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ABSTRACT

CONTROL OF A TELEOPERATING ROBOTIC ARM SUBJECT TO TIME

DELAYS

SARDA PANKAJ PRAKASH, M.S.

The University of Texas at Arlington, 2012

Supervising Professor: Dr. Kamesh Subbarao

Robotics in Minimally Invasive Surgeries (MIS) can be explored to its full po-

tential if there is complete transparency between the surgeon and the virtual environ-

ment. In the setup, haptic device which conveys force from the surgeon to the surgery

site and vice verse acts as the master station and robotic arm at the surgery site acts

as the slave robot. In surgeries carried out remotely, time delays in the communica-

tion channels can cause commanded velocity/force to overshoot before the surgeon

can even pull out during a task causing temporary or permanent damage during the

surgery.

Since the physical capability of the transmission channels cannot be improved

beyond a certain point there will always be time delays no matter how small. There-

fore the work presented attempts to minimize the effects of time delays for robot

manipulators having more than single degree of freedom. This will allow more deli-

cate and complex surgeries to be performed with increased precision, dexterity and

control. The controller uses a stable Lyapunov based backstepping design with tun-

ing functions to filter out high frequency signals and smooth out the control forces.
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Neural networks will be used for estimating the rate of change of external forces and

nonlinear system dynamics. This design guarantees stability and inherently adds

robustness to account for unknown environment.

Simulations are carried out for a 1-DOF and 2-DOF robot manipulators and

the results show a substantial improvement in the performance over the direct force

application. The controller also performs reasonably well with higher time delays

compared to direct force method where large delays destabilize the robot.
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CHAPTER 1

INTRODUCTION

1.1 Haptics and its History

The word haptic (haptikos) from Greek relates to sense of touch which originates

from the verb haptesthai (meaning to contact or to touch) in [3]. Haptic Technology

is a tactile feedback technology which uses the notion of sense of touch to produce

forces, vibrations or motions on to the user. This mechanical stimulation can be used

for research and development of control techniques by creating a virtual environment

and testing the system behavior before actually implementing it. This technology has

been in use since early 1950′s during which a teleoperator was built at the Argonne

National Laboratory for handling radioactive substances [4, 5]. Machines which are

operated remotely by humans are called as teleoperators and the technique is called

teleoperation. Teleoperation which includes haptic technology is known as haptic

teleoperation. Majority of times the machines in teleoperation are either fixed or

mobile robots but not limited to it.

Another earliest application of haptic technology was seen in light aircraft [6].

When no servo systems were installed in light aircraft, the pilot could feel the vibra-

tions at the control stick due to aerodynamic forces as the aircraft approached stall.

This was not seen when the servo systems were installed which lead to dangerous

situation because the pilot had no clue about the aircraft stalling. This problem

was overcome by applying vibrations to the control stick produced by an unbalanced

rotating mass which was activated by angle of attack measurements when close to

stall.
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1.2 Application Areas

Haptic technology has very diverse applications some of which include remotely

handling radioactive substances, in bike racing games where the user can feel the road

and obstacles, in aircraft to operate the control surfaces, vibration response in cellular

devices, touch pad of a laptop, remotely controlled space and underwater exploration

devices [4] and in Minimally Invasive Surgeries (MIS)

Scientists and engineers have achieved a milestone when it comes to research

in robotics. They have successfully developed artificial humanoid robots which can

feel the environment and react to it as humans tend to do. Another area where

there has been a substantial progress around recent years is in surgeries carried out

by robotic arm. The first successful robot-assisted surgery was carried out in 1985

when a Puma-560 robotic arm was used in a delicate neurosurgical biopsy, a non-

laparoscopic surgery [7]. The success of the first procedure led to another robot

assisted laparoscopic surgery, a cholecystectomy, in 1987. A laparoscopic cholecys-

tectomy is a procedure in which 5-10 mm diameter instruments are inserted by the

surgeon through small incisions into the abdomen through trocars. In 2008, over

750,000 and in 2011 over a million patients underwent cholecystectomy [8, 9] in US

in which 96% are done laparoscopically which explains the important role of robotics

in these surgeries. Looking at the growing number of surgeries and the potential pre-

cision of robots, the Food and Drug Administration (FDA) had cleared the da Vinci

System in 2000 for surgical procedures in [7].

1.3 Need for Haptics

Haptic devices integrated with robotics can create a technological revolution in

the medical field. With the increasing number of surgeries done each year there is

2



Figure 1.1. da Vinci Surgical System Manufactured by Intuitive Surgical
used in Surgeries via Minimally Invasive Approach (MIS) (Image Courtesy:
www.absoluteastronomy.com).

more demand of highly trained surgeons but the number of doctors graduating each

year is not sufficient to meet the demands specially in developing countries. Therefore

highly skilled and trained doctors flying across the globe for carrying out surgeries has

become a common practice. But technological advances in haptic teleoperation have

enabled highly skilled surgeons to setup a central workstation to perform operations

remotely. It is because of the haptic feedback that the surgeons can now feel the

environment, as if operating directly on the patient.

This technology has also helped in training students in medical institutes and

recently graduated doctors. A realistic environment and a realistic/holographic organ

is created for the simulated surgeries so that the surgeon gets enough practice and

feel of the environment before he actually starts operating on anyone.

1.4 Literature Review

Richert, Macnab and Pieper in [1, 10, 11] developed an adaptive backstepping

control with tuning functions for a 1-DOF robot-assisted endoscopic task to mini-

mize the effects of time delay. Results were compared with H∞ control and direct

3



force control techniques. Richert, Beirami and Macnab in [12] used a novel neural-

adaptive method, which uses an estimate of inertia matrix to supervise the training of

the neural network, to control a 2-DOF 2-link flexible joint robot manipulator. The

approach shows improved performance over forward dynamics and is robust under

payload. Macnab, D’Eleuterio and Meng in [13] derived a robust adaptive backstep-

ping control with weighted tuning functions to enhance the performance of the neural

networks used for estimating dynamics. Results for 2-link flexible joint robot show

good performance with less number of learning repetitions as compared to direct

adaptive control. Wang, Tuer, Rossi, Ni and Shu in [14] investigated the advantages

of haptics and effects of time delays with experiments. They proposed a latency

compensation module which would consider the measure of network latency and pre-

diction horizon to modify the input command to compensate for the time delay. This

method greatly suffers from overshoots, noise effects and its performance depends on

the prediction horizon.

Arioui, Kheddar and Mammar in [15] combined the wave variable theory and

Smith prediction principle to minimize the degradation performance of force feedback

systems in presence of large and varying time delays. This approach needs only haptic

device model to be completely known. Munir and Book in [16] also used wave the-

ory principle with modified Smith predictor, Kalman filter and an energy regulator

to improve the performance of teleoperation over internet. Although the technique

is robust in wave domain a mismatched plant model could destabilize the system if

predicted outside the wave domain. Experiments for 2-DOF parallel link robot show

improved performance. Aziminejad, Tavakoli, Patel and Moallem in [17] proposed a

4-channel architecture based on wave theory to achieve transparency close to ideal

along with absolute stability when subjected to time delay. Although good in perfor-

mance the implementation of this method is highly complex. 3-channel architecture is

4



less complex to implement but trades off between transparency and stability. Shahin

and Shahdi in [18, 19] propose an Linear Quadratic Gaussian (LQG) controller which

attempts to minimize the disturbance inputs on the states due to time delays. But

the method needs switching between the controllers for free motion/soft contact and

contact with rigid environments. Also these model-based controllers are sensitive to

uncertainties in modeling master/slave dynamics. In [20] they have eliminated the

dependency on master/slave parameters by local Lyapunov-based nonlinear adaptive

controllers. Then a robust H∞ control is applied to minimize the effects of known con-

stant time delays. The controller becomes quite complex when the complete model,

delay and uncertainties are accounted.

Park, Cortesao and Khatib in [21, 22, 23] developed a 2-channel adaptive de-

coupled force controller for Puma-560 robotic manipulator and extended their work

to accommodate short time delays presented in [24]. It uses Active Observer (AOB)

design to achieve robustness and on-line stiffness adaptation based on force data

only to navigate through changing environments. Rigorous on-line filtering and

off-line analysis for tuning the stiffness estimating parameters is required for high

performance. Lawrence in [25] investigated teleoperation schemes which include 2-

channel position-position, position-force, passivated position-force and transparency

optimized architectures by comparing stability and transparency in time delayed tele-

operation. Niemeyer and Slotine in [26] investigated wave theory, passivity concepts,

force reflecting systems and successfully implemented the wave theory for time delayed

telemanipulation. Nohmi, Ando and Bock in [27] introduced force reflection algorithm

at the master station to compensate for communication delay. Experiments reveal

that operator can feel the environment more accurately if force reflection is calculated

based on telemetry of force sensor and if velocity is commanded instead of position.

5



1.5 Thesis Outline

The thesis is divided in six chapters, first chapter being the introduction. The

second chapter describes system formulation and defines each block of the system and

the task to be carried out in our research. The third chapter sheds light on neural

network theory and its application for controlling the robot manipulator subjected to

unknown external disturbances and shows how it captures the effects of time delays

indeed. Having discussed the problem in the previous chapters we work towards

deriving a stable neural-adaptive backstepping control law with tuning functions in

chapter 4 for 1-DOF robot manipulator with an objective to minimize the effects of

time delay. The system is simulated and results are plotted against time and position.

Note that the controller developed needs no switching between free space/soft contact

and contact with rigid environment and also no prior training for neural networks is

needed. The control law is then extended to 2-DOF robot manipulator and simulated

with showing results in Chapter 5. Simulation results are compared with one more

technique to validate the performance of the controller. In Chapter 6 conclusions are

drawn from the results and the end of the chapter discusses the future scope of the

work done.

6



CHAPTER 2

SYSTEM FORMULATION AND TASK DESCRIPTION

2.1 System Setup

The block diagram of a 2-channel haptic teleoperation system in [1] is shown in

Figure (2.1). Surgeon and haptic device together are considered as master and the

robot operating under environment acts as the slave station. The surgeon commands

position/force signals through the haptic device by means of communication channels

to the slave robot. Sensors and encoders mounted on the robot give its position,

velocity or force information back to the surgeon through the haptic device which

then completes the loop.

Figure 2.1. Block Diagram of the Master/Slave Teleoperator System by Macnab R.
et al. in [1].

Depending on the distance between the master and the slave station there can

be communication delays T (sec) in the forward as well as feedback loop as shown in

Figure (2.1). The delay can be constant or variable. There is no way one can avoid

delays in the communication channels. But a good design of closed loop system and

7



controller can minimize the effects of this delay. The case where there is no controller

either at the slave or master station is called Direct Force Application. In this thesis

the performance of the proposed controller and the direct force application for 1-DOF

and 2-DOF robot manipulators will be compared.

2.2 Modeling of Master Station

Human arm dynamics is difficult to model precisely in general due to human

variation. They have been modeled in literature as a spring-mass-damper system

[28, 29, 30] due to the fact that it closely resembles the arm behavior and that it can

be simulated in real time with any common computer hardware. For research, the arm

dynamics of the surgeon and the dynamics of the haptic device are modeled together

as a PI filtered transfer function [1]. For 1-DOF robot manipulator constrained to

move in x-direction, the haptic force fh is given as

fh(s) =

(
25s+ 50

s2 + 25s

)
ev(s) (2.1)

and

ev = ẋ− ẋd (2.2)

where ẋ is the velocity of the robot felt by the surgeon at the haptic device and ẋd is the

desired velocity commanded by the surgeon. For a 2-DOF robot manipulator acting in

x-y plane, two PI filtered transfer functions given in Equation (2.1) model the human

and the haptic device in x and y direction independently. This is an assumption since

all serial manipulators having more than 1-DOF have their dynamics coupled. The

output from the haptic device for a 2-DOF system is given as

Fh =

 fhx

fhy

 (2.3)

8



where evx and evy are velocity errors in x and y direction and

fhx(s) =

(
25s+ 50

s2 + 25s

)
evx(s) (2.4)

fhy(s) =

(
25s+ 50

s2 + 25s

)
evy(s) (2.5)

2.3 Modeling of Robot Manipulator

The Puma 560 is a widely used robotic arm due to its high precision, accuracy,

repeatability, complex maneuverability and reach of its end effector. It is a serial

manipulator with six degrees of freedom/joints. For research purpose however main

focus is on improving the control technique by validating the approach for 1-DOF

and 2-DOF robotic manipulators. The development is general enough to be extended

for multi degree of freedom system. The manipulator dynamics of robot in general

interacting with the environment in its standard form is given in [31] as follows

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ − J(q)TFe (2.6)

where M(q) ∈ Rn×n is the inertia matrix, q ∈ Rn×1 is the vector of joint angles,

C(q, q̇) ∈ Rn×n is the matrix containing coriolis and centripetal components of forces,

G(q) ∈ Rn×1 is the vector of gravitational forces, τ ∈ Rn×1 is the vector of control

torques, J(q) ∈ Rn×n is the configuration dependent Jacobian matrix and Fe ∈ Rn×1

is the vector of environmental forces, where n is the number of joints.

In applications where the robot is interacting with the external environment

it is best suited to work in the task space or so called Cartesian space. The robot

dynamics in the Cartesian space can be written as

Mr(q)r̈ + Cr(q, q̇)ṙ + Gr(q) = Fc − Fe (2.7)

where

Mr(q) = J−T (q)M(q)J−1(q) (2.8)

9



Cr(q, q̇) = J−T (q)[C(q, q̇)−M(q)J−1(q)J̇(q)q̇] (2.9)

Gr(q) = J−T (q)G(q) (2.10)

Fc = J−T (q)τ (2.11)

and r ∈ Rn×1 denotes the end-effector position and orientation in the Cartesian space.

1−DOF Robot Manipulator :

The dynamic model for 1-DOF system used for our research is reduced from Equation

(2.7) in Cartesian space and given as

mẍ+ cẋ = fc − fe (2.12)

where x is the position of the robot, m = 0.5kg is the mass of the robot, c = 0.1Ns/m

is the damping/friction of the robot, fc is the control force which is same as the haptic

force in direct force application and fe is the force exerted by the environment on the

robot end-effector which is measured by a sensor [11]. Figure (2.2) shows the 1-DOF

robot manipulator.

Figure 2.2. 1-DOF Robot Manipulator.
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2−DOF Robot Manipulator :

The dynamic model for a 2-DOF system in Cartesian space from Equation (2.7) is

given as follows

Mr(q)r̈ + Cr(q, q̇)ṙ + Gr(q) = Fc − Fe (2.13)

where r ∈ R2×1 denotes the end-effector position in Cartesian space, Mr(q) ∈ R2×2

is the inertia matrix, q ∈ R2×1 is the vector of joint angles, C(q, q̇) ∈ R2×2 is

the matrix containing coriolis and centripetal components of forces, G(q) ∈ R2×1 is

the vector of gravitational forces, Fc ∈ R2×1 is the vector of control forces, J(q) ∈

R2×2 is the configuration dependent Jacobian matrix and Fe ∈ R2×1 is the vector of

environmental forces. Figure 2.3 shows a 2-DOF 2 link planar robot manipulator in

[2]. The robot parameters like the link lengths, inertia, coriolis and gravity terms are

listed in Appendix A.

Figure 2.3. 2-DOF Robot Manipulator by Bowling A. et al. in [2].
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2.4 Sensor Model

A force sensor at the tool of the robot end-effector is used to measure the

external forces during the task. The sensor equation for 1-DOF robot model is given

as

fe = ke(x)x+ deẋ (2.14)

where x is the position of the tool, fe is the environmental force measured by the

sensor. ke(x) is the stiffness of the sensor and de is the damping in the sensor. For a

2-DOF robot model the sensor equation is given as

Fe = Ke(r)r + Deṙ (2.15)

where r ∈ R2×1, ṙ ∈ R2×1 is a vector of Cartesian position and velocity respectively,

Fe ∈ R2×1 is a vector of external forces on the tool, Ke(r) ∈ R2×2 is the task and

position specific stiffness matrix and De ∈ R2×2 is the task specific damping matrix.

2.5 Task Description

With growing number of surgeries done via Minimally Invasive approach espe-

cially laparoscopic cholecystectomy, endoscopic tools are used on a regular basis to

guide such surgeries which is a challenging task. Therefore we consider an endoscopic

task where the robot pushes the tool in x-direction. During the task the tool enters

free space from medium puncturing the tissue and will collide with a solid object

probably a bone.

For 1-DOF control problem the robot starts from zero with a commanded ve-

locity of 0.001 m/sec, punctures through a tissue at 0.0075 m from medium to free

space and collides with a solid object at 0.015 m. After first collision the surgeon
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commands a constant force fh = 0.005N before commanding it to stop. The stiffness

of the medium, free space and the solid object is modeled as

kmedium = 0.01 N/m

kfree space = 0 N/m

ksolid object = 150 N/m

(2.16)

and a plot of stiffness force is plotted against position of the tool in Figure 2.4. The

damping of the medium is de = 0.5Ns/m and de = 0Ns/m elsewhere [1].

Figure 2.4. Stiffness Profile: The end-effector tries to move from left to right with
constant velocity before stopping at the surface.

For 2-DOF control problem it can be seen that the workspace of the robot

manipulator is a circle of radius 1.5 m as from the link lengths in Appendix A.

Therefore to clearly see the comparison between the two techniques, the task problem

is divided into two parts without changing the system formulation stated in Case I

and Case II. Also plots for the combined task will be provided in Case III.

Case I: Puncture to Free Space from Medium at 1.1 m.
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The task is carried out at constant velocity of 0.1 m/sec in x-direction and 0 m/sec

in y-direction.

Case II: Collision from Free Space to Solid Object at 1 m.

After the first collision takes place the surgeon commands a constant force of 0.2 N

in x-direction and 0 N in y-direction.

Case III: Puncture from Medium to Free Space at 1 m and Collision with a Hard

Surface at 1.1 m.

Surgeon commands a constant velocity of 0.1 m/sec in x-direction and 0 m/sec in

y-direction both in medium and free space. After first collision with the solid surface

a force of 0.2 N is commanded in x-direction and 0 N is commanded in y-direction.

In all the cases, robot starts from [0.85,0] coordinates in x and y-direction

respectively. The parameters of external forces acting on the robot tool in x-direction

is the same as stated in 1-DOF problem. There is no external force acting in the

y-direction.

2.6 Controller Design

Since the robot manipulator is performing a task in unknown environment and

under time delay it is necessary to adapt and learn the uncertainties. Adaptive con-

trollers are formulated by separating the unknown parameters from the known ones

in the robot dynamic equation [32]. In adaptive approach the controller tries to learn

the uncertain parameters of the system and over the time improving its accuracy with

the help of information on tracking errors. If properly designed, adaptive controllers

can be the best among all methods for robotic manipulators.

A 2-stage adaptive backstepping control with tuning functions will be derived in

the proceeding chapters for 1-DOF and 2-DOF robot manipulator. The backstepping

design allows smooth control forces to be applied. Neural networks are used for learn-
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ing the model uncertainties and the change in the environmental model with time. It

will be explained in detail in the next chapter with an example. The tuning functions

helps in reducing the approximation and modeling error of the neural network hence

increasing the performance [13, 33].
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CHAPTER 3

NEURAL NETWORK APPROXIMATION

3.1 Introduction to Neural Network

The term neural network primarily evolves from the medical world referring to a

network or circuit of biological neurons. In the world of control theory, they are often

called as artificial neural network which consists of artificial neurons. They have been

used in developing intelligent robots for mapping, localizing and navigation, which is

called as Artificial Intelligence in [34]. Their successful applications are also speech

recognition, image analysis and adaptive control [35]. The role of neural network

in adaptive control is to learn or adapt to unknown and nonlinear function like the

uncertainties in the dynamics due to friction, backlash or external disturbances with

a certain degree of accuracy. A simple neural network is shown in Figure 3.1 which

consists of a input layer, a single hidden layer and an output layer.

Figure 3.1. A simple model of an Artificial Neural Network.
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3.2 Radial Basis Functions (RBF)

Radial basis functions are typically used in function approximations. The most

commonly used functions are Gaussian, Multiquadric, Inverse Quadratic, Inverse Mul-

tiquadratic, Polyharmonic Spline and Thin Plate Spline [36]. This paper uses Gaus-

sian functions as the radial basis functions. The advantage of using Gaussian Radial

Basis Functions Network is that it can be differentiated infinite number of times and

it can uniformly estimate complex functions which are continuous but not necessarily

smooth. The Gaussian function is defined as

φ(x̄) = exp
(
−(x̄− µ)TR−1(x̄− µ)

)
(3.1)

where x̄ ∈ Rm is a column vector of m inputs, µ ∈ Rm is a vector of m expected

values. R ∈ Rm×m is the covariance matrix associated with the RBF. To simply the

analysis in this research we assume that R is a diagonal matrix and all the variances

are identical, denoted by σ2. The function approximation problem can be stated as

follows

Given f(x) ∈ R, a continuous function defined on x ∈ R and n basis functions

Φ(x̄) = [φ1 φ2 . . . φn]T the neural network based function approximation problem

translates to finding appropriate weights ŵ = [w1 w2 . . . wn]T such that the square

error between the actual function and the output from the neural network given by

ŷ = ΦT (x̄)ŵ =
n∑
i=1

φiŵi (3.2)

is minimized. In the process, we define the following,

w̃i = wi − ŵi (3.3)
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where wi are the ideal weights of the neural network which would produce the function

f(x) with a approximation error d(x) with

|d(x)| ≤ dmax ∀ x ∈ R (3.4)

The function that the ideal network would produce thus takes the form of

f(x) = ŷ + d(x) (3.5)

On the other hand, ŵi are the estimated weights obtained from an online adaptation

algorithm.

3.3 Application to Robotic Manipulators

To demonstrate the functioning of the neural network, we consider an example

of a simple 2 link planar robot whose dynamical equation in the task space is given

as

Mr(q)r̈ + Cr(q, q̇)ṙ + Gr(q) = Fc − Fe (3.6)

where each term is described in Chapter 2. For the demonstration purpose it is said

that the external disturbing force is known to us but unknown to the neural network.

Let us consider two cases where

Case I :

Fe = K

 x

z

 (3.7)

Case II :

Fe = K

 x+ ẋz + 2żx+ z2

z + żx+ 2zẋ+ x2

 (3.8)
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where K ∈ R2×2 matrix of positive constants. Let us say that the known external

forces Fe will be approximated by a set of linearly combined Gaussian functions φ(x̄)

and ideal weights wi, which gives

Mr(q)r̈ + Cr(q, q̇)ṙ + Gr(q) = F−ΦT
1 w1 + d1 (3.9)

where d1 is the approximation error. The task is to make the end-effector of the

robot to follow a desired trajectory [xd, zd] in the Cartesian space. Let us denote the

position of the end-effector as [x, z] which is different than the desired position due

to approximation errors and unmodeled dynamics. The error due to this is given as

e = r− rd (3.10)

where r is a column vector of Cartesian position. For achieving velocity control as

well we choose an auxiliary error as

s = ė + Λe (3.11)

where Λ ∈ R2×2 is a positive definite matrix and proper selection can create a balance

between position and velocity control. For simulating the system let us derive the

control law by choosing a positive definite Lyapunov like function candidate as

V1 =
1

2
sT s +

1

2β1
w̃T

1 w̃1 (3.12)

where β1 is called the adaptation rate. Taking the time derivative gives

V̇1 = sT ṡ− 1

β1
w̃T

1
˙̂w1

= sT (ë + Λė)− 1

β1
w̃T

1
˙̂w1 (3.13)

Using Equation (3.9) and Equation (3.10) gives

V̇1 = sT [M−1
r (F−ΦT

1 w1 + d1 −Cr(q, q̇)ṙ−Gr(q))− r̈d + Λė]− 1

β1
w̃T

1
˙̂w1 (3.14)
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where d1 is the bounded approximation error. Using Equation (3.3)

w̃1 = w1 − ŵ1 (3.15)

Substituting Equation (3.15) into Equation (3.14) gives

V̇1 = sT [M−1
r (F−ΦT

1 ŵ1 + d1 −Cr(q, q̇)ṙ−Gr(q))− r̈d + Λė]

+sTMr
−1ΦT

1 w̃1 −
1

β1
w̃T

1
˙̂w1 (3.16)

= sT [M−1
r (F−ΦT

1 ŵ1 + d1 −Cr(q, q̇)ṙ−Gr(q))− r̈d + Λė]

+w̃T
1 [Φ1Mr

−T s− 1

β1
˙̂w1] (3.17)

Leading to the choice of control law as

F = ΦT
1 ŵ1 + Cr(q, q̇)ṙ + Gr(q)−Mr(Λė− r̈d)−Mr)G1s (3.18)

where G1 = GT
1 > 0 is a positive definite gain matrix and the corresponding weight

update law is chosen to be,

˙̂w1 = β1Φ1Mr
−T s (3.19)

Substituting Equation (3.17) and Equation (3.18) in Equation (3.17) gives

V̇1 = −sTG1s + sTM−1
r d1 (3.20)

Thus,

V̇1 ≤ −λmin(G1)‖s‖2 + λmax(M
−1
r )‖s‖dmax (3.21)
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where, λmin(G1) is the minimum eigenvalue of G1, λmax(M
−1
r ) is the maximum eigen-

value of M−1
r and dmax is the upper bound on the approximation error d1. The

equation above can be re-arranged as

V̇1 ≤ −λmin(G1)

(
‖s‖2 − λmax(M

−1
r )

λmin(G1)
‖s‖dmax

)
(3.22)

≤ −λmin(G1)

(
‖s‖2 − 2

λmax(M
−1
r )

2λmin(G1)
‖s‖dmax +

(
λmax(M

−1
r )

2λmin(G1)
dmax

)2
)

+

(
(λmax(M

−1
r ))2

4λmin(G1)
dmax

2

)
(3.23)

∴ V̇1 ≤ −λmin(G1)

(
‖s‖ − λmax(M

−1
r )

2λmin(G1)
dmax

)2

+

(
(λmax(M

−1
r ))2

4λmin(G1)
dmax

2

)
(3.24)

Clearly, the system is stable outside the residual set given by

‖s‖ ≥ λmax(M
−1
r )

λmin(G1)
dmax (3.25)

Also, the system converges to the boundary of the residual set

‖s‖ =
λmax(M

−1
r )

λmin(G1)
dmax (3.26)

asymptotically. The tracking error can be made arbitrarily small so long as the

approximation error d1 is small and also by increasing λmin(G1).

To improve the estimation or learning performance of the neural network, the weight

update is modified as in [37]

˙̂w1 = β1[Φ1M
−T s− νŵ1] (3.27)

where ν is a small positive leakage constant. The above update law helps in keeping

the estimates bounded.
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3.4 Simulation Results

For simulations we use a 2-link planar robot acting under gravity whose model

is given in Appendix A. The desired trajectory to track is given by

xd = [1.1 + sin(t)] m

zd = 0 m
(3.28)

where t denotes time in seconds.

Case I :

In the first case we consider the disturbance to be decoupled in x and z direction.

The control law derived in the previous subsection is used and the results are plotted.

In the evaluation scenario the value of gains used are ν = 0.001, Λ = 35, G1 = 1,

K = diag([10 10]) and β1 = 5.

Figure 3.2 shows that the robot closely tracks the commanded position with a maxi-

mum error of 0.0578 m and rms error of 0.0145 m in x-direction and maximum error

of 0.0894 m and rms error of 0.025 m in z-direction with the error converging to zero

with time. In Figure 3.3 it is seen that the neural network adapts quickly to the

unknown disturbances in the system with error converging to zero.

Case II :

Due to the fact that industrial/commercial robots have more than 1-DOF and have

their dynamics coupled, any disturbance force acting in x-direction also affects the

position in z-direction and vice-verse. Therefore we consider a coupled nonlinear

disturbance force given in Equation (3.8) to verify if the same neural network with

the same set of gains used in the first case will still adapt with acceptable performance.

Figure 3.4 shows that the robot closely tracks the commanded position with a maxi-

mum error of 0.13 m and rms error of 0.033 m in x-direction and maximum error of
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Figure 3.2. Tracking Performance in x and z-direction for Case I.

Figure 3.3. Comparison of Actual and Estimated Disturbance in x and z-direction
for Case I.

0.0902 m and rms error of 0.027 m in z-direction with the error staying close to zero

with time.

In Figure 3.5 it is seen that the neural network adapts quickly to the unknown dis-

turbances in the system but with less accuracy than case I.
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Figure 3.4. Tracking performance in x and z-direction for Case II.

Figure 3.5. Comparison of Actual and Estimated Disturbance in x and z-direction
for Case II.

3.5 Conclusion

Though the errors in Case II are slightly more than Case I but still the

performance is acceptable. The neural network is required to coarsely estimate the

disturbance rather than an accurate estimate since the adaptation rate to the output

error will ensure the desired level of performance [10].
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CHAPTER 4

1-DOF ROBOT MANIPULATOR CONTROL

4.1 Neural-Adaptive Backstepping Control Design with Tuning Functions

For deriving the closed loop control law, we consider the delayed haptic force

fh(t−T ) at the slave end as the desired force, which is operating under environmental

forces fe(t) and thus defining the force error as

ef (t) = fe(t)− fh(t− T ) (4.1)

In deriving the control law we will denote fh(t−T ) as fh and g(t) as g for convenience

unless required where g is any variable dependent on time. For the robot to track the

velocity commanded by the surgeon along with desired force, we define the auxiliary

error as

s = ev + Λef (4.2)

where ev is the velocity error given by

ev = ẋ(t)− ẋd(t− T ) (4.3)

where ẋ(t) is the Cartesian velocity of the robot end-effector, ẋd(t− T ) is the desired

velocity at the slave robot delayed by T seconds and Λ is a positive constant which

can be tuned to achieve a balance between force and velocity response depending on

the application. From Chapter 2, we have

fe = ke(x)x+ deẋ (4.4)

The time derivative of the auxiliary error is

ṡ = ẍ+ Λ(ḟe − ḟh) (4.5)
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Using Equation (4.4) in Equation (4.5) gives

ṡ = ẍ+ Λ[k̇e(x)x+ ke(x)ẋ+ deẍ− ḟh]

ṡ = (1 + Λde)ẍ+ Λ[k̇e(x)x+ ke(x)ẋ]− Λḟh

(4.6)

Using Equation (2.12) gives

ṡ = (1 + Λde)m
−1[fc − fe − cẋ] + Λ[k̇e(x)x+ ke(x)ẋ]− Λḟh (4.7)

The first neural network is used to approximate the non-linear terms

k̇e(x)x+ ke(x)ẋ− (1 + Λde)m
−1(cẋ)− Λḟh = ΦT

1 w1 + d1 (4.8)

where d1 is a bounded approximation error as discussed in Chapter 3. Additionally

we introduce another adaptive parameter, ψ to estimate

(1 + Λde)m
−1 = ψ + d2 (4.9)

where d2 is also a bounded approximation error. Note, we assume that the damping

de in Equation (4.4) is an unknown constant (slowly varying).

For deriving the control scheme and to analyze its stability we construct an

“energy-like” function called the Lyapunov function and examine its time variation.

The backstepping control law is designed in 2 stages. For the first stage we consider

a positive-definite candidate Lyapunov function in [10] as follows

V1 =
1

2
s2 +

1

2β1
w̃T

1 w̃1 +
1

2β2
ψ̃2 (4.10)

The time derivative of the function is then given as

V̇1 = sṡ+
1

β1
w̃T

1
˙̃w1 +

1

β2
ψ̃ ˙̃ψ (4.11)

Using the following equations

w̃1 = w1 − ŵ1

ψ̃ = ψ − ψ̂
(4.12)
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into Equation (4.11) gives

V̇1 = sṡ+
1

β1
w̃T

1 (ẇ1 − ˙̂w1) +
1

β2
ψ̃(ψ̇ − ˙̂

ψ) (4.13)

Since w1 is a vector of constant weights and ψ is a constant parameter (slowly vary-

ing), ẇ1 = 0 and ψ̇ = 0. Therefore

V̇1 = sṡ− 1

β1
w̃T

1
˙̂w1 −

1

β2
ψ̃

˙̂
ψ (4.14)

Using Equation (4.7) and Equation (4.14) gives

V̇1 = s[(1 + Λde)m
−1(fc− fe− cẋ) + Λ(k̇ex+ keẋ)−Λḟh]−

1

β1
w̃T

1
˙̂w1−

1

β2
ψ̃

˙̂
ψ (4.15)

Substituting Equations (4.8) and (4.9) into Equation (4.15) gives

V̇1 = s[(ψ + d2)(fc − fe) + ΦT
1 w1 + d1]−

1

β1
w̃T

1
˙̂w1 −

1

β2
ψ̃

˙̂
ψ (4.16)

V̇1 = s[ψ̃(fc − fe) + ψ̂(fc − fe) + d2(fc − fe) + ΦT
1 w̃1 + ΦT

1 ŵ1 + d1]

− 1
β1

w̃T
1

˙̂w1 − 1
β2
ψ̃

˙̂
ψ

(4.17)

Let the desired control force (virtual control) at the robot end be denoted as α which

leads to the control force error as

z = fc − α (4.18)

Substituting Equation (4.18) into Equation (4.17) gives

V̇1 = s[ψ̂(z + α− fe) + δ1 + ΦT
1 ŵ1] + w̃T

1 (Φ1s− 1
β1

˙̂w1)

+ψ̃(s(fc − fe)− 1
β2

˙̂
ψ)

(4.19)

where all the uncertainties are contained in

δ1 = d2(fc − fe) + d1 (4.20)
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The weight update laws will be defined at a later stage as per the tuning function

method. The first set of tuning functions are defined as

τ1 = Φ1s

τ2 = s(fc − fe)
(4.21)

then the derivative can be written as

V̇1 = s[ψ̂(z + α− fe) + δ1 + ΦT
1 ŵ1] + w̃T

1 (τ1 −
1

β1
˙̂w1) + ψ̃(τ2 −

1

β2

˙̂
ψ2) (4.22)

leading to the choice of virtual control as

α = fe − ψ̂−1(ΦT
1 ŵ1 +G1s) (4.23)

where G1 is a positive gain to stabilize the error dynamics. The derivative of the

virtual control α is given as

α̇ = ḟe + ψ̂−2
˙̂
ψ[ΦT

1 ŵ1 +G1s]− ψ̂−1[
d

dt
(ΦT

1 ŵ1) +G1ṡ] (4.24)

A third neural network is used to estimate the change in the environmental forces fe

with respect to time given by

ḟe = ΦT
3 w3 + d3 (4.25)

where d3 is another bounded approximation error in estimating ḟe. Substituting

Equation (4.23) in Equation (4.22) we get

V̇1 = −G1s
2 + sδ1 + sψ̂z + w̃T

1 (τ1 −
1

β1
˙̂w1) + ψ̃(τ2 −

1

β2

˙̂
ψ) (4.26)

The control Lyapunov function for the second stage of backstepping is chosen as

V2 = V1 +
1

2
z2 +

1

2β3
w̃T

3 w̃3 (4.27)

The time derivative is

V̇2 = V̇1 + zż − 1

β3
w̃T

3
˙̂w3 (4.28)
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Substituting Equation (4.26) into Equation(4.28) gives

V̇2 = −G1s
2 + sδ1 + sψ̂z + w̃T

1 (τ1 − 1
β1

˙̂w1) + ψ̃(τ2 − 1
β2

˙̂
ψ)

+z(ḟc − α̇)− 1
β3

w̃T
3

˙̂w3

(4.29)

Substituting Equation (4.25) in Equation (4.24) gives

α̇ = ΦT
3 w3 + d3 + ψ̂−2

˙̂
ψ[ΦT

1ŵ1 +G1s]− ψ−1[
d

dt
(ΦT

1 ŵ1) +G1ṡ] (4.30)

The implementable components of the derivative of the virtual control α̇ are given in

˙̂α as

˙̂α = ΦT
3 ŵ3 + ψ̂−2

˙̂
ψ[ΦT

1 ŵ1 +G1s]− ψ−1[
d

dt
(ΦT

1 ŵ1) +G1
˙̂s] (4.31)

Leading to the choice of ḟc as

ḟc = ˙̂α− ψ̂s−G2z (4.32)

where G2 is another positive gain to stabilize the error dynamics. Substituting Equa-

tion (4.32) into Equation (4.29) gives

V̇2 = −G1s
2 + sδ1 + sψ̂z + w̃T

1 (τ1 − 1
β1

˙̂w1) + ψ̃(τ2 − 1
β2

˙̂
ψ)

+z( ˙̂α− ψ̂s−G2z − α̇)− 1
β3

w̃T
3

˙̂w3

(4.33)

V̇2 = −G1s
2 −G2z

2 + sδ1 + w̃T
1 (τ1 − 1

β1
˙̂w1) + ψ̃(τ2 − 1

β2

˙̂
ψ)

−z ˙̃α− 1
β3

w̃T
3

˙̂w3

(4.34)

Subtracting Equation (4.30) and Equation (4.31) gives

˙̃α = Φ3w̃3 + d3 − Ψ̂−1G1(ṡ− ˙̂s) (4.35)

Using Equation(4.7), Equation (4.8) and Equation (4.9) we can get

ṡ− ˙̂s = [(ψ + d2)(fc − fe)− Λḟh + ΦT
1 w1 + d1]− [ψ̂(fc − fe)− Λḟh + ΦT

1 ŵ1]

= ψ̃(fc − fe) + δ1 + ΦT
1 w̃1 (4.36)
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Substituting Equation (4.36) into Equation (4.35) gives

˙̃α = ΦT
3w̃3 + d3 − ψ̂−1G1(ψ̃(fc − fe) + δ1 + ΦT

1 w̃1) (4.37)

Substituting Equation (4.37) into Equation (4.34) gives

V̇2 = −G1s
2 −G2z

2 + sδ1 + w̃T
1 (Φ1s−

1

β1
˙̂w1) + ψ̃(τ2 −

1

β2

˙̂
ψ)

−z[ΦT
3w̃3 + d3 − ψ̂−1G1(ψ̃(fc − fe) + δ1 + ΦT

1 w̃1)]−
1

β3
w̃T

3
˙̂w3 (4.38)

= −G1s
2 −G2z

2 + sδ1 + zδ2 + w̃T
1 [Φ1(s+G1ψ

−T z)− 1

β1
˙̂w1] + ψ̃[τ2 −

1

β2

˙̂
ψ]

+zψ̂−1G1ψ̃(fc − fe) + w̃T
3 [Φ3z −

1

β3
˙̂w3] (4.39)

where δ2 is given by

δ2 = d3 + ψ̂−1G1δ1 (4.40)

Thus,

V̇2 = −G1s
2 −G2z

2 + sδ1 + zδ2 + w̃T
1 [Φ1(s+G1ψ̂

−T z)− 1

β1
˙̂w1]

+ψ̃(τ2 + η2 −
1

β2

˙̂
ψ) + w̃T

3 (Φ3z −
1

β3
˙̂w3) (4.41)

where

η2 = zψ̂−1G1(fc − fe) (4.42)

Hence choosing the weight updates as

˙̂w1 = β1[Φ1(s+G1ψ̂
−T z)]

˙̂
Ψ = β2[τ2 + η2]

˙̂w3 = β3Φ3z (4.43)

and substituting in Equation (4.41) results in

V̇2 = −G1s
2 −G2z

2 + sδ1 + zδ2 (4.44)
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Equation (4.44) can be written as

V̇2 = −µTGµ+ µT δ (4.45)

where µ, G and δ are given as

µ =

 s

z

 G =

 G1 0

0 G2

 δ =

 δ1

δ2

 (4.46)

The derivative can be upper bounded as

V̇2 ≤ −λmin(G) ‖µ‖2 + ‖µ‖ δmax (4.47)

where λmin(G) is the minimum eigenvalue of G and δmax is the maximum approxi-

mation error. Equation (4.47) can be re-arranged as

V̇2 ≤ −λmin(G)

(
‖µ‖2 − 1

λmin(G)
‖µ‖δmax

)
(4.48)

Equation (4.48) can be written as

V̇2 ≤ −λmin(G)

[
‖µ‖2 − 2

δmax
2λmin(G)

‖µ‖+

(
δmax

2λmin(G)

)2

−
(

δmax
2λmin(G)

)2
]

≤ −λmin(G)

(
‖µ‖ − δmax

2λmin(G)

)2

+
δmax

2

4λmin(G)
(4.49)

Hence clearly the system is stable outside the residual set

‖µ‖ ≥ 1

λmin(G)
δmax (4.50)

Also the system converges to the boundary of the residual set

‖µ‖ =
1

λmin(G)
δmax (4.51)

asymptotically. The tracking error can be arbitrarily made small so long as the

approximation error δmax is small and also by increasing value of λmin(G).
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To improve the performance of the adaptive update laws, they are augmented as in

[37]

˙̂w1 = β1[Φ
T
1 (s+G1ψ̂

−T z)− ν1ŵ1]

˙̂
ψ = β2proj[τ2 + η2 + Υ(ψ0 − ψ̂)] (4.52)

˙̂w3 = β3[Φ
T
3 z − ν3ŵ3]

where ν1, ν3 are positive leakage constants and Υ is another tuning parameter which

ranges between [0, 1], ψ0 is the estimate of the inertia/mass which is calculated a

prior [12]. The Υ associated term acts as a supervisory to avoid the projection limits.

The projection operator

proj[a] =

 0, Ψ̂ < ‖Ψ‖min and a < 0

a, otherwise
(4.53)

ensures that Ψ̂ is invertible. All of the above modifications to the update laws help

in keeping the estimates bounded.

4.2 Simulation Results

The control law derived in previous section is simulated with variable step

Runge-Kutta method (ode45) for solving differential equations numerically. The time

delay in the forward loop and the feedback loop is set to 0.1 sec (100 ms). Total time

delay in the loop is 0.2 sec (200 ms) which is a good estimate of the delay appearing

in the communication channels.

The control gains used in the simulations are Λ = 1, G1 = 2, G2 = 20,

ν1 = ν2 = ν3 = 0.1 and β1 = β2 = β3 = 0.1. Gaussian functions with equidistant

means are selected. Velocity tracking by adaptive backstepping method is very good

as compared to direct force application which can be seen from Figure 4.1. There is
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no velocity overshoot seen at the start for the proposed method and the magnitudes

of the velocity overshoot at the puncture, which happens at 0.0075 m, with respect

to the desired value of 0.001 m/sec are 0.000472 m/sec and 0.00026 m/sec for direct

force application and adaptive backstepping method respectively. This means that

there is approximately 44% reduction in the velocity overshoot with the proposed

technique.

Figure 4.1. Velocity Tracking Comparison.

The values of velocity overshoots for the collision case, which happens at 0.015

m, with reference to the desired velocity of 0 m/sec are -0.72 mm/sec and -0.658

mm/sec for the direct force application and proposed method respectively, which

means there is approximately a 9% reduction in the velocity overshoot at the collision

in the proposed method. Also it can be seen that the settling time is much faster in

case of adaptive backstepping approach as compared to direct force application.
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Figure 4.2. Comparison of Force Measured by the Sensor at the End-Effector.

Figure 4.2 compares the force measured by the sensor at the robot end-effector.

The force measured at the puncture in both the cases are the same whose magnitude

is 5.72×10−4N . This can be explained as, since in both cases the velocity at the time

of puncture is same and the properties of the environment do not change for both

techniques the measured force remains same in both the cases.

The initial impact with the solid surface creates a force of 7.78 × 10−3N and

9.42× 10−3N and in all a maximum force of 0.0113N and 9.42× 10−3N with direct

force application and proposed method respectively. This means that the initial value

of force measured for the adaptive backstepping technique is more than that of the

initial value of force measured in direct force application but is less than the maximum

force measured overall. There is approximately 16% reduction in the maximum force

measured in the adaptive backstepping technique with reduced oscillations at the

collision. This is a very significant achievement since sensors are costly and repeated

collisions may damage the sensors.
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Figure 4.3. Comparison of Control Forces.

Figure 4.3 compares the control forces required to perform the task. It is im-

portant that the control forces remain smooth during the surgery which can be seen

in the adaptive backstepping technique. Figure 4.4 shows the plot of weights of the

first neural network given in Equation (4.8).

Figure 4.4. Weights of the Neural Network Estimating Nonlinear Terms in Equation
(4.8).
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Figure 4.5 shows the plot of the adaptive parameter which is used to estimate

the terms in Equation (4.9). Figure 4.6 shows a plot of the weights of the third neural

network which is used to estimate the change in environmental forces with time given

by Equation (4.25).

Figure 4.5. Adaptive Parameter Estimates given by Equation (4.9).

It can be seen that the Gaussian functions with their centers placed far away

in the lattice have very less influence on the output of the neural network.
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Figure 4.6. Weights of the Neural Network Estimating the derivative of the Environ-
mental Forces as given in Equation (4.25).
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CHAPTER 5

2-DOF ROBOT MANIPULATOR CONTROL

5.1 Neural-Adaptive Backstepping Control Design with Tuning Functions

For deriving the closed loop control law, we consider the delayed haptic force

Fh(t − T ) at the robot as the desired force, which is operating under environmental

forces Fe(t) and thus defining the force error ef as

ef = Fe(t)− Fh(t− T ) (5.1)

To track a desired velocity commanded by the surgeon along with force, we define

the auxiliary error as

s = ev + Λef (5.2)

where ev is the velocity error given by

ev = ṙ(t)− ṙd(t− T ) (5.3)

where ṙ(t) ∈ R(2×1) is the velocity of the robot end-effector in Cartesian space. Λ ∈

R(2×2) is a positive definite matrix which can be tuned to achieve either force/velocity

control depending on the application and ṙd(t−T ) is the delayed velocity in Cartesian

space commanded by surgeon to the slave robot. In deriving the control law we will

denote Fh(t− T ) as Fh and g(t) as g for convenience unless required, where g is any

variable depending on time. From Chapter 2, we have

Fe = Ke(r)r + Deṙ (5.4)

The time derivative of the auxiliary error is

ṡ = r̈ + Λ(Ḟe − Ḟh) (5.5)
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Substituting Equation (5.4) in Equation (5.5) gives

ṡ = r̈ + Λ(K̇e(r)r + Ke(r)ṙ + Der̈− Ḟh)

= (I + ΛDe)r̈ + Λ(K̇e(r)r + Ke(r)ṙ)−ΛḞh (5.6)

Using Equation (2.13) and Equation (5.6) gives

ṡ = (I + ΛDe)Mr
−1(Fc − Fe −Brṙ−Gr) + Λ(K̇e(r)r + Ke(r)ṙ)−ΛḞh (5.7)

The first neural network is used to approximate the non-linear terms

K̇e(r)r + Ke(r)ṙ− (I + ΛDe)M
−1
r [Brṙ + Gr]−ΛḞh =

 ΦT
11w11 + d11

ΦT
22w22 + d22


= ΦT

1 w1 + d1

(5.8)

where d1 is a bounded approximation as discussed in the Chapter 3. Also, ΦT
1 =

ΦT
11

... 0

. . . . . .

0
... ΦT

22

, w1 =
[
wT

11 wT
22

]T
.

Additionally we need another adaptive parameter to estimate

(I + ΛDe)M
−1
r = γ

 w2 + D21

γ
w3 + D31

γ

w4 + D41

γ
w5 + D51

γ

 = γW + D (5.9)

where Ψ can be written as γW and D = [D21 D31 D41 D51]
T . For deriving the control

scheme and to analyze its stability we construct a “energy-like” function following

the Lyapunov function approach and examine its time variation. For the first stage

of backstepping design we consider a positive-definite candidate Lyapunov function

as follows

V1 =
1

2
sTPs +

1

2β1
w̃T

1 w̃1 +
1

2

5∑
i=2

1

βi
w̃2
i (5.10)
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where P = PT > 0 is a positive definite matrix. The time derivative of the function

is then given as

V̇1 = sTPṡ +
1

β1
w̃T

1
˙̃w1 +

5∑
i=2

1

βi
w̃i

˙̃wi (5.11)

Using the following equations

w̃1 = w1 − ŵ1

Ψ̃ = Ψ− Ψ̂
(5.12)

into Equation (5.11) gives

V̇1 = sTPṡ +
1

β1
w̃T

1 [ẇ1 − ˙̂w1] +
5∑
i=2

1

βi
w̃i[ẇi − ˙̂wi]

= sTPṡ− 1

β1
w̃T

1
˙̂w1 −

5∑
i=2

1

βi
w̃i

˙̂wi (5.13)

Substituting Equation (5.7) in Equation (5.13) gives

V̇1 = sTP[(I + ΛDe)Mr
−1(Fc − Fe −Brṙ−Gr) + Λ(K̇e(r)r + Ke(r)ṙ)−ΛḞh]

− 1

β1
w̃T

1
˙̂w1 −

5∑
i=2

1

βi
w̃i

˙̂wi (5.14)

Substituting Equation (5.8) and Equation (5.9) into Equation (5.14) gives

V̇1 = sTP
[
(Ψ + D)(Fc − Fe) + ΦT

1 w1 + d1

]
− 1

β1
w̃T

1
˙̂w1 −

5∑
i=2

1

βi
w̃i

˙̂wi (5.15)

= sTP
[
γW̃(Fc − Fe) + γŴ(Fc − Fe) + D(Fc − Fe) + ΦT

1 w̃1 + ΦT
1 ŵ1 + d1

]
− 1

β1
w̃T

1
˙̂w1 −

5∑
i=2

1

βi
w̃i

˙̂wi (5.16)

Let the desired control force (virtual control) at the robot end be denoted as α which

leads to the control force error as

z = Fc − α (5.17)
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Substituting Equation (5.17) into Equation (5.16) gives

V̇1 = sTP
[
Ψ̂(z + α− Fe) + δ1 + ΦT

1 ŵ1 −ΛḞh

]
+ w̃T

1 (Φ1Ps− 1

β1
˙̂w1)

+

(
γsTPW̃(Fc − Fe)−

5∑
i=2

1

βi
˙̂wiw̃i

)
(5.18)

Notice that γsTPW̃(Fc − Fe) = γ
5∑
i=2

εi1w̃i.

Also all other uncertainties are contained in

δ1 = D(Fc − Fe) + d1 (5.19)

The weight update laws will be defined at a later stage as per the tuning function

method. The first set of tuning functions is defined as

τ11 = Φ1Ps

τi1 = γεi1 i = 2, . . . , 5 (5.20)

then the derivative can be written as

V̇1 = sTP[Ψ̂(z+α−Fe)+δ1 +ΦT
1 ŵ1]+ w̃T

1 (τ11−
1

β1
˙̂w1)+

5∑
i=2

w̃T
i (τi1−

1

βi
˙̂wi) (5.21)

leading to the choice of virtual control as

α = Fe − Ψ̂−1(ΦT
1 ŵ1 + G1s) (5.22)

where G1 = GT
1 > 0 is a positive definite gain matrix selected for stabilizing the error

dynamics. Substituting above equation we get

V̇1 = −sTPG1s + sTPδ1 + sTPΨ̂z + w̃T
1 (τ11 −

1

β1
˙̂w1) +

5∑
i=2

w̃i(τi1 −
1

βi
˙̂wi) (5.23)

The derivative of the virtual control α is given as

α̇ = Ḟe + Ψ̂−1
˙̂
ΨΨ̂−1

[
ΦT

1 ŵ1 + G1s
]
− Ψ̂−1

[
d

dt
(ΦT

1 ŵ1) + G1ṡ

]
(5.24)
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A third neural network is used to estimate the non-linear dynamics of the environment

Fe given by

Ḟe = ΦT
6 w6 + d6 (5.25)

where, ΦT
6 =


ΦT

16

... 0

. . . . . .

0
... ΦT

26

, w6 =
[
wT

16 wT
26

]T
.

The control Lyapunov function for the second stage is chosen as

V2 = V1 +
1

2
zTz +

1

2β6
w̃T

6 w̃6 (5.26)

The time derivative is

V̇2 = V̇1 + zT ż− 1

β6
w̃T

6
˙̂w6 (5.27)

Substituting Equation (5.23) into Equation (5.27) gives

V̇2 = −sTPG1s + sTPδ1 + sTPΨ̂z + w̃T
1 (τ11 −

1

β1
˙̂w1) +

5∑
i=2

w̃i(τi1 −
1

βi
˙̂wi)

+zT (Ḟc − α̇)− 1

β6
w̃T

6
˙̂w6 (5.28)

Substituting Equation (5.25) in Equation (5.24) gives

α̇ = ΦT
6 w6 + d6 + Ψ̂−1

˙̂
ΨΨ̂−1

[
ΦT

1 ŵ1 + G1s
]
− Ψ̂−1

[
d

dt
(ΦT

1 ŵ1) + G1ṡ

]
(5.29)

The implementable components of the derivative of the virtual control α̇ are given in

˙̂α which is given as

˙̂α = ΦT
6 ŵ6 + Ψ̂−1

˙̂
ΨΨ̂−1

[
ΦT

1 ŵ1 + G1s
]
− Ψ̂−1

[
d

dt
(ΦT

1 ŵ1) + G1
˙̂s

]
(5.30)

Leading to the choice of Ḟc as

Ḟc = ˙̂α− Ψ̂TPT s−G2z (5.31)
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where G2 = GT
2 > 0 is a positive definite gain matrix chosen to stabilize the auxiliary

error dynamics. Substituting Equation (5.31) into Equation (5.28) gives

V̇2 = −sTPG1s + sTPδ1 + sTPΨ̂z + w̃T
1 (τ11 −

1

β1
˙̂w1) +

5∑
i=2

w̃i(τi1 −
1

βi
˙̂wi)

+zT ( ˙̂α− Ψ̂Ps−G2z− α̇)− 1

β6
w̃T

6
˙̂w6 (5.32)

= −sTPG1s− zTG2z + sTPδ1 + w̃1(τ11 −
1

β1
˙̂w1) +

5∑
i=2

w̃T
i (τi1 −

1

βi
˙̂wi)

−zT ˙̃α− 1

β6
w̃T

6
˙̂w6 (5.33)

Subtracting Equation (5.29) and Equation (5.30) gives

˙̃α = ΦT
6 w̃6 + d6 − Ψ̂−1G1(ṡ− ˙̂s) (5.34)

Using Equation (5.7) we can get

ṡ− ˙̂s = [(Ψ + D)(Fc − Fe)−ΛḞh + ΦT
1 w1 + d1]− [Ψ̂(Fc − Fe)−ΛḞh + ΦT

1 ŵ1]

= Ψ̃(Fc − Fe) + ΦT
1 w̃1 + δ1 (5.35)

Substituting Equation (5.35) into Equation (5.34) gives

˙̃α = ΦT
6 w̃6 + d6 − Ψ̂−1G1(Ψ̃(Fc − Fe) + ΦT

1 w̃1 + δ1) (5.36)

Substituting Equation (5.36) into Equation (5.33) gives

V̇2 = −sTPG1s− zTG2z + sTPδ1 + w̃T
1 (Φ1Ps− 1

β1
˙̂w1) +

5∑
i=2

w̃i(τi1 −
1

βi
˙̂wi)

−zT [ΦT
6 w̃6 + d6 − Ψ̂−1G1(Ψ̃(Fc − Fe) + δ1 + ΦT

1 w̃1)]−
1

β6
w̃T

6
˙̂w6 (5.37)

= −sTPG1s− zTG2z + sTPδ1 + zT δ2 + w̃T
1 [Φ1(Ps + G1Ψ

−Tz)− 1

β1
˙̂w1]

+
5∑
i=2

w̃i[τi1 −
1

βi
˙̂wi] + zT Ψ̂−1G1Ψ̃(Fc − Fe) (5.38)

+w̃T
6 [Φ6z−

1

β6
˙̂w6] (5.39)
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where the uncertainties contained in δ2 are given as

δ2 = d6 + Ψ̂−1G1δ1 (5.40)

V̇2 = −sTPG1s− zTG2z + sTPδ1 + zT δ2 + w̃T
1

[
ΦT

1 (Ps + G1Ψ̂
−Tz)− 1

β1
˙̂w1

]
+

5∑
i=2

w̃i(τi1 + ηi1 −
1

βi
˙̂wi) + w̃T

6 (Φ6z−
1

β6
˙̂w6) (5.41)

where, zT Ψ̂−1G1Ψ̃(Fc − Fe) = γ
5∑
i=2

ηi1w̃i has been used.

Now we choose the weight update laws to be the following

˙̂w1 = β1[Φ1(Ps + G1Ψ̂
−Tz)]

˙̂wi = βi[τi1 + ηi1] i = 2, . . . , 5 (5.42)

˙̂w6 = β6Φ6z

Substituting Equations (5.42) in Equation (5.40) gives

V̇2 = −sTPG1s− zTG2z + sTPδ1 + zT δ2 (5.43)

The equation above can be re-written as

V̇2 = −µTGµ+ µT δ (5.44)

where µ, G and δ are given as

µ =

 s

z

 G =

 PG1 0

0 G2

 δ =

 Pδ1

δ2

 (5.45)

The derivative can be upper bounded as

V̇2 ≤ −λmin(G) ‖µ‖2 + ‖µ‖ δmax (5.46)
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where λmin(G) is the minimum eigenvalue of G and δmax is the maximum approxi-

mation error. Equation (5.46) can be re-arranged as

V̇2 ≤ −λmin(G)

(
‖µ‖2 − δmax

λmin(G)
‖µ‖

)
(5.47)

Further

V̇2 ≤ −λmin(G)

(
‖µ‖2 − 2

δmax
2λmin(G)

‖µ‖+

(
δmax

2λmin(G)

)2

−
(

δmax
2λmin(G)

)2
)

≤ −λmin(G)

(
‖µ‖ − δmax

2λmin(G)

)2

+
δmax

2

4λmin(G)
(5.48)

Hence clearly the system is stable outside the residual set

‖µ‖ ≥ δmax
λmin(G)

(5.49)

Also the system converges to the boundary of the residual set

‖µ‖ =
δmax

λmin(G)
(5.50)

asymptotically. The tracking error can be arbitrarily made small so long as the

approximation error δmax is small and also by increasing value of λmin(G). The ap-

proximation error can be reduced using an appropriate number of the basis functions

in the neural network formulation.

To improve the performance of the adaptive update laws, they are augmented as in

[37]

˙̂w1 = β1[Φ1(Ps + G1Ψ̂
−Tz)− ν1ŵ1]

˙̂wi = βiproj[τi1 + ηi1 + Υ(gi − ŵi)] i = 2, . . . , 5 (5.51)

˙̂w6 = β6[Φ6z− ν6ŵ6]

45



where ν1, ν6 are positive leakage constants, Υ is another tuning parameter which

ranges between [0, 1] and gi are the parameters representing the estimate of the

inertia/mass matrix which is calculated a-priori for zero joint angles:

M̂−1
r =

 g1 g2

g3 g4

 (5.52)

The Υ associated term acts as supervisory to avoid the projection limits. The pro-

jection operator

proj[a] =

 0, Ψ̂ < ‖Ψ‖min and a < 0

a, otherwise
(5.53)

All of the above modifications to the update laws help in keeping the estimates

bounded.

5.2 Simulation Results

As in the previous section, variable step Runge-Kutta method (ode45) will be

used in this section too for solving differential equations numerically. Time delays

totaling 0.2 sec (200 ms) will be used to validate the control law. Results are plotted

both against time and position. All simulations were performed in continuous time

domain using Simulink within the Matlab/Simulink environment.

The control gains used in the simulations are ν1 = ν2 = ν3 = 0.1 and β1 = β2 =

β3 = 0.1, Λ =

 1 0

0 1

 , P =

 1 0

0 1

 , G1 =

 4 0

0 4

 , G2 =

 30 0

0 30

 .

Case 1: Puncture from Medium to Free Space at 1.1 m

Velocity tracking by adaptive backstepping method subject to time delay in x

and y direction by mere observation seems very good as compared to direct force

application plotted in Figure 5.1. The system gradually and smoothly reaches the
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desired velocity inside the medium without any overshoot in case of adaptive control.

On the other hand the time delay in direct force control causes the robot’s velocity

to oscillate around the desired velocity as a result of which it has higher velocity

at the time of puncture and so the magnitudes of the velocity overshoot cannot be

compared. After the puncture the direct force system becomes unstable and begins

to diverge.

Figure 5.1. Comparison of Velocity for the Puncture Scenario.

Figure 5.2 compares the external force measured by the sensor at the end-

effector. Since there is no external force acting in the y-direction the force measured

is zero as seen.

Figure 5.3 compares the control forces applied to the robot by the controller in

case of adaptive control and by the haptic device in case of direct force method. It

can be seen that the control forces are smooth and lower in magnitude for achieving

the goal in case of adaptive control as compared to direct force control which needs
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Figure 5.2. Force Measured by the Sensor during Puncture.

Figure 5.3. Control Force Comparison for Puncture Case.

higher control forces.

Figure 5.4, Figure 5.5 and Figure 5.6 shows the time variation of the weights in

the neural network defined in Equation (5.10), Equation (5.11) and Equation (5.25)

respectively for puncture scenario. It can be seen that the neural network works
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Figure 5.4. Weights of the First Neural Network given in Equation (5.8) for Puncture
Case.

Figure 5.5. Weights of Inertia Matrix Inverse given in Equation (5.9) for Puncture
Case.
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Figure 5.6. Weights of Neural Network for Estimating Derivative of Environmental
Force given in Equation (5.25) for Puncture Case.

efficiently and adapts quickly to the unknown environment and nonlinear system

dynamics.

Case 2: Collision with a Hard Surface from Free Space at 1 m

Figure 5.7 compares for both the methods the velocity of the end-effector with

the desired velocity subject to time delay. The adaptive control tracks velocity very

efficiently in both the directions before and after collision as compared to direct force

application which fails to converge at all.

Figure 5.8 compares the external force measured by the sensor at the end-

effector. The first impact force with the hard surface in x-direction is much lower and

damps out quickly in the case of adaptive control than direct force control where the

impact force gets larger with time. Also since there is no external force acting in the

y-direction the force measured is seen as zero.

Figure 5.9 compares the position of the end-effector with time. It is seen that

even though the direct force control has good position tracking before collision, the
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Figure 5.7. Comparison of Velocity for Collision Case.

Figure 5.8. Force Measured by the Sensor during Collision.

system becomes unstable in both directions after collision. In case of adaptive control

even though the response at start is sluggish but the system achieves the desired

position and remains stable after collision.

Figure 5.10 compares the control forces applied to the robot by the controller

in case of adaptive control and by the haptic device in case of direct force method. It
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Figure 5.9. Position Comparison for Collision Case.

can be seen that the control forces are smooth and less force is required to achieve the

goal in case of adaptive control as compared to direct force control which are abrupt

and needs higher control forces.

Figure 5.10. Control Force Comparison for Collision Case.
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Figure 5.11. Weights of the Neural Network given in Equation (5.8) for Collision
Case.

Figure 5.11 shows the time behavior of the weights in the neural network of

Equation (5.10) for collision case. Figure 5.12 shows the time behavior of the weights

used to estimate the inverse of inertia matrix as defined in Equation (5.11) in the

collision scenario.

Figure 5.12. Weights of Inertia Matrix Inverse given in Equation (5.9) for Collision
Case.
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Figure 5.13 shows the weights of the neural network in estimating the derivative

of the external forces on the robot end-effector as defined in Equation (5.25).

Figure 5.13. Weights of Neural Network for Estimating Derivative of Environmental
Force given in Equation (5.25) for Collision Case.

Case 3: Puncture from Medium to Free Space at 1 m and Collision with a Hard

Surface at 1.1 m

Figure 5.14 compares the velocity of the end-effector for both the techniques

with the desired velocity subject to time delay. The adaptive control tracks velocity

very efficiently in both the directions as compared to direct force application which

fails to converge.

Figure 5.15 compares the external force measured by the sensor at the end-

effector. The first impact force with the hard surface in x-direction is much lower

in case of adaptive control than direct force control. Since there is no external force

acting in the y-direction the force measured is seen as zero.
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Figure 5.14. Comparison of Velocity for Combined Case.

Figure 5.15. Force Measured by the Sensor for Combined Case.

Figure 5.16 compares the position of the end-effector with time. It is seen that

the direct force control has good position tracking before collision but after collision

the system becomes unstable in both directions. In case of adaptive control even

though the response at start is sluggish but the system achieves the desired position

and remains stable after collision.
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Figure 5.16. Position Comparison for Combined Case.

Figure 5.17 compares the control forces applied to the robot by the controller

in case of adaptive control and by the haptic device in case of direct force method. It

can be seen that the control forces are smooth and less force is required to achieve the

goal in case of adaptive control as compared to direct force control which are abrupt

and needs higher control forces.

Figure 5.18 shows the time behavior of the weights in the neural network of

Equation (5.10). Figure 5.19 shows the behavior of the weights used to estimate the

inverse of inertia matrix as defined in Equation (5.11).

Figure 5.20 shows the weights of the neural network in estimating the derivative

of the external forces on the robot end-effector as defined in Equation (5.25).
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Figure 5.17. Control Force Comparison for Combined Case.

Figure 5.18. Weights of the Neural Network given in Equation (5.8).
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Figure 5.19. Weights of Inertia Matrix Inverse given in Equation (5.9).

Figure 5.20. Weights of Neural Network for Estimating Derivative of Environmental
Force given in Equation (5.25).
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CHAPTER 6

SUMMARY, CONCLUSIONS AND FUTURE WORK

6.1 1-DOF System

The control law was successfully validated for 1-DOF robot manipulator. With

the controller at the slave end there was no overshoot at start and the effect of time

delay was reduced during puncture and collision with much faster settling time than

the direct force application. The neural network adapted quickly to the unknown

environment.

6.2 2-DOF System

The effects of time delays can be seen in the form of velocity overshoot and

forces acting external to the robot end-effector which is measured by a sensor but

are not accounted in the system. The proposed control law uses neural networks

to estimate and to smooth out the environmental forces in order to account for the

effects of the time delays.

Even though the system responses from adaptive control and direct force con-

trol for no time delay are comparable, the adaptive control completely outperforms

the direct force control when subjected to 0.2 sec (200 ms) time delay. The response

of the adaptive control system alone when not compared to any other method can

be made more robust by tuning the PI gain values which models the human and

the haptic device. Thus the control law developed in chapter 5 helps minimizing the

effects of time delays such as velocity overshoot and increased collision forces by prop-

erly designing an auxiliary error which slows down the system during puncture and
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collision, adapts to unknown linear or nonlinear environment and achieves smoothing

out of control forces.

6.3 Future Work

The work for 2-DOF control can be extended while including the actuator

dynamics. There are bounded uniform approximation errors introduced due to the use

of neural networks for estimation purposes. These error can be reduced by introducing

robust terms in the control law. In future we will derive a robust control law based on

the controller derived in Chapter 5 and test its stability and compare its performance

with the one whose results are produced in this paper.

Since most robots used in the surgeries have more than 2-DOF it is necessary to

test this control law on those robots. Puma-560, da Vinci Surgical System are among

those robots and so our work will also be extended to Puma-560 robotic manipulator

which has 6-DOF. Time delays can vary when carrying out teleoperation over internet.

Therefore it is important to test the control law for varying time delay which will also

be focused in our future work.
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APPENDIX A

PARAMETERS OF 2-DOF ROBOT MANIPULATOR
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In the following appendix, the extended form of inertia matrix, coriolis matrix,

Jacobian matrix and the gravity vector denoted as M(q), C(q, q̇), J(q) and G(q)

respectively of a 2-link planar robot which is used for the simulation are presented

in [31]. Also the link properties, forward and inverse kinematic equations will be

presented subsequently. Figure (A.1) shows a 2-DOF 2 link planar robot manipulator

in [2].

Figure A.1. 2-DOF Robot Manipulator by Bowling A. et al. in [2].

A.1 Inertia Matrix and its Elements

The inertia matrix is given as

M(q) =

 d11 d12

d21 d22

 (A.1)

The respective elements of the Inertia matrix are

d11 = m1L
2
2 +m2(L

2
1 + L2

4 + 2L1L4 cos(q2)) + I1 + I2

d12 = d21 = m2L1L4 cos(q2) +m2L
2
4 + I2

d22 = m2L
2
4 + I2

(A.2)
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A.2 Coriolis Matrix and its Elements

The coriolis matrix is given as

C(q, q̇) =

 c11 c12

c21 c22

 (A.3)

The respective elements of the coriolis matrix are

c11 = −m2L1L4 sin(q2)q̇2

c12 = −m2L1L4 sin(q2)(q̇1 + q̇2)

c21 = −m2L1L4 sin(q2)q̇1 +m2L
2
4 + I2

c22 = 0

(A.4)

A.3 Gravity Vector and its Elements

The gravity vector is given as

G(q) =

 g1

g2

 (A.5)

The respective elements of the gravity matrix are

g1 = m1L2g cos(q1) +m2g[L4 cos(q1 + q2) + L1 cos(q1)]

g2 = m2L4g cos(q1 + q2)
(A.6)

A.4 Jacobian Matrix and its Elements

The Jacobian matrix is given as

J(q) =

 J11 J12

J21 J22

 (A.7)
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The respective elements of the Jacobian matrix are

J11 = −L1 sin(q1)− L3 sin(q1 + q2)

J12 = −L3 sin(q1 + q2)

J21 = L1 cos(q1) + L3 cos(q1 + q2)

J22 = L3 cos(q1 + q2)

(A.8)

A.5 Link Properties

1. Mass of Links

m1 = m2 = 0.5 kg (A.9)

2. Link Lengths

L1 = L3 = 0.75 m (A.10)

3. Center of Mass

L2 = L4 = 0.375 m (A.11)

4. Moment of Inertia

I1 = I2 = 0.0234 kg m2 (A.12)

A.6 Forward Kinematics

Given joint angles (q1, q2) the position (x, y) of the end-effector in cartesian

co-ordinates can be calculated which is known as forward kinematics. The equation

are given in [38] as

x = L1 cos(q1) + L3 cos(q1 + q2)

y = L1 sin(q1) + L3 sin(q1 + q2)
(A.13)
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A.7 Inverse Kinematics

Given position (x, y) of the end-effector in cartesian co-ordinates the joint angles

(q1, q2) can be calculated which is known as inverse kinematics. The equation are given

in [38] as

C2 =
x2 + y2 − L2

1 − L2
3

2L1L3

S2 = ±
√

1− C2
2

q2 = A tan 2(S2, C2)

q1 = A tan 2(y, x)− A tan 2(L3 sin(q2), L1 + L3 cos(q2))

(A.14)

65



REFERENCES

[1] D. Richert and C. Macnab, “Direct Adaptive Force Feedback for Haptic Con-

trol with Time Delay,” in IEEE Toronto International Conference Science and

Technology for Humanity (TIC-STH). IEEE, Sept. 2009, pp. 893–897.

[2] A. P. Bowling, J. E. Renaud, J. T. Newkirk, and N. M. Patel, “Reliability-Based

Design Optimization of Robotic System Dynamic Performance,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2006, 2006, pp.

3611–3617.

[3] A. E. Saddik, “The Potential of Haptic Technologies,” IEEE Instrumentation &

Measurement Magazine, pp. 10–17, 2007.

[4] J. Cui, S. Tosunoglu, R. Roberts, C. Moore, and D. W. Repperger, “A Review

of Teleoperation System Control,” in Proceedings of the Florida Conference on

Recent Advances in Robotics, 2003.

[5] A. K. Bejczy, “Teleoperation and Telerobotics,” in The Mechanical Systems De-

sign Handbook. CRC Press, 2001, ch. 25.

[6] J. M. Wilson and M. E. Peters, “Automatic Flight Envelope Protection For

Light General Aviation Aircraft,” in Digital Avionics Systems Conference,

IEEE/AIAA 28th, 2009, pp. 1–7.

[7] J. R. Otero, P. Paparel, D. Atreya, K. Touijer, and B. Guillonneau, “History ,

Evolution And Application of Robotic Surgery in Urology,” Spanish Archives of

Urology, vol. 4, pp. 335–341, 2007.

66



[8] A. Shamiyeh and W. Wayand, “Laparoscopic Cholecystectomy: Early and Late

Complications and their Treatment.” Langenbeck’s archives of surgery / Deutsche

Gesellschaft für Chirurgie, vol. 389, no. 3, pp. 164–71, June 2004.

[9] C. A. Steiner, E. B. Bass, M. A. Talamini, H. A. Pitt, and E. P. Steinberg,

“Surgical Rates and Operative Mortality for Open and Laparoscopic Choleycs-

tectomy in Maryland,” The New England Journal of Medicine, vol. 330, no. 6,

1994.

[10] D. Richert, C. J. B. Macnab, and J. K. Pieper, “Force-Force Bilateral Haptic

Control using Adaptive Backstepping with Tuning Functions,” in IEEE/ASME

International Conference on Advanced Intelligent Mechatronics. Ieee, July 2010,

pp. 341–346.

[11] ——, “Adaptive Haptic Control for Telerobotics Transitioning Between Free,

Soft, and Hard Environments,” IEEE Transactions on Systems, Man, and Cy-

bernetics - Part A: Systems and Humans, vol. 42, no. 3, pp. 558–570, May 2012.

[12] D. Richert, A. Beirami, and C. J. Macnab, “Neural-Adaptive Control of Robotic

Manipulators using a Supervisory Inertia Matrix,” 4th International Conference

on Autonomous Robots and Agents, pp. 634–639, Feb. 2000.

[13] C. J. B. Macnab, G. D’Eleuterio, and M. Meng, “CMAC Adaptive Control of

Flexible-Joint Robots using Backstepping with Tuning Functions,” in Interna-

tional Conference on Robotics & Automation, vol. 1, 2004, pp. 2679–2686.

[14] D. Wang, K. Tuer, M. Rossi, L. Ni, and J. Shu, “The Effect of Time Delays

on Tele-haptics,” The 2nd IEEE Internatioal Workshop on Haptic, Audio and

Visual Environments and Their Applications, Proceedings., pp. 7–12, 2003.

[15] H. Arioui, A. Kheddar, and S. Mammar, “A Predictive Wave-Based Approach

for Time Delayed Virtual Environments Haptics Systems,” in Proceedings. 11th

67



IEEE International Workshop on Robot and Human Interactive Communication.

Ieee, 2002, pp. 134–139.

[16] S. Munir and J. Wayne, “Internet-Based Teleoperation Using Wave Variables

With Prediction,” IEEE/ASME Transactions on Mechatronics, vol. 7, no. 2, pp.

124–133, 2002.

[17] A. Aziminejad, M. Tavakoli, R. Patel, and M. Moallem, “Transparent Time-

Delayed Bilateral Teleoperation Using Wave Variables,” IEEE Transactions on

Control Systems Technology, vol. 16, no. 3, pp. 548–555, May 2008.

[18] S. Sirouspour and A. Shahdi, “Bilateral Teleoperation under Communication

Time Delay using an LQG Controller,” Proceedings of 2005 IEEE Conference on

Control Applications, pp. 1257–1262, 2005.

[19] ——, “Model Predictive Control for Transparent Teleoperation Under Commu-

nication Time Delay,” IEEE Transactions on Robotics, vol. 22, no. 6, pp. 1131–

1145, 2006.

[20] A. Shahdi and S. Sirouspour, “Adaptive/Robust Control for Enhanced Tele-

operation under Communication Time Delay,” 2007 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pp. 2667–2672, Oct. 2007.

[21] R. Cortesão, J. Park, and O. Khatib, “Real-Time Adaptive Control for Haptic

Manipulation with Active Observers,” in Intelligent Robots and Systems, vol. 2,

no. October, 2003, pp. 2938–2943.

[22] ——, “Real-Time Adaptive Control for Haptic Telemanipulation With Kalman

Active Observers,” IEEE Transactions on Robotics, vol. 22, no. 5, pp. 987–999,

2006.

[23] J. Park and R. Cortes, “Robust and Adaptive Teleoperation for Compliant Mo-

tion Tasks,” in International Conference on Advanced Robotics, 2003.

68



[24] J. Park, O. Khatib, and R. Cortes, “Telepresence and Stability Analysis for

Haptic Tele-Manipulation with Short Time Delay,” in International Conference

on Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ, 2005,

pp. 436– 441.

[25] D. Lawrence, “Stability and Transparency in Bilateral Teleoperation,” IEEE

Transactions on Robotics and Automation, vol. 9, no. 5, pp. 624–637, 1993.

[26] G. Niemeyer, “Telemanipulation with Time Delays,” The International Journal

of Robotics Research, vol. 23, no. 9, pp. 873–890, Sept. 2004.

[27] M. Nohmi, M. Ando, and T. Bock, “Contact Task by Space Teleoperation Using

Force Reflection of Communication Time Delay,” in 2005 International Sympo-

sium on Computational Intelligence in Robotics and Automation. Ieee, 2005,

pp. 193–198.

[28] J. E. Speich, L. Shao, and M. Goldfarb, “Modeling the Human Hand as it Inter-

acts with a Telemanipulation System,” Mechatronics, vol. 15, no. 9, pp. 1127–

1142, Nov. 2005.

[29] M. J. Fu and M. C. Cenk, “Human Arm-and-Hand Dynamics Model with Vari-

ability Analyses for a Stylus-based Haptic Interface,” IEEE Transactions Sys-

tems, Man and Cybernetics, vol. 42, no. 6, pp. 1633– 1644, 2012.

[30] J. J. Gil, “Influence of Vibration Modes and Human Operator on the Stability of

Haptic Rendering,” IEEE Transactions on Robotics, vol. 26, no. 1, pp. 160–165,

2010.

[31] Frank L . Lewis, Darren M . Dawson, and Chaouki T . Abdallah, Robot Manip-

ulator Control. CRC Press, 2003.

[32] An-Chyau Huang and Ming-Chih Chien, Adaptive Control of Robot Manipula-

tors. World Scientific Publishing Co. Pvt. Ltd, 2010.

69



[33] M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive Control

Design. John Wiley and Sons, 1995.

[34] R. Hong, “State-of-the-art of artificial neural networks and applications to mars

robots,” in Electro International, 1991, pp. 568–573.

[35] R. P. Lippmann, “An introduction to computing with neural nets,” ASSP Mag-

azine, IEEE, vol. 16, no. 1, pp. 7–25, Mar. 1988.

[36] B. Fornberg and C. Piret, “On Choosing a Radial Basis Function and a Shape

Parameter when Solving a Convective PDE on a Sphere,” Journal of Computa-

tional Physics, vol. 227, no. 5, pp. 2758–2780, Feb. 2008.

[37] Ioannou P. and J. Sun, Robust Adaptive Control. Pearson Education, Inc., 1996.

[38] J. J. Craig, Introduction to Robotics: Mechanics and Control. PEARSON, 2003.

70



BIOGRAPHICAL STATEMENT

Pankaj P Sarda was born in the city of Pune, India in 1988. He obtained his

Bachelor’s degree in Mechanical Engineering from University of Pune in 2010. Aspired

to learn more he then came to the United States in Fall 2010 to pursue an M.S. degree

program in Mechanical Engineering at the University of Texas at Arlington.

Pankaj has been in the industry for two long semesters as an Mechanical En-

gineering Intern assisting the lead Mechanical and Electrical engineers at Luraco

Technologies, Inc., Texas, USA with Mechanical designs. His research interests in-

clude Robotics: Design & controls. He is currently working in the Aerospace Systems

Lab (ASL) with Dr. Kamesh Subbarao on Control of Teleoperating Arm Subject to

Time Delays.

71


