
IMPLEMENTATION OF AN ADAPTIVE BLOCK FILTER ON SUB-BLOCKS OF A

MACROBLOCK IN H.264/AVC

by

BHAVANA PRABHAKAR

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2013

ii

Copyright © by Bhavana Prabhakar 2013

All Rights Reserved

iii

Acknowledgements

 Firstly, I would thank my advisor Prof. K. R. Rao for his guidance, his tireless

assistance and dedication. His enthusiasm in maintaining new trend in the research areas has

inspired me. I am very grateful to him for having given me an opportunity to work under his

guidance. This thesis would not have been possible without his constant support and

encouragement.

I also like to thank the other members of my advisory committee Prof. W. Alan Davis

and Prof. Ioannis D. Schizas for reviewing the thesis document and offering insightful

comments.

I appreciate all members of Multimedia Processing Lab, Shreyanka Subbarayappa,

Dilip Prasanna Kumar for their support during my research work. I would also like to thank my

friends Shashank Vijay, Rohit Sridharan, Karthik Suresh, Radhika Vasani, my Intel manager

Sunita Joshi, my mentors Yasin Mohammad and Rohan Adyanthaya who helped me in many

ways leading to my thesis completion.

Finally, I am grateful to my family; my father V. N. Prabhakar Rao, my mother M. L.

Sharada Rao for their support, patience, and immense encouragement during my graduate

journey.

April 16, 2012

Abstract

IMPLEMENTATION OF AN ADAPTIVE BLOCK FILTER ON SUB-BLOCKS OF A

MACROBLOCK

Bhavana Prabhakar

The University of Texas at Arlington, 2013

Supervising Professor: K.R.Rao

Plenty of coding tools are being developed to boost the efficiency of H.264/AVC.

Some of these tools are implemented in the key technical area (KTA). The adaptive

interpolation filter (AIF) [3], the high precision interpolation filter [5], and the adaptive loop

filter (ALF) [4] have already been introduced in order to provide a more precise reference

picture. Other efficient coding methods, such as the motion vector competition [6] and the

extended macro-block (MB) [7], are also implemented in the KTA [16].

 In order to improve the coding efficiency of H.264/AVC, an adaptive prediction

block filter (APBF) based on Wiener filter is implemented on every Sub-Block (SB) of a

macro-block (MB) where each MB is decomposed into 4x4 SBs. For each SB using the

prediction and reconstruction results of the neighboring SBs the filter coefficients are

calculated. The proposed filter is applied to the prediction block of the current SB [16],

and the filtered block is selectively used depending on the rate-distortion (RD) cost [9].

For each SB, if the APBF is used, the residual signal between the prediction and original

signal of the SB by reducing the number of bits required for encoding, the coding

efficiency is improved. Additionally, since the same filter coefficients can be obtained in

v

the decoder, they do not need to be encoded into the bit-stream. The proposed method

achieves a 5.04% bitrate saving on an average when compared to H.264/AVC.

vi

Table of Contents

Acknowledgements…………………………………...………………………………………….iii

Abstract………………………………………………………………………………………...….iv

Table of Contents ... vi

List of illustrations .. viii

List of tables .. x

List of acronyms ... xi

Chapter 1 Introduction... 1

Multimedia .. 1

Storage Requirements for Multimedia Applications ... 3

Classification of Compression Techniques .. 3

Summary .. 5

Chapter 2 Video compression ... 5

H.264/AVC .. 6

H.264 Encoder: ... 13

Encoder (Forward Path) [28] .. 13

Encoder (Reconstruction path) [28] .. 14

Intra prediction: ... 14

Inter Prediction [31]:.. 17

Entropy Coding: .. 20

Fixed length code: .. 20

Exponential-Golomb variable length code [15]: ... 20

CAVLC (Context adaptive variable length coding): .. 20

CABAC (Context adaptive binary arithmetic coding): .. 21

Binarization: .. 22

vii

Arithmetic encoding: ... 22

Probability update: .. 22

H.264 Decoder: ... 22

Summary: ... 24

Chapter 3 Adaptive prediction block filtering... 25

Wiener Filter: .. 25

Adaptive Interpolation Filter [3], [18]: .. 26

Adaptive Loop Filter [19] ... 30

Block-based Adaptive Loop Filter [19].. 31

Quadtree-based Adaptive Loop Filter [19] ... 32

Algorithm Description of Block/Quadtree-based ALF [19] .. 34

Adaptive prediction block filter [16] ... 35

Summary .. 39

Chapter 4 Results of adaptive prediction block filtering on sub-blocks 40

Quality Assessment Metrics ... 41

3x3 adaptive prediction block filtering: .. 42

5x5 adaptive prediction block filtering: .. 45

7x7 adaptive prediction block filtering ... 48

Conclusion .. 51

Summary: ... 53

Chapter 5 Future work .. 54

Apendix A Frames of sequences used ... 55

References: ... 61

Biographical Information ... 65

viii

List of Illustrations

Figure 1.1 Basic principles in dealing with continuous media ... 2

Figure 1.2 Lossless compression schemes ... 4

Figure 1.3 Lossy compression schemes .. 5

Figure 2.1 Formats (4:4:4, 4:2:2 and 4:2:0) for Y color space .. 8

Figure 2.2 Block based motion compensation in H.264 ... 9

Figure 2.3 Profiles in H.264 with distribution of various coding tools] ... 12

Figure 2.4 Block diagram of H.264 Encoder .. 13

Figure 2.5 Intra prediction blocks for 16x16 luma MBs ... 15

Figure 2.6 4x4 Luma intra prediction modes in H.264] .. 16

Figure 2.7 Macroblock portioning in H.264 for inter prediction [30] row 1 (L-R) 16x16,

8x16, 16x8, 8x8 blocks and row 2 (L-R) 8x8, 4x8, 8x4, 4x4 blocks ... 18

Figure 2.8 Interpolation of luma half-pel positions .. 19

Figure 2.9 Interpolation of luma quarter-pel positions .. 19

Figure 2.10 Motion compensated prediction with multiple reference frames 20

Figure 2.11 Block diagram for CABAC] ... 21

Figure 2.12 Block diagram of H.264/AVC video decoder ... 22

Figure 3.1 Illustration of a wiener filter structure] .. 26

Figure 3.2 Interpolation process of (a) the filter in H.264/AVC, (b) the optimal AIF, and (c)

the separable AIF .. 27

Figure 3.3 Integer pixels (shaded blocks with upper-case letters) and fractional pixel

positions (non-shaded blocks with lower-case letters). Example for filter size 6 x 6. 29

Figure 3.4 Block diagram of encoder with BALF ... 31

Figure 3.5 Point symmetric filters in raster scan order .. 32

Figure 3.6 Block diagram of codec with QALF ... 33

ix

Figure 3.7 Quadtree representation in QALF ... 34

Figure 3.8 Bottom-up recursive algorithm ... 35

Figure 3.9 Neighbor reconstructed MBs { , and their corresponding

prediction MBs { , } ... 37

Figure 3.10 Flowchart of ABPF scheme ... 39

Figure 4.1 This plot shows the PSNR difference (dB) values for 3x3 APBF 44

Figure 4.2 This plot shows bitrate difference (%) values for 3x3 APBF .. 45

Figure 4.3 This plot shows the PSNR difference (dB) values for 5x5 APBF 47

Figure 4.4 This plot shows the bitrate difference (%) values for 5x5 APBF 48

Figure 4.5 This plot shows the PSNR difference (dB) values for 7x7 APBF 50

Figure 4.6 This plot shows the bitrate difference (%) values for 7x7 APBF 51

Figure 4.7 Comparison of PSNR difference (dB) values of 3x3, 5x5 and 7x7 APBF 52

Figure 4.8 Comparison of bitrate difference (%) values of 3x3, 5x5 and 7x7 APBF 53

x

List of Tables

Table 1.1 Mass storage requirements by various media types .. 3

Table 4.1 Selection ratio of intra-modes in P frame. Frames for 1 second are coded by

the original H.264/AVC standard .. 41

Table 4.2 Experimental results of 3x3 APBF scheme compared to H.264/AVC.............................. 43

Table 4.3 Experimental results of 5x5 APBF scheme compared to H.264/AVC.............................. 46

Table 4.4 Experimental results of 7x7 APBF scheme compared to H.264/AVC.............................. 49

xi

List of Acronyms

 AIF: Adaptive interpolation filter

 ALF: Adaptive loop filter

 APBF: Adaptive Prediction Block Filtering

 ASO: Arbitrary slice ordering

 AVC: Advanced video coding

 BALF: Block-based adaptive loop filter

 BD – ROM: Blue ray disc – read only memory

 CABAC: Context-adaptive binary arithmetic coding

 CAVLC: Context-adaptive variable-length coding

 CBP: Coded Block Pattern

 CIF: Common intermediate format

 DCT: Discrete cosine transform

 DP: Data partitioning

 FMO: Flexible macroblock ordering

 HD – DVD: High definition - digital video disc

 ITU: International telecommunication union

 KTA: Key technical areas

 MB: Macro-block

 MCIF: Motion compensated interpolation filter

 MPEG: Moving picture experts group

 PSNR: Peak signal to noise ratio

 QALF: Quad-tree adaptive loop filter

 RD: Rate distortion

xii

 RDO: Rate distortion optimization

 RDOQ: Rate-Distortion Optimized Quantization

 RS: Redundant slices

 SB: Sub-block

 SI: Side information

 SP: Simple profile

 VCEG: Video coding experts group

 WVGA: Wide video graphics array

 WQVGA: Wide quarter video graphics array

1

Chapter 1

Introduction

Multimedia

Over the last couple of years multimedia computing has emerged as a major

area of research. Multimedia computer systems have a variety of applications by

combining a wide range of information sources like graphics, text, images, audio, and full-

motion video. Multimedia today is basically a combination of three industries:- computer,

communication, and broadcasting.

The fundamental characteristic of multimedia systems is that they integrate

continuous media, such as voice, video, and animated graphics. This emphasizes the

need for multimedia systems to handle data with strict timing requirements and a at high

rate. The requirement of continuous media in distributed systems implies the need for

continuous data transfer over relatively long periods of time [21]. Additional important

primary issues are:

1. Media synchronization

2. Very large storage required,

3. Need for special indexing and retrieval techniques, tuned to multimedia data

types [20]

Figure 1.1 elucidates the basic principles of dealing with continuous media

examples of operations on these media. Audio and video information can be either

stored, used in an application, such as training, or can be used interactively, such as in

multimedia conferencing, or non-interactively, in TV broadcast applications [21].

2

Correspondingly, still images, can be used in an interactive mode such as browsing and

retrieval, or in non-interactive slide show mode.

Figure 1.1 Basic principles in dealing with continuous media [21]

Multimedia research areas include many areas in the computer field such as fast

processors, high-speed networks, large-capacity storage devices, new algorithms and

data structures, parallel processing methods, video and audio compression algorithms,

object-oriented programming, graphics systems, real-time operating systems, hypertext

and hypermedia, languages for scripting, human-computer interaction, and complex

architectures for distributed systems.

3

Storage Requirements for Multimedia Applications

Audio, image, and video signals require a vast amount of data for their

representation. Table 1.1 illustrates the mass storage requirements for various media

types, namely text, image, audio, and video.

Table 1.1 Mass storage requirements by various media types [21] (B=byte)

 Text Image Audio Video

Object type -ASCII
-EBCDIS

-Bitmapped
graphics
-Still photos
-Faxes

Non coded stream of
digitized audio or voice

TV analog or
digital image with
synched streams
at 24-30 frames/s

Size and
bandwidth

2KB per
page

-Simple
64KB/image
-Detailed(color)
7.5MB/image

Voice/Phone 8 KHz/8
bits (mono) 6-44 KB/s
AUDIO CD 44.1 KHz/
16 bit/stereo 176 KB/s

27.7 MB/s for 640
× 480 × 24 pixels
per frame (24-bit

color)
30 frames/s

There are three main reasons why present multimedia systems require data to

be compressed. They are:

(a) Large storage requirements of multimedia data

(b) Relatively slow storage devices which do not allow playing multimedia data

(specifically video) in real-time

(c) The present network’s bandwidth, which does not allow real-time video data

transmission

Classification of Compression Techniques

Compression of digital data is based on various computational algorithms, which

can be implemented either in software or in hardware [21]. Compression techniques are

classified into two categories: (a) Lossless (b) Lossy approaches [22]

Lossless techniques are capable of recovering the original representation

perfectly. Lossy techniques involve algorithms which recover the presentation to be

4

analogous to the original one. The lossy techniques deliver higher compression ratios,

and therefore they are more often applied in image and video compression than lossless

techniques. The classification schemes for lossless and lossy compression are presented

in Figures 1.2 and 1.3 respectively.

Figure 1.2 Lossless compression schemes [21]

The lossy techniques are classified as: (i) Prediction-based techniques (ii) Frequency-

oriented techniques (iii) Importance-oriented techniques

Prediction-based techniques predict the subsequent values by observing previous

values. Frequency-oriented techniques apply the discrete cosine transform (DCT).

Importance-oriented techniques use the characteristics of the image such as color as the

base for the compression [21].

The hybrid compression techniques are those where MPEG, H.264, HEVC etc.

are used. These techniques combine several approaches like DCT, vector quantization,

differential pulse code modulation, motion compensation, entropy coding, etc.

Lossless

(noiseless)

Huffman Arithmetic

decomposition
Lempel Ziv Run Length

5

Figure 1.3 Lossy compression schemes [21]

Summary

The importance of multimedia, the requirement for compression and the

techniques of compression are described. In Chapter 2, video compression mainly

H.264/AVC standard and its implementation are discussed.

Lossy

(noisy)

Predictive Frequency

oriented

Importance

oriented

Hybrid

JPEG H.264

MPEG-2

MPEG-1

6

Chapter 2

Video compression

 The entertainment videos with reasonable dimensions and frame rates

would require storage space and bandwidth far in excess of that available on a CD-ROM

or DVD [23]. Therefore providing consumer quality video on compact disc would not be

possible. If high bandwidth technology such as fibre-optic cable was in place, even then

per-byte cost of transmission needs to be very low before it would be feasible to use it for

the tremendous amounts of data required by HDTV [23]. Even if the transportation and

storage problems of digital video were eliminated, the processing power required to

handle such volumes of data would make the receiver hardware extremely expensive.

Although significant gains in storage, processor technology and transmission

have been achieved in the past years, it is mainly the decrease in the volume of data that

needs to be transmitted, stored, and processed that has made extensive use of digital

video a prospect. The reduction of bandwidth has been made possible by the progress in

compression technology. Compression reduces the bandwidth required to store and

transmit digital video [23].

H.264/AVC

The two main standards bodies that are doing equivalent development of video

compression standards are: The Moving Picture Experts Group (MPEG) by the ISO/IEC

and the International Telecommunication Union (ITU). H.264/AVC is one of the newer

video coding standards of the ITU-T video coding experts group (VCEG) and the MPEG.

H.264 is a video compression scheme that has become the worldwide digital video

standard for consumer electronics and personal computers. In particular, H.264 has

already been selected as a key compression scheme (codec) for the next generation of

7

optical disc formats, HD-DVD and Blu-ray disc (sometimes referred to as BD or BD-

ROM) [13].

H.264 has been adopted by MPEG to be a key video compression scheme in the

MPEG-4 format for digital media exchange. H.264 is sometimes referred to as “MPEG-4

Part 10” (part of the MPEG-4 specification), or as “AVC” and has achieved a significant

increase in the rate-distortion efficiency providing, a factor of two in bit-rate savings when

compared with existing standards such as MPEG-2 Video [13, 14].

H.264/AVC like any other motion-based codecs, uses the following basic

principles of video compression[24]:

 Transform for reduction of spatial correlation.

 Quantization for controlling the bitrate.

 Motion compensated prediction for reduction of temporal correlation.

 Entropy coding for reduction in statistical correlation.

A video is a pile of frames attached one after another, in most video data the

difference between consecutive frames is insignificant and hence data cutback is

possible. The video frames are known as picture types or frame types. The frame types

are classified as I, P and B frames. I frames are intra coded frames, they do not use other

video frames for compression and therefore are least compressible, P frames are

predictive frames, they use data from previous frames for compression and are more

compressible compared to I-frames. B frames are bi-predictive frames ,they use both

past and/or future frames for compression and hence are the most compressible frames.

A frame is divided into several blocks known as macroblocks (MBs) which are usually

16x16 pixels, on Y the plane of the original image. A MB can be represented in several

ways in Y space.Figure 2.1 shows different formats for Y color space.

8

The 4:4:4 represents 4 Y blocks, 4 and 4 blocks respectively , it represents

a complete bandwidth video and contains information as the data if it would be in RGB

color space. The 4:2:2 contains half the 4:4:4 chrominance information and 4:2:0

contains one quarter of the 4.4.4 chrominance information. H.264/AVC video codecs can

support all the formats, but most consumer level products use 4:2:0 mode.

Figure 2.1 Formats (4:4:4, 4:2:2 and 4:2:0) for Y color space [25].

Intra prediction compression uses only the present frame for prediction. It

predicts the movements from the neighboring blocks. It uses the mode information from

adjoining blocks. Intra frame prediction is frequently used in uniform zones of the picture

where there is no too much movement.

While in inter prediction the encoder divides one frame into MBs and attempts to

find a block similar to the frame it is encoding from a reference frame. Figure 2.2 shows

block-based motion compensation in H.264 encoder.

9

Figure 2.2 Block based motion compensation in H.264 [26]

A reference frame is used to eliminate redundancy, this frame is precisely coded

with raw pixel values so it has the complete data stored. A reference frame, I-frame/P-

frame can be a previous or a future frame from the video sequence. A block matching

algorithm is used to find a similar block from the reference frame to the frame it is

encoding. The probability of finding such a block is very high, but it may not be an

accurate match and can introduce prediction error. The algorithm calculates the

prediction error by taking the difference of the reference frame block and the block it is

encoding. If the prediction error is higher than a threshold value, the algorithm looks for a

different reference frame block with identical characteristics and calculates the prediction

error. In case a matching block with least prediction error is found, the encoder transmits

a vector - motion vector. It has co-ordinates that direct to the block from the reference

frame. Therefore the encoder takes transform of the difference between reference and

predicted frames, quantizes the transform coefficients, entropy coding is implemented to

reduce the bitrate

10

There is a possibility that a similar block found from the reference frame presents

large prediction error, which makes the complete size of motion vector and prediction

error higher than raw encoded pixels of the block. The algorithm then sends data on the

raw encoded block in these cases.

The H.264 standard defines 21 sets of capabilities; these are known as profiles which

target specific classes of applications.

Profiles for non-scalable 2D video applications include the following:

Constrained Baseline Profile (CBP)

This profile is mainly used for low-cost applications, mobile applications and

video conferencing. It relates to the subset of features that are common between

the Baseline, Main, and High Profiles [26].

Baseline Profile (BP)

The baseline profile comprises of I and P-slices, CAVLC and some error

resilience tools like arbitrary slice ordering (ASO), flexible macroblock

ordering (FMO) and redundant slices (RS). This profile is primarily used for low-

cost applications that require other data loss robustness, some mobile

applications and video conferencing. The significance of this profile has

diminished since the definition of the Constrained Baseline Profile in 2009. All

Constrained Baseline Profile bitstreams are considered to be Baseline Profile

bitstreams, since these profiles share the same profile identifier code value [26].

Main Profile (MP)

The main profile contains of I, P and B slices, context-adaptive variable-length

coding (CAVLC) and context-adaptive binary arithmetic coding (CABAC) entropy

coding. It does not include error resilience tools like FMO, ASO, RS and data

partitioning (DP) or switching – I (SI) and switching – P (SP) slices. This profile is

used for standard-definition digital TV broadcasts which use the MPEG-4 format

defined in the digital video broadcasting standard. It is not used for high-definition

television broadcasts, since the importance of this profile diminished when the

High Profile was developed in 2004 for the same application [26].

11

Extended Profile (XP)

Extended profile is a superset of baseline profile. It adds B, SP and SI-slices and

interlaces coding tools and further support error resilience tool set in the form of

data partitioning (DP). Intended as the streaming video profile, this profile has

relatively high compression capability and some extra tricks for robustness to

data losses and server stream switching [26].

High Profile (HiP)

This is the primary profile for disc storage applications and broadcast, mainly for

high-definition television applications [26].

Progressive High Profile (PHiP)

This profile is similar to the high profile, but without support of field coding

features [26].

Constrained High Profile

This profile is similar to the Progressive High profile, but without support of B (bi-

predictive) slices [26].

Some other profiles are [26]:

 High 10 Profile (Hi10P)

 High 4:2:2 Profile (Hi422P)

 High 4:4:4 Predictive Profile (Hi444PP)

 High 10 Intra Profile

 High 4:2:2 Intra Profile

 High 4:4:4 Intra Profile

 CAVLC 4:4:4 Intra Profile

 Scalable Baseline Profile

 Scalable Constrained Baseline Profile

 Scalable High Profile

 Scalable Constrained High Profile

 Scalable High Intra Profile

 Stereo High Profile

 Multiview High Profile

12

Figure 2.3 Profiles in H.264 with distribution of various coding tools [24].

These profiles include three enhancements of coding efficiency [27]:

 Adaptive MB level switching between 8x8 and 4x4 transform block sizes.

 Encoder specific perceptual based quantization scaling matrices.

 Encoder specified separate control of the quantization parameter for each

chroma component.

All the high profiles support monochrome coded video sequences, in addition to

typical 4:2:0 video as shown in figure 2.1. The difference in capability among these

profiles is chiefly in terms of chroma formats and supported sample bit depths.

Nevertheless, the high 4:4:4 profile also supports predictive lossless coding and residual

color-transform features. [24]

13

H.264 Encoder:

H.264 encoder works on the same principles as that of any other codec. Figure

2.6 shows the block diagram of the H.264 encoder video codec.

Figure 2.4 Block diagram of H.264 Encoder [4].

The H.264 encoder includes two dataflow paths: 1. Forward path. 2. Reconstruction path.

Encoder (Forward Path) [28]

As shown in figure 2.4 the input frame is processed in units of a MB. Each MB is

encoded in either intra or inter mode. In any of the cases, a predicted MB ‘P’ is formed

based on a reconstructed frame. It is formed from samples in the current frame that have

been formerly encoded, decoded and reconstructed in intra mode. The samples which

are unfiltered are used to form P. Whereas P is formed by motion-compensated

prediction from one or more reference frame(s) in inter mode. The prediction for each MB

may be formed from one or more future or past frames that have already been encoded

and reconstructed [29]. A residual or difference MB is produced by taking the difference

14

of prediction P and current MB. This is transformed and quantized to produce a set of

quantized transform coefficients. These coefficients are reorganized and entropy

encoded. The entropy encoded coefficients along with side information required to

decode the MB form the compressed bitstream is passed to a network abstraction layer

(NAL) for either transmission or storage [28].

Decoder (Reconstruction path) [28]

As shown in Figure 2.4, the quantized MB coefficients are decoded in order to

reconstruct a frame for encoding of future MBs. The coefficients are rescaled and inverse

transformed to obtain a difference MB. This is not the same as the original difference MB.

The quantization process introduces losses. The predicted MB P is added to the

difference MB to form a reconstructed MB which is a distorted version of the original MB.

A deblocking filter is applied to minimize the effects of blocking distortion and

reconstructed reference frame is formed from a series of MBs [15].

Intra prediction:

Intra prediction uses the spatial correlation among pixels, there are three basic types

defined as full MB prediction for 16x16 luma or the corresponding chroma size, 8x8 for

luma prediction in FRExt [11] defined profiles, 4x4 luma prediction

In full MB prediction, the edge pixels of the previously decoded neighboring MBs are

used to predict the pixel values of an entire MB of luma or chroma. Full MB intra

prediction is used for luma in a MB type called the intra 16x16 intra MB type. Due to the

differences in sizes for chroma arrays, the MB in different chroma sizes are used which

are 8x8 chroma in 4:2:0 MBs, 8x16 chroma in 4:2:2 MBs and 16x16 chroma in 4:4:4

MBs. The prediction type for 16x16 MB is shown in Fig 2.5.

15

Figure 2.5 Intra prediction blocks for 16x16 luma MBs [15].

 A full MB prediction can be achieved in one of four ways which could be used by the

encoder to select the type of prediction [28]:

 Vertical: In vertical prediction the pixel values of a MB are predicted from the

pixels just above the MB. Vertical mode is commonly known as the mode 0 for

intra prediction.

 Horizontal: For horizontal prediction the pixel values of a MB are predicted

from the pixels left to the MB. Horizontal mode is commonly known as the

mode 1.

 DC: The luma values of the neighboring pixels are averaged and that average

is used as predictor. DC is commonly known as the mode 2.

 Planar: In planar prediction, a three curve fitting equation is used to form a

prediction block having a brightness, slope in the horizontal direction and

slope in the vertical direction that approximately matches the neighboring

pixels.

16

Pixels A to M are previously reconstructed and coded.

Figure 2.6 4x4 Luma intra prediction modes in H.264 [15].

The values of each 4x4 block of luma samples are predicted from the neighboring

pixels above or left of a 4x4 block in spatial 4x4 prediction mode. The encoder has the

choice to select from the nine differential directional ways of predicting for a 4x4 intra

prediction block for luma as shown in Figure 2.6 [15]. The prediction direction relates to a

certain set of spatially dependent linear combinations of formerly decoded samples for

use as the prediction of each input sample.

1. The samples of the macroblock are predicted from the neighboring samples on

the top in mode 0.

2. The samples of the macroblock are predicted from the neighboring samples from

the left in mode 1.

3. The mean of all the neighboring samples is used for prediction in mode 2.

4. Mode 3 is in diagonally down-left direction.

5. Mode 4 is in diagonal down-right direction.

17

6. Mode 5 is in vertical-right direction.

7. Mode 6 is in horizontal-down direction.

8. Mode 7 is in vertical-left direction.

9. Mode 8 is in horizontal up direction.

The predicted samples are obtained from weighted average of the formerly predicted

samples A to M. For 8x8 luma prediction the process is similar to that of 4x4 luma. The

8x8 luma prediction has the block size as 8x8 and uses a low-pass filter to enhance the

prediction performance.

Inter Prediction [31]:

Inter prediction creates a prediction model from one or more previously encoded

video frames. Inter-prediction is used to exploit the temporal redundancy in video data.

The temporal correlation is reduced by inter prediction through the use of motion

estimation and compensation algorithms [30]. An image is divided into MBs; each 16x16

MB is further partitioned into 16x16, 16x8, 8x16, 8x8 sized blocks. An 8x8 sub-MB can be

further partitioned into 8x4, 4x8, 4x4 sized blocks. Figure 2.7 illustrates the partitioning of

a MB and a sub-MB [30]. The input video characteristics administer the block size. A

smaller block size ensures less residual data; however smaller block sizes also mean

more motion vectors, and hence more bits are required to encode these motion vectors

[30]

18

Figure 2.7 Macroblock partitioning in H.264 for inter prediction [30] row 1 (L-R) 16x16,

8x16, 16x8, 8x8 blocks and row 2 (L-R) 8x8, 4x8, 8x4, 4x4 blocks

Each partition in an inter-coded MB is predicted from an area of equal size in a

reference picture. The offset between the two areas (the motion vector) has quarter-

sample resolution for the luma component and one-eighth-sample resolution for the

chroma components. The luma and chroma samples at sub-sample positions do not exist

in the reference picture and so it is necessary to create them using interpolation from

nearby coded samples [31]. Figure 2.8 shows half and quarter pixel interpolations used in

luma pixel interpolation respectively. Six-tap filtering is used for derivation of half-pel luma

sample predictions, for sharper sub pixel motion-compensation. Quarter-pixel motion is

derived by linear interpolation of the half pel values, to conserve processing power.

19

Figure 2.8 Interpolation of luma half-pel positions [30]

Figure 2.9 Interpolation of luma quarter-pel positions [30]

The reference pictures used for inter prediction are formerly decoded frames and

are stored in the picture buffer. H.264 supports the use of multiple frames as reference

frames. This is implemented by the use of an additional picture reference parameter

which is transmitted along with the motion vector. Figure 2.10 illustrates an example with

4 reference pictures.

20

Figure 2.10 Motion compensated prediction with multiple reference frames [30]

Entropy Coding:

A coded stream or a file of H.264 consists of a series of coded symbols which

make up the identifiers and delimiting codes, syntax and include parameters, prediction

types, differentially coded motion vectors and transform coefficients. The H.264/AVC

standard specifies several methods for coding the symbols i.e. converting each symbol

into a binary pattern that is transmitted or stored as part of the bitstream. These methods

are as follows [27]:

Fixed length code: It is a code in which a fixed number of source symbols are encoded

into a fixed number of output symbols. A symbol is converted into a binary code with a

specified length (n bits). In this method, particularly, data compression is only possible for

large blocks of data, and any compression beyond the logarithm of the total number of

possibilities comes with a finite probability of failure.

Exponential-Golomb variable length code [15]: The symbol is represented as an Exp-

Golomb [4] codeword with a varying number of bits. In general, shorter Exp-Golomb

codewords are assigned to symbols that occur more frequently.

CAVLC (Context adaptive variable length coding): Context adaptive variable length

coding, a specifically designed method of coding transform coefficients in which different

21

sets of variable length codes are chosen depending on the statistics of recently-coded

coefficients, using context adaptation [27].

After the processes such as prediction, transformation and quantization blocks are

typically scarce, often containing only zeros. CAVLC uses run-level coding to efficiently

represent strings of zeros. The number of non-zero coefficients in neighboring blocks is

interrelated. The number of coefficients is encoded using a look-up table and choosing a

look-up table depends on the number of non-zero coefficients in neighboring blocks.

CABAC (Context adaptive binary arithmetic coding): Context adaptive binary arithmetic

coding [4] is a technique of arithmetic coding in which the probability models are updated

based on previous coding statistics. CABAC is an optional entropy coding mode

accessible in Main and High profiles. CABAC achieves good compression performance

by [27]:

1. Selecting probability models for each syntax element according to the element’s

context.

2. Adapting probability estimates based on local statistics

3. Using arithmetic coding rather than variable-length coding.

Figure 2.11 Block diagram for CABAC [15]

22

Figure 2.11 shows schematic for CABAC [15].Coding a data symbol involves the

following stages [27]:

Binarization: CABAC uses binary arithmetic coding which means that only binary

decisions (1 or 0) are encoded. A non-binary valued symbol is converted to a binary

code prior to arithmetic coding. Context model selection: A “context model” is a

probability model for one or more bits of the binarized symbol and is chosen from a

selection of available models depending on the statistics of recently-coded data

symbols.

Arithmetic encoding: An arithmetic coder encodes each bin according to the selected

probability model. Note that there are just two sub-ranges values 1 or 0.

Probability update: The selected context model is updated based on the actual coded

value.

H.264 Decoder:

Figure 2.12 Block diagram of H.264/AVC video decoder [4].

23

The H.264/AVC decoder receives a compressed bitstream from the NAL as

shown in Figure 2.12. The data elements are entropy decoded and reordered to produce

a set of quantized coeffients. These are rescaled and inverse transformed to give a

difference macroblock. Using the header information decoded from the bit stream, the

decoder creates a prediction macroblock P, identical to the original prediction P formed in

the encoder. P is added to the difference macroblock and this result is given to the

deblocking filter to create the decoded macroblock.

The purpose of the reconstruction path in the encoder is to ensure that both

encoder and decoder use identical reference frames to create the prediction P. If this is

not the case, then the predictions P in encoder and decoder will not be identical, leading

to an increasing error or drift between the encoder and decoder [29].

The key features that make H.264/AVC a highly efficient codec are [27] :

 Variable block size motion compensation with block sizes from 16x16 to 4x4,

enabling precise segementation of moving regions.

 Six tap filtering for sharper subpixel motion compensation. Quarter-pixel

motion is derived from linear interpolation.

 Weighted prediction , allowing encoder to specify the scaling and offset.

 Lossless MB coding

 An in-loop deblocking filter

 Loss resilence features like network abstraction layer (NAL), flexible MB

ordering (FMO) , redundant slices (RS) and data partitioning (DP)

 An entropy coding design including context adaptive binary arithmetic coding

(CABAC) , context adaptive variable length coding (CAVLC) and variable

length coding (VLC)

24

 Switching slices like SI and SP slices.

Summary:

This chapter has covered the importance of video compression, H.264 video

coding standard, encoder, decoder, and the coding tools in the standard. The next

chapter covers the theoretical concept of prediction block filtering.

25

Chapter 3

Adaptive prediction block filtering

Many new coding tools have been developed in order to enhance the efficiency

of H.264/AVC. Some of these tools are adopted in the Key Technical Areas (KTA)

developed for preparing for the next generation video coding standard [2].The adaptive

interpolation filter (AIF) [3], the adaptive loop filter (ALF) [4], and the high precision

interpolation filter [5] have been introduced to provide a more precise reference picture

[16]. Other efficient coding methods, such as the motion vector competition [6] and the

extended macro-block (MB) [7], are also adopted in the KTA.

Both the AIF and ALF are designed based on the Wiener filter, which is an

optimal filter to handle the degradation of image quality caused by additional noise and/or

blurring [8]. The AIF is obtained by calculating the filter coefficients that make the

reference picture closer to the original picture. Similarly, in the ALF, the loop filter

coefficients are determined by improving the coding noise in the de-blocked picture [16].

Wiener Filter:

 The goal of the Wiener filter is to filter out noise that has corrupted a signal. It is

used to produce an estimate of a desired or target random process by filtering another

random process through the filter. The Wiener filter minimizes the mean square error

between the estimated random process and the desired process [37].

Wiener theory, formulated by Norbert Wiener [37], forms the foundation of data-

dependent linear least square error filters. Wiener filters play a central role in a wide

range of applications such as linear prediction, echo cancellation, signal restoration,

channel equalization and system identification.

http://en.wikipedia.org/wiki/Noise

26

Figure 3.1 Illustration of a Wiener filter structure [38]

The coefficients of a Wiener filter are calculated to minimize the average squared

difference between the filter output and a desired signal. In its basic form, the Wiener

theory assumes that the signals are stationary processes. However, if the filter

coefficients are periodically recalculated for every block of N signal samples then the filter

adapts itself to the average characteristics of the signals within the blocks and becomes

block-adaptive as in the case of current implementation of adaptive prediction block filter

[38].

Adaptive Interpolation Filter [3], [18]:

In H.264/AVC, the resolution of motion vector is quarter-pixel, the reference

frame is interpolated to be 16 times the size for MCP, 4 times both sides. As shown in

Fig. 3.2(a), the interpolation defined in H.264 includes two stages, interpolating the half-

pixel and quarter-pixel sub-positions, respectively. The interpolation in the first stage is

separable, which means the sampling rate in one direction is doubled by inserting zero-

27

valued samples followed by filtering using a 1-D filter h1, [1, 0, -5, 0, 20, 32, 20, 0, -5, 0,

1]/32 [15], and then the process repeats in the other direction. The second stage, which

is non-separable, uses bilinear filtering supported by the integer pixels and the

interpolated half-pixel values.

Figure. 3.2 Interpolation process of (a) the filter in H.264/AVC, (b) the optimal

AIF, and (c) the separable AIF [18]

where = m times the sampling rate due to interpolation.

To reduce the bit-rate of video signals, the international telecommunication union

(ITU) coding standards [32] apply hybrid video coding with motion-compensated

↑ 𝑚

28

prediction combined with transform coding of the prediction error. In the first step the

motion- compensated prediction is performed. The temporal redundancy, i.e., the

correlation between consecutive images is exploited for the prediction of the current

image from already transmitted images. In a second step, the residual error is transform

coded, thus the spatial redundancy is reduced.

For performing motion-compensated prediction, the current image of a sequence

is split into blocks. For each block a displacement vector
⃗⃗ ⃗ is estimated and transmitted

that refers to the corresponding position of its image signal in an already transmitted

reference image. The displacement vectors have fractional-pel resolution. The

H.264/AVC [1] is based on ¼ pel displacement resolution [33]. Displacement vectors with

fractional resolution may refer to positions in the reference image, which are located

between the sampled positions. In order to estimate and compensate the fractional-pel

displacements, the reference image has to be interpolated on the fractional-pel positions.

H.264/AVC [1] uses a 6-tap Wiener interpolation filter with filter coefficients

 ⁄ . The interpolation process is depicted in Figure 3.3 and can be

subdivided into two steps. At first, the half-pel positions

 are calculated, using a horizontal or vertical 6-tap

Wiener filter, respectively. Using the same Wiener filter applied at fractional-pel

positions the fractional-pel position j is computed. In the second step, the

remaining quarter-pel positions are obtained, using a bilinear filter, applied at already

calculated half-pel positions and existing full-pel positions.

29

Figure 3.3 Integer pixels (shaded blocks with upper-case letters) and fractional pixel

positions (non-shaded blocks with lower-case letters). Example for filter size 6 x 6. [3]

An adaptive interpolation filter as proposed in [3] is independently estimated for

every image. This approach enables to take into account the alteration of image signal

properties as aliasing on the basis of minimization of the prediction error energy.

Analytical calculation of optimal filter coefficients is not possible due to nonlinearity, which

is caused by subsequent application of 1-D filters. In [34] a 3-D filter is proposed. In this

30

proposal two techniques are combined: a 2-D spatial filter with a Motion Compensated

Interpolation Filter (MCIF).

The main disadvantage of MCIF is the sensitivity concerning displacement vector

estimation errors. Besides aliasing, there are further distorting factors, which impair the

efficiency of motion compensated prediction. The main disadvantage of using a 2-D

spatial filter with a motion compensated interpolation filter (MCIF) proposed in [34] is its

numerical approach to determine the coefficients of a separable 2-D filter. Due to an

iterative procedure, this method is nondeterministic in terms of time and requires a

significantly higher encoder complexity.

In order to guarantee a limited increase of encoder complexity compared to the

standard H.264/ AVC [1] on the one hand and to reach the theoretical bound for the

coding gain obtained by means of a 2-D filter on the other hand, a non-separable filter

scheme is proposed. An individual filter will be used for the interpolation of each

fractional-pel position.

Adaptive Loop Filter [19]

There are three types of ALF: frame-based, block-based and quadtree-based

ALFs. All of them are based on wiener filter, but with different filtering control basis. [19].

Wiener filter is capable of restoring the reconstructed picture to the original

picture globally but some pixels are degraded locally. As the degraded area reduces the

filtering efficiency, the means of picture restoration and loop filtering are enhanced if

these areas are not filtered. Hence, the block-based ALF uses explicit flags for filtering

on-off on block by block basis, whereas quadtree-based ALF introduces a quadtree data

structure to carry out the variable-size block filtering [19].

31

Block-based Adaptive Loop Filter [19]

Figure 3.4 shows the block diagram of an encoder with block-based ALF. It

applies a filter to luminance blocks, and signals a flag for each luminance block to

indicate whether the block is filtered or not. Chrominance pixels are also filtered by filter

coefficients designed individually for luminance.

Figure 3.4 Block diagram of encoder with BALF [19]

In frame-based ALF, the tap length of Wiener filter is fixed. While, the optimal tap

length depends on the characteristics of picture. Adaptive selection of tap length is

selected slice by slice from 5×5, 7×7 or 9×9 taps for luminance of referenced pictures.

However, only 5×5 tap filter is applied to reduce the overhead and complexity due to the

inadequate enhancement of ALF in luminance of non-referenced pictures or chrominance

of all pictures. The filter coefficients are point symmetric, as shown in figure 3.5

32

Figure 3.5 Point symmetric filters in raster scan order [19]

A filter designed for luminance can be applied to luminance of the reconstructed

picture. A flag to indicate whether the luminance block is filtered or not is signaled for

each luminance block. The luminance block size, which can be 8×8, 16×16, 24×24,

32×32, 48×48, 64×64, 96×96, or 128×128, is signaled for each frame [19].

A filter designed for chrominance can be applied to chrominance of the decoded

picture only if a luminance filter is applicable. It is signaled for each frame whether the

chrominance filter is applied to only , only , or both and .

Quadtree-based Adaptive Loop Filter [19]

Quadtree-based ALF further improved the filtering efficiency by using more

flexible filtering control scheme – quadtree data structure. In this structure, as shown in

Figure 3.7, each leaf indicates a block and each node has four branches. The information

represented in the quadtree data structure are: the block partition flag indicated by circle,

and block filtering flag, indicated by the diamond. For a block partition, each leaf is coded

as “0”, and each node is coded as “1”. Only a leaf has a filter block flag to indicate

whether the block is filtered or not. In order to reduce the redundancy, no block partition

flag is coded at the bottom layer. Figure 3.5 depicts the block diagram of codec with

QALF, which is similar to the BALF.

33

Figure 3.6. Block diagram of codec with QALF [19]

Figure 3.7. Quadtree representation in QALF [19]

34

In order to find the optimal quadtree data structure, a conventional bottom-up

recursive algorithm is used in QALF. Suppose that we have already known the optimal

quadtree data structures for layer l+1, the four branches should be combined into a leaf

when J(l)<J(l+1), as shown in Figure 3.8. Using this algorithm, the quadtree data

structure is decided [19].

Figure 3.8 Bottom-up recursive algorithm [19]

Algorithm Description of Block/Quadtree-based ALF [19]

Here, the algorithms of Block/Quadtree-based ALF are summarized as follows:

Step 1: Filter tap size is set to 5×5, and the Wiener-Hopf [19] equation is used to find the

optimal 5×5 filter coefficients for the whole picture

Step 2: The decided 5×5 filter in step 1 is used in the block/quadtree structure

optimization procedure:

BALF: Block Size (8, 16, 24, 32, 48, 64, 96 and 128) and filter block flag are selected by

rate-distortion optimization algorithm

35

QALF: Quadtree data structure (e.g. minimum block size and number of layers) and filter

block flag are optimized by using bottom-up recursive algorithm

Step 3: Filter tap size (5×5, 7×7 or 9×9) and corresponding filter coefficients are further

optimized by using decided block/quadtree data structure

Adaptive prediction block filter [16]

In order to improve the coding efficiency of H.264/AVC, an adaptive prediction

block filter (APBF) based on Wiener filter is implemented on every Sub Block (SB) of a

macro-block (MB) where each MB is decomposed into 4x4 SBs. For each SB the filter

coefficients are calculated using the prediction and reconstruction results of the

neighboring SBs. The proposed filter is applied to the prediction block of the current SB

[16], and the filtered block is selectively used depending on the Rate Distortion (RD) cost

[9]. For each SB, if the APBF is used, by reducing the number of bits required for

encoding the residual signal between the prediction and original signal of the SB, the

coding efficiency is improved. Additionally, as the same filter coefficients can be obtained

in the decoder, they do not need to be encoded into the bit-stream [16]. The proposed

method achieves a 5.04% bitrate savings on an average when compared to H.264/AVC.

The proposed method adopts the Wiener filter [16] to transform the prediction

signal to almost match the original signal. By exploiting the original and predicted pixel

values of the current SB, the Wiener filter coefficients can be calculated. But in this case,

encoding the filter coefficients is required for each SB, since the original pixel values are

not available in the decoder. Information available at both the encoder and the decoder

should be utilized to avoid encoding the filter coefficients. Therefore, the formerly

reconstructed neighboring SBs of the current SB are used to calculate the APBF

coefficients. If the Wiener filter obtained by using the neighboring SBs is applied to the

36

current prediction signal, the filtered signal can be very similar to the original signal

producing less prediction errors [16].

Figure 3.9. Neighbor reconstructed SBs { , and their corresponding

prediction SBs { , } [16]

The filter coefficients for the current SB are calculated by using four pairs

composed of a prediction SB from { , } and a reconstructed SB from

{ , } in the neighborhood as shown in Figure 3.9 or by using each one of them.

The Wiener filter coefficients are calculated by minimizing the mean square error

37

between the prediction and reconstruction signal of the neighboring SBs. For example, a

set of filter coefficients using and is calculated as

 Where , is a (2N+1)×(2N+1) symmetric filter consisting of filter coefficients
 ,

 and

 are the predicted and reconstructed pixel values at the (x, y) position in the

neighboring SB, respectively. LMS scheme is used to obtain . N pixels are padded at

the boundary of the SB for calculation. In this APBF scheme, the center symmetric filter

[10] is employed. Thus, the positions located symmetrically from the center point have

the same coefficient. Same filter coefficients can be derived at the decoder. Figure 3.8

shows the flowchart of the APBF scheme at the encoder [16].

38

Figure 3.10. Flowchart of ABPF scheme [16]

39

 Step 1. Obtain the prediction SB, P, of the current SB [16].

 Step 2. Compute five sets of the Wiener filter coefficients, for P using the

predicted and reconstructed pixel values of the neighboring SBs [16].

 Step 3. Process P by utilizing the filters in step 2 to obtain { , , ,

 , } [16].

 Step 4. Calculate the RD costs [9][18] { , , , , , } for ,

 , , , and P, respectively [16].

 Step 5. Select the final prediction SB that yields the minimum RD cost.

Then, the residue between the final prediction SB and the original SB are

coded [16].

According to the selected prediction SB, an index is transmitted to the

decoder to notify the usage of APBF. The best mode with the lowest RD [9] cost is

selected after this process is tested for all prediction modes. At the decoder side, the

same prediction signal used at the encoder side can be derived. The Wiener filter is

constructed, and then the prediction SB is filtered concurring to the decoded value

of [16].

Summary

 The theoretical aspects of adaptive prediction block filtering implemented on sub-

blocks are explained along with the details of other filters such as adaptive interpolation

filter and adaptive loop filter in this chapter. The next chapter will be a discussion on the

analysis of implementing the APBF.

40

Chapter 4

Results of adaptive prediction block filtering on sub-blocks

The adaptive prediction block filter scheme is implemented using JM11KTA2.3

software [35]. For each sequence, 100 frames are encoded with IPPP prediction structure

based on the conditions in [11] except for RDOQ. The test platform is an Intel Core 2 Quad

Q8400 2.66-GHz CPU and 8-GB RAM with Windows 7 64-bit operating system. Although

the intra-modes are also utilized for inter-frames, the probability that the intra-mode is

selected as a best mode is quite low as shown in table 4.1.

Table 4.1 Selection ratio of intra-modes in P frame. Frames for 1 second are coded by
the original H.264/AVC standard [16].

Hence, applying APBF to the intra-block does not considerably affect the

compression performance, but rather increases the computational complexity.

Therefore, the APBF scheme is performed only for the inter-prediction modes.

Sequence Size Frame rate (fps) Selection ratio (%)

Kimono

1920 × 1080 (1080p)

24 9

ParkScene 24 3.36

Cactus 50 7.06

RaceHorses

832 × 480 (WVGA)

30 12.33

BasketballDrill 50 6.88

BQMall 60 2.91

RaceHorses

416 × 240 (WQVGA)

30 5.07

BasketballPass 50 0.44

BlowingBubbles 50 8.76

41

Quality Assessment Metrics

In lossy compression techniques, two aspects need evaluation – the type and

amount of degradation induced in the reconstructed image. The objective of image

quality evaluation is to measure the difference between the original and reconstructed

images with great precision. The result obtained is used to design the finest video

codecs. The objective quality measure like PSNR, measures the difference between the

individual image pixels of original and reconstructed images.

PSNR is calculated as shown in equation. x is the original image and y is the

reconstructed image. M and N are the width and height of the image. L is the maximum

pixel value in NxM pixel image. PSNR values generally are in 20dB to 40 dB range.

Bjøntegaard Delta (BD) PSNR is calculated to compare the compression performance, and

increasing percentages of the elapsed time at the encoder and decoder, ∆ TEnc and ∆ TDec,

are calculated for measuring the computational complexity.

(BD) PSNR = PSNR (dB) with ABPF in H.264 – PSNR (dB) without ABPF in H.264

T = CfunctionFprocessor

where T is the actual time required to execute each function, measured in seconds.

Cfunction is the number of CPU cycles needed for each function, and Fprocessor is

processor's speed measured in MHz.

∆ TEnc =
 –

 x 100

M

m

N

n

nmynmx
NM

MSE
1 1

2
,,

*

1

MSE

L
PSNR

2

10log10

42

∆ TDec=
 –

 x 100

Bitrate can also indicate the quality of a video file. A video file that is compressed

at 3000 Kbps will look better than the same file compressed at 1000 Kbps. Just like the

quality of an image is measured in resolution, the quality of a video file is measured by

the bitrate. Bitrate often refers to the number of bits used per unit of playback time to

represent a continuous medium data compression. The encoding bit rate of a multimedia

file is the size of a multimedia file in bytes divided by the playback time of the recording

(in seconds), multiplied by eight [36].

Bitrate =(

 x 8) bits/sec

BD-bitrate (%) =
 –

 x 100

3x3 adaptive prediction block filtering:

Table 4.2 shows the compression performance and the computational complexity

of the algorithm for 3×3 APBFs. Figure 4.1. represents the difference in PSNR (dB)

between H.264 without APBF and with 3x3 APBF. Figure 4.2. represents the difference in

bitrate (%) between H.264 without APBF and with 3x3 APBF.

http://www.techterms.com/definition/resolution
http://en.wikipedia.org/wiki/Bytes

43

Table 4.2 Experimental results of 3x3 APBF scheme compared to H.264/AVC

Sequence Size H.264/AVC + 3 × 3 APBF

BD-PSNR
(dB)

BD- bitrate (%) ∆TEnc
(%)

∆TDec (%)

Kimono 1920 × 1080
(1080p)

0.21 -4.75 65.78 84.65

ParkScene 0.16 -3.58 66.84 60.12

Cactus 0.19 -6.64 65.53 111.64

RaceHorses 832 × 480 (WVGA) 0.15 -3.12 63.51 97.23

BasketballDrill 0.38 -9.85 65.9 115.96

BQMall 0.29 -6.44 63.26 94.57

RaceHorses 416 × 240 (WQVGA) 0.13 -2.37 62.43 84.96

BasketballPass 0.22 -4.68 69.75 72.53

BlowingBubbles 0.18 -3.96 63.81 94.94

Average on 1080p seq. 0.187 -4.99 66.05 85.47

Average on WVGA seq. 0.273 -6.47 64.22 102.587

Average on WQVGA seq. 0.177 -3.67 65.33 84.143

Average on overall 0.212 -5.043 65.201 90.73

44

Figure 4.1 This plot shows the PSNR difference values for 3x3 APBF

0

0.1

0.2

0.3

0.4
P

SN
R

 g
ai

n
 (

d
B

)

Sequence

PSNR(dB) - 3x3 APBF

45

Figure 4.2 This plot shows bitrate difference (%) values for 3x3 APBF

5x5 adaptive prediction block filtering:

Table 4.3 shows the compression performance and the computational complexity

of the algorithm for 5×5 APBFs. Figure 4.3. represents the difference in PSNR (dB)

between H.264 without APBF and with 5x5 APBF. Figure 4.4. represents the difference in

bitrate (%) between H.264 without APBF and with 5x5 APBF.

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

B
it

ra
te

 r
e

d
u

ct
io

n
 (

%
)

Sequence

Bitrate (%) - 3x3 APBF

46

Table 4.3 Experimental results of 5x5 APBF scheme compared to H.264/AVC

Sequence Size H.264/AVC + 5 × 5 APBF

BD-PSNR (dB) BD- bitrate (%) ∆TEnc (%) ∆TDec (%)

Kimono 1920 × 1080 (1080p) 0.18 -4.56 95.48 197.47

ParkScene 0.15 -3.71 96.06 166.19

Cactus 0.17 -5.72 95.3 278.44

RaceHorses 832 × 480 (WVGA) 0.13 -2.67 89.29 242.35

BasketballDrill 0.38 -8.79 95.58 299.5

BQMall 0.28 -5.92 93.48 241.4

RaceHorses 416 × 240 (WQVGA) 0.1 -1.73 84.79 208.78

BasketballPass 0.21 -3.91 94.94 188.08

BlowingBubbles 0.17 -3.87 86.32 249.7

Average on 1080p seq. 0.167 -4.663 95.613 214.033

Average on WVGA seq. 0.263 -5.793 92.783 261.083

Average on WQVGA seq. 0.16 -3.17 88.683 215.52

Average on overall 0.197 -4.542 92.36 230.212

47

Figure 4.3 This plot shows the PSNR difference values for 5x5 APBF

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
SN

R
 g

ai
n

 (
d

B
)

Sequence

PSNR(dB) - 5x5 APBF

48

Figure 4.4 This plot shows the bitrate difference (%) values for 5x5 APBF

7x7 adaptive prediction block filtering:

Table 4.4 shows the compression performance and the computational complexity

of the algorithm for 7×7 APBFs. Figure 4.5. represents the difference in PSNR (dB)

between H.264 without APBF and with 7x7 APBF. Figure 4.6. represents the difference in

bitrate (%) between H.264 without APBF and with 7x7 APBF.

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

B
it

ra
te

 r
e

d
u

ct
io

n
 (

%
)

Bitrate(%) - 5x5 APBF

49

Table 4.4 Experimental results of 7x7 APBF scheme compared to H.264/AVC

Sequence Size H.264/AVC + 7 × 7 APBF

BD-PSNR
(dB)

BD- bitrate (%) ∆TEnc
(%)

∆TDec (%)

Kimono 1920 × 1080 (1080p) 0.16 -3.47 157.06 413.67

ParkScene 0.13 -2.83 153.44 406.93

Cactus 0.16 -5.85 155.91 556.88

RaceHorses 832 × 480 (WVGA) 0.09 -1.87 143.21 484.7

BasketballDrill 0.33 -7.96 154.04 599

BQMall 0.25 -5.66 147 482.8

RaceHorses 416 × 240 (WQVGA) 0.09 -1.42 142.42 417.56

BasketballPass 0.17 -3.83 154.51 376.16

BlowingBubbles 0.16 -3.48 138.66 499.4

Average on 1080p seq. 0.15 -4.05 155.47 459.16

Average on WVGA seq. 0.223 -5.163 148.083 522.167

Average on WQVGA seq. 0.14 -2.91 145.197 431.04

Average on overall 0.171 -4.041 149.583 470.789

50

Figure 4.5 This plot shows the PSNR difference values for 7x7 APBF

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
SN

R
 g

ai
n

 (
d

B
)

Sequence

PSNR(dB) - 7x7 APBF

51

Figure 4.6 This plot shows the bitrate difference (%) values for 7x7 APBF

Conclusions

The result obtained demonstrates that when the smaller the filter tap used, the

compression performance is compared with H.264/AVC is much better as shown in figure

4.7. Generally, using bigger tap filters produce better image quality when the image needs

to be sharpened but in the application of compression since the coefficients of the Wiener

filter are obtained from a reference frame, more number of coefficients implies more error.

Therefore, the best compression performance is obtained when the 3×3 APBF is utilized,

and the average BD-bitrate reduction is about 5.04% for overall sequences as seen in

figure 4.8. The complexities of the encoder and the decoder are unavoidably increased

because of the filter coefficient computation and filtering process. It should be also noted

-8

-7

-6

-5

-4

-3

-2

-1

0

B
it

ra
te

 r
e

d
u

ct
io

n
 (

%
)

Sequence

Bitrate(%) - 7x7 APBF

52

that the increase in computational complexity is very low in 3×3 APBF. The increase rate of

the encoder complexity is about 65.2% and decoder complexity is about 90.7% on an

average when 3×3 APBF is used. As a result, it is verified that the APBF algorithm with a

3×3 filter achieves the highest coding performance in terms of the bitrate reduction as well

as time consumption.

Figure 4.7 Comparison of PSNR difference (dB) values of 3x3, 5x5 and 7x7 APBF

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
SN

R
 g

ai
n

Sequences

PSNR gain comparison
H.264/AVC + 3×3 APBF PSNR
(dB)

H.264/AVC + 5×5 APBF PSNR
(dB)

 H.264/AVC + 7×7 APBF PSNR
(dB)

53

Figure 4.8 Comparison of bitrate difference (%) values of 3x3, 5x5 and 7x7 APBF

Summary:

The results are discussed explicitly and it is seen that the best APBF to choose

would be 3x3 tap APBF. The next chapter includes further developments that can be

explored to implement APBF to obtain better results.

-12

-10

-8

-6

-4

-2

0

B
it

ra
te

 r
e

d
u

ct
io

n
 (

%
)

Bitrate comparison

H.264/AVC + 3 × 3 APBF
BD- bitrate (%)

H.264/AVC + 5 × 5 APBF
BD- bitrate (%)

H.264/AVC + 7 × 7 APBF
BD- bitrate (%)

54

Chapter 5

Future work

In order to reduce the encoder complexity of the APBF scheme, filtering can be

applied only to the best inter-prediction mode. But to further improve the coding

efficiency, the following are suggested:

1. In the implementation of APBF on sub-blocks, (2N+1) × (2N+1) a symmetric

filter has been used. It is expected that both coding efficiency and

computational complexity can be improved if other filter shapes are exploited

for example, a cross-shaped filter [15]. Therefore, the APBF scheme needs

to be adaptively adjusted depending on the target applications.

2. If the adaptive filter is applied to both decoded and prediction signals,

additional coding gain is achieved at the expense of increase in the

computational complexity.

3. It is seen that computational complexity is reduced to a large extent if QALF

is implemented along with 3x3 APBF on a macroblock in [16]. The same

logic can be used to implement QALF along with 3x3 APBF on SBs to reduce

the computational complexity.

4. Instead of LMS scheme, RLS (Recursive least squares), LRLS (Lattice

recursive least squares) or NLRLS (Normalized lattice recursive least

squares) schemes can be used to obtain better APBFs.

5. APBF on SBs can also be implemented in HEVC standard keeping in view of

the increase in computational complexity at the encoder and decoder.

55

Appendix A

Frames of sequences used [39]

56

Each of the video sequences chosen has a very distinctive character. Some reasons

are: In the race horse video sequence, the horse racers and horses consists of the

foreground while the grass is the background, both foreground and background are

moving. It's a dynamic, motion-filled video. The basketball pass sequence contains

pictures of high motion activity and high contrast. The random movements of the

basketball players make the prediction much more difficult. Blowing bubbles has a

comparably static background. The bubbles are growing and moving in random

directions. The camera zooms out generally from the beginning to the end. BQ square

video clip has a low motion background. Some people are moving in predicable

directions with low speed. This sequence has lower motion activities.

1. Kimono – 1920 x 1080

57

2. Park scene – 1920 x 1080

3. Cactus – 1920 x 1080

58

4. BQ mall – 832 x 432

5. Basketball drill – 832 x 480

59

6. Race horses – 832 x 480

7. Blowing bubbles – 416 x 240

60

8. Basketball pass – 416 x 240

9. Race horses – 416 x 240

61

References

[1] T. Wiegand et al., “Overview of the H.264/AVC Video Coding Standard,” IEEE Trans.

Circuits Syst. Video Technol., vol. 13, no. 7, pp. 560-576, July 2003.

[2] ITU-T VCEG KTA Reference software

http://iphome.hhi.de/suehring/tml/download/KTA/

[3] Y. Vatis and J. Ostermann, “Adaptive Interpolation Filter for H.264/AVC,” IEEE Trans.

Circuits Syst. Video Technol., vol. 19, no. 2, pp. 179-192, Feb. 2009.

[4] T. Chujoh, N. Wada, and G. Yasuda, “Quadtree-Based Adaptive Loop Filter,” ITU-T

SG16/Q.6 Doc. COM16-C181-E, Geneva, Switzerland, Jan. 2009.

[5] Y. Ye, P. Chen, and M. Karczewicz, “High Precision Interpolation and Prediction,” ITU-

T SG16/Q.6 Doc. VCEGAI33, Berlin, Germany, July 2008.

[6] J. Jung and G. Laroche, “Competition-Based Scheme for Motion Vector Selection and

Coding,” ITU-T SG16/Q.6 Doc. VCEGAC06, Klagenfurt, Austria, July 2006.

[7] P. Chen, Y. Ye, and M. Karczewicz, “Video Coding Using Extended Block Sizes,” ITU-

T SG16/Q.6 Doc. VCEG-AJ23, San Diego, USA, Oct. 2008.

[8] Y. Liu, “Unified Loop Filter for Video Compression,” IEEE Trans. Circuits Syst. Video

Technol., vol. 20, no. 10, pp. 1378-1382, Oct. 2010.

[9] G.J. Sullivan and T. Wiegand, “Rate-Distortion Optimization for Video Compression,”

IEEE Signal Process. Mag., vol. 15, no. 6, pp. 74-90, Nov. 1998.

[10] H. Lee et al., “Enhanced Block-Based Adaptive Loop Filter with Multiple Symmetric

Structures for Video Coding,” ETRI J., vol. 32, no. 4, pp. 626-629, Aug. 2010.

[11] ISO/IEC JTC1/SC29/WG11 and ITU-T SG16/Q.6, “Joint Call for Proposals on Video

Compression Technology,” WG11 Doc.N11113 and ITU-T SG16/Q.6 Doc.

VCEG-AM91, Kyoto, Japan, Jan. 2010.

http://iphome.hhi.de/suehring/tml/download/KTA/

62

[12] G. Bjøntegaard, “Calculation of Average PSNR Differences between RD-Curves,”

ITU-T SG16/Q.6 Doc. VCEG-M33, Austin, USA, Apr. 2001.

 [13] D. Marpe, T. Wiegand and G. J. Sullivan, “The H.264/MPEG-4 AVC standard and its

applications”, IEEE Communications Magazine, vol. 44, pp. 134-143, Aug. 2006.

[14] T. Wiegand and G. J. Sullivan, “The picturephone is here: Really”, IEEE Spectrum,

vol.48, pp. 50-54, Sep. 2011.

[15] I. E. Richardson, “The H.264 Advanced Video Compression Standard”, 2nd Edition,

Wiley 2010.

[16] Yeo-Jin Yoon et al., “Adaptive Prediction Block Filter for Video Coding”, ETRI J.,

vol.34, no. 1, pp 106-109, Feb. 2012.

[17] Ke-Ying Liao et al., “Rate-Distortion Cost Estimation for H.264/AVC”, IEEE

transactions on circuits and systems for video technology, vol. 20, no. 1, pp. 38-

49, Jan 2010.

[18] http://www.h265.net/2010/07/adaptive-interpolation-filter-for-video-coding.html

[19] http://www.h265.net/2009/08/adaptive-post-loop-filters-in-jmkta-part-2.html

[20] E. A. Fox, “Advances in interactive digital multimedia systems”, IEEE Computer, vol.

24, pp. 9-21.

[21] B. Furht, “Survey of multimedia compression techniques and standards. Part 1:

JPEG standard”, Real time imaging, vol. 1, pp.49-67, 1995.

[22] B. Furht, “Multimedia systems : an overview”, IEEE Multimedia, vol. 1, pp. 47-59,

1994.

[23] C. E. Manning “Why do we need compression?”,

http://www.newmediarepublic.com/dvideo/compression/adv03.html, 1996.

http://www.h265.net/2010/07/adaptive-interpolation-filter-for-video-coding.html
http://www.h265.net/2009/08/adaptive-post-loop-filters-in-jmkta-part-2.html
http://www.newmediarepublic.com/dvideo/compression/adv03.html

63

[24] S. Kwon, A. Tamhankar and K.R. Rao, ”Overview of H.264 / MPEG-4 Part 10”, J.

Visual Communication and Image Representation, vol. 17, pp.186-216, April

2006.

[25] Open source article, “Intra frame coding” :

http://www.cs.cf.ac.uk/Dave/Multimedia/node248.html

[26] Open source article, “H.264/MPEG-4 AVC,” Wikipedia Foundation,

http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC

[27] A. K. Kulkarni,” Implementation of fast inter-prediction mode decision in H.264/AVC

video encoder”, M.S. Thesis, E.E Dept, UTA, 2012. http://www-

ee.uta.edu/Dip/Courses/EE5359/index.html

[28] S. S. Vaidyanath, “ Low complexity H.264 encoder using machine learning for

streaming applications” M.S Thesis, E.E Dept, UTA, 2011. http://www-

ee.uta.edu/Dip/Courses/EE5359/index.html

[29] “http://www.vcodex.com/_les/ ," working of H.264 codec.

[30] I. E.G. Richardson, “H.264 and MPEG-4 video compression: video coding for next-

generation multimedia”, Wiley, 2003.

[31] S. Subbarayappa, “ Implementation and analysis of directional discrete cosine

transform in H.264 for baseline profile ” M.S. Thesis, E.E Dept, UTA, 2012.

http://www-ee.uta.edu/Dip/Courses/EE5359/index.html

[32] Y. Vatis and J. Ostermann, ITU-T SG16/Q [15] (VCEG) VCEG-AE16, Marrakech,

Morocco, Jan. 2007.

[33] JVT of ISO/IEC & ITU-T, Draft ITU-T Recommendation H.264 and Draft ISO/IEC

14496-10 AVC, Doc JVT-Go50. Pattaya, Thailand, 2003.

[34] T. Wedi, “Adaptive interpolation filter for motion and aliasing compensated

prediction”, in Proc VCIP, San Jose, CA, USA, pp. 415–422, Jan. 2002.

http://www.cs.cf.ac.uk/Dave/Multimedia/node248.html
http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC
http://www-ee.uta.edu/Dip/Courses/EE5359/index.html
http://www-ee.uta.edu/Dip/Courses/EE5359/index.html
http://www-ee.uta.edu/Dip/Courses/EE5359/index.html

64

[35] JM11 reference software JM11KTA2.3 http://www.h265.net/2009/04/kta-software-

jm11kta23.html

[36] Open source article, “Bit rate”, http://en.wikipedia.org/wiki/Bit_rate

[37] Open source article, “Wiener filter” http://en.wikipedia.org/wiki/Wiener_filter

[38] S. V. Vaseghi, “Advanced digital signal processing and noise reduction”, 2
nd

 edition,

2000.

[39] Link for video sequences: ftp.tnt.uni-hannover.de

http://iphome.hhi.de/suehring/tml/download/KTA/jm11.0kta2.3.zip
http://www.h265.net/2009/04/kta-software-jm11kta23.html
http://www.h265.net/2009/04/kta-software-jm11kta23.html
http://en.wikipedia.org/wiki/Bit_rate
http://en.wikipedia.org/wiki/Wiener_filter

65

Biographical Information

Bhavana Prabhakar was born on June 21
st
, 1989 in KGF, Karnataka, India. She

is the only daughter of V. N. Prabhakara Rao and M. L. Sharada Rao. She received her

Bachelor’s Degree in Electronics and Communication Engineering from K S Institute of

Technology, Bangalore in 2011. She was offered a position at Robert Bosch,

Koramangala, Bangalore but she decided to pursue her Master’s Degree in Electrical

Engineering at University of Texas at Arlington to fulfill her desire for studying further.

During her studying period at Arlington she was very enthused to study the field of

Multimedia and joined the Multimedia Group at UTA in January 2012 under the guidance

of Dr. K. R. Rao. She got an opportunity to intern at INTEL Corporation between May

2012 to May 2013 at Santa Clara, California. After her graduation, she intends to find a

job in multimedia field where she can utilize her knowledge and experience.

