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ABSTRACT 

 

MONITORING AND ANALYZING DISTRIBUTED CLUSTER PERFORMANCE 

AND STATISTICS OF ATLAS JOB FLOW 

 

Publication No. ______ 

 

Sreeranjani Ramprakash, M.S. 

 

The University of Texas at Arlington, 2005 

 

Supervising Professor:  David Levine  

Grid3 is a Grid facility used by many High Energy Physics experiments to 

enable physicists to process data intensive and CPU intensive jobs more effectively as 

well as more efficiently. The worldwide High Energy Physics experiment, ATLAS 

collaboration, works on several Grid facilities in many countries, Grid3 being the US 

ATLAS Grid facility. The European DataTag and NorduGrid are other Grid facilities 

used by the ATLAS experiment. Amongst other things, the highlights of Grid3 are 

participation by more than 25 sites across the U.S. and Korea which collectively 

provide more than 2000 CPU’s, resources used by seven different scientific 

applications, including three high energy physics simulations and four data analyses in 

high energy physics, bio-chemistry, astrophysics and astronomy, more than 100 
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individuals are currently registered with access to the Grid, a peak throughput of 500-

900 jobs running concurrently with a completion efficiency of approximately 75%. 

Since each application and organization utilizing Grids has different measures 

for efficiency and different parameters such as number of successfully completed jobs, 

turnaround time, number of idle processors, etc., to be considered for scheduling, 

scheduling on any Grid still needs to be tailored for individual cases. 

The ATLAS experiment is a High Energy Physics experiment that utilizes the 

services of Grid3 now migrating to the Open Science Grid (OSG). This thesis provides 

monitoring and analysis of performance and statistical data from individual distributed 

clusters that combine to form the ATLAS Grid and will ultimately be used to make 

scheduling decisions on this Grid. 

The system developed in this thesis uses a layered architecture such that 

predicted future developments or changes brought to the existing Grid infrastructure can 

easily utilize this work with minimum or no changes. The starting point of the system is 

based on the existing scheduling that is being done manually for ATLAS job flow. We 

have provided additional functionality based on the requirements of the High Energy 

Physics ATLAS team of physicists at UTA. The system developed in this thesis has 

successfully monitored and analyzed distributed cluster performance at three sites and is 

waiting for access to monitor data from three more sites.  

 



 v 

 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS....................................................................................... ii 
 
ABSTRACT .............................................................................................................. iii 
 
LIST OF ILLUSTRATIONS..................................................................................... vii 
 
LIST OF TABLES..................................................................................................... ix 
 
Chapter 
 
 1. INTRODUCTION. ........................................................................................ 1 
 
  1.1 What is a Grid... ....................................................................................... 1 
 
  1.2 Understanding Grids ............................................................................... 2 
 
 2.  PREVIOUS WORK IN GRID SCHEDULING............................................ 6 
  
  2.1 Distributed job scheduling on computational Grids  
     using multiple simultaneous requests ..................................................... 6 
 
  2.2 Multisite resource selection and scheduling  
    algorithm on computational Grid............................................................. 7 
 
  2.3 A comparison among Grid scheduling algorithms  
    for independent coarse-grained tasks....................................................... 9 
 
  2.4 The Globus Project: A status report......................................................... 10 
 
  2.5 Chameleon: A resource scheduler in a data Grid environment ............... 11 
  
 3.  ATLAS AND THE UNDERLYING PROBLEM......................................... 13 
 

4. MONITORING AND ANALYZING DISTRIBUTED CLUSTER 
 PERFORMANCE AND STATISTICS OF ATLAS JOB FLOW ................ 17 

    
  4.1 Introducing Capone ................................................................................. 17 
 
  4.2 Design specifications and considerations ................................................ 23 



 vi 

 
    4.2.1 Overview................................................................................... 23 
 
    4.2.2 Assumptions ............................................................................. 23 
 
    4.2.3 System architecture................................................................... 24 
 
  4.3 Another point of view.............................................................................. 36 
 
 5.  IMPLEMENTATION AND EXPERIMENTATION................................... 42 
 
  5.1 Current utilization of the system.............................................................. 42 
 
 6.  CONCLUSION AND FUTURE WORK...................................................... 55 
 
Appendix 
 
 A. PSEUDO CODE FOR CREATING INFORMATION FOR  
     TABLE FROM_GANGLIA_SITE ................................................................ 57 
 
 B. PSEUDO CODE FOR CREATING INFORMATION FOR  
     TABLE JOB_INFO........................................................................................ 60 
 
 C. PSEUDO CODE FOR CREATING INFORMATION FOR  
     TABLE SITE_RESOURCES......................................................................... 63 
 
 D. PSEUDO CODE FOR CREATING INFORMATION FOR  
     TABLE SITE_SERVICES............................................................................. 66 
 
 E. PSEUDO CODE FOR POPULATING THE DATABASE  
     WITH ALL THE DATA FILES CREATED................................................. 68 
 
REFERENCES .......................................................................................................... 70 
 
BIOGRAPHICAL INFORMATION......................................................................... 73 



 

 vii 

 

LIST OF ILLUSTRATIONS 

Figure Page 
 
 1 Layered Grid architecture and its corresponding  
   protocols in the Internet architecture...............................................................  3 
 
 2 Various components of GCE Capone .............................................................  19 
 

3      High level architecture of the monitoring and  
  analyzing distributed cluster performance and  
  statistics of ATLAS job flow system ..............................................................  26 

  
4 Information flow from configuration file “pool.config”  
  XML file to the database.................................................................................  29 

 
5 Information flow from different submit hosts to the  
  database through Capone “job status” commands. .........................................  29 

 
6 Separating and extracting information from Ganglia  
  dump files into static and dynamic information..............................................  31 

 
7 Internal topology of a typical site in the Grid. ................................................  34 

 
8 Extracting Gatekeeper dynamic information through  
  Ganglia using configuration file “pool.config”...............................................  35 

 
9 Snapshot of the information stored in table  
  From_Ganglia_FTP in the database. ...............................................................  43 
 
10 Snapshot of the information stored in table  
  From_Ganglia_Gatekeeper in the database.....................................................  44 

 
11 Snapshot of the information stored in table  
  From_Ganglia_Site in the database.................................................................  45 

 
12 Snapshot of the information stored in table  
  Job_Info in the database. .................................................................................  46 

 
13 Snapshot of the information stored in table  
  Job_Status_Lookup in the database. ...............................................................  47 



 

 viii 

 
14 Snapshot of the information stored in table  
  Site_Resources in the database .......................................................................  48 

 
15 Snapshot of the information stored in table  
  Site_Services in the database ..........................................................................  49 

 
16 Snapshot of the information stored in table  
  Gatekeeper_Name_Mapping in the database..................................................  50 

 
17 Snapshot of the information stored in table  
  Site_Name_Mapping in the database..............................................................  51 
 
18 Snapshot of Ganglia web interface for Brookhaven  
  National Laboratory cluster nodes ..................................................................  53 
 
19 Ganglia information from Gatekeeper node  
  at site Oklahoma University in XML format ..................................................  54 
 

 
 
 
 
 
 

 



 

 ix

 

LIST OF TABLES 

 
Table  Page 
 
 1 Static tables in database...................................................................................  40 

 2 Dynamic tables in database .............................................................................  41 



 

 1 

 

 

CHAPTER 1 

INTRODUCTION 

1.1 What is a Grid? 
 

A computational Grid is a hardware and software infrastructure that provides 

dependable, consistent, pervasive, and inexpensive access to high-end computational 

capabilities [1]. Each one of the terms used above describes a particular aspect of a 

Grid. The infrastructure is in reference to the pool of resources with the hardware 

creating the necessary connections between these resources along with the software 

used to monitor and control this hardware. The dependable aspect assures users that 

they will receive a predictable and sustained level of performance from the Grid. 

 

Computational infrastructure, like other infrastructures, is fractal, or self-similar 

at different scales [1]. We have networks between countries, organizations, clusters, and 

computers; between components of a computer; and even within a single component. A 

cluster or network of workstations is a collection of computers connected by a high-

speed local area network and designed to be used as an integrated computing or data 

processing resource. A cluster, like an individual end system, is a homogeneous entity 

with its constituent systems differing in configuration and not hardware or software 

architecture, and is controlled by a single administrative entity that has complete control 

over each end system. However, at different scales, we often operate in different 
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physical and often political regimes. For example, the access control solutions used for 

a laptop computer’s system bus are probably not appropriate for a trans-Pacific cable 

[1]. 

 

A defining feature of computational Grids is that they involve sharing of 

networks, computers, and other resources. This sharing introduces challenging resource 

management problems in a variety of areas. Many of the applications running on Grids 

need to meet stringent end-to-end performance requirements such as maximum allowed 

turnaround time, amount of storage space consumed, reliability of the system, across 

multiple computational resources connected by heterogeneous, shared networks. To 

meet these requirements, we must provide improved methods for specifying application 

level requirements, for translating these requirements into computational resources and 

network-level quality-of-service parameters, and for arbitrating between conflicting 

demands.  

1.2 Understanding Grids 
 

To further understand these requirements, the authors in [2] have discussed the 

requirements of cross-organizational operation of Grids in terms of protocol architecture 

as depicted in Figure 1. The layers in this protocol architecture are then mapped to the 

more common Internet Protocol architecture. This architecture helps identify the 

protocols and services required to create a usable Grid. Each layer in the protocol 

architecture is briefly explained in the following section. Our focus in this document 

will be in the Resource and Collective layers. 
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Figure 1 Layered Grid architecture and its corresponding protocols in the 

Internet architecture. 
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Fabric – This layer provides the actual resources that require shared access in a 

Grid. This includes computational resources, storage systems, catalog, network 

resources, sensors, etc. This could also mean resources like network file systems and 

clusters of computers, in which case this layer deals with internal protocols within a 

local domain. At the resource level enquiry or discovery mechanisms should be 

implemented along with resource management mechanisms to provide a minimum level 

of quality of service. 

 

Connectivity – This layer defines communication and authentication protocols 

that are required for network transactions over Grids. 

 

Resource – The main functions of this layer is to access and control local 

resources. This means that they do not deal with issues of global state across distributed 

collections of resources. Information protocols and Management protocols are the two 

primary classes of resource layer protocols. Information protocols obtain structure and 

state information, for example, configuration, current load, usage policy, etc. 

Management protocols negotiate access to shared resources, for example, specifying 

resource requirements in terms of advanced reservation and quality of service, process 

creation and data access. 

 

Collective – This layer deals with interactions across collections of resources 

rather than any one specific or local resource. They can implement many sharing 
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behaviors, for example, directory services, co-allocation, scheduling and brokering 

services, monitoring and diagnostic services, data replication services, workload 

management systems, software discovery services, community authorization servers, 

community accounting and payment services, collaborator services, etc. 

 

 Application – This layer comprises the user applications which are constructed 

in terms of the services defined in the layers below this one in the protocol stack.  
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CHAPTER 2 

PREVIOUS WORK IN GRID SCHEDULING 

2.1 Distributed job scheduling on computational Grids using multiple 
simultaneous requests 

 
In [3] the authors propose a meta scheduling scheme that is based on a 

distributed scheduling model.  

 

Scheduling can be on varying levels and can be categorized in a hierarchical 

fashion. At the lowest, we have CPU scheduling which is done at the operating system 

level. Next in the chain we have the batch scheduling done at a cluster level. Here, the 

scheduling involves assigning jobs to individual nodes. From there, the OS scheduler 

takes over the scheduling of the job. Next up we have the concept of meta scheduler. 

This is what is aware of the Grid and accepts jobs from other, similar meta schedulers 

from other sites and then submits the jobs to the batch scheduler at the cluster.  

 

The distributed scheme puts a meta scheduler at every site and jobs are 

submitted to the local meta scheduler where the job originates. Each of these meta 

schedulers query each other for load information periodically, and if any of the other 

sites has a lower load then the job is transferred to the site with the lowest load. The 

proposed scheme starts by keeping the total number of sites as N, where N can be 

varied. The scheduler then is a K-distributed model where the job submitted to the local 
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meta scheduler is sent to each of the K least loaded sites out of the N total number of 

sites. When a job is able to start at any site, the meta scheduler at that site informs the 

meta scheduler at the originating site which in turn informs the other K-1 sites 

requesting them to cancel the job. The constraint on this is that the notification needs to 

be atomic to ensure that processor cycles are not wasted. Also, a high degree of 

overbooking is done at each site which in turn increases the work done at each local 

scheduler. The amount of inter-site communication also increases with K. 

 

This scheme would not work in the ATLAS Grid scenario due to several 

reasons. Apart from the drawbacks in the algorithm itself, ATLAS jobs are too large to 

be transferred to more locations than one only to be dropped when one of the sites 

processes them. Also the global state that needs to be maintained across sites increases 

overhead. The authors have used a system with four sites to demonstrate and with the 

number of sites in ATLAS steadily increasing this algorithm would soon not scale. 

 

2.2 Multisite resource selection and scheduling algorithm on computational Grid 
 

In [4] the authors propose a clustering-based Grid resource selection algorithm 

that proposes a multi site resource selection scheme for synchronous iterative 

application. These applications are iterative in nature, with each iteration separated from 

the previous and subsequent iterations by a synchronization operation. Examples of 

synchronous iterative algorithms include simulations and many image processing and 

data classification algorithms. 



 

 8 

 

Here they cluster resources in a computational pool based on network delays 

and descending order of computational capacity. Then candidate schedules are 

generated and evaluated from the Grid computing resources, which can be non-

dedicated, homogenous or heterogeneous workstations or personal computers. In the 

end, a single resource selection is suggested in the case of invalidation of multisite 

resource selection algorithm.  

 

This algorithm will not work with ATLAS for two reasons. First, clustering 

Grid resources on the basis of computational capacity and network delays will not be 

possible since sites in the ATLAS Grid are not pooled resources but distributed and 

already geographically and politically clustered resources. Second, ATLAS applications 

are simulations based on specific input data sets, with these data sets typically in the 

order of a Gigabyte in size. In such a scenario, the simulation, even if it is synchronous 

iterative, cannot be run independently on different clusters. This property can be used 

within a cluster to schedule on different nodes simultaneously but due to the huge 

overhead of moving large input files cannot be used on the scale of a Grid to schedule 

on different clusters simultaneously.  
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2.3 A comparison among Grid scheduling algorithms for independent coarse-grained 
tasks 

 
In [5] the authors propose an algorithm called RR (named after its Round Robin 

influence). At the beginning of the scheduling, every processor is assigned exactly one 

task. If some task is completed then RR receives the result of the task and assigns a yet 

unassigned task to the processor. With m tasks remaining uncompleted, this is how RR 

manages these tasks: if some task v is completed on a processor, then RR receives the 

result of v and kills all task instances of v running on processors except the one 

processing v currently, selects a task u in a round robin fashion and replicates u onto the 

processor that just processed v. 

 

Coarse grained tasks can be defined as larger tasks that can be partitioned 

further but by doing so, we will be making the task finer grained than the original. 

Round Robin schemes work well with coarse grained tasks. 

 

The reason RR would not work on the ATLAS Grid is because the task lengths 

and the number of processors required to execute the tasks is information that is needed 

before hand. Also, this algorithm works on the assumption that all tasks (jobs in our 

case) are known before scheduling decisions are made. 
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2.4 The Globus Project: A status report 

In order to better understand this scheduler, we will have to further explore the 

Globus Toolkit. The open source Globus Toolkit is fundamental enabling technologies 

for the Grid, letting people share computing power, databases, and other tools securely 

online across corporate, institutional, and geographic boundaries without sacrificing 

local autonomy. The toolkit includes software services and libraries for resource 

monitoring, discovery, and management, plus security and file management[23]. The 

various components of the Globus Toolkit can be broadly classified into security, data 

management, execution management, information services and common runtime. 

 

In [6] the component of interest in our case from The Globus Toolkit is 

execution management provided by GRAM – Globus Resource Allocation Manager. 

Here, the idea is that there are several GRAM’s running, each responsible for local 

sites, interfacing with an underlying resource management tool such as LSF (Load 

Sharing Facility) or Condor. GRAM provides a standard network-enabled interface to 

local resource management systems [23]. Grid tools can therefore manage resource 

allocation using a standard API, expressed with the use of a resource specification 

language (RSL). At the higher level, resource brokers use RSL to specify requirements 

such as MFLOP’s (Millions of Floating point Operations), and even the hardware 

resources required. 
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The Globus Resource Allocation and Management services of the Globus 

Toolkit cannot be used for scheduling on the ATLAS Grid since it does not provide 

scheduling or resource brokering capabilities, but merely acts as an API between meta-

schedulers or brokers and local resource management mechanisms. 

 

Condor-G is another system that uses GRAM from the Globus Toolkit built on 

top of Condor running locally on each site to schedule on the Grid. Since it is 

fundamentally using the GRAM component of the Globus Toolkit, it carries the above 

mentioned constraints and hence does not meet the requirements for an ATLAS 

scheduler. 

 

2.5 Chameleon: A resource scheduler in a data Grid environment  
 

In [7] the authors propose a detailed scheduling model for a data Grid 

environment considering the following parameters: network bandwidth, number of 

available nodes, system attributes at each site, size of input data, size of application 

code, and size of produced output data. The cost models are calculated for five different 

scenarios: local data with local execution, local data with remote execution, remote data 

with local execution, remote data with same remote execution and remote data with 

different remote execution. The response time to the users’ job request is calculated in 

each scenario factoring each of the parameters outlined before along with expected 

execution times. 
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This particular scheduler, though it is the closest to what ATLAS needs, still 

does not consider some of the prime factors in job scheduling in ATLAS. These factors 

are number of failed jobs at a site and utilization at any site. It also doesn’t factor 

contributions to load at a site from other job flows apart from ATLAS job flow. 
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CHAPTER 3 

ATLAS AND THE UNDERLYING PROBLEM 

The real and specific problem that underlies the Grid concept is coordinated 

resource sharing and problem solving in dynamic, multi-institutional virtual 

organizations [2]. The sharing that we are concerned with here is not just file exchange, 

but also direct access to computers, software, data, and other resources, as is required by 

the collaborative problem-solving environment of ATLAS, a High Energy Physics 

collaboration. This sharing is controlled, with resource providers and consumers 

defining clearly and carefully just what is shared, who is allowed to share, and the 

conditions under which sharing occurs. A set of individuals and/or institutions defined 

by such sharing rules form what we call a virtual organization (VO) [2]. 

 

The ATLAS collaboration forms one such VO. The A Torroidal LHC 

ApparatuS, ATLAS, experiment is a $500 million plus High Energy Physics experiment 

that is due to launch in the year 2007. It is a collaboration of about 2000 physicists 

participating from 150 universities and laboratories in 34 countries. At its peak 

operation, the ATLAS experiment is expected to generate one Petabyte of “raw” data 

per year which is used in chunks of up to Gigabytes of inputs to execution jobs. Several 

clusters from universities and laboratories combine their computing, storage and 
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networking resources during the analysis phase to form a Grid that will be used to 

reconstruct and analyze this data. 

 

ATLAS is currently supporting the worldwide LHC Computing Grid (LCG) 

project [28] and two main Regional Grid projects, NorduGrid [27] and the US Grid 

(also called Grid3). The LCG project is the main Grid project supported by all LHC 

experiments. It aims to build a worldwide, production-class computing Grid. It is built 

upon the developments of the European Data Grid middleware, the US Virtual Data 

Toolkit project and European DataTag monitoring tools [29]. The NorduGrid project is 

established mainly across Nordic countries (Denmark, Norway, Sweden, Finland) and  

continues to expand. The Grid3 collaboration is a data Grid with dozens of sites and 

thousands of processors. The facility is operated jointly by the U.S. Grid projects 

iVDGL, GriPhyN and PPDG, and the U.S. participants in the LHC experiments ATLAS 

and CMS. 

 

Challenging issues in data-intensive applications are the scheduling and 

configuration of complex, high-volume data and job flows through multiple levels of 

hierarchy. Poor performance, as perceived by a user, can be due to an inappropriate 

algorithm, poor load balancing, inappropriate choice of communication protocol, 

contention for resources, or a faulty router.  
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The challenge in any resource allocation algorithm or methodology is to 

determine which one among several conflicting parameter needs to be focused on in any 

given application environment. For example, concentrating on maximizing throughput 

along with minimizing turnaround time will result in a bias favoring shorter duration 

jobs, since these will utilize resources to a fine amount of granularity and being of 

shorter duration will reduce turnaround time. For example, ATLAS jobs can vary in 

size of input data, execution time caused by different reconstruction jobs or simulation 

jobs, and can result in jobs that have smaller input files being transferred or those that  

are of shorter duration being preferred so as to improve turnaround time at any site. As 

a result, the resource allocation algorithm becomes unfair to longer running jobs.  

 

To resolve resource sharing issues, Grid schedulers are used in such Grid 

environments. There are several Grid schedulers that can be used to schedule jobs in a 

Grid environment. The ATLAS experiment requires that scheduling be done based on 

the turnaround time of jobs combined with effective CPU and memory utilization at 

individual sites and percentage of failed jobs at a site. Current Grid schedulers do not 

meet this requirement. For example, the Globus Resource Allocation and Management 

services of the Globus Toolkit cannot be used for this purpose since it does not provide 

scheduling or resource brokering capabilities, but merely acts as an API between meta-

schedulers or brokers and local management mechanisms. Another example is the 

Chameleon resource scheduler in a data Grid environment described in section 2.5 

above that considers both the computational and data storage resources but does not 
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have provisions to consider turnaround time or number of failed jobs at a site. A site can 

be defined as a cluster of nodes or processors or a set of resources that are set aside by a 

laboratory or an educational institution to contribute to the computing power of a Grid. 

 

The goal of a Grid scheduler for the ATLAS experiment would be to minimize 

turnaround time while ensuring optimum utilization at all sites that form the Grid. 
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CHAPTER 4 

MONITORING AND ANALYZING DISTRIBUTED CLUSTER 

PERFORMANCE AND STATISTICS OF ATLAS JOB FLOW 

4.1 Introducing Capone 
 

The ATLAS Grid Computing Environment is a set of different tools designed to 

provide a simple and uniform computing environment for ATLAS scientists using the 

Grid for their production and analysis activity. In the U.S Grid3, this Grid Computing 

Environment or Grid Component Environment (GCE) is also called Capone. 

 

In this section we will explore the architecture and design of Capone so as to 

establish the need for the scheduling provided by this thesis. In order to understand the 

design of Capone we will step slightly away from Capone to an important element that 

needs to be defined, the RLS client utilities of The Globus Toolkit. 

 

The Replica Location Service (RLS) [19] maintains and provides access to 

mapping information from logical names for data items to target names. Replication of 

data items can reduce access latency, improve data locality, and increase robustness, 

scalability and performance for distributed applications. An RLS typically does not 

operate in isolation, but functions as one component of a data Grid architecture. RLS 
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implementation depends on a number of factors such as consistent local state being 

maintained in Local Replica Catalogs, Replica Location Indices, etc. 

 

The Grid Component Environment comprises two main component modules, 

the Supervisor, called Windmill [8], and the Executor [8], which is Capone. The 

Capone Executor system is designed to implement job requests from the ATLAS 

production supervisor Windmill, to be executed on Grid3. The Grid Component 

Environment is a suite of client and server tools that provide a basis for the set of 

Python classes that form Capone. Capone is distributed using a packaging tool called 

Pacman [30]. The GCE include the following tools: 

• GCE-Client  

o The Virtual Data Toolkit [20] 

� Chimera Virtual data system [21] 

o RLS client utilities and scripts  

• GCE-Server  

o ATLAS software releases 

o Job transformation scripts 

o Kickstart – a Chimera supplied package which wraps the remote application 

and returns exit codes to the client (submit) host 

 

To understand the working of Capone we will first discuss the design principles 

and then describe its various components as shown in Figure 2. 
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The main design principles are: 

a) The Capone Process Engine, hereafter referred to as CPE, handles all 

communication. This means it separates the communication between the message 

passing interface and the lower level Grid communication protocols. 

b) Grid-level process executions are initiated and handled by the CPE. 

c) Grid-level error handling is done by the CPE. This includes querying all job 

monitors, queue monitors, etc., and logging these queries. 

d) A database called ProcDB that stores the states of all processes currently managed 

by the CPE. 

e) A query on the state of a process results in varying levels of detail depending on 

what information is requested. 

f) The CPE should be able to handle interaction in the form of messages from external 

sources like the Supervisor or a direct user interface. 

 

Figure 2 comprises these components: 

a) CPE  (main process engine) module – This is a finite state machine that performs 

the following actions: 

• At startup, it listens for messages from other modules 

• Receives messages from the communication module 

• Set of actions for each message received 

• Return to listening for messages 

• While exiting, cleanup and then exit gracefully 
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b) Communication module – This module again provides the following steps of action: 

• Request messages in terms of number of jobs requested, execute certain process, 

get data involved with a process execution, get the status of a process, exit and 

shutdown the module, etc. 

• Passing messages to external entities like the production Supervisor module, etc. 

• Passing messages to or through web services, Python scripts and graphical user 

interfaces, etc. 

c) Translator module – This module translates from the external request language to 

the internal representation used in the CPE. There are two kinds of request 

languages used; they are: ATLAS supervisor requests, and the ADA Job Description 

Language known as AJDL. 

d) Execution module – There are three main tasks of the executor module. They are: 

• Submitting jobs to the Grid 

• Registering the jobs into the catalog; and 

• Execution on the local machine 

e) Catalog interface module – This module communicates with catalogs such as the 

component in Don Quixote  that deals with cataloging [26] and the Globus RLS 

module 

f) Process state database (ProcDB) module – This module records two kinds of 

information. They are: 
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• Information about the state of the currently executing module. This can be in 

one of many forms, like a text file, a MySQL database or memory structures 

with log files for error recovery. 

• Information from the executing process about job related parameters and catalog 

related information. 

g) User interface module to Capone's communication module  (eg., template 

framework provided by the Supervisor team) 

h) User interface to the CPE 

i) User interface to the ProcDB 

 

The working of Capone can be summarized using the following algorithm: 

A. Supervisor communicates with Capone by 

i. asking the Executor module how many jobs it can execute 

ii. Executor replies with availability 

iii. Supervisor sends that many jobs to Executor 

B. Executor module checks the input 

C. Executor registers input with the catalogs 

D. Executor translates input to required format 

E. Proceed through execution steps by 

i. taking input in given format 

ii. generating output 

iii. registering output with the Virtual Data Toolkit (VDT) catalog 
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F. Verify output 

G. Register the output with the ATLAS catalog, Don Quixote 

H. Clean the VDT environment by 

i. freeing Grid resources utilized 

ii. removing registered entries from VDT catalog 

I. Return to step A. 

 

4.2 Design specifications and considerations 
 

4.2.1 Overview 

The purpose of this section is to familiarize the reader with the monitoring and 

analyzing of distributed cluster performance and statistics in ATLAS job flow in terms 

of design considerations, constraints, assumptions and dependencies. The intended 

audience is mainly developers who will extend the functionality of the monitoring 

system provided by this thesis. The scope of this document is extended to this thesis as 

well as work used to build this thesis. The following section discusses the architecture 

of the monitoring and analyzing system for ATLAS job flow implemented in this thesis. 

 

4.2.2 Assumptions  

To better define the system built in this thesis let us first look at the list of 

assumptions that have been made before building the system. A list of the assumptions, 

in no particular order, is: 
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i. Sources of information are limited to Ganglia [10], Monalisa [24] and 

Capone [8]. 

ii. Ganglia and Monalisa are configured correctly and transmit up-to-date 

information. 

iii. Only error codes from Condor-G listed on the web site (Capone error 

codes) are considered in the code; all other error codes are treated as 

generic errors 

iv. The system is built on the assumption that the current methodology of 

collection of information is the best method for ATLAS information 

collection 

v. The system is built assuming that the Site where the system runs has 

access to all Ganglia information of other sites through the daemons 

gmond and gmetad (as XML data files) 

vi. System has access to Capone log files from where information about jobs 

running on a submit host is collected 

vii. Configuration file is updated every time a configuration change occurs at 

any site by the site administrator 

viii. Capone updates to the log file accessed by system is accurate and complete 

 

4.2.3 System architecture 

The high level architecture of the system is shown in Figure 3. In order to fully 

understand the architecture, let us explore an element in the architecture, Ganglia, in a 
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little more detail. Ganglia is a scalable distributed monitoring system for high-

performance computing systems such as clusters and Grids [10]. It is based on a 

hierarchical design targeted at organizations of clusters such as the Virtual 

Organizations mentioned earlier in this document. 
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Parse and extract 

meaningful information 

from XML files 

Pull monitoring information 

using Ganglia daemons 

gmetad and gmond 

Separate extracted data into 

logically different groups 

Site 

Pull statistical information on 

every job using status 

commands in daemon Capone 

Parse and extract 

meaningful information 

Database 

Jani 

Monitoring information Job related information 

Ganglia information in 

XML format 

Job related information 

in text format 

Tab separated files with 

information for entire site 

Individual tab separated files with 

information for entire site, 

Gatekeeper and FTP Server nodes 

Tab separated files with 

information for all jobs 

Figure 3 High level architecture of the monitoring and analyzing distributed cluster 
performance and statistics of ATLAS job flow. 
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 It leverages widely used technologies such as XML (eXtended Markup Language) 

for data representation, XDR (eXternal Data Representation – a data representation 

standard) for compact, portable data transport, and RRDtool (Round Robin Database 

tool) for data storage and visualization. It uses carefully engineered data structures and 

algorithms to achieve very low per-node overheads and high concurrency. The 

implementation is robust, has been ported to an extensive set of operating systems and 

processor architectures, and is currently in use on over 500 clusters around the world. It 

has been used to link clusters across university campuses and around the world and can 

scale to handle clusters with 2000 nodes [10]. 

 

Another monitoring tool that needs to be discussed in a little more detail is 

MonALISA – MONitoring Agent using a Large Integrated Services Architecture. The 

MonALISA framework provides a distributed monitoring service system using 

JINI/JAVA and WSDL/SOAP technologies. The goal is to provide the monitoring 

information from large and distributed systems to a set of loosely coupled "higher level 

services" in a flexible, self describing way. This is part of a loosely coupled service 

architectural model to perform effective resource utilization in large, heterogeneous 

distributed centers. The framework can integrate existing monitoring tools and 

procedures to collect parameters describing computational nodes, applications and 

network performance. [24] 
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In Figure 3, we start from a site and gather data using two different means. The 

first, immediately below the site and to its left in the figure, is data from the site using 

the Ganglia daemon gmond. Here, the data is pulled from the site using telnet, and is 

obtained in the form of an XML dump file. The second, immediately below the site and 

to its right in the figure, is data from the site using the Capone daemon. Here, the data is 

pulled from the site using Capone commands, and is piped into a text file. 

 

Another important source of information and its role in the architecture of this 

system is shown in Figure 4. This is a configuration file describing all available ATLAS  

Grid3 sites in the form of an XML document named “pool.config”. This file updates 

only when there is a change in the way resources are handled at a site.  
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Submit 

host A 

Submit 

host B 

 database 

Jani 

Piped output of 

Capone job status 

command 

Piped output of 

Capone job status 

command 

Parse and extract 

relevant 

information 

Job related information 

for submit host A 

Job related information 

for submit host B 

Job related information 

in text format 

Job related information 

in text format 

Configuration file 

“pool.config” as an 

XML file 

Extract required 

meaningful information 
 

Submit 

host  database 

Figure 4 Information flow from configuration file “pool.config” XML file to the 
database. 

 

Figure 5 Information flow from different submit hosts to the database through 
Capone “job status” commands. 
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For example, if a site moves its entry node (known as the gatekeeper node) then 

this configuration file would be updated. This implies that this update to the database is 

manual and that it occurs when a user is aware of a change in the configuration file. 

 

To get to the next level of architecture, consider the left half of Figure 3. This is 

depicted as Figure 5. In Figure 5, there are multiple submit hosts from which statistical 

information about jobs are pulled separately using commands in the Capone daemon 

such as “job status” commands. These are piped to text files and then parsed to extract 

the information that we require. This information is then stored in the database in the 

form of a table. 

 

Next, let us consider the right half of Figure 3. This is depicted as Figure 6. In 

Figure 6, the Gatekeeper at a Site is queried using telnet to report Ganglia resource 

information in the form of an XML file. There are two parts to this XML file that 

interest us. The first, shown on the left side in Figure 6, is the almost static information 

like the number of CPU’s, the average CPU speed, the total amount of memory, the 

total amount of disk space, etc. This information is pulled and extracted from each site 

manually and only when the configuration file mentioned previously shows a change in 

the amount of resources at a site. 
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 database 

Gatekeeper 

at a Site 

XML file “gmetad” 

using daemon 

“gmond” 

Extract near static 

information during 

initialization and after 

every configuration 
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Extract dynamically 

changing information 

periodically at pre-

decided intervals 

Ganglia information in 

XML format 

Ganglia information in 

XML format 

Tab separated files with 

information for entire site 

Tab separated files with 

information for entire site 

Figure 6 Separating and extracting information from Ganglia dump files into 
static and dynamic information. 
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The second, shown on the right side in Figure 6, is the dynamically changing 

information such that the CPU idle time, amount of disk space free at this time, amount 

of memory free at this time, average load over the past 15 minutes, average load over 

the past 5 minutes, the number of processes running, etc. This information is pulled and 

extracted at periodic intervals, the time between pulls being decided based on the 

frequency of change noticed in the information being extracted. 

 

An important factor that we needed to factor into our design of the system is 

that the Gatekeeper node as well as the node running the FTP server being overloaded 

would slow down processing of jobs at any particular site. This results mainly due to the 

fact that we are considering the average amount of resources available at any site. If the 

Gatekeeper node was at its peak operation and its resources were almost completely 

taken then the number of jobs that can enter the site will be low whether or not 

resources are available within the site. 

 

To better understand this concept let us first look at what a typical site in the 

Grid looks like. This is depicted in Figure 7. In Figure 7 we start first by entering a site 

from any other element on the Grid through the internet and intranet infrastructure. The 

entry point into any cluster is through either the Gatekeeper or through the FTP Server 

nodes. The Gatekeeper node deals with the scheduling of jobs at the cluster level. This 

also means that all jobs sent to execute at the cluster need to pass through this node. 

After this phase (also called Stage-In) the job is sent to the node that it needs to execute 
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on by the gatekeeper node through the internal network in the cluster. The FTP Server 

node deals with obtaining the data sets from replication servers that store these data 

sets. The jobs that have been sent to these sites to be executed will have certain data sets 

that they will need to execute. These data sets are located and brought into the cluster or 

site through the FTP Server node. 

 

As we can see in Figure 7, the Gatekeeper node and the FTP Server nodes 

become the bottlenecks in jobs being executed at any cluster or site. Keeping this in 

mind, scheduling decisions need to be taken after reviewing the load on each of these 

nodes at any site, before sending jobs or batches of jobs to the site. 

 

Resource information for the Gatekeeper node as well as for the FTP Server 

node can be found in the Ganglia XML dump file “gmetad” for that site. To be able to 

extract this information we need to be aware of the name of the gatekeeper and FTP 

server nodes. This information can be obtained from the configuration file. For each site 

there will be an entry giving the Fully Qualified Domain Name (FQDN) of the 

Gatekeeper node and another entry with the FTP Server node. 

 

Figure 8 shows how we can extract resource information for the gatekeeper 

node using Ganglia information and the configuration file “pool.config”. In Figure 8 we 

start from the XML file “gmetad” and obtain the site name from the “cluster” tag value 

in the XML file.  
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Network Cables 

Network Cables 
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Figure 7 Internal topology of a typical site in the Grid. 
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Obtain Site name from 

“cluster” entry in XML file 

Find entry in 

configuration file 

corresponding to 

Site name 

Extract 

gatekeeper url 

corresponding 

to that entry 

Gatekeeper 

at the Site 

XML file “gmetad” using 

daemon “gmond” at each site 

Find 

Gatekeeper 

node entry in 

XML file 

Extract resource 

information from 

Gatekeeper entry 

Database 

Figure 8 Extracting Gatekeeper dynamic information through Ganglia using 

configuration file “pool.config”. Sequence of operations with passing time. 
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Next, we need to find the configuration file entry corresponding to this site 

name. As an aside note, we see that we will need a mapping between the site name 

according to Ganglia and the site name according to the configuration as they are not 

uniform across both locations. Once we find the site entry in the configuration file we 

will extract the gatekeeper URL from the “jobmanager universe” tag entry in the 

configuration file. Again, as an aside, since one URL can have several aliases we will 

need a mapping between the names obtained from the configuration file onto the “host 

name” used in the Ganglia dump file. Once we find the entry in the XML file 

corresponding to the gatekeeper node we can extract all the resource information 

associated with that node. The next step will be to input all these values into the table in 

the database that stores this information. 

 

Though Figure 8 is the design for extracting Gatekeeper information from the 

Ganglia dump files, we will do the exact same thing to extract FTP Server node 

information. The only difference will be that we will look for FTP Server node address 

in the configuration file using the “jobmanager transfer” tag entry. Also, the resource 

information for the FTP Server node at each site is stored in a separate table in the 

database. 

 

4.2 Another point of view 
 

Currently Capone handles Grid scheduling by an operator modifying weights 

associated with various sites, in an initialization file in Capone. These changes are 
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based on graphical information about these sites obtained from sources such as Ganglia 

/ MonALISA. This is graphical display of information about parameters such as queue 

length, CPU utilization, memory utilization and related resource information at sites. 

 

The goal of this scheduler is to automate the modification process based on a 

combination of turnaround time of jobs, CPU utilization at sites and number of failed 

jobs at a site. (Other related parameters will also be factored into the scheduler). 

 

The Grid centric (information about the Grid elements) and job centric 

(information about the actual jobs being executed) monitors used in modifying weights 

in Capone by an operator are: 

1. Job information obtained for a site for ATLAS jobs collectively from 

MonALISA (both CPU and data transfer information) 

2. Overall view of job information for the Grid. 

 

Other monitors that can be utilized in automating the modifications are: 

1. Job information obtained directly from Capone regarding status of jobs 

2. Information about load on gatekeeper and FTP server at any site. The gatekeeper 

and FTP server URL’s can be obtained from configuration files. 

 

The main factors in terms of ATLAS jobs considered in the design of this thesis 

can be listed as: 
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i. number of running jobs vs. number of idle jobs – for example in ATLAS 

job flow the important thing is to have at the least one idle job waiting in 

the queue for every job that is running. This ensures that CPUs are almost 

never idle. 

ii. number of jobs run vs. total number of jobs present  

iii. number of jobs run vs. number of failed jobs 

iv. efficiency, in terms of successfully executed jobs, at a site vs. how many 

jobs have been run at the site 

 

The goal of a scheduler for ATLAS would be to keep factors above such that 

the number of idle jobs at a site is at least equal to the number of running jobs at that 

site so that no CPU at that site is idle. 

 

This leads to the requirement to build an automated system that takes scheduling 

decisions based on information currently being used, in combination with further 

resources, to minimize turnaround time of a job while optimizing CPU/memory 

utilization at a site, and modifying weights associated with sites in Capone based on this 

scheduling decision. 

 

The main design considerations in building such a system involve  
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1. Designing a schema for a database that contains both static as well as dynamic 

information for Sites, their services, their resources, and jobs with their statuses, 

and the meaning of their statuses. 

2. Populating the database with static and dynamic values as well as updating the 

database at decided intervals with dynamic information. 

3. Analyzing key factors from the database to weight sites to be able to make 

scheduling decisions based on these weights. 

 

In this section we will look at the architecture of the system from a slightly 

different perspective. Since the monitoring and analyzing is done using stored values in 

a database, we will look at the system from a database point of view. 

 

The database is designed with a set of static (infrequently changing) tables and a 

set of dynamic (frequently changing) tables. The static tables serve as lookup tables 

used in comparing parameters from the dynamic tables. The schemas for the static and 

dynamic tables are shown diagrammatically in Tables 1 and Table 2, respectively. Each 

of the tables below is populated from different sources using scripts. The source for 

each of these tables’ data is indicated below each table in the diagram. 

 

The database is stored on a node accessible to the host running Capone. Each of 

these tables is updated periodically depending on how frequently the data in the table 

changes. 
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Job_Status_Lookup 

 

State 

Exit Code 

Reason 

Site_Resources 

 

Site Name 

Number of CPUs 

CPU speed 

Total memory 

Total disk space 

Site_Services 

 

Site Name 

Gatekeeper URL 

FTP Server URL 

Working directory 

Obtained from list of 

Capone error codes Obtained from Ganglia dump file 

for each Site and its nodes 

(gmetad xml file) 

Obtained from 

configuration file used by 

Capone and submit hosts 

(pool.config xml file) 

Site_Name_Mapping 

 

Site Name pool config 

Site Name Ganglia 

Gatekeeper_Name_Mapping 

 

Site Name pool config 

Gatekeeper Name pool config 

Gatekeeper Name Ganglia 

Obtained from Ganglia 

dump file and 

pool.config xml file 

Obtained from Ganglia 

dump file and 

pool.config xml file 

Table1. Static tables in database. 
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From_Ganglia_Site 

 

Site Name 

Number of idle CPUs 

Free disk space 

Memory free 

Processes run 

Load in 15 minutes 

Load in 5 minutes 

Load in one minute 

 

From_Ganglia_Gatekeeper 

 

Site Name 

Gatekeeper Name 

Number of idle CPUs 

Free disk space 

Memory free 

Processes run 

Load in 15 minutes 

Load in 5 minutes 

Load in one minute 

 

From_Ganglia_FTP 

 

Site Name 

FTP Server Name 

Number of idle CPUs 

Free disk space 

Memory free 

Processes run 

Load in 15 minutes 

Load in 5 minutes 

Load in one minute 

 

Job_Info 

 

Job ID 

Job status 

Exit string 

Job status detail 

CPU consumption 

Job ending time 

Chosen Compute Element (Site) 

Obtained from Ganglia dump file 

for each Site and its nodes 

(gmetad xml file) 

Obtained from job status 

information extracted from 

Capone 

Table2. Dynamic tables in database. 
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CHAPTER 5 

IMPLEMENTATION AND EXPERIMENTATION 

5.1 Current system in utilization 
 

The monitoring and analyzing of distributed cluster performance and statistics 

of ATLAS job flow has been implemented with the following programming paradigms 

and minimum requirements: 

1. Python 2.2 and above with MySQLdb and  XML DOM packages installed 

2. MySQL version 3.23.49 

3. Linux 2.4.20-28.7 Enterprise 

4. Secure Shell 3.2.9 

 

Figures 8 to 16 are snapshots of the current database which is stored on one of 

the nodes in the cluster. This section illustrates general “select” views of all the tables in 

the database currently being used in the site UTA-dpcc [31]. These databases are being 

populated from one of the hosts in the UTA cluster. 
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All scripts have been written with the design considerations from Chapter 4 

working toward the database as presented in section 4.3. Ganglia information from 

other sites is being collected by telnet-ing on of three ports, port 8649, 8651 or 8652, 

depending on individual site settings on the gatekeeper node of the site. 

 

Appendices A to E illustrate all the scripts written in this thesis as pseudo code 

converted straight from the Python scripts that run the monitoring and analyzing 

system. 

 

Figures 18 and 19 show Ganglia information as represented on the web interface 

and in XML format respectively. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

Grid computing as we know it is a constantly developing field. Scheduling on 

the Grid is one of the many and most challenging aspects of Grid computing. The part 

of ATLAS related software designed and developed in this thesis worked towards 

gathering and analyzing information used in developing a scheduling algorithm that fits 

the needs of the ATLAS High Energy Physics experiment.  

During the course of monitoring distributed clusters for the ATLAS experiment 

there are a few observations with regards to factors that affect any scheduling decision 

taken. Observing three sites over a period of 48 hours, we found that job execution 

times run into measures of hours, which means that job related information extracted 

from any one submit host can be updated  anywhere between two and four hours and 

one will have a fairly good idea of the job flow. Again, observing three sites resource 

information over 48 hours, we found that site resource information is updated by 

Ganglia every 30 seconds, but since these job durations are long the state of the cluster 

changes only marginally in these 30 seconds. The actual implementation of how often 

resource related information is updated using Ganglia is entirely up to the local site 

administrator who deploys this system. 
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The ATLAS Grid Component Environment Capone is a continuously evolving 

process especially now that Grid3 is going through a metamorphosis into the Open 

Science Grid. With each evolving version and with the new standards being developed 

for the Open Science Grid the tools used for monitoring Clusters in the Grid will 

change. If any of the monitoring tools used in this thesis are no longer used for 

monitoring in the Open Science Grid, additional scripts need to be developed in order to 

continue information flow (preferably same or similar information) into the databases 

developed here. There is an additional parameter or data set that has been discussed as 

useful information in making a more informed scheduling decision and this is some 

form of job Transformation. This parameter has currently not been developed due to the 

lack of the existence of any job Transformation that will give us resource utilization 

based on the type of simulation or job being submitted. When this transformation 

becomes more readily available, its extraction and use in any scheduling decision will 

be helpful. 

Another aspect of this system allows local site system administrators at any site 

to manage resources at their site such as temporary file spaces and old input files better 

in the case of jobs that have been executed at that site. The system provides a status 

check on all the jobs executed at the site which helps in making the decision of keeping 

or cleaning the temporary files and old input files. 

Currently, a suitable scheduling algorithm that meets to the needs of the ATLAS 

experiment is being written. This is a venture that goes beyond the scope of this Masters 

thesis and hence would befit future work built on this thesis. 
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APPENDIX A 
 
 

PSEUDO CODE FOR CREATING INFORMATION FOR TABLE 
FROM_GANGLIA_SITE 
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#! ***** file - creating_from_ganglia_site_info.py ***** 
#! ***** author - Sreeranjani Ramprakash ***** 
#! ***** version - 1.4 ***** 
 
def add_row(row,outputfile): 

Enter the row of average resources in the same order as how it appears in the table 
in the database by using tab as a delimiter between fields 

Function called by main() below and takes the tab delimited file as input 
 
def lookup(sitename) 
 Establish connection with table Site_Name_Mapping in database 
 
 Using the select command get the configuration Site name  corresponding to the 
Ganglia Site name 
 
Function called by main() below takes ganglia site name and returns configuration Site 
name 
 
def main()  : 
 Accept output file name 
 
 Open file to write into 
  
 Accept xml file name to parse 
 
 Open file to read 
  
 Parse the XML document 
  
Extract 'cluster' element which corresponds to the Site under  consideration 
  
for each node in cluster: 
 
  Insert Site_Name into dictionary after mapping Ganglia   Site name to 
corresponding Site name in configuration   file using lookup() 
   
  Extract all node elements within the Cluster in the   Site 
   
  Count total number of nodes in cluster 
   
  Extract sub-elements from node elements 
   
  for each metric in each node: 
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   for each item in each metric: 
     
    Extract the name of the metric and its     value 
 
    Add the value of the metric to its      corresponding 
accumulator 
 
  Calculate the average of each metric by dividing each   accumulator by 
the total number of nodes 
 
  Add each of these averaged metrics as a row    corresponding to the 
average resources available at the   Site using add_row() into output file 
 
 Close the data files 
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APPENDIX B 
 
 

PSEUDO CODE FOR CREATING INFORMATION FOR TABLE JOB_INFO 
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#! ***** file - creating_job_info.py ***** 
#! ***** author Sreeranjani Ramprakash ***** 
#! ***** version 1.8 ***** 
 
def create_dictionary(list): 
 for each element in list 
   

Extract the value associated with key in the given list of strings using ":" 
as the delimiter between keys and values and adding them to a dictionary 

 
 return dictionary 
 
def add_row(dict,file): 
 

Enter the row of parameters associated with each job in the same order as it 
appears in the table Job_Info in the database using tab as the delimiter between 
fields 

 
def main():  
 Extract log file name from command line input 
  
 Open log file with job status command piped output 
 
 Accept output file name 
 
 Open output file to write 
 
 Create a list of strings of jobs in the log file 
 
 Process one line(job) at a time 
 
 for each job in list of jobs 
  Extract individual job parameter values 
 
  Split using "," ( doesn't take care of iterated lists within ) 
 
  Create a list of iterated lists 
 
  for each parameter in the iterated list 
    

Check if the list has an iterated list within and extract if found 
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Initialize and create dictionary using the list from above by invoking 
create_dictionary(list) 

 
Add one row of parameters associated with each job to output file 

 
 Close log file
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APPENDIX C 
 
 

PSEUDO CODE FOR CREATING INFORMATION FOR TABLE 
SITE_RESOURCES 
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#! ***** file - creating_site_resources_info.py 
#! ***** author Sreeranjani Ramprakash ***** 
#! ***** version 1.1 ***** 
 
 
def add_row(row,outputfile): 
 

Enter the row of static resources in the same order as how it appears in the table 
in the database by using tab as a delimiter between fields 

  
 
def main() : 
  
 Accept output file name 
 
 Open output file to write 
  
 Accept xml file name to parse 
 
 Open file to read 
  
 Parse the XML document 
  

Extract 'cluster' element which corresponds to the Site under consideration 
 
 for each node in cluster: 
 

Insert Site_Name into dictionary after mapping Ganglia Site name to 
corresponding Site name in configuration file using lookup() 

   
  Extract all node elements within the Cluster in the Site 
   
  Count total number of nodes in cluster 
   
  Extract sub-elements from node elements 
   
  for each metric in each node: 
    
   for each item in each metric: 
     
    Extract the name of the metric and its value 
 

Assign the static information as key value pairs to a dictionary 
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Add each of these static metrics as a row corresponding to the static 
resources available at the Site using add_row() into output file 

 
 Close the data files 



 

 

 

66 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX D 
 
 

PSEUDO CODE FOR CREATING INFORMATION FOR TABLE SITE_SERVICES 
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#! ***** file - creating_site_services.py ***** 
#! ***** author Sreeranjani Ramprakash ***** 
#! ***** version 1.4 ***** 
 
def add_row(dict,file): 
 

Enter the row of site services information in the same order as how it appears in 
the table in the database by using tab as a delimiter between fields 

 
def main() : 
  
 Accept output file name 
 
 Open output file to write 
  
 Accept xml file name to parse which is the configuration file 
 
 Open file to read 
  
 Parse the XML document 
  

Extract 'pool' elements which corresponds to all the site entries in the configuration 
file 

 
 Extract individual elements / attributes from 'pool' element 
 for each tag in pool element 
 

Extract required information that includes site name, GridFTP server 
node address, gatekeeper node address, working directory at this cluster 

 
Add all extracted information to output file as a row using add_row() 

 
 Close data file 
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APPENDIX E 
 
 

PSEUDO CODE FOR POPULATING THE DATABASE WITH ALL THE DATA 
FILES CREATED 
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#! ***** file- populating_database ***** 
#! ***** author Sreeranjani Ramprakash ***** 
#! ***** version 1.0 ***** 
 
def add_info_to_db(filename): 
 
        Connect to the MySQL server 
  
 Create query string to load data from tab separated file into respective table in 
database using carriage return as line separator 
 
 Execute query 
 
def main() 
 
 Extract data file from command line and pass it to function add_info_to_db() 
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