

AN INTERPOLATION BASED APPROACH

FOR PATTERN RECOGNITION

AND GENERATION

by

VISHNUKUMAR GALIGEKERE N

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2013

ii

Copyright © by Vishnukumar Galigekere N 2013

All Rights Reserved

iii

This dissertation is dedicated to my mother and father, whose constant encouragement and

support has been the driving force behind this endeavor.

iv

ACKNOWLEDGEMENTS

 This body of work would not have been possible without the support of many people

who have provided immense help during various stages of my doctoral degree. First and

foremost, I would like to express my deepest gratitude to my supervising professor and

committee chair, Dr. Gutemberg Guerra-Filho, who continually and patiently conveyed words of

encouragement with regards to research and scholarship. I am deeply appreciative of his

constant guidance and persistent help, without which, this dissertation would not have been

possible.

I would like to extend my sincere thanks to all my committee members Dr. Jean Gao,

Dr. Heng Huang and Dr. Manfred Huber for showing interest in my research and serving on my

committee. I am especially grateful to Dr. Manfred Huber for his support during the final stages

of my research and engaging me in exciting research discussions. In addition, I would like to

sincerely thank my graduate advisor Dr. Bahram Khalili for supporting and mentoring me

throughout my career at UT Arlington. I am also deeply thankful to Dr. Nikola Stojanovic, without

his support and encouragement, I would have not been able to pursue this endeavor.

I would also like to extend my gratitude to the department of Computer Science and

Engineering at the University of Texas at Arlington and my advisor, Dr. Gutemberg Guerra-Filho

for providing financial support and the necessary infrastructure required for my research.

A very special thanks to all my friends for being around like family during various stages

of my tenure at UT Arlington. Last but certainly not the least, I would like to express my deepest

gratitude to my parents Mrs. Sujaya N and Dr. GR Nagabhushana, my brother Dr. Veda

Prakash and my loving wife Sridevi Bajgur for their unconditional love, constant support,

v

patience and encouragement, without which, I would have not been able to pursue this

endeavor.

April 18, 2013

vi

ABSTRACT

AN INTERPOLATION BASED APPROACH

FOR PATTERN RECOGNITION

AND GENERATION

Vishnukumar Galigekere N, PhD

The University of Texas at Arlington, 2013

Supervising Professor: Gutemberg Guerra-Filho

 A large number of problems in computer vision and computer graphics can essentially

be reduced to a pattern recognition problem. In this thesis, we explore a novel interpolation

based framework to address some of the various recognition problems in these areas. Our

interpolation based framework is a supervised learning algorithm that allows for both generation

(synthesis) of new patterns as well as perception (analysis) of existing patterns. The method is

simple to implement and yet, expects a very straightforward and intuitive set of parameters to

model the complex nature of such recognition problems.

Specifically, given a set of training data along with their parameters, we can learn a

model that is a compact representation of the set of all patterns defined in a parametric space.

Having learnt such a model we are able to generate any new patterns defined within that

parametric space. Moreover, as an inverse operation, we are also able to estimate the

parameters of any existing pattern. Based on this 'synthesis-analysis' approach we propose a

vii

method to recognize patterns and evaluate it in rather diverse areas such as recognition of

objects/faces in varying illumination conditions and, human motion across different skeleton

sizes. Using the same approach we demonstrate the methods application in the area of image

based modeling and rendering, where, we are able to render ‘unknown’ objects into a scene

provided we have at least one ‘known’ object in it. Another application is in the area of

animation where, given a set of human motion data differing in skeleton size but for a specific

action, we are able to re-target that specific action to an identical skeleton but of varying bone

lengths.

Also, in this thesis, we explore a novel image feature descriptor built using a bank of

Gabor filters and evaluate its effectiveness in an object recognition framework using synthetic

and real data. We also describe our software tool that allows for automatic generation of

ground-truth data for various computer vision problems such as camera calibration, feature

matching, 3D reconstruction, object tracking and object recognition.

viii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. …………….. iv

ABSTRACT ... vi

LIST OF ILLUSTRATIONS.. xi

Chapter Page

1. INTRODUCTION……………………………………..………..…....................................... .1

1.1 Background1

1.2 Motivation .. .2

 1.3 Thesis Layout ... 3

2. TOPOLOGICAL GABOR DESCRIPTORS: EXPLORING A FILTER BANK
STRUCTURE FOR IMAGE FEATURE MATCHING ... 4

 2.1 Introduction ... 4

 2.2 Previous Work .. 6

 2.3 Topological Gabor Descriptor .. 8

2.3.1 Gabor Filters .. 8

2.3.2 2D Gabor Filter Bank ... 9

2.3.3 Topological Gabor Descriptor .. 10

 2.4 Circular Shift Similarity ... 12

 2.5 Experimental Results ... 14

2.5.1 Evaluation Methods .. 14

2.5.2 Synthetic Data .. 16

2.5.3 Real Images ... 21

 2.6 Conclusions .. 22

ix

3. AN INTERPOLATION BASED APPROACH FOR IMAGE RECOGNITION
LIGHTING VARIATION ... 24

3.1 Introduction ... 24

3.2 Interpolation Approach ... 26

3.3 Recognition Methods ... 29

3.3.1 Image Datasets .. 29

3.3.2 Object Recognition with Varying Lighting Intensity 32

3.3.3 Face Recognition with Varying Lighting Pose 34

 3.4 Conclusion .. 34

4. A SYNTHESIS-AND-ANALYSIS APPROACH TO IMAGE BASED LIGHTING 36

4.1 Introduction ... 36

4.2 Previous Work .. 40

4.3 Interpolation Based Approach .. 44

4.4 Experimental Results ... 45

4.4.1 Image Synthesis and Analysis ... 45

4.4.2 Rendering a Known Object in an Unknown Scene 53

4.5 Conclusion .. 54

5. AN INTERPOLATION BASED APPROACH FOR MOTION SYNTHESIS AND
ANALYSIS ... 56

5.1 Introduction ... 56

5.2 Previous Work .. 58

5.3 Interpolation Model for Human Motion ... 59

5.4 Motion Capture Data .. 61

5.4.1 Data Preprocessing .. 62

5.4.2 Parameter selection ... 64

5.5 Experiments ... 65

x

5.5.1 Motion Retargeting and Recognition .. 65

5.6 Conclusion and Future Work .. 69

APPENDIX

A. CVPOV: AN AUTOMATED TOOL FOR GENERATING SYNTHETIC GROUND
TRUTH IMAGES ... 70

REFERENCES ... 83

BIOGRAPHICAL INFORMATION .. 90

xi

LIST OF ILLUSTRATIONS

Figure Page

2.1 Real part of a Gabor filter ... 9

2.2 A 4 x 4 Gabor filter bank generated for angles
 from 0 to 180 degrees and for 4 different frequencies ... 11

2.3 Original image windows (a) and (b) along with their corresponding
 1D Topological Gabor Descriptors (c) and (d) ... 11

2.4 The TGD (c) of the rotated window (b) in blue.
 The shifted TGD of the same window (a) in green depicting
 that the shift is about 45 degrees to the left. .. 13

2.5 The TGD (c) of the original image window (a) in blue
 in blue and the matched TGD of the rotated window (b) in green. ... 13

2.6 A sample of the synthetic images.
 The four images in column (a) are rotated data
 and the four images in column (b) depict the scale variation. .. 17

2.7 A sample of image windows used in the synthetic data experiment .. 18

2.8 A confusion matrix for a pair of synthetic images .. 19

2.9 A few real images used in our experiments ... 20

2.10 Sample of image windows used in the real data experiment ... 21

2.11 Confusion matrix for a pair of real images ... 22

3.1 A sample recognition step where (a) represents a test face image
 (b) is the synthesized image and (c) is the error image. ... 28

3.2 Camera setup for data capture .. 29

3.3 Sample images from our object image dataset depicting
 lighting intensity variation. The lighting parameters
 vary from (1,1,1,1) through (3,3,3,3) in uniform
 steps from top-left to bottom-right. ... 30

3.4 Images from the face database depicting lighting pose variation.
 elevation pairs for images in column (a), (b), (c), (d) and (e)
 are (05, 10), (10, -20), (20, -40), (60, 20), (95, 0) respectively. ... 32

xii

3.5 Sample objects under six lighting parameters ... 33

3.6 Recognition rate for each of the 64 lighting parameters
 using a total of 30 subjects. The vertical axis represents
 the number of subjects and the horizontal axis represents
 the lighting parameters ... 33

4.1 A general schematic of our interpolation based approach for the
 synthesis and analysis of images under lighting variation ... 39

4.2 The average synthesis error for all possible neighborhood
 sizes and number of components .. 46

4.3 The average analysis error for all possible neighborhood
 sizes and number of components .. 47

4.4 Average synthesis error and analysis error for constant number
 of components with increasing neighborhood size are shown
 in (a) and (b) respectively and the average synthesis error and
 analysis error for a constant neighborhood size with
 increasing number of components
 are shown in (c) and (d) respectively .. 48

4.5 Image synthesis results with 16 components and neighborhoods
 of size 50. The column (a) is the original images from
 camera C4 and depth D2. The column (b) comprises of the
 corresponding generated images ... 51

4.6 Real face images (a) and (c) compared
 to synthesized images (b) and (d). ... 52

4.7 Analyzing face images for their illumination parameters. ... 53

4.8 Comparison of an object rendered in an unknown
 scene with the ground truth. .. 53

4.9 The column (a) is the error when compared with the
 ground truth and column (b) is the actual rendering. .. 55

5.1 Hierarchy of the skeleton used for our experiments. ... 61

5.2 Robust spline smoothing for 4 sample joint-angles of a
 subject performing the walk action. .. 64

5.3 Average synthesis error computed for the walk dataset,
 with the number of components varying from 1 to 20 and the
 number of training samples, varying from 1 to 40. Dark blue
 indicates lesser error and dark red is the other extreme. ... 66

5.4 Average synthesis error computed for the walk dataset,

xiii

 for 6(red), 8(green) and 10(blue) components with number
 of training samples varying from 1 to 40. ... 66

5.5 Average analysis error computed for the walk dataset,
 with the number of components varying from 1 to 20 and the
 number of training samples, varying from 1 to 40. Dark blue
 indicates lesser error and dark red is the other extreme. ... 67

5.6 Average analysis error computed for the walk dataset,
 for 6(red), 8(green) and 10(blue) components with number
 of training samples varying from 1 to 40. .. 67

5.7 Nine random frames depicting the actual joint angles in blue
 and the retargeted joint angles in red for test subject-1
 doing the walk action. ... 68

5.8 Nine random frames depicting the actual joint angles in blue
 and the retargeted joint angles in red for test subject-2
 doing the walk action. ... 68

 1

CHAPTER 1

INTRODUCTION

1.1 Background

A typical supervised learning algorithm involves a learning phase, where the algorithm

learns a classification model using a set of training data. This learnt model is then used in the

testing phase, to assign a class or label to unknown instances of the input pattern. The

assigned label could be real-valued, integer-valued or even a name of a class such as Class-A

or Class-B. Formally, consider a set of training data-label pairs

 () () () () , where is the input data set and its

corresponding set of labels. Assuming, there exists an unknown function that maps the data

items to their corresponding labels given by , the goal of the learning algorithm is to be

able to learn a function which approximates . An example application problem could

be that of a face detection algorithm that uses several images of faces and non-

faces/background images as training data with associated labels face and non-face

respectively, to learn a model that can classify new (unknown) input images as a face-image or

non-face-image. Currently many popular methods including Support Vector Machines [15],

Naïve Bayes Classifiers [47] and Decision Trees [46] are used to design such learning

algorithms and, over the years, several supervised learning algorithms have been designed and

applied effectively to address various problems in diverse areas. However, the subject

continues to be an active research topic in Machine Learning and Pattern Recognition circles.

In this document we present one such learning algorithm based on interpolation where,

the training set comprises of patterns and a set of parameters associated with each pattern. The

main novelty of this approach is that we are not only able to learn a model that can estimate the

parameters of an input pattern, but also generate a synthetic pattern for a given set of

 2

parameters. The parameter estimation part of the method can be termed as the analysis part

while the pattern generation part can be defined as the synthesis part. As an example, if the

patterns are images of an object taken in various illumination conditions, the associated

parameters could be the intensity levels of the light sources or their positions with respect to the

object or even a combination of the two. Having learnt the interpolation model for such a case,

we are able to use the analysis part to estimate the illumination parameters of a query image

and, as a reverse process, given a query set of parameters; we can generate a new image of

the object with the illumination conditions defined by this query parameters, which is the

synthesis part. Moreover, we use this analysis-synthesis approach to develop an effective

pattern recognition framework and demonstrate its application to some of the popular problems

in Computer Vision and Computer Graphics.

1.2 Motivation

As another example where science draws its inspiration from nature and imitates the

same, this method of supervised learning is very much akin to us humans learning from our

past experiences. Similarly, our approach here is motivated by the theory of mirror neurons [48]

in Neuroscience. This theory essentially places perception and generation under the same

foundation. The mirror neuron theory states that the same neurons fire in the brain when a

person perceives a particular sensory-motor pattern and when the subject generates the same

pattern. For an example in the visual domain, the theory suggests that a set of neurons in the

brain will be active when a subject recognizes the image of an object such as an apple fruit.

Similarly, the same set of neurons fire when the subject pictures the image of an apple fruit

through imagination or dreaming. This theory indicates that both synthesis and analysis are

performed according to the same fundamental framework. We propose here an interpolation

based approach, inspired by this mirror neuron theory, to perform pattern recognition and

generation using the synthesis-analysis framework.

 3

The framework discussed in this work was essentially designed to specifically address

the problem of object recognition. However, while furthering our research, we have had success

in expanding the scope of the technique to address problems related to Image Based Lighting

and human motion-based problems such as Motion Retargeting, in the domain of computer

graphics.

1.3 Thesis Layout

Initially, our research focus was mainly on addressing the problems related to feature

description for visual object recognition. In an attempt to address issues related to object

recognition, we developed a novel image descriptor using a bank of Gabor filters. Chapter 2 is

dedicated to this part of our work. However, the rest of the document is dedicated to elaborate

on the interpolation based approach and its applications, which forms the crux of our research.

Chapter 3 formally introduces the interpolation approach and addresses the problem of

object recognition and face recognition in varying illumination conditions. Further, in the same

chapter, we discuss the possible expansion of the method’s application to object recognition

subjected to geometrical variations. In Chapter 4 we elaborate further and demonstrate the

method’s application in Image Based Lighting and Rendering. In chapter 5 we expand our

approach to address the problem of Motion Retargeting and Motion Recognition. In chapter 6,

we discuss the conclusion and future work. Moreover, to aid our research we developed a

computational tool called CVPoV that allows one to automatically generate synthetic ground-

truth data to test several computer vision applications. The description of the tool is made

available in Appendix A.

 4

CHAPTER 2

TOPOLOGICAL GABOR DESCRIPTORS: EXPLORING A FILTER BANK STRUCTURE FOR

IMAGE FEATURE MATCHING

2.1 Introduction

In Computer Vision, salient features are associated with regions in an image which are

visually more informative than others. Feature description is a fundamental and challenging

problem in image processing and computer vision. It is the foundation to problems such as

object or scene detection, recognition, categorization, and tracking, where robustness depends

on the underlying feature and its descriptor. Information cues used to describe salient features

are be color, texture, shape, structure, or a combination of two or more of such elementary

measurements in a local neighborhood.

The major objective of a feature descriptor is to achieve the best compromise between

invariance and distinctiveness. In other words, a good descriptor needs to allow the matching of

similar regions through invariant properties while separating different patterns into distinct

classes. This is a hard problem when real noisy images obtained under unconstrained

illumination are considered. Moreover, other imaging variations such as camera viewpoint

changes make it even harder to deal with. Hence, a good image feature descriptor should be

invariant to these changes while still capable of discerning between different regions.

Image features constructed using Gabor filters are quite popular in the computer vision

community [29, 37]. The main reason for this popularity is that the most important imaging

variations such as scale and rotation are in fact parameters of Gabor filters themselves. In this

chapter, we introduce a new feature descriptor based on a topologically structured bank of 2D

Gabor filters. The construction of the feature descriptor from the filter bank responses allows us

to compare different descriptors with a simple circular shift operation. In other words, the filter

 5

bank is constructed in a way that rotation invariant search operations can be performed in the

descriptor space by a simple circular shift of the descriptor vector. Scale invariance is achieved

by searching in the scale space of the image pyramid. Moreover, our descriptors are obtained

by computing a scalar for each filter in the bank by multiplying it with the image window.

Although Gabor filters require higher computational resources, this method allows for the

reconstruction of the image information from the descriptor space by computing the inverse of

the filter bank.

Our main contribution here is the construction of a 2D Gabor filter bank with a topology

that allows for a simple 1D circular shift in the descriptor space to search for matches that are

rotationally invariant. The rotational invariance is robust to a complete 360 degree rotation in the

z-axis. The descriptors are computed for a spatial location in a dense pyramid of images to

achieve scale invariance. We also take advantage of our computational tool, CVPoV (details in

Appendix A) that is used to generate synthetic data along with the ground truth to experiment

and test our results in a controlled setting.

Our approach has given excellent results with synthetic data. For images of a synthetic

scene that was subjected to 0 to 180 degree rotation about the z-axis in steps of 8.5 degrees,

we obtained a 93.5% matching rate. In another experiment with the synthetic data where the

camera was translated in the z-axis moving it toward the scene and thereby simulating true

scale variation, we obtained a matching rate of 81.1%. While experimenting with real images of

famous buildings, the average matching rate for three different sets of scenes was an

encouraging 41.3%.

The outline of this chapter is as follows. In Section 2.2, we will briefly describe previous

work on algorithms that address the problem of image or feature description. In Section 2.2, we

will introduce the Gabor filter, describe the construction of the filter bank, and describe the

topological Gabor descriptors in detail. In Section 2.4, we will discuss the methods for

comparing descriptors using the shift operation and also the distance measures used to match

 6

them. The Section 2.5 describes all the experiments in detail. In Section 2.6, we will discuss the

conclusions we have arrived at with our experiments and go on to discuss the scope for

improvement and some closing comments.

2.2 Previous Work

The Scale Invariant Feature Transform (SIFT) [38] concerns a descriptor for features

which are reasonably invariant to image scaling, translation, rotation, illumination changes, and

affine or 3D projection. The computation of SIFT features involves several stages. The initial

step in the algorithm is the scale invariant feature detector based on the Difference of

Gaussians (DoG). Once features are detected, the orientation of the feature is obtained by

using a 36 bin histogram of gradient orientations within a Gaussian weighted circular window

whose size is determined by the DoG feature detector. This region around the feature is divided

into 4 x 4 squared areas associated with histograms of gradient orientations. The number of

bins on these histograms is reduced from 36 to 8 bins. This results in a 4 x 4 x 8 = 128

dimensional feature vector which is then normalized to make it invariant to illumination changes.

This resulting 128 dimensional vector represents the SIFT descriptor. The main disadvantage of

SIFT features is that they are relatively expensive to compute. Furthermore, as a histogram-

based method, it is impossible to reconstruct the original image region from the descriptor.

There are several algorithms that improve on SIFT features both in terms of

computational speed and accuracy. In the PCA-SIFT algorithm [30], instead of the original 128

dimensional feature vector, a 41 x 41 patch around the interest point is extracted and then

horizontal and vertical gradients are computed for the 39 x 39 interior patches. This leads to a

39 x 39 x 2 = 3042 dimensional vector. The dimensionality of this vector is then reduced to 20

using the Principal Component Analysis (PCA). The algorithm achieves a more distinctive

representation of the image features coupled with a reduced feature dimension. Gradient

location-orientation histogram (GLOH) [43] differs from SIFT at the sampling stage. In the

 7

GLOH descriptor, 17 log-polar location bins and 16 orientation bins are considered. This leads

to a 272 dimensional feature space which is reduced to 128 dimensions using PCA.

The Speeded-Up Robust Features (SURF) [6] approximates or even outperforms

previously proposed schemes such as SIFT features with respect to repeatability,

distinctiveness, and robustness, yet can be computed and compared much faster. SURF

features are, like SIFT features, a histogram-based descriptor. The main advantage of SURF

over SIFT is that it is significantly faster than the latter. The algorithm owes its computational

speed advantage to the usage of integral images to avoid image convolutions. SURF relies on a

Hessian-matrix approximation on integral images to compute interest points. This algorithm

gains an even more significant advantage with respect to computational speed as integral

images allows the up-scaling of these filters at constant cost instead of computing an image

pyramid. Once the interest points are detected at the given scales, the algorithm computes a

distribution of the intensity content within the interest point neighborhood, similar to the gradient

information extracted by SIFT. First order Haar wavelet responses in x and y directions are

computed in a circular region to arrive at the most suitable orientation. The SURF descriptors

are then computed in the form of an 8 x 8 oriented grid where each cell in the grid is the

response of the Haar wavelet.

Other feature descriptors such as Geometric Blur [8] and Jet Descriptors [31] do not

perform as well as SIFT or SURF. A survey of such methods is found in [45, 54]. Descriptors

based on the Geometric Blur compute the average of the edge signal response over small

geometric transformations. Therefore, Geometric Blur is basically an average over geometric

transformations of a signal. The Jet descriptor combines local derivatives into sets of differential

operators which are rotationally invariant. An issue with these filters is that they are not scale

invariant.

In contrast to histogram-based methods such as SIFT and SURF, a major advantage of

our method is the ability to reconstruct the original image region from the descriptor as long as

 8

the inverse of the filter bank can be obtained. An advantage over other filter-based approaches

is that rotation and scale variations are directly handled as they form the parameters of the

Gabor filter itself. Moreover, these filters allow us to construct filter banks with a topology such

that rotation invariant matching of the descriptors can be achieved simply by circularly shifting

the descriptor.

2.3 Topological Gabor Descriptor

2.3.1 Gabor Filters

Gabor filters have been extensively used in texture recognition [39] and dominated the

area of iris recognition [16]. Gabor filters are linear filters that are sensitive to the local

frequency and rotation of an image region. They are generated by modulating a 2D Gaussian

function by a sinusoidal plane wave. In simple terms, the frequency of the complex sinusoidal

carrier senses the spatial frequency information while the Gaussian envelope localizes this

aspect. The rotation of the elliptical Gaussian envelope allows the filter to sense the rotation of

the image information. Hence, a bank of such filters associated with a range of frequencies and

a range of orientations may be used to construct a descriptor for an image region. In fact, it has

been established by Daugman [17, 18] that such structures of 2D Gabor filters were very similar

to the organization and the characteristics of the mammalian visual system.

There are a few different versions of Gabor filters that have been designed. In this

chapter, we use the normalized 2D Gabor filter function in the continuous spatial domain

defined below [14]: ()

 (

)

, where ,

 , f is the frequency of the 2D sinusoidal carrier, is the anti-clockwise

angle of the major axis of the Gaussian envelope and the sinusoidal plane wave, is the

sharpness (spatial width) along the major axis, and is the sharpness along the minor axis

(perpendicular to the wave). The aspect ratio of the Gaussian is therefore given by .

The choice of using the above normalized 2D Gabor filter is to guarantee that the filters of

 9

different frequencies are scaled versions of each other [32]. The real part of such a filter is show

in Figure 2.1. The imaginary part is a 90 degree phase shifted version of the real part.

Figure 2.1: Real part of a Gabor filter, where f = 1.4142, , and .

2.3.2 2D Gabor Filter Bank

The response of 2D Gabor filters is invariant to changes in scale, rotation, and uniform

illumination. However, construction of a filter bank that is optimal for a problem in a general

setting is by no means a trivial task. Since our goal is to build a robust feature descriptor that

should potentially address higher level problems such as object or scene recognition, we design

our filter bank in such a way to cover all possible scales and all possible rotations about the axis

perpendicular to the image plane with a certain granularity in the discrete domain. We also want

the descriptor to tolerate minor changes in viewpoint and illumination. Given such objectives, we

use a large filter bank to achieve a good degree of robustness to image variations. The

orientations must be spaced uniformly to effectively cover a range of rotational angles about the

z-axis [33]. Formally, the angles are defined as

 for . Since the

 10

Gaussian envelope is symmetric about the axes, we chose to vary  in the range [0, ) instead

of the range [0, 2) and we select n such that  varies in steps of 1 degree. This results in a

filter bank with 180 2D Gabor filters that should be sensitive to minor rotations such as a few

degrees to a complete 180 degree out of phase about the z-axis. Furthermore, scale invariance

is realized by spacing the frequency parameter in a logarithmic scale [11] as depicted in the

following equation. for and . The scaling factor or

 √ allows for octave spacing or half octave spacing, respectively. Figure 2.2 depicts a filter

bank constructed using the above mentioned scheme for four orientations and four frequencies.

Since we are using normalized Gabor filters varying the filter frequency is equivalent to

applying a single filter of a constant frequency to scaled images. We opted to construct dense

image pyramids so that we can achieve a robust search through a high density scale space. For

the rest of this document we will deal with a filter bank constructed with filters of a constant

frequency but varying orientations.

For an image window with radius w, a 2D Gabor filter is a square matrix of size

()x(). We construct our filter bank by vectorizing each filter to a () sized

row vector and stacking them up to form a matrix of size () .

2.3.3 Topological Gabor Descriptor

 Traditionally, the approach to compute the response of a Gabor filter in the spatial

domain on an image window is by performing a 2D convolution between the filter and the

image. For a single image window, 2D convolution is the dot product between the filter vector in

the bank and the vectorized image window. The convolution of the same image window with all

filters in the bank results in a feature descriptor in the form of a vector of 180 real numbers

associated with the filter responses. Each scalar in the descriptor is the response of a 2D Gabor

filter for a particular orientation. Therefore, the Topological Gabor Descriptor (TGD) is basically

a time series of length 180. Figure 2.3 shows the TGDs computed for a two sample image

windows.

 11

Figure 2.2: A 4 x 4 Gabor filter bank generated for angles from 0 to 180 degrees and for 4

different frequencies.

Figure 2.3: Original image windows (a) and (b) along with their corresponding 1D Topological

Gabor Descriptors (c) and (d).

 12

2.4 Circular Shift Similarity

 The other significant contribution in this chapter is that the topology of the filter bank is

such that matching different descriptors for rotated data is achieved by simply performing a

circular shift on the computed descriptor. After the circular shift, a nearest neighbor search is

executed.

The computed TGD is a sequence of 180 scalar values where each value is the dot

product of the vectorized image window and the 180 Gabor filter vectors whose orientation

changes according to the equation discussed in Section 2.3. As a result, TGDs are basically

time series of size 180. The topology of the designed filter bank is such that, rotation invariance

is achieved by simply performing an iterative circular shift in one of the two compared

descriptors and measuring the similarity between descriptors for each shift. The shift yielding

the most similarity is the best match in the rotation space. The same procedure is performed at

all scales of the image pyramid such that the descriptors are invariant to changes in scale. For

example, given an image window and a 45 degree rotated (anticlockwise) version of the same

window, then the TGD for the original window and the TGD for the rotated window will be

identical when the TGD of the rotated window is circularly shifted to 45 places to the left.

However, in the case of image windows that are similar but extracted from different images, the

TGDs should be similar in shape when compared to descriptors of dissimilar windows. See

Figure 2.4 and 2.5 to visualize this example.

The comparison of two TGDs d1 and d2 (blue curves in figure 2.4 and 2.5 respectively)

involves the iterative circular shifting of d2 (blue curve in 5) into a shifted version d2
s
 (green

curve in 4 and 5) and the similarity measure between d2
s
 and d1, for all possible shifts s. Our

experiments suggest that a simple similarity measure consisting of the combination of L2 norm

and correlation coefficient works better than other readily available techniques. We

 13

experimented with several distance metrics ranging from the simple L1 norm to techniques such

as Dynamic Time Warping [49]. The details of which are described in the next section.

Figure 2.4: The TGD (c) of the rotated window (b) in blue. The shifted TGD of the same window

(a) in green depicting that the shift is about 45 degrees to the left.

Figure 2.5: The TGD (c) of the original image window (a) in blue and the matched TGD of the

rotated window (b) in green.

 14

2.5 Experimental Results

All the experiments were performed separately on images of synthetic scenes and real

scenes.

2.5.1 Evaluation Methods

The Gabor filters in the filter bank used in our experiments are obtained according to

the following parameters. The frequency of the filters was set to 1.0 and the radius of the

Gaussian envelope was fixed at 30 pixels giving rise to a filter of size 61 x 61 pixels. A total of

180 of such filters were generated for angles starting at 0 degrees and ending at 179 degrees.

Each of these filters was vectorized to form a row vector of size 3721. The filter bank was then

constructed as a matrix of 180 rows and 3721 columns. The scale space consisted of searching

through an image pyramid constructed for each image. Each image was scaled by a scalar

factor ranging from 0.5 to 2.0 in steps of 0.1. Hence, a rather dense pyramid consisting of 16

images was incorporated in our experiments.

With respect to the similarity measure of the descriptors, we considered several

distance metrics such as correlation coefficient, L1 and L2 norms, and Dynamic Time Warping.

We found that the best similarity measure is the Euclidian distance between the first derivatives

of the compared descriptors divided by the correlation coefficient between the two derivatives of

the compared descriptors. Formally, let and be two descriptors computed for a pair of

image windows, and their respective derivatives be represented by

 and

 where n = 179. Now, we compute the Euclidian distance between
 and

 using the equation, (

) √∑ (

)

 and the correlation coefficient using the

equation, (

)
 (

)

 , where the (

) is the covariance between

 and
 and

the
 and the

 are the standard deviations. We now compute the distance metric

 ()
 (

)

 (

)
. Since, (

) yields a value between -1 and 1, we add 2 to the

 15

denominator to make the metric positive. Using this metric and performing a nearest neighbor

search will give us the best match between the image descriptors.

The performance of our approach is measured in terms of its efficiency in feature

matching. We consider the rate of correct matches between various 2D points of an image with

points of another image of the same scene. Here, a match is said to be correct if the nearest

neighbor search results in the same point as that of the ground truth. We construct the

confusion matrices for different image pairs in each dataset. We followed the same evaluation

procedure for both synthetic and real data. Each dataset of a particular scene S consists of m

images and n three-dimensional points in the scene. The 3D points correspond to 2D projected

points in each image. The confusion matrix Cij for any given image pair Ii and Ij in S is a square

matrix of size n x n, where each row corresponds to points in Ii and each column corresponds to

points in Ij. Each element Cij(r,c) of the confusion matrix represents the error value computed

while matching the TGDs for the r
th
 point of Ii and the c

th
 point of Ij. Note that an ideal algorithm

should generate a confusion matrix with a diagonal populated with errors that are much smaller

than those in the remaining elements. By constructing confusion matrices for different image

pairs of a scene S, we visualize the low level behavior of the algorithm across the whole

dataset. While the confusion matrix provides a good tool to assess the performance in detail,

the matching rate for each dataset and the overall average matching rate will provide a

quantitative measure for the performance in terms of the percentage of correct matches. This

gives us the overall general performance of the algorithm. The matching rate for a data set S is

the ratio of the number of points that were matched correctly to the total number of points (m x

n) in the data set S. Similarly, we compute the matching rate for all the scenes. We then

compute the total average matching rate by taking the ratio of the sum of the individual scene

matching rates and the total number of scenes considered.

 16

2.5.2 Synthetic Data

The synthetic data used in our experiments was generated with CVPoV. CVPoV

(presented in Appendix A) is a computational tool to generate synthetic data with the necessary

ground-truth for various computer vision problems such as camera calibration, feature

matching, 3D reconstruction, object recognition, and others. We use the depth map and the

camera calibration data generated by MegaPoV [63] and VLPoV [68] to compute the motion

field which accurately describes the horizontal and vertical displacement of each pixel in

different images of the same scene. CVPoV allows the user to define different camera

configurations and automatically render all the images along with a depth map for each of them.

Once the images and the depth maps are generated, the motion field data and occlusion maps

for different pairs of the rendered images are obtained. A detailed description of all

functionalities of CVPoV and the source code are publicly available at [67].

The testing of our algorithm with synthetic data focused on two main transformations: rotation

about the z-axis, the axis perpendicular to the image plane, and translation in the direction of

the z-axis which results in scale variations. We used a realistic 3D model of a kitchen, designed

by a ray tracing artist [58, 59], to render synthetic images. This particular scene was chosen as

it had lots of objects and texture variations. To obtain the rotated data using CVPoV, we

considered a total of 21 camera poses where in each pose the camera was in the same location

but rotated in uniform steps about the z-axis from 0 to 180 degrees in the clockwise direction.

The images rendered for each of these cameras are the rotated versions of-the image. Since

CVPoV also generates a depth map for each image, we computed the motion field between the

first image and the remaining 20 images.

 17

Figure 2.6: A sample of the synthetic images. The four images in column (a) are rotated data
and the four images in column (b) depict the scale variation.

 18

Figure 2.7: A sample of image windows used in the synthetic data experiment.

We selected 10 different points in the first image of the kitchen scene and, using the

motion field data, computed the corresponding points in the remaining 20 images, thus,

generating the ground truth for our problem. In the same fashion, we generated 19 images of

the same scene where the camera moves along the z-axis towards the direction of the scene

and hence generating images of uniformly increasing scale. Figure 2.6 shows some of these

images. The column of images on the left is the rotated data starting from the first image at 0

degrees and ending with the last image at 180 degrees. Similarly, the column on the right of

Figure 2.6 shows the synthetic images with increasing scale. The Figure 2.7 shows a window of

61 x 61 pixels centered at points selected by us to test our algorithm.

 19

Figure 2.8: A confusion matrix for a pair of synthetic images.

For the rotated synthetic data, we tested the 10 points in the first image against the 10

corresponding points in the remaining 20 rotated images. We computed the confusion matrices

and the matching rate as described in Section 2.4. Figure 2.8 shows a confusion matrix for the

matching of the 10 points in two images. The algorithm managed to correctly match 187 points

out of the 200 points. A matching rate of 93.50% for images between 0 and 180 degrees shows

robustness to a high degree of image rotation. In a similar experiment with the scaled synthetic

images, the algorithm matched 146 points out of 180 correctly. An 81.11% matching rate shows

a good degree of scale invariance.

 20

Figure 2.9: A few real images used in our experiments.

 21

Figure 2.10: Sample of image windows used in the real data experiment.

2.5.3 Real Images

To evaluate our feature descriptor with real world images, we selected images of three

different buildings: the south facade of the White House, the front view of St. Peter's Basilica,

and the front view of the Taj Mahal. We used 11 different images of each of these scenes such

that they are a good assortment of images of different scales, different rotations, varied

illumination, and viewpoint changes. Figure 2.9 shows some of the real images used for testing

our descriptors. For each of the three scenes, we manually annotated 15 different points in each

of the 11 images. Figure 2.10 shows image windows around four of such points chosen in the

Taj Mahal scene.

 22

Figure 2.11 shows a confusion matrix for two images of the White House. The matching

rates seemed to vary quite a bit for the three data sets. Given 15 points per image and 10

images per building, summing up to a total of 150 points, the algorithm matched 58, 38 and 28

points for the White House, the Taj Mahal and the St Peter’s Bascilica respectively. That results

in an individual matching rate of 53.33%, 34.44% and 26.11% and an overall matching rate of

41.33%.

Figure 2.11: Confusion matrix for a pair of real images.

2.6 Conclusions

We proposed a novel approach of computing an invariant image descriptor based on a

bank of Gabor filters, called Topological Gabor Descriptors. We take advantage of the simple

shifting property of the descriptor to search for similarity in the rotation space. We obtained

good results with the synthetic images, an 81.11% matching rate for an image subjected to a

scale change of two times the original scale and 93.50% for an image rotated from 0 to 180

 23

degrees. The results with respect to the real images are promising with an average matching

rate of 41.33% for three different scenes.

The main bottleneck at the moment is the comparison of the high-dimensional

descriptor in a way that reduces the rate of false positives. An area for further research is to

design a more robust distance metric designed specifically for matching these time-series.

Another aspect of our approach is that, as long as the computation of the inverse of the filter

bank is feasible, we will be able to regenerate the original image information. This way, we may

compress a digital image with the aid of such a filter bank and be able to regenerate all the

original image information using the inverse of the filter bank.

 24

CHAPTER 3

AN INTERPOLATION BASED APPROACH FOR IMAGE RECOGNITION UNDER LIGHTING

VARIATION

3.1 Introduction

Pattern recognition problems such as object recognition and face recognition are

fundamental to image processing and computer vision. Over the years, a whole array of

techniques and algorithms [11, 45] has surfaced to address the recognition problem. However,

the performance of the state-of-the-art solutions fall way short of that of human vision. Many

challenges inherent to the problem itself remain to be addressed. Perceptual alias refers to

variation in pose, lighting, and other conditions [2, 7]. Among these challenges, the variation in

illumination conditions, and its effects on the appearance of objects, is an important issue in

object and face recognition. Many solutions have been proposed to address this problem alone,

where a fixed pose and no occlusions are assumed, but different illumination settings are

considered. Several methods address the problem of face recognition under varying illumination

[2, 7, 27]. Some algorithms addressing the illumination issue include illumination cone methods

[7, 24], spherical harmonic based methods [5, 35], and quotient-image representation [50, 51].

In this chapter, we propose a novel interpolation based approach to model the lighting

conditions. This results into robust recognition methods under varying illumination conditions.

Given a fixed object/scene in varying illumination conditions, where the parameters are the

positions of the light sources and/or their intensity levels, we are able to generate new images

within the parametric space and, also to determine the lighting parameters of a query image.

Formally, given a set of training images and their corresponding parameters,

 () () () , where , the parametric space; the interpolation model can be

 25

used to synthesize any query image for a query parameter within the parametric space,

and also to estimate the parameters of a query image .

The main contributions of this chapter are (1) an interpolation based technique that

effectively synthesizes an image given its lighting parameters (e.g., pose or intensity of light

sources), (2) estimates the lighting parameters for a query image, and (3) performs object

recognition and face recognition in varying illumination conditions.

We demonstrate that our interpolation model performs well in object recognition and

face recognition applications with fixed pose and varying illumination. We show the synthesis

from the parametric space to the image space and analysis from the image space to the

parametric space in both cases. We present the results of our experiments performed on two

different datasets for face and object recognition, respectively.

For the face recognition problem, we use the Extended Yale B+ [34] face database.

The results in face recognition are comparable to that of the top performing algorithms on the

same database [35, 56]. Refer to [56] for a comparison of these methods in terms of recognition

rate using the Yale face database. Many of these methods achieve a recognition rate of over

96% compared to our 91.92%. However, they all (except [56]) exclude the images under

extreme lighting conditions. And the approach of [56] itself dips slightly below the 90% mark

while considering the extreme lighting set. Most of the current approaches simply normalize

images in terms of illumination to aid recognition. On the other hand, our approach not only

models the lighting conditions but also allows going back and forth between the image space

and the parametric space. In fact, the reconstructed images are so good that it is almost

impossible for the human eye to differentiate between a real image and its regenerated version.

To summarize, with real images of objects shot under varying lighting conditions we

obtained a recognition rate of 99.53%. And, with the Yale extended face database considered

as the de facto standard benchmark [56], we showed a 91.92% recognition rate despite

considering all the images under extreme lighting in our test set.

 26

The remaining of this chapter is organized as follows. In Section 3.2, we formally

describe our interpolation based approach to the problem. Section 3.3 describes our recognition

methods and a detailed description of our experiments and their results. The chapter conclusion

follows in Section 3.4.

3.2 Interpolation Approach

Since a set of sample images and their corresponding parameters are given, the core of

our approach is to learn the kernel matrix such that when K is multiplied by the parametric

matrix C built using the parameters () will result in the corresponding image matrix I,

which is composed of the individual images (): . Essentially, for a particular

image associated with parameter , is a one-to-one mapping from the parametric space to

the image space given by the equation () , where f is an interpolation function used

to construct the parametric matrix from individual pairs of images and respective parameters.

Here, the interpolation function can in fact be polynomial, trigonometric, logarithmic, or even a

combination of these functions.

As an example of an interpolation function, we have a third degree polynomial

equation in variables, where is the dimensionality of the parametric space. Consider

images taken with four lighting parameters (), so a third degree polynomial

equation in four variables is of the form: ()

 , where

 () is a particular lighting parameter such as the illumination level of four local

light sources. The equation above has 34 components excluding the constant. We construct a

component matrix using any l individual components of the interpolation function given

by () for . The number l of components should be smaller than the number n of

training images to avoid a rank deficient system. Formally, if the rank of the component matrix

 27

is r, then l should be in the range [r, n]. For example, if we use the four components

 (i.e., l = 4), we build the matrix of the form:



















n

nn

nn

n

www

zyzyzy

yxyxyx

www

...

...

...

...

21

2211

22

22

2

11

33

2

3

1

To be able to learn the kernel matrix K, we use training images () and

define an image matrix , where (is the number of rows in the image, is

the number of columns, and is the number of dimensions, which can be 1 or 3 depending

whether the images are treated as grayscale or colored, respectively). Therefore, each image

is vectorized as a single column-vector of size and the image matrix I is the

concatenation of n such column vectors.

Given the image matrix I and the component matrix C, we have a linear system of

equations that represents the interpolation of vectorized images of size using components

of the interpolation function as . Using linear algebra, we can compute the

pseudo inverse of the component matrix C and multiply it to both sides of the equation to infer

the kernel matrix . Formally, the kernel matrix is obtained as
 .

Now that the kernel matrix is learnt, the problem of image synthesis reduces to a simple

matrix multiplication. That is, for a given query parameter () of an image that is

not in the training set of the kernel matrix, we plug in the parameters into the interpolation

function to get a vector of l components. From our previous example,

 . Multiplying the kernel matrix K by the component vector gives the

synthesized image vector . Formally, the synthesis equation is given by

.

The analysis part, being the inverse of the synthesis problem, consists of finding the

lighting parameter for a given query image . The parameter is obtained by first computing

the product of the inverse of the kernel matrix K with the query image vector. That is, the

 28

components of the query image are obtained using the matrix equation

.

Having thus obtained the component vector , we find the parameter by solving a linear

system of equations. This system is constructed by equating the individual elements of the

component vector to the corresponding components in the interpolation function .

According to our example above, we have
 (),

 (), (), and

 (). We take the logarithm on both sides of these equations and solve for the linear

system of equations which results in terms of the logarithm parameter of the query image.

Considering the used components of the third degree polynomial in our example, the equations

in this system are: (), () (), and

 (). Once this system is solved for the logarithm parameter

(), the actual parameter is found using the exponential function:

() (). Once again, it is important to note that the third

degree polynomial equation described in this section is only an example to give a clear picture

of the synthesis and analysis methods of our interpolation technique.

Figure 3.1: A sample recognition step where (a) represents a test face image, (b) is the

synthesized image and (c) is the error image.

Figure 3.1 depicts a sample recognition step. For a test image we can estimate its

parameters
 using the analysis part represented by

 (). Once we analyze the

test image, we can use the synthesis step to generate a new image with the estimated

parameters. This synthesis step can be represented by (

)

 , where
 is the newly

 29

synthesized image. We then compute the L1 norm between the two images as (
) to

measure the image synthesis error. The parameter error is similarly computed as (
),

where represents the ground truth parameters.

3.3 Recognition Methods

3.3.1 Image Datasets

We captured images of a complex scene with several objects in varying illumination

conditions. The idea of having several objects was to create complex shadows on each other

when subjected to different lighting situations.

Figure 3.2: Camera setup for data capture.

The camera setup, as illustrated in Figure 3.2, involved eight CCD cameras (Point Grey

Flea®2G) mounted with uniform spacing on a straight metal frame. The cameras labeled C1

through C8 were used to capture images of the scene at two depth levels D1 and D2, thereby

generating images from sixteen different camera poses.

To generate different lighting conditions, we used four identical incandescent lamps

with plain white shades in a fixed spatial configuration as shown in Figure 3.2. The entire setup

was in a dark room to avoid outside lighting conditions from interfering with our lighting setup.

Each lamp, namely L1, L2, L3 and L4, could be set at three intensity levels with level-1, level-2,

 30

Figure 3.3: Sample images from our object image dataset depicting lighting intensity variation.
The lighting parameters vary from (1,1,1,1) through (3,3,3,3) in uniform steps from top-left to

bottom right.

 31

and level-3 representing 100%, 75%, and 50% of the lamp total luminosity, respectively. This

setup of four lamps with three levels of lighting leads to different lighting configurations.

All images are in RGB color format with a 1280 x 960 resolution. In Figure 3.3, we show the

lighting variations of the images taken from camera C1 at depth level D2 where the parameters

of the lighting range from (1, 1, 1, 1) to (3, 3, 3, 3).

To consider the variation of light source position while the lighting intensity is constant,

we used the Extended Yale Face Database B+ [34]. The database contains face images of 38

subjects in 64 different illumination conditions. The illumination variation was achieved by

placing the light sources in a set of different azimuth and elevation angles with respect to the

camera axis. The face image database [34] is divided into five subsets based on the position of

the light source. The subsets 1, 2, 3, and 4 are comprised of images taken with the light source

at an angle whose absolute value is less than 12°, between 12° and 25°, between 25° and 50°,

and between 50° and 77°, respectively. Subset 5 consisted of images taken with the angle

between the light source and the camera axis greater than 77°. The azimuth angles vary from -

130° to 130° and the elevation angles from 0° to 90°. This makes subset 5 the most

challenging. In our experiments, we have considered all five subsets for testing in order to

subject our methodology to an evaluation under extreme lighting conditions. The only images

we discarded were that of the eight subjects with corrupted images and, hence, testing was

performed with 30 different subjects instead of 38. Moreover, since we are dealing with face

recognition with illumination variations in this chapter, we consider only the frontal pose of the

30 subjects. A set of sample images of three subjects from the 5 subsets are shown in Figure

3.4. All the frontal face images are cropped and aligned as described in [34]. The images are of

dimensions 168 x 192 and in grayscale.

 32

Figure 3.4: Images from the face database depicting lighting pose variation. The azimuth and
elevation pairs for images in column (a), (b), (c), (d) and (e) are (05, 10), (10, -20), (20, -40),

(60, 20), (95, 0) respectively.

3.3.2 Object Recognition with Varying Lighting Intensity

In our evaluation of recognition methods, we use the leave one out strategy to train the

kernel matrices. That is, excluding the testing image, all the remaining images in the dataset are

used for training.

The images of a scene captured with one of the 16 different camera poses were divided

into 15 windows with 15 different objects, respectively. The lighting parameters here are the

intensity levels of the four lamps. Since we have 81 different lighting images of the same scene,

we end up with 81 lighting images for each of the 15 sub-scenes (objects). Figure 3.4 shows

five such windows (rows) under six different lighting parameters (columns). We set up an

experiment to test our algorithm’s performance in terms of recognizing objects in a fixed pose

but varying lighting. We defined 12 neighborhoods with 27 training images each, uniformly

distributed in the parametric space. We used only 14 independent components while computing

 33

the kernel matrices. We tested 8 of the 15 objects with 27 of the 81 different lighting conditions

each. We were able to accurately recognize 215 out of the 216 test images leading to a

recognition rate of 99.53%.

Figure 3.5 Sample objects under six different lighting parameters.

Figure 3.6 Recognition rate for each of the 64 lighting parameters using a total of 30 subjects.

The vertical axis represents the number of subjects and the horizontal axis represents the
lighting parameters.

 34

3.3.3 Face Recognition with Varying Lighting Pose

For our face recognition experiment, we used the cropped images from the Extended

Yale Face Database B+. Out of the 38 subjects we discarded the ones with corrupted images

and ended up testing with 30 different subjects. We tested the recognition rate of frontal pose

images with 64 different lighting conditions. The lighting parameters here were the azimuth and

elevation angles of the light source with respect to the camera axis. We tested every single

lighting condition of every single subject (i.e., 30 subjects times 64 lighting conditions for a total

of 1920 images). We are able to recognize 1765 images accurately, a recognition rate of

91.92%. Figure 3.4 shows how the algorithm performed individually for each of the 64 different

illumination conditions.

3.4 Conclusion

We have presented a novel approach based on interpolation to model illumination

conditions. The model allows for synthesizing a new image given the lighting parameters (next

chapter describes the synthesis phase in more detail) and also analyzing the lighting

parameters given a query image. We have also demonstrated its potential in recognizing

objects in varying lighting conditions. The face recognition system based on our interpolation

model has shown extremely competitive results in terms of recognition rate. The model is

simple to implement and yet, at the same time, expects a very straightforward and intuitive set

of parameters that captures the complex nature of lighting variations. In theory, the same

approach can be extended to model geometric variations as well. With our object recognition

experiment, we showed that a scene can be broken down into sub-scenes and the model can

be applied individually to each of the windows. Furthering this technique, we can build on the

model to handle occlusion by dividing images into windows and incorporate some kind of a

voting scheme. Handling geometry and occlusions based on this approach is currently part of

our ongoing research. In the following chapter we elaborate further on the interpolation

 35

approach and use the synthesis-analysis scheme to demonstrate its application in an Image

Based Lighting setup.

 36

CHAPTER 4

A SYNTHESIS-AND-ANALYSIS APPROACH TO IMAGE BASED LIGHTING

4.1 Introduction

A usual way to synthesize images of a given scene is to programmatically consider the

geometry and the photometric properties of the various virtual objects in the scene to render a

synthetic image. This method involves generating a digital image based on a comprehensive

model that comprises all the necessary information such as, object geometry, viewpoint,

lighting, and texture. Recently, Image Based Modeling and Rendering (IBMR) approaches have

been proposed to obtain depth maps from stereo images of a real scene and then to construct a

corresponding textured 3D model [21]. The 3D model is re-projected into a different viewpoint

as a synthetic 2D image. An important part of this methodology is referred to as Image Based

Lighting (IBL) [13]. IBL considers different lighting conditions retrieved from sample images of

an object under several local light sources and a lighting representation of a different location to

synthesize new images of this object in the different location. Tunwattanapong et al. [53]

introduced an IBL approach which allows for the editing of the lighting in terms of intensity and

angular width of local light sources.

In addition to sample images of the target objects under different lighting conditions, a

limitation of current IBL approaches is the requirement for a lighting representation of the

specific environment to be considered in the synthesis of new images. This means that the

generation of new images requires access to this specific location for the capture of data that

leads to the lighting representation. An example of such a lighting representation is the

environment map or incident light map. Therefore, IBL techniques cannot be applied to the

modification of existing images, when access to the actual location where the images were

 37

captured is not possible. Furthermore, lighting representations are specific to a particular

environment and its corresponding lighting conditions at that time. These representations

cannot account for the entire range of possible lighting conditions and, consequently, do not

allow the generalization necessary to consider lighting variation.

In this chapter, we address the Image Based Lighting problem to advance the state-of-

art towards these two directions: independence of lighting representations and generalization to

lighting variation. We propose a novel interpolation based approach for the synthesis and

analysis of images under lighting variation. Our approach generates images in different lighting

conditions (synthesis) as well as infers the parameters of the scene by perceiving objects

(analysis), where the lighting parameters are the positions of the light sources and/or their

intensity levels. More specifically, given several sample images of a scene in varying

illumination conditions, we are able to generate new images within the parametric space and to

determine the lighting parameters of unknown query images. Formally, given a set of

training images of an object under different lighting conditions and their corresponding

parameters, () () () , where is the parameter of image in the

parametric space P for ; our interpolation based approach synthesizes any image

for a given parameter within the parametric space such that () . Conversely, our

approach is also able to estimate the parameter of a given query image such that

() .

Our approach is motivated by the mirror neuron theory [48] in Neuroscience that

essentially places perception and generation under the same foundation. The mirror neuron

theory states that the same neurons fire when a person perceives a particular sensory-motor

pattern and when the subject generates the same pattern. For an example in the visual domain,

the theory claims that a set of neurons in the brain will be active when a subject recognizes the

image of an object such as an apple fruit. Similarly, the same set of neurons fire when the

subject pictures the image of an apple fruit through imagination or dreaming. This theory

 38

indicates that both synthesis and analysis are performed according to the same fundamental

framework. We propose here an IBL approach, inspired by the mirror neuron theory, to perform

the synthesis and analysis of object images under general lighting conditions.

Without any previous knowledge on the lighting models, our approach relies on the

lighting parameters of the target environment. These parameters are either given or estimated

by using known objects in a target image of the environment. The analysis component of our

approach detects known objects in this image and computes the parameters from the

respective image regions associated with these objects. Once parameters are obtained, the

synthesis of new object images for the target environment is performed according to these

parameters. Using this approach, we are independent of lighting models by assuming our

training sample images include images of at least one object in the target image. This way,

instead of having access to that particular location, we only need to capture sample images of

an object in the image. Most likely you may not be able to have access to the white house in

1945 but you may have access to the president’s desk at the time. Our framework enables the

editing of existing images and provides an alternative to image based lighting when the

construction of lighting models is unfeasible.

In other words, we propose a framework where an object can be rendered in any scene

(and respective lighting condition) as long as a known object (i.e., an object whose interpolation

model is obtained previously) exists in that particular scene. Formally, let us define a dictionary

D of k pairs of objects in a known object set O and their corresponding interpolation models in a

model set M as follows: () () () , where is the interpolation

model of a known object for . Now, given an image of an unknown scene (under

an unknown illumination condition) that contains a known object , we can compute the

parameter using the model of the reference object . Note that the parameter estimation

may use more than one known object in the scene for a more robust outcome. The parameter

 represents the lighting conditions for the image of the considered scene. This parameter is

 39

used to render any known object according to the lighting conditions of the target image .

Figure 4.1 shows a schematic drawing of this analysis-and-synthesis framework.

Besides eliminating the dependence on lighting representations, our approach is able to

generalize the given samples to generate any possible new image associated with a parameter

in the parametric space. In this chapter, we consider sample images of objects under several

local light sources. From the sample data, our method generalizes to light sources at different

positions and with different intensities.

Figure 4.1: A general schematic of our interpolation based approach for the synthesis and

analysis of images under lighting variation. The query image has unknown parameters and at

least one known object. This reference object is used in the analysis component to estimate the
imaging parameter . Once the parameter is found, our synthesis component generates the

output as the rendering of an unknown object in the query image according to the estimated

lighting parameters.

We demonstrate that our interpolation based approach performs well in the synthesis

from the parametric space to the image space and in the analysis from the image space to the

parametric space with images taken under fixed viewpoint and varying illumination. We present

experimental results with two image datasets: a face image dataset captured with same

intensity light sources at different positions and an object image dataset captured with fixed

pose light sources at different intensities. The synthesized images are compared to ground-truth

images using a leave-one-out testing methodology. The average image synthesis errors

 40

computed as the sum of the absolute difference were 1.156 and 8.188 for the object image

dataset and the face image dataset, respectively. The average parameter estimation error for

the object image dataset was 0.101 for intensity parameters varying between 1.0 and 3.0. For

the face dataset, the average estimation error was 8.836 for a parameter range of [-130, 130]

in azimuth and [-40, 90] in elevation. It should be noted that the higher errors with the face

image dataset are due to several images with extreme lighting conditions.

The remaining of this chapter is organized as follows. In section 4.2, we describe

previous work in areas related to image synthesis. Section 4.3 introduces our interpolation

based approach for image generation and image perception. A detailed description of our

experiments and their results are presented in Section 4.4 and our conclusions follow in Section

4.5.

4.2 Previous Work

In computer graphics, photorealistic images have been traditionally created using ray

tracing techniques. These techniques rely on artificial scenes created with an exhaustive

specification of the physics of the scene such as object geometry, lighting conditions, camera

model, and surface texture. In this case, changing the lighting is as trivial as changing the

illumination setup in the scene description file. However, this cannot be applied to real images

of real objects and scenes. Moreover, the rendering part of the ray tracing engine is time

consuming, especially with complex scenes. The scene description itself can get extremely

complex and demand a significant amount of artistic skills [13, 53].

Most of the issues related to ray tracing techniques are overcome by Image Based

Rendering (IBR) techniques. In IBR techniques, the complex task of scene/geometry description

is bypassed. The scene itself is learned either by completely ignoring geometry and computing

the light field with the plenoptic function [36, 34, 40] or by constructing the 3D geometry of the

scene from a sparse set of images [55]. Shum et al. [52] presented a survey of the IBR

techniques. The problem with the light field approach is that it requires many images of the

 41

scene acquired by calibrated camera arrays. On the other hand, the issue with the geometry

based approaches is the need for computation of depth information. A major issue in most of

these techniques is that the rendering is possible only for a fixed viewpoint or a single

illumination condition. The geometry based approach is slightly more flexible in terms of

rendering images with slightly different views or illumination settings.

Over the years, several image based algorithms have surfaced to manipulate the

lighting conditions of an existing real or synthetic image. These techniques, commonly known

as Image Based Relighting (IBRL), address the problem of relighting scenes or objects with

complex real world illumination. These methods have met with a lot of success and have gained

popularity by producing visually stunning scenes. IBRL techniques can be broadly classified into

plenoptic function-based, basis function-based, and reflectance-based categories [13]. Most of

these approaches use a High Dynamic Range (HDR) image as a light source for rendering

different scenes. These HDR images are usually termed as incident light map or environment

map.

A plenoptic function is a 7D function that models the 3D dynamic environment by

observing the light rays at all possible spatial locations [1]. Usually, the time component of the

function is ignored to reduce the dimensions of the function. Light sources with known plenoptic

functions can simply be added or subtracted to achieve effective relighting. However, this

method is data intensive and requires many images acquired from calibrated camera arrays.

Basis function-based relighting techniques render new images by computing a linear

combination of a set of pre-rendered images called basis images. The basis images are chosen

in such a way that the combination of a small number of them can simulate images under

varying illumination conditions. Nimeroff et al. [44] demonstrated this concept of generating new

images simulating different illuminations using a linear combination of weighted basis images

derived using steerable functions.

 42

Debevec et al. [19, 20] acquire the reflectance field of a human face using a setup

called ‘light stage’. The light stage allows them to capture still facial data under a small set of

viewpoints and dense (2048) incident illumination directions. The reflectance function is

constructed for each pixel over space of incident illumination directions. Relighting is achieved

using mirrored ball images as light sources. This method achieves realistic and visually

appealing results. However, the approach requires a light stage setup for data capture and huge

amounts of data to be captured and stored. Moreover, inclusion of new data or editing existing

data requires a significant effort.

Most of the previous approaches, as discussed above, are data intensive.

Tunwattanapong et al. [53] significantly reduce the number of images required to achieve good

quality relighting. They use a combination of low frequency spherical harmonics lighting to

simulate real world lighting and a set of local lighting to compute a suboptimal residual

environment map. They then subject the map to an optimization procedure to generate a close

approximation to a given environmental illumination. This method produces visually appealing

results despite significantly reducing the data requirements. However, rendering new lighting

requires access to the very location. Moreover, having to render a scene with a different lighting

setup would require a new environment map. Although changes can be made to an existing

image based on the local lights, a capability to render all possible illumination settings given a

set of lighting parameters is still missing. Our approach, on the other hand, is capable of

rendering any possible illumination settings in the parametric space. The interpolation based

model discussed here can work as a standalone application as long as we can have the lighting

parameters. If not, it can certainly aid other techniques such as that of [53] to broaden its scope

of problems they can address.

Another approach addressing image relighting or retexturing is known as image

decomposition [4]. This approach decomposes an image into an illumination component

(shading) and a reflectance component (albedo). Once reflectance and illumination have been

 43

decoupled, the scene can simply be relighted with a new illumination map. Bousseau et al. [10]

decompose a single image into intrinsic images with the aid of user inputs to disambiguate

illumination from reflectance. Their approach mostly addresses issues related to user based

image editing.

Malzbender et al. [41] proposed an image based approach that builds polynomial

texture maps based on a quadratic polynomial. They consider images of a static object with a

static camera under varying lighting conditions and use a quadratic polynomial to interpolate

between these images. They construct a texture map that reproduces the effects of variations

in the illumination direction relative to the object. With regards to the synthesis part of our

algorithm, the polynomial texture maps are constrained to a quadratic model whereas our

approach considers any component function (e.g., polynomials, exponentials, logarithmic,

trigonometric) as long as it is invertible to be used in the analysis part of our method.

Furthermore, our approach may use any number of component functions. Another major

difference is that our method employs the subdivision of the parametric space into

neighborhoods. This not only allows for a better modeling of local features but can also

significantly speed up the synthesis process. In addition to the image based synthesis, another

original contribution of our method concerns the inverse problem where the lighting parameters

are inferred from images. This analysis part of our method is what enables the computation of

the illumination condition from a sample image. As a consequence, our interpolation based

approach may infer the lighting parameters of an unknown scene to render new objects

according to the same lighting parameters of this scene.

Drew et al. [22] introduced a more robust version of the polynomial texture maps

described in [41]. This method also models the contribution of specular and shadow pixels using

a radial basis function based interpolation. The method although much more robust to specular

and shadow outliers needs to employ a minimum number of light sources that is more than

twice as many observations as the number of variables. To be more specific, if they employ 6-D

 44

regression coefficients, a minimum of 13 light sources are required to build the model. On the

other hand, the image synthesis part of our approach is a more general model that is versatile in

terms of the input parameters and does not mandate a specific number of light sources or

illumination levels for that matter.

Matsushita et al. [42] interpolate lighting appearance of a scene with sparsely sampled

lighting conditions. They use a number of lightfields, each captured under different illumination

conditions. Depth maps are computed using a multi-view stereo algorithm on these lightfield

images. In addition to the depth maps, the lightfields are decomposed to intrinsic images. This

enables them to use both geometry and intrinsic images for view reconstruction and hence

synthesize with more accurate lighting interpolation. The major advantage of this method is the

ability to synthesize images with significant realism using a sparse dataset. However, the

method requires a precision controlled camera grid to effectively capture the lightfields.

Moreover, the final synthesized image relies on the choice and performance of the multiview

stereo algorithm and the image decomposition method. In contrast, our image synthesis method

requires only the position of the light source and/or its illumination level. We are also able to

demonstrate good quality image synthesis with a reasonable sampling.

4.3 Interpolation Based Approach

Given a set of n sample images of an object under different given lighting conditions

described in terms of a parametric space, we build an interpolation model based on the

decomposition of an image matrix I into a kernel matrix K and a parametric matrix C, where K

represents the intrinsic features of the object (independent of imaging parameters such as

lighting conditions) and C fully embeds the influence of the imaging parameters such as the

position of local light sources and their respective intensities. Different from dimensionality

reduction techniques such as Component Analysis (e.g., PCA [28], ICA [14]), our decomposition

explicitly models the imaging conditions in terms of parameters and, consequently, represents

 45

these conditions in a manner that leads to a structure modeling the imaging process more

closely. A detailed description of the interpolation based approach can be found in Section 3.2.

4.4 Experimental Results

In this section, we used to demonstrate the image synthesis and analysis capabilities of

our interpolation based approach. We use the object image dataset described in Section 3.3.1

to consider the variation of light intensity when local light sources are fixed. We also use the

face image dataset described in Section 3.3.1 to consider the variation of the position of light

sources under constant intensity. Besides evaluating our approach with regards to the variation

of lighting intensity and light source pose, we will also discuss the impact of the number of

components and the neighborhood size on the performance of our method. Finally, we

demonstrate our approach with regards to synthesis-and-analysis and discuss how they can be

used together to render objects into an unknown scene with different lighting given one known

object in the scene.

4.4.1 Image Synthesis and Analysis

For the image synthesis problem, we construct the kernel matrix K by using only the

images associated with nearest neighbors (in parametric space) to the query parameter . We

also select only a fraction of the original components of the interpolation function that are

independent of each other to learn our model.

The performance of the kernel matrix in terms of accurate image synthesis or analysis

depends on the following: (a) the way in which neighborhoods are constructed in the parametric

space, (b) the size k of the neighborhood and, (c) the number l of components in the

interpolation function used to learn the kernel matrix. To investigate the effects of neighborhood

construction to our approach, we performed a series of experiments using the nearest

neighbors of the query image parameters according to Euclidian distance in the parametric

space. To address the behavior of our approach as the number of used components varies, we

consider 27 different numbers of components (values of) from 1 to 79 incrementing in steps of

 46

3. For each value, we varied neighborhood size starting from to 80, again incrementing

in steps of 3. Note that when l > k, we have an undetermined system and, hence, we avoid

computing the errors in that region. For each different k and l values, we performed the

synthesis of 15 random test images from the total of 81 images corresponding to different

illumination parameters. We used the leave- one-out strategy for training, where the test image

is left out of the training set used to build the interpolation model.

Figure 4.2: The average synthesis error for all possible neighborhood sizes and number of

components.

 47

Figure 4.3: The average analysis error for all possible neighborhood sizes and number of

components.

For each of the 15 test images, the synthesis error was computed as the sum of

absolute differences between the synthesized image and the test image. The errors thus

computed are divided by the dimensions of the image to get the error value in the pixel range [0,

255]. The overall synthesis error for a particular neighborhood size k and number l of used

components is the average error for all 15 test images.

 48

Figure 4.4: Average synthesis error and analysis error for constant number of components with
increasing neighborhood size are shown in (a) and (b) respectively and the average synthesis

error and analysis error for a constant neighborhood size with increasing number of
components are shown in (c) and (d) respectively.

The two error matrices for synthesis and analysis are shown in Figure 4.2 and 4.3. The

error values are depicted using a color scheme where smaller values correspond to colder

 49

colors (i.e., blue) and larger values are associated with warmer colors (i.e., red). From this

experiment, we learnt that the image synthesis error ranges from 1.154 to 28.673 for all

neighborhood size and all possible numbers of components. The image synthesis error is a

minimum at 1.154 for a neighborhood size k = 50 and number of components l = 16. Similarly,

the analysis error is computed for the same set of k and l values and for the same 15 testing

images. The analysis error is computed as the sum of the absolute differences between the

estimated parameters and the known test parameters. The minimum parameter estimation error

was a 0.101 for k = 23 and l = 16. The maximum average error was 1.694. From Figure 4.2 and

4.3, we can easily infer that the image synthesis error is better behaved in comparison to the

parameter estimation error. However, the parameter estimation error was found to be close to a

minimum for most values of k when l = 16. For example, the error is 0.124 for l = 16 and k = 50.

Given this situation, we would prefer to set a larger k for a given l to achieve a more

compressed model. In other words, choosing k = 50 rather than k = 23 for l = 16 will result in a

more compact representation and yet not having compromised much in terms of the analysis

accuracy.

The plots in Figure 4.4(a) and Figure 4.4(b) respectively show the average synthesis

error and average analysis error for a constant number of components but increasing

neighborhood size. The number of components was fixed at 16 for this experiment. In the

synthesis error, a clear valley was observed. This shows that over-fitting occurs for smaller

neighborhood sizes and then the average error decreases to a minimum of 1.154. After that, the

average error increases suggesting the generalization phenomenon. The image analysis error

shows a different trend where the average error starts at a small value but increases almost

exponentially with increasing neighborhood size.

Similarly, the plots in Figure 4.4(c) and Figure 4.4(d) in show the behavior of the

average error while increasing the number of components with a constant neighborhood size

respectively. The neighborhood size in this case was fixed at 50. From the plots for both

 50

analysis and synthesis, the average error improves with the increase in the number of

components. The error reaches a minimum at 16 components and then shows a saturation

which suggests that adding more components further will not produce significant improvement

in error. These experiments form the basis for choosing and fine tuning the neighborhood size

and an appropriate number of components to address the synthesis and analysis parts for a

given dataset.

Figure 4.5(b) shows eight synthesized images with different lighting parameters

compared to the corresponding ground-truth images in Figure 4.5(a). The synthesized images

are almost identical to that of the ground truth. Moreover, on keen observation, one can see that

the intricate details of the shadow formations are very well preserved in the generated images.

This experiment using the object image dataset was set up with k = 50 and l = 16 for which the

average image synthesis error was 1.154 and the average analysis error was 0.124.

To evaluate our approach with regards to the variation of light source position with

constant intensity, we tested our interpolation based approach on the Extended Yale Face

Database B+ images [34]. We used the front pose face images with 64 different illumination

settings, including some extreme light source angles. We have used our method to address the

face recognition problem with an illumination invariant approach. We obtained results with an

overall recognition rate of 91.92%. In this chapter, we demonstrate the capabilities of our

interpolation based technique as a synthesis and analysis tool.

We used 10 independent components of the interpolation function for the generation of

face images. A sample set of face images generated from models built based on this dataset

are shown in Figure 4.6. The average image synthesis error was 8.188 for the face image

dataset. The face images are reproduced well in terms of shape. However, the specular

reflections seem softened. This is the result of the interpolation function being only an

approximate fit to the sample data. Since specularity is a highly localized lighting effect, a dense

sampling is necessary to address this issue while modeling specular objects. However, using a

 51

Figure 4.5: Image synthesis results with 16 components and neighborhoods of size 50. The

column (a) is the original images from camera C4 and depth D2. The column (b) comprises of
the corresponding generated images.

 52

.
Figure 4.6: Real face images (a) and (c) compared to synthesized images (b) and (d).

reasonable sampling level, our method performs remarkably well in reproducing the images

under different illumination conditions along with the complex self-shadows.

As an inverse process, we demonstrate the models ability in finding the locations of the

light sources. Figure 4.7 shows the estimated lighting parameters for face images of a single

subject for all the 64 light sources. The blue and red dots show the actual light source positions

and the black asterisk marks show the estimated positions. Red dots mean estimated

parameters whose distance to the actual positions is greater than 2.5 degrees while the blue

 53

ones indicate that our method estimated the lighting parameters with an error less than the

threshold of 2.5 degrees. The average parameter estimation error was 8.836 for a parameter

range of [-130, 130] in azimuth and [-40, 90] in elevation

Figure 4.7: Analyzing face images for their illumination parameters.

4.4.2 Rendering a Known Object in an Unknown Scene

Figure 4.8: Comparison of an object rendered in an unknown scene with the ground truth.

 54

To demonstrate our method’s capability of rendering an object in an unknown scene,

we infer the lighting parameters of the unknown scene using the pixels associated with a known

object in the scene. Once the lighting parameters are inferred, we can now render a new object

according to the illumination conditions of the unknown scene by using the interpolation model

of the new object. Figure 4.8 depicts the actual rendering of an unknown object rendered into

the scene.

Figure 4.9 shows a few sample renderings to demonstrate the progression of the object

with different lighting parameters being rendered into a scene. A red bounding box is drawn

when the parameters of the rendered object matches the parameters of the scene.

4.5 Conclusion

We have presented a novel application of our interpolation based approach which

allows for synthesizing a new image given the lighting parameters and also analyzing the

lighting-parameters given a query image. The model is simple to implement and yet, at the

same time, expects a very straightforward and intuitive set of parameters that captures the

complex nature of lighting variations. The model is not only a compact representation of all

possible images in the given parametric space but it is also capable of reconstructing extremely

realistic images. Moreover, the same approach can be extended to model geometric variations

and hence allowing the synthesis and analysis of objects in different poses. Handling geometric

variations of the cameras and/or objects based on this approach is currently part of our ongoing

research. In the next chapter, we present our method applied to address the problems

pertaining to human/character motion and recognition.

 55

Figure 4.9: The column (a) is the error when compared with the ground truth and column (b) is

the actual rendering.

 56

CHAPTER 5

AN INTERPOLATION BASED APPROACH FOR MOTION SYNTHESIS AND ANALYSIS

5.1 Introduction

Motion-capture is a technique to record sequences of motion of a particular character

using specialized sensors and software, and saving them in digital format. A character here

could be a person, an animal, a robot or even just a body part like a human hand/face making

different gestures. A motion sequence could range from something as simple as waving one’s

hand to a complex sequence of a set of martial arts steps or dance steps. Motion capture

techniques are usually categorized based on the type of sensor used to capture the data.

Optical motion capture, a technique currently very popular and also a subject of interest here in

this chapter involves cameras to track and capture motion data. Current optical motion capture

techniques use special cameras that are built to track a set of markers strategically placed on

an actor. Specialized software is used to track the trajectories of these markers and compute

and save the action sequence of the actor. In many cases, human intervention is needed to

post-process or clean the captured data.

 Currently, character animation for most applications such as film making, video games

and virtual reality rely heavily on motion capture data. The biggest advantage of motion capture

techniques is that it yields high quality and realistic animated motion. Some of the major

disadvantages however, is that the data capture requires a lot of time, resources, expensive

equipment (hardware, software, cameras, and lighting) and sometimes actors capable of

performing specialized action sequences and of course trained engineers and personnel.

Together, the process of capturing motion data can be prohibitively expensive. One way to bring

down the overall cost of data capture would be to reuse existing data, which, is the main

 57

motivation behind motion retargeting. Motion retargeting is the process of transferring a motion

sequence of one character to another character such that the new character performs the same

action sequence realistically. The main issue here is that different characters have different

skeleton structures. The variation in skeleton structures could mainly be of two types; (a)

skeletons are topologically different as in one skeleton is that of a human while the other is that

of a cat or a dog (b) the topology is the same but the proportions of different segments (bones)

are different as in one character is a six foot tall person of average built and the other character

is a little kid who is three foot tall. It should be noted that topologically identical skeletons

varying in height does not imply that all the bone segments scale proportionally; in fact it is

rarely the case. This makes motion retargeting a hard problem to address.

In this chapter, we propose a novel interpolation based approach to mathematically

model animated motion using a set of motion capture data as training data. The model

represents a particular action for a set of all possible skeletons/characters defined in a

parametric space. These skeletons need to be topologically identical i.e., they all have the same

number of bones, joints and the same degrees of freedom but can vary in the proportion of the

bone segments. The parameters in this case are the lengths of a few selected bone segments.

This model serves as a compact representation of a particular animated motion

sequence for a set of all possible skeletons within the parametric space. Once such a model is

learnt, we can generate the motion data for a new skeleton which can be termed as motion

synthesis. Also, as an inverse process, we can estimate the parameters of a skeleton when

given its motion sequence, which is the analysis part. As a consequence of learning such a

model, motion retargeting becomes a straightforward application of the synthesis part as long

as the skeleton, into which the motion has to be retargeted to, falls within the parametric space.

Moreover, our method allows for the inverse computation of the interpolation as well, i.e., given

a motion sequence, we are able to estimate the lengths of a set of bones of the skeleton pre-

 58

chosen as the parameters. This sets up a framework to recognize the skeleton’s identity given

its motion sequence.

Formally, the motion retargeting problem in this context can be defined as follows;

Consider ground-truth motion sequence for a test skeleton and action represented as:

 (). With a model learnt using a set of training skeletons;

 for

action and compute:
 () (()) for the new skeleton where () are the

lengths of a set of bone segments chosen as parameters.

The rest of the chapter is organized as follows. In Section 5.1 we discuss the related

work and draw comparisons to our method. Section 5.2 describes the interpolation approach

specific to motion retargeting and motion recognition. In Section 5.3 we describe the dataset

used for our experiments and will elaborate on preprocessing the motion data. Section 5.4 is

dedicated to all the experiments we performed and finally, Section 5.5 discusses the conclusion

and future work.

5.2 Previous work

 Gleicher [25] designed a space-time constraints solver to address the problem of

motion retargeting. The approach here is to optimize this solver by considering all the geometric

constraints. This way he computes the retargeted motion along with the constraints, and hence

preserving the frequency characteristics of the original motion.

Bindiganavale et al. [9] computed the zero-crossings of the second derivative of the

motion signal to detect significant changes in the motion. Further, they applied inverse

kinematics to enforce these detected constraints. This technique is specifically useful for actions

involving interactions with external objects or with the subject itself.

Arikan et al. [3] designed a user interactive framework that allows the user to

interactively choose certain actions by annotating them. The final motion then performs the

specified actions at specified times. The user interactive synthesis process requires the user to

first annotate the motion database with the same vocabulary. However, the user needs to

 59

annotate only a portion of the database. The system then uses an interactive Support Vector

Machine to generalize the user annotations across the database. Once the annotations are

ready, the synthesis algorithm tailors the pieces of motion from the database according to the

user's specification and successively optimizes the motion sequence using a dynamic

programming algorithm. The final motion is then available immediately after the optimization.

Choi et al. [12] present an online motion retargeting algorithm to retarget the motion of a

character to another in real time. The technique is based on inverse rate control, which

computes the changes in joint angles with respect to that of the end-effector position. This is

essentially implementing inverse kinematics using Jacobians. The retargeting algorithm tracks

the trajectory of multiple end-effectors and imitates the joint motion of the original character by

exploiting the kinematic redundancies of the animated model. This method is also effective in

maintaining the high frequency details of the original motion.

5.3 Interpolation Model for Human Motion

The interpolation approach involves learning a kernel matrix such that when is

multiplied by a parameter matrix built using a parameter will result in the corresponding

motion sequence . Essentially, is a one-to-one mapping from the parametric space to the

motion (of a skeleton) space given by the equation () . Here, the motion for a

particular skeleton performing an action is basically the variation of the joint angles from

frame-to-frame. Clearly, for a given joint, the parameters that affect its rate of change the most

is the length of the two bones that make up the joint. This data is usually available with motion

capture data and hence, it is a rather intuitive choice to use the lengths of bones of a skeleton

as parameters to learn our interpolation model. In the following sections we present a more

formal description for learning an interpolation model for optical motion capture data.

Let us now consider an optical motion capture data for a particular action . The motion

capture data is basically the rate of change of joint angles in each degree of freedom with

respect to frame numbers, for a particular skeleton structure. In our case the skeleton design

 60

involves 22 joints with 3 degrees of freedom per joint giving us 66 different angle variations from

frame-to-frame. Therefore, if the captured data is frames long, and the number of joint angles

is , 66 in this case, the motion data for a skeleton is a matrix represented by
 . For our

method we need a set of such motion data for different skeletons but for the same action

sequence If we consider training samples to learn the kernel matrix for an action , we build

the training motion matrix by vectorizing each of the training motions into column vectors and

arranging them as a matrix given by;

 , where

 are the training skeletons. This gives us the matrix of training data that

allows us to learn the interpolation model.

To build the component matrix, we use the lengths of the bones as parameters and

subject them to the interpolation function (), where is the interpolation function and is the

set of parameters used to learn the model. Our skeleton comprises of 20 bones (A detailed

description of the skeleton will be made in Section 6.3.). However, we don’t have to use as

many parameters for learning the model. Therefore, if we choose parameters, we will have an

 dimensional parametric space. Now, as an instance of an interpolation function, let us

consider a second degree polynomial equation in variables as the interpolation model.

Let the chosen parameters for a specific skeleton be represented as (), where

 and are the lengths of the bones and of the skeleton. Let us now

consider a second degree equation in four variables as an example model given by; ()

 . It must be

noted that the above equation has 14 components excluding the constant. Building these

equations for each of the skeletons in the training set and arranging them together as columns

vectors, we construct a component matrix for action given by,
 , where is the number of

components in each of these equations.

Given the motion matrix
 and the component matrix

 for a particular action

sequence , we construct a linear system that performs the interpolation with vectorized

 61

training motion data , and components of the interpolation model as

 . We now compute the pseudo inverse of the component matrix C and multiply it to both

sides of the equation to infer the kernel matrix . Formally, we obtain

(
)

 .

5.4 Motion Capture Data

Figure 5.1: Hierarchy of the skeleton used for our experiments.

In this section, we discuss the motion capture data used for our experiments. Our data

is taken from the Human Motion Database [26] where motion capture data is made available for

several actions and for several people varying in age, height and weight. This database uses

the Biovision BVH file format. This format mainly has two parts to it, a header section and a

motion section. The header defines the skeleton and its initial pose. The motion section is

basically values of angles of each joint for each degree of freedom for each frame. The

 62

skeletons in this data comprises of 20 different bones and 22 joints, with the root being an

imaginary node at the hip. The 22 joints have 3 degrees of freedom each which makes a total of

66 different joint angles. The hierarchy of the skeleton is shown in Figure 5.1.

For our experiments we use the cross-validation dataset from the Human Motion

Database. The cross-validation dataset comprises of 70 different actions such as clap, bounce,

bang-door and walk. These actions are performed by about 50 different subjects in a wide

range of skeletal structures distributed over height, weight, gender, and age of the subjects. We

performed our experiments for the walk and jog datasets. The main reason for choosing these

two is that they have a lot more frames than more trivial actions such as clap or jump-in-place.

5.4.1 Data Pre-processing

The walk and jog datasets comprises of 49 subjects walking and jogging up and down a

few times respectively. From here on, we will discuss about these two datasets particularly and

describe all the pre-processing steps taken before learning the interpolation model.

5.4.1.1 Manual selection

Let us consider the walk dataset first. In this dataset, the subjects start from a still pose

and starts walking in one direction for a few steps and walks back to the starting point. This

cycle is repeated a few times. Since our method expects the training actions to be the same, we

encounter a problem here, which is; not all the subjects turn at the same time and more

importantly some turn around in the clockwise direction and some other in an anticlockwise

fashion. This cannot be defined as the same action unless if all the subjects were enforced to

turn in one fashion and at certain pre-decided points. Besides, turning around can be defined as

an action in itself that is very different from the walk action. Moreover, the walk action for all the

subjects needs to be in the same direction. Hence, in order to make the data a homogenously

pure walk-action data, we have to select the frames of the subjects walking in one particular

direction where the start and end pose of all subjects are respectively similar. Doing this

manually seemed a simpler option considering the size of the dataset. We picked the sequence

 63

starting with the frame where the right heel makes the first contact with the floor while walking in

the forward direction. Further, instead of similarly choosing the end frame, we simply got 279

frames from the start frame, making it 280 frames pure walk data. As a result, the end frames of

the different subjects are far less similar compared to that of the start frame. The model was

able to handle it since the variation of speed-of-walking over this small segment was not very

pronounced. If that was the case, then we could have chosen the end frame as well and

normalize the data across all the subjects. The number 280 was chosen because it was

approximately the average number of frames for all the subjects to start with the right heel and

approximately end with the same. This action is basically the movement of a subject from

placing her right heel on the floor, and walk forwards until the next contact of the right heel is

made with the floor. This can be defined as one cycle of walk for our purpose. Similarly, we

extracted a cycle of 120 frames for the jog dataset as well. For a frame rate of 120 frames-per-

second (fps), the walk action takes 2.3 seconds and the jog action take 1.0 second. It should be

noted that if for a particular action by a particular subject, we are not able to find such a cycle,

then we omit that data from the training set.

5.4.1.2 Motion data smoothing

Motion capture data is usually quite noisy and can have a lot of undesirable high

frequency components. These high frequency components are sometime hard to perceive by

watching the animation, however, if we plot the angles they become more apparent. This is

especially bad for interpolation techniques. Moreover, certain subjects have the tendency to

make other random unnecessary/unusual movements while performing an action like walk. The

reasons could be many, such as a nervous tick, injury, high caffeine intake or just plain habit.

This causes outliers in the motion capture data, which again is not great for interpolation

techniques. To get rid of these outlier movements and high frequency components of the data

we us a robust spline smoother [23] to preprocess the manually segmented data. Figure 5.2

 64

shows the plots of four random joint angles plotted with respect to frame numbers for a sample

walk dataset.

Figure 5.2: Robust spline smoothing for 4 sample joint-angles of a subject performing the walk

action.

5.4.2 Parameter selection

 Another important requirement for learning these interpolation models is the selection of

appropriate parameters. In our case here, using all the 20 bones as will lead to a high

dimensional parametric space. Moreover, using all the parameters will be redundant simply

because not all parameters have the same level of influence for a particular action. In other

words, some bones play a more important role for a specific action than others. As an example,

for the walk action, the neck does not have the same influence as the right foot or left upper leg.

Therefore, for a given action we can use only a subset of the parameter set. Consequently, for a

specific action we compute the zero-crossings of all the 66 joint angles and use the top

unique bones that constitute these joints. In our case we used parameters for both walk

and jog experiments and, aligned with our intuition, the 8 bones were the two feet, two lower

legs, two upper legs and two upper arms.

 65

5.5 Experiments

 We now describe the experiments performed on the walk and jog datasets. First, we

demonstrate the interpolation model used in a motion retargeting setup and then move on to

motion recognition.

5.5.1 Motion Retargeting and Recognition

 For the motion retargeting problem we use the synthesis part of our method. To achieve

good quality retargeting we need to minimize the average synthesis error. The synthesis error

here is the sum of absolute difference between the synthesized motion and ground-truth motion.

The average synthesis error is computed by running the synthesis experiment for a set of test

data (data excluded from training) and taking the average of the errors. As we know from our

earlier experiments with the images, the synthesis error depends on the number of training data

and the number of components used to learn the model. Figure 5.3 and 5.4 shows the plots of

the average synthesis error for the walk dataset.

 For motion recognition, we use the analysis part of our method to perceive the

parameters of a query motion, compute the motion based on the perceived parameters and

compute the sum of the absolute difference between the synthetic query motion and all the

subjects. We then conclude that the subject for which, the analysis error is the minimum is what

the system recognized. Here it is obvious that the performance of the analysis part is central to

achieving good recognition rates. Here again, the average analysis error has to be minimized

and the parameters it depends on are the number of training samples and the number of

independent components. Figure 5.5 and 5.6 show the plots of the average analysis error for

the walk dataset.

 66

Figure 5.3: Average synthesis error computed for the walk dataset, with the number of

components varying from 1 to 20 and the number of training samples, varying from 1 to 40.
Dark blue indicates lesser error and dark red is the other extreme.

Figure 5.4 Average synthesis error computed for the walk dataset, for 6(red), 8(green) and
10(blue) components with number of training samples varying from 1 to 40.

From the graphs (Figures 5.3 to 5.6) of the walk dataset with 40 subjects, we can see

that, to learn a model that can both perform synthesis and analysis the optimum number of

components used should be 10 while the number of training samples should be 30. These

 67

experiments were performed with 8 parameters namely, right foot, right lower leg, right upper

leg, right upper arm, left foot, left lower leg, left upper leg and left upper arm. With this set up we

get the average synthesis error: 6.9052 and the average analysis error: 0.7586, and the

recognition rate of 67.5%, where 27 out of the 40 were recognized correctly.

Figure 5.5: Average analysis error computed for the walk dataset, with the number of

components varying from 1 to 20 and the number of training samples, varying from 1 to 40.
Dark blue indicates lesser error and dark red is the other extreme.

Figure 5.6: Average analysis error computed for the walk dataset, for 6(red), 8(green) and

10(blue) components with number of training samples varying from 1 to 40.

 68

Figure 5.7: Nine random frames depicting the actual joint angles in blue and the retargeted joint

angles in red for test subject-1 doing the walk action.

Figure 5.8: Nine random frames depicting the actual joint angles in blue and the retargeted joint

angles in red for test subject-2 doing the walk action.

Similarly for the jog dataset with 47 subjects and the same set of parameters as walk,

we found out that the combination of 17 components and 46 training samples worked best. We

obtained the average synthesis error: 7.8581 and the average analysis error: 1.4013. With this

 69

average analysis error, we observed a recognition rate of 53%, where 25 of the 47 subjects

were identified.

To demonstrate the performance of motion retargeting we plot nine random frames out

of the 280 frames of motion depicting the variations of the 66 joint angles. The plot in blue is the

ground-truth motion while the overlaid red plot is the retargeted motion. Figure 5.7 and 5.8 show

this for two subjects doing the walk action.

5.6 Conclusion and Future work

 In this chapter we have demonstrated the application of our interpolation based

approach for two problems namely, motion retargeting and motion recognition. With the former,

we have met with good results and the retargeted motion look pretty realistic and visually

appealing. However, the method, at the moment does not handle the issues related to

interaction of the skeleton with the environment. This can be easily extended by including such

parameters into the interpolation model, which is part of our ongoing research. On the other

hand, the recognition-rate was not up to the mark; however, the model certainly demonstrates

its potential for application in this area. One way to improve this could be to use more

parameters and then project the analyzed parameters to a lower dimensional space using a

technique like Principal Component Analysis. This too, is a part of our current research.

 70

APPENDIX A

CVPOV: AN AUTOMATED TOOL FOR GENERATING SYNTHETIC GROUND TRUTH

 71

Introduction

It is common knowledge that capturing data, be it images or videos for most

experiments in the areas of computer vision or image processing is time consuming and many

times requires a lot of resources and expensive equipment. Although many datasets are easily

available today, and many of them are designed to test the current state-of-the-art methods, it

usually is very difficult to have the data to specifically meet the requirements of users other than

that of the designers of the dataset. With an aim to address these issues, we present CVPoV, a

tool built over a popular ray tracing engine, POV-Ray [65] along with VLPov [68], a patch

designed to save the depth information. CVPoV allows the user to specifically generate

images/videos of simple objects or complex scenes involving several different objects.

Moreover, the user can specify different poses, scale and lighting conditions based on her

requirements.

A fundamental and very important feature of CVPoV is that it finds point

correspondence between synthetic images of the same scene under different viewing

configurations. The point correspondence problem can be posed as; given a point in an image

of a particular scene, find the corresponding point in another image of the same scene. This is a

very challenging problem while dealing with real images under unconstrained illumination and

noise. Furthermore, the camera calibration and the depth information are not available.

However, in case of synthetically generated images such as those rendered using the POV-Ray

ray tracer, we have all the necessary information to calculate the disparity map and hence

compute the point correspondences between pixels of two different images of a scene.

Specifically, we use the depth information and the camera parameters to compute the disparity

map. Once we have the disparity map we can also compute an occlusion map. The biggest

advantage of using this tool is that we can obtain all the information namely, calibration, depth

and disparity maps for realistic scenes in user defined lighting conditions and camera poses,

something which is practically impossible with real world data.

 72

Background

We now describe the building blocks of CVPoV, namely, POV-Ray [65], MegaPOV [63]

and VLPov. It should be noted that CVPoV is built over these three tools and uses several

functions from all of them, the details of which are as follows.

The Persistence of Vision™ Ray-Tracer [65] is a powerful ray tracing software package.

POV-Ray is perhaps the most popular ray-tracing software package to date. Its popularity is

mainly due to its high quality scene rendering capabilities, easy to use scene description

language, and the availability of a large library of example scene files. Moreover, POV-Ray

binaries as well as the source code are freely available for the PC, Macintosh, and UNIX

platforms. POV-Ray is essentially used as the ray tracing engine. The user of CVPoV will have

to design their scene/object or use existing files in accordance with this platform.

MegaPOV is a set of custom and unofficial patches that are built over the POV-Ray ray

tracer. These patches provide additional features to the existing POV-Ray package. One of the

additional features provided by MegaPOV is the post processing patch. The MegaPOV post

processing patch not only allows manipulation of the color of the pixels after the rendering step

is completed, but also provides access to the content of the rendered image through internal

functions for the user. This data contains several components such as: color of the pixel,

intersection point, and the depth information. In other words, we gain access to all the

information the ray tracer receives for each of the pixels in the rendered scene.VLPov is an

annotation patch developed by Vedaldi [68] for MegaPOV. This annotation patch extends

MegaPOV to export camera and depth information for the rendered scenes. The VLPov patch

will save by default, along with any output image, an annotation file with the camera calibration.

VLPov can also export an accurate depth map of the scene. VLPov comes with MATLAB

functions for reading camera calibrations and processing the depth map data along with the

synthetic images generated by POV-Ray.

 73

CVPoV is a set of functions built over these tools to allow the user to automatically

generate synthetic ground-truth data with user specified view points along with motion field data

and occlusion maps. The user simply has to choose a suitable synthetic object/scene and

design an input file that describes the locations and orientations of the cameras. The tool then

generates the synthetic images/videos accordingly. This setup allows the users to specifically

design and generate datasets to test their algorithms.

Figure A1: Example scenes designed by [57]; (a) The Patio, (b) Urban Tree (c) The office and

(d) Travieso.

POV Scenes

We will now introduce some sample POV scenes rendered by CVPoV for our

demonstration purposes. We chose four different scenes created by Jaime Vives Piqueres [57],

shown in Figure A1. Two of them namely, Patio [61] and the Urban Tree [60] are outdoor

scenes (1
st
 and 2

nd
 pictures from top in Figure A1) and the remaining two, the Office [62] and

Travieso [59] are indoor scenes (3
rd

 and 4
th
 pictures from top in Figure A1). It is probably worth

noting that the scenes are pretty realistic and extremely detailed. In the following sections we

 74

will describe the usage of CVPoV along with example outputs generated using these four

scenes.

CVPoV Input Files

Besides the POV-Ray scene description file, CVPoV reads in a user defined camera

description file as an input file. The camera file needs to be designed by the user for a specific

POV scene/object and saved with a ‘.cam’ extension. Each line in the ‘.cam’ file corresponds to

a particular camera at a specific frame. Each line has an integer number representing a time

frame, followed by another integer number representing camera identification, followed by the

complete camera pose specification in the scene to be rendered. The camera description

includes any transformations applied to the camera such as translation and/or rotation. The

camera pose specification uses the same syntax as the camera structure in POV-Ray files. We

will now describe a POV camera model followed by the design of the camera-description files

required for CVPoV. We then elaborate on the functions along with example output images.

CVPoV Camera Description File

Figure A2: POV-Ray camera model [66]

It is important to understand the camera models used by POV-Ray to be able to design

and build camera description files for CVPoV. The POV-Ray camera model [66] uses the

following notations to setup a camera in the ray-tracing world: (a) location: a point that defines

 75

the x, y, z coordinates of the camera in the ray-tracing world coordinate system, (b) direction: a

vector that describes the initial direction to point the camera before any other transformations,

(c) look_at: a point that specifies x, y, z coordinates for the camera to look at after pan and tilt

transformations and (d) up and right: vectors that give the relative height and width of the view

screen. Figure A2 illustrates these vectors used in the camera description. The POV camera

description usually consists of the location, the direction vector and the look_at vector. The

translate and rotate vectors transform the camera from its original pose according to the values

specified and the order of transformation. The numbers from left to right in the angle brackets

represent the values in the x, y and z axes, respectively. For example, location<10,20,30>

specifies that the camera is located at the three dimensional point (10,20,30) and translate<-

10,0,0> moves the camera 10 units in the negative x-direction. The modifier translate will

translate the camera along the x, y and z axes by the amount specified in the vector <TX, TY,

TZ>. Similarly, the modifier rotate will rotate the camera about the x, y and z axes by the

degrees specified. Figure A3 depicts the sample camera description file-1 and Figure A4 is the

output images generated for the entries in this camera description file.

Figure A3: Sample camera-description file-1

The sample camera-description file-1 basically depicts- the trajectory of camera-0. The

translation and rotation vectors are varied by the user for frame 0 to 3. This essentially renders

four images as shown in the output in Figure A4. In another example we show a trajectory of

two frames (frame-0 and frame-1) of a grid of 4 cameras (camera-0 through camera-3). In this

case we vary the look_at vector instead of using the translate and rotate vectors. Figure A5 and

A6 shows the cam file and its corresponding output. For each line in the input camera file, the

associated rendered bitmap is saved with the naming scheme scene_camera_frame_id.bmp,

where scene is obtained from the POV-Ray scene file name scene.pov, camera is obtained

 76

from the input camera file name camera.cam, frame is the time frame in the current line of the

camera file, and id is the camera identification in the current line of the camera file. Similarly,

Figure A7 shows a sample object [64] rendered with rotation about the z-axis. As demonstrated

with these sample camera-description files, CVPoV can be used to render synthetic data as per

the specific requirements of the application.

CVPoV Functions

The ray-tracing and rendering part of CVPoV is essentially MegaPOV v1.2.1, C source

code with an active VLPov annotation patch used to save the bitmap images, the depth maps,

and the camera calibration files. The functionality built over this to be able to generate the

renderings according to a camera-description file and compute the motion field and occlusion

maps are our MATLAB functions. We now describe these functions and provide some sample

output for visualization.

Figure A4: Sample camera-description file-2

Depth and Camera Calibration

The depth information and the camera calibration files are generated and saved using

the generateDepthFiles function. For each entry in the camera-description file, the function

renders a bitmap image, saves its depth map, and exports the camera intrinsic and extrinsic

parameters into a calibration file. The function also takes in the scene width and height in pixels

as parameters so that the user can choose the resolution of the rendered data. Figure A8

shows a sample depth map for the Patio scene.

Motion Field

The function generateDepthFiles computes the motion field from the geometry of the

cameras and the depth of each pixel for pairs of images. The motion field is computed for all

 77

pairs of different cameras that do exist in the same time frame and for consecutive time frames

of the same camera. The motion field data is essentially two matrices that give the relative

horizontal (x-axis) and vertical (y-axis) displacement of each pixel between the two images.

Given this information, we find the point correspondence of a pixel () by adding the

horizontal displacement and the vertical displacement such that ().

Given the depth information for each pixel of a rendered scene, the scene is a three

dimensional cloud of points. Consider a point () in the scene, where () are in

world coordinates. The projection of on the image plane of camera-1 is the two-dimensional

point () and the projection of on the image plane of camera-2 is the two-dimensional

point (), where projections and are computed as: () () and

 () () and and are the intrinsic calibration matrices of camera-1 and

camera-2, respectively. More specifically, the projection equation is described as: [

]

 [

] [

], where, is the camera focal length, is the pixel size in the x-axis,

 is the pixel size in the y-axis. () is the principal point, and if the image width is w and

height is h then () and () respectively. In our case, the principal point

is the center of the image plane. For each rendered image, generateMotionField retrieves this

intrinsic calibration matrix of the camera to be able to compute the projections of the points from

the 3D space onto the image planes.

For each camera the generateMotionField function also retrieves its pose in terms of

translation vector and rotation matrix to compute the extrinsic parameters. Therefore, for a

given pair of cameras, we have the intrinsic matrix of the first camera, the rotation matrices

 and of both cameras, and the translation vectors and of both cameras. Now, for

every 3D point of the second image, the function computes the corresponding 2D point in the

first image using the equation; (((
) ())), where

 is the

 78

transpose of the rotation matrix . The displacement of each pixel i.e., the motion field, is then

computed by taking the difference between the corresponding points in the two images.

Figure A5: Output for the sample camera-description file-1

 79

Figure A6: Frame-0 (a) and frame-1 (b) of a grid of 4 cameras as described in sample camera-

description file-2

 80

Figure A7: Sample object rendered with rotation about the Z axis

Figure A8: Sample depth map for the Patio scene.

 81

Figure A9: The point correspondence displayed by the demoMotionField function. The two
images are from the Urban Tree scene with a translation in the x and y directions. The red

crosshair on the image (b) is selected by the user while the one on the image (a) is computed
using the motion field data.

Figure A10: The occlusion maps of the Patio scene with a translation along the x axis. The

image (c) is the occlusion map of the first image (a) with respect to the second image (b). The
image (d) is the occlusion map of the second image (b) with respect to the first image (a).

 82

We also have a function called demoMotionField that uses the motion-field data to

compute and plot the corresponding point on the second image for a user selected point on the

first image. Figure A9 shows a screenshot depicting point correspondence between pairs of

images of the same scene.

Occlusion maps

Given two images, this function determines the pixels of the images that are not visible

from both viewpoints. For each pixel in one image, the function checks if the corresponding

pixel is visible from the other viewpoint. If the pixel is not visible, then it is occluded in the

other image. The usage of this function is occlusionMap(sceneName, cameraName, frame1,

camer1, frame2, camer2). The function returns an occlusion map occMap1 of the first image

with respect to the second image and an occlusion map occMap2 for the second image with

respect to the first image. Figure A10 depicts the occlusion maps for two images of the Patio

scene that are translated in the x direction. The pixels in red are out of the field of view with

respect to the camera view point, the pixels in green are the ones that are visible from both

viewpoints, and the blue pixels are occluded.

83

REFERENCES

[1] Adelson, E. H., Bergen, J. R.: "The Plenoptic Function and the Elements of Early

Vision", Computational Models of Visual Processing (1991), 3-20

[2] Adini, Y., Moses, Y. and Ullman, S.: "Face Recognition: The Problem of Compensating

for Changes in Illumination Direction", IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 19, no. 7, pp. 721-732, July 1997.

[3] Arikan, Okan., Forsyth, David A. and O'Brien, James F.: "Motion Synthesis from

Anotations". In Proceedings of ACM SIGGRAPH 2003, pages 402–408, August 2003.

[4] Barrow, H., Tenenbaum, J.: "Recovering Intrinsic Scene Characteristics from Images",

Computer Vision Systems, (1978).

[5] Basri, R., and Jacobs, D.W.: "Lambertian reflectance and linear subspaces", Pattern

Analysis and Machine Intelligence, IEEE Transactions on , vol.25, no.2, pp. 218- 233,

Feb 2003.

[6] Bay, H., Tuytelaars, T., & Van Gool, L.: "SURF: Speeded Up Robust Features", 9th

European Conference on Computer Vision.

[7] Belhumeur,P.N. and Kriegman, D.J.: "What is the Set of Images of an Object Under All

Possible Lighting Conditions?", Computer Vision and Pattern Recognition, 1996.

Proceedings CVPR, IEEE Computer Society Conference on, vol., no., pp.270-277, 18-

20 Jun 1996.

[8] Berg, A. C., Berg, T. L., Malik, J.: "Shape matching and object recognition using low

distortion correspondences", CVPR. 2005.

[9] Bindiganavale, Rama., and Norman, I., Badler.: "Motion abstraction and mapping with

spatial constraints", Modeling and Motion Capture Techniques for Virtual Environments,

84

Lecture Notes in Artificial Intelligence, pages 70–82. Springer, November 1998. held in

Geneva, Switerland, November 1998.

[10] Bousseau, A., Paris, S., Durand, F.: "User-Assisted Intrinsic Images", Proc. ACM

SIGGRAPH, Asia, (2009), 16-19.

[11] Chellappa, R., Wilson, C., and Sirohey, S.: "Human and Machine Recognition of Faces:

A Survey", Proc. IEEE, vol. 83, no. 5, pp. 705-740, 1995.

[12] Choi, K. J. and Ko, H.-S.: "On-line motion retargeting", J. Visual. Comput. Animation 11,

2000, 223–243.

[13] Choudhury, B., Chandran, S. and Herder, J.: "A Survey of Image-based Relighting

Techniques", Proceedings of the First International Conference on Computer Graphics

Theory and Applications, (2006), 176-183.

[14] Comon, P.: "Independent Component Analysis, a New Concept?", Signal Processing,

(1994), 36(3), 287-314.

[15] Cortes, Corinna., and Vapnik, Vladimir N.: "Support-Vector Networks", Machine

Learning, 20, 1995.

[16] Daugman, J. G.: "How Iris Recognition Works", IEEE Trans. Circuits Syst. Video

Technol., vol. 14, pp. 21 2004.

[17] Daugman, J. G.: "Uncertainty Relation for Resolution in Space, Spatial Frequency, and

Orientation Optimized by Two-dimensional Visual Cortical Filters", Journal of the Optical

Society of America A 2, 7 (1985), 1160-1169.

[18] Daugman, J. G.: "Complete Discrete 2-d Gabor Transform by Neural Networks for

Image Analysis and Compression", IEEE Transactions on Acoustics, Speech, and

Signal Processing 36, 7 (1988), 1169-1179.

85

[19] Debevec, P.: "Rendering Synthetic Objects into Real Scenes: Bridging Traditional and

Image-based Graphics with Global Illumination and High Dynamic Range

Photography", Proc. ACM SIGGRAPH, (1998), 199-198.

[20] Debevec, P., Hawkins, T., Tchou, C., Duiker, H. P., Sarokin, W. and Sagar M.:

"Acquiring the Reflectance Field of a Human Face", Proc. ACM SIGGRAPH, (2000),

145-156.

[21] Debevec, P., Taylor, C. J., Malik, J.: "Modeling and Rendering Architecture from

Photographs: A Hybrid Geometry-and Image-based Approach", Proc. ACM

SIGGRAPH, (1996), 11-20.

[22] Drew, M.S., Hel-or, Y., Malzbender, T., Hajari, N.: "Robust Estimation of Surface

Properties and Interpolation of Shadow/Specularity Components", Image and Vision

Computing, (2012).

[23] Garcia, D.: (2010b) Robust Smoothing of Gridded Data in One and Higher Dimensions

with Missing Values. Computational Statistics and Data Analysis 54:1167–1178

[24] Georghiades, A.S., Belhumeur, P.N. and Kriegman, D.J.: "From Few to Many:

Illumination Cone Models for Face Recognition Under Variable Lighting and Pose",

Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.23, no.6, pp.643-

660, Jun 2001.

[25] Gleicher, Michael.: "Retargeting Motion to New Characters", SIGGRAPH 98

Conference Proceedings, Annual Conference Series, pages 33–42. ACM SIGGRAPH,

AddisonWesley, July 1998. ISBN 0-89791-999-8.

[26] Guerra-Filho, Gutemberg and Biswas, Arnab.: "The Human Motion Database: A

Cognitive and Parametric Sampling of Human Motion", In Proc. of the 9th IEEE

Conference on Automatic Face and Gesture Recognition (FG), 2011.

86

[27] Hallinan, P.W.: "A Low-Dimensional Representation of Human Faces for Arbitrary

Lighting Conditions", IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, vol., no., pp.995-999, 21-23 Jun 1994.

[28] Hotelling, H.: "Analysis of a Complex of Statistical Variables into Principal

Components", Journal of Educational Psychology, (1933), 24(6), 417-441.

[29] Kamarainen, J.K., Kyrki, V., Kalviainen, H.: "Invariance properties of Gabor filter-based

features - overview and applications", IEEE Trans. on Image Process. 15 (5) (2006), pp.

1088–1099.

[30] Ke, Y. and Sukthankar, R.: "PCA-SIFT: A More Distinctive Representation for Local

Image Descriptors", Proc. Conf. Computer Vision and Pattern Recognition, 2004.

[31] Koenderink, J. and Doorn, A. van.: "Representation of Local Geometry in the Visual

System", Biological Cybernetics, vol. 55, pp. 367-375, 1987.

[32] Kyrki, V.: "Local and global feature extraction for invariant object recognition", Ph.D.

thesis, Lappeenranta University of Technology. 2002

[33] Kyrki, V., Kamarainen, J.K., Kalviainen, H.: "Content-based image matching using

Gabor filtering", In: Proceedings of the International Conference on Advanced Concepts

for Intelligent Vision Systems Theory and Applications. Baden-Baden, Germany, pp.

45–49.

[34] Lee, K.C., Ho, J. and Kriegman, D.: "Acquiring Linear Subspaces for Face Recognition

Under Variable Lighting", IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol.27, no.5, pp.684-698, May 2005.

[35] Lie, Zhang and Samaras, D.: "Face Recognition Under Variable Lighting Using

Harmonic Image Exemplars", Computer Vision and Pattern Recognition, 2003.

87

Proceedings. 2003 IEEE Computer Society Conference on, vol.1, no., pp. I-19- I-25

vol.1, 18-20 June 2003.

[36] Levoy, M., Hanrahan, P.: "Light Field Rendering", Proc. ACM SIGGRAPH, (1996), 31-

42.

[37] Liu, C. and Wechsler, H.: "A Gabor Feature Classifier for Face Recognition", Eighth

IEEE Internat. Conf. on Computer Vision (2001), pp. 270–275.

[38] Lowe, D.G.: "Object Recognition from Local Scale-Invariant Features", Proc. Seventh

Int'l Conf. Computer Vision, pp. 1150-1157, 1999.

[39] Manjunath, B.S. and Ma, W.Y.: "Texture Features for Browsing and Retrieval of Image

Data", CIPR TR 95-06, July 1995.

[40] Mcmillan, L., Bishop, G.: "Plenoptic Modeling: An Image-based Rendering System",

Proc. ACM SIGGRAPH, (1995), 39-46.

[41] Malzbender, T., Gelb, D., Wolters, H.: "Polynomial Texture Maps", Proc. ACM

SIGGRAPH, (2001), 519-528.

[42] Matsushita, Y., Kang, S. B., Lin, S., Shum, H. Y., Tong, X.: "Lighting Interpolation by

Shadow Morphing Using Intrinsic Lumigraphs", 10th Pacific Conf. on Computer

Graphics and Applications, (2002), 58-65.

[43] Mikolajczyk, K. and Schmid, C. A.: "Performance Evaluation of Local Descriptors",

PAMI, 2004.

[44] Nimeroff, J. S., Simoncelli, E., Dorsey, J.: "Efficient Re-rendering of Naturally

Illuminated Environments", Proc. 5fth Eurographics Workshop Rendering, (1994), 359-

373.

88

[45] Peter, M. Roth and Winter, Martin.: "Survey of Appearance-based Methods for Object

Recognition", Technical Report ICG-TR-01/08, Graz University of Technology, Institute

for Computer Graphics and Vision, 2008.

[46] Quinlan, J. R.: "Induction of Decision Trees", Machine Learning 1: 81-106.

[47] Rish, Irina.: "An empirical study of the naive Bayes classifier", IJCAI 2001 Workshop on

Empirical Methods in Artificial Intelligence.

[48] Rizzolatti G., Craighero L.: "The Mirror-Neuron System", Annu. Rev. Neuroscience,

(2004), 169-192.

[49] Sakoe, H. and Chiba, S.: "Dynamic Programming Algorithm Optimization for Spoken

Word Recognition", IEEE Transactions on Acoustics, Speech and Signal Processing,

26(1) pp. 43- 49, 1978, ISSN: 0096-3518.

[50] Shan, S., Gao, W., Cao, B., and Zhao, D.: "Illumination Normalization for Robust Face

Recognition against Varying Lighting Conditions," Proc. Int’l Workshop Analysis and

Modeling of Faces and Gestures, 2003.

[51] Shashua, A. and Riklin-Raviv, T.: "The Quotient Image: Class-Based Re-Rendering and

Recognition with Varying Illuminations," IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 23, no. 2, pp. 129-139, Feb. 2001.

[52] Shum, H. Y., Kang, S. B.: "A Review of Image-based Rendering Techniques", Proc. Int’l

Conf. Visual Comm. and Image Processing, vol. 4067, (2000), 2-13.

[53] Tunwattanapong, B., Ghosh, A., Debevec, P.: "Practical Image-Based Relighting and

Editing with Spherical-Harmonics and Local Lights", CVMP, (2011), 138-147.

[54] Tuytelaars, T. and Mikolajczyk, K.: "Local Invariant Feature Detectors: A Survey",

Foundations and Trends in Computer Graphics and Vision, vol. 3, no. 3, pp. 177-280,

2008.

89

[55] Werner, T., Hersch, R. D., Hlavac, V.: "Rendering Real-world Objects Using View

Interpolation", ICCV, (1995), 957-962.

[56] Xiaoyang, Tan., and Triggs, B.: "Enhanced Local Texture Feature Sets for Face

Recognition Under Difficult Lighting Conditions", Image Processing, IEEE Transactions

on , vol.19, no.6, pp.1635-1650, June 2010.

[57] http://www.ignorancia.org/en/

[58] http://www.ignorancia.org/en/index.php?page=About_me

[59] http://www.ignorancia.org/en/index.php?page=Childhood

[60] http://www.ignorancia.org/en/index.php?page=Gardens

[61] http://www.ignorancia.org/en/index.php?page=Patio

[62] http://www.ignorancia.org/en/index.php?page=The_office

[63] http://megapov.inetart.net/

[64] http://objects.povworld.org/objects/cat/Engineering/

[65] http://www.povray.org/

[66] http://www.povray.org/documentation/

[67] http://ranger.uta.edu/~guerra/CVPoV.html

[68] http://www.vlfeat.org/~vedaldi/code/vlpovy.html

90

BIOGRAPHICAL INFORMATION

Vishnukumar Galigekere N was born in Bangalore, India, in 1979. He received his B.Sc.

(Electronics) from Bangalore University, Bangalore, in 2001 and his Masters in Computer

Applications from Visvesvaraya Technological University, Bangalore, in 2004 and M.S.

(Computer Science) from The University of Texas at Arlington in 2008.

His current research interest is in Object Recognition, Action/Gesture Recognition,

Image Descriptors, and Machine Learning methods for Computer Vision.

