
MONITORING AND ANALYZING DISTRIBUTED CLUSTER PERFORMANCE

AND STATISTICS OF ATLAS JOB FLOW

by

SREERANJANI RAMPRAKASH

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2005

 ii

ACKNOWLEDGEMENTS

I would like to express my deep and sincere gratitude to Mr. David Levine who

has been constantly encouraging and directing me throughout my graduate studies and

specifically through my thesis.

I am extremely grateful to Dr. Kaushik De whose ideas and suggestions have

been the biggest motivation for my thesis work.

I would like to express my most heartfelt thanks to Dr. Mark Sosebee who has

constantly helped in getting us all that we have needed to implement and guided us to

achieve what we have.

I would like to thank Dr. Ramez Elmasri for his interest in my Research and

thesis defense.

I am very thankful to Aaron Thor who has helped me in innumerable ways with

his ideas as well as resourcefulness. It was indeed a very good experience working with

him as a team in ultimately trying to build a scheduling algorithm for ATLAS.

I would like to also mention that my efforts were supported by Nurcan Ozturk,

Sudhamsh Reddy and Nirmal Ranganathan and I would like to express my appreciation

for their support.

I would like to thank my parents, my close family, my fiancé and my close

friends with whose constant understanding and support I have completed my thesis.

July 22, 2005

 iii

ABSTRACT

MONITORING AND ANALYZING DISTRIBUTED CLUSTER PERFORMANCE

AND STATISTICS OF ATLAS JOB FLOW

Publication No. ______

Sreeranjani Ramprakash, M.S.

The University of Texas at Arlington, 2005

Supervising Professor: David Levine

Grid3 is a Grid facility used by many High Energy Physics experiments to

enable physicists to process data intensive and CPU intensive jobs more effectively as

well as more efficiently. The worldwide High Energy Physics experiment, ATLAS

collaboration, works on several Grid facilities in many countries, Grid3 being the US

ATLAS Grid facility. The European DataTag and NorduGrid are other Grid facilities

used by the ATLAS experiment. Amongst other things, the highlights of Grid3 are

participation by more than 25 sites across the U.S. and Korea which collectively

provide more than 2000 CPU’s, resources used by seven different scientific

applications, including three high energy physics simulations and four data analyses in

high energy physics, bio-chemistry, astrophysics and astronomy, more than 100

 iv

individuals are currently registered with access to the Grid, a peak throughput of 500-

900 jobs running concurrently with a completion efficiency of approximately 75%.

Since each application and organization utilizing Grids has different measures

for efficiency and different parameters such as number of successfully completed jobs,

turnaround time, number of idle processors, etc., to be considered for scheduling,

scheduling on any Grid still needs to be tailored for individual cases.

The ATLAS experiment is a High Energy Physics experiment that utilizes the

services of Grid3 now migrating to the Open Science Grid (OSG). This thesis provides

monitoring and analysis of performance and statistical data from individual distributed

clusters that combine to form the ATLAS Grid and will ultimately be used to make

scheduling decisions on this Grid.

The system developed in this thesis uses a layered architecture such that

predicted future developments or changes brought to the existing Grid infrastructure can

easily utilize this work with minimum or no changes. The starting point of the system is

based on the existing scheduling that is being done manually for ATLAS job flow. We

have provided additional functionality based on the requirements of the High Energy

Physics ATLAS team of physicists at UTA. The system developed in this thesis has

successfully monitored and analyzed distributed cluster performance at three sites and is

waiting for access to monitor data from three more sites.

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... ii

ABSTRACT .. iii

LIST OF ILLUSTRATIONS... vii

LIST OF TABLES... ix

Chapter

 1. INTRODUCTION. .. 1

 1.1 What is a Grid... ... 1

 1.2 Understanding Grids ... 2

 2. PREVIOUS WORK IN GRID SCHEDULING.. 6

 2.1 Distributed job scheduling on computational Grids
 using multiple simultaneous requests ... 6

 2.2 Multisite resource selection and scheduling
 algorithm on computational Grid... 7

 2.3 A comparison among Grid scheduling algorithms
 for independent coarse-grained tasks... 9

 2.4 The Globus Project: A status report... 10

 2.5 Chameleon: A resource scheduler in a data Grid environment 11

 3. ATLAS AND THE UNDERLYING PROBLEM... 13

4. MONITORING AND ANALYZING DISTRIBUTED CLUSTER
 PERFORMANCE AND STATISTICS OF ATLAS JOB FLOW 17

 4.1 Introducing Capone ... 17

 4.2 Design specifications and considerations .. 23

 vi

 4.2.1 Overview... 23

 4.2.2 Assumptions ... 23

 4.2.3 System architecture... 24

 4.3 Another point of view.. 36

 5. IMPLEMENTATION AND EXPERIMENTATION................................... 42

 5.1 Current utilization of the system.. 42

 6. CONCLUSION AND FUTURE WORK.. 55

Appendix

 A. PSEUDO CODE FOR CREATING INFORMATION FOR
 TABLE FROM_GANGLIA_SITE .. 57

 B. PSEUDO CODE FOR CREATING INFORMATION FOR
 TABLE JOB_INFO.. 60

 C. PSEUDO CODE FOR CREATING INFORMATION FOR
 TABLE SITE_RESOURCES... 63

 D. PSEUDO CODE FOR CREATING INFORMATION FOR
 TABLE SITE_SERVICES... 66

 E. PSEUDO CODE FOR POPULATING THE DATABASE
 WITH ALL THE DATA FILES CREATED... 68

REFERENCES .. 70

BIOGRAPHICAL INFORMATION... 73

 vii

LIST OF ILLUSTRATIONS

Figure Page

 1 Layered Grid architecture and its corresponding
 protocols in the Internet architecture... 3

 2 Various components of GCE Capone ... 19

3 High level architecture of the monitoring and
 analyzing distributed cluster performance and
 statistics of ATLAS job flow system .. 26

4 Information flow from configuration file “pool.config”
 XML file to the database... 29

5 Information flow from different submit hosts to the
 database through Capone “job status” commands. ... 29

6 Separating and extracting information from Ganglia
 dump files into static and dynamic information.. 31

7 Internal topology of a typical site in the Grid. .. 34

8 Extracting Gatekeeper dynamic information through
 Ganglia using configuration file “pool.config”... 35

9 Snapshot of the information stored in table
 From_Ganglia_FTP in the database. ... 43

10 Snapshot of the information stored in table
 From_Ganglia_Gatekeeper in the database... 44

11 Snapshot of the information stored in table
 From_Ganglia_Site in the database... 45

12 Snapshot of the information stored in table
 Job_Info in the database. ... 46

13 Snapshot of the information stored in table
 Job_Status_Lookup in the database. ... 47

 viii

14 Snapshot of the information stored in table
 Site_Resources in the database ... 48

15 Snapshot of the information stored in table
 Site_Services in the database .. 49

16 Snapshot of the information stored in table
 Gatekeeper_Name_Mapping in the database.. 50

17 Snapshot of the information stored in table
 Site_Name_Mapping in the database.. 51

18 Snapshot of Ganglia web interface for Brookhaven
 National Laboratory cluster nodes .. 53

19 Ganglia information from Gatekeeper node
 at site Oklahoma University in XML format .. 54

 ix

LIST OF TABLES

Table Page

 1 Static tables in database... 40

 2 Dynamic tables in database ... 41

 1

CHAPTER 1

INTRODUCTION

1.1 What is a Grid?

A computational Grid is a hardware and software infrastructure that provides

dependable, consistent, pervasive, and inexpensive access to high-end computational

capabilities [1]. Each one of the terms used above describes a particular aspect of a

Grid. The infrastructure is in reference to the pool of resources with the hardware

creating the necessary connections between these resources along with the software

used to monitor and control this hardware. The dependable aspect assures users that

they will receive a predictable and sustained level of performance from the Grid.

Computational infrastructure, like other infrastructures, is fractal, or self-similar

at different scales [1]. We have networks between countries, organizations, clusters, and

computers; between components of a computer; and even within a single component. A

cluster or network of workstations is a collection of computers connected by a high-

speed local area network and designed to be used as an integrated computing or data

processing resource. A cluster, like an individual end system, is a homogeneous entity

with its constituent systems differing in configuration and not hardware or software

architecture, and is controlled by a single administrative entity that has complete control

over each end system. However, at different scales, we often operate in different

 2

physical and often political regimes. For example, the access control solutions used for

a laptop computer’s system bus are probably not appropriate for a trans-Pacific cable

[1].

A defining feature of computational Grids is that they involve sharing of

networks, computers, and other resources. This sharing introduces challenging resource

management problems in a variety of areas. Many of the applications running on Grids

need to meet stringent end-to-end performance requirements such as maximum allowed

turnaround time, amount of storage space consumed, reliability of the system, across

multiple computational resources connected by heterogeneous, shared networks. To

meet these requirements, we must provide improved methods for specifying application

level requirements, for translating these requirements into computational resources and

network-level quality-of-service parameters, and for arbitrating between conflicting

demands.

1.2 Understanding Grids

To further understand these requirements, the authors in [2] have discussed the

requirements of cross-organizational operation of Grids in terms of protocol architecture

as depicted in Figure 1. The layers in this protocol architecture are then mapped to the

more common Internet Protocol architecture. This architecture helps identify the

protocols and services required to create a usable Grid. Each layer in the protocol

architecture is briefly explained in the following section. Our focus in this document

will be in the Resource and Collective layers.

 3

Application

Collective

Resource

Connectivity

Fabric Physical and

Link

Internet

Transport

Application

G
R
I
D
 P
R
O
T
O
C
O
L
 A
R
C
H
I
T
E
C
T
U
R
E

I
N
T
E
R
N
E
T
 P
R
O
T
O
C
O
L
 A
R
C
H
I
T
E
C
T
U
R
E

Figure 1 Layered Grid architecture and its corresponding protocols in the

Internet architecture.

 4

Fabric – This layer provides the actual resources that require shared access in a

Grid. This includes computational resources, storage systems, catalog, network

resources, sensors, etc. This could also mean resources like network file systems and

clusters of computers, in which case this layer deals with internal protocols within a

local domain. At the resource level enquiry or discovery mechanisms should be

implemented along with resource management mechanisms to provide a minimum level

of quality of service.

Connectivity – This layer defines communication and authentication protocols

that are required for network transactions over Grids.

Resource – The main functions of this layer is to access and control local

resources. This means that they do not deal with issues of global state across distributed

collections of resources. Information protocols and Management protocols are the two

primary classes of resource layer protocols. Information protocols obtain structure and

state information, for example, configuration, current load, usage policy, etc.

Management protocols negotiate access to shared resources, for example, specifying

resource requirements in terms of advanced reservation and quality of service, process

creation and data access.

Collective – This layer deals with interactions across collections of resources

rather than any one specific or local resource. They can implement many sharing

 5

behaviors, for example, directory services, co-allocation, scheduling and brokering

services, monitoring and diagnostic services, data replication services, workload

management systems, software discovery services, community authorization servers,

community accounting and payment services, collaborator services, etc.

 Application – This layer comprises the user applications which are constructed

in terms of the services defined in the layers below this one in the protocol stack.

 6

CHAPTER 2

PREVIOUS WORK IN GRID SCHEDULING

2.1 Distributed job scheduling on computational Grids using multiple
simultaneous requests

In [3] the authors propose a meta scheduling scheme that is based on a

distributed scheduling model.

Scheduling can be on varying levels and can be categorized in a hierarchical

fashion. At the lowest, we have CPU scheduling which is done at the operating system

level. Next in the chain we have the batch scheduling done at a cluster level. Here, the

scheduling involves assigning jobs to individual nodes. From there, the OS scheduler

takes over the scheduling of the job. Next up we have the concept of meta scheduler.

This is what is aware of the Grid and accepts jobs from other, similar meta schedulers

from other sites and then submits the jobs to the batch scheduler at the cluster.

The distributed scheme puts a meta scheduler at every site and jobs are

submitted to the local meta scheduler where the job originates. Each of these meta

schedulers query each other for load information periodically, and if any of the other

sites has a lower load then the job is transferred to the site with the lowest load. The

proposed scheme starts by keeping the total number of sites as N, where N can be

varied. The scheduler then is a K-distributed model where the job submitted to the local

 7

meta scheduler is sent to each of the K least loaded sites out of the N total number of

sites. When a job is able to start at any site, the meta scheduler at that site informs the

meta scheduler at the originating site which in turn informs the other K-1 sites

requesting them to cancel the job. The constraint on this is that the notification needs to

be atomic to ensure that processor cycles are not wasted. Also, a high degree of

overbooking is done at each site which in turn increases the work done at each local

scheduler. The amount of inter-site communication also increases with K.

This scheme would not work in the ATLAS Grid scenario due to several

reasons. Apart from the drawbacks in the algorithm itself, ATLAS jobs are too large to

be transferred to more locations than one only to be dropped when one of the sites

processes them. Also the global state that needs to be maintained across sites increases

overhead. The authors have used a system with four sites to demonstrate and with the

number of sites in ATLAS steadily increasing this algorithm would soon not scale.

2.2 Multisite resource selection and scheduling algorithm on computational Grid

In [4] the authors propose a clustering-based Grid resource selection algorithm

that proposes a multi site resource selection scheme for synchronous iterative

application. These applications are iterative in nature, with each iteration separated from

the previous and subsequent iterations by a synchronization operation. Examples of

synchronous iterative algorithms include simulations and many image processing and

data classification algorithms.

 8

Here they cluster resources in a computational pool based on network delays

and descending order of computational capacity. Then candidate schedules are

generated and evaluated from the Grid computing resources, which can be non-

dedicated, homogenous or heterogeneous workstations or personal computers. In the

end, a single resource selection is suggested in the case of invalidation of multisite

resource selection algorithm.

This algorithm will not work with ATLAS for two reasons. First, clustering

Grid resources on the basis of computational capacity and network delays will not be

possible since sites in the ATLAS Grid are not pooled resources but distributed and

already geographically and politically clustered resources. Second, ATLAS applications

are simulations based on specific input data sets, with these data sets typically in the

order of a Gigabyte in size. In such a scenario, the simulation, even if it is synchronous

iterative, cannot be run independently on different clusters. This property can be used

within a cluster to schedule on different nodes simultaneously but due to the huge

overhead of moving large input files cannot be used on the scale of a Grid to schedule

on different clusters simultaneously.

 9

2.3 A comparison among Grid scheduling algorithms for independent coarse-grained
tasks

In [5] the authors propose an algorithm called RR (named after its Round Robin

influence). At the beginning of the scheduling, every processor is assigned exactly one

task. If some task is completed then RR receives the result of the task and assigns a yet

unassigned task to the processor. With m tasks remaining uncompleted, this is how RR

manages these tasks: if some task v is completed on a processor, then RR receives the

result of v and kills all task instances of v running on processors except the one

processing v currently, selects a task u in a round robin fashion and replicates u onto the

processor that just processed v.

Coarse grained tasks can be defined as larger tasks that can be partitioned

further but by doing so, we will be making the task finer grained than the original.

Round Robin schemes work well with coarse grained tasks.

The reason RR would not work on the ATLAS Grid is because the task lengths

and the number of processors required to execute the tasks is information that is needed

before hand. Also, this algorithm works on the assumption that all tasks (jobs in our

case) are known before scheduling decisions are made.

 10

2.4 The Globus Project: A status report

In order to better understand this scheduler, we will have to further explore the

Globus Toolkit. The open source Globus Toolkit is fundamental enabling technologies

for the Grid, letting people share computing power, databases, and other tools securely

online across corporate, institutional, and geographic boundaries without sacrificing

local autonomy. The toolkit includes software services and libraries for resource

monitoring, discovery, and management, plus security and file management[23]. The

various components of the Globus Toolkit can be broadly classified into security, data

management, execution management, information services and common runtime.

In [6] the component of interest in our case from The Globus Toolkit is

execution management provided by GRAM – Globus Resource Allocation Manager.

Here, the idea is that there are several GRAM’s running, each responsible for local

sites, interfacing with an underlying resource management tool such as LSF (Load

Sharing Facility) or Condor. GRAM provides a standard network-enabled interface to

local resource management systems [23]. Grid tools can therefore manage resource

allocation using a standard API, expressed with the use of a resource specification

language (RSL). At the higher level, resource brokers use RSL to specify requirements

such as MFLOP’s (Millions of Floating point Operations), and even the hardware

resources required.

 11

The Globus Resource Allocation and Management services of the Globus

Toolkit cannot be used for scheduling on the ATLAS Grid since it does not provide

scheduling or resource brokering capabilities, but merely acts as an API between meta-

schedulers or brokers and local resource management mechanisms.

Condor-G is another system that uses GRAM from the Globus Toolkit built on

top of Condor running locally on each site to schedule on the Grid. Since it is

fundamentally using the GRAM component of the Globus Toolkit, it carries the above

mentioned constraints and hence does not meet the requirements for an ATLAS

scheduler.

2.5 Chameleon: A resource scheduler in a data Grid environment

In [7] the authors propose a detailed scheduling model for a data Grid

environment considering the following parameters: network bandwidth, number of

available nodes, system attributes at each site, size of input data, size of application

code, and size of produced output data. The cost models are calculated for five different

scenarios: local data with local execution, local data with remote execution, remote data

with local execution, remote data with same remote execution and remote data with

different remote execution. The response time to the users’ job request is calculated in

each scenario factoring each of the parameters outlined before along with expected

execution times.

 12

This particular scheduler, though it is the closest to what ATLAS needs, still

does not consider some of the prime factors in job scheduling in ATLAS. These factors

are number of failed jobs at a site and utilization at any site. It also doesn’t factor

contributions to load at a site from other job flows apart from ATLAS job flow.

 13

CHAPTER 3

ATLAS AND THE UNDERLYING PROBLEM

The real and specific problem that underlies the Grid concept is coordinated

resource sharing and problem solving in dynamic, multi-institutional virtual

organizations [2]. The sharing that we are concerned with here is not just file exchange,

but also direct access to computers, software, data, and other resources, as is required by

the collaborative problem-solving environment of ATLAS, a High Energy Physics

collaboration. This sharing is controlled, with resource providers and consumers

defining clearly and carefully just what is shared, who is allowed to share, and the

conditions under which sharing occurs. A set of individuals and/or institutions defined

by such sharing rules form what we call a virtual organization (VO) [2].

The ATLAS collaboration forms one such VO. The A Torroidal LHC

ApparatuS, ATLAS, experiment is a $500 million plus High Energy Physics experiment

that is due to launch in the year 2007. It is a collaboration of about 2000 physicists

participating from 150 universities and laboratories in 34 countries. At its peak

operation, the ATLAS experiment is expected to generate one Petabyte of “raw” data

per year which is used in chunks of up to Gigabytes of inputs to execution jobs. Several

clusters from universities and laboratories combine their computing, storage and

 14

networking resources during the analysis phase to form a Grid that will be used to

reconstruct and analyze this data.

ATLAS is currently supporting the worldwide LHC Computing Grid (LCG)

project [28] and two main Regional Grid projects, NorduGrid [27] and the US Grid

(also called Grid3). The LCG project is the main Grid project supported by all LHC

experiments. It aims to build a worldwide, production-class computing Grid. It is built

upon the developments of the European Data Grid middleware, the US Virtual Data

Toolkit project and European DataTag monitoring tools [29]. The NorduGrid project is

established mainly across Nordic countries (Denmark, Norway, Sweden, Finland) and

continues to expand. The Grid3 collaboration is a data Grid with dozens of sites and

thousands of processors. The facility is operated jointly by the U.S. Grid projects

iVDGL, GriPhyN and PPDG, and the U.S. participants in the LHC experiments ATLAS

and CMS.

Challenging issues in data-intensive applications are the scheduling and

configuration of complex, high-volume data and job flows through multiple levels of

hierarchy. Poor performance, as perceived by a user, can be due to an inappropriate

algorithm, poor load balancing, inappropriate choice of communication protocol,

contention for resources, or a faulty router.

 15

The challenge in any resource allocation algorithm or methodology is to

determine which one among several conflicting parameter needs to be focused on in any

given application environment. For example, concentrating on maximizing throughput

along with minimizing turnaround time will result in a bias favoring shorter duration

jobs, since these will utilize resources to a fine amount of granularity and being of

shorter duration will reduce turnaround time. For example, ATLAS jobs can vary in

size of input data, execution time caused by different reconstruction jobs or simulation

jobs, and can result in jobs that have smaller input files being transferred or those that

are of shorter duration being preferred so as to improve turnaround time at any site. As

a result, the resource allocation algorithm becomes unfair to longer running jobs.

To resolve resource sharing issues, Grid schedulers are used in such Grid

environments. There are several Grid schedulers that can be used to schedule jobs in a

Grid environment. The ATLAS experiment requires that scheduling be done based on

the turnaround time of jobs combined with effective CPU and memory utilization at

individual sites and percentage of failed jobs at a site. Current Grid schedulers do not

meet this requirement. For example, the Globus Resource Allocation and Management

services of the Globus Toolkit cannot be used for this purpose since it does not provide

scheduling or resource brokering capabilities, but merely acts as an API between meta-

schedulers or brokers and local management mechanisms. Another example is the

Chameleon resource scheduler in a data Grid environment described in section 2.5

above that considers both the computational and data storage resources but does not

 16

have provisions to consider turnaround time or number of failed jobs at a site. A site can

be defined as a cluster of nodes or processors or a set of resources that are set aside by a

laboratory or an educational institution to contribute to the computing power of a Grid.

The goal of a Grid scheduler for the ATLAS experiment would be to minimize

turnaround time while ensuring optimum utilization at all sites that form the Grid.

 17

CHAPTER 4

MONITORING AND ANALYZING DISTRIBUTED CLUSTER

PERFORMANCE AND STATISTICS OF ATLAS JOB FLOW

4.1 Introducing Capone

The ATLAS Grid Computing Environment is a set of different tools designed to

provide a simple and uniform computing environment for ATLAS scientists using the

Grid for their production and analysis activity. In the U.S Grid3, this Grid Computing

Environment or Grid Component Environment (GCE) is also called Capone.

In this section we will explore the architecture and design of Capone so as to

establish the need for the scheduling provided by this thesis. In order to understand the

design of Capone we will step slightly away from Capone to an important element that

needs to be defined, the RLS client utilities of The Globus Toolkit.

The Replica Location Service (RLS) [19] maintains and provides access to

mapping information from logical names for data items to target names. Replication of

data items can reduce access latency, improve data locality, and increase robustness,

scalability and performance for distributed applications. An RLS typically does not

operate in isolation, but functions as one component of a data Grid architecture. RLS

 18

implementation depends on a number of factors such as consistent local state being

maintained in Local Replica Catalogs, Replica Location Indices, etc.

The Grid Component Environment comprises two main component modules,

the Supervisor, called Windmill [8], and the Executor [8], which is Capone. The

Capone Executor system is designed to implement job requests from the ATLAS

production supervisor Windmill, to be executed on Grid3. The Grid Component

Environment is a suite of client and server tools that provide a basis for the set of

Python classes that form Capone. Capone is distributed using a packaging tool called

Pacman [30]. The GCE include the following tools:

• GCE-Client

o The Virtual Data Toolkit [20]

� Chimera Virtual data system [21]

o RLS client utilities and scripts

• GCE-Server

o ATLAS software releases

o Job transformation scripts

o Kickstart – a Chimera supplied package which wraps the remote application

and returns exit codes to the client (submit) host

To understand the working of Capone we will first discuss the design principles

and then describe its various components as shown in Figure 2.

 19

UI Communication

UI CPE

Translation

Catalog

manager

Grid monitor and

submission

ProcdB

Figure 2 Various components of GCE Capone [8].

 20

The main design principles are:

a) The Capone Process Engine, hereafter referred to as CPE, handles all

communication. This means it separates the communication between the message

passing interface and the lower level Grid communication protocols.

b) Grid-level process executions are initiated and handled by the CPE.

c) Grid-level error handling is done by the CPE. This includes querying all job

monitors, queue monitors, etc., and logging these queries.

d) A database called ProcDB that stores the states of all processes currently managed

by the CPE.

e) A query on the state of a process results in varying levels of detail depending on

what information is requested.

f) The CPE should be able to handle interaction in the form of messages from external

sources like the Supervisor or a direct user interface.

Figure 2 comprises these components:

a) CPE (main process engine) module – This is a finite state machine that performs

the following actions:

• At startup, it listens for messages from other modules

• Receives messages from the communication module

• Set of actions for each message received

• Return to listening for messages

• While exiting, cleanup and then exit gracefully

 21

b) Communication module – This module again provides the following steps of action:

• Request messages in terms of number of jobs requested, execute certain process,

get data involved with a process execution, get the status of a process, exit and

shutdown the module, etc.

• Passing messages to external entities like the production Supervisor module, etc.

• Passing messages to or through web services, Python scripts and graphical user

interfaces, etc.

c) Translator module – This module translates from the external request language to

the internal representation used in the CPE. There are two kinds of request

languages used; they are: ATLAS supervisor requests, and the ADA Job Description

Language known as AJDL.

d) Execution module – There are three main tasks of the executor module. They are:

• Submitting jobs to the Grid

• Registering the jobs into the catalog; and

• Execution on the local machine

e) Catalog interface module – This module communicates with catalogs such as the

component in Don Quixote that deals with cataloging [26] and the Globus RLS

module

f) Process state database (ProcDB) module – This module records two kinds of

information. They are:

 22

• Information about the state of the currently executing module. This can be in

one of many forms, like a text file, a MySQL database or memory structures

with log files for error recovery.

• Information from the executing process about job related parameters and catalog

related information.

g) User interface module to Capone's communication module (eg., template

framework provided by the Supervisor team)

h) User interface to the CPE

i) User interface to the ProcDB

The working of Capone can be summarized using the following algorithm:

A. Supervisor communicates with Capone by

i. asking the Executor module how many jobs it can execute

ii. Executor replies with availability

iii. Supervisor sends that many jobs to Executor

B. Executor module checks the input

C. Executor registers input with the catalogs

D. Executor translates input to required format

E. Proceed through execution steps by

i. taking input in given format

ii. generating output

iii. registering output with the Virtual Data Toolkit (VDT) catalog

 23

F. Verify output

G. Register the output with the ATLAS catalog, Don Quixote

H. Clean the VDT environment by

i. freeing Grid resources utilized

ii. removing registered entries from VDT catalog

I. Return to step A.

4.2 Design specifications and considerations

4.2.1 Overview

The purpose of this section is to familiarize the reader with the monitoring and

analyzing of distributed cluster performance and statistics in ATLAS job flow in terms

of design considerations, constraints, assumptions and dependencies. The intended

audience is mainly developers who will extend the functionality of the monitoring

system provided by this thesis. The scope of this document is extended to this thesis as

well as work used to build this thesis. The following section discusses the architecture

of the monitoring and analyzing system for ATLAS job flow implemented in this thesis.

4.2.2 Assumptions

To better define the system built in this thesis let us first look at the list of

assumptions that have been made before building the system. A list of the assumptions,

in no particular order, is:

 24

i. Sources of information are limited to Ganglia [10], Monalisa [24] and

Capone [8].

ii. Ganglia and Monalisa are configured correctly and transmit up-to-date

information.

iii. Only error codes from Condor-G listed on the web site (Capone error

codes) are considered in the code; all other error codes are treated as

generic errors

iv. The system is built on the assumption that the current methodology of

collection of information is the best method for ATLAS information

collection

v. The system is built assuming that the Site where the system runs has

access to all Ganglia information of other sites through the daemons

gmond and gmetad (as XML data files)

vi. System has access to Capone log files from where information about jobs

running on a submit host is collected

vii. Configuration file is updated every time a configuration change occurs at

any site by the site administrator

viii. Capone updates to the log file accessed by system is accurate and complete

4.2.3 System architecture

The high level architecture of the system is shown in Figure 3. In order to fully

understand the architecture, let us explore an element in the architecture, Ganglia, in a

 25

little more detail. Ganglia is a scalable distributed monitoring system for high-

performance computing systems such as clusters and Grids [10]. It is based on a

hierarchical design targeted at organizations of clusters such as the Virtual

Organizations mentioned earlier in this document.

 26

Parse and extract

meaningful information

from XML files

Pull monitoring information

using Ganglia daemons

gmetad and gmond

Separate extracted data into

logically different groups

Site

Pull statistical information on

every job using status

commands in daemon Capone

Parse and extract

meaningful information

Database

Jani

Monitoring information Job related information

Ganglia information in

XML format

Job related information

in text format

Tab separated files with

information for entire site

Individual tab separated files with

information for entire site,

Gatekeeper and FTP Server nodes

Tab separated files with

information for all jobs

Figure 3 High level architecture of the monitoring and analyzing distributed cluster
performance and statistics of ATLAS job flow.

 27

 It leverages widely used technologies such as XML (eXtended Markup Language)

for data representation, XDR (eXternal Data Representation – a data representation

standard) for compact, portable data transport, and RRDtool (Round Robin Database

tool) for data storage and visualization. It uses carefully engineered data structures and

algorithms to achieve very low per-node overheads and high concurrency. The

implementation is robust, has been ported to an extensive set of operating systems and

processor architectures, and is currently in use on over 500 clusters around the world. It

has been used to link clusters across university campuses and around the world and can

scale to handle clusters with 2000 nodes [10].

Another monitoring tool that needs to be discussed in a little more detail is

MonALISA – MONitoring Agent using a Large Integrated Services Architecture. The

MonALISA framework provides a distributed monitoring service system using

JINI/JAVA and WSDL/SOAP technologies. The goal is to provide the monitoring

information from large and distributed systems to a set of loosely coupled "higher level

services" in a flexible, self describing way. This is part of a loosely coupled service

architectural model to perform effective resource utilization in large, heterogeneous

distributed centers. The framework can integrate existing monitoring tools and

procedures to collect parameters describing computational nodes, applications and

network performance. [24]

 28

In Figure 3, we start from a site and gather data using two different means. The

first, immediately below the site and to its left in the figure, is data from the site using

the Ganglia daemon gmond. Here, the data is pulled from the site using telnet, and is

obtained in the form of an XML dump file. The second, immediately below the site and

to its right in the figure, is data from the site using the Capone daemon. Here, the data is

pulled from the site using Capone commands, and is piped into a text file.

Another important source of information and its role in the architecture of this

system is shown in Figure 4. This is a configuration file describing all available ATLAS

Grid3 sites in the form of an XML document named “pool.config”. This file updates

only when there is a change in the way resources are handled at a site.

 29

Submit

host A

Submit

host B

 database

Jani

Piped output of

Capone job status

command

Piped output of

Capone job status

command

Parse and extract

relevant

information

Job related information

for submit host A

Job related information

for submit host B

Job related information

in text format

Job related information

in text format

Configuration file

“pool.config” as an

XML file

Extract required

meaningful information

Submit

host database

Figure 4 Information flow from configuration file “pool.config” XML file to the
database.

Figure 5 Information flow from different submit hosts to the database through
Capone “job status” commands.

 30

For example, if a site moves its entry node (known as the gatekeeper node) then

this configuration file would be updated. This implies that this update to the database is

manual and that it occurs when a user is aware of a change in the configuration file.

To get to the next level of architecture, consider the left half of Figure 3. This is

depicted as Figure 5. In Figure 5, there are multiple submit hosts from which statistical

information about jobs are pulled separately using commands in the Capone daemon

such as “job status” commands. These are piped to text files and then parsed to extract

the information that we require. This information is then stored in the database in the

form of a table.

Next, let us consider the right half of Figure 3. This is depicted as Figure 6. In

Figure 6, the Gatekeeper at a Site is queried using telnet to report Ganglia resource

information in the form of an XML file. There are two parts to this XML file that

interest us. The first, shown on the left side in Figure 6, is the almost static information

like the number of CPU’s, the average CPU speed, the total amount of memory, the

total amount of disk space, etc. This information is pulled and extracted from each site

manually and only when the configuration file mentioned previously shows a change in

the amount of resources at a site.

 31

 database

Gatekeeper

at a Site

XML file “gmetad”

using daemon

“gmond”

Extract near static

information during

initialization and after

every configuration

change manually

Extract dynamically

changing information

periodically at pre-

decided intervals

Ganglia information in

XML format

Ganglia information in

XML format

Tab separated files with

information for entire site

Tab separated files with

information for entire site

Figure 6 Separating and extracting information from Ganglia dump files into
static and dynamic information.

 32

The second, shown on the right side in Figure 6, is the dynamically changing

information such that the CPU idle time, amount of disk space free at this time, amount

of memory free at this time, average load over the past 15 minutes, average load over

the past 5 minutes, the number of processes running, etc. This information is pulled and

extracted at periodic intervals, the time between pulls being decided based on the

frequency of change noticed in the information being extracted.

An important factor that we needed to factor into our design of the system is

that the Gatekeeper node as well as the node running the FTP server being overloaded

would slow down processing of jobs at any particular site. This results mainly due to the

fact that we are considering the average amount of resources available at any site. If the

Gatekeeper node was at its peak operation and its resources were almost completely

taken then the number of jobs that can enter the site will be low whether or not

resources are available within the site.

To better understand this concept let us first look at what a typical site in the

Grid looks like. This is depicted in Figure 7. In Figure 7 we start first by entering a site

from any other element on the Grid through the internet and intranet infrastructure. The

entry point into any cluster is through either the Gatekeeper or through the FTP Server

nodes. The Gatekeeper node deals with the scheduling of jobs at the cluster level. This

also means that all jobs sent to execute at the cluster need to pass through this node.

After this phase (also called Stage-In) the job is sent to the node that it needs to execute

 33

on by the gatekeeper node through the internal network in the cluster. The FTP Server

node deals with obtaining the data sets from replication servers that store these data

sets. The jobs that have been sent to these sites to be executed will have certain data sets

that they will need to execute. These data sets are located and brought into the cluster or

site through the FTP Server node.

As we can see in Figure 7, the Gatekeeper node and the FTP Server nodes

become the bottlenecks in jobs being executed at any cluster or site. Keeping this in

mind, scheduling decisions need to be taken after reviewing the load on each of these

nodes at any site, before sending jobs or batches of jobs to the site.

Resource information for the Gatekeeper node as well as for the FTP Server

node can be found in the Ganglia XML dump file “gmetad” for that site. To be able to

extract this information we need to be aware of the name of the gatekeeper and FTP

server nodes. This information can be obtained from the configuration file. For each site

there will be an entry giving the Fully Qualified Domain Name (FQDN) of the

Gatekeeper node and another entry with the FTP Server node.

Figure 8 shows how we can extract resource information for the gatekeeper

node using Ganglia information and the configuration file “pool.config”. In Figure 8 we

start from the XML file “gmetad” and obtain the site name from the “cluster” tag value

in the XML file.

 34

Gatekeeper

Node

Network Cables

Network Cables

FTP Server

Node

Intranet /

Internet

infrastructure

Other elements in the Grid

Node Node

Node Node Node Node Node Node

Node Node Node Node

Figure 7 Internal topology of a typical site in the Grid.

Firewall

Switch

 35

Obtain Site name from

“cluster” entry in XML file

Find entry in

configuration file

corresponding to

Site name

Extract

gatekeeper url

corresponding

to that entry

Gatekeeper

at the Site

XML file “gmetad” using

daemon “gmond” at each site

Find

Gatekeeper

node entry in

XML file

Extract resource

information from

Gatekeeper entry

Database

Figure 8 Extracting Gatekeeper dynamic information through Ganglia using

configuration file “pool.config”. Sequence of operations with passing time.

 36

Next, we need to find the configuration file entry corresponding to this site

name. As an aside note, we see that we will need a mapping between the site name

according to Ganglia and the site name according to the configuration as they are not

uniform across both locations. Once we find the site entry in the configuration file we

will extract the gatekeeper URL from the “jobmanager universe” tag entry in the

configuration file. Again, as an aside, since one URL can have several aliases we will

need a mapping between the names obtained from the configuration file onto the “host

name” used in the Ganglia dump file. Once we find the entry in the XML file

corresponding to the gatekeeper node we can extract all the resource information

associated with that node. The next step will be to input all these values into the table in

the database that stores this information.

Though Figure 8 is the design for extracting Gatekeeper information from the

Ganglia dump files, we will do the exact same thing to extract FTP Server node

information. The only difference will be that we will look for FTP Server node address

in the configuration file using the “jobmanager transfer” tag entry. Also, the resource

information for the FTP Server node at each site is stored in a separate table in the

database.

4.2 Another point of view

Currently Capone handles Grid scheduling by an operator modifying weights

associated with various sites, in an initialization file in Capone. These changes are

 37

based on graphical information about these sites obtained from sources such as Ganglia

/ MonALISA. This is graphical display of information about parameters such as queue

length, CPU utilization, memory utilization and related resource information at sites.

The goal of this scheduler is to automate the modification process based on a

combination of turnaround time of jobs, CPU utilization at sites and number of failed

jobs at a site. (Other related parameters will also be factored into the scheduler).

The Grid centric (information about the Grid elements) and job centric

(information about the actual jobs being executed) monitors used in modifying weights

in Capone by an operator are:

1. Job information obtained for a site for ATLAS jobs collectively from

MonALISA (both CPU and data transfer information)

2. Overall view of job information for the Grid.

Other monitors that can be utilized in automating the modifications are:

1. Job information obtained directly from Capone regarding status of jobs

2. Information about load on gatekeeper and FTP server at any site. The gatekeeper

and FTP server URL’s can be obtained from configuration files.

The main factors in terms of ATLAS jobs considered in the design of this thesis

can be listed as:

 38

i. number of running jobs vs. number of idle jobs – for example in ATLAS

job flow the important thing is to have at the least one idle job waiting in

the queue for every job that is running. This ensures that CPUs are almost

never idle.

ii. number of jobs run vs. total number of jobs present

iii. number of jobs run vs. number of failed jobs

iv. efficiency, in terms of successfully executed jobs, at a site vs. how many

jobs have been run at the site

The goal of a scheduler for ATLAS would be to keep factors above such that

the number of idle jobs at a site is at least equal to the number of running jobs at that

site so that no CPU at that site is idle.

This leads to the requirement to build an automated system that takes scheduling

decisions based on information currently being used, in combination with further

resources, to minimize turnaround time of a job while optimizing CPU/memory

utilization at a site, and modifying weights associated with sites in Capone based on this

scheduling decision.

The main design considerations in building such a system involve

 39

1. Designing a schema for a database that contains both static as well as dynamic

information for Sites, their services, their resources, and jobs with their statuses,

and the meaning of their statuses.

2. Populating the database with static and dynamic values as well as updating the

database at decided intervals with dynamic information.

3. Analyzing key factors from the database to weight sites to be able to make

scheduling decisions based on these weights.

In this section we will look at the architecture of the system from a slightly

different perspective. Since the monitoring and analyzing is done using stored values in

a database, we will look at the system from a database point of view.

The database is designed with a set of static (infrequently changing) tables and a

set of dynamic (frequently changing) tables. The static tables serve as lookup tables

used in comparing parameters from the dynamic tables. The schemas for the static and

dynamic tables are shown diagrammatically in Tables 1 and Table 2, respectively. Each

of the tables below is populated from different sources using scripts. The source for

each of these tables’ data is indicated below each table in the diagram.

The database is stored on a node accessible to the host running Capone. Each of

these tables is updated periodically depending on how frequently the data in the table

changes.

 40

Job_Status_Lookup

State

Exit Code

Reason

Site_Resources

Site Name

Number of CPUs

CPU speed

Total memory

Total disk space

Site_Services

Site Name

Gatekeeper URL

FTP Server URL

Working directory

Obtained from list of

Capone error codes Obtained from Ganglia dump file

for each Site and its nodes

(gmetad xml file)

Obtained from

configuration file used by

Capone and submit hosts

(pool.config xml file)

Site_Name_Mapping

Site Name pool config

Site Name Ganglia

Gatekeeper_Name_Mapping

Site Name pool config

Gatekeeper Name pool config

Gatekeeper Name Ganglia

Obtained from Ganglia

dump file and

pool.config xml file

Obtained from Ganglia

dump file and

pool.config xml file

Table1. Static tables in database.

 41

From_Ganglia_Site

Site Name

Number of idle CPUs

Free disk space

Memory free

Processes run

Load in 15 minutes

Load in 5 minutes

Load in one minute

From_Ganglia_Gatekeeper

Site Name

Gatekeeper Name

Number of idle CPUs

Free disk space

Memory free

Processes run

Load in 15 minutes

Load in 5 minutes

Load in one minute

From_Ganglia_FTP

Site Name

FTP Server Name

Number of idle CPUs

Free disk space

Memory free

Processes run

Load in 15 minutes

Load in 5 minutes

Load in one minute

Job_Info

Job ID

Job status

Exit string

Job status detail

CPU consumption

Job ending time

Chosen Compute Element (Site)

Obtained from Ganglia dump file

for each Site and its nodes

(gmetad xml file)

Obtained from job status

information extracted from

Capone

Table2. Dynamic tables in database.

42

CHAPTER 5

IMPLEMENTATION AND EXPERIMENTATION

5.1 Current system in utilization

The monitoring and analyzing of distributed cluster performance and statistics

of ATLAS job flow has been implemented with the following programming paradigms

and minimum requirements:

1. Python 2.2 and above with MySQLdb and XML DOM packages installed

2. MySQL version 3.23.49

3. Linux 2.4.20-28.7 Enterprise

4. Secure Shell 3.2.9

Figures 8 to 16 are snapshots of the current database which is stored on one of

the nodes in the cluster. This section illustrates general “select” views of all the tables in

the database currently being used in the site UTA-dpcc [31]. These databases are being

populated from one of the hosts in the UTA cluster.

43

F
ig
u
re
 9
 S
n
ap
sh
o
t
o
f
th
e
in
fo
rm

at
io
n
 s
to
re
d
 i
n
 t
ab
le
 F
ro
m
_
G
an
g
li
a_
F
T
P

in
 t
h
e
d
at
ab
as
e.
 (
R
es
u
lt
 o
f
a
se
le
ct
 q
u
er
y
 f
ro
m
 t
ab
le

F
ro
m
_
G
an
g
li
a_
F
T
P
)

44
 F

ig
u
re
 1
0
 S
n
ap
sh
o
t
o
f
th
e
in
fo
rm

at
io
n
 s
to
re
d
 i
n
 t
ab
le
 F
ro
m
_
G
an
g
li
a_
G
at
ek
ee
p
er
 i
n
 t
h
e
d
at
ab
as
e.
 (
R
es
u
lt
 o
f
a
se
le
ct
 q
u
er
y
 f
ro
m

ta
b
le

F
ro
m
_
G
an
g
li
a_
G
at
ek
ee
p
er
)

45

F
ig
u
re
 1
1
 S
n
ap
sh
o
t
o
f
th
e
in
fo
rm

at
io
n
 s
to
re
d
 i
n
 t
ab
le
 F
ro
m
_
G
an
g
li
a_
S
it
e
in
 t
h
e
d
at
ab
as
e.
 (
R
es
u
lt
 o
f
a
se
le
ct
 q
u
er
y
 f
ro
m

ta
b
le
 F
ro
m
_
G
an
g
li
a_
S
it
e)

46

F
ig
u
re
 1
2
 S
n
ap
sh
o
t
o
f
th
e
in
fo
rm

at
io
n
 s
to
re
d
 i
n
 t
ab
le
 J
o
b
_
In
fo
 i
n
 t
h
e
d
at
ab
as
e.
 (
R
es
u
lt
 o
f
a
se
le
ct
 *
 f
ro
m
 J
o
b
_
In
fo
 q
u
er
y
)

47

F
ig
u
re
 1
3
 S
n
ap
sh
o
t
o
f
th
e
in
fo
rm

at
io
n
 s
to
re
d
 i
n
 t
ab
le
 J
o
b
_
S
ta
tu
s_
L
o
o
k
u
p
 i
n
 t
h
e
d
at
ab
as
e.
 (
R
es
u
lt
 o
f
a
se
le
ct
 q
u
er
y
 f
ro
m

ta
b
le
 J
o
b
_
S
ta
tu
s_
L
o
o
k
u
p
)

48

F
ig
u
re
 1
4
 S
n
ap
sh
o
t
o
f
th
e
in
fo
rm

at
io
n
 s
to
re
d
 i
n
 t
ab
le
 S
it
e_
R
es
o
u
rc
es
 i
n
 t
h
e
d
at
ab
as
e.
 (
R
es
u
lt
 o
f
a
se
le
ct
 q
u
er
y
 f
ro
m

S
it
e_
R
es
o
u
rc
es
)

49

F
ig
u
re
 1
5
 S
n
ap
sh
o
t
o
f
th
e
in
fo
rm

at
io
n
 s
to
re
d
 i
n
 t
ab
le
 S
it
e_
S
er
v
ic
es
 i
n
 t
h
e
d
at
ab
as
e.
 (
R
es
u
lt
 o
f
a
se
le
ct
 q
u
er
y
 f
ro
m

S
it
e_
S
er
v
ic
es
)

50

F
ig
u
re
 1
6
 S
n
ap
sh
o
t
o
f
th
e
in
fo
rm

at
io
n
 s
to
re
d
 i
n
 t
ab
le
 G
at
ek
ee
p
er
_
N
am

e_
M
ap
p
in
g
 i
n
 t
h
e
d
at
ab
as
e.
 (
R
es
u
lt
 o
f
a
se
le
ct
 q
u
er
y

fr
o
m
 G
at
ek
ee
p
er
_
N
am

e_
M
ap
p
in
g
)

51

F
ig
u
re
 1
7
 S
n
ap
sh
o
t
o
f
th
e
in
fo
rm

at
io
n
 s
to
re
d
 i
n
 t
ab
le
 S
it
e_
N
am

e_
M
ap
p
in
g
 i
n
 t
h
e
d
at
ab
as
e.
 (
R
es
u
lt
 o
f
a
se
le
ct
 q
u
er
y
 f
ro
m

S
it
e_
N
am

e_
M
ap
p
in
g
)

52

All scripts have been written with the design considerations from Chapter 4

working toward the database as presented in section 4.3. Ganglia information from

other sites is being collected by telnet-ing on of three ports, port 8649, 8651 or 8652,

depending on individual site settings on the gatekeeper node of the site.

Appendices A to E illustrate all the scripts written in this thesis as pseudo code

converted straight from the Python scripts that run the monitoring and analyzing

system.

Figures 18 and 19 show Ganglia information as represented on the web interface

and in XML format respectively.

53

F
ig
u
re
 1
8
 S
n
ap
sh
o
t
o
f
G
an
g
li
a
w
eb
 i
n
te
rf
ac
e
fo
r
B
ro
o
k
h
av
en
 N
at
io
n
al
 L
ab
o
ra
to
ry
 c
lu
st
er
 n
o
d
es
.

54

F
ig
u
re
 1
9
 G
an
g
li
a
in
fo
rm

at
io
n
 f
ro
m
 G
at
ek
ee
p
er
 n
o
d
e
at
 s
it
e
O
k
la
h
o
m
a
U
n
iv
er
si
ty
 i
n
 X
M
L
 f
o
rm

at
.
T
h
is
 i
s
o
b
ta
in
ed
 u
si
n
g

te
ln
et
 o
n
 p
o
rt
 8
6
5
1
 o
n
 G
at
ek
ee
p
er
 n
o
d
e.

55

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Grid computing as we know it is a constantly developing field. Scheduling on

the Grid is one of the many and most challenging aspects of Grid computing. The part

of ATLAS related software designed and developed in this thesis worked towards

gathering and analyzing information used in developing a scheduling algorithm that fits

the needs of the ATLAS High Energy Physics experiment.

During the course of monitoring distributed clusters for the ATLAS experiment

there are a few observations with regards to factors that affect any scheduling decision

taken. Observing three sites over a period of 48 hours, we found that job execution

times run into measures of hours, which means that job related information extracted

from any one submit host can be updated anywhere between two and four hours and

one will have a fairly good idea of the job flow. Again, observing three sites resource

information over 48 hours, we found that site resource information is updated by

Ganglia every 30 seconds, but since these job durations are long the state of the cluster

changes only marginally in these 30 seconds. The actual implementation of how often

resource related information is updated using Ganglia is entirely up to the local site

administrator who deploys this system.

56

The ATLAS Grid Component Environment Capone is a continuously evolving

process especially now that Grid3 is going through a metamorphosis into the Open

Science Grid. With each evolving version and with the new standards being developed

for the Open Science Grid the tools used for monitoring Clusters in the Grid will

change. If any of the monitoring tools used in this thesis are no longer used for

monitoring in the Open Science Grid, additional scripts need to be developed in order to

continue information flow (preferably same or similar information) into the databases

developed here. There is an additional parameter or data set that has been discussed as

useful information in making a more informed scheduling decision and this is some

form of job Transformation. This parameter has currently not been developed due to the

lack of the existence of any job Transformation that will give us resource utilization

based on the type of simulation or job being submitted. When this transformation

becomes more readily available, its extraction and use in any scheduling decision will

be helpful.

Another aspect of this system allows local site system administrators at any site

to manage resources at their site such as temporary file spaces and old input files better

in the case of jobs that have been executed at that site. The system provides a status

check on all the jobs executed at the site which helps in making the decision of keeping

or cleaning the temporary files and old input files.

Currently, a suitable scheduling algorithm that meets to the needs of the ATLAS

experiment is being written. This is a venture that goes beyond the scope of this Masters

thesis and hence would befit future work built on this thesis.

57

APPENDIX A

PSEUDO CODE FOR CREATING INFORMATION FOR TABLE
FROM_GANGLIA_SITE

58

#! ***** file - creating_from_ganglia_site_info.py *****
#! ***** author - Sreeranjani Ramprakash *****
#! ***** version - 1.4 *****

def add_row(row,outputfile):

Enter the row of average resources in the same order as how it appears in the table
in the database by using tab as a delimiter between fields

Function called by main() below and takes the tab delimited file as input

def lookup(sitename)
 Establish connection with table Site_Name_Mapping in database

 Using the select command get the configuration Site name corresponding to the
Ganglia Site name

Function called by main() below takes ganglia site name and returns configuration Site
name

def main() :
 Accept output file name

 Open file to write into

 Accept xml file name to parse

 Open file to read

 Parse the XML document

Extract 'cluster' element which corresponds to the Site under consideration

for each node in cluster:

 Insert Site_Name into dictionary after mapping Ganglia Site name to
corresponding Site name in configuration file using lookup()

 Extract all node elements within the Cluster in the Site

 Count total number of nodes in cluster

 Extract sub-elements from node elements

 for each metric in each node:

59

 for each item in each metric:

 Extract the name of the metric and its value

 Add the value of the metric to its corresponding
accumulator

 Calculate the average of each metric by dividing each accumulator by
the total number of nodes

 Add each of these averaged metrics as a row corresponding to the
average resources available at the Site using add_row() into output file

 Close the data files

60

APPENDIX B

PSEUDO CODE FOR CREATING INFORMATION FOR TABLE JOB_INFO

61

#! ***** file - creating_job_info.py *****
#! ***** author Sreeranjani Ramprakash *****
#! ***** version 1.8 *****

def create_dictionary(list):
 for each element in list

Extract the value associated with key in the given list of strings using ":"
as the delimiter between keys and values and adding them to a dictionary

 return dictionary

def add_row(dict,file):

Enter the row of parameters associated with each job in the same order as it
appears in the table Job_Info in the database using tab as the delimiter between
fields

def main():
 Extract log file name from command line input

 Open log file with job status command piped output

 Accept output file name

 Open output file to write

 Create a list of strings of jobs in the log file

 Process one line(job) at a time

 for each job in list of jobs
 Extract individual job parameter values

 Split using "," (doesn't take care of iterated lists within)

 Create a list of iterated lists

 for each parameter in the iterated list

Check if the list has an iterated list within and extract if found

62

Initialize and create dictionary using the list from above by invoking
create_dictionary(list)

Add one row of parameters associated with each job to output file

 Close log file

63

APPENDIX C

PSEUDO CODE FOR CREATING INFORMATION FOR TABLE
SITE_RESOURCES

64

#! ***** file - creating_site_resources_info.py
#! ***** author Sreeranjani Ramprakash *****
#! ***** version 1.1 *****

def add_row(row,outputfile):

Enter the row of static resources in the same order as how it appears in the table
in the database by using tab as a delimiter between fields

def main() :

 Accept output file name

 Open output file to write

 Accept xml file name to parse

 Open file to read

 Parse the XML document

Extract 'cluster' element which corresponds to the Site under consideration

 for each node in cluster:

Insert Site_Name into dictionary after mapping Ganglia Site name to
corresponding Site name in configuration file using lookup()

 Extract all node elements within the Cluster in the Site

 Count total number of nodes in cluster

 Extract sub-elements from node elements

 for each metric in each node:

 for each item in each metric:

 Extract the name of the metric and its value

Assign the static information as key value pairs to a dictionary

65

Add each of these static metrics as a row corresponding to the static
resources available at the Site using add_row() into output file

 Close the data files

66

APPENDIX D

PSEUDO CODE FOR CREATING INFORMATION FOR TABLE SITE_SERVICES

67

#! ***** file - creating_site_services.py *****
#! ***** author Sreeranjani Ramprakash *****
#! ***** version 1.4 *****

def add_row(dict,file):

Enter the row of site services information in the same order as how it appears in
the table in the database by using tab as a delimiter between fields

def main() :

 Accept output file name

 Open output file to write

 Accept xml file name to parse which is the configuration file

 Open file to read

 Parse the XML document

Extract 'pool' elements which corresponds to all the site entries in the configuration
file

 Extract individual elements / attributes from 'pool' element
 for each tag in pool element

Extract required information that includes site name, GridFTP server
node address, gatekeeper node address, working directory at this cluster

Add all extracted information to output file as a row using add_row()

 Close data file

68

APPENDIX E

PSEUDO CODE FOR POPULATING THE DATABASE WITH ALL THE DATA
FILES CREATED

69

#! ***** file- populating_database *****
#! ***** author Sreeranjani Ramprakash *****
#! ***** version 1.0 *****

def add_info_to_db(filename):

 Connect to the MySQL server

 Create query string to load data from tab separated file into respective table in
database using carriage return as line separator

 Execute query

def main()

 Extract data file from command line and pass it to function add_info_to_db()

70

REFERENCES

[1] Foster, I., and Kesselman, C. (eds.). The Grid: Blueprint for a new

computing infrastructure. Morgan Kaufmann, 1999.

[2] Foster, I., and Kesselman, C., Tuecke, S. The Anatomy of the Grid –

Enabling Scalable Virtual Organizations.

[3] Subramani, V., Kettimuthu, R., Srinivasan, S., Sadayappan, P. Distributed

job scheduling on computational Grids using multiple simultaneous Request. High

Performance Distributed Computing, 2002. HPDC-11 2002. Proceedings. 11th IEEE

International Symposium on 23 - 26 July 2002 Page(s):359 – 366.

[4] Zhang, W., Fang, B., He, H., Zhang, H., Hu, M. Multisite resource selectin

and scheduling algorithm on computational Grid. Parallel and Distributed Processing

Symposium, 2004. Proceedings. 18th International 26-30 April 2004 Page(s):105.

[5] Fujimoto, N., Hagihara, K. A comparison among Grid scheduling algorithms

for independent coarse-grained tasks. SAINT 2004 Workshop on High Performance

Grid Computing and Networking, IEEE Press, pp.674-680.

[6] Foster, I., Kesselman, C., The Globus Project: A status report.

Heterogeneous Computing Workshop, 1998. (HCW 98) Proceedings. 1998 Seventh 30

March 1998 Page(s):4 – 18.

[7] Park, S.M ., Kim, J-H., Chameleon: A resource scheduler in a data Grid

environment. Cluster Computing and the Grid, 2003. Proceedings. CCGrid 2003. 3rd

IEEE/ACM International Symposium on 12-15 May 2003 Page(s):258 – 265.

71

[8] http://griddev.uchicago.edu/swhome/atgce/description.html referred on 18th

June 2005.

[9] http://www-unix.globus.org/toolkit/docs/3.2/rls/key/index.html referred on

25th June 2005.

[10] http://ganglia.sourceforge.net/ referred on 26th June 2005.

[11] Foster, I., Kesselman, C., Nick, J.M., Tuecke, S. The Physiology of the

Grid – An Open Grid Services architecture for distributed systems Integration.

[12] Roehrig, M., Ziegler, W. Grid scheduling Dictionary of Terms and

Keywords.

[13] Foster, I., The Grid: A New Infrastructure For 21st Century Science ,

Article – Physics Today.

[14] Takefusa, A., Bricks: A Performance Evaluation system for scheduling

algorithms on the Grids. http://ninf.is.titech.ac.jp/bricks .

[15] He, X., Sun, X-H., Laszewski, G.V., A QoS Guided scheduling algorithm

for Grid Computing.

[16] Luo, J., Ji, P., Wang, X., Zhu, Y., Li, F., Ma, T., Wang, X. Resource

management and task scheduling in Grid Computing.

[17] Foster, I. What is the Grid? A Three Point Checklist.

[18] Schopf, J.M., Nitzberg, B. Grids: The Top Ten Questions.

[19] http://www.globus.org/toolkit/data/rls/ referred on 18th June 2005.

[20] http://www.cs.wisc.edu/vdt//index.html referred on 18th June 2005.

[21] http://www.griphyn.org/chimera/ referred on 25th June 2005.

72

[22] http://www.ivdgl.org/grid3/ referred on 20th July 2005.

[23] http://globus.org/toolkit/about.html referred on 20th July 2005.

[24] http://monalisa.cacr.caltech.edu/ referred on 20th July 2005.

[25] Frey, J., Tannenbaum, T., Foster, I., Livny, M., Tuecke, S. Condor-G: A

Computation Management Agent for Multi-Institutional Grids. Proceedings of the

Tenth IEEE Symposium on High Performance Distributed Computing (HPDC10) San

Francisco, California, August 7-9, 2001.

[26] http://mbranco.home.cern.ch/mbranco/cern/donquijote/index.html referred

on 20th July 2005.

[27] http://www.nordugrid.org/ referred on 20th July 2005.

[28] http://lcg.web.cern.ch/LCG/ referred on 20th July 2005.

[29] http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/grid/ referred on

20th July 2005.

[30] http://www.usatlas.bnl.gov/computing/software/pacman/ referred on 18th

June 2005.

[31] http://heppc12.uta.edu/~thomas/hepweb/dpcc.html referred on 6th June

2005.

73

BIOGRAPHICAL INFORMATION

Sreeranjani Ramprakash graduated with a Bachelors degree in Computer

Science and Engineering from Mangalore University, India in June 2001. After working

for Dell International and Digital Global Solutions in India for a year she came to UT

Arlington to pursue her Masters in Computer Science and Engineering. Being interested

in networking in general she discovered Grid computing and pursued her interest further

by completing a small project converting serialized job processing software to multiple

job processing software. After this, she found what eventually went on to comprise her

main research topic which is described in detail in this thesis. She graduated from

University of Texas at Arlington with a Masters in Computer Science and Engineering

in August 2005.

