
AN EXPERIMENT IN DEVELOPING SMALL MOBILE

PHONE APPLICATIONS COMPARING ON-PHONE TO OFF-PHONE

DEVELOPMENT

by

TUAN ANH NGUYEN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2012



Copyright c© by TUAN ANH NGUYEN 2012

All Rights Reserved



ACKNOWLEDGEMENTS

This thesis is inspired by the following people, who share my dream of developing

programming language environments that are more convenient and accessible for everyone.

I want to express my sincere appreciation to my supervising professor, Dr. Christoph

Csallner for his support in my imagination and trust in my abilities. This final thesis pa-

per would not have been possible without his advice and his unending patience. He has

been a teacher, a colleague, and a friend helping me navigate around the many obstacles I

encountered while attending UT Arlington.

I am grateful to Dr. Manfrer Huber and Mr. David Levine for serving as members

of my thesis committee. Especially, Dr. Huber was an invaluable source of knowledge and

advice to help me improve my statistical analysis in this paper.

I thank Microsoft Research Connections for providing Windows Phones for the du-

ration of the semester. A large thank you specifically to Nikolai Tillmann for supporting

the study and reviewing our work.

This material is based upon work supported by the National Science Foundation

under Grants No. 1017305 and 1117369.

Finally, I would like to thank my father, mother, sister, and my girlfriend for their

unbounded support. They are the pillars that give me strength and encouragement to help

me through my time in school.

July 9, 2012

iii



ABSTRACT

AN EXPERIMENT IN DEVELOPING SMALL MOBILE

PHONE APPLICATIONS COMPARING ON-PHONE TO OFF-PHONE

DEVELOPMENT

TUAN ANH NGUYEN, M.S.

The University of Texas at Arlington, 2012

Supervising Professor: Christoph Csallner

TouchDevelop represents a radically new mobile application development model,

as TouchDevelop enables mobile application development on a mobile device. I.e., with

TouchDevelop, the task of programming say a Windows Phone is shifted from the desktop

computer to the mobile phone itself. We describe a first experiment on independent, non-

expert subjects to compare programmer productivity using TouchDevelop vs. using a more

traditional approach to mobile application development.

iv



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter Page

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 TouchDevelop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Android . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.3 Debug and Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.4 Publishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. RESEARCH QUESTIONS (RQ), EXPECTATIONS (E), AND HYPOTHESES

(H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4. DESIGN FOR ANSWERING RESEARCH QUESTIONS . . . . . . . . . . . . 13

4.1 Testing H1, Counting LOC . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Lab Experiment to Test H2, H3 . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3 Subjects’ Prior Programming Experience for H2, H3 . . . . . . . . . . . . 14

5. RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1 Cloud: TouchDevelop Apps Are Small (H1) . . . . . . . . . . . . . . . . . 16

5.2 Experiment: TouchDevelop-LOC < Android-LOC (H2) . . . . . . . . . . 17

v



5.3 Experiment: TouchDevelop-Productivity > Android-Productivity (H3) . . . 20

6. OBSERVATIONS AND OPEN QUESTIONS . . . . . . . . . . . . . . . . . . . 22

7. THREATS TO VALIDITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7.1 Our subjects are not a random sample . . . . . . . . . . . . . . . . . . . . 23

7.2 Hands-off administration of tasks . . . . . . . . . . . . . . . . . . . . . . . 23

7.3 Result may not generalize to larger programs . . . . . . . . . . . . . . . . 23

8. ADDITIONAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

8.1 Reusing Android apps between tasks . . . . . . . . . . . . . . . . . . . . . 25

8.2 Success of Android SDK applications is coordinated with participants’

prior experience but success of TouchDevelop applications is not coordi-

nated with participants’ prior experience . . . . . . . . . . . . . . . . . . . 30

8.3 Sources used by subjects and subjects’ comments . . . . . . . . . . . . . . 31

9. RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9.1 Survey of end-user programming languages . . . . . . . . . . . . . . . . . 37

9.2 Evaluations of programming languages for non-programmers . . . . . . . . 38

9.3 Empirical evaluations of programming languages for novice programmers . 40

9.4 Evaluations of programming languages for expert programmers . . . . . . 43

9.5 Small display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

10. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Appendix

A. POST-EXPERIMENT QUESTIONNAIRE . . . . . . . . . . . . . . . . . . . . 46

B. INSTRUCTION FOR SUBJECT AND APP DEVELOPMENT TASKS . . . . . 49

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

BIOGRAPHICAL STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vi



LIST OF ILLUSTRATIONS

Figure Page

2.1 Example of an app in TouchDevelop, ”Convert degrees Fahrenheit to de-

grees Celsius”: The three screenshots all belong to the same app. The left

screenshot is a view of the TouchDevelop IDE and red words are keywords

of the language. The user can execute the app directly in the TouchDevelop

IDE and the result is shown in the other two screenshots . . . . . . . . . . . 5

2.2 Example of an app in Android (”Convert degrees Fahrenheit to degrees Cel-

sius”): Eclipse with Android Development Tools (ADT) is used to develop

and publish Android apps. This also is an example of an Android app (”Con-

vert degrees Fahrenheit to degrees Celsius”). Figure 2.2(b) is a screenshot

of the execution of the Android app shown in Figure 2.2(a) when executed

in the standard Android emulator. Figure 2.2(b) looks very similar to Fig-

ure 2.1(b) and Figure 2.1(c), which are the result when the same app is de-

veloped by using the TouchDevelop IDE . . . . . . . . . . . . . . . . . . . 8

2.3 Screenshot of the Android SDK manager: The Android SDK manager is

used to manage Android Development Tools and Android platforms . . . . . 9

2.4 Screenshot of Android Virtual Device Manager: The Android Virtual Device

Manager is used to configure and manage emulators which are used to run,

debug, and test Android applications . . . . . . . . . . . . . . . . . . . . . . 10

vii



4.1 Subjects’ prior experience - Time to learn techniques: Before the experi-

ment, subjects had spent more time learning Android than learning TouchDe-

velop (Answers to question “How many of the following have you done be-

fore this exercise? Hours spent learning Y (watch video, read website, api,

etc.)”). I.e., all TouchDevelop subjects reported having learned TouchDe-

velop for one hour or less (TD: TD). Ec is Eclipse, a popular Java and An-

droid IDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Subjects’ prior experience - LOC of programming languages developed be-

fore: Before the experiment, subjects had written more Android than TouchDe-

velop LOC (Answers to question “How many of the following have you done

before this exercise? Lines of Y code written”). I.e., all TouchDevelop sub-

jects reported having written 40 or fewer TouchDevelop LOC (TD: TD). J

is non-Android Java. All is code written in any language . . . . . . . . . . . 15

5.1 Size of all TouchDevelop apps published in the TouchDevelop cloud: Size

in LOC of the 2,081 TouchDevelop apps published in the TouchDevelop

cloud as of 17 February 2012. Not shown are the two largest apps of 1,742

and 1,675 LOC. Each dot represents all apps in one bin of 5 LOC. E.g., the

left-most dot represents the 674 apps from 0 to 4 LOC . . . . . . . . . . . . 16

5.2 Size of the developed (correct) apps for each task: Size of the developed

(correct) apps differs between Android and TouchDevelop. I.e., for each

task, each correct Android app is larger than each of the correct TouchDe-

velop apps. The width of each box-and-whisker is proportional to the num-

ber of correct solutions we received. Not shown are tasks for which we did

not receive any correct app . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

viii



5.3 Tasks completed: Phone group 1.5 times more than PC group: Using TouchDe-

velop made it more likely that a task will be finished correctly. For example,

the percentage of subjects finishing task 3 was 50% for TouchDevelop but

less than 30% for Android . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.4 Number of apps implemented with desired functionality per subject: The

percentage of TouchDevelop subjects, which finish 1,2,3 apps, is higher than

Androids. However, there are more subjects that finish four applications

than TouchDevelop subjects. From our observation, when the complexity of

apps increases, the ability to reuse previous apps helps Android participants

to achieve more correct apps . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8.1 Android apps - Comparing an example task P1 solution with the auto-generated

hello-world app: One more label is added to HelloWorld template (left) to

output “CSE 5324” in program 1 (right). The blue color indicates the strings,

which are different, and the gray color indicates strings, which are the same . 26

8.2 Android apps - Comparing an example task P2 solution with the auto-generated

hello-world app: HelloWorld template (left) is modified in two steps to fin-

ish program 2 (right): (1) Layout is updated: One text view (t1), one edit

text (e1), and one button (b1) are added; (2) a method (onClick) is added

to calculate Celsius degree. The blue color indicates the strings, which are

different, and the gray color indicates strings, which are the same . . . . . . 27

8.3 Android apps - Comparing an example task P1 solution with an example

task P2 solution: Program 1 (left) is modified in two steps to finish program

2 (right): (1) update layout: delete command set value for the text view (La-

bel), add one edit text (e1), and one button (b1); (2) add a method (onClick)

to calculate Celsius degree. The blue color indicates the strings, which are

different, and the gray color indicates strings, which are the same . . . . . . 28

ix



8.4 Android apps - Comparing an example task P2 solution with an example

task P3 solution: It is very simple to reuse source code of program 2 (left)

to develop program 3 (right): add one edit text box and modify equation of

onClick function to output the result. The blue color indicates the strings,

which are different, and the gray color indicates strings, which are the same . 29

8.5 Links between the self-reported prior programming experience and the num-

ber of correctly implemented apps. For Android subjects, this link was

stronger than for TouchDevelop subjects . . . . . . . . . . . . . . . . . . . 30

x



LIST OF TABLES

Table Page

5.1 Average of submitted code and correct code per group: TouchDevelop sub-

jects on average submitted code for more tasks and completed more tasks

than Android subjects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8.1 The percentage of subjects using the respective source per group: The per-

centage of subjects that indicated in the questionnaire that they used the re-

spective source. TouchDevelop subjects mainly used code samples. Android

subjects mostly used API sources and web sources. . . . . . . . . . . . . . . 31

8.2 Android: Sources used by subjects and subjects’ comments . . . . . . . . . 32

8.3 TouchDevelop: Sources used by subjects and subjects’ comments . . . . . . 34

xi



CHAPTER 1

INTRODUCTION

Programming applications for mobile phones used to be a niche task. However the

recent wide adoption of mobile devices and especially smartphones, together with the app

store mobile application distribution model, has elevated mobile application programming

to a common activity. To support mobile application development, each producer of a major

mobile application platform (iOS, Android, Windows Phone, etc.) provides a convenient

software development kit (SDK). For example Google’s Android SDK integrates nicely

with the popular Java IDE Eclipse. This makes it easy for programmers to start program-

ming mobile phone applications. I.e., programmers install an SDK on their desktop com-

puter and develop a mobile application there as they would develop any other application.

The SDK typically contains a powerful emulator or virtual device that allows programmers

to simulate how their mobile applications will behave on an actual mobile device.

TouchDevelop represents a radically new mobile application development model [1],

as TouchDevelop enables mobile application development on a mobile device. I.e., with

TouchDevelop, the task of programming say a Windows Phone is shifted from the desk-

top computer to the mobile phone itself. While shifting the device on which to program,

TouchDevelop promises to maintain much of the traditional, expressive programming style.

I.e., TouchDevelop is still a traditional, expressive, Turing-complete, Pascal-like program-

ming language.

The declared scope of TouchDevelop is small programming tasks that can be achieved

in tens or hundreds of lines of code. Clearly, the small screen makes it a lot harder to

manage medium or large-scale programs. This limited program size rules out large-scale

1



professional development. So the declared circle of programmers centers on students and

hobbyists [1]. Programmers, people that have programming experience, is different from

non-programmers, people do not have programming experience. Non-programmers are

sometimes also referred to as end-users.

While developing small programs in a traditional programming style on a phone is

an interesting concept, it is not clear if it can be done in a way that allows average pro-

grammers to solve programming tasks efficiently. For example, the lack of a traditional

keyboard may make coding tedious and slow. In prior work the TouchDevelop authors

performed an informal self-experiment from which they concluded that the time taken to

code in TouchDevelop is in the same order of magnitude as coding on a PC [1]. In this

study, we perform a first experiment on independent, non-expert subjects to compare pro-

grammer productivity using TouchDevelop vs. using a more traditional approach to mobile

application development [2].

In summary our study makes the following contributions.

• We provide an overview of the size of all TouchDevelop apps that have been written

on a phone as of 17 February 2012.

• We perform a first experiment on independent, non-expert subjects to compare pro-

gram size and programmer productivity using on-phone software development vs.

using the more traditional off-phone approach to mobile application development.

2



CHAPTER 2

BACKGROUND

2.1 TouchDevelop

TouchDevelop includes the Turing-complete, Pascal-like TouchDevelop program-

ming language, the TouchDevelop IDE, as well as a cloud service. The TouchDevelop

IDE runs on Windows Phones and enables programmers to write and run TouchDevelop

programs (“scripts” or “apps”) on their phone. To be usable on a small touchscreen, the

IDE employs a semi-structured code editor that treats all program tokens atomically and

thereby minimizes the possibility of syntax or compile errors. I.e., the user either creates

a new token or selects existing tokens from adaptive lists that reflect the current program

context.

The TouchDevelop IDE is connected to the cloud, which allows developers to pub-

lish their TouchDevelop apps. By now users can upload TouchDevelop apps through the

regular Windows Phone store, which contains all regular apps which runs on Windows

Mobile phone. All published apps are made available with source code. Programmers are

encouraged to download and extend apps written by others. The TouchDevelop cloud logs

if a new app by programmer A is such a derivative of another app by programmer B. The

cloud also logs if an app is simply a new version of an earlier app by the same author.

The TouchDevelop language is kept simple by focusing on tasks that can be accom-

plished on a phone. This allows TouchDevelop to implicitly assume many facts that have

to be stated explicitly in other languages, which leads to simpler, more compact programs.

For example, for printing some text a Java programmer has to specify a particular output

stream. TouchDevelop only has one output stream, so a TouchDevelop app does not have

3



to specify this detail and can be more compact. Figure 2.1 shows an example of an app in

TouchDevelop which converts degrees Fahrenheit to degrees Celsius.

4



(a) Source code (b) Startup screen (c) Result screen

Figure 2.1. Example of an app in TouchDevelop, ”Convert degrees Fahrenheit to degrees Celsius”: The three screenshots all
belong to the same app. The left screenshot is a view of the TouchDevelop IDE and red words are keywords of the language.
The user can execute the app directly in the TouchDevelop IDE and the result is shown in the other two screenshots.

5



2.2 Android

The Android SDK provides tools and APIs for programmers to develop applications

for Android mobile devices. In order to develop an Android application, programmers can

follow four development phases [3]:

2.2.1 Setup

In this phase programmers install the development environment, which includes the

Android SDK, Android Development Tools, and Android platforms. These tools and plat-

forms are managed by using the Android SDK manager. Figure 2.3 shows the screenshot

of Android SDK manager. Then programmers also create Android Virtual Devices (emu-

lators) or connect their actual Android devices. They will later install and test their apps on

these emulators and these devices. Figure 2.4 shows the screenshot of the Android virtual

Device Manager tool, which helps the programmer to manage and configure emulators.

Programmers can model many different actual devices by tailoring hardware and software

options of emulators.

2.2.2 Development

In this phase programmers create and develop their Android app projects which con-

tains all source code, resource files and manifest (configuration) files. Programmers are

recommended to use Eclipse 1, an popular java IDE, with the Android Development Tools

(ADT) plugin. Figure 2.2(a) shows source code of an example of an Android app (”Convert

degrees Fahrenheit to degrees Celsius”).

1There are other Thrid-Party Development Tools which are not preferred by Android team, see link:
http://developer.android.com/tools/workflow/index.html

6



2.2.3 Debug and Testing

During this phase programmers build their project into an intermediate package used

for debugging and testing their app. Then they install the package on one of the emulators

configured in Section 2.2.1 or actual Android devices to run and test. Programmers can

use command line tools provided by the Android SDK to build the package, or have it built

automatically when using Eclipse. Figure 2.2(b) shows a screenshot of an Android app

(Convert degrees Fahrenheit to degrees Celsius”, when it runs on an emulator.

2.2.4 Publishing

In this phase, the programmer will either use a Android SDK command-line tool or

Eclipse to build and sign the release package. Then programmers upload the package to

Android Market (which is now called Google Play) and thereby release it to users.

7



(a) Source code (b) Result screen

Figure 2.2. Example of an app in Android (”Convert degrees Fahrenheit to degrees Celsius”): Eclipse with Android Development
Tools (ADT) is used to develop and publish Android apps. This also is an example of an Android app (”Convert degrees
Fahrenheit to degrees Celsius”). Figure 2.2(b) is a screenshot of the execution of the Android app shown in Figure 2.2(a) when
executed in the standard Android emulator. Figure 2.2(b) looks very similar to Figure 2.1(b) and Figure 2.1(c), which are the
result when the same app is developed by using the TouchDevelop IDE.

8



Figure 2.3. Screenshot of the Android SDK manager: The Android SDK manager is used to manage Android Development
Tools and Android platforms.

9



Figure 2.4. Screenshot of Android Virtual Device Manager: The Android Virtual Device
Manager is used to configure and manage emulators which are used to run, debug, and test
Android applications.

10



CHAPTER 3

RESEARCH QUESTIONS (RQ), EXPECTATIONS (E), AND HYPOTHESES (H)

To evaluate this new TouchDevelop programming paradigm, we ask (a) how pro-

grammers have used TouchDevelop so far and (b) how their productivity using TouchDe-

velop compares with their productivity using a traditional mobile phone development ap-

proach. I.e., we investigate the following research questions and corresponding hypotheses.

• RQ1: How large are TouchDevelop applications?

– E1: Given the limited size of a phone screen, we expect that most TouchDevelop

apps are small.

– H1: Programmers use TouchDevelop to write small applications, which have

few low LOC.

• RQ2: For a given task, how do TouchDevelop solutions differ from solutions ob-

tained with a traditional mobile phone development approach?

– E2: By assuming and hiding many facts that have to be stated explicitly in

other languages, we expect that a TouchDevelop app is typically smaller than a

corresponding app in a traditional approach.

– H2: For the same task, a TouchDevelop solution has fewer LOC than a corre-

sponding solution using Android SDK.

• RQ3: For a given set of tasks, how does programmer productivity using TouchDe-

velop compare with using a traditional mobile phone application approach?

– E3: The simplicity of the language may make TouchDevelop programmers

more productive. But the difficulty of programming on a tiny screen without

11



a keyboard or mouse likely hampers productivity. So we expect TouchDevelop

programmers to be less productive overall.

– H3: Given the same amount of time and the same set of small programming

tasks, TouchDevelop programmers finish fewer tasks than programmers using

Android SDK.

12



CHAPTER 4

DESIGN FOR ANSWERING RESEARCH QUESTIONS

hypotheses of Chapter 3.

4.1 Testing H1, Counting LOC

To test H1, we downloaded from the TouchDevelop cloud all apps that have ever

been submitted. We removed all prior versions of an app published by the app’s original

author under the same app name. By doing that we only count the current version of each

app. However we do not remove such apps if the prior and current app are by different

authors or have different names.

H1 and H2 require us to count LOC. To make counting reproducible and compara-

ble across techniques, we first normalized all TouchDevelop and Android apps and then

counted their logical source statements (LSS) [4]. We did not count the content of config-

uration files such as the xml files each Android app uses to define layout, styling, etc.

4.2 Lab Experiment to Test H2, H3

To test H2 and H3, with IAB approval we recruited 27 graduate students of the CSE

5324 software engineering class taught by Dr. Csallner. CSE 5324 has a team project. Each

team builds its own Android app. We designed a lab experiment that took place during one

class period (80 minutes), towards the end of the course. At this point, most subjects had

some experience developing for Android.

We stressed that experiment participation will not influence grades. To simulate

individual development, we allowed subjects to consult web sources but forbid other com-

13



munication during the experiment, except with the instructor and teaching assistants (the

first two authors).

We defined a set of 11 simple programming tasks. For the experiment, Microsoft Re-

search loaned us 10 mobile phones, which allowed us to have subjects develop TouchDe-

velop apps on a phone. We randomly assigned 10 subjects to one phone each and the

control-group of the remaining 17 subjects to a lab Windows PC each that had installed an

Android IDE (Eclipse) and SDK. The Android IDE contains an interactive wizard that gen-

erates a working hello-world Android app. The experiment used TouchDevelop v2.4.0.0

beta and Android v1.6.

The first 10 minutes were spent reading and signing the informed consent form and

the Microsoft phone loan agreement. 60 minutes were available to subjects to configure

their phone or PC (each taking about 5 minutes) and working on our programming tasks.

Then we asked subjects to email us their solutions (PC) or return the phones. 10 minutes

were then used for a questionnaire. 2 subjects did not email us solutions, leaving us with

15 Android subjects.

Some 10 weeks before the experiment we held an in-class exercise with the same

subjects in the same lab with the same 10 phones, using different tasks and a different

subject assignment, to gain experience for our IAB submission. Twice, before this trial and

before the experiment, we emailed subjects a link to the TouchDevelop website and to a

short introductory video1. Otherwise we did not train subjects in TouchDevelop.

4.3 Subjects’ Prior Programming Experience for H2, H3

Figures 4.1 and 4.2 are box-and-whisker plots of our post-experiment questions that

asked subjects to estimate their prior programming experience. Subjects were not given

1http://channel9.msdn.com/Blogs/Peli/TouchDevelop-Getting-Started

14



Figure 4.1. Subjects’ prior experience - Time to learn techniques: Before the experiment,
subjects had spent more time learning Android than learning TouchDevelop (Answers to
question “How many of the following have you done before this exercise? Hours spent
learning Y (watch video, read website, api, etc.)”). I.e., all TouchDevelop subjects reported
having learned TouchDevelop for one hour or less (TD: TD). Ec is Eclipse, a popular Java
and Android IDE.

Figure 4.2. Subjects’ prior experience - LOC of programming languages developed before:
Before the experiment, subjects had written more Android than TouchDevelop LOC (An-
swers to question “How many of the following have you done before this exercise? Lines
of Y code written”). I.e., all TouchDevelop subjects reported having written 40 or fewer
TouchDevelop LOC (TD: TD). J is non-Android Java. All is code written in any language.

instructions on how to estimate.2 In summary, Figures 4.1 and 4.2 show that our subjects

had one or two orders of magnitude more experience with Android than with TouchDe-

velop, when measured as estimated time spent learning or as estimated LOC written for

that approach.

2If a subject reported a range, we used the average of the lower and upper bounds, for a number with a
plus or less-than (“100+”, “<10”) we ignored the operator, for an empty answer we used zero. A unit larger
than hour we first converted to weeks (year = 52, semester = 12, month = 4) and then to hours (5), hours/week
we assumed were given for one semester.

15



CHAPTER 5

RESULTS

5.1 Cloud: TouchDevelop Apps Are Small (H1)

1

10

100

1000

[0
,5

)
[2

5,
30

)
[5

0,
55

)
[7

5,
80

)
[1

00
,1

05
)

[1
25

,1
30

)
[1

50
,1

55
)

[1
75

,1
80

)
[2

00
,2

05
)

[2
25

,2
30

)
[2

50
,2

55
)

[2
75

,2
80

)
[3

00
,3

05
)

[3
25

,3
30

)
[3

50
,3

55
)

[3
75

,3
80

)
[4

00
,4

05
)

[4
25

,4
30

)
[4

50
,4

55
)

[4
75

,4
80

)
[5

00
,5

05
)

[5
25

,5
30

)
[5

50
,5

55
)

[5
75

,5
80

)
[6

00
,6

05
)

[6
25

,6
30

)
[6

50
,6

55
)

[6
75

,6
80

)
[7

00
,7

05
)

[7
25

,7
30

)
[7

50
,7

55
)

[7
75

,7
80

)
[8

00
,8

05
)

[8
25

,8
30

)
[8

50
,8

55
)

[8
75

,8
80

)
[9

00
,9

05
)

[9
25

,9
30

)
[9

50
,9

55
)

[9
75

,9
80

)
[1

00
0,

10
05

)
[1

02
5,

10
30

)
[1

05
0,

10
55

)

N
um

be
r o

f a
pp

s 

LOC 

Figure 5.1. Size of all TouchDevelop apps published in the TouchDevelop cloud: Size
in LOC of the 2,081 TouchDevelop apps published in the TouchDevelop cloud as of 17
February 2012. Not shown are the two largest apps of 1,742 and 1,675 LOC. Each dot
represents all apps in one bin of 5 LOC. E.g., the left-most dot represents the 674 apps
from 0 to 4 LOC.

Figure 5.1 shows the 2,081 TouchDevelop apps that have been published in the

TouchDevelop cloud, grouped by their respective size in LOC. 47% (987) are 9 LOC

or less and 60% are 19 LOC or less. This confirms that, at least so far, the majority of

TouchDevelop apps are (very) small. Moreover, at the time of our experiment, on-phone

development was the only way to get TD apps into the cloud, so we can reasonable assume

that all TD apps in the TD cloud were indeed written on a phone [2].

16



5.2 Experiment: TouchDevelop-LOC < Android-LOC (H2)

Figure 5.2. Size of the developed (correct) apps for each task: Size of the developed
(correct) apps differs between Android and TouchDevelop. I.e., for each task, each correct
Android app is larger than each of the correct TouchDevelop apps. The width of each box-
and-whisker is proportional to the number of correct solutions we received. Not shown are
tasks for which we did not receive any correct app.

Figure 5.2 is a box-and-whisker plot of the size in LOC of all correct solutions sub-

mitted by the subjects. For each task, the average correct Android solution was about four

times larger in LOC than the average correct TouchDevelop solution. This confirms our

expectation that TouchDevelop apps are smaller than corresponding Android apps [2].

Listing 5.1. Example task 1 solution in Android (“Hello World”).

package edu . u t a . c s e . program1 ;

import a n d r o i d . app . A c t i v i t y ;

/ / . . two more i m p o r t s t a t e m e n t s

p u b l i c c l a s s P 1 A c t i v i t y ex tends A c t i v i t y

{

@Override

p u b l i c vo id o n C r e a t e ( Bundle b un d l e )

{

17



super . o n C r e a t e ( bun d l e ) ;

TextView t v = new TextView ( t h i s ) ;

t v . s e t T e x t ( ”CSE 5324 ” ) ;

s e t C o n t e n t V i e w ( t v ) ;

}

}

Listings 5.1 and 5.2 illustrate this difference in LOC. Both listings are example

correct solutions of task 1 (“Any ‘Hello World’ program that prints ‘CSE 5324’ on the

screen”). To work, the Android solution in Listing 5.1 must have a new class that (a) ex-

tends the Activity class and (b) overrides the onCreate method, which (c) must1 call the

overridden method. The onCreate method further should (d) create a text view, (e) set

“CSE 5324” on the text view, and (f) add the text view to the main screen. In contrast, the

corresponding TouchDevelop solution in Listing 5.2 consists of a single step, posting “CSE

5324” to the default output stream (the wall).

Listing 5.2. Example task 1 solution in TouchDevelop.

a c t i o n main ( )

’CSE 5324 ’→p o s t t o w a l l

Listing 5.3 Listing 5.4 also illustrate this different in LOC of task 2 (“a program that

takes as input an integer number representing degrees Fahrenheit, converts it to degrees

Celsius, and prints the resulting value.”). The Android solution, beside performs basic

steps (a, b, c, d) which is similar to task 1, needs to perform addition steps: the onCreate

method should (e) create a edit text to recieve user input (f) create a button to perform user

action (g) calculate the result and (i) set the result to text view. On the other hand, the
1Documented as “Derived classes must call through to the super class’s implementation of this method. If

they do not, an exception will be thrown.” http://developer.android.com/reference/android/app/Activity.html

18



corresponding TouchDevelop solution in Listing 5.4 consists of three simple steps: (a) get

input from user (b) calculate the result and (c) output it.

Listing 5.3. Minimal task 2 (“Convert Fahrenheit to Celsius”) solution in Android.

package u t a . edu ;

import a n d r o i d . app . A c t i v i t y ;

import a n d r o i d . os . Bundle ;

import a n d r o i d . view . View ;

import a n d r o i d . view . View . O n C l i c k L i s t e n e r ;

import a n d r o i d . w id ge t . B u t t o n ;

import a n d r o i d . w id ge t . E d i t T e x t ;

import a n d r o i d . w id ge t . TextView ;

p u b l i c c l a s s p2 ex tends A c t i v i t y

{

/∗ ∗ C a l l e d when t h e a c t i v i t y i s f i r s t c r e a t e d . ∗ /

@Override p u b l i c vo id o n C r e a t e ( Bundle s a v e d I n s t a n c e S t a t e )

{

super . o n C r e a t e ( s a v e d I n s t a n c e S t a t e ) ;

s e t C o n t e n t V i e w (R . l a y o u t . p2 ) ;

f i n a l E d i t T e x t f a h r e n h e i t = ( E d i t T e x t ) f indViewById (R . i d . e n t r y ) ;

Bu t t on b u t t o n = ( Bu t to n ) f indViewById (R . i d . ok ) ;

b u t t o n . s e t O n C l i c k L i s t e n e r ( new O n C l i c k L i s t e n e r ( )

{

p u b l i c vo id o n C l i c k ( View v )

{

/ / Per form a c t i o n on c l i c k s

double c e l s i u s ;

i n t f a h = I n t e g e r . p a r s e I n t ( f a h r e n h e i t . g e t T e x t ( ) . t o S t r i n g ( ) ) ;

19



c e l s i u s = ( ( f a h − 32) ∗ 5) / 9 ;

TextView t v = ( TextView ) f indViewById (R . i d . r e s u l t ) ;

t v . s e t T e x t ( c e l s i u s + ” ” ) ;

}

} ) ;

}

}

Listing 5.4. Minimal task 2 (“Convert Fahrenheit to Celsius”) solution in TouchDevelop.

a c t i o n t e m p e r a t u r e c o n v e r t e r ( )

var n := w a l l→ask number ( ” E n t e r temp f o r c o n v e r s i o n ” )

var x := ( n − 32) ∗ 5 / 9

w a l l→prompt ( ” Temp i n C e l s i u s ” | | x )

5.3 Experiment: TouchDevelop-Productivity > Android-Productivity (H3)

Table 5.1. Average of submitted code and correct code per group: TouchDevelop subjects
on average submitted code for more tasks and completed more tasks than Android subjects.

Subjects Some code Correct
TouchDevelop (TD) 10 3.7 2.4
Android (An) 15 3.2 1.7

Table 5.1 shows the number of tasks for which subjects submitted some code and

correct code. TouchDevelop subjects on average finished more tasks (correctly) than An-

droid subjects. Similarly, as shown by Figure 5.3, the likelihood that a task is finished

was greater for TouchDevelop than for Android subjects. Given the low familiarity of our

20



subjects with TouchDevelop and their comparatively strong background in Android, this

finding surprised us [2].

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10 11

Su
bj

ec
ts

 (%
) 

Tasks completed: Phone group 1.5 times better than PC group 

Phone PC

St
ud

en
ts

 (%
)  

Figure 5.3. Tasks completed: Phone group 1.5 times more than PC group: Using TouchDe-
velop made it more likely that a task will be finished correctly. For example, the percentage
of subjects finishing task 3 was 50% for TouchDevelop but less than 30% for Android.

 -

 20

 40

 60

 80

 100

>= 0 >= 1 >= 2 >= 3 >= 4 >= 5

Su
bj

ec
ts

 (%
)  

Number of apps implemented with desired functionality 

TD An

St
ud

en
ts

 (%
)  

Figure 5.4. Number of apps implemented with desired functionality per subject: The
percentage of TouchDevelop subjects, which finish 1,2,3 apps, is higher than Androids.
However, there are more subjects that finish four applications than TouchDevelop subjects.
From our observation, when the complexity of apps increases, the ability to reuse previous
apps helps Android participants to achieve more correct apps.

21



CHAPTER 6

OBSERVATIONS AND OPEN QUESTIONS

One subject reported that the TouchDevelop IDE crashed (“When few lines of code

were cut then TD crashed, had to retype”). From observing the subjects during the experi-

ment we assume that this was not a problem for other subjects.

All Android subjects used the interactive Android IDE wizard to generate a simple

hello-world app. This made it relatively easy to complete task 1. Other tasks however asked

for interactive programs. Several subjects struggled to make the necessary modifications to

the generated Android app.

We did not ask TouchDevelop subjects to publish apps during the experiment and

nobody did. However, subjects also did not adapt any of the existing sample apps that

are part of the TouchDevelop IDE. Maybe subjects did not judge it worthwhile to reuse

an existing sample app because TouchDevelop apps are more compact, so there is less

boilerplate code that can be reused?

More generally, we propose to investigate the following open questions, using ap-

propriate user evaluation techniques.

• How do subjects reuse code between tasks?

• What code editing and other actions do subjects perform when working on their

apps?

• How would our results change for tasks that require larger programs?

• How would our results change if subjects received more (or less) training in Android

or TouchDevelop?

22



CHAPTER 7

THREATS TO VALIDITY

In this chapter is the explanation of our limits on internal validity that may bias our

results and also the external validity to apply our study to other contexts. The following

threats to validity are determined.

7.1 Our subjects are not a random sample

Our findings may not generalize well to the intended TouchDevelop audience, which

extends beyond the UTA students taking CSE 5324 in Fall 2011 to any novice programmer

world wide. I.e., we recruited subjects from a graduate course that clearly emphasized

software engineering using Android and subjects self-selected this course. However, when

selecting the course, subjects were not aware of this experiment.

7.2 Hands-off administration of tasks

We did not instruct subjects on how to work on the given tasks. Forcing subjects to

work on certain tasks for a certain amount of time may produce results that are easier to

compare. However, this level of control would prevent subjects from using a more natural

programming style, in which subjects can switch between tasks and reuse solutions they

found for a later task on an earlier task.

7.3 Result may not generalize to larger programs

Due to the limited mobile phone screen size and the limited amount of time we

had with the subjects, we designed all tasks to be simple and small. However, our study

23



result may not be correct with large mobile tasks. With TouchDevelop, when program

size increases, users may need more scrolling activities and navigation actions, which will

likely slow down developers and lower programmer productivity.

24



CHAPTER 8

ADDITIONAL RESULTS

8.1 Reusing Android apps between tasks

In this section we analyze how subjects can reuse Android source code segments

between tasks. Figure 8.1, 8.2, 8.3, and 8.4 are source code solutions of one of the

Android subjects who correctly finished 4 apps. Via the post-experiment questionnaire, the

subject has self-reported to have written from 8,000 to 10,000 lines of code (our highest

value is 10,000). In Figure 8.1, subjects can add one more Android TextView label to

the HelloWorld template (left) to output “CSE 5324” in program 1 (right). In Figure 8.2,

subjects can modify the HelloWorld template (left) in two steps to finish program 2 (right):

(1) update layout: add one text view (t1), one edit text (e1), and one button (b1); (2)

add a method (onClick) to calculate Celsius degree. In Figure 8.3 subjects can modify the

program 1 (left) in two steps to finish program 2 (right): (1) update layout: delete command

set value for the text view (Label), add one edit text (e1), and one button (b1); (2) add a

method (onClick) to calculate Celsius degree. In Figure 8.4, subjects only have to make

small changes in program 2 such as: (1) add one edit text box and (2) modify equation of

onClick function to output the result to successfully create program 3. In conclusion, if a

subject starts by reusing the HelloWorld template to create program 1 and 2, then reuses

program 2 to create program 3, the subject may successfully finish first 3 programs within

the time limit. However, if the subject cannot finish program 2, it is very difficult for the

subject to develop program 3 correctly.

25



Figure 8.1. Android apps - Comparing an example task P1 solution with the auto-generated hello-world app: One more label is
added to HelloWorld template (left) to output “CSE 5324” in program 1 (right). The blue color indicates the strings, which are
different, and the gray color indicates strings, which are the same.

26



Figure 8.2. Android apps - Comparing an example task P2 solution with the auto-generated hello-world app: HelloWorld
template (left) is modified in two steps to finish program 2 (right): (1) Layout is updated: One text view (t1), one edit text (e1),
and one button (b1) are added; (2) a method (onClick) is added to calculate Celsius degree. The blue color indicates the strings,
which are different, and the gray color indicates strings, which are the same.

27



Figure 8.3. Android apps - Comparing an example task P1 solution with an example task P2 solution: Program 1 (left) is
modified in two steps to finish program 2 (right): (1) update layout: delete command set value for the text view (Label), add one
edit text (e1), and one button (b1); (2) add a method (onClick) to calculate Celsius degree. The blue color indicates the strings,
which are different, and the gray color indicates strings, which are the same.

28



Figure 8.4. Android apps - Comparing an example task P2 solution with an example task P3 solution: It is very simple to reuse
source code of program 2 (left) to develop program 3 (right): add one edit text box and modify equation of onClick function
to output the result. The blue color indicates the strings, which are different, and the gray color indicates strings, which are the
same.

29



8.2 Success of Android SDK applications is coordinated with participants’ prior experi-

ence but success of TouchDevelop applications is not coordinated with participants’

prior experience

0

1

2

3

4

5

-1 1 3 5 7 9 11

N
um

be
r o

f a
pp

s i
m

pl
em

en
te

d 
w

ith
 

de
sir

ed
 fu

nc
tio

na
lit

y 

Prior experience across programming languages (kLOC) 

An TD Linear (An) Linear (TD)

Figure 8.5. Links between the self-reported prior programming experience and the num-
ber of correctly implemented apps. For Android subjects, this link was stronger than for
TouchDevelop subjects.

Four Android SDK subjects finished 4 applications. By analyzing the similarities of

the subjects’ app source code between tasks in Section 8.1, we notice that although Android

SDK subjects write more LOC to finish an application, experienced subjects successfully

reuse their previous correct applications as samples to develop new ones. This result helps

to increase the application correctness of some Android subjects. In Figure 8.5, 3 out of

these 4 subjects have the highest experience in the Android team. Moreover, the increasing

“An” trend line of Android SDK team implies the correctness of application of Android

team is directly proportional to their prior experience. On the other hand, the horizon-

30



tal “TD” trend line of TouchDevelop team suggests that the correctness of application of

TouchDevelop team does not originate from their prior experience.

8.3 Sources used by subjects and subjects’ comments

The tables 8.2 for Android and 8.3 for TouchDevelop are the questionnaire result

in which subjects listed sources they used during the experiments and added their general

comment about the experiments. The Table 8.1 shows the percentage of subjects that in-

dicated in the questionnaire that they used the respective source. TouchDevelop subjects

mainly used code samples. Android subjects mostly used API sources and web sources.

Table 8.1. The percentage of subjects using the respective source per group: The percent-
age of subjects that indicated in the questionnaire that they used the respective source.
TouchDevelop subjects mainly used code samples. Android subjects mostly used API
sources and web sources.

Source used An(%) TD(%)
Code samples 13 80
API 53 0
Web sources 53 20
Other sources 7 20

31



Table 8.2: Android: Sources used by subjects and subjects’ comments

participant

Id

Sources

used:

samples

Sources

used:

API

doc

Sources

used:

exam-

ples

from

web

Sources

used:

other

Source

was

use-

ful:

sam-

ples

Source

was

use-

ful:

API

doc

Source

was

useful

exam-

ples

from

web

Source

was

useful:

other

What did you enjoy in

exercise?

Other comments

1 Yes Yes Could develop only the

front end GUI in the al-

lotted time

2 Yes Yes Developing Apps

3 Yes Yes Coding

4 Yes Yes Yes Yes Yes Programming in Java Eclipse is the best tool

for Java Developement

5 developer

.android

.com

Everything

32



6 Yes pretty

good

but

had to

make

changes

Developing

the Apps

7 Yes Coding

8 Yes Yes Developing GUI and

working on new con-

cept

9 Yes Yes

10 Yes Tutorials Yes Enjoyed removing er-

rors from code

Lab session was fine,

will be great if more

time is allocated to lab

session

11 Yes Yes Yes Installing part and run-

ning app in emulator

More time was required

to run the programs

12 Yes Yes Trying to code without

taking help from inter-

net

13 Yes Yes Coding in Android

33



14 Yes Yes Yes Yes Time limit

15 Yes Yes Yes Got interest in further

developement in An-

droid

Interesting exercise

Table 8.3: TouchDevelop: Sources used by subjects and subjects’ com-

ments

participant

Id

Sources

used:

sam-

ples

Sources

used:

API

doc

Sources

used:

exam-

ples

from

web

Sources

used: other

Source

was

use-

ful:

sam-

ples

Source

was

useful:

API

doc

Source

was

useful

exam-

ples

from

web

Source was

useful: other

What did you enjoy in

exercise?

Other comments

16 Yes Yes TouchDevelopement Provide more time

to write code

17 Yes Yes Programming Nice Experiment

18 Yes Yes New Experience to de-

velop in TD

34



19 One

sample

video

to get

started

Easy

to un-

der-

stand

It was a test of how

quickly one can grasp

the idea of new prgram-

ming structure and I did

well I thinng and it was

nice

It was a good expe-

rience to work with

Touch Develop

20 Programming, Explor-

ing the IDE

21 useful

but dif-

ficult to

inter-

pret

Did

not

find

easily

Will be

useful if

some help

is provided

about how

to use the

functions

Not

very

useful

Difficult

to

search

on

phone

Indication

on how to

develop in

the touch

develop in-

terface will

be helpful

Trying to figure out TD Syntax is not very

intuitive, may take

time and patience

to understand

22 took help

from TA

help from

TA

Learning TD Enjoyed learning

and working on

TD

35



23 Yes Did

not

have

every-

thing

re-

quired

More exam-

ples in the

web could

help more

Developing apps in win-

dows phone

24 Yes Learning basic syntax

from samples and then

applying them in code

Interesting exer-

cise

25 Yes Yes Yes First hands on experi-

ence on TD

Hard to develop on

TD as there was

less info about the

functions

36



CHAPTER 9

RELATED WORK

This chapter summaries studies, which are related to our study in different aspects.

There is a survey of programming languages for novice programmers in [5] and TouchDe-

velop is a particular novice programming language. There evaluations of programming

languages for non-programmers such as [6], [7], and [8]. Then there are empirical evalua-

tions of other programming languages for novice programmers such as [9], [10], [11], and

[12]. Moreover, there is a comparison between Android and iOS, an professional program-

ming language which is similar to Android, in teaching environment [13]. There also is a

study about problems when users use small display instead of large display screens as in

[14]. However, TouchDevelop represents a new paradigm (coding on the phone) so there

are no studies yet about TD-like environments.

9.1 Survey of end-user programming languages

Kelleher and Pausch [5] surveyed more than 80 articles about systems, which try to

make programming language easier to learn for novice programmers of all ages. This sur-

vey describes two broad categories: (1) Teaching category designed to help people learn

to program and (2) Empowering category designed to help people build programs as much

as possible to tailor their own needs. They concluded their study with three main methods,

which these systems used, such as (1) to simplifying the mechanics of programming (sim-

plify entering code, finding a different way to input the program, replace coding by other

activities, or improve programming languages), (2) to provide social supports for users

(multiple students in informal groups to work together, or networked interaction), and (3)

37



to inspire them to learn the language (entertainment or educational activity). In a similar

way, TouchDevelop is designed with simple and compact programming language and its

intelligent virtual input keyboard. TouchDevelop wants to target not only students but also

hobbyists who write TouchDevelop apps for enjoyment and for personalizing their mobile

phone [1].

9.2 Evaluations of programming languages for non-programmers

Pane and Ratanamahatana, Myers [6] studying solution which non-programmers cre-

ate to solve the programing problems to create guideline for important features of future

programming languages. In the experiment there are two groups of participants: ones is

children, the other is a mix of adult and children, which have not programed before. Bas-

ing on common techniques and concepts of programming language, such as AND, OR,

SUBSET, LOOP, or, SORT, the authors generated list of programming questions as movie

scenarios. The participant can answers questions on papers by text or diagram. They claim

that to solve a programming task, a programmer has to create a metal plan to solve the task

before they apply this plan on particular programming language. They concluded in order

to design a modern programming language, such as Java, with many features and require-

ments; there sometimes is a large distance between the mental plan and the programming

language. Our study concludes the average correct Android solution was about four times

larger in LOC than the average correct TouchDevelop solution. This seems that compact

programming language environment, TouchDevelop, can help to reduce the distance be-

tween programmers’ mental plan and the programming language (they coded less LOC).

Moreover, The experiment also shows that TouchDevelop completed more correct tasks

than Android subjects.

38



Myers, Pane, and Ko [7] propose a new programming language environment for

children, which is close to natural language. The authors take advantage of prior re-

sults in human-computer interaction studied to create new programming language environ-

ment, which improves the usability of novice programmer fifth grade in creating programs

and fixing bugs of programs. They conducted studies, which include developing video

game, and simple business tasks, groups of non-programming and programming partici-

pant. Based on studies observations they design the new novice programming language

environment, HANDS: is an event-based language, and includes natural queries, aggregate

operators and animations. Both HANDS and TouchDevelop try to creates simple program-

ming languages based on their observations on the way in which novice programmers exe-

cutes programming tasks. However, HANDS uses animation approach, but TouchDevelop

simplifies the syntax and structure of tradition language.

Resnick, Maloney, Monroy-Hernández, Rusk, Eastmond, Brennan, Millner, Rosen-

baum, Silver, Silverman, Kafai [8] design a desktop tool, called Scratch, for children aged

from 8 to 16 to learn programming. Its programming grammar is based on shaped blocks,

and only blocks, which can fix with each other, make correct syntax. All source code of

created applications is uploaded and shared with all users. After 27 months, the project

is very successful with 500,000 projects (15% of projects are remixed of older ones) and

about 1500 projects uploaded every day. TouchDevelop is designed in a similar way, and

after 10 months, (from Apr-2011 to Feb-2012) it has 2,081 TouchDevelop apps published.

Both of them have simple programming language environments, which help novice users

efficiently understanding its syntax and structure. They design source statements using

block, which eliminate many typing mistakes. Their online collaboration features (online

discussion, public source code, original source code tracking, and derivative source code

tracking) support and encourage participants developing new apps. However, because of

39



the concept itself, TouchDevelop may require more mature users than Scratch. TouchDe-

velop also targets mobile platform, which is different from Scratch.

9.3 Empirical evaluations of programming languages for novice programmers

Boada, Soler, Prados, and Poch [9] develop web-based tool called ACMEp to help

teachers teach introductory programming course to freshman programming students. Teach-

ers can generate workbooks for students using ACMEp. Students can pseudo-code or many

other language as solution to ACMEp and receive feedbacks. They had 120 students and

each of these students uses this ACMEp tool. They are concerned about using a stan-

dard programming language vs. using pseudo-code. The two parts of their study are lec-

ture (pseudo-code) and lab (standard programming language). Then they argue that using

pseudo code first helps students use a standard programming language. Their main results

come from questions / answers they use on students and teachers. On the other hand, our

main results come from our controlled experiment. We also tried questions / answers but

this did not give many interesting results.

DePasquale, Lee, and Pérez-Quiñones [10] evaluate the effects of applying program-

ming language of novice programmers in three programming language environments: full

programming language with complex user interface, full programming language with sim-

ple interface, and programming language subsets with simple interface. They had con-

ducted an experiment with 165 students divided into three groups. Group 1 used a full IDE

(.NET) throughout. Group 2 first used a simplified IDE (CS1 Sandbox) without language

subsets and later a full IDE (.NET). Group 3 first used a simplified IDE (CS1 Sandbox)

with language subsets and later a full IDE (.NET). Then they compared these three groups

and found that grades were equivalent across the two groups. Our study compares student

productivity and student solution correctness between Android and TouchDevelop. An-

40



droid used Java, a popular and powerful programming language, and its desktop IDE is

Eclipse with Android Development Tools plugin. On the hand, TouchDevelop use a simple

and imperative programming language and its IDE also designed simple and compact to

work with mobile phones [1].

Nanz, Torshizi, Pedroni, and Meyer [11] do experiment on 67 students of an ar-

chitecture course to compare Java with SCOOP (Simple Concurrent Object-Oriented Pro-

gramming) for concurrency. The experiment includes two phrases: (1) training phase,

including self-study material and exercises, to help students be familiar with concurrent

programming in both languages, (2) testing, including three tasks program comprehension,

program debugging and program correctness, to evaluate the usability of Java and SCOOP.

Although 67 students had multithread Java programming experience, they actually compre-

hend and debug programs better using SCOOP. However, The results were not statistically

significant. Our research is similar to them in comparison between a well-known mobile

programming language environment, Android, with new mobile programming language

environment, TouchDevelop. In a specific kind of tasks, developing small mobile applica-

tions (theirs: developing object-oriented concurrent programming), our result shows that

the new mobile programming language environment helps students improve their produc-

tivity. They assigned subjects randomly then used self-assessments and test questions to

confirm split groups have similar backgrounds, which similar to what we did. We first

random assignment and then use a questionnaire to figure out if the random assignment

created groups of similar properties.

Browne, Werth, and Lee [12] conduct an experiment to evaluate CODE (Computation-

Oriented Display Environment) with and without ROPE (Reusability-Oriented Parallel pro-

gramming Environment) system based on two factors user productivity and software qual-

ity. After trained in use of CODE, 43 subjects who are graduated and senior students in

science and computer engineering developed 25 parallel programs using CODE and 43

41



parallel programs using CODE with ROPE. Students, using CODE with ROPE, can access

to a database with 70 software components to reuse. In conclusion, the authors argued that

ROPE has signification effect on development time, and reduce error rates. In our exper-

iment, all Android subjects reused the generated simple hello-world app to develop their

apps. TouchDevelop did not reuse any apps still more productivity.

Hundhausen and Brown [15] developed a visual environment (ALVIS LIVE!), which

helps novice programmers learn algorithm. Programmers can input simple pseudocode-like

source code, and the tool can automatically evaluate the code and turn them into visual rep-

resentation. They also conduct an experiment to validate the usability of “ALVIS LIVE!”

on 21 novice programmers in one of their introductory programming computer science

course. The experiment includes the following tasks: fixing a buggy algorithm (Find Max)

and develop new one (Replace Zeroes). After the experiment, they reviewed the video-

tapes recorded during the experiment and the questionnaire shows that the tool got 7.3/10

points in addressing the participants learnability. They concluded “ALVIS LIVE!” is gener-

ally successful in empowering students to understanding their code and to develop correct

algorithm solutions. However, they also point out some of its weaknesses. The concept of

“ALVIS LIVE!” is similar to TouchDevelop concept. Both of them create new simple pro-

gramming language environments to help novice programmer archive their own learning

purposes. However, Alvis Live! does not work on phones. As authors pointed out they need

to have a more rigorous experiment to prove the high usability of “ALVIS LIVE!”. Their

experiment lacks of comparisons with other similar language environment and statistical

analysis on collected result.

42



9.4 Evaluations of programming languages for expert programmers

Goadrich and Rogers [13] compared advantages and disadvantages of between iOS

and Android in teaching mobile development programming. They state iOS programmers

can only develop applications by using Apple iFamily devices, but Android programmers

can develop on any PC platforms such as: Mac OS, Windows and Linux. The authors

mention programming using mobile virtual devices raises some difficulties in usability

testing on both environments. They also suggest that these full environments more target

upper-level computer science courses, and teachers should look for simpler alternative en-

vironments for programming introduction courses. TouchDevelop tried to shift the mobile

development SDKs from PC to mobile device itself, which actually can increase usability

testing. Moreover, its simple and compact programming language makes it easy to be used

by novice programmers.

9.5 Small display

Jones, Marsden, Mohd-Nasir, Boone, and Buchanan [14] analyze how retrieving a

task is affected when users shift from a big screen size (1024x768, 30 lines of content) to

small screen size (640x480, 15 lines of content). They conducted an experiment with 20

subjects, assigned to two groups of 10 each. They discover that performance of simple

tasks, such as reading or browsing, are not reduced when screen size is smaller. How-

ever, retrieving information task is 50% slower when users use a smaller screen. Users

also make more incorrect data selection, and have more scrolling activities. The authors

also suggest improvements such as: adding direct search features, improving navigation

features, adding key information indexes, and reducing information on the page. TouchDe-

velop compacts source code to reduce displayed information. It replaces the virtual key-

board keys with appropriate identifiers (keywords, variables, function names) to improve

43



searching and navigating performance. In addition, this experiment subjects used keyboard

and mouse to interact, unlike multi-touch in TouchDevelop.

44



CHAPTER 10

CONCLUSIONS

Our findings indicate that (a) programmers so far have written TouchDevelop apps

that are small and (b) a TouchDevelop app is smaller than a corresponding traditional mo-

bile phone app (i.e., using Android). Surprisingly, (c), for small tasks, even with very

little to no training in TouchDevelop, a student programmer who has prior Java and An-

droid programming experience is still more productive in writing TouchDevelop apps on a

phone than writing Android apps in a traditional PC-based fashion. Our web site contains

additional details: http://cseweb.uta.edu/~tuan/tdexp/

45

http://cseweb.uta.edu/~tuan/tdexp/


APPENDIX A

POST-EXPERIMENT QUESTIONNAIRE

46



Following is the full questionnaire which we ask subjects to answer at the end of the

experiment.

A.1 Questionnaire

1. How many of the following have you done before this exercise?

(a) Lines of code written, counting all programming languages (do not include

plain html, but include JavaScript, C, C++, C#, Java, etc.)

(b) Lines of (non-Android) Java code written

(c) Lines of C# code written

(d) Lines of Java for Android code written

(e) Lines of TouchDevelop code written

(f) Hours spent working with Eclipse (write Java code, etc..)

(g) Hours spent learning TouchDevelop (watch video, read website, api, etc.)

(h) Hours spent learning Android (watch video, read website, api, etc.)

2. In completing this exercise, which problems did you encounter?

(a) Preparing the IDE, emulator, etc

(b) Developing particular apps

(c) Loading apps into the device

(d) Other (please elaborat)

3. In completing this exercise, which sources did you use (web sites, etc.)?

(a) Samples that were part of the tool

(b) Official API documentation

(c) Examples found on the web

(d) Other (please elaborate)

47



4. Comparing these sources with other documentation you have used in the past, how

useful were the sources you used in this experiment?

(a) Samples that were part of the tool

(b) Official API documentation

(c) Examples found on the web

(d) Other (please elaborate)

5. Which aspects of this exercise did you particularly enjoy?

6. Please let us know any additional comments you may have.

48



APPENDIX B

INSTRUCTION FOR SUBJECT AND APP DEVELOPMENT TASKS

49



Following is the full instructions, including the necessary setup tasks and the verba-

tim list of programming tasks we assigned to the subjects.

B.1 Android

1. What your instructor and TAs have done to the PC before class?

(a) Install on the PC a JVM and Eclipse.

(b) Install on the PC the Android SDK.

2. What you have to do in class?

(a) During the class, do not communicate (talk, email, etc.) with anyone except the

TAs.

(b) Type the following address into the Firefox address bar http://dl.google.com/android/ADT-

12.0.0.zip

(c) Start Eclipse to install the Eclipse ADT plugin

i. Help > Install New Software... > Add > Archive > Favorites > Down-

loads > ADT-12.0.0 > Ok

ii. Select Developer Tools > next, next, accept terms, finish, ok, restart now

iii. Window > Preferences...> Android > enter into “SDK Location”:

A. C:\Program Files\Android\android-sdk

(d) Create and start an Android Virtual Device

i. In Eclipse: Window > Android SDK and AVD Manager > Virtual Devices

> New... > Name: device, Target: Android 1.6 > Create AVD

ii. Start the Android emulator from the command line, in Windows: Click the

Windows start button in the lower left corner > in the “search programs

and files box” enter:

50



• cmd > cd “\Program Files\Android\android-sdk\tools” > emulator-

avd device

(e) Use the Eclipse ADT plugin to develop the following apps and install them on

the Android emulator

i. Any “Hello World” program that prints “CSE 5324” on the screen. Name

this program P1.

ii. A program that takes as input an integer number representing degrees Fahren-

heit, converts it to degrees Celsius (using the Fahrenheit to Celsius con-

version rule: deduct 32, multiply by 5, then divide by 9), and prints the

resulting value. Name this program P2.

iii. A tip calculator that takes as input two integer numbers A, B from the user

and prints the value of A*B/100. Name this program P3.

iv. A program that takes as input an integer number and prints “even” if it is

an even number and “odd” if it is an odd number. Name this program P4.

v. A program that takes as input a string and a character, prints “contains” if

the string contains the character or else prints “not in there”. Name this

program P5.

vi. A program that takes as input a string and prints out the string with first

character in uppercase. Name this program P6.

vii. A program that prints the system’s current time as text. Name this program

P7.

viii. A program that asks the user for a positive integer value n and prints odd

numbers between 0 and n (including n if n is odd). Name this program P8.

ix. A program that takes as input a string that consists of numbers separated

by commas. The program should output the numbers in increasing order.

Name this program P9.

51



x. A program that draws a circle on the screen. Name this program P10.

xi. A program that takes two strings as input and checks if they are equal.

Name this program P11.

3. Notes

(a) It is okay to look at the sample programs and use them as a basis for your apps.

(b) It is also okay to surf web sites. The API documentation is at:

i. http://developer.android.com/reference/packages.html.

(c) During this exercise, do not talk with other students. The goal is to simulate

individual development.

(d) Do not log off from, shut down, or restart the PC! After you log off, the C: drive

will be rewritten and all your programs will be lost. Instead, email the source

code of the apps you developed to us (the whole project so we can re-compile

it, do not just send the .java files): rumee.csedu@gmail.com; csallner@uta.edu

B.2 TouchDevelop

1. What your instructor and TAs have done to the phone before class?

(a) Charge phone, so we do not need to distribute chargers in class.

(b) Phone setup (language = English, accept phone terms, custom phone settings,

next, Central Time zone, next, set current date and time, skip entry of Windows

Live ID: not now as no Wifi connection

(c) pin settings to start screen: top right arrow > bottom of list > press settings

long > pin to start

(d) settings > ringtones and sounds > ringer off, vibrate off

2. What you have to do in class?

(a) Prepare:

52



i. Read and sign Microsoft lease agreement paper form. Only after we re-

ceive the signed form we will hand out a phone.

ii. During this exercise, do not use a PC, personal laptop, or other smart-phone

that you may have brought to class. You may surf web pages, but only on

the Windows Phone that was assigned to you.

iii. During this exercise, do not communicate (talk, email, etc.) with anyone

except the TAs.

(b) On the phone, you can always use the following two keys:

i. The home key is at the bottom, center, directly under the Samsung sign. It

takes you to the phones start screen.

ii. The back key is to the left of the home key. The back key takes you to the

previous screen.

(c) Wifi setup: bottom of page > settings > Wi-Fi > UTA Auto Login > enter you

UTA netid + password (you may need to try this up to three times, depending

on the quality of the network)

(d) Enter the below Live ID: settings > email and accounts > add an account >

Windows Live > next:

• Enter your passport id: <1 of our 10 passport ids>

• And password: <corresponding password>

(e) Download TouchDevelop: Marketplace > bottom right search key: ”Touchde-

velop” > install > allow > install

(f) TouchDevelop: top right arrow > bottom of list > TouchDevelop > I agree >

start

(g) Use TouchDevelop to develop the following apps.

i. Any “Hello World” program that prints “CSE 5324” on the screen. Name

this program P1.

53



ii. A program that takes as input an integer number representing degrees Fahren-

heit, converts it to degrees Celsius (using the Fahrenheit to Celsius con-

version rule: deduct 32, multiply by 5, then divide by 9), and prints the

resulting value. Name this program P2.

iii. A tip calculator that takes as input two integer numbers A, B from the user

and prints the value of A*B/100. Name this program P3.

iv. A program that takes as input an integer number and prints “even” if it is

an even number and “odd” if it is an odd number. Name this program P4.

v. A program that takes as input a string and a character, prints “contains” if

the string contains the character or else prints “not in there”. Name this

program P5.

vi. A program that takes as input a string and prints out the string with first

character in uppercase. Name this program P6.

vii. A program that prints the system’s current time as text. Name this program

P7.

viii. A program that asks the user for a positive integer value n and prints odd

numbers between 0 and n (including n if n is odd). Name this program P8.

ix. A program that takes as input a string that consists of numbers separated

by commas. The program should output the numbers in increasing order.

Name this program P9.

x. A program that draws a circle on the screen. Name this program P10.

xi. A program that takes two strings as input and checks if they are equal.

Name this program P11.

3. Notes

(a) It is okay to look at the sample programs in TouchDevelop and use them as a

basis for your apps.

54



(b) It is also okay to surf web sites. The API documentation is at:

i. http://www.touchdevelop.com/help/api

(c) During this exercise, do not talk with other students. The goal is to simulate

individual development.

(d) The TA will collect the phones and remove all personal information, i.e., re-

move your WiFi setup. After studying your apps, we will reset the phone to the

default factory setting.

55



REFERENCES

[1] N. Tillmann, M. Moskal, J. de Halleux, and M. Fähndrich, “Touchdevelop: Program-

ming cloud-connected mobile devices via touchscreen,” in Proc. 10th SIGPLAN ON-

WARD. ACM, 2011, pp. 49–60.

[2] T. A. Nguyen, S. T. Rumee, C. Csallner, and N. Tillmann, “An experiment in develop-

ing small mobile phone applications comparing on-phone to off-phone development,”

in Proc. 1st International Workshop on User Evaluation for Software Engineering

Researchers (USER). IEEE, 2012, pp. 9–12.

[3] Google Inc., “Android developers.” http://developer.android.com/index.html, 2012,

accessed Jan. 2012.

[4] R. E. Park, “Software Size Measurement: A Framework for Counting Source State-

ments,” Software Engineering Institute, Tech. Rep., 1992.

[5] C. Kelleher and R. Pausch, “Lowering the barriers to programming: A taxonomy of

programming environments and languages for novice programmers,” ACM Comput-

ing Surveys, vol. 37, no. 2, pp. 83–137, 2005.

[6] J. F. PANE, C. . RATANAMAHATANA, and B. A. MYERS, “Studying the language

and structure in non-programmers’ solutions to programming problems,” Interna-

tional Journal of Human-Computer Studies, vol. 54, pp. 237 – 264, 2001.

[7] B. A. Myers, J. F. Pane, and A. Ko, “Natural programming languages and environ-

ments,” Commun. ACM, vol. 47, no. 9, pp. 47–52, 2004.

[8] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Brennan,

A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai, “Scratch: program-

ming for all,” Commun. ACM, vol. 52, no. 11, pp. 60–67, 2009.

56



[9] I. Boada, J. Soler, F. Prados, and J. Poch, “A teaching/learning support tool for intro-

ductory programming courses,” in Information Technology Based Higher Education

and Training, 2004. ITHET 2004. Proc. of the FIfth International Conference on,

2004, pp. 604 – 609.

[10] P. DePasquale, J. A. N. Lee, and M. A. Pérez-Quiñones, “Evaluation of subsetting

programming language elements in a novice’s programming environment,” in Proc.

of the 35th SIGCSE technical symposium on Computer science education. ACM,

2004, pp. 260–264.

[11] S. Nanz, F. Torshizi, M. Pedroni, and B. Meyer, “Design of an Empirical Study for

Comparing the Usability of Concurrent Programming Languages,” Empirical Soft-

ware Engineering and Measurement (ESEM), 2011 International Symposium on, pp.

325–334, 2011.

[12] J. C. Browne, J. Werth, and T. Lee, “Experimental evaluation of a reusability-oriented

parallel programming environment,” IEEE Trans. Softw. Eng., vol. 16, no. 2, pp. 111–

120, 1990.

[13] M. H. Goadrich and M. P. Rogers, “Smart smartphone development: iOS versus an-

droid,” in SIGCSE ’11: Proc. of the 42nd ACM technical symposium on Computer

science education, 2011.

[14] M. Jones, G. Marsden, N. Mohd-Nasir, K. Boone, and G. Buchanan, “Improving

Web interaction on small displays,” in WWW ’99: Proc. of the eighth international

conference on World Wide Web, 1999.

[15] C. D. Hundhausen and J. L. Brown, “What you see is what you code: A ”live” algo-

rithm development and visualization environment for novice learners,” J. Vis. Lang.

Comput., vol. 18, no. 1, pp. 22–47, 2007.

57



BIOGRAPHICAL STATEMENT

Tuan A. Nguyen was born in Can Tho, Vietnam, in 1984. He received his B.S. degree

from University of Science Ho Chi Minh City, The National University, Vietnam, in 2007.

He works three years in FPT Software in six outsourcing projects with Hitachi and Nissan

customers. He started his Masters degree in Computer Science in 2010 in University of

Texas at Arlington. He will continue his PhD in Fall 2012. His current research interest

is in mobile software engineering and software reverse engineering. His hobbies include

programming, exercising, reading news, and contributing to open source communities.

58


	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	INTRODUCTION
	BACKGROUND
	TouchDevelop
	Android
	Setup
	Development
	Debug and Testing
	Publishing


	RESEARCH QUESTIONS (RQ), EXPECTATIONS (E), AND HYPOTHESES (H)
	DESIGN FOR ANSWERING RESEARCH QUESTIONS
	Testing H1, Counting LOC
	Lab Experiment to Test H2, H3
	Subjects' Prior Programming Experience for H2, H3

	RESULTS
	Cloud: TouchDevelop Apps Are Small (H1)
	Experiment: TouchDevelop-LOC < Android-LOC (H2)
	Experiment: TouchDevelop-Productivity > Android-Productivity (H3)

	OBSERVATIONS AND OPEN QUESTIONS
	THREATS TO VALIDITY
	Our subjects are not a random sample
	Hands-off administration of tasks
	Result may not generalize to larger programs

	ADDITIONAL RESULTS
	Reusing Android apps between tasks
	Success of Android SDK applications is coordinated with participants' prior experience but success of TouchDevelop applications is not coordinated with participants' prior experience
	Sources used by subjects and subjects' comments

	RELATED WORK
	Survey of end-user programming languages
	Evaluations of programming languages for non-programmers
	Empirical evaluations of programming languages for novice programmers
	Evaluations of programming languages for expert programmers
	Small display

	CONCLUSIONS
	POST-EXPERIMENT QUESTIONNAIRE
	INSTRUCTION FOR SUBJECT AND APP DEVELOPMENT TASKS
	REFERENCES
	BIOGRAPHICAL STATEMENT

