving the overall performance of the protocol. We provide this

definition for connection duration.

Definition 5 (Connection duration). Given a pair of sensor nodes, the connection

duration ω is the time between the first and last time slot when they are simultaneously

and continuously active.

Clearly, longer time slots bring about longer connection durations, as it is the

case for the sample working schedules in Fig. 4.2. The experimental results using

Sun SPOT sensors depicted in Fig. 4.3(c) confirm this intuition. For example, for

working schedule duty cycle µ = 0.05 the connection duration goes from ω = 50 ms

when T = 50 ms, to ω = 200 ms when T = 200 ms.

4.1.5 Time and Energy Efficiency

Although duty cycling enables energy savings, it is not completely free. In fact,

a sensor node faces an overhead cost due to the set up and tear down operations

in the transient phases from the deep sleep mode to the normal operation mode,

and vice versa. In Fig. 4.4, the ideal and real sensor node behavior are depicted for

different active instance lengths. An active instance is a set of one or more consecutive

time slots during which the sensor node is constantly in the active state. Neither in

Fig. 4.4(a), nor in Fig. 4.4(b), does the sensor node execute the application logic

throughout TON as the ideal working schedules on the top of the diagrams state. In

fact, an active instance consists of three phases:

81

1. Set up, spanning TUP , during which the sensor node wakes up, updates local

data structures (e.g., the alarm for when to switch into the deep sleep mode),

(re-)opens network connections, and eventually initializes the sensors;

2. Activity, spanning TACT , during which the sensor node retrieves sensor readings,

processes them, and communicates with neighboring nodes; and

3. Tear down, spanning TDN , during which the sensor node updates local data

structures, closes network connections, eventually resets the sensors, and goes

into deep sleep mode3.

(a) Short active instance (b) Long active instance

Figure 4.4. Ideal and real duty cycling for (a) short and (b) long active instances.
Sensor nodes with longer active instance lengths are more time and energy efficient.

We performed experiments on Sun SPOTs to measure the duration of the set up

and tear down phases. The time required by a sensor node to go from deep sleep mode

to being ready to execute the application logic depends on the operations during the

set up and tear down phases. We decided to maintain a conservative approach and

have a minimum set of operations for the sensor to perform during the set up and tear

3In studies on energy efficient algorithms [63], tear down costs are usually folded into the set up

costs without affecting the validity of the model.

82

down phases. In our experiments, a sensor node opens a radio connection during the

set up phase and closes it during the tear down phase. Even with this very limited

set of operations, we found that the set up phase takes around TUP ' 11.50 ms, while

the tear down takes TDN ' 2.86 ms. In real-life applications, sensors need to perform

more complex set up and tear down operations, and thus face an even larger overhead

for transitions between deep sleep mode and active state, and vice versa.

Based on the three phases described above, we define the time efficiency for an

active instance as follows.

Definition 6 (Time efficiency). Given an active instance of length TON with set up,

activity, and tear down times TUP , TACT , and TDN , respectively, its time efficiency is

given by

η =
TON − (TUP + TDN)

TON
=
TACT
TON

(4.1)

Energy efficiency is strictly related to the time efficiency as there is an energy

cost associated with the set up and tear down operations. Since accurate energy

measurements are difficult to perform, in the rest of the chapter we focus on the time

efficiency first. Then we compute the energy consumption from the associated time

interval and the power consumption in normal operation mode.

We performed additional experiments on Sun SPOTs to measure the time ef-

ficiency for different time slot lengths and working schedule duty cycles. From the

results shown in Fig. 4.3(d), we observe that the shorter time slots correspond to

lower time efficiency. Moreover, for a given time slot length, lower duty cycles yield

lower time efficiency. In particular, when the working schedule duty cycle µ = 0.05

and the time slot length T = 50 ms, the time efficiency η = 0.83, which means that

the energy associated with 18% of the active time is employed in ancillary operations,

not in the application itself. The relationship between duty cycle and time efficiency

83

can be explained observing that schedules with lower duty cycles feature less active

time slots so that there is a lower chance that these active time slots are consecutive

and thus form a longer active time instance.

It is easy to observe that lim
TON→∞

η = 1. Thus, longer active time instances bring

about higher efficiency. This conclusion would bring the design of the duty cycling

scheme in a direction opposite to the one suggested in our analysis of connection delay,

when we observed that shorter time slots bring about a performance improvement.

4.1.6 Rationale Behind Markov Chain-based Scheme

We argue that the Markov chain-based solution (see next section) can yield

a performance improvement along one metric, while not affecting the other. For

instance, we can reduce the time slot length to achieve a lower connection delay,

while avoiding a simultaneous reduction in the active instance length. This is insured

by tuning the transition probabilities so that the product of the number of consecutive

active time slots and the time slot length (i.e., expected active time instance length) is

kept constant. In a traditional scheme with i.i.d. random variables, this is not feasible

because the transition probabilities are uniquely defined by the working schedule duty

cycle.

Fig. 4.5 portrays the problem space. In this chapter, we propose to extend the

set of metrics by adding a measure of time (energy) efficiency η to the connection

delay and duration and aggregate duty cycle already considered in the literature. This

equals to turning the 2-dimensional performance space generated by the connection

delay δ and connection duration ω dimensions into the 3-dimensional one in the right

diagram in Fig. 4.5. In the visual representation, we omit the aggregate duty cycle

metric, because it is related only to the working schedule duty cycle, and thus can be

considered separately from the other metrics.

84

Figure 4.5. The problem space consists of a 3-dimensional control parameter space
(left) and a 3-dimensional performance metric space (right). The parameters in the
control space are the duty cycle µ, the time slot length T , and the newly added
memory coefficient γ. In the performance space, there are the connection delay δ, the
connection duration ω, and the proposed new metric for time/energy efficiency η.

Similarly, we turn the 2-dimensional control space defined by the working sched-

ule duty cycle µ and the time slot length T into the 3-dimensional space in the left

diagram in Fig. 4.5. The newly added memory coefficient γ represents the amount of

memory in the Markov chain employed to generate the randomized working schedules

of the wireless sensor nodes.

In Section 4.3, we derive expressions for components fθ(·), fδ(·), fω(·), and

fη(·) of the vector-valued function f : R3 → R4, where x = [µ T γ]′ is the vector of

control parameters and f(x) = [fθ(·) fδ(x) fω(x) fη(x)]′ = [θ δ ω η]′ is the vector of

corresponding performance metrics4.

Based on the analytical model and the experimental results, we demonstrate

how to improve the connection delay δ with limited or no impact on the time and

energy efficiency η, moving from f(x0) to f(x2) instead of f(x3) in the performance

space of Fig. 4.5. This is achieved by tuning the parameters, including the memory

4We use notation v′ instead of vT for transpose of vector v.

85

coefficient γ, so as to move from x0 in the µ × T plane to x2 in the 3-dimensional

control space of Fig. 4.5.

4.2 Markov Chain-based Duty Cycling Scheme

Before presenting the Markov chain-based duty cycling scheme, let us first de-

scribe our model and assumptions. We assume that sensors are locally time synchro-

nized and feature a common time slot length, T . Although being common across

all sensor nodes, the time slot length is not fixed, but is rather computed along with

the other input parameters (i.e., working schedule duty cycle and memory coefficient)

based on the model in Section 4.3 to achieve optimum performance in terms of connec-

tion delay, connection duration, and time and energy efficiency. A time synchroniza-

tion protocol [64] is periodically executed to correct for clock drifting. The sensors pe-

riodically generate working schedules. A working schedule ws = [s0, . . . , si, . . . , sN−1]′

is an N × 1 binary vector where

si =

0 if sensor is to be dormant at time slot i,

1 if sensor is to be active at time slot i.

(4.2)

Since the time slot lengths are in the order of hundreds of milliseconds, the time

synchronization protocol needs to be performed in the order of tens of minutes to

guarantee an accuracy of 2.24 µs, which is more than sufficient for the time slot

lengths considered in this scenario. The overhead introduced by FSTP is negligible

when the few timestamps (six according to [64]) required to locally synchronize clocks

are compared to the period (tens of minutes) for which neighboring sensors are syn-

chronized. Furthermore, given that the time synchronization protocol needs to be

performed in the order of tens of minutes while the time slot lengths are in the order

of hundreds of milliseconds, the working schedule length N is in the order of 104.

86

The proposed randomized duty cycling scheme is based on a Markov chain as

depicted in Fig. 4.6. The Markov chain is defined over the set of states S = {0, 1},

where s = 0 is the dormant state, while s = 1 is the active state. A Markov chain is

defined by the transition probabilities Pr[si = 1|si−1 = 0] = α and Pr[si = 0|si−1 =

1] = β. The remaining transition probabilities Pr[si = 0|si−1 = 0] = 1 − α and

Pr[si = 1|si−1 = 1] = 1 − β can be easily computed based on the values of α and β,

thus obtaining the following matrix notation

P = [pij] =

1− α α

β 1− β

 (4.3)

where pij = Pr[st = j|st−1 = i]. The probability mass function (pmf) of the stationary

distribution is

p =

[
pi

]
=

[
µ0 µ1

]
=

[
β

α+β
α

α+β

]
(4.4)

where pi = Pr[s = i]. Thus, µ1 = Pr[s = 1] is the working schedule duty cycle of the

wireless sensor nodes5.

10

β

α

1-α 1-β

Figure 4.6. Markov chain used to generate working schedules with memory coefficient
γ = α + β and working schedule duty cycle µ = α

α+β
.

Our scheme is based on the observation that the same value for the duty cycle

µ1 (and thus for the aggregate duty cycle θ, given that θ is related only to µ1) can

be achieved by appropriately scaling the parameters α and β. In fact, γ = α+ β is a

5Effectively, both µ and µ1 represent the duty cycle, although the latter is used in the Markov

chain-related derivations for symmetry with µ0.

87

α β γ µ
1
20

= 0.05 19
20

= 0.95 1
1

= 1.00 0.05
3
80

= 0.0375 57
80

= 0.7125 3
4

= 0.75 0.05
1
40

= 0.025 19
40

= 0.475 1
2

= 0.50 0.05
1
80

= 0.0125 19
80

= 0.2375 1
4

= 0.25 0.05

Table 4.1. Transition probabilities α and β yielding different memory coefficient γ,
but constant duty cycle µ, and thus constant aggregate duty cycle θ.

measure of the memory in the system. As such we refer to γ as the memory coefficient.

Table 4.1 lists transition probabilities and the corresponding memory coefficient γ and

duty cycle µ. While the duty cycle is not affected, the memory coefficient is.

In a WSN scenario, the duty cycle is usually an input parameter to the working

schedule generator provided by the energy harvesting controller or set prior to the

deployment. The values of α and β can be computed from the target stationary

probability µ1 (i.e., the working schedule duty cycle) and the memory coefficient γ

as follows:
α = γµ1

β = γ − α
(4.5)

Since α and β are probabilities, 0 ≤ α, β ≤ 1 has to hold, and thus the memory

coefficient γ ∈
[
0, 1

1−µ1

]
. This closed interval can be split in three regions. When

γ = 1, the system is memory-less since the transition probabilities are independent

of the state. Thus, using a Markov chain with γ = 1 to generate a working schedule

is equivalent to having i.i.d. random variables. For all other values of γ 6= 1, the

system is not memory-less. As γ decreases from 1 to 0, the likelihood of transitions

between the states also decreases. When γ increases from 1 to 1
1−µ1 , the transitions

between the states become more likely.

88

Our proposed duty cycling scheme exploits the above behavior. Each sensor

node generates its random schedule based on a random walk on the Markov chain

with transition probabilities α and β computed using the mathematical model derived

in the analysis. By generating the working schedule based on a Markov chain with

memory coefficient γ < 1, the time slot length can be reduced and the average

active time instance length is kept constant without changing the duty cycle. Shorter

time slots yield a lower connection delay, while constant average active time instance

length does not negatively affect the energy and time efficiency. The next section

presents a mathematical analysis that confirms this intuition, and also provides a

set of expressions that can be used for computing the optimal settings of the control

parameters.

4.3 Analysis of Markov Chain-based Randomized Scheme

Clearly, the Markov chain-based duty cycling scheme is a generalization of the

traditional duty cycling schemes based on i.i.d. random variables for each time slot.

As a consequence, a larger solution space is available to the designer of duty cycle

wireless sensor networks. In order to make the best decision, it is important to have

a mathematical model of the proposed scheme. Here we focus our analysis on four

performance metrics: aggregate duty cycle, connection delay, connection duration,

and time efficiency (energy efficiency is directly related to time efficiency as stated

in Section 4.3.5). In this section, we aim to derive expressions for these metrics for

any point in the 3-dimensional space defined by time slot length, working schedule

duty cycle, and memory coefficient. Given a target energy consumption (i.e., a target

aggregate duty cycle), our duty cycling scheme could then be tuned to provide the best

performance in terms of time efficiency, connection delay, and connection duration

with a given aggregate duty cycle as described below.

89

4.3.1 Assumptions and Pairwise Markov Chain Model

In the Markov chain of four vertices depicted in Fig. 4.7, each state q represents

one of the four combinations of the states of two neighboring wireless sensor nodes:

qi =

00 if sensors a and b are dormant at time slot i,

01 if sensor a is active and sensor b is dormant at time slot i,

10 if sensor a is dormant and sensor b is active at time slot i,

11 if sensors a and b are active at time slot i.

(4.6)

0100

10 11

Figure 4.7. Pairwise Markov chain for randomized scheme. A connection is feasible
only when both wireless nodes are active (i.e., state q = 11).

The transition probabilities between the states are given by the product of the

transitions of the wireless sensor nodes (see Fig. 4.6), and thus depend on their

working schedule duty cycles µ’s and memory coefficients γ’s.

90

P = [pij] =

(1− α)2 (1− α)α α(1− α) α2

(1− α)β (1− α)(1− β) αβ α(1− β)

β(1− α) βα (1− β)(1− α) (1− β)α

β2 β(1− β) (1− β)β (1− β)2

(4.7)

where pij = Pr[Qt = j|Qt−1 = i].

Lemma 4 (Pairwise Markov chain stationary distribution). The probability mass

function (pmf) of the stationary distribution for the pairwise Markov chain is

p =

[
pi

]
=

[
µ0µ0 µ0µ1 µ1µ0 µ1µ1

]
=

[
β2

(α+β)2
βα

(α+β)2
αβ

(α+β)2
α2

(α+β)2

]
(4.8)

where pi = Pr[Q = i].

(Sketch). The stationary invariant distribution of a Markov chain, whose states are

the combination of the states of two independent Markov chains, is the product of

the stationary invariant distributions.

In the next sections, we derive expressions for the performance metrics using

the model we introduced above.

4.3.2 Aggregate Duty Cycle

In a Markov chain-based duty cycling scheme, the aggregate duty cycle θ of a

wireless node is actually a random variable Θ with expected value

E[Θ] = fθ([µ T γ]′) (4.9)

where µ, T , and γ are the control parameters in the duty cycling scheme.

Theorem 4 (Expected aggregate duty cycle). Given a Markov chain-based duty cy-

cling scheme, its expected aggregate duty cycle is given by

E[Θ] = µ. (4.10)

91

Proof. Since a wireless node is active only when its working schedule states that it

should be active, the expected aggregate duty cycle is equal to the expected value of

the state random variable with stationary distribution in (4.4).

fθ([µ T γ]′) = E[Θ]

= E[S]

= µ1 = µ.

(4.11)

As can be observed in Fig. 4.8(a), the experimental results validate the math-

ematical model for the expected aggregate duty cycle of the Markov chain-based

randomized scheme.

4.3.3 Connection Delay

In a Markov chain-based duty cycling scheme, the connection delay δ between a

pair of neighboring nodes (say a and b) is actually a random variable ∆ with expected

value

E[∆] = fδ([µ T γ]′) (4.12)

where µ, T , and γ are the control parameters in the duty cycling scheme.

Theorem 5 (Expected connection delay). Given a Markov chain-based duty cycling

scheme, its expected connection delay is given by

E[∆] = E[∆|Q] Pr[Q] = T · h′
opt · p (4.13)

where p is the stationary invariant distribution of the pairwise Markov chain and hopt

is the optimal solution to the linear optimization problem

92

min c h

s.t. A h = b

h ≥ 0

(4.14)

with c = [1 1 1 1] and

A =

−1 + (1− α)2 (1− α)α α(1− α) α2

(1− α)β −1 + (1− α)(1− β) αβ α(1− β)

β(1− α) βα −1 + (1− β)(1− α) (1− β)α

0 0 0 −1

(4.15)

b =

−1

−1

−1

0

(4.16)

Proof. By simple manipulations of the expected connection delay, we obtain

E[∆] =
∑
q

E[∆|Q = q] Pr[Q = q]

= T ·
∑
q

E[H|Q = q] Pr[Q = q].

(4.17)

where E[H|Q] is the expected number of time slots until both sensors are active,

given the current state Q. As such, E[H|Q] are the expected hitting times of the

state q = 11 in the pairwise Markov chain in Fig. 4.7. The expected hitting times

93

hopt = E[H|Q] can be computed by finding the minimal non-negative solution to the

system of linear equations

E[H|Q = 00] = 1 +E[H|Q = 00] Pr[Q = 00|Q = 00]+

+E[H|Q = 01] Pr[Q = 00|Q = 01]+

+E[H|Q = 10] Pr[Q = 10|Q = 00]+

+E[H|Q = 11] Pr[Q = 11|Q = 00]

E[H|Q = 01] = 1 +E[H|Q = 00] Pr[Q = 00|Q = 01]+

+E[H|Q = 01] Pr[Q = 01|Q = 01]+

+E[H|Q = 10] Pr[Q = 10|Q = 01]+

+E[H|Q = 11] Pr[Q = 11|Q = 01]

E[H|Q = 10] = 1 +E[H|Q = 00] Pr[Q = 00|Q = 10]+

+E[H|Q = 01] Pr[Q = 01|Q = 10]+

+E[H|Q = 10] Pr[Q = 10|Q = 10]+

+E[H|Q = 11] Pr[Q = 11|Q = 10]

E[H|Q = 11] = 0

(4.18)

which is equivalent to solving the linear optimization problem in (4.14).

As can be observed in Fig. 4.8(b), the mathematical model of (4.13) precisely

matches the experimental results. The discrepancy for µ = 0.01 is due to the small

sample size for that specific experiment.

94

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

A
vg

. a
gg

re
ga

te
 d

ut
y

cy
cl

e
θ

Working schedule duty cycle µ

Memory coefficient γ = 1.00

(a) Aggregate duty cycle

100

1000

10000

100000

1e+06

1e+07

40 60 80 100 120 140 160 180 200

A
vg

. c
on

ne
ct

io
n

de
la

y
δ

[m
s]

Time slot length T [ms]

Memory coefficient γ = 1.00
µ = 0.01
µ = 0.05
µ = 0.25
µ = 0.50

(b) Connection delay

10

100

1000

40 60 80 100 120 140 160 180 200A
vg

. c
on

ne
ct

io
n

du
ra

tio
n

ω
 [m

s]

Time slot length T [ms]

Memory coefficient γ = 1.00
µ = 0.01
µ = 0.05
µ = 0.25
µ = 0.50

(c) Connection duration

0.75

0.8

0.85

0.9

0.95

1

1.05

40 60 80 100 120 140 160 180 200

A
vg

. a
ct

iv
e

tim
e

ef
fic

ie
nc

y
η

Time slot length T [ms]

Memory coefficient γ = 1.00

µ = 0.01
µ = 0.05
µ = 0.25
µ = 0.50

(d) Time efficiency

Figure 4.8. Analytical (0.10-spaced) and experimental (µ = 0.01, 0.05, 0.25, 0.50)
results for (a) aggregate duty cycle vs. working schedule duty cycle; and analytical
(10 ms-spaced) and experimental (T = 50, 100, 200) results for (b) connection delay,
(c) connection duration, and (d) time efficiency vs. time slot length for different duty
cycles when the working schedule is generated with independently and identically
distributed (i.i.d.) random variables.

4.3.4 Connection Duration

Similar to the connection delay, the connection duration ω between a pair of

sensor nodes is also a random variable Ω and its expected value E[Ω] = fω([µ T γ]′)

can be derived for a Markov chain-based duty cycling scheme.

Theorem 6 (Expected connection duration). Given a Markov chain-based duty cy-

cling scheme, its expected connection duration is given by

E[Ω] =
T

1− (1− β)2
. (4.19)

95

Proof. The pmf of the random variable V representing the number of consecutive

transitions on the self loop of state q = 11 in Fig. 4.7 (i.e., the number of time slots

in the connection) is a geometric distribution with success probability p = 1−(1−β)2.

fω([µ T γ]′) = E[Ω]

= T · E[V]

= T ·
∞∑
v=1

[
(1− β)2(v−1)(1− (1− β)2)

]
=

T

1− (1− β)2

(4.20)

Given that E[Ω] is only a function of β (and T) and not α, it is possible to

tune the expected connection duration without affecting the duty cycle. The time

slot length T has no effect on the duty cycle because it does not affect the ratio of

active and dormant time slots. In fact, Fig. 4.8(c) shows that the analytical model

of (4.19) matches the experimental results for the average connection duration.

4.3.5 Time Efficiency

We analyze the time efficiency of working schedules generated by our proposed

randomized duty cycling scheme and derive a formula to compute the expected time

efficiency in terms of the working schedule duty cycle, memory coefficient, and time

slot length. The time efficiency η is actually a random variable because the duty

cycling scheme has no deterministic control on the length of active time instances.

Theorem 7 (Expected time efficiency). Given a Markov chain-based duty cycling

scheme, its expected time efficiency is derived as

E[η(K)] = 1 +
TUP + TDN

T
· β ln(β)

1− β
. (4.21)

96

Proof. Based on Definition 6, the time efficiency η(k) of an active instance consisting

of k ≥ 1 consecutive time slots is given by

η(k) =
kT − (TUP + TDN)

kT
= 1− TUP + TDN

kT
, (4.22)

where T is the time slot length, TUP and TDN are respectively the time costs for the

set up and tear down operations.

The number k of consecutive time slots in an active instance is a random variable

K with geometric distribution, and thus its pmf is

Pr[K = k] = (1− β)k−1β, (4.23)

where β = Pr[si = 0|si−1 = 1] and 1 − β = Pr[si = 1|si−1 = 1] and β is computed

from the working schedule duty cycle µ1 and memory coefficient γ as in (4.5).

Given the formula for time efficiency in (4.22) and the pmf of the number K

of time slots in an active instance in (4.23), the expected time efficiency E[η(K)] can

be computed as

E[η(K)] =
∞∑
k=1

η(k) Pr[K = k]

=
∞∑
k=1

(
1− TUP + TDN

kT

)
(1− β)k−1β

= β
∞∑
k=1

[
(1− β)k−1

]
− βTUP + TDN

T

∞∑
k=1

[
(1− β)k−1

k

]
= 1− βTUP + TDN

T

∞∑
k=1

(1− β)k−1

k

= 1− βTUP + TDN
T

(
− ln(β)

1− β

)
= 1 +

TUP + TDN
T

· β ln(β)

1− β
,

(4.24)

where the solution to the last sum is based on the Taylor series expansion of the

natural logarithm ln(1− p) = −
∑∞

k=1
pk

k
.

97

Both the experimental and analytical results for the time efficiency are plotted

in Fig. 4.8(d). The analytical values computed according to (4.21) are lower than

the experimental ones. This difference can be explained by the fact that we use a

constant value for the set up and tear down costs TUP and TDN , whereas in the

experiments these are random variables. Therefore, the occurrences of values lower

than the average have a stronger impact on the time efficiency than occurrences of

values greater than the average.

Even though we were able to derive a closed-form expression for the expected

time efficiency, it is worthwhile analyzing two bounds as they provide further insight.

Theorem 8 (Lower bound on expected time efficiency). Given a Markov chain-based

duty cycling scheme, the lower bound on the expected time efficiency is given by

E[η(K)] > η(1). (4.25)

(Sketch). Apply the inequality
∑∞

k=1
(1−β)k−1

k
<
∑∞

k=1(1− β)k−1 = 1
β

to (4.24).

The result in (4.25) is intuitive as it states that the expected time efficiency

of the randomized duty cycling scheme is always higher than the one of an active

instance consisting of only one time slot.

Theorem 9 (Upper bound on expected time efficiency). Given a Markov chain-based

duty cycling scheme, the upper bound on the expected time efficiency is

E[η(K)] < η

(
1

β

)
. (4.26)

Proof. A corollary of Jensen’s inequality states that a concave function of the expected

value is greater than the expected value of the concave function:

E[f(X)] < f(E[X]) (4.27)

Given that η(·) in (4.22) is a concave function, we obtain

E[η(K)] < η

(
1

β

)
. (4.28)

98

Equation (4.26) states that the expected time efficiency is always lower than

the time efficiency of an active instance that consists of the expected number of time

slots for a given transition probability β. By putting together the two bounds, the

expected time efficiency is

η(1) < E[η(K)] < η

(
1

β

)
(4.29)

A tighter upper bound on the expected time efficiency can be computed based

on the observation that the length k of any active time instance is upper bounded by

the finite length N of the working schedule. Therefore, we can compute a weighted

version of the pmf such that
∑N

k=1 Pr[K = k] = 1, and solve (4.24) numerically.

Energy efficiency is tightly related to time efficiency. If the power consumption

is assumed to be constant during normal operation mode, time and energy efficiency

are equal, and thus the results on time efficiency can be directly extended to energy

efficiency and consumption.

In the next section, we present experimental results that support the analysis

of connection delay, duration, and time efficiency in our Markov chain-based duty

cycling scheme.

4.4 Experimental Results for Randomized Scheme

In order to validate the proposed Markov chain-based duty cycling scheme and

the mathematical analysis, we performed a series of experiments with wireless sensor

nodes, and measured the connection delay, connection duration, time efficiency, and

aggregate duty cycle. We employed Sun SPOT sensors for our experiments, although

any other sensor platform could be used for experimentation. Sun SPOTs implement

IEEE 802.15.4 PHY and MAC standards, and use the Link Quality Routing Protocol

99

(LQRP) at the network layer [65]. It is worthwhile observing that different platforms

eventually yield different results as platform-specific hardware affects the cost – both

in terms of time and associated energy – of set up and tear down operations.

Not only does the hardware, but also the software has an impact on the costs

when switching between dormant and active states. In fact, different protocols at the

link, network, transport, and application layers might require operations that bring

about very different costs. Keeping a conservative approach in our experiments, Sun

SPOTs simply open and close a radiogram connection during the set up and tear down

phases, respectively. These operations represent the minimum required for commu-

nicating with neighboring nodes. Clearly, performing additional operations such as

neighbor discovery would add to the set up and tear down costs, thus furthering our

claim for control on time and energy efficiency.

We performed experiments for four different working schedule duty cycles (µ =

0.01, 0.05, 0.25, 0.50), five memory coefficients (γ = 0.10, 0.25, 0.50, 0.75, 1.00), and

three time slot lengths (T = 50, 100, 200 ms). These values cover the range from

medium to very low duty cycle, the interval between 0.10 and 1 for the memory

coefficient, and time slot length with order of magnitude equal to or greater than the

one for set up and tear down operations (TUP +TDN = 14.36 ms). In all experiments,

the working schedules consist of 6, 000 time slots. According to the mathematical

analysis in the previous section, in the experiments we consider pairs of wireless

sensor nodes, and compute the one-hop connection delay and duration, and the time

efficiency of the sensor nodes.

Fig. 4.9 displays results for connection delay, connection duration, and time

efficiency vs. the time slot length for all memory coefficients and duty cycle µ = 0.05.

In our discussion on the experiments, we focus on the results for points x0 through

100

0

0.05

0.1

0.15

0.2

40 60 80 100 120 140 160 180 200

A
vg
.a
gg
re
ga
te
du
ty
cy
cl
e
θ

Time slot length T [ms]

Working schedule duty cycle µ = 0.05
γ = 0.10
γ = 0.25
γ = 0.50
γ = 0.75
γ = 1.00

x0

x3x1

x2

(a) Aggregated duty cycle, µ = 5%

10000

100000

1e+06

40 60 80 100 120 140 160 180 200

A
vg
.c
on
ne
ct
io
n
de
la
y
δ
[m
s]

Time slot length T [ms]

Working schedule duty cycle µ = 0.05
γ = 0.10
γ = 0.25
γ = 0.50
γ = 0.75
γ = 1.00

x0x3

x1

x2

(b) Connection delay, µ = 5%

10

100

1000

10000

40 60 80 100 120 140 160 180 200A
vg
.c
on
ne
ct
io
n
du
ra
tio
n
ω
[m
s]

Time slot length T [ms]

Working schedule duty cycle µ = 0.05
γ = 0.10
γ = 0.25
γ = 0.50
γ = 0.75
γ = 1.00

x0

x3

x1

x2

(c) Connection duration, µ = 5%

0.75

0.8

0.85

0.9

0.95

1

1.05

40 60 80 100 120 140 160 180 200

A
vg

.a
ct
iv
e
tim

e
ef
fic
ie
nc

y
η

Time slot length T [ms]

Working schedule duty cycle µ = 0.05

γ = 0.10
γ = 0.25
γ = 0.50
γ = 0.75
γ = 1.00

x1

x0

x2

x3

(d) Time efficiency, µ = 5%

Figure 4.9. (a) Aggregate duty cycle, (b) connection delay, (c) connection duration
and (d) time efficiency vs. time slot length for variable memory coefficient γ = α+ β
and duty cycle µ = 0.05 for Sun SPOTs. By combining a reduction of the time
slot length with a lower memory coefficient, the connection delay can be reduced,
while not degrading the time efficiency. Similarly, the connection duration and time
efficiency can be improved without affecting the connection delay, if the increase in
the time slot length is accompanied by a higher memory coefficient.

x3 listed in Table 4.2 and marked in Fig. 4.9 for wireless sensor nodes with duty cycle

µ = 0.05, although similar conclusions can be drawn for other duty cycles as well.

First of all we observe that all solutions x0 yield equal aggregate duty cycle

θ, and thus feature equal energy consumption. Therefore, we can perform a fair

comparison of the solutions in terms of the other performance metrics, including

connection delay and time efficiency.

101

Memory Time slot Time eff. Conn. delay Conn. dur.
Point coeff. γ length η δ [ms] ω [ms]

T [ms] (% diff.) (% diff.) (% diff.)

x0 1.00 200 0.9581 69, 896 200
(±0.00%) (±0.00%) (±0.00%)

x1 1.00 50 0.8300 17, 474 50
(−13.37%) (−75.00%) (−75.00%)

x2 0.25 50 0.9563 47, 854 141
(−0.19%) (−31.54%) (−29.50%)

x3 1.00 137 0.9315 47, 854 137
(−2.78%) (−31.54%) (−31.50%)

Table 4.2. Time efficiency, connection delay, and connection duration for Sun SPOTs
with duty cycle µ = 0.05 and TUP = 11.50 ms and TDN = 2.86 ms.

Given the setting with time slot length T = 200 ms and memory coefficient

γ = 1.00 (x0), the initial duty cycling scheme has an average connection delay δ =

69, 896 ms with time efficiency η = 0.9581. When the time slot length is reduced from

T = 200 ms to T = 50 ms and the memory coefficient γ = 1.00 is upheld (x1), the

duty cycling metrics are δ = 17, 474 ms and η = 0.8300. Besides featuring a lower

connection delay, this setting also yields a lower time efficiency, which represents a

negative side effect of the time slot length reduction.

Now, adopting our Markov chain-based duty cycling scheme with time slot

length T = 50 ms and memory coefficient γ = 0.25 (x2) brings about a connection

delay δ = 47, 854 ms, which represents a 31.54% reduction on the original value (x0),

while keeping a time efficiency η = 0.9563. Although the memory-less setting with

T = 137 ms and γ = 1.00 (x3) achieves the same connection delay δ = 47, 854 ms, it

yields a time efficiency η = 0.9315, which is 2.59% below the 0.9563 efficiency of the

Markov chain-based duty cycling scheme. It is easy to observe from Table 4.2 that

102

the results for the connection duration are directly related to the connection delay,

given that all settings have duty cycle µ = 0.05.

Given a power consumption between 210-360 mW for a Sun SPOT [66], the

Markov chain-based duty cycling scheme can reduce the energy consumption by 312-

536 mJ per minute.

In the next chapter, we extend the Markov chain-based solution to a partially

randomized duty cycling schemes [59], where a wireless node is active not only when

asserted by its working schedules, but also when it has outgoing messages and the

next-hop neighbor is active.

4.5 Related Work

Over the last decade there has been a large amount of work on duty cycling in

wireless sensor networks. Research has focused especially on the design of schemes

that optimize performance in terms of sensing (e.g., coverage of an area of interest)

and communication (e.g., data forwarding delay), given a duty cycle.

Research on connectivity and coverage often relies on results from random (ge-

ometric) graph theory [67, 68]. A duty cycle WSN can be modeled as a random

(geometric) graph, since neighboring nodes have a non-zero probability p of being

logically connected, which depends on the duty cycles. Furthermore, coverage and

connectivity are monotone properties of random graphs. That is, a random graph

with a higher edge probability p, either due to higher duty cycle, or a higher node

density, is at least as likely to cover an area or be connected. Results for thresholds

of monotone properties (e.g., [69]), are useful for designing randomized duty cycling

schemes that improve connectivity and reduce delay.

103

In [70] and [71], algorithms have been presented to provide area coverage in

duty cycle WSNs. Although the notion of sensor set up time was mentioned in [71],

it was not really taken into account in the algorithm design.

As far as communication is concerned, there exist works in the literature that

focus on duty cycle at the medium access control (MAC) layer. For example, S-MAC

[17] was proposed to minimize energy consumption in battery-powered wireless sensor

nodes. B-MAC [18] aims to reduce costs due to synchronization in S-MAC and other

protocols such as T-MAC [72] by means of long preambles and low power listening.

SCP-MAC [73] is a hybrid solution between S-MAC and B-MAC, which relies on

scheduled channel pollings instead of asynchronous preambles. Instead, X-MAC [20]

improves on B-MAC by means of short and strobed preambles which reduce the

latency due to long preambles in B-MAC.

More recently, a cross-layer approach in R-MAC [74] aims to reduce energy

latency introduced by S-MAC. In [75], a solution is proposed to reduce end-to-end

delay in case of anycast at the MAC layer. Additionally, an algorithm is proposed

in [76] to optimize the expected data delivery ratio and communication delay or

energy consumption based on a forwarding set, instead of a single node for the next

hop. A different solution to B-MAC’s long preambles is proposed in RI-MAC [77], a

receiver-initiated MAC where the sender waits for a beacon from the receiver before

forwarding the packet. Many of the solutions in these MAC protocols are evaluated

in a systematic way and organized in a comprehensive architecture in A-MAC [78].

Other works address specific communication operations, including data dissem-

ination and collection without specifically focusing on the MAC layer. In case of

data dissemination, the energy-optimal tree is expanded in [59] to reduce latency

and improve reliability based on forwarding sets, while in [79] a distributed dynamic

programming algorithm is designed for this goal. In the graph theoretic analysis of

104

duty cycling in WSNs [80], it is shown that the connection delay is reduced if the

number of time slots is increased, while the duty cycle is fixed. More recent work [81]

considers duty cycling with respect to communication in an energy harvesting WSN.

In this scenario, the amount of available energy is space- and time-dependent. Hence,

a flexible duty cycling solution is developed that improves communication latency

using the currently available energy supply.

To the best of our knowledge, ours is the first work that considers the energy

and time efficiency decay incurred by duty cycling due to set up and tear down costs

and provides a solution to improve efficiency, while keeping a constant connection

delay, or improve connection delay yet not negatively affecting efficiency. Thus, our

proposed solution is orthogonal to related work in the area of duty cycling in wireless

sensor networks. A direct comparison between the proposed schemes and existing

protocols is not required because concepts from both can be incorporated in a more

advanced duty cycling protocol to achieve an improvement on the overall energy

efficiency beyond what either scheme can offer.

4.6 Summary

In this chapter, we introduced a metric for time and energy efficiency of duty

cycling in WSNs, and presented a Markov chain-based, randomized scheme. We

analyzed the proposed scheme to derive mathematical expressions for the aggregate

duty cycle, connection delay and duration as well as time and energy efficiency, given

the duty cycle, time slot length, and memory coefficient of the Markov chain.

Experimental results on real hardware validate the performance improvements

achieved by the proposed scheme, as opposed to memory-less schemes. In fact, in

case of Sun SPOT-based WSNs with minimal set up and tear down operations, the

105

Markov chain-based scheme yields a 2.59% increase in time efficiency, which saves up

to 536 mJ per minute per wireless node.

106

CHAPTER 5

MARKOV-CHAIN BASED PARTIALLY RANDOMIZED

DUTY CYCLING SCHEMES

In this chapter, we apply the know-how to design an energy-efficient partially

randomized scheme, where wireless nodes share working schedules so that they can

switch into active state whenever they have packets to relay and the next-hop neighbor

is active1. We derive expressions for the connection delay, connection duration, and

time and energy efficiency, as well as the aggregate duty cycle.

We validate our analysis with experiments on Sun SPOTs, showing that the

expected connection delay can be reduced by at least 49.12%, while keeping a time

efficiency of 0.9248, as opposed to a 0.44% reduction in a scheme using i.i.d. random

variables. In turn, this corresponds to a saving between 51-89 mJ per minute per

wireless node.

Finally, we use the analytical models to compare the two proposed Markov

chain-based schemes and show how a partially randomized scheme outperforms a

randomized one in terms of connection delay and duration with constant energy con-

sumption and efficiency, while facing a small additional cost for distributing working

schedules among neighboring wireless nodes.

In Section 5.1 we introduce the Markov chain-based partially randomized scheme

and we analyze it in Section 5.2. The experimental results are presented in Section

1The research work presented in this chapter has been published in the Proc. of the 31st IEEE

International Conference on Distributed Computing Systems (ICDCS 2011) [60], and the ACM

Journal on Emerging Technologies in Computing (JETC) [61].

107

5.3. In Section 5.4 we compare the two randomized schemes, and we discuss optimal

duty cycling design in Section 5.5.

5.1 Partially Randomized Markov Chain-based Duty Cycling Schemes

A partially randomized scheme, such as the one introduced in [59], is an ex-

tension of the randomized scheme analyzed in the previous chapter, as it is apparent

when comparing the block diagrams in Figures 5.1 and 4.1. The objective of a par-

tially randomized scheme is to use the information about the neighbors’ states to

improve the performance, in terms of end-to-end delay, by eventually switching into

the active state when the next-hop node is active. Therefore, wireless nodes share the

generated working schedules with their neighbors. Clearly, the more wireless nodes

a working schedule is distributed to, the larger performance improvement in terms

of end-to-end delay can be achieved, given that routes with shorter delays can be se-

lected. Nonetheless, the working schedule distribution process costs in terms of time

and energy and the marginal performance improvement rapidly decays as a function

of the distance between sensors. Therefore, the working schedule distribution should

be limited to wireless nodes within a few (one or two) hops.

Start
Generate
working
schedule

Synchronize
clocks with
neighbors

Run according to
own and neighbors'
working schedule

Stop

Share
working schedule

with neighbors

Figure 5.1. Block diagram for partially randomized scheme operation.

108

In fact, a more efficient solution to distribute the working schedules can be

thought of. Instead of distributing the working schedules, we propose that (i) wire-

less nodes distribute only the seed used by the pseudorandom number generator to

create their schedules, and (ii) their neighbors locally re-compute the working sched-

ules. Given that transmitting a bit over the radio is more energy expensive than

computing it on a microcontroller, this solution is expected to reduce the energy cost

associated with the working schedule distribution. Furthermore, the time synchro-

nization messages can be exploited to carry the seeds as their payload, thus reducing

the time required for initialization.

In the next section, we present our mathematical analysis of the performance

of the Markov chain-based partially randomized scheme.

5.2 Analysis of Partially Randomized Duty Cycling Scheme

In our analysis of the proposed Markov chain-based partially randomized scheme,

we derive mathematical formulas for the connection delay, connection duration, time

efficiency, and aggregate duty cycle, given the time slot length, working schedule duty

cycle and memory coefficient. This mathematical model can then be employed to set

the control parameters in order to achieve a given performance. Before presenting

our analytical results, we introduce the model and assumptions.

5.2.1 Assumptions and Pairwise Markov Chain Model

Unlike the case of the randomized scheme in Section 4.2, the aggregate duty

cycle θ of a partially randomized scheme is not necessary equal to the working schedule

duty cycle µ. In fact, the aggregate duty cycle depends not only on the wireless node’s

duty cycle, but also on (i) the neighbors’ schedules and (ii) the amount of data that

the wireless node is transmitting or relaying.

109

The aggregate duty cycle depends on the neighbors’ schedules, because a wire-

less node can switch to active state also when not stated by its working schedule in

order to forward a message to a neighbor. Furthermore, the aggregate duty cycle

depends on the number of one-hop neighbors because the more neighbors a wireless

node has, the more likely it is to switch into active state to forward a message to one

of them. However, a wireless node does not have to be active all the time slots when

its neighbors are, but rather only when it has data to relay to one of them. Thus, in

a partially randomized scheme the aggregate duty cycle does not depend only on net-

work features such as topology and schedules, but also on application-specific features

such as the amount of traffic.

In our analysis of the performance of the proposed Markov chain-based par-

tially randomized scheme, we assume that (i) a wireless node relays data to only one

neighbor; and (ii) the transmit buffer is never empty. We argue that this case is

representative of many sensor network applications where wireless nodes relay sensed

data along a routing tree rooted at the base station. The analysis of the performance

for other operational modes (e.g., one-to-many in data dissemination) is left for future

work.

The Markov chain model for a pair of neighboring wireless nodes is similar to

the one in Section 4.3.1 used in the analysis of the randomized scheme. The transition

matrix and the stationary distribution are equal to the ones defined in (4.7) and (4.8),

respectively.

However, given the assumptions on the wireless sensor network, the joint state

of a pair of wireless nodes depicted in Fig. 5.2 is different from the one of Fig. 4.7 for

the randomized scheme. In fact, in the diagram of Fig. 5.2 wireless node a is in the

active state not only when it is stated so by its working schedule (i.e., q ∈ {01, 11}),

110

but also whenever its neighbor b is in the active state according to its schedule (i.e.,

q = 10).

0100

10 11

Figure 5.2. Pairwise Markov chain model for partially randomized scheme. A wireless
node is active not only when it is stated by its working schedule (i.e., state q ∈
{01, 11}), but also when the receiving wireless node is active (i.e., state q = 10).

In the following sections, we present the mathematical analysis for aggregate

duty cycle, connection delay and duration, and time efficiency based on the pairwise

Markov chain model that we introduced.

5.2.2 Aggregate Duty Cycle

The aggregate duty cycle θ of a partially randomized Markov chain-based

scheme is actually a random variable Θ. Based on the assumptions and the model in

the previous section, we derive the following expression for its expected value.

Theorem 10 (Expected aggregate duty cycle). The expected aggregate duty cycle of

a partially randomized scheme is

E[Θ] = 2 · µ− µ2 (5.1)

111

Proof. The aggregate duty cycle of a wireless node a can be computed adding the

working schedule duty cycle of the wireless node b to that of node a. The expected

ratio of time during which they are independently both active should be subtracted

because it has been counted twice (i.e., once for a and once for b). Thus,

E[Θ] = E[Sa] + E[Sb]− E[Sa, Sb]

= µ+ µ− µ · µ

= 2 · µ− µ2.

(5.2)

where E[Sa, Sb] = E[Sa] ·E[Sb] because working schedules on different wireless nodes

are generated independently.

We performed experiments for the proposed Markov chain-based partially ran-

domized scheme on Sun SPOT sensors. The experimental results plotted in Fig.

5.3(a) validate the analytical model. Furthermore, the plot of the analytical results

confirm that (5.1) yields an expected aggregate duty cycle E[Θ] ∈ [0, 1], ∀µ ∈ [0, 1].

It is also worthwhile observing that the aggregate duty cycle θ features the

highest increase with respect to the working schedule duty cycle µ when µ→ 0, since

d

dµ
(2µ− µ2) = 2− 2µ. (5.3)

This is intuitive as wireless nodes are less likely to be independently both active, when

they feature a lower duty cycle.

5.2.3 Connection Delay

In a partially randomized Markov chain-based scheme, the connection delay δ

between a pair of neighboring nodes is a random variable ∆.

112

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

A
vg

. a
gg

re
ga

te
 d

ut
y

cy
cl

e
θ

Working schedule duty cycle µ

Memory coefficient γ = 1.00

(a) Aggregate duty cycle

10

100

1000

10000

100000

40 60 80 100 120 140 160 180 200

A
vg

. c
on

ne
ct

io
n

de
la

y
δ

[m
s]

Time slot length T [ms]

Memory coefficient γ = 1.00
µ = 0.01
µ = 0.05
µ = 0.25
µ = 0.50

(b) Connection delay

10

100

1000

40 60 80 100 120 140 160 180 200A
vg

. c
on

ne
ct

io
n

du
ra

tio
n

ω
 [m

s]

Time slot length T [ms]

Memory coefficient γ = 1.00
µ = 0.01
µ = 0.05
µ = 0.25
µ = 0.50

(c) Connection duration

0.75

0.8

0.85

0.9

0.95

1

1.05

40 60 80 100 120 140 160 180 200

A
vg

. a
ct

iv
e

tim
e

ef
fic

ie
nc

y
η

Time slot length T [ms]

Memory coefficient γ = 1.00

µ = 0.01
µ = 0.05
µ = 0.25
µ = 0.50

(d) Time efficiency

Figure 5.3. Analytical (0.10-spaced) and experimental (µ = 0.01, 0.05, 0.25, 0.50)
results for (a) aggregate duty cycle, and analytical (10 ms-spaced) and experimental
(T = 50, 100, 200) results for (b) connection delay, (c) connection duration, and (d)
time efficiency vs. time slot length for different duty cycles when the working schedule
is generated with independently and identically distributed (i.i.d.) random variables
in a partially randomized scheme.

Theorem 11 (Expected connection delay). Given a partially randomized Markov

chain-based duty cycling scheme, its expected connection delay is given by

fδ([µ T γ]′) = E[∆] =
β

α(α + β)
(5.4)

Proof. Since the transmitting node a in a partially randomized scheme can switch

into active state whenever the receiving node b does, the connection delay depends

only on the state Sb of the receiving node b. In fact, the number of time slots until

a connection is established is the random variable U representing the number of

113

consecutive transitions on the self loop of state Sb = 0 in Fig. 4.6. Given that U has

a geometric distribution with success probability α the expected connection delay is

given by

fδ([µ T γ]′) = E[∆]

=
∑
s

E[∆|Sb = s] Pr[Sb = s]

= T · E[U |Sb = 0] Pr[Sb = 0]

= T ·
∞∑
u=1

[
(1− α)u−1α

]
· β

α + β

= T · β

α(α + β)

(5.5)

The results of experiments on Sun SPOT sensors for the connection delay plot-

ted in Fig. 5.3(b) validate the analytical model in (5.4).

5.2.4 Connection Duration

In a partially randomized Markov chain-based scheme, the connection duration

ω between a pair of neighboring nodes is a random variable Ω.

Theorem 12 (Expected connection duration). Given a partially randomized Markov

chain-based duty cycling scheme, its expected connection duration is given by

fω([µ T γ]′) = E[Ω] =
T

β
. (5.6)

Proof. Since the transmitting node a in a partially randomized scheme can be active

at any time slot when the receiving node b is active, the connection duration depends

only on the state Sb of the receiving node b. In fact, the number of time slots

in the connection is the random variable V representing the number of consecutive

114

transitions on the self loop of state Sb = 1 in Fig. 4.6. Given that V has a geometric

distribution with success probability β the expected connection duration is given by

fω([µ T γ]′) = E[Ω]

= T · E[V]

= T ·
∞∑
v=1

[
(1− β)v−1β

]
=
T

β

(5.7)

The analytical model for the connection duration in (5.6) is confirmed by the

experimental results for Sun SPOTs plotted in Fig. 5.3(c).

5.2.5 Time Efficiency

In a partially randomized Markov chain-based scheme, the time efficiency η for

a wireless node is a random variable Ω.

Theorem 13 (Expected time efficiency). Given a partially randomized Markov chain-

based duty cycling scheme, its expected time efficiency is derived as

fη([µ T γ]′) = E[η(K)] = 1 +
TUP + TDN

T
·

[1−(1−α)2]β
(α+β)2−β2 ln

(
[1−(1−α)2]β
(α+β)2−β2

)
1−

[
[1−(1−α)2]β
(α+β)2−β2

] . (5.8)

Proof. Given the 2-state Markov chain in Fig. 5.4 that is equivalent, as far as transi-

tions between states q = 00 and q ∈ {01, 11, 10} are concerned, to the 4-state Markov

chain in Fig. 5.2, the time efficiency of the partially randomized scheme is given by

E[η(K)] = 1 +
TUP + TDN

T
· β
′ ln(β′)

1− β′
(5.9)

by substituting β′ for β in (4.21).

115

1100

β'

α'

1-α' 1-β'
01

10

Figure 5.4. Equivalent Markov chain model for computation of time efficiency for
partially randomized scheme where α′ = 1− (1− α)2 and β = α′β2

(α+β)2−β2 .

Since state q = 00 has not been merged with any other state, the transition

probability on its self-loop is equal to the transition probability listed in (4.7) for the

4-state Markov chain in Fig. 5.2

1− α′ = (1− α)2, (5.10)

and thus

α′ = 1− (1− α)2. (5.11)

Furthermore, the probability for state q = 00 in the stationary distribution of the

2-state Markov chain has to be equal to the probability listed in (4.8) for the 4-state

Markov chain in Fig. 5.2

µ′00 = µ00

β′

α′ + β′
=

β

α + β
,

(5.12)

and thus

β′ =
α′β

(α + β)2 − β2
. (5.13)

Substituting (5.11) in (5.13), we obtain

β′ =
[1− (1− α)2]β

(α + β)2 − β2
, (5.14)

and then substituting (5.14) in (5.9), we obtain

E[η(K)] = 1 +
TUP + TDN

T
·

[1−(1−α)2]β
(α+β)2−β2 ln

(
[1−(1−α)2]β
(α+β)2−β2

)
1−

[
[1−(1−α)2]β
(α+β)2−β2

] . (5.15)

116

Experimental results for the time efficiency obtained for Sun SPOTs are plotted

alongside analytical results in Fig. 5.3(d). Similar to the case of the randomized

scheme, we observe that the analytical results are slightly lower than the experimental

ones. This behavior can be explained by the fact that we use a constant value for

the set up and tear down costs TUP and TDN , whereas in the experiments these are

random variables. Thus, the occurrences of values lower than the average have a

stronger impact on the time efficiency than occurrences of values greater than the

average.

An upper bound for the time efficiency can be computed using a formulation

similar to the one employed for the connection delay of the randomized scheme in

Section 4.3.3.

Theorem 14 (Upper bound on expected time efficiency). Given a partially random-

ized Markov chain-based duty cycling scheme, the upper bound on the expected time

efficiency is

E[η(K)] < η
(
h′opt · p

)
, (5.16)

where

p =

[
0

αβ

α2 + 2αβ

αβ

α2 + 2αβ

α2

α2 + 2αβ

]
(5.17)

is the re-weighted stationary invariant distribution of the pairwise Markov chain and

hopt is the optimal solution to the linear optimization problem

min c h

s.t. A h = b

h ≥ 0

(5.18)

117

with c = [1 1 1 1] and

A =

−1 0 0 0

(1− α)β −1 + (1− α)(1− β) αβ α(1− β)

β(1− α) βα −1 + (1− β)(1− α) (1− β)α

β2 β(1− β) (1− β)β −1 + (1− β)2

(5.19)

b =

0

−1

−1

−1

(5.20)

(Sketch). Applying Jensen’s Inequality to E[η(K)], we obtain

E[η(K)] ≤ η(E[K]), (5.21)

where E[K] is expected number of time slots until we hit state q = 00 given that the

pair of nodes are in state q ∈ {01, 11, 10}. Substituting h′opt ·p for E[K] in (5.21), we

obtain

E[η(K)] < η
(
h′opt · p

)
. (5.22)

In the next section, we present the results of the experiments we performed

on Sun SPOT sensors for the proposed Markov chain-based duty cycling scheme

and show how tuning the control parameters can bring about a solution with equal

connection delay and improved energy efficiency.

5.3 Experimental Results for Partially Randomized Scheme

We performed a series of experiments with Sun SPOT sensors, and measured

the connection delay, connection duration, time efficiency, and aggregate duty cycle,

118

to validate the proposed Markov chain-based partially randomized scheme and the

mathematical analysis. The considerations on the impact of hardware and software

on the set up and tear down costs that we made in Section 4.4 when presenting the

results of experiments for the Markov chain-based randomized scheme, apply to the

experimental analysis of the corresponding partially randomized scheme as well.

We performed experiments of the partially randomized scheme for the same four

different working schedule duty cycles (µ = 0.01, 0.05, 0.25, 0.50), five memory coef-

ficients (γ = 0.10, 0.25, 0.50, 0.75, 1.00), and three time slot lengths (T = 50, 100, 200

ms). According to the mathematical analysis in the previous section, in the experi-

ments we consider pairs of wireless sensor nodes, and compute the one-hop connection

delay and duration, and the time efficiency of the sensor nodes. Similarly to experi-

ments for the randomized scheme, the working schedules consist of 6, 000 time slots.

However, it is important to bear in mind that the resulting aggregate duty cycles are

different, and thus the results in this section cannot be fairly compared to the ones for

the randomized scheme. We plan to perform experiments with equal aggregate duty

cycles in our future work. Nevertheless, this section offers a comparison between our

partially randomized scheme and the mechanism in [59]. In fact, the latter is obtained

as a special case of the earlier when the memory coefficient γ = 1.00 (i.e., the states

are i.i.d. random variables).

As far as the working schedule generation is concerned, the only difference in

terms of complexity between the proposed partially randomized duty cycling scheme

and the mechanism in [59] is the usage of two transition probabilities α and β and

one bit of memory in the Markov chain, instead of the single probability µ for the

Bernoulli trials yielding the independent identically distributed random variables.

Fig. 5.5 displays results for aggregate duty cycle, connection delay, connection

duration, and time efficiency vs. the time slot length for all memory coefficients and

119

duty cycle µ = 0.05. In our discussion on the experiments, we focus on the results for

points x0 through x3 listed in Table 5.1 and marked in Fig. 5.5 for wireless sensor

nodes with duty cycle µ = 0.05, although similar conclusions can be drawn for other

duty cycles as well.

0

0.05

0.1

0.15

0.2

40 60 80 100 120 140 160 180 200

A
vg
.a
gg
re
ga
te
du
ty
cy
cl
e
θ

Time slot length T [ms]

Working schedule duty cycle µ = 0.05
γ = 0.10
γ = 0.25
γ = 0.50
γ = 0.75
γ = 1.00

x0x3x1

x2

(a) Aggregate duty cycle, µ = 5%

100

1000

10000

100000

40 60 80 100 120 140 160 180 200

A
vg
.c
on
ne
ct
io
n
de
la
y
δ
[m
s]

Time slot length T [ms]

Working schedule duty cycle µ = 0.05
γ = 0.10
γ = 0.25
γ = 0.50
γ = 0.75
γ = 1.00

x0x3

x1

x2

(b) Connection delay, µ = 5%

10

100

1000

10000

40 60 80 100 120 140 160 180 200A
vg
.c
on

ne
ct
io
n
du

ra
tio
n
ω
[m
s]

Time slot length T [ms]

Working schedule duty cycle µ = 0.05
γ = 0.10
γ = 0.25
γ = 0.50
γ = 0.75
γ = 1.00

x0

x3
x1

x2

(c) Connection duration, µ = 5%

0.75

0.8

0.85

0.9

0.95

1

1.05

40 60 80 100 120 140 160 180 200

A
vg

.a
ct
iv
e
tim

e
ef
fic
ie
nc

y
η

Time slot length T [ms]

Working schedule duty cycle µ = 0.05

γ = 0.10
γ = 0.25
γ = 0.50
γ = 0.75
γ = 1.00

x1

x0

x2

x3

(d) Time efficiency, µ = 5%

Figure 5.5. (a) Aggregate duty cycle, (b) connection delay, (c) connection duration
and (d) time efficiency vs. time slot length for variable memory coefficient γ = α+ β
and duty cycle µ = 0.05 for Sun SPOTs. By combining a reduction of the time
slot length with a lower memory coefficient, the connection delay can be reduced,
while not degrading the time efficiency. Similarly, the connection duration and time
efficiency can be improved without affecting the connection delay, if the increase in
the time slot length is accompanied by a higher memory coefficient.

120

Memory Time slot Time eff. Conn. delay Conn. dur.
Point coeff. γ length η δ [ms] ω [ms]

T [ms] (% diff.) (% diff.) (% diff.)

x0 1.00 200 0.9587 3, 695 211
(±0.00%) (±0.00%) (±0.00%)

x1 1.00 50 0.8388 924 53
(−12.51%) (−74.99%) (−74.88%)

x2 0.50 50 0.9248 1, 880 108
(−3.54%) (−49.12%) (−48.81%)

x3 1.00 102 0.9207 1, 880 107
(−3.96%) (−49.12%) (−49.29%)

Table 5.1. Time efficiency, connection delay, and connection duration for Sun SPOTs
with duty cycle µ = 0.05, aggregate duty cycle θ = 0.975 and TUP = 11.50 ms and
TDN = 2.86 ms.

Also for the Markov chain-based partially randomized scheme, we observe that

all solutions x0 yield equal aggregate duty cycles, and thus we can compare the

performance in terms of connection delay and time efficiency for a constant energy

consumption.

Given the setting with time slot length T = 200 ms and memory coefficient

γ = 1.00 (x0), the initial duty cycling scheme has an average connection delay δ =

3, 965 ms with time efficiency η = 0.9587. When the time slot length is reduced from

T = 200 ms to T = 50 ms and the memory coefficient γ = 1.00 is upheld (x1),

the duty cycling metrics are δ = 924 ms and η = 0.8388. Besides featuring a lower

connection delay, this setting also yields a lower time efficiency, which represents a

negative side effect of the time slot length reduction.

Now, adopting our Markov chain-based duty cycling scheme with time slot

length T = 50 ms and memory coefficient γ = 0.50 (x2) brings about a connection

delay δ = 1, 880 ms, which represents a 49.12% reduction on the original value (x0),

while keeping a time efficiency η = 0.9248. Although the memory-less setting with

121

T = 102 ms and γ = 1.00 (x3) based on [59] achieves the same connection delay

δ = 1, 880 ms, it yields a time efficiency η = 0.9207, which is 0.44% below the

0.9248 efficiency of the Markov chain-based duty cycling scheme. It is easy to observe

from Table III that the results for the connection duration are directly related to the

connection delay, given that all settings have duty cycle µ = 0.05.

Given a power consumption between 210-360 mW for a Sun SPOT [66], the

Markov chain-based partially randomized scheme can reduce the energy consumption

by 51-89 mJ per minute.

In the next section, we compare the performance of the proposed Markov chain-

based randomized scheme and partially randomized scheme using the analytical model

validated through these experiments.

5.4 Comparison of Randomized Schemes

Given the analytical models for the randomized scheme and partially random-

ized scheme in Sections 4.3 and 5.2, it is worthwhile comparing the performances

in terms of connection delay, connection duration, and time efficiency. In order to

have a fair comparison, we set the schedule duty cycles µ’s so that the two schemes

yield equal aggregate duty cycles θ’s, and hence feature equal energy consumption

during operation. Furthermore, as it can be seen in Figures 4.1 and 5.1, both schemes

make use of time synchronization (FSTP [64] in our experiments), thus keeping the

comparison fair. The only extra cost for the partially randomized scheme is due to

the working schedule distribution, which can be ignored for sufficiently long working

schedules. In our experiments, each working schedule of 6, 000 time slots of 50 ms each

lasts 5 minutes and can be compressed into 750 bytes. Even assuming a somewhat

conservative data rate of 100 kbit/s for IEEE 802.15.4, one working schedule can be

transferred in 60 ms. Assuming a maximum number of neighbors of 15, all working

122

schedules can be shared in less than 1 sec. This results in a 0.34% overhead for the

partially randomized scheme as compared with the randomized one. The overhead

is further reduced for longer working schedules or longer time slots. As discussed in

the following, the improvement of the partially randomized scheme over the random-

ized one is in the order of 50%, thus making the overhead due to sharing of working

schedules negligible.

The analytical results for the two schemes are plotted in Fig. 5.6. First, we

observe that the time efficiencies in Fig. 5.6(c) are equal for a fixed time slot length,

memory coefficient, and aggregate duty cycle. However, the connection delay and

connection duration are not. The relative improvement (i.e., decrease) in terms of

connection delay is much higher for lower duty cycles (cfr. the distance between

the green plots and the magenta ones in Fig. 5.6(a)). This is due to the fact that

active instances for low duty cycle wireless nodes are unlikely to be overlapping. The

same consideration motivates the symmetric behavior observed for the connection

duration, where the relative improvement (i.e., increase) is much higher for higher

duty cycles (cfr. the distance between the green plots and the magenta ones in Fig.

5.6(b)). In this case overlapping active instances between neighboring nodes enable

longer connections.

This analytical comparison demonstrates that partially randomized schemes are

to be preferred over randomized schemes (whenever the working schedule distribu-

tion is not too expensive), since the connection delay and duration can be improved

while affecting neither the aggregate duty cycle nor the time efficiency. Similarly, the

aggregate duty cycle and the time efficiency could be improved, while keeping the

connection delay and duration constant.

In the next section, we discuss the application of the analytical models to the

design of optimal duty cycling schemes.

123

100

1000

10000

100000

1e+06

1e+07

40 60 80 100 120 140 160 180 200

A
vg

. c
on

ne
ct

io
n

de
la

y
δ

[m
s]

Time slot length T [ms]

Memory coefficient γ = 1.00
θ = 0.01
θ = 0.05
θ = 0.25
θ = 0.50

(a) Connection delay, γ = 1.00

10

100

1000

40 60 80 100 120 140 160 180 200A
vg

. c
on

ne
ct

io
n

du
ra

tio
n

ω
 [m

s]

Time slot length T [ms]

Memory coefficient γ = 1.00
θ = 0.01
θ = 0.05
θ = 0.25
θ = 0.50

(b) Connection duration, γ = 1.00

0.75

0.8

0.85

0.9

0.95

1

1.05

40 60 80 100 120 140 160 180 200

A
ct

iv
e

tim
e

ef
fic

ie
nc

y
η

Time slot length T [ms]

Memory coefficient γ = 1.00

θ = 0.01
θ = 0.05
θ = 0.25
θ = 0.50

(c) Time efficiency, γ = 1.00

Figure 5.6. Analytical results for (a) connection delay, (b) connection duration and
(c) time efficiency vs. time slot length for randomized scheme (10-ms spaced) and
partially randomized scheme (15-ms spaced) with equal aggregate duty cycle θ ∈
{0.01, 0.05, 0.25, 0.50}.

5.5 Optimal Duty Cycling for Wireless Sensor Networks

The expressions for the aggregate duty cycle θ, the connection delay δ, the

connection duration ω, and the time efficiency η obtained in (4.10), (4.13), (4.19),

and (4.21) for the randomized scheme and (5.1), (5.4), (5.6), (5.8) for the partially

randomized scheme, respectively, can be employed to compute a solution for the

working schedule duty cycle µ, the memory coefficient γ, and the time slot T that

optimizes a function c([θ δ ω η]′) of the performance metrics. The values of the control

parameters that yield the optimal solution are provided to the wireless sensor nodes

124

that employ them in the generation of the working schedules, thus achieving a known

level of performance in terms of aggregate duty cycle, connection delay and duration,

and time and energy efficiency.

If the constraints in the optimization problem based on the mathematical model

change (e.g., the upper bound on the duty cycle is raised because the energy harvest-

ing system is recharging the battery at a higher rate, or the set up and tear down

costs are shorter), then the optimal solution for the control parameters (i.e, duty

cycle, memory coefficient, and time slot length) should be recomputed as a solution

with better performance in terms of connection delay, connection duration, and/or

time and energy efficiency could be achieved. This operation can be performed on the

wireless nodes themselves, or not. Since the optimization problem is rather complex,

it might be best to solve it at the base station, and then send the new values for

the parameters to the wireless nodes, that they can use to generate future working

schedules. This solution is feasible because the constraints due to required lifetime

and set up and tear down costs are likely to change quite infrequently (i.e., in the

order of several hours, if not days).

The performance improvement in terms of time and energy efficiency grows as

the set up and tear down operations become more and more expensive (in terms

of time and energy), which is the case in real-life WSN applications where wireless

sensor nodes have to perform multiple operations when switching from deep sleep to

normal operation mode, including communication stack update and sensor warm up.

We argue that this work can represent a baseline scheme against which suc-

cessive works on duty cycling in WSNs that consider the time and energy efficiency

metric could be evaluated.

125

5.6 Summary

In this chapter, we applied the proposed Markov chain-based solution to a

partially randomized scheme and studied the performance via mathematical analysis

and experimental validation. We showed that the energy efficiency of the proposed

Markov chain-based partially randomized scheme can be improved while not affecting

the connection delay, or vice versa.

The proposed schemes are much more effective in designing sustainable and

green real-life WSNs applications, where the set up and tear down costs are much

higher compared to the baseline in our experiments due to communication stack

update and other operations.

We are currently conducting experiments with a set of realistic set up and tear

down operations on a network of nodes, consisting of both Sun SPOTs and MEMSIC

TelosBs [82]. Future work includes studying the end-to-end connection delay and

analyzing the performance in terms of aggregate duty cycle for other communication

modes besides the convergecast one considered in this chapter.

126

CHAPTER 6

FuseViz:

A FRAMEWORK FOR WEB-BASED DATA FUSION AND VISUALIZATION

IN SMART ENVIRONMENTS

In recent years, pervasive computing and communications technology has en-

abled the development of applications in a wide spectrum of domains: from traffic

and transportation [8] to smart environments [83], from health and well being [84] to

fitness and sports [85], and from games and entertainment [86] to social networking

[87], just to name a few. As depicted in Fig. 6.1, these domains have two important

common features: i) diverse data sources, and ii) lay (application) users.

Figure 6.1. Smart environment scenario. In pervasive computing scenarios, valuable
information for users is scattered in various kinds of data originating from diverse in-
dependent sources. A pervasive computing application should aggregate the relevant
data from all sources in a meaningful way, and present them to lay users in a format
such that it is easy for them to explore the data and obtain the necessary information.
Redesign of Fig. 1 in [88].

127

Thanks to advances in pervasive computing, wireless mobile communications,

and micro-electronic mechanical systems (MEMS) technology, data can be collected

from a large array of sources spanning from wireless sensor nodes (e.g., [62, 82]) and

smartphones (e.g., [89, 90]) to online databases [91]. To present a complete view

of a domain (e.g., smart home), an application often needs to rely on various data

sources (e.g., appliances and user location). Furthermore, the same data source (e.g.,

user location) may contribute to applications in different domains (e.g., smart home

and road navigation). Therefore, it is important to develop a systematic solution

for the aggregation of multiple data sources in pervasive computing applications.

Features of data streams and sources [92], such as size, format, liveness, heterogeneity,

dynamicity, and autonomy, pose several challenges that the aggregation mechanism

should address.

Due to their pervasive nature, applications in the above-mentioned domains

often feature an audience of lay users with no data analysis background. Therefore,

it is important that the data be presented in a fashion that makes it easy for these

users to analyze them intuitively, and extract the relevant information. Visualization

is an effective solution for intuitive data analysis as it leverages the human vision

capability to spot patterns and trends.

To better present our arguments about data and users, let us introduce an

example which we use as the case study throughout this chapter, namely the Energy-

Efficient Home (E2Home) application. In a smart home scenario, lay users are inter-

ested in the electric energy consumption at their home, and would like to understand

the patterns and trends in order to adjust their behavior, thus making the home more

energy-efficient.

First of all, data from the electric energy meter are needed. However, these data

alone are likely to be insufficient to understand how to change one’s behavior to reduce

128

energy consumption. In fact, energy consumption data could be joined with the user

location to understand where the user is, when high energy consumption occurs. The

user could then try to reduce high energy consumption occurring when he/she is not

home. For instance, the heating, ventilation, and air conditioning (HVAC) system

could be better programmed to match the user’s daily routine.

Notwithstanding the final set of data sources, we observe that they are likely to

be diverse and autonomous from each other, while all being relevant to the problem,

and thus instrumental to improve the energy efficiency of a smart home. In our

case study, electric energy consumption data is programmatically retrieved via the

Smart Meter Texas (SMT) Web site [93], and the user’s location is collected using an

Android [90] app on a Google Nexus One [94] smartphone.

One of the problems in the design of an application using data from multiple

autonomous sources is that it is impossible to aggregate them by performing a join

operation as defined on tables in a relational database. For instance, in the E2Home

application, the data streams from the SMT Web site and the Android smartphone

app are unsynchronized. Not only it is impossible to synchronize the clocks of the

two data sources, but also the sampling periods are different due to the nature of

the quantities, and the instruments used to measure them. The energy consumption

data are available for 15-min time slots from the SMT Web site, while the user’s

location is sampled with a 5-min period1. Therefore, it is impossible to join the data

streams directly over the time dimension to obtain a joint data stream with energy

consumption and user’s location for each time.

1Clearly, both the 15-min time slot, and the 5-min period are the result of a trade-off between

accuracy and cost, since sampling more frequently would incur in higher network traffic (SMT), or

shorter battery life (Android app).

129

Even if the data streams relevant to the problem domain can be composed in

a single joint data stream, static visualizations may not be sufficient to help a lay

application user understand the data and extract the valuable information. In case

of the E2Home app, the user might be interested in the energy consumption when

he/she is not home. However, a static time line with the energy consumption and a

map with the user’s location do not enable this kind of analysis, because data points

in one chart (i.e., the map) cannot be selected to see the corresponding value in the

other dimension (i.e., the time line). Therefore, interactive visualizations are needed,

which support operations such as panning, zooming, and brush-and-linking.

While several applications [95, 96, 88, 92] provide static and also interactive vi-

sualizations, none of them addresses the problem of aggregating multiple autonomous

data streams in a systematic fashion. Furthermore, even the few interactive visual-

izations are either customized for a specific application (e.g., [95, 96]), or provide a

limited interaction due to shortcomings in the re-rendering functions of the underlying

visualization framework (e.g., [88, 92]). This motivates our work.

In this chapter, we present FuseViz, a framework for the development of Web-

based data aggregation and visualization in pervasive computing environments2. The

objective of FuseViz is to exploit the full potential of available data sources in the ap-

plication domain to the user’s advantage by easing the ascent of the data-information-

knowledge-wisdom (DIKW) pyramid [99] as depicted in Fig. 6.2. To achieve this goal,

FuseViz relies on two basic features: i) aggregation, and ii) visualization.

To solve the problem of composing multiple autonomous data sources, we define

the concept of aggregation. Aggregation is a generalization of the join operation

2The research work presented in this chapter has been published in the Proc. of the 9th IEEE

International Conference on Mobile Ad hoc and Sensor Systems (MASS) [97] and the Proc. of the

3rd IEEE International Conference on Smart Grid Communications (SmartGridComm) [98].

130

Data

Information

Knowledge

Wisdom

A
g
g
re
g
a
ti
o
n

a
n
d

V
is
u
a
liz
a
ti
o
n

A
g
g
V
iz

Figure 6.2. DIKW pyramid and the FuseViz framework. In the DIKW pyramid
model, data are transformed into information, followed by information into knowl-
edge, and finally knowledge into wisdom. The FuseViz framework uses aggregation
and visualization to transform data from multiple sources in a pervasive computing
environment into information for lay users.

according to which two or more data streams are joined along one or more dimensions

(e.g., time, position) to form a joint data stream. The aggregation function is not

uniquely defined, but it depends on the domain and the application. For instance,

in the E2Home application scenario, energy consumption and user’s location can be

aggregated over time, thus computing an average value for each one of them or keeping

all data points for each time interval.

In FuseViz-based applications, data from multiple sources are stored in CouchDB

[44], a schemaless database, and then aggregated into a joint data stream using

MapReduce [100] functions. To the best of our knowledge, the proposed aggrega-

tion mechanism is the first solution to join multiple autonomous data streams in

pervasive computing environments.

Joint data streams are visualized on scalable vector graphics (SVG) [101] charts

and maps in a Web page using D3 [102, 103], a JavaScript library to manipulate

data-driven documents. The resulting SVG-based interactive visualizations are very

responsive owing to element-specific re-rendering enabled by D3.

Due to aggregation and visualization in FuseViz, data from multiple autonomous

sources can be transformed into valuable information for lay users in any application

131

scenario. To assess the proposed FuseViz framework, we developed several visual-

ization applications, including the E2Home app for the case study in this chapter.

The interactive visualizations of the joint data stream featuring energy consumption

and user’s location enable the user to narrow down on high energy consumption time

intervals when he/she is not home using brush-and-linking and panning and zooming.

The user can then exploit this information to adjust his/her behavior, or tune home

appliances in order to reduce the overall energy consumption.

Our analysis of the experimental results obtained over a 38-day period shows

that a large share of the energy consumption (11.34%) is concentrated in a small

fraction of the overall time (1.09%) while the user is not home. This implies that

targeted actions in these situations (i.e., user not home and high energy consumption)

can bring about a significant improvement in the home energy efficiency. In fact, the

energy efficiency of the home can be improved by more than 10%, if the user takes

advantage of the precise information provided by the E2Home application to better

control the electric appliances.

The rest of the chapter is organized as follows. Section 6.1 summarizes the

related work. Section 6.2 formalizes the requirements of the FuseViz framework, and

discusses the related challenges. Section 6.3 offers a detailed description of FuseViz,

and Section 6.4 presents the case study of the E2Home application. Section 6.5 dis-

cusses the performance of FuseViz based on the E2Home application, and compares it

with that of other data storage and/or visualization frameworks. Finally, conclusions

are drawn in Section 6.6.

6.1 Related Work

Over the last few years, there has been a growing interest on visualization in the

context of pervasive computing and communications. We observe a shift from cus-

132

tomized solutions to more generic ones, and from static visualizations to interactive

ones. Nevertheless, none of the existing systems for visualization of data from per-

vasive environments provides a solution for the aggregation of multiple autonomous

data sources.

Biketastic [104, 96] and the Copenhagen Wheel [95] are domain-specific sys-

tems that offer several advanced visualizations, including map overlays of data (e.g.,

pollution levels, traffic congestion, and road conditions) collected by users. Although

users can interact with visualizations to a certain extent, both projects appear to be

customized solutions with no support for quick addition of data sources or visualiza-

tions, thus making it impossible to use them as data visualization frameworks in any

other application domain.

Sensor.Network [88, 105] is a data storage and exchange platform for the Inter-

net of Things (IoT) that offers a ReSTful (representational state transfer) [33] API

for users, or devices/services acting on their behalf, to manage data streams as well

as insert or retrieve data. As such, Sensor.Network is successful in creating a common

place for storing data streams in different domains. It also provides several visual-

izations, including maps and scatter charts, but these are not interactive and data

streams within Sensor.Network cannot be aggregated into a joint data stream to be

visualized.

Earlier we developed SNViz [92] as a visualization framework for data streams

in Sensor.Network [88]. SNViz caters to lay users by making it easy to visualize

different dimensions of a data stream on charts and maps and providing support for

panning, zooming, and brush-and-linking. However, interactivity suffers from the

intrinsic shortcomings of using Protovis [106], as re-rendering of subsets of elements

in a visualization is not a top-level operation in Protovis, but is achieved using local

variables that severely slow the process, and may even cause inconsistencies in the

133

underlying data structures [102]. Furthermore, SNViz does not address issues arising

from autonomous data sources as it is tightly coupled with Sensor.Network, nor data

streams in Sensor.Network can be aggregated into a joint data stream.

On the other hand, FuseViz addresses the issues related to existing data visual-

ization solutions in pervasive computing and communications, including diverse data

streams and static visualizations. The outcome is a novel framework for Web-based

aggregation and visualization of data from multiple autonomous sources.

In the next section, we formalize the requirements that guide the development

of FuseViz, and discuss the challenges.

6.2 Requirements and Challenges

The FuseViz framework for analysis-oriented visualization by lay users in per-

vasive computing environments has the following requirements: i) support for Web

access; ii) modular and extensible data sources and visualizations; and iii) embed-

dable, interactive, and responsive visualizations.

First of all, FuseViz-based applications should be accessible from any device,

including smartphones and tablets, because in a pervasive computing scenario users

likely want to access the relevant information independent of the devices currently at

their hands.

Second, FuseViz should be modular and extensible both in terms of data sources

and visualizations. An FuseViz-based application should be easily assembled using

only the necessary data sources and visualizations (modularity), and data sources and

visualizations should be easily added whenever an application domain requires them

(extensibility).

Finally, FuseViz-based applications should be interactive, responsive, and em-

beddable in existing Web pages. Responsive visualizations make it more appealing

134

for users to interact with them to explore the patterns and trends in the data. Fur-

thermore, enabling features like embedding of visualizations in Web pages makes it

easy to share them with other interested users via social networking applications, or

create mash ups on blogs.

In order to develop an effective solution for analysis-oriented visualization, sev-

eral challenges posed by the nature of data and users need to be addressed. In this

study, we argue that major challenges are due to the following features of the data

streams and sources in a pervasive computing environment: i) size, ii) liveness, iii)

heterogeneity and dynamicity, and iv) autonomy.

Large data streams consisting of several (hundreds of) thousands of data points,

each carrying values along multiple dimensions, need be efficiently stored, aggregated,

transferred, and rendered in the interactive and responsive visualizations in a Web

browser. For instance, even in a simple application such as E2Home, 17, 856 samples/month

per (user, home) pair are being collected.

Not only are data streams large, but they are also likely to be live as new data

points are added while users take advantage of the visualization application. New

data points should be stored and aggregated, and visualizations should be updated

to incorporate the new data without disruption to the user currently interacting with

them. In the E2Home app, one new sample is generated every 3 min 45 sec on average

for a (user, home) pair.

Since data streams originate from multiple sources, they are heterogeneous in

terms of such features as data types, sampling frequencies, and accuracy. Data stream

features are also likely to change over time because they are not usually under the

control of those developing the visualization applications. In the E2Home app, de-

velopers do not control the design of the SMT Web site and the formats used for

135

energy consumption data. Therefore, storage, aggregation, and visualization should

be designed to adapt to heterogeneous and dynamic data streams.

Relevant data for a given application originate from autonomous data sources,

whose primary goal might not be to support a specific application. For instance, the

organization managing the SMT Web site is unaware of the use of electric energy

consumption data made by the E2Home app. Therefore, FuseViz should enable ag-

gregation of these autonomous data sources also in case of temporary disruptions to

the data streams.

Finally, although lay users do not have a background in data analysis, they

can easily spot patterns and trends when data are visualized. However, even if the

patterns and trends can be spotted, having a large number of data points (e.g.,

> 17k samples/month in the E2Home app) on a visualization can severely impair this

process unless the user can explore the data highlighting relationships and focusing on

subsets. FuseViz-based visualizations should help this process by providing intuitive

interaction methods to explore the (joint) data streams.

In the next section, we describe the architecture of the FuseViz framework,

and highlight how it fulfills the requirements and addresses the challenges that we

outlined.

6.3 Proposed FuseViz Framework

Before describing the FuseViz framework, let us introduce two important build-

ing blocks: CouchDB [44] and D3 [102]. CouchDB is a distributed schemaless

database with a ReSTful JSON (JavaScript Object Notation) API to manage databases

and documents over HTTP. CouchDB documents are JSON-formatted and can sup-

port MIME (Multipurpose Internet Mail Extensions) attachments for non-text data

types. Server-side JavaScript validation functions can be designed to check documents

136

being pushed to a database. Once stored in a CouchDB database, documents can

be automatically copied to other databases using CouchDB’s replication mechanism.

Documents in a CouchDB database can be queried and indexed using server-side

JavaScript MapReduce functions called views. The output of MapReduce functions

can be further processed using list functions before being sent as part of the HTTP

response. A CouchDB list is a server-side JavaScript function that takes the JSON

array resulting from the MapReduce function as input, and transforms it into other

formats (e.g., HTML or RSS XML), or performs reduce-like operations on the data

points.

D3 is a JavaScript library for manipulating documents based on data. Data

in the form of JavaScript arrays, thus including JSON documents, can be associated

to elements in the Document Object Model (DOM), such as SVG and HTML ones.

The properties of these DOM elements can then be set based on the value of the

corresponding object in the data array. D3 also supports dynamic data sets via so-

called transformations, as DOM elements can be created, updated, or deleted when

the elements in the data array are added, edited, or removed.

As discussed in the rest of the chapter, CouchDB and D3 are instrumental

in providing aggregation and visualization in FuseViz as they help us address the

challenges due to data and users in pervasive computing applications.

6.3.1 Architecture

Figure 6.3 portrays the architecture of the FuseViz framework that consists of

the following components: collection, storage, aggregation, and visualization. In the

following, these are described in details.

137

Aggregation

Validation

Aggregate
data stream

database

Visualization
database

Data sources

Data stream
databases

Web page

Figure 6.3. Architecture of FuseViz-based application. Data from heterogeneous
sources are i) validated and pushed into CouchDB databases; ii) aggregated into a
single joint data stream using MapReduce functions; and iii) presented to the user
in a Web page using interactive visualizations.

6.3.1.1 Data Collection

Data from all relevant sources for the visualization application are imported into

a CouchDB database. If the source already stores the data in such a database, then

they can be easily imported using CouchDB’s replication mechanism. Otherwise, the

data collection application should directly post the data points to CouchDB, or a

bridging application should be implemented.

Since CouchDB presents a ReSTful JSON API to manage documents, data

points should be formatted using JSON to be pushed to CouchDB using HTTP. As

we show in the E2Home application, these constraints do not pose major hurdles as

most programming languages feature HTTP and JSON libraries.

138

As previously mentioned, validation functions can be implemented to check the

data points being pushed into the database. This is particularly important given that

visualization applications aggregate data from third-party sources (e.g., SMT Web

site in our E2Home application), which cannot be trusted as to the format of their

data.

An important design decision is whether data points from different sources

should be imported into a single database, or not. We argue that each data stream

should be imported into its own database because it could then be used to feed

multiple visualization applications. For instance, the user’s location is likely to be

used in other applications beyond the E2Home app. This solution has also the positive

side-effect of simplifying validation function design, as specific functions for each data

source can be implemented. A single validation function for energy consumption and

user’s location data in the E2Home application would not support modularity and

extensibility.

Challenges due to data and sources are easily addressed using CouchDB. In

fact, CouchDB’s Erlang-based HTTP engine easily scales up to handle heavy loads

of requests [107], thus enabling data collection for multiple autonomous, large, and

live data streams. Furthermore, CouchDB’s ReSTful JSON API provides a straight-

forward solution to import data from heterogeneous and autonomous sources.

6.3.1.2 Data Storage

Once data streams are pushed to a CouchDB database, an important design

decision is whether multiple data points should be stored in a single CouchDB docu-

ment, or not. We argue that the best engineering solution is to have one data point

per document, because this makes MapReduce function design straightforward. Fur-

thermore, the data collection would be more cumbersome, if multiple data points per

139

document were allowed. In fact, validation functions should be designed to allow for

variable number of data points in a HTTP request, and stored documents should

be first retrieved by the data collection application or bridge, updated with the new

data, and then pushed into the CouchDB database again.

Using CouchDB, large, heterogeneous, and dynamic data streams from au-

tonomous sources can be easily handled by FuseViz. As long as a data point passes

validation, it can be stored in the CouchDB database for its data stream, thus avoid-

ing problems incurred into if using relational databases with a fixed schema.

6.3.1.3 Data Aggregation

Once data streams used in the FuseViz-based application are stored into CouchDB

databases, they need to be aggregated into a joint data stream to be visualized on a

Web page. Aggregation is needed because autonomous data sources are likely to gen-

erate data streams with different frequencies and offsets, or unnecessary dimensions.

For instance, in the E2Home data sources, data points for user’s location feature a

5-min period, while electric energy consumption data points feature a 15-min period.

In other application scenarios, data could be collected according to a threshold (e.g.,

a new data point may be generated when the distance between the current location

and the one in the last data point is above a preset value), thus with no regular

period.

Data aggregation consists of three phases. First of all, relevant data streams

are imported from their specific CouchDB databases into another database using

CouchDB’s replication mechanism. By leaving the CouchDB databases storing the

component data streams unaffected, these can be used in multiple FuseViz-based

applications.

140

Second, a MapReduce function in the CouchDB database is used to sort all data

points, eventually removing unnecessary dimensions, from all data streams according

to a key value. This is usually the field used for the aggregation of the autonomous

data streams. In most applications, the key is likely to be some kind of timestamp

associated with the data point. However, time is not the only dimension along which

aggregation is performed. Another common field for aggregation is location.

Finally, the sorted data points are aggregated using a CouchDB list. Depending

on how complex the aggregation is, a list function might be needed, or the reduce

function in the MapReduce view might be sufficient to generate the joint data stream.

The result of these three steps is a joint data stream, which can be retrieved

via a HTTP GET to the list uniform resource identifier (URI), or the view URI if

the list function is not used.

The data aggregation component addresses several challenges due to the fea-

tures of data streams. First of all, the MapReduce paradigm is well-suited to pro-

cess heterogeneous and dynamic data streams. Not only can specific operations be

designed for different data streams being aggregated, but also they can be easily

updated.

Second, the result of MapReduce functions is stored in the database, so that

they do not have to be recomputed for each request. Therefore, the computational

load on CouchDB and the latency of HTTP responses are minimized even in case of

large data streams.

Finally, the result of a MapReduce function is recomputed on-the-fly for a

HTTP request, if there exist new data points in the database due to live data streams.

141

6.3.1.4 Data Visualization

Once data from multiple sources have been aggregated into a joint data stream,

they are ready to be visualized in a Web page. Since the objective of a Web-based

data visualization application is to be accessible by the users anytime anywhere, it

is important that the technologies used in its implementation are supported not only

on laptops and desktops, but also smartphones and tablets. However, these handheld

devices often miss components that are given for granted on laptops and desktops

(e.g., Adobe Flash on Apple WebKit). We decided to use HTML, JavaScript, SVG

and cascading style sheets (CSS) as these technologies are standards and are already

available on a wide array of devices, or are likely to become available in the near

future. (SVG is available on Firefox Mobile Web browser on Android and the Apple

WebKit on iPhone, but not in the Android default Web browser.)

The visualization subsystem depicted in Fig. 6.4 relies on D3 to manipulate

visualizations based on the data in the joint data stream. So far we implemented

the following visualizations: scatter chart, line chart, focus and context time line,

and map. In all visualizations, data points are depicted using SVG circles. The fill

color is red or blue depending on whether the data point has been selected or not.

The focus and context time line (cfr. Fig. 6.7) is a composite visualization where

the time interval selected in the bottom time line chart (context) is portrayed in the

top time line chart (focus). Furthermore, the user can slide the selection to observe

evolution over time. The map visualization (cfr. Fig. 6.7) is implemented using an

SVG overlay on top of Google Maps.

Use of D3 implies large, live, and heterogeneous data streams can be rendered

on interactive visualizations for lay users. First of all, D3 allows for editing of subsets

of DOM (e.g., SVG) elements, so that only those elements affected by user-generated

142

events (e.g., brush-and-linking) are updated. Similarly, elements can be added or

removed to visualizations of live data streams without having to re-render all other

elements. Furthermore, D3’s agnostic approach to standards does not restrict vi-

sualizations to one technology (e.g., SVG). As a result, visualizations including not

only scalar data, but also multimedia ones (e.g., images) can be incorporated, thus

broadening the applicability of FuseViz to more domains in pervasive computing.

Finally, D3’s selection mechanism greatly simplifies the implementation of panning,

zooming, and brush-and-linking: three features instrumental to transform raw data

into valuable information for lay users.

Visualization
Manager

Aggregate
data stream

Events

...

Figure 6.4. Architecture of data visualization subsystem. Aggregate data are visu-
alized on SVG-based charts and maps using JavaScript and D3. A JavaScript-based
visualization manager processes user-generated events such as panning and zooming
and brush-and-linking, and updates the visualizations accordingly.

143

6.3.2 Application

A Web-based analysis-oriented data visualization application can be quickly

developed on top of the visualization and aggregation components in FuseViz. As de-

picted in Fig. 6.4, a visualization application consists of plain HTML and JavaScript

in a Web page.

The joint data stream is retrieved from the CouchDB database via a HTTP

GET request to the list or view URI. The visualizations are loaded as scripts in the

Web page along with the visualization manager. Visualizations are laid out on the

Web page and registered with the visualization manager responsible for passing the

data points to them, and relaying events, such as brush-and-linking, among them.

New data points in live data streams are retrieved using AJAX (asynchronous

JavaScript and XML), and are seamlessly visualized using D3’s support for dynamic

data sets via transformations. Since CouchDB uses Etags [108], bandwidth consump-

tion due to periodic polling of data stream lists or views by client Web pages is

minimized.

Due to CouchDB’s support of JSON padding (JSONP), visualization applica-

tions can also be embedded in other Web pages. In JSONP, data streams are loaded

as scripts instead of using AJAX, thus working around the restrictions on cross-site

scripting imposed by the same-origin policy (SOP) [109] in Web browsers. The only

drawback of using JSONP to embed visualizations in other Web pages is that the

Web page has to be reloaded to show new data points in live data streams.

6.3.3 Implementation

FuseViz is implemented as a set of CouchApp [110] applications. CouchApp is a

toolkit on top of CouchDB that enables the development of Web-based applications.

In a CouchApp, all data, logic (i.e., validations, views, and lists), and presentation

144

(i.e., HTML pages and related documents such as scripts and style sheets) are stored

in a CouchDB. The data are stored in regular documents, while logic and presentation

are stored in design documents. A CouchApp Web page is accessed via any Web

browser. As far as CouchDB is concerned, it is just serving a document over HTTP.

The Web page loads the related scripts and style sheets from CouchDB, or other

sources (e.g., Google Maps), and responds to user’s actions by creating, reading,

updating, and deleting data documents in the CouchDB database.

In FuseViz, we have implemented sample CouchApps for source and joint data

streams, visualization, and application. The sample CouchApps feature also default

validation, view, and list functions, when applicable. As we demonstrate in the next

section, developers can easily implement and deploy a data visualization application

using these CouchApps as building blocks.

6.4 Case Study: E2Home

To showcase the strengths of FuseViz, we developed a few data visualization

applications, including the E2Home application for the case study described above.

To recap, the objective of the E2Home application is to provide lay users with valu-

able information about their home electric energy consumption, so that they can take

actions to make the home more energy-efficient. We argue that electric energy con-

sumption data alone are not sufficient to achieve this goal, and other data should be

also incorporated, such as the user’s location.

The architecture of the E2Home application is depicted in Fig. 6.5. It follows

the template set by FuseViz, and thus consists of data collection, storage, aggregation,

and visualization on a Web page. The electric energy consumption data are retrieved

from the SMT Web site [93], and are imported to the CouchDB data stream database

using a Python script. The Python script periodically accesses the Web site with

145

the user’s credentials, and downloads a CSV (comma-separated value) file with the

electric energy consumption data. The downloaded CSV file is then processed into

a JSON document conforming to the CouchDB data stream validation function, and

uploaded to the CouchDB database via HTTP. Clearly, the data collection operation

would be much simpler and secure, if SMT offered a ReSTful API, and supported de

facto standard authentication mechanisms such as OAuth [111].

Aggregation

Validation

Joint avg. electr.
power consumption
and user's location

Visualization
database

Data sources

Data stream
databases

Web page

Electrical energy
consumption

User's
location

Figure 6.5. Architecture of E2Home application. Electric energy consumption from
the Smart Meter Texas Web site and user’s location from an Android app on a Google
Nexus One smartphone are i) stored in CouchDB databases; ii) aggregated into a
joint data stream using 15-min time slots; and visualized using the focus and context
time line (average power consumption vs. time) and map (user location). Other
relevant data sources that may be aggregated are the locations of other tenants, and
the weather (e.g., temperature) in the area.

146

The user location is retrieved using an Android app developed for E2Home, and

then posted to the CouchDB data stream database. The user location is sampled using

available data sources, such as GPS (preferred) and Wi-Fi, in Android. If Internet

access is not available, location data are temporarily stored on the device, and then

uploaded whenever a connection is available. In our experiments, the Android app

runs on a Google Nexus One, but other Android devices could be employed.

Sample data points for energy consumption and user location are portrayed in

Figures 6.6(a) and (b), respectively. Recall that CouchDB requirements feature id

and rev fields. Additional common fields are type and timestamp. The first one is

used to easily distinguish between energy and location data points in the MapReduce

function, while the latter stores the time instant to which the data point refers. (In

the case of the electric energy consumption data, this is the start time of the 15-min

time slot during which the energy consumption stored in the kWh field occurred.)

Since the two data streams are unsynchronized, non-trivial processing is needed to

aggregate them into a joint data stream ready for visualization. User authentication

is not the focus here.

The two data streams are replicated to a common CouchDB database for which

a view and a list function have been defined. In the view, there exists only the

Map part of the MapReduce function. This takes data points of either data stream

as input and indexes them by timestamp. The list function reads the ordered data

points one by one and groups them into k-min time slots. It then computes i) the

average power consumption (measured in kW) over that time slot from the sum of

all energy consumption (measured in kWh) data points over the same period; and

ii) the location centroid from all the locations recorded for that time slot. Finally, it

outputs the data point for the joint data stream as depicted in Fig. 6.6(c).

147

(a) Energy consumption

(b) User location

(c) Joint avg. power consumption and user location

Figure 6.6. JSON documents for (a), (b), and (c) joint power consumption and
location in the E2Home app.

The E2Home application is accessed via a Web page currently featuring two

visualizations: i) a focus and context time line, and ii) a map on which the data points

retrieved from the remote CouchDB live joint data stream database are plotted. For

each data point, the average power consumption is plotted on the time line, while the

average location is plotted on the map. A screenshot of the visualizations is portrayed

in Fig. 6.7.

148

Figure 6.7. Brush-and-linking on E2Home data. The user can select (brush) data
points on the map corresponding to time slots when he/she was home (red data
points inside gray rectangle in bottom chart), and then observe the average power
consumption during the selected time slots (linking). Significant levels of average
power consumption are observed also when the user is not home (blue data points
> 2 kW in top chart). This could be due to wasteful consumption (e.g., A/C on when
nobody is home), or not (e.g., washer on). Incorporating additional data sources
such as all tenants’ locations and energy consumption of individual appliances would
provide even more valuable information.

149

6.5 Discussion

We argue that FuseViz fulfills the requirements, including providing valuable

information for lay users from raw data in diverse application scenarios. The E2Home

case study is an example of this achievement. Figure 6.7 showcases how lay users can

gain information from the interaction with visualizations of the aggregation of user

location and electric energy consumption data. This information can then be used

to decide what actions to take to improve the energy efficiency. As such, FuseViz

provides a generic framework for the development of analysis-oriented visualizations

that goes beyond customized solutions such as Biketastic [96] and Copenhagen Wheel

[95].

We perform the following analysis of the experimental data to measure what

impact the FuseViz-based E2Home application can have on making a home more

energy efficient. The electric energy consumption for the 38-day period between

08/24/2011 and 09/30/2011 is reported in Table 6.1. As it can be seen on Fig. 6.8,

the 32 data points with high average power consumption (> 2 kW) have a dispro-

portionate impact on the overall energy consumption. Although existing applications

such as Google PowerMeter [112] and SMT [93] provide a time chart for the electric

energy consumption, they do not include the contextual information (i.e., user loca-

tion) needed to help the user easily identify the exact times when high average power

consumption occurred while he/she was not home.

Now, using the information provided by the E2Home application, the user knows

exactly at what times the high energy consumption occurred when he/she was not

home. Therefore, he/she can take precise actions to remove this wasteful consumption

in the following days. If this is the case, the 32 data points accounting for wasteful

high energy consumption will be affected in the future. To compute the projected

energy consumption for the following 38-day period, we substitute the 0.772 kWh
data point

150

Table 6.1. Electric energy consumption 08/24/2011 – 09/30/2011. The joint data
stream covers 30 days 13 hours instead of 38 days because the user location was not
available for short time periods when the smartphone was turned off. The (Not home,
> 2 kW) and (Not home, ≤ 2 kW) sets consist of unselected data points (blue) in
Fig. 6.7 with average power consumption above 2 kW, and below 2 kW, respectively;
the (Home) set contains selected data points (red).

Data point No. of Time Total energy Avg. energy

set data points [dd:hh:mm] [kWh]
[

kWh
data point

]
Not home, 32 00:08:00 24.71 0.772
> 2 kW

Not home, 1, 530 15:22:30 49.438 0.032
≤ 2 kW
Home 1, 370 14:06:30 143.817 0.105

All 2, 932 30:13:00 217.965 0.074

Figure 6.8. Observed energy consumption 08/24/2011 – 09/30/2011. While the 32
data points with average power consumption above 2 kW when the user is not home
cover only 1.09% of the time, they account for 11.34% of the energy consumption.
If this information is presented to the user via the visualizations in Fig. 6.7, he/she
can take necessary actions to reduce the energy consumption associated with these
relatively few data points, thus having a major impact on the overall energy efficiency
of the home .

151

average energy consumption of the 32 high energy consumption data points with

the 0.032 kWh
data point

average energy consumption of the 1, 530 low energy consumption

data points. As depicted in Fig. 6.9, the total energy consumption for these 32

data points decreases from 24.71 kWh to 1.034 kWh, thus bringing about a projected

overall energy efficiency improvement of 10.86%.

Figure 6.9. Projected energy consumption 08/24/2011 – 09/30/2011. If the user
reduces the energy consumption associated with the 32 data points with average
power consumption above 2 kW when he/she is not home, then the overall energy
consumption for a 38-day period goes from the observed 217.965 kWh to the projected
194.289 kWh, which corresponds to an energy efficiency improvement of 10.86%.

The projected energy efficiency improvement can be directly computed in the

E2Home app, and be presented to the user. Clearly, additional data sources such

as appliance-specific meters would further enhance the quality of the information in

terms of where the consumption occurred, thus resulting in a more accurate estimation

of the achievable energy efficiency improvement.

FuseViz visualizations are much more responsive since data rendering and re-

rendering are much faster than in SNViz. This performance improvement is due to

the use of D3 instead of Protovis [106], as D3 directly supports editing of single DOM

elements, while Protovis does not, and even workarounds such as the ones employed

in SNViz yield longer delays.

152

FuseViz supports open development of data visualization applications, since

any set of data sources can be used and aggregated into a joint data stream. This is

impossible in custom solutions such as Copenhagen Wheel or Biketastic built around

one application scenario, and also in Sensor.Network or SNViz as those systems do

not support data stream aggregation. To the best of our knowledge, this is the

first solution for aggregation of autonomous data streams proposed for pervasive

computing environments.

Finally, other features of FuseViz, such as JSONP-support and use of well-

established standards, such as SVG and HTTP, make it very appealing for the em-

bedding of FuseViz-based data visualization applications on social networking Web

sites and blogs. We argue that this feature is likely to further enhance the value of

the data as these can be viewed and manipulated in the context of other related data.

For instance, this could be the case of a Web page aggregating the electric energy

consumption data of a community of friends on a social networking Web site.

6.6 Summary

In this chapter, we presented a novel framework, called FuseViz, for the de-

velopment of Web-based data aggregation and visualization applications in pervasive

computing environments. We analyzed the requirements and challenges of such a sys-

tem, and provided a thorough description of the proposed solution. To demonstrate

the capability of FuseViz, we developed E2Home, a data visualization application for

smart home energy consumption, and showed how lay users can change their behav-

ior to improve the home energy efficiency by more than 10% based on the valuable

information presented by the FuseViz-based application.

We are currently working on the incorporation of multimedia data streams,

such as images and audio/video, in the FuseViz framework. Future work also includes

153

an experimental study with a group of users to quantitatively assess the impact of

FuseViz-based applications into improving user’s behavior by providing them with

valuable information from multiple data sources.

154

CHAPTER 7

CONCLUSIONS

In this dissertation, we report on our research work performed in the areas of

wireless sensor networks and smart environments and the energy-efficient protocols

and systems we developed. After an introduction into wireless sensor networks and

the very important communication stack, we presented our proposed solutions. First,

we introduced a localization protocol for dense wireless sensor and actor networks,

and analyzed it using methods based on the coupon collector’s problem and the theory

coverage processes, as well as simulations.

Second, we investigated the energy efficiency of existing randomized protocols

for duty cycling in wireless sensor networks and pointed out their trade-off between

energy efficiency and connection delay using mathematical analysis and experiments

on Sun SPOT sensors. Following our observation, we proposed a Markov chain-based

randomized algorithm that improves energy efficiency, while not affecting connection

delay, or vice versa.

Finally, we shifted our focus from wireless sensor networks to smart environ-

ments, and proposed a framework for data fusion and visualization called FuseViz.

We used the FuseViz framework in the development of E2Home, a Web-based applica-

tion for improving energy efficiency in homes. Our experimental results in houses and

apartments show that E2Home can help residents lower their electricity consumption

by 10% while keeping their current standard of living.

To conclude, we argue that after more than a decade of research wireless sensor

networks and smart environments are slowly making their appearance in the real

155

world. Thanks to the penetration of smartphones, the deployment of smart meters,

and the growing interest of homeowners and residents, more applications leveraging

these technologies are likely to be developed in the upcoming years. However, several

problems, including the definition of a system-level energy model for homes, are still

open, and more research is needed to bring about effective solutions.

156

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor

networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393–422, 2002.

[2] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Com-

puter Networks, vol. 52, no. 12, pp. 2292–2330, Aug. 2008.

[3] P. Zhang, C. M. Sadler, S. A. Lyon, and M. Martonosi, “Hardware Design

Experiences in ZebraNet,” in Proc. of the 2nd ACM International Conference

on Embedded Networked Sensor Systems (SenSys), 2004, pp. 227–238.

[4] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan,

and D. Estrin, “A wireless sensor network for structural monitoring,” in Proc. of

the 2nd ACM International Conference on Embedded Networked Sensor Systems

(SenSys), 2004, pp. 13–24.

[5] Dust Networks, “Dust Networks Applications,” 2010. [Online]. Available:

http://www.dustnetworks.com/applications

[6] G. Tolle, D. Gay, W. Hong, J. Polastre, R. Szewczyk, D. Culler, N. Turner,

K. Tu, S. Burgess, T. Dawson, and P. Buonadonna, “A macroscope in the

redwoods,” in Proc. of the 3rd International Conference on Embedded Networked

Sensor Systems (SenSys), 2005, p. 51.

[7] A. R. Silva and M. C. Vuran, “Development of a Testbed for Wireless Under-

ground Sensor Networks,” EURASIP Journal on Wireless Communications and

Networking, vol. 2010, pp. 1–14, 2010.

[8] INRIX Inc., “INRIX Traffic,” 2011. [Online]. Available:

http://www.inrixtraffic.com

157

[9] G. Ghidini, S. K. Das, and D. Pesch, “Sensor network communication proto-

cols for greener smart environments,” in Design Technologies for Green and

Sustainable Computing Systems. Springer, 2013.

[10] IEEE 802.15 Task Group 4 (TG4), “IEEE Standard 802.15.4-2011,” 2011.

[11] G. Montenegro, N. Kushalnagar, J. W. Hui, and D. E. Culler, “Transmission

of IPv6 Packets over IEEE 802.15.4 Networks,” 2007. [Online]. Available:

http://datatracker.ietf.org/doc/rfc4944

[12] J. W. Hui and P. Thubert, “Compression Format for IPv6 Data-

grams over IEEE 802.15.4-Based Networks,” 2011. [Online]. Available:

http://datatracker.ietf.org/doc/rfc6282

[13] T. E. Winter, P. E. Thubert, A. Brandt, J. W. Hui, R. Kelsey, P. Levis, K. Pis-

ter, R. Struik, J. P. Vasseur, and R. Alexander, “RPL: IPv6 Routing Protocol

for Low-Power and Lossy Networks,” 2012.

[14] IETF CoRE, “Constrained RESTful Environments (core),” 2012. [Online].

Available: http://datatracker.ietf.org/wg/core

[15] A. Bachir, M. Dohler, T. Watteyne, and K. K. Leung, “MAC Essentials

for Wireless Sensor Networks,” IEEE Communications Surveys & Tutorials,

vol. 12, no. 2, pp. 222–248, 2010.

[16] K. S. J. Pister and L. Doherty, “TSMP: Time synchronized mesh protocol,” in

Proc. of Parallel and Distributed Computing Systems (PDCS), 2008.

[17] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol for

wireless sensor networks,” in Proc. of the 21st Annual Joint Conference of the

IEEE Computer and Communications Societies (INFOCOM), no. c, 2002, pp.

1567–1576.

158

[18] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for wireless

sensor networks,” in Proc. of the 2nd International Conference on Embedded

Networked Sensor Systems (SenSys), 2004, pp. 95–107.

[19] A. El-Hoiydi, J.-D. Decotignie, C. Enz, and E. Le Roux, “Poster abstract:

WiseMAC, an ultra low power MAC protocol for the wiseNET wireless sensor

network,” in Proc. of the 1st International Conference on Embedded Networked

Sensor Systems (SenSys), 2003, p. 302.

[20] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-MAC: A short preamble

MAC protocol for duty-cycled wireless sensor networks,” in Proc. of the 4th

International Conference on Embedded Networked Sensor Systems (SenSys),

2006, pp. 307–320.

[21] E.-Y. Lin, J. Rabaey, and A. Wolisz, “Power-efficient rendez-vous schemes for

dense wireless sensor networks,” in Proc. of the IEEE International Conference

on Communications (ICC), 2004, pp. 3769–3776 Vol.7.

[22] A. Warrier, M. Aia, and M. Sichitiu, “Z-MAC: A Hybrid MAC for Wireless

Sensor Networks,” IEEE/ACM Transactions on Networking, vol. 16, no. 3, pp.

511–524, Jun. 2008.

[23] G.-S. Ahn, S. G. Hong, E. Miluzzo, A. T. Campbell, and F. Cuomo, “Funneling-

MAC,” in Proceedings of the 4th International Conference on Embedded Net-

worked Sensor Systems (SenSys), 2006, p. 293.

[24] J. Ko, A. Terzis, S. Dawson-Haggerty, D. Culler, J. Hui, and P. Levis, “Con-

necting low-power and lossy networks to the internet,” IEEE Communications

Magazine, vol. 49, no. 4, pp. 96–101, Apr. 2011.

[25] T. Clausen, U. Herberg, and M. Philipp, “A critical evaluation of the IPv6

Routing Protocol for Low Power and Lossy Networks (RPL),” in Proc. of the 7th

159

IEEE International Conference on Wireless and Mobile Computing, Networking

and Communications (WiMob), Oct. 2011, pp. 365–372.

[26] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-throughput

path metric for multi-hop wireless routing,” Wireless Networks, vol. 11, no. 4,

pp. 419–434, Jul. 2005.

[27] J. Ko, S. Dawson-Haggerty, O. Gnawali, D. E. Culler, and A. Terzis, “Evaluat-

ing the Performance of RPL and 6LoWPAN in TinyOS,” in Proc. of the Work-

shop on Extending the Internet to Low power and Lossy Networks (IP+SN),

2011.

[28] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection tree

protocol,” in Proc. of the 7th ACM Conference on Embedded Networked Sensor

Systems (SenSys), 2009, p. 1.

[29] N. Tsiftes, J. Eriksson, and A. Dunkels, “Low-power wireless IPv6 routing

with ContikiRPL,” in Proc. of the 9th ACM/IEEE International Conference

on Information Processing in Sensor Networks (IPSN), 2010, pp. 406–407.

[30] T. Watteyne, A. Molinaro, M. G. Richichi, and M. Dohler, “From MANET To

IETF ROLL Standardization: A Paradigm Shift in WSN Routing Protocols,”

IEEE Communications Surveys & Tutorials, vol. 13, no. 4, pp. 688–707, 2011.

[31] O. Gaddour and A. Koubâa, “RPL in a nutshell: A survey,” Computer Net-

works, vol. 56, no. 14, pp. 3163–3178, Sep. 2012.

[32] R. T. Fielding, “Architectural Styles and the Design of Network-based Software

Architectures,” Ph.D. dissertation, University of California Irvine, 2000.

[33] E. Wilde, “Putting Things to REST,” UC Berkeley School of Information, Tech.

Rep., 2007.

160

[34] C. Bormann, A. P. Castellani, and Z. Shelby, “CoAP: An Application Protocol

for Billions of Tiny Internet Nodes,” IEEE Internet Computing, vol. 16, no. 2,

pp. 62–67, Mar. 2012.

[35] Z. Shelby, “Embedded web services,” IEEE Wireless Communications, vol. 17,

no. 6, pp. 52–57, Dec. 2010.

[36] B. C. Villaverde, D. Pesch, R. De Paz Alberola, S. Fedor, and M. Boubekeur,

“Constrained Application Protocol for Low Power Embedded Networks: A Sur-

vey,” in Proc. of the 6th IEEE International Conference on Innovative Mobile

and Internet Services in Ubiquitous Computing, Jul. 2012, pp. 702–707.

[37] M. Kovatsch, S. Duquennoy, and A. Dunkels, “A Low-Power CoAP for Contiki,”

in Proc. of the 8th IEEE International Conference on Mobile Ad-Hoc and Sensor

Systems (MASS), Oct. 2011, pp. 855–860.

[38] A. Dunkels, L. Mottola, N. Tsiftes, F. Osterlind, J. Eriksson, and N. Finne,

“The Announcement Layer: Beacon Coordination for the Sensornet Stack,”

Wireless Sensor Networks, vol. 6567, pp. 211–226, 2011.

[39] K. Kuladinithi, O. Bergmann, T. Pötsch, M. Becker, and C. Görg, “Imple-

mentation of CoAP and its Application in Transport Logistics,” in Proc. of

the Workshop on Extending the Internet to Low power and Lossy Networks

(IP+SN), 2011.

[40] W. Colitti, K. Steenhaut, N. De Caro, B. Buta, and V. Dobrota, “Evaluation

of constrained application protocol for wireless sensor networks,” in Proc. of

the 18th IEEE Workshop on Local & Metropolitan Area Networks (LANMAN),

Oct. 2011, pp. 1–6.

[41] W. Colitti, K. Steenhaut, and N. De Caro, “Integrating Wireless Sensor Net-

works with the Web,” in Proc. of the Workshop on Extending the Internet to

Low power and Lossy Networks (IP+SN), 2011.

161

[42] A. P. Castellani, M. Gheda, N. Bui, M. Rossi, and M. Zorzi, “Web Services

for the Internet of Things through CoAP and EXI,” in Proc. of the IEEE

International Conference on Communications (ICC) Workshops, Jun. 2011, pp.

1–6.

[43] W. Colitti, K. Steenhaut, N. De Caro, B. Buta, and V. Dobrota, “REST En-

abled Wireless Sensor Networks for Seamless Integration with Web Applica-

tions,” in Proc. of the 8th IEEE International Conference on Mobile Ad-Hoc

and Sensor Systems (MASS), Oct. 2011, pp. 867–872.

[44] Apache Software Foundation, “CouchDB,” 2011. [Online]. Available:

http://couchdb.apache.org

[45] F. Barsi, A. A. Bertossi, C. Lavault, A. Navarra, C. M. Pinotti, S. Olariu,

and V. Ravelomanana, “Efficient location training protocols for heterogeneous

sensor and actor networks,” IEEE Transactions on Mobile Computing, vol. 10,

no. 3, pp. 377–391, 2011.

[46] R. C. Shah, S. Roy, S. Jain, and W. Brunette, “Data MULEs: modeling and

analysis of a three-tier architecture for sparse sensor networks,” Ad Hoc Net-

works, vol. 1, no. 2-3, pp. 215–233, Sep. 2003.

[47] M. Di Francesco, S. K. Das, and G. Anastasi, “Data Collection in Wireless

Sensor Networks with Mobile Elements: A Survey,” ACM Transactions on

Sensor Networks, vol. 8, no. 1, pp. 1–31, Aug. 2011.

[48] G. Ghidini, C. M. Pinotti, and S. K. Das, “A Semi-Distributed Localization

Protocol for Wireless Sensor and Actor Networks,” in Proc. of the 8th IEEE

International Conference on Pervasive Computing and Communications (Per-

Com) Workshops, 2010, pp. 438–443.

162

[49] S. K. Das, G. Ghidini, A. Navarra, and C. M. Pinotti, “Localization and

Scheduling Protocols for Actor-centric Sensor Networks,” Networks, vol. 59,

no. 3, pp. 299–319, May 2012.

[50] I. F. Akyildiz and I. H. Kasimoglu, “Wireless sensor and actor networks: re-

search challenges,” Ad Hoc Networks, vol. 2, no. 4, pp. 351–367, Oct. 2004.

[51] F. Barsi, A. A. Bertossi, F. Betti Sorbelli, R. Ciotti, S. Olariu, and C. M.

Pinotti, “Asynchronous corona training protocols in wireless sensor and actor

networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 20,

no. 8, pp. 1216–1230, 2009.

[52] A. A. Bertossi, S. Olariu, and C. M. Pinotti, “Efficient corona training protocols

for sensor networks,” Theoretical Computer Science, vol. 402, no. 1, pp. 2–15,

2008.

[53] A. Navarra, C. M. Pinotti, V. Ravelomanana, F. Betti Sorbelli, and R. Ciotti,

“Cooperative training for high density sensor and actor networks,” IEEE Jour-

nal on Selected Areas in Communications, vol. 28, no. 5, pp. 753–763, 2010.

[54] J. F. C. Kingman, Poisson processes. Oxford University Press, 1993.

[55] P. Guo, Q. Zhang, and T. Jiang, “Sleep scheduling in critical event monitoring

with wireless sensor networks.”

[56] B. Liu and D. Towsley, “A study of the coverage of large-scale sensor networks,”

in Proc. of the IEEE International Conference on Mobile Ad-hoc and Sensor

Systems (MASS), 2004, pp. 475–483.

[57] R. Motwani and P. Raghavan, Randomized algorithms. Cambridge University

Press, 1995.

[58] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Power management in en-

ergy harvesting sensor networks,” ACM Transactions on Embedded Computing

Systems (TECS), vol. 6, no. 4, p. 32, 2007.

163

[59] S. Guo, Y. Gu, B. Jiang, and T. He, “Opportunistic flooding in low-duty-cycle

wireless sensor networks with unreliable links,” in Proc. of the 15th Annual

International Conference on Mobile Computing and Networking (MobiCom),

2009, pp. 133–144.

[60] G. Ghidini and S. K. Das, “An Energy-efficient Markov Chain-based Random-

ized Duty Cycling Scheme for Wireless Sensor Networks,” in Proc. of the 31st

IEEE International Conference on Distributed Computing Systems (ICDCS),

2011, pp. 67–76.

[61] ——, “Energy-efficient Markov Chain-based Duty Cycling Schemes for Greener

Wireless Sensor Networks,” ACM Journal on Emerging Technologies in Com-

puting (JETC), vol. 8, no. 4, Oct. 2012.

[62] Sun Labs, “Sun SPOT World,” 2010. [Online]. Available:

http://sunspotworld.com/

[63] S. Albers, “Energy-efficient algorithms,” Communications of the ACM, vol. 53,

no. 5, p. 86, May 2010.

[64] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi, “The flooding time synchroniza-

tion protocol,” in Proc. of the 2nd ACM International Conference on Embedded

Networked Sensor Systems (SenSys), 2004, pp. 39–49.

[65] Sun Microsystems, “Sun Small Programmable Object Technology (Sun SPOT)

Developer’s Guide,” 2009.

[66] ——, “Sun SPOT Theory of Operation,” 2009.

[67] B. Bollobás, Random Graphs. Cambridge University Press, 1985.

[68] M. Penrose, Random Geometric Graphs. Oxford University Press, 2003.

[69] A. Goel, S. Rai, and B. Krishnamachari, “Sharp thresholds for monotone prop-

erties in random geometric graphs,” in Proc. of the 36th Annual ACM Sympo-

sium on Theory of Computing (STOC), 2004, pp. 580–586.

164

[70] G. S. Kasbekar, Y. Bejerano, and S. Sarkar, “Lifetime and coverage guaran-

tees through distributed coordinate-free sensor activation,” in Proc. of the 15th

Annual International Conference on Mobile Computing and Networking (Mo-

biCom), 2009, pp. 169–180.

[71] Q. Cao, T. F. Abdelzaher, T. He, and J. Stankovic, “Towards optimal sleep

scheduling in sensor networks for rare-event detection,” in Proc. of the 4th In-

ternational Symposium on Information Processing in Sensor Networks (IPSN),

2005, pp. 20–27.

[72] T. van Dam and K. Langendoen, “An adaptive energy-efficient MAC protocol

for wireless sensor networks,” in Proc. of the 1st International Conference on

Embedded Networked Sensor Systems (SenSys), 2003, pp. 171–180.

[73] W. Ye, F. Silva, and J. Heidemann, “Ultra-low duty cycle MAC with scheduled

channel polling,” in Proc. of the 4th International Conference on Embedded

Networked Sensor Systems (SenSys), 2006, pp. 321–334.

[74] S. Du, A. K. Saha, and D. B. Johnson, “RMAC: A routing-enhanced duty-

cycle MAC protocol for wireless sensor networks,” in Proc. of the 26th IEEE

International Conference on Computer Communications (INFOCOM), 2007,

pp. 1478–1486.

[75] J. Kim, X. Lin, N. B. Shroff, and P. Sinha, “On Maximizing the Lifetime of

Delay-Sensitive Wireless Sensor Networks with Anycast,” in Proc. of the 27th

IEEE Conference on Computer Communications (INFOCOM), 2008, pp. 807–

815.

[76] Y. Gu and T. He, “Data forwarding in extremely low duty-cycle sensor networks

with unreliable communication links,” in Proc. of the 5th ACM International

Conference on Embedded Networked Sensor Systems (SenSys), 2007, pp. 321—

-334.

165

[77] Y. Sun, O. Gurewitz, and D. B. Johnson, “RI-MAC: A receiver-initiated asyn-

chronous duty cycle MAC protocol for dynamic traffic loads in wireless sensor

networks,” in Proc. of the 6th ACM Conference on Embedded Network Sensor

Systems (SenSys), 2008, pp. 1–14.

[78] P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. M. Liang, and A. Terzis, “Design

and evaluation of a versatile and efficient receiver-initiated link layer for low-

power wireless,” in Proc. of the 8th ACM Conference on Embedded Networked

Sensor Systems (SenSys), 2010, pp. 1–14.

[79] F. Wang and J. Liu, “Duty-cycle-aware broadcast in wireless sensor networks,”

in Proc. of the 28th IEEE Conference on Computer Communications (INFO-

COM), 2009, pp. 468–476.

[80] G. Lu, N. Sadagopan, B. Krishnamachari, and A. Goel, “Delay efficient sleep

scheduling in wireless sensor networks,” in Proc. of the 24th Annual Joint Con-

ference of the IEEE Computer and Communications Societies (INFOCOM),

2005, pp. 2470–2481.

[81] Y. Gu, T. Zhu, and T. He, “ESC: Energy Synchronized Communication in sus-

tainable sensor networks,” in Proc. of the 17th IEEE International Conference

on Network Protocols (ICNP), 2009, pp. 52–62.

[82] MEMSIC Corp., “Wireless Modules,” 2010. [Online]. Avail-

able: http://www.memsic.com/products/wireless-sensor-networks/wireless-

modules.html

[83] Mobile Integrated Solutions LLC, “MobiLinc App,” 2011. [Online]. Available:

http://www.mobileintegratedsolutions.com

[84] Demand Media Inc., “LiveStrong iPhone iPad App Calorie Tracker,” 2011.

[Online]. Available: http://www.livestrong.com/thedailyplate/iphone-calorie-

tracker

166

[85] Nike, “Nike+,” 2010. [Online]. Available: http://nikerunning.nike.com/

[86] Groundspeak Inc., “Geocaching Live,” 2011. [Online]. Available:

http://www.geocaching.com/live/default.aspx

[87] Foursquare Labs Inc., “foursquare,” 2011. [Online]. Available:

https://foursquare.com

[88] V. Gupta, P. Udupi, and A. Poursohi, “Early Lessons from Building Sen-

sor.Network: an Open Data Exchange for the Web of Things,” in 8th IEEE

International Conference on Pervasive Computing and Communications Work-

shops (PerCom Workshops), Mar. 2010, pp. 738–744.

[89] Apple, “Apple iPhone,” 2010. [Online]. Available:

http://www.apple.com/iphone/

[90] Google Inc., “Android,” 2011. [Online]. Available: http://www.android.com/

[91] U.S. Government, “Data.gov,” 2011. [Online]. Available: http://www.data.gov

[92] G. Ghidini, V. Gupta, and S. K. Das, “SNViz: Analysis-oriented Visualization

for the Internet of Things,” in Urban Internet of Things Workshop, 2010.

[93] Smart Meter Texas, “Smart Meter Texas,” 2011. [Online]. Available:

http://www.smartmetertexas.com

[94] Google Inc., “Google Nexus One,” 2011. [Online]. Available:

http://www.google.com/phone/detail/nexus-one

[95] MIT SENSEable City Lab, “The Copenhagen Wheel Project,” 2010. [Online].

Available: http://senseable.mit.edu/copenhagenwheel

[96] UCLA’s Center for Embedded Networked Sensing, “Biketastic,” 2010. [Online].

Available: http://biketastic.com/

[97] G. Ghidini, S. K. Das, and V. Gupta, “FuseViz: A Framework for Web-based

Data Fusion and Visualization in Smart Environments,” in Proc. of the 9th

167

IEEE International Conference on Mobile Ad hoc and Sensor Systems (MASS),

2012.

[98] G. Ghidini and S. K. Das, “Improving Home Energy Efficiency with E2Home: A

Web-based Application for Integrated Electricity Consumption and Contextual

Information Visualization,” in Proc. of the 3rd IEEE International Conference

on Smart Grid Communications (SmartGridComm), 2012.

[99] R. L. Ackoff, “From Data to Wisdom,” Journal of Applied Systems Analysis,

vol. 19, pp. 3–9, 1989.

[100] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large

clusters,” in Proc. of the 6th Symposium on Operating System Design and Im-

plementation (OSDI), 2004.

[101] W3C, “Scalable Vector Graphics,” 2011. [Online]. Available:

http://www.w3.org/Graphics/SVG

[102] M. Bostock, “D3.js: Data-Driven Documents,” 2011. [Online]. Available:

http://mbostock.github.com/d3

[103] M. Bostock, V. Ogievetsky, and J. Heer, “D3: Data-driven documents,” IEEE

Transactions on Visualization and Computer Graphics, 2011.

[104] S. Reddy, K. Shilton, G. Denisov, C. Cenizal, D. Estrin, and M. Srivastava,

“Biketastic: Sensing and Mapping for Better Biking,” in Proc. of the 28th In-

ternational Conference on Human Factors in Computing Systems (CHI), 2010.

[105] Oracle Sun Labs, “Sensor.Network,” 2010. [Online]. Available:

http://sensor.network.com

[106] M. Bostock and J. Heer, “Protovis: a graphical toolkit for visualization.” IEEE

Transactions on Visualization and Computer Graphics, vol. 15, no. 6, pp. 1121–

1128, 2009.

168

[107] J. C. Anderson, J. Lenhardt, and N. Slater, CouchDB: The Definitive Guide,

1st ed. O’Reilly, 2010.

[108] W3C, “HTTP/1.1: Header Field Definitions,” 1999. [Online]. Available:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

[109] Mozilla Developer Network, “Same origin policy for JavaScript,” 2011. [Online].

Available: https://developer.mozilla.org/en/Same origin policy for JavaScript

[110] CouchApp.org, “Simple JavaScript Applications with CouchDB,” 2011.

[Online]. Available: http://couchapp.org

[111] OAuth Community, “OAuth Community Site,” 2011. [Online]. Available:

http://oauth.net

[112] Google Inc., “Google PowerMeter,” 2011. [Online]. Available:

http://www.google.com/powermeter

169

BIOGRAPHICAL STATEMENT

Giacomo Ghidini is a 5th-year Ph.D. student under the supervision of Dr. Sajal

K. Das in the Dept. of Computer Science and Engineering at UTA. He is a member of

the Center for Research in Wireless Mobility and Networking (CReWMaN) at UTA.

In 2010, he held a research assistant position at Oracle Sun Labs in Menlo Park, CA,

under the supervision of Dr. Vipul Gupta, where he developed an analysis-oriented

visualization system for Sensor.Network, a data storage and exchange platform for

the Internet of Things.

Giacomo received his B. Comp. Eng. and M. Comp. Eng. degrees from the

University of Bologna, Italy, in 2004 and 2008, respectively. He worked on his mas-

ter’s thesis during a 6-month visit at CReWMaN on a scholarship of the College of

Engineering at the University of Bologna. In 2006, he was an exchange student at

the University of Technology, Sydney, Australia, on a scholarship of the University

of Bologna. During his undergraduate studies, he interned at Siemens AG in Mu-

nich, Germany, in 2000 and 2001, where he was a member of the Information and

Communication Network Division under the supervision of Hr. Dr. Peter Hannss.

His current research interests include energy-efficient duty cycling in wireless

sensor networks and the integration of wireless sensor networks into smart environ-

ments.

170

